A test of a statistical learning model for multiple choice behavior

Susan Arnold Beil
Lehigh University

Follow this and additional works at: https:// preserve.lehigh.edu/etd
Part of the Medicine and Health Sciences Commons

Recommended Citation

Beil, Susan Arnold, "A test of a statistical learning model for multiple choice behavior" (1962). Theses and Dissertations. 3124.
https:// preserve.lehigh.edu/etd/3124

A TEST OF A STATISTICAL
 LEARNING MODEL

FOR

MULTIPLE CHOLCE BEHAVIOR
by

Susan Arnold Beil

A Thesis
 Presented to the Graduate Faculty of Lehigh University
 In Candidacy for the Degree of
 Master of Science

Lehigh University
1962

This thesis is accepted and approved in partial fulfillment of the requirements for the degree of Master of Science.

Sept 19, 1962
λ

ACKNOWLEDGEMENTS

The writer wishes to express her appreciation to Dr. Arthur L. Brody for his helpful advice and criticism during the formulation and completion of this study and for making laboratory subjects, apparatus and facilities avallable for the experiment.

This experiment was financed by funds from a National Institute of Mental Health grant, contract number M3342.

TABLE OF CONTENTS

Page No.
Introduction 1
Method 7
Results and Discussion 12
Summary 33
References 35
Vita 36

1. The proportion of trials on which each choice was correct for each of the four groups 8
2. Terminal mean proportion of A_{1} responses for each group 13
3. Terminal mean proportion for each of the non-A A_{1} responses in Group II 15
4. Terminal mean proportion for each of the non-A responses in Group IV 17
5. Terminal mean proportion for each of the non- A_{1} responses in Group III 18
6. The frequency distribution and Chi-square values for the responses of individual subjects in the terminal block of 20 trials - Group I 21
7. The frequency distribution and Chi-square valuesfor the responses of individual subjects in theterminal block of 20 trials - Group II .22
8. The frequency distribution and Chi-square valuesfor the responses of individual subjects in theterminal block of 20 trials - Group III23
9. The frequency distribution and Chi-square valuesfor the responses of individual subjects in theterminal block of 20 trials - Group IV24
10. Parameters $\bar{P}(1)$ and θ estimated from the data for each group and used in obtaining the theoretical equation 31

LIST OF FIGURES

Figure
Page No.

1. The mean proportion of A_{1} responses by blocks of 10 trials and the theoretical curve fit to the data of subjects in Group I.
2. The mean proportion of A_{1} responses by blocks of 10 trials and the theoretical curve fit to the data of subjects in Group II. 27
3. The mean proportion of A_{1} responses by blocks of 10 trials and the theoretical curve fit to the data of subjects in Group III. 28
4. The mean proportion of A_{1} responses by blocks of 10 trials and the theoretical curve fit to the data of subjects in Group IV.

The purpose of the present study was twofold; first, to study the multiple choice behavior of animal subjects (S) under partial reinforcement, and second, to test certain predictions of Estes' statistical learning theory in this situation.

Food deprived albino rats were run in a hexagonally shaped maze with either two, three, or six choices available to them. A forced choice correction procedure was used. That is, the aminal had a free choice from the complete set of choices (2,3, or 6) as its initial response on any trial. If a correct response was given, a food reinforcement was obtained and the trial ended. If an incorrect response was given, no reinforcement was obtained, the animal was replaced in the start box, and forced to make the correct choice by reducing the complete set of choices to one available choice. Following the forced correction, reinforcement was obtained and the trial ended. Thus, each trial was terminated with a reinforcement. The correct response on each trial was determined by the experimenter according to a prearranged random schedule and was in no way contingent upon the animal's behavior. Partial reinforcement schedules were used with the restriction that on each trial one choice was designated the correct choice. That is, there were no trials on which more than one choice could result in reinforcement nor trials on which none of the choices resulted in reinforcement. One of the choices from the complete set was designated A_{1} and the probability of that choice being correct on each trial was designated Π_{1}. All $\underline{S} s$, regardless of the number of choices in the complete set, had the same Π_{1} value. The remaining
or non-A A_{1} choice for the two choice S $^{\text {s was correct with a probability }}$ of $1-T_{1}$. The remaining choices for the three and six choice \underline{s} s were correct with a probability that summed to $1-T_{1}$. Thus the effect of the number of choices on the learning of the A_{1} response could be investigated. In addition, one group of three choice $\underline{S} s$ and the group of six choice \underline{S} s had an equal probability of being correct on all nonA_{1} choices. That is, the probability of the non- A_{1} choices being correct, $1-T_{1}$, was evenly divided over the non-A ${ }_{1}$ choices. Another
 being correct unevenly divided over the non- A_{1} choices. The effect of this difference in partial schedules with respect to non-A A_{1} responses on both the learning of the A_{1} response and the learning of the non- A_{1} responses was studied. If, as is shown below, the learning of the A_{1} response depends solely on the probability of reinforcing an A_{1} response, the different partial schedules on non- A_{1} responses should not have resulted in any differences in final level of A_{1} responding among the different groups. By a similar line of reasoning, the different partial schedules on non- A_{1} responses should have resulted in different final levels of non- A_{1} responding.

Turning to the predictions derived from Estes' statistical learning model, a brief outline of the model employed will be presented first (See Estes, 1959 for further details). The stimulating situation is represented by a population of stimulus elements. On any trial, in a series of discrete trials, an independent ramdon sample of elements is drawn from the population in which each element has an equal probability of being sampled. It is assumed that the experimental situation remains constant during the series of trials so that
the same population of elements is sampled on each trial and so that the siae of the sample remans constant. All of the elements sampled on a trial become connected to the response reinforced on that trial. The response is a member of one response class and the experimental situation determines the set of minally exclusive and exhaustive response classes. The probability of occurrence of a response class is the basic theoretical dependent wariable and is defined as the proportion of elements in the population connected to that response class. Thus when response is relnforced, all of the elements sampled on that trial become connected to that response: and there is a resultant increase in the probability of that response (provided only that the probability is not already equal to unity or that all the elements are not already connected to that response). After enough random samples have been drawn, each element will be connected to one of the response classes and since, then, the sum of the probabilities of all response classes must be unity, an increment in the probability of one response class will result in a corresponding decrement in the probability of all other classes.

In this maltiple choice situation, there was a series of discrete trials, each trial terminating with the reinforcement of one response class from a set of matually exclusive and exhaustive response classes; the stimulating conditions throughout the series of trials remained relatively constant. Thus the conditions of the model were met.

For simplicity, we will follow the changes in probability of one of the response classes, A_{1}. With respect to the A_{1} response, there were only two kinds of trials. Either A_{1} was the correct response and was reinforced or it was not correct and one of the other response
classes was correct and therefore reinforced. Notice that postulating only two kinds of trials is a simplifying assumption. Thus, one kind of trial is when the A_{1} response is reinforced regardless of whether the A_{1} occurs as the initial response or as the forced correction response. The second kind of trial is when the A_{1} response is not reinforced regardless of whether the A_{1} does or does not occur as the initial response. The essential feature is whether the A_{1} response is or is not reinforced following its occurence. The change in the probability of $\operatorname{an} A_{1}$ following the first kind of trial can be represented by the following difference equation:

$$
\begin{equation*}
\mathrm{P}(\mathrm{n}+1)=\mathrm{P}(\mathrm{n})+\theta[1-\mathrm{P}(\mathrm{n})] \tag{1}
\end{equation*}
$$

where $P(n)$ is the probability of an A_{1} prior to the nth trial, $P(n+1)$ a is the probability of an A_{1} after the $n t h$ trial, and θ is the parameter representing the proportion of elements sampled from the population on each trial. Since the probability of an A_{1} is defined as the proportion of elements in the population connected to $A_{1}, 1-P(n)$ represents the proportion of elements not connected to A_{1}. of the new sample of elements, $\theta[1-P(n)]$ represents the proportion of elements previously not connected to A_{1} which are now sampled and become connected to A_{1}. This proportion is added to the proportion of elements already connected to A_{1} prior to the trial resulting in ap increment in the probability of an A_{1}. Similarly, the change in probability of an A_{1} response following the second kind of trial can be represented by the following difference equation:

$$
\begin{equation*}
P(n+1)=P(n)-\theta P(n) \tag{2}
\end{equation*}
$$

which shows that the proportion of elements connected to A_{1} prior to the trial is reduced by an amount corresponding to $\theta P(n)$, the proportion
of elements which were connected to A_{1} which are now sampled and become connected to some other response class. This results in a decrement in the probability of A_{1}.

The mean probability of an A_{1} after trial n, can be obtained by weighting each of the difference equations by the proportion of trials on which each should apply and summing. That is, since the first kind of trial (A_{1} correct and reinforced) occurs with a probability T_{1} and since equation (1) represents the change in probability of A_{1} which occurs on this kind of trial, equation (1) is weighted by Π_{1} 。 similarly, equation (2) is weighted by $1-T_{1}$. We then have

$$
\begin{aligned}
P(n+1) & =T_{1}\{P(n)+\theta[1-P(n)]\}+\left(1-T_{1}\right)[P(n)-\theta P(n)] \\
& =(1-\theta) P(n)+\theta T_{1}
\end{aligned}
$$

It can be shown by mathematical induction, that at the end of the nth trial the probability of an A_{1} response is

$$
\begin{equation*}
P(n)=\pi_{1}-\left[\pi_{1}-P(0)\right][1-\theta]^{n} \tag{3}
\end{equation*}
$$

Since $1>\theta>0$, the equation describes a negatively accelerating curve. With n sufficiently large, the asymptotic level of A_{1} responses is seen to be T_{1}. This prediction has been supported by empirical findings for two, three, four and eight choice situations employing human \underline{S} (Detambel, 1955; Estes and Straughan, 1954; Neimark, 1956).

The predictions derived from the model for this experimental situation were: (1) The terminal level of A_{1} responses will be the same for all Ss regardless of the number of available choices (2,3, or 6); (2) The terminal level of the non-A1 responses (three choice and six choice groups) will be equal to the proportion of trials on which each
of the non- A_{1} responses is correct whether there is an equal or unequal division of the probability of the non- A_{1} choices being correct ($1-\Pi_{1}$); (3) The terminal level of the non- A_{1} responses will be equal to each other and to $\left(1-T_{1}\right) /$ number of non-A A_{1} response alternatives where there is an even division of the probability of the non- A_{1} responses being correct; (4) The theoretical learning curve, equation (3), should provide a good fit to the empirical data; (5) The θ value will be an increasing function of the number of available choices if the stimulation of the choices is a large proportion of the total stimulation of the experimental situation.

METHOD

Subjects. The \underline{S}^{s} were 48 naive, female, albino rats, between the ages of 90 and 120 days old.
. Apparatus. The apparatus was a six alley hexagonal maze constructed of wood and covered with plexiglass. The start box in the center of the maze was a plexiglass hexagon with $5-1 / 8^{\prime \prime}$ sides, 6-1/2" depth, and had a hinged top. Each alley of the maze was $14^{\prime \prime}$ long, 6-1/2" deep, 4-1/2" wide, and had a hinged top. At the end of each alley was a food dish extending $1-1 / 2^{\prime \prime}$ into the alley, centered, and raised $2-1 / 8^{\prime \prime}$ above the floor. Six sheet metal guillotine doors were located 1-3/8' from the beginning of each alley. One side of each door had a different painted design of horizontal or vertical black and white stripes plus some arbitrary figure (e.g. triangles, circles, etc.) superimposed on the stripes. The other side was unpainted. The start box and doors were operated manually using a system of pulleys. The doors could be raised or lowered simultaneously in combination or individually. The start box and doors could be raised to a height of $3^{\prime \prime}$ from the floor. With the appropriate doors raised, raising the start box permitted access to the appropriate alleys. The maze was centered beneath a rectangular flourescent ceiling light oso that alleys two and five were directly beneath the light. The Experimenter stood between alleys one and six during each trial.

Procedure. Ss were randomly assigned to one of four groups with 12 Ss per group. Reinforcement probabilities for the four groups are outlined in Table 1. Reinforcement schedules for 150 acquisition trials were determined randomly for each \underline{S} so that each choice was correct with the probability outlined in Table 1 in each block of 50

Table 1
The proportion of trials on which each choice was correct for each of the four groups.

Group	Choice 1	Choice 2	Choice 3	Choice 4 Choice 5	Choice 6	
I	.60	.40				
II	.60	.20	.20			
III	.60	.30	.10			
IV	.60	.08	.08	.08	.08	.08

trials. The alleys used in each group were equidistant (opposite alleys for the two choice group, alleys at 120° for the three choice groups, and all alleys for the six choice group). All combinations of probabilities for the set af alleys in each group were randomized across all Ss in the group as follows: With the alleys numbered consecutively from one to six in a clockwise direction, six randomly selected S in Group I had alley number one correct with probability. 60 and alley four correct with probability .40. The remaining six Ss in Group I had alley four correct with probability .60 and alley one correct with probability .40. Three randomly selected sets of four Ss each in Groups II and III had respectively alley, one, three, and five correct with probability .60. For Ss in Group II, the other two alleys were correct with probability . 20. For S s in Group III, within a set of four Ss all having the same alley correct with probability .60 , two randomly selected $\underline{S} s$ had one of the remaining alleys correct with probability .30 and the other alley correct with probability .10 ; the remaining two S s had the reverse condition. For Group IV, sets of two randomly selected \underline{S} s were assigner a different one of the six alleys to be correct with probability . 60 , the remaining five alleys to be correct with probability . 08 each.

Each \underline{S} was handled approximately five minutes daily for three days during which time she could explore the maze with all doors removed and no reinforcement present. The $\underline{\text { S }}$ s were on approximately a 15 hour deprivation schedule that continued for the entire experiment. During these three days after handling was completed for all animals and just before the regular food (Purina Chow) was provided, each animal was given two 97 mg dextrose tablets. This was done to familiarize
the Ss with the tablets which were used as reinforcements.
Six pre-training trials were then given using a procedure analogous to the correction procedure (described below). Reinforcement was presented with equal probability in each alley being used in the group to which \underline{S} had been assigned.

Following the training trials, each \underline{S} was given 150 acquisition trials, four trials per day. On each trial \underline{S} was placed in the start box with the appropriate doors open and with the painted side of these doors facing the start box. The remaining doors were closed with the unpainted side of these doors facing the start box. After five seconds, the start box was raised allowing \underline{S} to run into any one of the appropriate alleys. When \underline{S} had entered one of the alleys, the open doors were all lowered. If reinforcement was present (a single 97 mg dextrose tablet placed in the food dish), \underline{S} was allowed 20 seconds to consume the tablet and was then removed from the alley and returned to the home cage. If reinforcement was not present, \underline{S} was confined in the alley for 10 seconds, then removed for correction. The correction procedure used involved replacing \underline{S} in the start box with all doors lowered except the one to the alley containing the reinforcement. The arrangement of the doors with respect to painted and unpainted sides facing the start box remained the same as that at the start of the trial. After five seconds, the start box was raised allowing \underline{S} to gain reinforcement. After 20 seconds, \underline{S} was removed from the alley and returned to the home cage. This procedure is analogous to the forcedchoice correction procedure used in a previous study (LoGiudice, 1962). One-half hour following the daily trial series of four trials, the S were given food for one and one-half hours. All Ss had continuous
access to water in their home cages. Since the total time of the four trials was approximately seven hours, different $\underline{S} s$ had different deprivation schedules. In order to balance differential amounts of deprivation for the four groups of $\underline{S} s$, the order of running the $\underline{S} s$ was randomized across the four groups and this became the fixed order of running Ss. $^{\text {. }}$

RESULTS AND DISCUSSION

During the course of the experiment, one of the 48 Ss died. The data presented are based on $12 \underline{\mathrm{~S}}$ s in Group I, $11 \underline{\mathrm{~S}} \mathrm{~s}$ in Group II, $12 \underline{\mathrm{~S}}$ In Group III and 12 ss in Group IV.

In all cases; the datum to be discussed was the initial response on a trial, not the corrected response which may have followed. Defining an A_{1} response as entering the alley which was correct with probaability $.60\left(T_{1}\right)$, the first results to be presented are the terminal levels of A_{1} responding for the four groups. To see whether the A_{1} responses reached a stable terminal level, separate t-tests for each group were run on the difference between the mean proportion of Aipesponses in the next to last block of 10 trials (trials 131 - 140) and the last block of 10 trials (trials 141 - 150). The results of these $t-$ tests were, Group $I(t=.034, d f=11)$, Group $I I(t=.114, d f=10)$, Group III $(t=.158, \mathrm{df}=11)$, and Group IV $(\mathrm{t}=.016, \mathrm{df}=11)$. None of these t-tests showed a significant difference (. 05 level of confidence)' in level of responding in the two terminal 10 trial blocks. It was therefore concluded that all groups reached asymptote within 150 trials, and because of the finding of no differences, the data for the two terminal 10 trial blocks were combined for further tests.

Table 2 shows the terminal proportion of A_{1} responses in the last block of 20 trials for each group. An analysis of variance was done on this terminal level for the four groups. The \underline{F} of .570 with 3 and 43 df was not significant at the .05 level. Therefore, the terminal level of A_{1} responses was the same for all groups regardless of the number of available choices (2,3 , or 6), and regardless of the different partial schedules of reinforcement of the non- A_{1} responses.

Table 2
Terminal mean proportion of A_{1} responses for each group

	\bar{p} trials $(131-150)$	π_{1}	\mathbf{t}
Group I	.60	.60	0
Group II	.62	.60	.415
Group III	.56	.60	.884
Group IV	.52	.60	1.053

$$
\underline{F}=.570
$$

Separate t-tests for each group were run between the terminal level of A_{1} responses and the probability of reinforcement (Π_{1}). Group I $(t=0)$, Group II $(t=.415, d f=10)$, Group $\operatorname{III}(t=.884, d f=11)$, and Group IV $(t=1.053, d f=11)$ all showed no significant difference (. 05 level of confidence). Thus, the asymptotic level of A_{1} responding did not differ significantly from T_{1}, (the probability of reinforcement of an A_{1} response) for any of the four groups. Again, the terminal level of A_{1} responses is seen to be independent of the number of available choices and the partial schedules of reinforcement of the non- A_{1} responses. This is taken as a confirmation of the first prediction derived from the Estes ${ }^{\circ}$ model.

Let us turn now to the terminal level of non- A_{1} responses. In Group II, there was an equal division of probability of reinforcement among the non- A_{1} response, alternatives. Recall that the two non- A_{1} alternatives were selected from three alleys. In order to test the difference between terminal response proportions on the non- A_{1} alternatives, one of the two alleys used for each S was randomly assigned to what was called the A_{2} alternative and the other alley to what was called the A_{3} alternative.

Table 3 shows the terminal mean proportion of responses to each of the non- A_{1} response alternatives in Group II. At-test was run between the terminal proportion of A_{2} responses and the terminal proportion of A_{3} responses. The t of .488 with 10 df showed that there was no significant difference in terminal level of A_{2} and A_{3} responding. A separate t-test was run between the mean proportion of A_{2} responses and the proportion of trials on which that response was correct $\left(1-T_{1} / 2\right.$ $=.20)$. The \underline{t} value of .134 with 10 df was not significant. Similarly,

Table 3

Terminal mean proportion for each of the non- A_{1} responses in Group II.

	A_{2}	A_{3}	
Mean Proportion	.205	.182	$t=.488$
Expected Proportion	.200	.200	
	$\underline{t}=.134$	$\underline{t}=.625$	

a t-test was run between the mean proportion of A_{3} responses and the proportion of trials on which that response was correct ($1-\pi_{1} / 2=.20$). The t value of .625 with 10 df was also non-significant. It is concluded, therefore, that for Group II, the terminal levels of the two non- A_{1} responses were equal to each other and that they were both equal to $1-\pi_{1} / 2$ 。

Table 4 shows the terminal mean proportion of responses to each of the non- A_{1} response alternatives in Group IV where there was also an equal division of $(1-\overline{/ / 1})$ among the remaining alternatives. Here, the five non- A_{1} alternatives (which were selected from the six alleys) were randomly assigned for each S to the alternatives $A_{2}, A_{3}, A_{4}, A_{5}$, and A_{6}. The mean proportion of responses to each of the five non- A_{1} response alternatives in the terminal block of 20 trials showed no significant differences ($F=.642$ with 4 and 55 df). None of the five terminal mean response proportions differed from the proportion of trials on which each alternative was correct $\left(1-T_{1} / 5-.08\right)$. The separate t values of $.121,1.467, .135, .050$, and .909 each with 11 df were all nonsignificant. For Group IV, the analogous conclusion to that of Group II is therefore reached, namely that the terminal levels of the five non- A_{1} responses were equal to each other and that they were all equal to $1-T_{1} / 5$.

The mean proportion of responses to each of the two non- A_{1} response alternatives in the terminal block of 20 trials for Group III is shown in Table 5. Here there was an unequal division of $1-7 T_{1}$ and the alley with probability of reinforcement. 30 was called the A_{2} alternative and the alley with probability of reinforcement .10 was called the A_{3} alternative. At-test was run to test the difference

Table 4
Terminal mean proportion for each of the non- A_{1} responses in Group IV.

	A_{2}	$\mathrm{~A}_{3}{ }^{\prime}$	A_{4}	$\mathrm{~A}_{5}$	$\mathrm{~A}_{6}$	
Mean Proportion	.083	.129	.083	.079	.104	$\underline{F}=.642$
Expected Proportion	.080	.080	.080	.080	.080	
$\mathrm{t}=$.121	1.467	.135	.050	.909	

Terminal mean proportion for each of the non-A A_{1} responses in Group III.

between the terminal response proportions to A_{2} and A_{3}. The t value of 3.198 with 11 df was significant. The mean proportion of A_{2} responses did not differ significantly from .30 (proportion of trials on which the response was correct). The \underline{t} value of .116 with 11 df was nonsignificant. Similarly, the mean proportion of A_{3} responses did not differ significantly from .10 (proportion of trials on which that response was correct): The t value of 1.45 with 11 df was not significant. It is therefore concluded that for Group III, the terminal levels of the two non $-A_{1}$ responses were different from each other and that each was equal to the proportion of trials on which that response was correct.

In summary, comparing the results on the non- A_{1} responses with the predictions derived from Estes' statistical learning model, it can be seen that the terminal level of responding of the non- A_{1} responses did not differ from the proportion of trials on which each of the nonA_{1} responses was correct whether there was an equal or unequal division of $1-T_{1}$. Further, the terminal levels of responding of the non- A_{1} responses did not differ from each other where there was an even division of the probability of the non-A, being correct and did differ from each other where there was an uneven division. Thus, the second and the third predictions of the model are confirmed.

The results, discussed above, which were all based on group means support the predictions of the model. According to the model, the predictions should also hold for individual \underline{S}. Therefore, each \underline{S} 's terminal level of responding to each of the response alternatives was tested against the predicted terminal level of responding. The observed frequencies of responses to each of the response alternatives
in the terminal block of 20 trials were tested against the theoretical frequency distribution given by the model by the Chi-square technique. Tables 6 through 9 present for Groups I through IV respectively the tests of the adequacy of the model for each of the 47 Ss. Since the Chi-squares for individual \underline{S} s are independent of each other, they can be summed to provide a Chi-square to test the adequacy of the model for the group. One \underline{S} in Group I, one \underline{S} in Group II, two S s in Group III and nine S s in Group IV had observed terminal frequency distributions which differed significantly from the theoretical frequencies.

The group Chi-squares showed no significant departures for Groups I and II, but both Group III $\left(X^{2}=51.67, \mathrm{df}=24\right)$ and Group IV $\left(X^{2}=147.04, \quad \mathrm{df}=24\right)$ showed significant departures from the model. While the non-significant Chi-squares of Groups I and II are in, line with the previous t-tests on group means, the significant departures of Groups III and IV are not. Inspection of Table 8, Group III, shows that the significant departure for this group was a result of large deviations of only two ss. The model, therefore, seems to be fairly satisfactory. Inspection of Table 9, Group IV, however, shows that there were many large individual deviations. $\underline{S} s$ responded to the A_{1} alternative with frequencies ranging from one and five to 18 and 17 in the terminal block of 20 trials. Similar deviations are seen on the remaining non- A_{1} alternatives. However, when these frequencies are averaged (as for the t-tests on means) the group frequencies do not differ from the predicted frequencies of responding. It therefore seems reasonable to conclude that the model did not adequately predict the , co. behavior of individual \underline{S} s in Group IV, (the six choice situation with the particular reinforcement probabilities used); although it was

Table 6
The frequency distribution and Chi-square values for the responses of individual subjects in the terminal block of 20 trials - Group I

Table 7

The frequency distribution and Chi－square values for the responses of individual subjects in the terminal block of 20 trials－Group II

	＊	A_{1}	A_{2}	A_{3}	Chi－square
Theoretical Frequency		12	4	4	
Observed Frequency	S	17	2	1.	5.33
	S \＃2	11	6	3	1.33
	S \＃3	16	2	2	3.33
	S ${ }^{\text {\＃}}$	14	5	1	2.83
	S 非5	12	5	3	． 50
	S 非6	12	4	4	0
	S $⿰ ⿰ 三 丨 ⿰ 丨 三^{7}$	16	4	0	5.33
	S ${ }^{\text {非8 }}$	8	9	3	7.83 ＊
	S 非9	8	7	5	3.83
	S \＃10	12	4	4	0
	S $⿰ ⿰ 三 丨 ⿰ 丨 三 11$	9	7	4	3.00
				$\Sigma=33.31$	

＊Significant at the ． 05 level．

Table 8
The frequency distribution and Chi-square values for the responses of individual subjects in the terminal block of 20 trials - Group III

** Significant at the . 01 level.

The frequency distribution and Chi-square values for the responses of individual subjects in the terminal block of 20 trials - Group IV.

adequate for predicting the mean behavior of \mathbf{S}_{s} in this group. Perhaps, the results from Group IV should be taken as evidence that tests of models for individual behavior which are based on averages over a group of S_{s} are at best a first approximation to a test, and that the crucial feature of how many individual ss shew the same trend as the group $^{\text {s }}$ the mean cannot be overlooked. In attempting to account for the discrepancies observed in Group IV, it is important to note that the choice of reinforcement probabilities was severely limited by the conditions of the experiment. In order to have the same Π_{1} value for all groups and, at the same time, not to have this value too close to .50 (so that a reasonable two choice situation would result), it Was necessary to have quite small reinforcement probabilities for the five non- A_{1} alternatives of Group IV. Perhaps there are upper and lower bounds on reinforcement probabilities which restrict, somewhat, the usefulness of this model. That is, it might turn out that if Π_{1} is set equal to a value greater than .90 or less than .10 the model breaks down. Unfortunately, there is no way of knowing, on the basis of the present study, whether such is the case or whether the mogel breaks down when the number of available choices is greater than three.

Turning from the terminal level of response to the A_{1} responses throughout the entire 150 trial acquisition series, Figures 1 through 4 show the mean proportion of A_{1} responses per block of 10 trials each for Groups I through IV respectively. The Figures also show theoretical curves fit to the data. The equations for these curves is

$$
\begin{equation*}
\overline{\mathrm{P}}(\mathrm{~m})=\pi_{1}-\left[\pi_{1}-\overline{\mathrm{P}}(1)\right][1-\theta]^{10(\mathrm{~m}-1)} \tag{4}
\end{equation*}
$$

in which $\bar{P}(m)$ represents the theoretical mean proportion of A_{1} responses

Fig. 1. The mean proportion of A_{1} responses byr blocks of 10 trials and the theoretical curve fit to the data of subjects in Group I.

Fig 2. The mean proportion of A_{1} responses by blocks of 10 trials and the theoretical curve fit to the data of subjects in Group II.

Fig. 3. The mean proportion of A_{1} responses by blocks of 10 trials and the theoretical curve fit to the data of subjects in Group III.

Fig. 4. The mean proportion of A_{1} responses by blocks of 10 trials and the theoretical curve fit to the data of subjects in Group IV.

on the mth block of trials; $\bar{P}(1)$ represents the observed mean proportion of A_{1} responses on the first block of trials; Π_{1} is the probability of an A_{1} being correct and is equal to .60 ; and θ represents the proportion of stimulus elements sampled on each trial. This equation is derived from equation (3) (see Estes and Straughan, 1954 for details of the derivation). There are two pafameters, $\bar{P}(1)$ and θ, which must be estimated from the data of each group separately. The estimate for $\bar{P}(1)$ is simply the observed mean proportion of A_{1} responses on the first block of 10 trials. The estimate of θ can be obtained by summing equation (4) over the 15 blocks of trials and setting this sum equal to the observed mean total A_{1} responses over all trials divided by the number of trials per block (10). Inserting the estimate for $\overline{\mathbf{P}}(1)$, the equation can be solved for the one unknown, θ. Table 10 shows the $\bar{P}(1)$ and θ values thus estimated from the data.

F-goodness of fit tests for repeated measures were run for each group to determine whether or not the theoretical equation provided a good fit to the empirical data. The \underline{F} values for Group I ($\mathrm{F}=.305$, $\mathrm{df}=13$ and 154), Group II ($\mathrm{F}=1.366, \mathrm{df}=13$ and 140), Group III $(\underline{F}=1.510, \mathrm{df}=13$ and 154$)$, and Group IV $(\underline{F}=.5636, \mathrm{df}=13$ and 154) were all non-significant at the .05 level of confidence. Thus there is no adequate basis for ${ }^{\text {rejejecting hypothesis (4) that the theoretical }}$ learning curve satisfactorily fits the data.

The last hypothesis was concerned with the possibility of an increase in θ as a function of the number of available choices. An inspection of Table 10 shows no such relationship. Therefore, either the relationship does hold but the stimulation of the choices is not

Table 10

Parameters $\bar{P}(1)$ and θ estimated from the data for each group and used in obtaining the theoretical equation.

	$\bar{P}(1)$	θ
Group I	.5000	.0247
Group II	.3900	.0089
Group III	.4250	.0087
Group IV	.1330	.0130

a large enough proportion of the total stimulus of the experimental situation to make a difference in the θ value or the stimulation of the choices is the same regardless of the number of available choices.

To sum up, for all groups (2,3 , and 6 choice), the group mean data on terminal responding and A_{1} responding throughout the acquisition series supported the predictions of the model without exception. Investigation of individual \underline{S} s showed that the model provided an adequate fit to terminal frequencies of responding for $\underline{S}^{\operatorname{s}}$ in Groups I, II and III, but that individual Ss in Group IV showed large deviations from expected frequencies given by the model. The conclusions based on the results of this experiment are that the behavior of animal $\underline{S} s$ was adequately accounted for by the Estes' statistical learning model employed, as far as the two and three choice situations; but, the adequacy of the model in accounting for the behavior of animals in the six choice situation leaves something to be desired.

SUMMARY

This experiment was designed to study the multiple choice behavior of animal $\underline{S} s$ under partial reinforcement and to test certain predictions of Estes' statistical learning theory in this situation.

Forty-eight food-deprived albino rats were run in a hexagonally shaped maze with either two, three, or six choices available to them. S s were randomly assigned to one of four groups (two groups of three choice Ss) representing different reinforcement probabilities. For all groups one response, designated A_{1}, had a probability of reinforcement equal to $.60\left(\pi_{1}\right)$. The remaining choices were correct with probability that summed to $1-T_{1}$. For one group of three choice \underline{S} s and the six choice S, the probability of reinforcement on the remaining non- A_{1} choices was evenly divided; and for another group of three choice \underline{S} s the probability of reinforcement was unevenly divided among the remaining choices.

Statistical analyses for the four groups indicated that the terminal level of A_{1} responding did not differ significantly from Π_{1}, and that there were no differences in terminal levels of A_{1} responding among the groups. This confirmed the predictions of the model that the terminal level of A_{1} responding depends only upon the value of Π_{1}, and is independent of the number of available choices and the partial schedules of reinforcement of the non- A_{1} choices. There were also no differences between terminal level of responding to the non-A responses and the probability with which each non-A A_{1} response was reinforced. This confirmed the predictions of the model on the terminal levels of non-A A_{1} responses. The data for individual $\underline{S} s$ showed that the model was adequate in
accounting for the behavior of Ss in Groups I, II, and III. However, in Group IV, nine Ss deviated significantly from the predictions of the model, with respect to terminal frequencies of response. The model could not be said to give an adequate account of the behavior of these Ss.

A theoretical learning curve based on the model, and involving the estimation of two parameters, was fitted to the data for each group. Fgoodness of fit tests showed that the theoretical curve provided a good fit to the empirical data for all groups.

It is concluded that Estes' statistical learning model provides a good fit to the behavior of animal S in the two and three choice situations, but not in the six choice situation.

1. Detambel, M.H. A test of a model for multiple-choice behavior, J. exp. Psycho1., 1955, 49, 97-104.
2. Estes, W.K. The statistical approach to learning theory. In S. Koch (Ed.), Psychology: a study of a science, Vol. 2., New York: McGraw-Hill, 1959. Pp 380-491.
3. Estes, W.K. \& Straughan, J.H. Analysis of a verbal conditioning situation in terms of statistical learning theory, J. exp. Psychol., 1954, 47, 225-234.
4. LoGiudice, J.K. Unpublished study, Lehigh University, "1962.
5. Neimark, Edith D. Effects of type of non-reinforcement and number of alternative responses in two verbal conditioning situations, J. exp. Psycho1., 1956, 52, 209-220.

VITA

Susan Arnold Beil, daughter of Susan and Thomas Beil, was born in Reading, Pennsylvania, on May 6, 1938.

A 1956 graduate of Exeter High School, Reiffton, Pennsylvania, she attended the Mary Washington College of the University of Virginia and graduated in June, 1960, with a major in Mathematics and a major in Psychology.

In September, 1960, she began graduate work at Lehigh University in the department of psychology. She was a graduate assistant in the University Counseling and Testing Services under Dr. Andrew J. Edmiston from July, 1961 until July, 1962. In October, 1962, she obtained the degree of Master of Science from Lehigh University.

