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ABSTRACT

o — A eurgst;c met hod (or simply a hegristic) is a

~ method used by a- preblem-solvxng computez pr@gram to help

”ﬁffnl“fjﬂ discever the preblem 8 solution by making mlausible but

fallible guesses as to what is the best thing to do next.

Heuristic methods utilize partial or uncertain informatien h41wffjfww

"”9avai1ab1e during problem-solvmng to guide the problem-solving =

- machine. The inferences made by heuristic methods are essen=

e

tially of an inductive type.- Heuristic methods are cl®se1y

\t

related to learning and pattern recognition.* This paper
divides heuristic methods into three types: (1) those which
select methods, (2) those which select nodes, and (3) those

which use. models. (In logiS}\"methods" are rules of inference,

"nodes" are logic expressions, and "models” are models of

the problem situation.) The problems'pertaining to the use

examined.
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‘ - Viewed dramatically, problem-solving - -
o ——is the battle of selection techniques “ . |
-- ... ... . against a space of possibilities that SR
T | - keeps expanding exponentially.
--Newell, Shaw, and Simon, 1959 -
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Heuristic versus Algorithmic Programs

A few years ago heuristic and algorithmic programs

| appeared much more widely se:pazfat@d in aimg and methods

 than they do t@day; Early att@mpts to prove theorems in

logi,@ were m()ade with both types of programs. The Logic

heuri.stic programs patterned after it formed a sharp con-

trast with the @xhaugtiﬁ@ th@@t@@mmpmvmg pmgfam@ @f Wang

(196@@ and Gilmore (1960) LT and other heuristic programs

_were characterized by the use of list-processing languages,
the generation of a large tree of intermediate results in |
the course of problem-solving, and the use of heuristic
selection, based on the information provided by these in-
termediate results, to guide the problem-solver along a

) fruitful ‘pathl@ading to a solution of the problem. The

authors of LT were plainly more interested in understanding

heuristic methods and complex informatiom processing than
they were in being able to prove theorems in leogic. Wang
_and Gilmore, on the other hand, worked primarily for mathe=
matical results. They had no need for list-processing lan-
guages or elaborate storag@ of intermediate data structures. |
By applying sbme of the advanced metatheorems of logic, they
were'am,e to reformulate pm‘bl@m in simpler terms and apply

- more direct exhaustive procedures to them.-




Aalgefithmic procedure which can determine,'in every case,

- venturing;to attempt ever more. difficu1t~pteblems~in the un~

As both heurlstic and algorithmic programs became more |

,-ambitious, thexe was a temdem@y for them to b@EE@W'fE@m each

other. Logieigne have long einee proved that the predicate

| caleulue~ie'@@g§@i@ab§e, that is, there is no systematic or

whether a given sentence in the predicate calculus is a

~ theorem or net.' The authors of algorithmic theorem-provers,

~think about ways to introduceh_euri.stie S@l@@ti@’ﬁ in @Eder-n?im

decidable domain @f the predicate calculus, soon began to

tbtﬁﬁt“dﬁﬁﬁ“fﬁe“ffﬁfftéss expenﬁifﬁ?é*ﬁf“léfge”é@@ﬁﬁf§“3f°’

.__capacity. On the one hand, although algorithmic problem- _ .

machine time and effort @Xplﬁfing dead-ends. A step in

this direction was Waj

12768 use of several pattern recognition

methods in his programs (Wang, 1960b; Wang, 1961) Other

examples are the suggestions of Davis (1963) for heuristic

elimination rules in algorithmic theorem-provers. On the

‘ether-side of the ledger, the grandly-named General Problem

Solver (GPS) which grew out of LT, is able to solve a variety
of different problems, among them the finding of proofs for

theorems in logic. Profiting from the experience of the al-

gorithmic theorem=-provers, the latest version of GPS (Brnst, g/
1966) imeerp@ratee both the unit pf@f@ﬁ@n@@ etretegy used |
bY'WQS et al (1964) and the resolution principle used by

- Robinson (1965) Without much difficulty into its heuristiec

f ramework, thereby much increasing ite the@Eemmpr@ving

-
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solvers continue to surpass heuristic ones in the area of

- logic, we can agree with Cooper (1966) that, at a certain

-3°1versstaking adVantage

level of difficulty, "heuristic methods will be needed in

theorem.prOV1ng." On the other hand, heuristic problem-

of avallable algorithmic procedures,

T P RO e R S Ry e

N RN T

P

:m o ?can proceed Lnto areas W%@r@ no alg@ﬁlghms are knewn@_ The mw;;;;w;fme

o '“ '°heuristi@ @r@gﬁam of Slagl@ (196%) to solve analytlc inte-‘ W:

-~ - gration problems is an- example. klthough~conf——i;ed “to *pmbiéw —

o - . solving in logic, this brief discussion is ‘intended to shoﬁ' . ‘
'"m;““:;;vmthat heuristic and algorithmic appE@a@h@s @an*usefully be -

! a regarded as complementary, fétﬁér than antagonigéiéa o
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Definitions of "Heuristic"

What is meant; exactly, by "heuristic"? The word

.. 1is very'@@}r*:rz‘v@mﬁ.@m::9 slippery, and hard to define. Webster's -

Third New International of EIEM

~heuristic, adj. == serving to gulde, diSCOVer, of
| ~ reveal,

_.In -;a:r;t:.i.fici al intelligence the word has a somewhat more - -

_specialized meaning. A sampling from reports on heuristic

programs yields the following @@fiﬁi@i@ns.

A heuristic method (or a heuristic, to use the noun
form) is a procedure that may lead us by a short cut
to the goal we seek or it may lead us down a blind

alley. ‘ = |
(Gelernter, 1958, p. 337)
A process that may solve a given problem, but offers

e no guarantees of doing so, is called a heuristic for
; that problem. |

S ¢ 31 G A w e PR

(Newell, 1957, p, 114)

¢ method is a provisional and plaugible
whose purpose is to discover the solution
of a particular problem at hand.

(Belernter, 1959, p. 135)

' A heuristic method (or simply a heuristic) is a method
- which helps in'@iSQ@verim% a problem's solution by
- making plausible but fallible guesses as to what is

the best thing to do next. | o
(Slagle, 1961b, p. 192)

_Heuristic methods are rules that, with relation to
some specific problem-solving task, are likely to
work in a large proportion of cases but are not

guaranteed to do so. | ‘
: (Cooper, 1966, p. 163)

....
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.'»",All of these agree i,n ‘a‘sserting the fallibility of heurisf-

| tics. A heuristic has the virtue of plausibility. It is

‘intended to be helpful, but its fallible guesses will some- .
times lead us d@zm a blind alley. One might ale@getheg the

impression that heuristies are ad l_a_g_', arbitrarily iﬁtroduc’ed'

by th@ programmer and not good except for the parti.cul ar

problem at hand. In Sections 5 8 of thi.s paper a more 83‘13’-'31

framework for heuristics is outlined which may~---~remove ‘much - P

of the ir seeming arbi’trar iness., AN

— e e

fakka TS TN L

A misleading def init ion which reappears -under- varions

guises in-the- liteg’&ture e - e ——————— P

A heuristic is any principle or devi.ce that

contributes to the reducti.on in the average
search to solution,

(Simon, 1958)

The objection to this definition is in the broad inclusion

suggested by the word "any”., It is true that heuristics are:

~ supposed to re@u@e the average search in problem-solving ace

‘ tivity., But the définition as given includes a whole differ-

ent class of improvements » namely, improvements in problem
formulation or representation. A tri.v:.al example of an im-

provement in representation is the chemg@ f rom Roman Emmerals |

to Arabic numerals: I can compute 1776 subtracted from 1968

is 192 much more easily than MDCCLXXVI ‘subtrected from

MCMLVIII is CXCII. Non-tri‘vial examples can easily be given.

‘And indeed, major improvements in algorithmic theorem-proving

have depended on recasting problems in a more easily proved

form. (Compare Ernst, 1966, p. 4l: "Perhaps it is best to
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*Fﬁ]sV'  eens1der different formulations of a problem to be dlfferent’

'-problemeew) The ref@rmulati@n of a problem in simpler terms

may reduce the ammwnt of search required without bexng a
| heuristic. Returning to our example above, the statement

ST of a numerieal problem in Arabic numerals is l@gi@allyequiér.

valent to its statement in Roman numerals, Translation fromjkf

either one intoe the @ther 18 not fallible because 1t works

[~ ——— on every occasion. It should be observed, -however; that if-

- a number of alternative forms of representation are available

€0 solve a given class of problems, the grounds for selecting -

one will generally be heuristie, since the representatlon

- selected may be infeeeibleéen some of the problems, or another P
form of representation not¥considered might have»been even

- - better . » . - ’ '

. o Since everyone seems to have his own definition of

- "heuristic", it is only appropriate in concluding this
discussion of definitions to offer one also. For the pur-
.poses of this paper a useful definition of "heuristic” is

- 8imply "a method of selecﬁion." Making asﬁighﬁ generalization

IR on Slag]l,e(ab@ve)9 we have: Given a range of alternatives, a

- heuristic is a method éhich helps in discovering a problem's
| solution by making a plausible but fallible selection of ' |

- those alternatives w ich'are most promising. This eelection

‘may'take any one of several forms. It may choose Just g__

ofythe’alternatives as the best. It may order the alterna-

| tives,;piacing the most éromistng first and the least promising




last. Or it may g],iminate some of the a].ternatives entirely,

“without discﬂmmatmg among the rest. All three types of
selection are very common in heuristlc programs. Their
function 1s to guide the problem-solver to make plausible --
and hopefully right -- ~choices.
B o A T 4 A — r«o-l o o e L e
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- Altheugh the Ge@metfy Machine of Geﬂernter '(1958
o 1959, 1960) for finding proofs in plane geometry can be .

'made to serve in most reSpects as a typical heuristic pro-

| S

" | gx:'am9 it le dietimgm,ehed by ite heux'ieti@ uee of a m@del.m

'?-—~-'The m@del in thie case is a simulem@n of the ruler-and- -

\compeee---diegmpa whieh would be used by humans in solving

— m v-_._'such probl:ems. “We always draw dlagrams in solvtng plane
- geometry problems, either on paper or "in the head.”™ The

(hence a: gemantic model) of

‘diagram is an interpretation

~ the formal axiomatization which underlies Euclidean geometry.
Humans f i.n& Euclidean diagrams intuitive and non-Euclidean

S ~ ones counter intuitive, but the machine would derive heuris-

~tic guidance from a semantic model in any formal system

without regam to its intuitive eppeal.. To the Geometry

Machme non-Bueclidean diagrams (also simulated) for proving

.Z'nonaEueMéean theorems would have been just as feasible.

Euclidean geometry was chosen for convenience of exposition
and because the familiarity of the subject would allow direct
comparison with the heuristics used by humans in problem-

- solving, "ee well as easy evaluation of the errors and successes

u - of the machine. Although decision algorithms for plane geo-
% - . -metry are avallable, Gelernter deliberately ignores them in

‘order to investigate heuristic processes: e —

. ot - ’
| ‘ , . . R “ . . ’ . !’ . B
T ] ‘




. . .
C L amen it . -

%  The object of this research has not been
f ~ ©  to design a machine capable of proving
theorems in Euclidean plane geometry, or
even one able to prove theorems in some
undecidable system such as number theory.
We are, rather, interested in understanding
the use of heuristic methods (or strategiles)
- by machines for the solution of problems that |
- v would otherwise be inaccessgible teo themo |

Géome_,try Machme- tries to find a proof by "Wﬂrkimg back- o R

“wards" from the goal to the premises. An example of a *
 theorem to be proved 1s: "Iwo vertices of a trlangle are
- " equidistant from the median to the side determined by those
vettices." The problem is to show BD equals EC in the dia-
‘ ~gram shown in Figure 1. - " -
A Y
— Given BM equals MC
Prove BD equals EC
o - Figure 1
The program begins by surveying the diagram, listing every

segment, every angle, and every triam}gle,. The premises are '

-~ added to the list of established formulas. The statement -

tb be proved is d@signasiﬁ@é as Gg, which means the zero-

~_order or original goal. Then the axioms and "éﬁe@mm which o

’mi.ght_ be applied to yi._eld Go aré selected, Any condition or | -




W

f12€ﬂ

coﬂbnnation of conditions which in conjunction with a'»"

theorema@r axiom will yield G, in one step (by modus ponens)
constitutes a first-order goal (G1). As the process continues
a problem-solving "tree” is generated with each n-order goal

generating a number of (N+1)-order goals. The.program-ist

reeutsiyeimallmthe;teehnlquesmandwheuristiesmevaileblemtow'

 the pﬁegf&m for atteeking G can be applied to successive

N

Since each_subgoal-(in this formulation).implies.the goal

goals because the programs uses-itself as- a—SnbrgutinewW;ffT”””w'-““

‘which generated it, if ‘at any point a subgoal can be imme-

diatelyeinferfed from the established formulas,,fhe theorem

is proved. |

The major heuristic in the system is the diagram, simu-
lated in such a way as to give exactly the same infermation
to the machine as a pictorial diagram would give to a human.
"Working'backwakds" is the strategy which aliows effective
~use of the diagram. Working backwards has. the advantage that
- every sequence thus genefatedterminates in the desired Gg. -
_It has the disadvantage that the great majority of these
“seQuenees go off bliﬁdly into space, having no validity either
in the diagram or the theorems and axioms. IWBen every new -
subgoal is @he@ked E@E'velidity in the diagram, the number

“of non-redundant branches from a generating goal is reduced

from several hundred to an average of about five. Without

IR T e = arCmt sy

~—the selectiveness of the diagram there would not evenm be

space to store the first-order Subgoels (Gelernter-gg,a R

;o

. . M - LTI T
. g : ! L - ’

-

« ”




- '19560)'. Another polnt whi.ch emphasizes the effecti."eness of ‘
the semantic model is the abi.l:.ty of the Geometry Maehlne -
to explore to a depth of twelve levels or mOEe . (The depth o

attained by LT; though not stmetly comparable, was three

or at most f@ur levels.) It is interestlng to note that the

R diagram,byvz.rtueofits incom]pleteness“(“see—Mingjky@1 56; '

Chapter II), errs on the slde of being too lax, as it eh@uld

‘rather than on the side of being too strict. . Aeeeptmg one

more subgoal that leads nowhere is not too serious; it just

means a little more work for the machine. Rejecting a true
statement, on the other hand, may be quite serious, since it
carries with it a good chance of causing the machine to miss

a proof. The diegrem in the CGeometry Machine makes both

types of error. Yet even a much less exact, cruder model

would be much better than no model at all.

Several experiments were run to compare the performance

 of the machine on vari.ous problems w:.th and without, the
addition of minor heuristies. Overshadowed by the use of the

dlagrem they are @alled "minor" here although ‘they wpuld

occupy the f@regfound in most heuristic programs, Following
-‘_ the divisions adopted in Section VI and Section VII of this

~ Paper, there were two types of minor heuristics:

g

selection - The number of transformations WAS REDUCED

by selecting only certain theorems to be

applied in generating subgoeleg depenﬂing“on
the type of the generating subgoal.

. | .




“lb4=

s

node selection - Instead of trying to solve the

Vsubg@als on the stored subgoal list in the.
haphazard %tderin which they were generated, N
the,Ge@metgy Machine acquires a "sense of |
direction" by: .
(l)attempting first those subgoals

=wh1ch can usually be eetebliehed in juef

one step, e.g. the equality of vertical =

angles;

nclosest” (in a well-defined sense) to the
premises before others., '

‘The heuristics for node selection resulted in an ordering,

7. (2) attempting the subgoals which are .

rather than an elimination, of subgoals. With the help of
the minor heuristics the machine performed substantially
better than without them. For example, in the problem illus-
- trated in Figure l'fhe machine found a proof in about eight
mi.nutes‘ without minor heuristics. A proof was forthcoming

in eb@ut one minute with the expandeﬂ set of heuristics. In

?addition, the difference between ‘the two proofs 18 quite
"'striking: the first is long, irrelevant, and seems to get

‘nowhere, whereas the second is short and to the point. Sixty-

'moneysubg@ele~@n7twelve'1eve18‘weze“generated‘tn'the“firSt”cééé}””““f””m

~as compared with twenty-one subgoals on three levels in the

second (Gelernter, 1959). a

The'Geometry'thhine iilustrates the basic charactet-.




“t_”_'i;;"s"ti.'cs of heuristic programs in a relatively pure form. A '

proof, when found, is definite and free from the @ptii@iz-ationé |

o *of-s@luti@n problems usual in pﬁfa@ti@al appli@ati@me (Tonge,
A 1961; Kuéhn and Hamburger, 1963; Karg and Thompson, 1964) of

| heuristic programs. Nor does the Geometry Machine have to
cope with the complexities introduced by a hostile environ-

.ment as do the game-playing machines (Newell et 195851;

- Samuel, 1959). | Baei@ @hameteﬂetics of heuristi@ @fcgrams

may be summarized as follows (compare Tonge, 1961)

=~ 1. Subdivision of Problems -- application of methods

_ to generate subgoals or otherwise subdivide the
problem into (easiezﬁ parts. Methods may range
from using modus ponens to generation of new models.

2, Use of Heug;stics -=- exploitation of partial 1n-'
w o |  formation in the course of problem=-solving to ‘

select the best alternatfi.ves; This is where the

- - opportunity to use learning and pattern recognition
arises., |

3., Recursiveness -- bringing to bear on a subproblem

all the techniques and methods that were ava ilable —
for the original problem. |

4, -=- ability to bypass a so].utien 't'hrough

wrong. "guessing'." This is possible because only a

partial search is made, not an exhaustive one.

o: '. . 1. ‘
"'“l.r b ‘ .
ot
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“Comments g_ Iy ductien, Learnin , and ggggggg,ggggggggiga'
A common sense example of induction ie the fellewing. \
A.small college has 700 students with 185 students in the
- ) freshman class this year. Next year the cellege would like
”%jfm to_;hcreese the size of the freehmen cleee to about 200.
SHS '"“‘*-'ef.:"'cou::se"', ‘more than 200 applicants must be _accepted..;be-. rrrp—————
cause many will prefer other'celleges‘and others will not :
~ come for a variety of other reasons. Then how many shd:.xﬁiﬂwﬁ!L
f be accepted? The college may reason inductively that in ]
- past years close to two-thirds of the students originally i
”éé¢epted came, and therefore this year 300 students should é
be sent letters of acceptance.— This 'is based on the plau- %
. sible assumption that in a highly simiLar situation next %
year the proportien (two-thirds) of "successes" will be "é
similer@ There ie no guarantee that the guess will be -’ é
| correct, and on many occasions colleges have received fewer %
g i than they expected, or have been obliged to turn,intended. ﬁé
'cingle rooms into doubles. o |
| . A.streighggcgwaﬁd example of a heuristic based on the
i; same pfiﬁeipie is Slegle 8 (1961) measure of the depth of
%f an-expreesion to be integrated; ‘that is, the: maximum level
g‘ ) .1 of function composition.contained in it, (Depth is only d

_'cne of the eleven feetures his progrem,uses to charecterize

.1ntegrands.) Thus




T P

-HRT

N ."‘4‘)’.';' .

T x 1s of depth 0,
x¢ is of depth 1,
ex2 ig of depth 2,
: xe X2 is of depth 3. M
_Iiﬁis evident that the depth of an expression gtves a crude
measure of its difficulty. Slagle considered several other =

 measures for estimating how much work

" integrate an expression and settled on this simple one. The

-17-

would be required to

- importance of this meaéure is not only the proportion of

fsuccessful.integfati@ns (though the*pr@p@zti@n would be

higher for the easier problems) but also the relative cost
ef effort needed.” Slagle's machine (called SAINT for Sym-
bolic Mutomatic INTegrator) orders the subgoals according
to their depth éqd attempts first the ones that appear

easiest. The Geometry'Machine, as ment ioned earlier, uses
a twp-partdiviéion on the same principle when it attempts
ifirst all those goals which are usually established in one

step. That the depth of an expression is not always a good

a depth of 2 in the integrand cannot be integrated in ele-

‘mentary form, whilleﬁexzdx with a depth of 3 is a relative-

ly easy problem. Ié should be also remarked that attempting

JEUUSUEUU S

the easier goals first may not be a sufficient guide by =~

itself. In complex problems where a great many goalslhave

. been generated, some measure of centrality of importance

to the main goal’may be needed to prevent the problem-solver

e e
| b !
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ffom spehdvi.ng its time on t.heq éasiest subproblems whi.le |
1gnoring the real diffi.culties. '
| Slagle's SAINT program is not a learning machine,’
1f ‘the same problem is given to it a second time, it will
do the same operations, make the same mistakes, and come
~to the same conclusion. Nor is the stovring‘of proved ,

"'theorems by theorem-provers what we mean by learning, since

~ most of the heuristic theorem-provers, if the theorem were
erased from memory and given again to be proved, would go
through exactly the same steps as before. On the other”“‘
hand, if the héur"istics are improved or modified in the course
of problem-solving, then the futﬁre performance of thé machine
will show differences,ﬁ_ without the external intervention of |
the programmer. The point is that we would like our machines
to adapt themselves to the type of problems they are called
upon to solve; that is, to learn. Learning requires genera=-
lization on past expe_rienc’e, which entails inductive infer-
ence. ‘

If the learning process is accepted as inductive in

nﬂature, it follows that pattern‘ recognition, since it involves
l_eatning, is also inductive. To see thé relation of learning
" and pattern recognition as they might be useful in a pﬁ‘@bl@m-
) selving machine, let us @@nsider how a machine 1ike SAI’NT -
" could have 1eamedg, for itsﬂﬁ a better order in whi.ch to
attempt subgoals. Assume that the method for computing

"depth" as a feature of the integrand is already given. Then
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SAINT would be able to correlate this with "success" and

find for itself the optimum order (for this feature) in

which goals should be attempted to reduce effort. If there
were a number of featuf@sg the familiar t@chniques of op-

The preoblem-

- - solver then would be learning and adapting in a way which

- would affect its performance en all future problems. Now

e

ginating it.

let us assume that depth, as a feature, is not given before-
hand, and further that the problem-soiver is capable of ori-
\ ‘Then it has the basic requirement for pattern
recognition, namely, originating its own features (Selfridge
and Neisser, 1960; Uhr and Vossler, 1961). It is true that
a learning machine also, in a sense, recognizes patterns.
The patterns it can recognize are those for which its pre-
given features are suited and usually these which its pro-
grammer foresaw. A pattern-recognizer, on the other hand,
is much less limited. By devising new features it may dis-

cover patterns which the programmer never thought of and

’“fthat has b@@n pre-computed f@r it, ugimg it to

A S e RSN A SR T 4+ et o m et

for which he has no intuitive counterpart.

‘The posgsible uses of learning and pattern recognitien

to a heuristic preblem-solver are several. By learning

‘methods alone the problem-solver‘may put to work a feature

-am@ng alternatives (as "depth"” does in the example above).
Learning and pattern recognition together have greatpoten- ‘ _‘

tial, including (1) originating new, useful features and

ﬁ@ip select ‘




. thus permitting heuristic selection in ways unthought of o (‘

by the pr@gzammer-(Z) discovering patterns in the proof-

search prﬁ@edure for th class of problems given to it
and checking for various patterns before falling back on
-Iowe:-level search; and (3) discovering patterns which turn |

 out to be useful models og representations.

— e g learning and pattern recognition have so much

— - ——= ——petential (it will be asked), why don't 'we‘use them? The N
| answer is that some steps in that directien are being made.
The GPS program (Ernst, 1966) uses learning, as does the
~early heuristic checker-playing machine of Samuel (1959).
(The chéckernplayer once won against a checkermaster, though
on a rematch there WEre/five draws and one win for the man.)
There have been several heuristic problem-solvers which dis-
cover plans and models of ﬁa:i@us types (Newell et al, 1959}
Tonge, 1961; Berlekamp, 1963; Travis, 1964). There have
been machines which discover new transfprpatiens (Evans,
1964). But the movement in this direction has been much

less than we might hope for a simple reason: pattern recog-

nition is one of the thingg which humans do very well and
which ma@ﬁiﬁes do very badly. “Therefore the programmer of
a heurlséi@ pr@blema@@IVQf usually does the learning and

-+ pattern recognition necessary to discover heuristics, and

thé machine accepts them passively.




a problem of search: search the

- the é%fti@ular proof that a theorem=-proving machine is

~looking~for belongs to the set of all possible proofs.

Tree Regresentations and Levels of Selectiveness

Finding'a solution to a problem may be regarded as ’/f o

; 'f?}

Hugh a set of possible

{
solutions to find one which is aceeptable. For example, R

The shortest procfs are of most interest because the
difficulty of a theorem generally in@reages exp@nentially
with the 1ength of the proof. The theorem-prover wants
to find a sequence of statements, each one following fremh

the previous ones by a valid rule of inference, with the

last one being a statement of the theorem. A convenient

representation for this and mamy'@ther'pﬁﬁblemé‘is the

problem-solving tree shown below (Figure 2).

Y
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Ordinarily node Ny in the figure'would répresentthe .

| beginﬁing situation and node N3j would represent the desired
situation. "Working backwards" in theorem-proving means |
that Nj is the theorem to be proved andANd is the conjunc-
~tion of the established formulas. Then the metheds (rules

“‘““* “A ~ of inference ) Ml 9 Mz 9 MB, « o « Work "in reverse ’ " so that

- 4f any of the later nodes can be shown to be true, all the
;:srwf:fﬁ:r:::“previous nodes in the sequence which led up to it are au-
tomatically walid. As remarked earlier, thls formu?atlon

has the advantage that every sequemce will terminate &n the

theorem Ni, and the disadvantage that the later nodes may ““;“”_
very well be false. In the Geometry Machine this is a | i >*
net advantage, since most of the false nodes can Pe eli-
minated by comparison with the diagrém. |

" As Minsky (1961a) @bsgfves: "Almost any L;:ell-'definey
problem can be converted into a problem of finding a chain
between two terminal expressions in some formal system."
In game situations the nodes N1, N2, N3, . . . represent

- board positions and the methods connecting one node with

another are the legai moves that may be made in those
uhpositiénso Once the tree has branched; the branches cannot
come together again, although some nodes ﬁay be i&entical
with others. 1In chess and checkers the number of different B

nodes is finite, so that it is th@@fetically pessible to

disc@vef the best m@vags) in any given position by computing

R o every possible cont inuation out to the bitter end. In
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practice, such a systematic procedure would take an un-
thinkably long time. For additional steps explored the
amount of time increases exponentially, given by

Total time = Unit time x BD

‘where B is the amount of branching per node and D is the
depth of eXplcration. Thus checkers is ¥splvable™ in this @ =
' manner, but'to~explorethe approximately lOéorcontinaationé;MMMMAﬁm'w

‘at three move choices per millimicr@5@@@hdg would take 1021

centuries (Samuel, 1959). Chess, with 10120 continuations,

would take 1090 times as long. Interesting problems in

. general cannot be solved by simple enumeration of possi- -

raraie ot = = e o A o e s i v -

bilities because of the prohibitive size of their search
trees. ‘

At any given time the growth reached by the tree is

a complete representation of the results reached so far

in the problem-solving process. The problem-solver would

maintain (1) a record of the relations petween the nodes

~ and of the methods by which they had been generated, that

of descriptions specifying what each node represents, for

example, descriptions of chess situations repreSemted by

nodes; (3) attached to each node, a record of the features

which‘have been computed for that n@de; and (&) a record

of the part of the tree which is currently under attack.

Given a no&@'Np§ the set of computed features Fl(Np),

o FZ(NP)’<F3(NP)’ « + » might be either numbers or linguistic
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‘expressions. Since features are supposed to help in

problem-solving and suppress irrelevant information, they
should be small in size -- certainly smaller than the full

description of the node Npe The problem=solver should err

on the side of having avallable more features than necessary'

rather than not enough. If computing correlations between e

"-; features emd meth@de becomes too time-=consuming, the mar-

complicated as the problem tree grows and partial results

glnal features can be discarded, or some can be temporarily P—

suspended. Samuel’s @he@ke}aplayer uges 38 features for
checker positions, of which 22 are held in reserve and ro-
tated with the 16 used during play.

Iﬁ the course of working on a problem the problem-

solver tends to find the overall situation more and more

eccumulate. In tﬁis kind of situatien it becomes apparent

that there is an administrative problem in deciding at what

level selectivity should be applied. Three levels from most

specific to most general may be distinguished: (1) selection

of meth@de based on the features of particular nedes° (2)

“selection of nodes based on a review of the problem tree;

and (3) constructien of plans en'models of the proHem situatien.

Sele@ti@ﬁ,@f Methods. Let us suppose we are in the

LT R -2 R T S0 L yn 692

midst of a problem, a number of intermediate nodes have

been_g@n@ﬁ:eted9 and the next node.Np to be werked on has

already been chosen. Of metheds Mp, Mg, M3, . . . which

 one shall we apply teo N ? In general that will depend on




the featuras of Np If the machine has encountered nodes
previ.ously which are “similar te™ or "have feemee in common
with" Np, and if the meehme has correlated these features
and the success of its methods, then it will try the methods

which were most successful before. Features are "good"

S ‘ " new situations cannot be expected to be exactly the same
B - .as old .nes..,wsome such generalization technique is necessary: - R
The basie pattern which underlies this type of learning
S ‘process is: | ~
N Np is similar to Ng- ,
\ Method M}, worked on Nq. -
| R - Therefore My has a better chance of

working on D than it would have a
- priori: | |

- 4 As a result of this precess certain methods are es-

timated to be”more promising than others. The problem-

solver conserves effort by never trying to eppi.y_ those

“_selely relative to the methods ﬁsed by the machine. Since o

‘meth@ﬂe which seem unpromising, and the goals which ‘they
might have geﬁefated never appear on the problem tree. The
“recursi.ve character of the selecti.cn is clear: only (n + 1)-
M ~erder nodes produced by methods selected for n-order nodes - —
can be feeal _points for a new methed eelectien process.,
"Even a small improvement in such a recursive prccess has
a great edvemtage over uniform imprevements li.ke increased
| ~speed. If we compare increeeed speed and :mcz:eeeeed selec-
tiveness as sources of imprcvement in (say) a chess-playing
| e § — e
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program, we observe that:doub1ed speed would take its |
- @ffect once for the whole éame, while doubled selectiveness
in méthods would halve the npmber of branches at every
step. The chess=playing program of Bernsteiﬁ\gg,gl,(l958) -

obtains an even greater reduction. By using plau81b1e

move generators it reduces the number of moves considered - -

- “from the thirty or so moves possible in typical chess posi-

___tions to only seven. Thus the growth of the search tree

' is cut down. drastically. This is a step in the directien  _

| , . S R

~ of human practice, since good human players, who play con-
siderably better than the best chess-playing machines to

date, consider many fewer than seven moves at each step.

"§e1éctiOn of Nodes. What happens after a method is

—ehcsenfandwaneanodeMiSWgenerated?~ 1£'fu11Mattention4
weregiven to each node, as generated, thé problem solver =
might never get back to the alte;;ate branches of the tree. 4

Two fixed orderings which have been used to decide which

node to take next are (1) depthéfirst, and (2) breadth

.
§
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- Nodes ordered
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For this type of ordering a cut-off point at a.certain;depthi,

must be given, either predetéfmined, or partially determined

'bymthémﬁeatureSMQthhewnodeswasan“Samuéi*swprvgramr**on

the other hand, a breadth-first ordering (for example in LT)

will generate a11 the nodes on one level before it preceeds

to the next. The numbefing of the nodes in Figure 2 above

- shows this type of ordering.

Rather than being bound to follow a special order, any

~ powerful heuristic program will have the ability to select

)  what node to work on next. :Thusthe~problem-solvg:might




-~ It is typical of human problem-solving, for example, that

affect the prospécts for solution of another subproblem.
ﬁlthmachlneﬁ also, ds the problem tree becomes large and successes
~or failures are encountered it becomes increasingly important -

‘node to work on will depend in part on (1) estimates of the

goal. These estimates may require new features to bel added

‘decide to skip to an entirely different part of the tree.

Partial failure, though ugually less dramatic, will affect A

to be able to review the entire tree. Selection of the next

success in one subproblem of a larger problem may greatly

the evaluation of different parts of the problem. For the

difficulty of the nodes, considered as individual problems;

and (2) the centra.lity of nodes for establishing the main

to those already used for method selection. Estimates of

to find an_eaéy path from Ny to Ng. The easiest nodes may

‘be attempted first, and nodes which appear espeCially diffi-

aiffiﬁultY'are important because the pE@blem;g@lvéf WighéS”“w”f“”“

cult, or appear more difficult than the higher-level nodes

which they are suppbsed to help solve, maywbgmgygéégéfw

z .
6’"

1'tree. ‘The very rapid growth of the tree makes it anreasingly

Estimates of centrality require using diffi@ulty @gtimatesw'»ﬁm_

‘between Ny and N;. Nodes which are central -- that is, on

difficult qu@@ti@n@ connected with reviewing the preblem

between individual nodes to find minimally difficult paths:

one of these minimal paths -- will be favored. -

It should be pointed out that there are a‘numbér of |
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difficult, nor'dees.a full review?seem jﬁstified at every

- 8tep., Compromise method.s for reviewing just a part of the

- tion of dn important sabﬁt°ble‘? s pot independent of the

¢lrcumstances of its creation. Methods meeded to evaluate

After review of the entire pr‘oblem tree, pattern recognition

~ to date has used pattern recognition in this way. Two main

tree are attractive (one su@h method is discussed by Mi.nsky,
1961la). Another difficulty concerns what to do when a

partial success is a@hi@\@éf Inacomplex problem the soly=- -

the resulting partially modified state of affairs may be

quite sophisticated (Newell, 1962a).

Plané and Models. Constructing plans or models for a

Problem permits heuristic selection on an even higher level,

would appear to be a natural means fop helping to construct

a plan or model for the problem, but no hemnristic program

types of moiels may be mentioned: the semantic model and

- the analogous model. The first type, the semantic model,

18 the analogous (or simplified) model

has already been discussed (Sectien III). The secorid type

_.i:c.hMM:.!.nskyﬂ..h.(:1_9_..6 1a)

T of the original. The

déscribes as follows: - o A e e

Perhaps the most straightforward concept of
planning is that of using a gimplified model
of the problem situation. Suppose that there
is available, for a glven problem, some other
problem of "essentially the same character®
but with less detail and complexity., Then
we could proceed first to solve the simpler
problem. Suppose, also, that this/is dome

- uslng a second set of methods, which are alse

. simpler, but in some correspondence with those"

golution to the gimpler




grgblem g_g_n_ then be used as a "plan" for

the harder one. Eerhepe each step wlll
have to be expanded in detail. Bu‘t mul-
tiple searches will add, not multiply, in
the total search time. The sltuation would
be meal Lf the model were, mathematically,
a homomorphism of the @mgme‘ﬂ But even
wit@ufr: eu@h perfection the model solution

should be a valuable guide /(his italieg/.

In making this summary review of @ﬂxfferemt levels. L

at which heuristics may be applied, I am cmeeie‘ue of
having gl@eee@ over many (mostly unsolved) problems which
‘are not, f@ztunately, too closely related to my main topié;’
Some of these problems are problems of effort assignment,

- 8such as: How much eof the Vtotal effort should be devoted

te exploring the problem tree? How much to discovering

‘new fe@tures? How much to revmwing and comparing nodes?

How much to trying te discover geedv models? And so

DTl e

- The administrati_ve problems appear formidable. I

tent in havi.ng presented a loose framework and at least a
partial jusfification for the division of heuristics into

the three types of the next three sections.
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Heuristics for Method Selection

The examples given belcw‘are intended to be repre-

~sentative -of -the different types. of. heuristics for method

selectlon found in heuristic programs. The papers referred

to 4n this and the next twe sect&ens are primarily Beylor o ;

- and Simon, 1966; Ernst, 1966; Evans, 1964, Gelernter, 1958,

1959, 1960; Kuehn and Hamburger, 1963; Karg and Thempson,
1964; Newell et al, 1956, 1957, 1958a, 1959, 1960; Samuel,
1959 Slagle9 1@61a, 1961b; Simon, 1963; Simon and Simon,

-1962“ and T@mge 1960, 1961$ 1963. In cases of choice it

"has been convenient to give as examples the heuristiecs

which have been more fully documented in preference to
others less fully deécribed in the literature.' | i
The Sigéggrit-‘zggg‘gg LT. The LT program of Newell,
Shaw, and Simon for proving theorems im logic is based
on four methods. The first of these, substitution, tiies

to prove a theorem by a series of substitutiens in the

’axioms, or in previously‘pr@ved the@rems. All the axioms

and previous theorems are considered, but only those which

pass the similarity test will be submitted to the full

matching algorithm. The similarity test is a screen or

,}filtefwhich prevents LT from wasting time trying to apply o

methods which are inapplicable. AIf substituti@m alone

fails, LT generates subgoals by use of three other methods:

[ o , ‘ . 4 . .
' . 0 : - - .
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detachment, forward chaining, and backward chaining. In
detachment, if T is the theorem to be proved, the similarity'_
test, the substitution method, and the matching algorithm

Y

are used in order to find appropriate axioms or theorems

Kwhich can be stated 1n the ferau"A implles T.“ If such an

'Xaxiom or theorem can be fsund A is a new subgoal. In

*“forwsrd chsiningsif T is @f the f@sm np ‘implies B" snd

"A implies C" can be feund, then "C implies B" is a new

subgoal. In backward chaining, if T is of the form "A

implies B™ and "C implies B"™ can be found, then "A implies

Cr is a nersubgOal. ‘The similarity test can apply to

'thles or to parts;,,Thus'bef@re treying detachment LT com?ﬂww~—**”””””é
~ pares the whole of the theorem to be proved with the left

hand part,(antecedént) of the axiom or theorem to be used.

Before trying backward chaining it compares the right hand

part (consequent) of the theorem to be proved with the right

hand part of the axi@m or theorem to be used.
Applying the simllarity test depends on certain com-

puted descriptions (features) of logic expressions. The.

theorem™ot-p ;dﬁ—ﬁ)“v(q or not-p)" may be written in tree

“form as

- | -~ A loglc expression




‘The computed description refers to (1) the maximum number

of levels from the main connective to anyvariabie); (2) the
number of distinct variables; and (3) the number of variable

places. - The left hand part "not-p* has the description

(1, 1, l), the right hand part "q or not-p” has the des-

cription (2 2, 2}9 and the wh@ie expression has ‘the des-

_'""'cr iptwn (3 2, 3) ~Any other ‘logic expression wz.th the

same descriptions is "similar" to this thesrem. Since the

axioms and thesrems ‘are reviewed ‘again and again dusmg

problem-sslving9 LT semputes all their deseriptiens at the

start. The number of candidates for matching rejected by

the similarity test runs between 75% and 95%. For example,

permits a somewhat more flexible application of the similarity

out of 11,298 candidates for the substitution method, only

" 993 passed the similarity test, and of these, only 37

matched (Newell et al, 1957). A more general notion which -

test is described by Newell et al (i%é)
Occasional.ly the similarity test makes mistakes. For

example » the theorem

ean be proved simpl.y by substitutwn of p for q in the axiom

. te s
p”“ v po

(qorp).

| .'_:'__'_‘_‘Therefore this axiem is highly apprpsiate, but the two
~ ‘expressions are called dissimilar by the similarity test
" because the first contains only p on the right while the

second contains p and q. LT discovers a proof after chaining
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o forward, but at the cost of about five times as much
effort as with@ut the eimvi]i.efity test. '

Redueti@m of "Differences” in GPS. The experience of

Newell, Shaw, and Simon with M‘ led t’hem to create the more

.. sophisticated General Problem Solver. As its name implies,

“6PS is aimed at achieving a greater degree of generality .

S '-~~--Usi.ng the pmblem tree as a- xepreeeﬁteti@m it seeks to

_obtain problem-solving heuristics iﬂﬂ@p@ﬁéent of the sub-

- ~ ject matter, that is, to use the same heuristics to deal
= with different subjects. At first, problems of r:pnesen-

tation limited GPS to only a few tasks, but ultimately

GPS's potential for handling a wide variety of tasks was
R — ‘realized (Ernmst, 1966), including problems in the first- -

order predi.cate calculus, analytic integrat:.en, and parsing

sentences .

GPS's procedure for seleci:'ing the next method teo apbly

to a node is by obtaining a difference between the pzeeent
node and the desired node. The authors of GPS reasom, quite

logically, that if the present node is not the desired one,

a difference will be detectable between them. The difference

is then made to help choose an appropriate method. 1In effect;

o - the desired meee is being used to generate a feature for

e ‘the present node. For different subject matters different

Lot differences will be found, and different methods will be _ L

.apprepfiete to "reduce" these differences.

Teo 111ustrate the use of differences, and cem:rast




with the approach used by LT, an example from Newell gg_a;._],_

a (1959) may be given, The problem is to show that from

-35. ,'

r and (not=p => q)

we can deduce

(qoor p) and r.

GPS uses a matching algorithm to- hind*:a:diff-e’rénce—--- and -sees——

~ that “r" occuﬁfg on diff@r@mt sides of the main crmective

I

___®angdwe, ‘I‘herefgre it lwks in its di.fference-method tabbe (er

Table of Connecti.ens) under "change pos:.twn" and fmds that

~ the axiom "(A and B) is -equivalent to (B and A)" is Tapprepriate . -F—f--ﬂ?—:

It obtains

(not-p —» q) and r.
GPS again asks what is the difference between this new node and

the desired node. This time the difference is on a lowe;_\r level:

- the connectives "or" and "implies" in the left subexpressions

are different. Looking in the Table of Connectives, GPS finds '
"(not=A implies B) is equivalent to (A or B)", 'It obtains

(p or q) and r.

Applying "(A and B) is equivalent to (B and A)" ence again,

GPS finds the desired goal

(q ox p) and r.

‘As might be éxp@@teﬂg the effectiveﬁess of dif_ferenceé o
| | /

depends on how specific the Table of Connections can be made.

 The connections for the Tower of Hanoi puzzle are ideal: GPS

 never makes a mi.stxake. On the other hand, Ernst (1966, p. 210)

. acknowledges that "For many tasks)a good set of differences

~ and a good DIFF-ORDERING are difficult to obtain."

&




& ‘ gmethods. If a diﬁf@f@m@@'xd is @bt@iﬁ@d'fgf a node X
-~ and a method Xy is indieated by the Table of Connections'.
‘for "reducing” ¥4, but Xn is inapplicable because of the

’ferm,of X then GPS will set up a new goal Y te cast X

GPS does not give up easily-in trylng_toﬁapply.its

- Yd t ;:'ﬁ;‘ -

in a form acceptable to Xhﬁ' Thus it obtains a new'difference

fimé a. Ym. IE su@h a- Y -is- f@umd Yﬁ and &m will be

7 :app11@d @a@@eggively t@ X te produce a nEW“node. GPS 18 nu~fww—w¥%~mw

generators of Bermstein (1958) for reducing the number of

- moves considered in chess have already been mentioned in

‘Section V. The same idea was implemented by Newell, Shaw,

,ﬂprocessing language IPL-IV. The selection exercised by

unusually p@f@i@tant among mechanical preblem-selvers.

Plaugible Move Generators in Chess. The plaugible move

and Simon in a more sophisticated manner using the list-

plausible move generators is a kind of elimination by si=-
lence: any move not proposed by a generator is automati-
cally eliminated‘fram consideration by the main'program.

Each move generator corresponds to some geal in the chess

_situation' King Safety,‘Material Balance, Center Control,
 Development, King-Side Attack, and
 poses moves to promote a different goal. Thus
Material Balance Génerator will'propose moving out of
'""danger a piece under attack, and only the Center Control
'Geneﬁat@ﬁ will propose P aQéias a good move in th@ @p@ning.'

iffAEach plausible move generator w0f5§_1ndependently“and would

) TR

, and each one pro=-

O Iﬂ.}' the




(tWQ m@ves) ahead, obtains a reduction of about 300

T A . Y Y r————— e — e .__.
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r'program cannot play P - KA because 1t would 1 se the ex-

v S T A

e

'  fﬁnct1on just as well if the others were not present.,

The use of plausible move generators eliminates over

‘three~quarters of the possible moves in typical chess‘posie

tions. Bernstein's chessAplayer, since it looks four steps

to 1 in

the number of continuations whiech it must @@nsider@ “In

|'!;;the N88 chess program a pfelimlnafy ahalysis is made at the;w;”“;

-beginning of each move to select the goals (and generators)

which are apprbpriate to it. Then each generator selects

moves. An additisnal feature in the NSS program is that the

ators, but the @@ntlnuati@ns are analyzed with the help of

a second set of generators called the analysis generaters.

The centinuatiens'are analyzed until they are "dead" with

of the ﬁ@ﬁ@ﬁ&t ors, for example, a posi-

e T e Rt St o ] ST e TR T8

espect to the goals

'ti@n is "dead" with respect to Material Balance if né material

is in daﬁger'of being won or lost next move. Subgoals can‘

be set up with respect to each of the goals. If the chess

moves for the present pmsxtion are pr@pased by the main gener- S

_chang@ on that @qua3@9 Lt‘will set up the subgoal of first

bringing another man to bear on its Ké.

It is imteresting to note that the "heuristic trans-
formations" of Slagle (1961b) have the character of "plau=-
sible move generatgrso? The "heuristic transformations”

for imt@gfati@n are defined by @x@lu%i@m from the Wstam@ard

o - forms" (transformatiens whi.ch always work) and the "algorithm-
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. like transformations"(whichalmostafﬁaYSwmrk)z' Slagle.

»Says of them:

A transformation of a goal is called heu-

ristic when, even though it is applicable

and plausible, there is a significant risk

that it is net the appropriate next step

« o o o The ten types of heuristic transe- N '
formation (Slagle, 1961a) used by SAINT -
are designed to suggest plausible tramsfor- |
mat%@m@ of the integrand, substitutienms, T

- by parts.
Thus out of the whole set of possible transformations and
substituti@ns, which would be very large, only a few plau-

slble ones are generated. We may conclude that elimination

by not-being-proposed is a very common heuristic, thgugh . '_“”,“

_éften not explicitly mentioned.

Discussion. Each of the three tjpeS'of heuristic
described above appears quite different from the others.
LT screens potential methods (applications of particular
axioms or theorems) by an abstract similarity test com=-
Paring the present node with the axiom or theorem to be

applied. The similarity test is a (perhaps more sophis- .

a;ndattempt@“usiﬂg” th@_me thod of intergtatiﬁn; e e
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»ticated)exampl@@f&ilﬁh@heurlstzcs‘which él 1& iné te
methods by a test based only on the present node CGélernter,
1959 Amarel9 1962; Wos et al, 1964). GPS is unusual for

selecting methods on the basis of two nodes, the present

node and the desired node. But the Table of Connections |

may be regarded as a simplified form of the correlatipn of

- features and methods suggested in Section V. The goals

‘which motivate the plausible move generators inIChess




B ‘the playing experience of hundreds of playereo . o

i;"""c*'p’erate*"on a t;igher* level than eitherl of the two pre"cedi.ng

appreaches. Goals (such as Center C@ntrel) may have no
obvious connection with the ult:.mate goal -- checkmetlng the

cppenent'a k:.ng,_,/ They embody features of the game ' . rather

than features of particular paai.,'tz.cna9 and are baaed on

‘In one sense the three examplee are similar because

they' all depend on features. In LT a feature of the pre-

sent node accepts or rejects candidates. In GPS a feature

- obtained from two nodes chooses likely candidates. In the

chess playing programs each move generator uses a feature
to accept or reject candidate moves. It will be noticed,
however, that the three operate on successively higher
levels of complexity. The similarity test in LT is the
simplest. There is no obvious way for it te be improved )
or for it to improve itself by learning. vThen there are

the node-differences in GPS, in which learning would be

~an obvious and natural next step. Actually, GPS is able

to 1earn the Table of Connections in some simple tasks,

The mo

and is therefere kin to other programs which use the past

success of their methods as guides to future application,

st complex examples are the move generators in the
chess=-playing programs. The 'tests\ which they apply. to . )
candidate moves do not depend directly We_n the present or

desired nodes but on abstract goals set up by the programmers.

These goals really do have importance in chess (otherwi.se
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the machines and humans using them would play very badly

1ndeed) and depend on pattem recognition as applied to

whole games. Using pattern E@@gn“i‘ti@n to improve these

goals (or generate new ones) would clearly be a difficult

Generation of New Methods by ANALOGY. It is important

R i
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fo or a powerful heuristic problem-solver to be able to- er{- |

ginate new m@thode , just as it is lmportant for it to be able

to originate new features. In some areas, such as chess,

" the permissible moves are fixed, and combining a sequence

of moves into a larger transformation (method) is difficult

because of the continual hostile intervention of the oppo-

nent. 'In other areas the discovery of methods which take
larger steps or are more desirable in some other way are by
no means impossible. The resolution princliple of ’ Robinson
(1965), which is really a new rule of inference, is a parti-
cularly successful example of such a method. |

A step in the direction of £inding new metheds is

taken by a heuristic problem-solver called ANALOGY (Evans,

'1964). ANALOGY tries to choose the correct amswer to geo=

metric-analogy questions of the sort used on inteﬂigehce

tests. The queeti@ns are of the form "A is to B as C is

to_? . In the example given on the following page (Figure 5)
- ANALOGY agrees wi.th the reader in cheosing answer 2.
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A geometric-
analogy problem
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- ANALOGY begins by tecerding a-fuli description of
each of the ten small figures, including the spatial re-

lations of "dot," "triangle,” "rectangle,” and so on. Then

it is not too difficult to discover a transformation which

carries the description of A into the description of BT

‘This transformation A-B is made as complete and specific as

possible, Since the questions are of the form "A is to B

a8 C is to_? ," ANALOGY wants to find a new transformation

which will/not only carry A into B but also C intc one of

the answer figures. The original transformation A-B is

‘much too @pecific to do this, For example, it will make

spécific mention of ”rectanglés," and therefore cannot choose

one oﬁ the answer figures/because neither figure C nor any
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“ofthe answer figubes contains a rectengle. Transformation ?3“u~

. A-B must be generalized by replacing the description for
ﬁ%ectengle“ by a more generalized description. By several
'generelizetiene of this kind it is possible to generate a

number ef new transformations Which carry figure A lnto

figure B and figure C 1nte (each one of the answer

'f“figures);‘“These ﬁeW“transfermeti@me preserve information

of differing amounts and kinds from the eriginal transforma=-

tion. Which one should be selected? The answer ef &N&LOGX3

is to choose as "best" or "strongest" the one that says the

most or is the least alteration in the transformation A-B
and that still maps C onto precisely one mnswer figure.

(If there is a tie, ANALOGY goes on to try a different pre-
cedure )

s s A e B ey S s

The meortance ef this pregram 18 that 1t gggests new

g; methods (transformations) which are not too different f rom
gu — 0ld ones and which are known to be successful. The methods
§ N generated in this way are "generalized” and lacking in o 7
% "detaii, but details can be filled in depending on the Spe-V@
é cific problem at hand. (When we set out to apply a method,

we rarely know exactly how it will be applied.) - Most

A "suggested™ methods will be useless, and will be discarded,
but a few may be found useful.
o o | | 4 o

: A “j»
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Heuristgcs for Node Selection .

 In the @arlieﬁvparts of this paper‘the‘ordering of

nodes fer selection has already been discussed at various.'~‘;

points. Specifical,ly9 twn examnles of fl%@d @fd@fiﬁgg

(depthafixst and br@adth firs t} were iiiustxat@d in Section.f

v. Geiennter“s use of closest-te-premises and easiest-

goals-first criteria were mentioned in connectien with the

Geometry Machine, as well as Slagle's application of E‘*cl«=*.pt:h."‘-.~——~
as a feature for deciding which nodes ghnuié be attacked
“next‘by SAINT. Secti@n.v also discusses é@m@ of the prob-

lems whi@h can arise in node selectian in cemplex problems.‘ PR

Further examples of different types of nede selection

may be given here relatively briefly.

Iermination of Search at "Dead" Pbsitions. The checker-

“player of Samuel (1959) looks ahead either a certain arbi- .
trary number of moves or until it reaches a relatively stable

+ "dead" position. The idea of a "dead" position derives frem
Turing (Bowden, 1953), @m@ argued that it made no sense to

count material on the board until all the exchanges which

were occuring had beem carried out. Increasing the look-

ahead distance for continuations which are "live" with ex-
Changes has the additional advantage of better Surveillance' R

of those paths which have better opportunities for losing

or gaining an advantage. If there are no special board

[ e e e e v v e e
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. ~ conditions, the checker-player looks ahead three steps.

f  ~At step three the program will continue to look ahead if’y;. r

(1) the next step is a jump, or if (2) an exchange offer

is possible, or if (3) the last step was a jump. At step

.Mfggﬁkgh@wpﬁ@gﬁam;willwQ@@@i@@@-@@xl@@k_ah@@dku@d@Em@@ﬁéipiangﬂmewmm;;;

rankingvin ofdgr of difficulty of the various differences.

(1) or (2). At steps five through ten the program will

_ continue to look ahead only under condition (1). The look-

ahead will terminate at step eleven if one side is ashead
by two kings and at step twenty regardless of all condi-
tions. Looking ahead so many steps is only possible, of

course, because in checkers branching is highly restricted

~during exchanges. Here a node's being'"dead" or "live"

‘determines whether any further branches will be generated

from that node.

Rejecting Harder Subnodes in GPS. GPS has a special

 eriterion fat rejecting nodes which derives plausibly from

its use of differences to select methods. Underlying the

computation of a difference between the present node X and

- degired node X3 is the idea that the differences between
 guccessive nodes and X, should become smaller and finally

- wvanish. Thus GPS is given (or may leafn for 1tself) a

In logic, for example, a difference of connective is more

 d1fficu1t than a difference of position.  Now if it happens,

that the difference between X3 and a subnode of X is more

7< 'difficu1t than a différence between,xd and X, it is plausible
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" te sugposerthat the branch taken by the subnode is‘movingA;.

away from the desired node X4 rather than t@werd ict., If

this happeng, GPS will regect ‘the subnode.

A Special H@uristic. There are many special heuris-

tics Whl@h are applicable only in very'particular situations.~

'%* o An example is the number-of-branches feature used by the

MATER program of Baylor and Simon (1966) for administering S

" checkmate in chess. In exploring the possibilities in a
mating problem, MATER gives highest priority to positions
which leave the opponent with the fewest replies. Positions
in which ﬁhe opponent 's King is in check but can be defended
by more than four different moves are discarded entirely.

The rationale behind this approach is that positions which

R A Vet S ot e

allow the opponént much mobility are not likely to lead to

N N e A R A AN
) t
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checkmate.

-An

-_
A

Special Heuristic. A special heuristic used @ =
by the geometric-analegy machine of Evans (196@) is the

gther

brillers
|
1

s

rejection of'answer figures for which there is an incorrect
number of parts added, removed, and »‘matched. In the preoblem

1llustrated in Figure 5, for example, the original transfor-

——r-

-~ mation A-B requires that ome subfigure ("dot") be removed.wu_,«jwww;Mw;

As a result answer 1 with three subfigures and answer 5

o]

N

with one subfigure are rejected. (Thé situation is more
complicated if figure C has a different‘nuMber of sub-

figures from A, or if it contains no corresponding "dot".)

The heuristic which rejects ansteer 1 and answer 5 is based
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~ an incorrect number of parts in ANALOGY, are kinds of

W

B on the plausible assumptien that only a very'"generalized"

o transformatlﬁn could yield answer 1 or answer 5. It some-

times happeng that all the nodes are rejected by'this
heumigtic. Then ANALOGY starts over again with a different

* approach.

Discussion of Node Seléctigﬁ;*'Nbdé*éélééfibn as applied

- to particular nedes without @@mparisan with other nodes is
~ gomewhat more stxaightfgfward than,method selection. Method

selection depends on features and node selectien does also,

but in the case of nodes the ordering or elimlnatlgn which

results applies directly to the node itself, not to an array

- of methods. The heuristies which have been ment ioned for

node selection appear to be mainly kinds of (1) difficulty .
estimate or (2) utility estimate. I tentatively divide them

as follows. Ordering of goals by "depth" in &AINT r@j@cting

'harder subnodes in GPS, trying simplest nodes first in LT,

are kinds of dlﬁﬁieulty estimates. On the other hand,
trying @1@5@stmtaepremises nodes first in the Geometry

Machine, t@rmiﬁating search at "dead" positions, rejecting

- nedes with too many branches, and rejecting figures with

utility estimates.

fv
£
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-~ Ihe Use of Models -
At‘the end of Section V'twoxtypes‘Of'modelg, semantic
— - models and analogous (or simplifi@d)m@dels 5 we-gé-ment'ioneﬂ’;" S
- %, The fact that'th@ Geometry Machine would net'héve béen_able"
to prove even the simplest theorems without the help of
Mm:w—l ;mm‘ ,£he.diégramremindsus of the power of the first type, )
| -The value of the second type may be seen by considering .

-~ the effect of dividing a problem into smaller subproblems. .
Since the amount of exploration required to solve a problem
generally increases exponentially with the length of the
solution, réplacement of a single'lazge pr@blem by several

smailer problems, the length of whose solutions adds up to

the same length as that of the @Eigiﬁal'pr@blem, may drama-
tically reduce the problem difficulty. To quote again«from

Minsky (1961a):

In a graph with 10 branches descending from __
each node, a 20-step search might inveolve 1020
trials, which is out of the question, while
the indertion of just four lemmas or gegquent:
8ubsoals might reduce the search to only 5,10
trials, which is within reasen for machine ex-
ploratien. Thus it will be worth a relatively

enormous effort to find such "islands” in the

solution of complex p@@bl@mgo Note that even .

if one encountered, say, L0° failures of such e
procedures before Guccess, @m%QW@ulﬂ still have

- gained a factor of perhaps 1 in overall trial | |
Y any abllit ait.
e - |

Lo "plan,” or Waﬁg "a problem Ei%lrl_ be pro H
- - itable ptoblem is difficult, |
A Simplified Mode]l in GPS. An implementation of a




o simplified model as the seurce of a plan is feund in GPs

 (Newell et al, 1959). The plan is generated by omitting
details of the-original problem and by solving this sim- |
plified problem by simplified methods. The:&implification

procedure used here ignores (1) differences among connec-

tives and (2) the order of the symbols, The problem,
"‘From (r =) not-p) and (not-r = q} deduce not-\not-q

- and p)," becomeg WFE@m (pr) (qr) deduce (pq) " The sim-
plified meth

ods solve the simplified problem quite easily,

.in fact, several solutions are generated. The simplifi.ed

o pmblems are discarded and only the Se@guence of meth@ds B o

from the simplified solutions are kept as candidate "plans"
for the solutwn of the original problem.

In attempting to apply the plans GPS finds that some
of them will not work. One plan which does work, however,
‘is the sequence of methods |

l. (A and B) im lies A

2. .gA and B) im iies B —
3. (A implies B) and (B implies C) (A implies C)

Applying Method 1 and Method 2 GPS obtains "E?n@tmp" and

\ "noter --) q." When GPS tries to apply Method 3 it finds

that the second of the two @xpressions is of the wrong form.

Undismayed, GPS sets up a new goal of putting the two ex-
pressions in the form required by Method 3. It computes a
‘diff@fence, selects a new method, and successfully pmduces

"not-q = r." At this polnt GPS goes off on an (unsuccess-

ful) tangent trying to deduce Ynot-(not-q and p)" from "not-q =) r,"
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|  But finally it applies Method 3 to "not-q —» r" and l"fff
b - o | | o o
1 AR "r'-9 not-p" obtaining “m@tﬁq-wwé not-p." The dnsired L

~answer "not- @m@tmq and p)" is easily abtalm@do
An lﬁt@f@@tlmg @h@fa@t@flstl@ of the Wplans" in this

.eiample 1s that they are extremely non-specific. What they

e T I ENTIRI
PO ‘
Jq S -

“;‘Zf;,i- require is only that the form of the inputs for each Spe-w’° 

" cified transformation be correct, 8o that th@«tramgf@fmatian “; wm;;Mm;

~ can be applied, Another point of interest is that z plan

may tukn out to be illusory -- it may be impossible to carry

- R out. If we generate a large number of plans, must we try ——

| - -”Wéut each one totest its validity? And what if using the)

,f wrong plan, even once, will be very costly? Clearly there

;i ) - must be some way to test plans withou. haVing ﬁotry them

ff - out. ©Plans” on one level‘may "nodes" to a preblem-solver

;.M ] operating on a highetlevel. | o L
%i Approaches different from that of GPS may be found 1n»

Tenge (1961a), who Eeduces assembly lin@ balancing problems

3!, S - bit by bit by successive gr@upings,and in Karg and Thompson.hwﬂ_Wm"m_

(1964}, whose program for solving travelling salesman prob-

'*lemsfifstproduees a number~of sub-optimal solutions and -
then, having i@éntified easy'subdiviéions and hard subdivi-
7’ ‘sions by means @fﬁthe previous solutions, sets to work on
‘ the hard ones byhth@m$@IVes.

It may be observed that many of the aids giﬁénltd

L heuristic problem-solvers embody models or parts of models

used by humans. The Geometry Machine accepts'the*diagram

e —




'without having any part in changing 1t or'lmproving it. In

| Samuel”s checker-player the terms (features) by which it e ‘déé
f evaluates positions are given to 1t. It ie true that the DR
; checker-player adjusts the weights of the terms itself g
; “but the”term_ themselves are the-productpfwhuman”mudets
% - and human 1déas of what checkers 15 about;' This is perhaps ._j
gseen even more clearly in the chess-playing progreme where )
ﬁ goals such as Center Control are what'humans think is imperew W
tant while playing the game,
e In Sect ion IV three potential functions of pattern re- T
| cognition were suggestedjbriefly, (1) discovering new feeturee§
(2) discovering patterns in problem search procedures; and
(3) discovering patterns which turn out to be useful models
. er‘representations. Unfortunately, as remarked“in Section V, _ L
% no heuristic problem solver to date has made use of pattern
% recognition teéhniques to construct new models. It may be
§ that pattern recognition is no more than 1eafning on several
% ~ levels simultane@uely (compare Selfridge and Neisser, 1960).
§ In any case the ebility to make effective use of pattern |
é recognition, particularly for the creation of new models,
%_ would widen the horizons of problem-sotving machines tre- |
| mendously. |




Summary

I Heuristlc versus Algorithmlc Programs. Heuristic

and algorithmic programs are working towards ‘a common end,

- namely, the development of better problem-solving machines.
- The two épproaches may be regarded as complementary. On

- the one hand, knowledge of heuristics derived from heuris-

tic programs can provide algorithmic theorem-provers with

~—better ways of e li.mmatmg the irrelevant f rom ‘their proofs.

- On the other hand, the experience with algorithmic programs

can“fesult in\simpler reformulations of problems which can
also be used by heuristic programs.

II Definitions of "Heuristic." Heuristics seek to use
partial or uncertain information during problem-solving. A
heuristic is "a method of selection,™ or more explicitly,

"a method which helns in discovering a problem's selution

by making a plausible but fallible selection of those alter-

- natives which seem most promising." Heuristic selection is

- a kind of guessing. There are methods other than heuristic

methods which may help in discovering a problem's solution;
therefore we insist on an element of guessing or fallibility
as part of our definition.

TII An Example of a Heuristic Program. The major

 heuristic in the Geometry Machine of Gelernter is a (simu-

latgg) diagram, whichigiveé exactly the same inforﬁatibnto |
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the Geometry Machtne as. a pictorial diagram would give to

pretation of plane geo-

f a human. The diagram is an inter;

metry, hence a semantic model of the problem situation.

The highly branched pf@blemeselving tree lS sharplv reduced_

by elzmination of all branches not verified in the diagram.www

___Without the use of the diagram as a heuristic the Geometry |
~Machine would be unable to prove even the simplest theorems
§~ ~ 7 -~ 1in geometry. The Geometry Machine also uses several minor

heuristies. It illustrates several basic characteristics of

T 7 77 heuristic programs, including: (1) division of problems into

subproblems; (2) use of heuristics; (3) recursiveness; and
(4) £allibility. |

IV Comments on Induction, Learning, and Pattern
Recognition. In general, heuristics have an indﬁctive
SR ' character because they are based on the assumption that
‘ certain alternatives may be selected as promising, and othefs
rejected as unpromising, by generalizing on their'similerity
to other alternatives, in the’past, which were promising or

unpromising. Generalizing of this kind is also involved in

learning and pattern recognition. Three uses of pattern

recognition which would be of great potential value in

problem-solving machines are: (1) originating new, useful

features for characterizing problems; (2) discovering patterns

" in the proof-search procedure and‘usihg them to guide future

: search and (3) dlse@verlng patterns which turn out to be

good models or rperesentations.
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v Tree Representations and Levels of Selectiveness.'

Almost any well«defined problem can be converted into a .
problem of finding a sequence of transformations leading
from a given situation to a desired situation.' A conven=

ient representation of the_possible sequenees is the problem-;r

‘8olving tree (Figure 2, page 21). 1In eheekers, for example,
the original node represents the standard beginning checker
"”"i'“ position. Each node which can be reached in one step from

the original node represents a p031tion which can be reached

in one legal move. from the original posxtion. ‘Nodes which

_._can be. reached in two steps represent positions which can

be reached in two legal moves, and SO on. Legal moves or
transformations are calléd methods and positions or situa-
 tions which are obtained by application of the methods are
.called ggggg. At any given time the growth reaéhed by the
problem-solv1ng tree is a complete representation of the

o ) results_reached so far in the problem-solving process.

Because of the immense size of such trees for interesting

R e

problems, trying to find a solution by exhaustive explora-

tion is out of the question. Some selectiveness must be

- . which appear promisingeA Three levels of selectiveness from

- most specific to most general, may be distinguished.
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' pl'evi.o'us ncdesﬂ"which* Were 'similac; (2) Selection of which
nodes to work on out of all the nodes generated so far, The
reason that selection of nodes raz.ses seri@ue difficmltles

ls that reviewlng the entire problem-solving tree is required

in order to make the selectz.on. Since the number of new

* nodes 81-'0WS very rapldly (unlike the number of metbgds) -

‘reviewing the tree may un.Ck].y become a lengthy and imprac-

“tical job. An additional complication in complex problems is

'that the solution of an ifﬂpOIt&nt Subpr@blem produces a par= -

uation. (3) Constmcti@n of plans or models of the problem
situation. Models permit heuristic selection on an even

highez level. Two kinds(z of model are the semantic model

gous (or simplified) model. For a given problem, a second

easier problem of Wessentlally the same characterw may serve .

~as a simplified model of the original problem, and the ‘solu=
‘tion of the simpler problem can be made to serve as a guide
to the solution of the harder one. | |

VI Heuristics for Method Selection. Several examples «
of‘m}ethod selecticn may be given. (1) The LT program of '
Newell et al uses a similarity test as a heuristic to select
which methods (axioms or theorems) have the greatest chance

of being applicable. The acceptance or re jecti?on of candi-

—».‘»-»-adate methods to be applied to a node is based only on that

' one node. (2) The GPS program, wh:lch grew out of LT, selects
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%f ﬁf’methods by computing a difference'between two nodes' the

the probelm is solved.) Certain methods are appropriate for
[

redueing certain differences, and it is g logicai deveIOpmentV

for GPS to learn for itself which methods are appropriate.

f?present node and the desired node. (If there is no difference,

’fL3JMQuLmn£wthemLhintymer.seﬁm@vee @@ssible‘in typicalwchessmwm“

positlons9 g@@@ human @h@ﬁﬁ pieyers consider only a VerY féwfmw;_

—
P

va simiiaf effect has been achieved in chess-playing programs
by using "plausible move generators" which propose for consi-

~deration of the main program @nly those moves which promote

some particular goal. Eliminationabyenotabeing-pr0pesed is
& heuristic principle used in various heuristic programs. In

each of the cases discussed, the selection'depends'on the

 features of the node or of several nodes. As an interesting
addition to the discussion of method selection, the geometric-

analogy machine of Evams shows how new methods may be obtained

- by "generalizing” en old methods.

VII Heuristics for Node Selection. Several examples of

node selection may be given. (1) Samuel's checker-player

uses Turing's notion of a "dead" position to help determine
which nodes will be explored. A "dead" position is one in
‘which the game is relatively stable. Positions (nodes)

'which_are not "dead" require further exploration. (2) GPS

the parent node of the subnode and the.desired—node. If the

e ————— e e e s e
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"«:.difference is larger, then GPS rejects the subnode. The

| —_— _x” ﬁ ‘rationale,is that if a subnode is more difficult than its
 parent node it will not be of much help 1n.prob1em-solving.
(3) The

combinations in chess rejects positions (modes)'whi@h increase

MATER program of Baylor and Simon for finding mating

..the- eppsnent g mobillty.» (4) “The" geometriseamalogy machine

 of Evans rejects figures which on preliminary 1nsoe@tion re-

»mgveal a disparity of number of parts added removed ‘and matched. &

Heuristics for node selection appear to be mainly klnds of
(1) difficulty estimate or (2) utility estimate. Like method
selection, node selection depends on f£inding good features.
VIIT The Use of Mddels. The Geometry Maehine gave an
example of a gemantic model. The use of a simplified ana-

‘logous model is illustrated'through the solution of a problem

%““i — in logic by GPS, Working on a simplified version of the prob-

lem may produce a number of plans for the solution of the

;“‘ ===~ harder problem. Some of the plans may prove illusorj'but“wwm
M one of them may work -- with great savings in time and effort
. as a result. If a large number of slightly different plans
| are generated a heuristic problem-solver working on an even
higher level may treat plams as nodes, and heuristic selec-
tion may be needed to choose among different plans. Two
additional approaches to planning are the assembly line

gh ' balancing program of Tonge and the program for sslving

‘”traveling salesman problems of Karg and Thompssng One R

3e, conspicuous characteristic of models which actually prove g IR
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ugseful in problem-solving programs is that their essential/
ingfedlents were Eurnlghed by the human pE@gEammerS Eather

than by the machine.' It is suggested 'that greater ability

in‘pattern rgcognition would greatly increase the power of

'problemesolving machines, especially with respect to creating'

B N N
; : he ; ewn merd 8 @ e R . RS AT A YN S R S T R T4 A TR £ 56 K I RS
. B " T ° - o e .- - .~ . - - P .~ X S~ - - .- - - - e e R - - -

o

Lo

5 I
£
4{1‘_[ .
Y




B - |
We can confidently expect that as leng as we seek to
. eelve complex problems by machine that there will b@ con-
I tinue@ interest. 1n and experimentation with heumetms. |
= - “Heuri.sticg <l»te at the heart of some of the problems which
y N .

face us on the road to building more powerful problem-

solvers. Two of" the preblem areas in whi.ch improvements / \,
are much needed are: —~
| 1.

pattern recognit ion
problem-solvers

Implementation of
techniques in

2, Better program okganization eliminating
the many r

igidities of present programs

Heuristics are intimately connected with both of these.
In regard to problem area 1, pattern recogniti

on and learning =
are intimately linked with heuristics, as argued in Section

IV. A selection made partly on the basis of pattern recog-

nition techniques will usually be a fallible, plausible,
~ heuristic seleetion.

Moreover the origination of heuristics
depends on learning and pattern ree@gmti@m In regard to

problem area 2, an increase in program flexibili.ty will
generally all,

N\
ow more choices and more opportunity for
heurietle sele@tlan.

Some of the problems of heurie 1c

sele@ti@m which arise as a result of allowing the pmblem-

solvexf greater freedom are suggested in Se@ti@n V, under
"Node Selecti.on"

A general conclusion is that heuristics

. Vatet

‘\"ll

et e e e




'solvers become more s@phisticated.,

.Wso many difficult n@tlgmgg'such as_“inducti@n-"-"Pl&ﬁ bility,’”““”;mw’

and ”pattefn f@@@gﬁitl@n e These ideas are particularly

e

“fare likely'to be used more rather -than leSeasrburproblemé

\

No one has yet developed a theory of heuristic., (At~ L TE
b‘ . . . ¢ ‘ ‘

least 1 have looked hard and have not f@und any.) Perhaps

N

this is only natural in Vl@W’@f its c1®se connect;on with

‘resistant to formalization, and we can expect "heuristic® to
be resistant also. Ne\vftheless in the(p@qrse of this paper
I tried to attack the notion from various angles, seekino to
come to grips with it, Although I cannot claim to have been
completely successful in thls effort, my hope is that these
pages give a clearer idea of what "heuristic" means in the

context of problem-sorving.
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