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- products being”allocated is a function of the total quantity pur-

- computational effort,.

Abstract -

! - . il
s 0 .
h
l . ©

Two problems which have the common characteristic of a concave
cost functions are diséusSed'in this paper. The basis problem is to

determine the optimum allocation policy where the unit cost of the

,'chasedlfrom thét supplier. In the first case under consideration

any economies or diseconomies which result from changes infthe

total allocation to a supplier are reflected on The unit cost of all

g ’ &

~products being allocated to that sﬁpplier. The second case .is the

problem where the economies or diseconomies from a change in the

—

total allocations to a supplier reflect only upon the incremental

‘ units. The,exactAformulation of theSe problems (as aninteger and

mixed integer Linear Programming Problem) are presented together

“with two methods which do not require integer restrictions to be

placed on some of the variables.

et 1)
L

These two simplifications were compared against the method of
total enumeration of all feasible solutions and the results showed

the simplifications‘would-%esult in savings of up to 67% in the | o

W

The largest problem considered was a problem of four suppliers,
three products and three price breaks. It is expectéd.tﬁat.these

methods‘COuld be applied to a problem df up to eight suppliers
before it will become unwieldy and require too much time for

,.,,.w"’nu

501ution; The number of products (within reasonable 1imits) should

not significantly affect the time for a Solution.

—




; Description of the Problem _' - % -
;A ~ G | |
'i A problem which is {ncéd in many situatidns when planning pur-
;. ; o chasiné orﬁmanufactnfing is the problemnof éllocating drders when'h
§  the cost of the service dr prnduct is dependent upon the totnl K ;
g quantity .allocated fd that'sdurce; e ég
§ ) There are'twq gf%zral cases of thig problem; the first |, ”Which‘ i
§ qniil be‘referred to later as Cage‘I cénhbe'describéd és follows: 5
? The price per'unit of 511 products purchased or manufactured . ; vf
§ ) isdependenfupon‘the total quantity allocated to this source. Any - ’ .. ;d
g ’ economies or diseconomies which.feSult fndm this policy in terms of f
g - unit price‘is applied against all units. An examplé which would . ;{
;/} g demonstrate this would be the case Where a suppiier has one price: j%
? schedulé if the,tbtnl number of items purchased were between 0O and g’
§ 499 and hé had'a second pricé‘échedule for all products purchased if %
‘ the total quantity purchased was in‘the range 2 500 units. §
’The second case, Case 11 is similér to Case I except that in ?;
this case the totél cosf curve for eaCh‘produc{ﬁis nontinuous'rather N ?:
T . »»than,discontinndus aé in Case i: In this case,the econom;esof ﬁ |
disecpnomies resulting;frnm the incremental changés in quantity | R
required are reflected only on the incremental production. The | B
change indéost per unit does‘not apply.to all the units produced | | Ah |  ;
J | ‘but only td-theadditionalyunits pfoduced. l o g
ﬂf/} A problem éimiiar'to this could arise_in'ménufacturing when it §:
n;nnét be determined how much oveitime should be worked at various o o | ?;
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to meet shipping schedules at the lowest overall cost.
 For both of these cases there are three possible ways that

®

the prices can vary. The price structure can be convex; the cost

per unit is either increasing or is constant as the quantity in-.

creases (diseconomies of scale). The second possibility is the

concave case wh%re the cost per unit is decreasing as the quantity -

iquéases (ecdnomies of scale) and the third possibility is a

combination of economies and diseconomies of scale within the price

structure.
M #
f
% ‘% \
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*". 6. Stock Cutting Problem [11,13].
lem with integer restrictions is a critical part of the formulation

‘from an ordinary Linear Programming formulation without the integer

‘restrictions would be sufficiently accurate for most'needs and the
The FixedCostlTransportatioh problem is a case where the integer re-

~restrictions can sometimes be relaxed if the quantities under con-. .

e S

History of the Problem | - A S

Closely associated with the mathematics necessary for the exact
formulation of the problems,defined previously as Cases I and I1

(for a conCayehcbst.iﬂnCtion), are thejfollowing six problems which

S

S

all have in common that their exact formulation as a linear pro- o

gramming problem requires that they have certain variables which -

are restricted to integer values., | , s ok

Theée problems are:”  | - o

1. FiXéd'COSt Transportation Proﬁlem [3,7,20];11 | : |  %
2., J%raveling Salesman Problem [7].

3. p - coloring a Map [10, p. 548].

4, Orthagonai Latin_Squares [10,uﬁ. 547]. , | | T

5. Scheduling Problem [7].
With certain of these_pgoblems‘the‘exagt formulation of the prob-

-

while in others the rounding to integers of the solution obtained

extra work required to obtain the iptegerlsolution is not warranted,
striction is required while in the StOCk'Cutting Problgm the integer

sideration are large. - The rounding in this.caSe'Wouldrepresent_only e

a small error.




T

For fhe cases where a concave cdst-fuﬁction.is béing represeﬁted 1f‘m wéyi
using separable programmipg techniques together with integer or
'ﬁixed integer restrictions it is not possible to set up the prOblem |
- or to solve the exact formulatiqg'witﬁgut the integer restrictions
sipce the resulting—Solution Qﬁuld'bear no resemblence to the prob-
lem initially fofﬁulated.

- ._

shetly [19] and Markowitz and Manne [17] both dealt with the
’ problem of unit . cost of a single product being a function of the
\qugntity purchased and they laid the_groundwork fér,thé representae .
~tion Jf these problems by the use of Separable'programﬁing. Shetly
L | dealt_with.the convex cost function while Markowitz and Manne dealt

with both the convex and concave cases., .

A problem which initially appears to be véry similar to the

’

: A
problem defined in Cases I and II is determining the optimum order
quantities when discounté are permitted in the price structure,

Churchman, Ackoff and Arnoff [4, p. 235-54] discuss this problem = -

for the case of a concave cost fuhction.  The procedure which they

~ present to obtain the optimum solution is an iterative procedure “ 1

oL ‘ as opposed to a closed solution, ‘ | o 1
The major difference between this problem and the problem in -

Cases I and IIvis that the sblp£ion for the Econdmic-Order Quantity
is baséd on only one cost'schedule-while'in Caseé I and.II separate

”%% ) cost functions are required for each possible supplier-product S |

combination,
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No direct references WEge.found'in an&tof the literature deal; .

Fo

ing with the problem of Settiné up the two problems definéd‘earlier-

.
et .
h L

[

'as Cases I and II.
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. Objective of this Thesis = .
The concave case (the case of economies of scale) aSsociated__ ;

with both Cases I and II will be studied both from a mathematical

BN - -

point of view and from the standpoint of applying tw0'computationa1'

algorithms to obtain the optimum solution.

The advantages of the computational procedures over the method =~
of total enumeration will be'demonstrated for several test problems

" by using a computer program to enumerate all feasible solutions

and then to apply the simplificatiens called for by these algorithms

to demonstrate what the savings would have been if these techniques

-

had been-applied.
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Mathématical Development of the Problem
A. Separable Programming | :
Certain kinds of non-linerities - diseconomy of scale
‘(i.e., convex cost function) may be incorporated directly within
a linear programming model. For the case of "economies of =
scale" (i.e., concave cost function), an- attempt to employ .
linear programming -is likely to produce'results which are- I -
entirely misleading,
Consider first thé&CaSédbfﬁdiseéonOmics. Suppose that the
| S N |
total cost for producing a quantity x is given by f(x) in
Figure 1. The function f(ﬁ) can then be approximated by a -
piece-wise linear curve f'(x). Over the range 0 < x <.gg, the .
function f'(x) can be described by the variables xj, xzkh,,,,xK" T
as follows:
‘ - r=1
- ¥
1 -—
(2) £'(x) = D, c, q ,
o S ¥=1] =
] €4~} . » ]
] < - - K
(3) 0 <L q,.S (gr Xr-l) r 12 2, cinseesK
(4) qr(_(xr - xr-l) implies qr+1.§'0?r.= 1, 2, ....K-;
'Where'cryrepresents the slope of £'(x) from_x;ﬁl_to X and o
in addition c 2 cC . - - T I | R
o r= r-l - | . o S
Relations (1), (2), (3) may be incorporated within a linear g
- ~ o
4 : < M
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ﬁsggra’.mming- model without making con_dition (4) explicit. 1In

I

the optimal solution since C. is more economical than c'r+’i‘---- ~~~~~ -
| | - . |

- condition (4) will hold automatically assuming that theré is a
. o ‘ 6‘ = ’

L place to dispose of the excess of x at no cost. |

s SR

. In addition, an additio“nal répresentation can be made in

N

e -~ the following manner: Any fpoint on the curve f"(x) can be
represented as the weighted average of v\two successive break
points.

g

For each r r=0, 1, 2, .....K let (£, g ) be the

Ry

coordinates of the break point (Xr’ f-(xr)) of the function

f(x) in Figure 2, Any x in the range fo < 'xI; < f ‘may be

K

ﬁepresented“by

¥

(5) X = | cbofo + cblfl + eeden CbeK

if £(x) is a convex function we have
o7 : 1 ¢ _ | | | . ‘
(6) f (X) "" ®0g0 + ‘ ®lg1 + ’ O:a,i . ¢KfK : e .:"Q

-

/

‘and in addition

¢ H B b [

(7) 1= P, + |d>1a+ ceeens By N

Relations (5), ”fg) and (7) may also be incorporated direct-

]:.y' into a linear programming model ’w'ith the éddition of the ’

4

] o correct notation for the variables. - L,
Non-linearities that correspond to economies of scale can-

not be handled PY either of the above representations. This is

-the congcave curve "if('x) shown in Figures3 and4. As in the pre-
. ’ [y Co .
vious cases a piece-wise linear approximation f'(x) may be

_—— . . Q
S ) ‘
.
(]




=

Sang DT,

»

Total Cost

11

Total Cost
o |

-

i

X
.2

- Figure 4; lConcave»Cost Function, Mixed Integer

i

-.-"’

AT TP PR N T L TAEA S ey £ s




'describedbyfconditions (1), (2), (3) and”g4). In this caSe

wfunction._;The inébilixy of these two models.to approximate the

.which)satisfy the COnstraints‘of‘a linear programming_model | 3

‘absolute optimum. Once non -convex constraint sets are . =~ ~—— 3

“ \’:'-”‘4 R

>,

A § ..
J i A .
. o . > . Lo Lo Tl
- E . I S W P T
’ o . A P W

et

¢, £ ¢._y. If the constraints (1), (2) and (3) were again -

1

embedded in a 1inear programming model, it would be "optimal

to select the variables in a khackward sequence,

s ] _ . _ _‘- o
quS (Xr - xr-l) 1mp11es 4.1 = O r _,1{ 2? c....K

=
P -

In this case the model would incorrectly substitute a

case of diseconomy of scalé‘for one ofvecbnomy of scale.

In the second representation of the problem equation‘(53,
(6), énd (7) cQUld be used tourepresent this case,’see o -
Figﬁre 4, but in this case the soLﬁtion WOJ&& be a point‘on
the ljne.definedﬂby [xO, f(xo)], [xr, f(xr)] and it would be

below the curve defined by the curve f'(x). 1In this case the '

model has SubStﬁtUted a linear function forethe Goncave cost " .

non-linear relationships shown in Figures 3 and 4 go deeper

than the isolated failure of‘théSe two models. The points

form a convex set. ' This is not trwe of the points on or - S

~

above f'(x) in Figures (3) and (4). These points form a

concave set, * o : L
| ke | S L »

As long as a linear function is maximiged over a convex

set then we can be sure that ailocal optimum is also the

i

admitted, it is possible for a local optimum not to be an

!

absolute optimum.
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The economics of scale indicated by the fundtioh*f'(k)’in 
Figures 3 and 4 may be treated in a discrete programming for-

; - mulation by using equations (1) and (2) and by defining a set

of zero-one variables (al-;};ﬁ%,.a ) related through linear

K
Constraints“to the conpinuous-variables~(ql ,;,,;.qK) as

follows:

S0

(8) a_ > 1

s . o ' Xr = Xp-]
: - - and

o | (9) 1 £ 1 o 9, T

% | ] Er T Xy

: x'l

1, A XY oo ...K_li‘

/ | M . (10) a, is on integér o, 1

(11) q? > 0 for all r
Conditiqh (8) and (10) insure’that-if'Qr'is.to-be'greaterl

ey : . o .

than zero, al; will be forced up to the value of unity.
Similarly (9) and (10) provide'thatﬁugleSSfthe variéble q,.

has attained its‘maximum value,‘it'is imppssible for a,,; to
jbe'greater than zero, i.e. impossible toassign\a-positi§e-
value to ﬁhe variable Arsq - This.formulamioh insures that the
Variables d, wiilbbgempioyed in‘theproperrseqﬁence rather

\

‘than in reverse order. The restriction in (8), (9) and

3

(10)

ﬁ”canwbe rewrittén as follows:

- - (12) ~Qqp + (Xr{l = Xr)_Z 0

- B . (13) Ar - (x - Xr) +'_(Xr+1 I

(14) Ar+1 (xr+2 = Xpi1)

A

oor 1l

,,,,,

. ! t 3
. ' T 7 - .
: : T . io .
1 3 . . - R e s

3 ""{'l
i % }

>
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| A second repres_,ehtati{.on of this problem can be for- SR

mulated in a manner similar to that used in equations (5), (6)-

and (7): | L ;“
(15) x = VCI_)O f0 + <I>1 f.l + o - CDK fK N cprZO
Lo Py B -

(16) f£'(x) =D, g5 +&; &
(17) 1 = Cbo + Cbi\+ - cb
Then in é.ddit’ion we must i.mpose the condition that all -

h

/

cbr = 0 except at most one pair cbr and Cbr+1' This can be done
by introducing the discrete variablé ay defined so that a, = 0

or 1. oo

Py S ag-2 t 8.y “
ch =

- (19)

-
l

B + By + ceiii. cag g W . B

" An additional representation of this problem can be made |

in the following manner.

A

(20) - xé (') fO + V¢l fl +¢)l fl +®2 fz + @é fz + s e

. o 1
cee e '+¢K-l fpoq CbeK

T -

. = '” o | S | | - .
(,1) (=) D) g4 v g D g +®y : +:Cb2 :

+ e o 0o o 0 09

2 2

? .
e o co L ] .+¢K-1 gK_l +¢KgK.—’

LD 120 10 4B By +Dy 4 by g

A B B N R A R B T L e W i . e
1 RPN !

N T e O R A T 4 G SR A5 o it Pt f ot et e ey o e . PRI . . ; " . .
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VAR

bp'impose the restriction that all x

v

-

for one pair the following restrictions are necessary:

!

(23) CDO+CIDl
B e

- d
K-1

P, + &,

,f\

- U b e

N P g e 0 Rt o

O

r and{x'-r = 0 except

e e i o T 1 Tt b b 3ot s ot 0 0 3 £ s st ot 0ot per s o e

L N NV
»
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Development of Case i
A representation similar to that used in equations (20),

(21), (22) and (23) can be used to'represent the case where the

o

effect of allocating additid%al units, whether it is a net

. | increase in total cost or a decrease, is reflected on.all units

~o

rather than on only tﬂé*incremental.units. The cost function

I v i .
e -t
v

- for this formulation is shown in Figure 5 for the case of
™ - . " . i e ‘

. . . . . 8 / U :
diséconomies of scale and in Figure 6 for the case of economies

of scale, 4 . g
8 . .

In all previous cases it was poSsiblé?to represent the

case of disecononies of scale without the use of the zero-one
. » [ - N

variables , equations 23 , but in this case it was necessary to

- -include these discrete variables. If the problem had been re-

et cmne

pfesénted without the use of these variables the solution'would
fall onythe line defined by;(xo, go), (xl, gl), (xz, gz) oo e
...(xK,‘gK) in_FigurevS,“

Over the range O £ x< q, the problem can be represented,asf'

Co ‘ : , . - | - ) . | . ‘ . (\ i “ ;;/ _’_,,_ e
A follows: | o w =

o £
'

(24) x=® x + & x +® x + ......P x x =x
: 0 o 171 1 1 K K T r

. _2_ - ﬁ,igg, o 4+ Q. o 4 o e s o _ : .
'1 2 ) i 0.5 Cbl Sy 7 qﬁigl * <¥k\gK o L

(26) 1= ch f.'cbl + D APRERRER ch -

-~ . ' . i e,

and in addition *

»

>
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g

J&._
+
1l
o)
=

Lo
+
"
]
p
-

+ =0, 1
CbK-l CbK -2

This representétioﬁ”differs from the representation used

in equations (20) through (23) in that g, ¥ g;,

cost curve is not continuous.
A |

- A similar representation could be mé&éiforwthe case of

,
L4

. . . | x
economies of scale shown in Figure 6.

This representation can be expénded to

all n products produced by the j°

EY

similar t&gfhat used for case II.

supplier

@
. 0
£
o,
Nl L _

i.e. the total

take into account

in a manner.

T.:,m'n{w;) b,

,,.)l" .
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Figure 5: Cost Function for Case 11,
diseconomies of scale.

e s

'Figure 6: Cost Function for Case I1I
economies of scale,
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 Development of Case II

A second prbblem area is that of representing the cost

~q

function for the casefof‘where the cost per’unit is a function
_ - | - of the}tétal quantity purchaseéffrom the individual supplier

rather than beihgﬁa function only of the quahtity of the
individual product'produced , for thé.ﬁroblém defined as Casel,
Using the representation of a pieceéwise convex cost

g

i? 'fuﬁction-used in equation (1), (2), (3)mand (4) but expandihg
,;; theﬂrépresentatign'fo include all the m products that the ith \
;ﬂ} : supplier_produces we can write the following set of equations:
éﬂf‘ | : ;xij‘represents the quantity shipped from supplier j to
’%: o .  destination i. - K
e (28) x.. =), q ..
| o ' h Yoo b _
(29) bJ_ < ) Z Apj §
; o r=1 1i=1 .
| N

m | S o - -

- (31) e S ) i

i=1

75/ - :' B bj is’the;totai-amount,oféall produc%s\whiCh could be
sﬂpplied by supplier j. >
LT ';i ~.. represents the maximum number of units that can be
= | ‘allocated from supplier§j at the prices assoqgiated with.
schedule r . ;




—.If we have a convex coSt-function then-{pr all i
erij S oepiy - | - SRR
o m _J I | \\ :
32 D o~ implies that . . =0
(32) i§1qrij < 7,]1' P | qr+l, i,J i,
For the case where the cost function is ‘concave (crij >
Cr+lij) it is necessary to implicitly state t@eirelationship

implied byequition (32) by means of a zero .aré variable‘j‘aar

~ -

i

J°

(33) k.. Z ari g
1 a . Y -
! r=1 - o

(34) b

r=1 i=1 . .
. m - 1
35 . :
(35) Y53 < L a,,
- i=1 : )
, z- K. m )
(36) S Z Z €rij 9rij 2ri ! -
' r=1 i=1
and in addition
m V"-““‘ . | | ,., |
G Yy - Z Yij =0 Pra,i =t
, 1.___;1 _
Ypj Z'qri,j >0 =y, =0
i=1 : | |
) Evé'hg' though it is possible ‘to solve this representétion
(see“Apperidix I) it appears t*hat this method of formulation -is;A
not practical due to the size of the re,sulting problem and also---
because of the computational state of the art limits the wide-
spr_ead. ﬁse' of the p’resenj,: algorithms [9, 12, 15 ]4;
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- Computational Procedure -

W

It would be desi'r'ab;le_ if both of thes'e prbbl‘ems, Cases 1 and iI.,
ccmld be formulated in a manner which would not require the problem

to be set up as an integer or mixe‘“d‘ integer linear programming problem.
To

BEPE

accomplish this it is first necessary to make some initial as%xmp-*-

o oy
)

tion about’how the order will be allocated, how ‘many units wil&ll be

L]

linear programming problem. The setup of t,he linear prOg'ramming.

problem for Cases I and II are shown respectively in Appendix II and
III. For both cases after the initial assumption is made it must be

determined if the assumed allocations will result in a ,}fea‘.sible

L e, SOlution, i.e.,.the requirements for the various products can all

be determined. By proceeltriing' ‘in this manner the c:“ost for each

. alternate ’fe‘asible solution can be'fou‘nd'an‘d _‘the least cost solution
;:an«.. be determined. Computationally, this proceduré hé.s many ,_‘d‘raw-
backs, one of. wh;ich iﬁs the ﬂl;ec‘essity of sett‘ing\ up and solving many | [_

- relatively large linear p‘rc‘)“gramming problems, For both cases a | J-

. systemati@?c \appr@oa?ch has been developed to determine the optimum
' .solution. 'For Case I1I an alternative ‘approach has. beeﬁ developed.‘ |

*m- andlt is compared against the brute force solution (total

enumeration), and also against the other computational technique. | ) B |

W e  The first, technique which-will be evaluated for both Case I and

¢ I . ] . e -

J . . -
N : -

Case II can b_é described as follows:

; For a case of m suppliers supplying n products which have K D |

4




;o - , o e
x 22 -~ - -/
e o pficé breaks the first aSsumptiatho be made is that all msuppliersri-'

willlgarticipatehin‘the_Ordet;.all suppliersﬁwill be assumed to be

| éupplying products at a cost associated with at least their 10west ‘

Quantity“range in their price structure (this range should be

_. . , e

0 < Xj31 S Yj1). After solVing this set of fegeible solutions it

.Will be fcuhd that ;nwm@gy cases,weven though it was assumed that an T

allocatlon would be made to a.suppller (1n the range 0'< X131f< 731)

the resultlng m1n1mum cost solutlon $ays no allocatlon should be made.

- For the cases where this occurred it will be possible to elim-

. ) ‘ \ . . ) . s
inate the need to solve certain other feasible solutions since the - -

answer to these are al%eady-known. This can be shown ih'Table 1. .

_%p;v | Table 1 4

. '~:.“' R . (2
n)f_- ‘} s o ‘;} - Lo 4 "U"f'._ I ST 4
7 o R A

w%%;%' | - Simplification 1

o Ranges for Other Fea-
_ - sible Solutions whig¢h
. Assumed Range Optimum Solution need not be considered,

Supplier I 0-500 ) 0 0-500 0
S“PP;;erII‘ 0-500 ” 400 m0-5oo o;soo'ﬁb-soc
‘Supplier I  0-500 200 . o- 500 0-500 0-500
Supplier IV $»055oo . 0 h ~ 0-500 " -0 ~5-fg/

The nexthtEp in-the solution would be toﬂconeider”all feasible

e

. - _ solutions for the assumption that (m-1) suppllers W1ll be 1ncluded B
L | : A |

1ntthe order. After a feasible solution has been obtalned lt should-

A

" be checked agalnst the llst of feﬁsible sdlutions whichhave been

eliminated in the previous steps. If this solution has not been

g

‘already eliminated then the problem would be-solved and as in the




.
e ki
|
w

.~ i

. - J

5 : 1

& R

isiaens®

yusﬁrevieﬁ§>step, the solution would be exahined to see if other

... feasible solutions could be excluded.
This method would proceed until each.suppliér-was'assumed tg -
; fill thé;orders for all prgducts.ki | "”f | - N ;

As a last step in the procedure the list of feasible solutions : | ;

would be examined to determine the lowest cost solution.
o L o | . . L  #
For Case II where the cost function is a continuous function

, there is an alternate procedure which could be used. This pro-

I ——————
U st e

cédure would werk from the other end of the family of solutions

BRI A s ol o
LR IR B SUAC ST

“w*h (C(m,1) to C(m,m) rather than C(m,m)‘to C(m,1)).  This procedure
can be described as follows:
This procedure begins with the assumption that the total order

5 < -
@ E . N\

will be allocatéd to each of the various suppliers (one at a time)w

in turn (this will cau§etthe allocation to be made at the lowest

i,
i

ggchsuppliem&x AfterAmaking this assumption the ﬂ'

Y
i

%A
LG
-

L s !

? , -

feasible'solutionégéfe_determined (if there are any) and the | 3” x I
linear program is set up and solved to determine the lowest cost ,,g;;#?‘
solution (along with any alternate equivalent cost solutions). -

The next step in the procedure assumes that the tbt 1 _order

11*“:” . suppliers taken two at a time will be conéidéred).  For ‘each of i
__________ - ~ these combinations of Sﬁppliefs all feasible solutions are -found, El
the Linear'Programﬁihé froblemié;seﬁ up, and then they are sélved‘ . | §
) for the minimum cost.solution. -The lowest cost solutibn or‘solutiohs g'
i'ére then*éompéred with the solutiohs for the'aSSUmPtion of ome | “ - g ﬂ
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‘24,

o
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 sup§iie: filiing all orders. 1If a'IBWéT“COSt;SOIUtion was not found
in step two or a differentquuivalent cost soiutioq was not found
in step two,then the édlutioh ih step one is optimum, If the

T

splution in step one. is not shown to be opti@pm then the procedure

will be repeatéd for three Supbliers splitting the order&%nd the | | g;

optimum solution will be compared to the optimum for two suppliers é

using the same criteria previously used.‘ This‘méthod is continued

until either an optimum is found or all suppliers are -considered

participating in the order, This procedure will work for Case II f :
h | P ey, '
but cannot be applied to Case I because of the discontinous total
cost curves,
4 & . :
=~ : '
« p |
. | / . |




Evaluation
A. ObjecQ@Veé“ E
| A series of test problems were run to_demdnstraie‘thé-
comgutationa& procedure and:tofévaluate the efféctiyeness of

“these two procedures against the method of total -enumeration.

The specific oObjectives of this evaulation were to:

"1,’,Determine.%he savings in éomputatiqnal effort which
would result”from the application of the computational

procedures to this problem,

i & ,

2. Demonstrate that the solution obtained by both methods

would be the optimal solution.

S

3. Demonstrate the approx{mate size 6f the problem which

)

v S  would be encountered while applying this techni&ue to

o

~ obtain solutions involving fouf}or less suppliers.
B. Test Problems
Two testgproblems were designedmto-de nstrate. the simpli-

)‘J

fication techniques.'ﬁIhe,same test prdbiems'were'used for both

Cases I and II except in'fhe‘dafa used for Case II the costs
‘;h assbciated with supplier 4 wére e;iminatéd since the maximum-

'number of Suppiiers which could be handled ih fhe prpgram'for_A

this case was three. This limitaﬁion of fhree suppliers fbr

CaSe Iand“four‘suppliers“for Case II was a restriﬁtion im-

. S | F o .
;ppsed by the size of'thé_memérynofﬂthe computér_used (IBM“1626,
20K memory) and by7£he.timenecessary tquolve_these problems

“(ali feasible solutions had to be evaluated.to insuxe optiméfity




&
%
¢
d
!
| T
o
At
g "
£
B
E
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while evaluating thésm

‘reasonabBy CIosexlimits from all suppiiers (L 10% for test prob-

‘lem I and I 20% for test problem II), The cost matrices for these -

D

26

A%

‘procedures to solve these two cases).
S L |

*oe

It was necessary_to transfer the program to an IBM 1410 to

take advantage of the faster interhal speed, but the size of

R

the problem was not inCreased since this would have'reqqiTédﬁé

PN

major repr%grmmning effort, and it was feit that a’progfam of

the Size ofiginally prégrgmmed.would demonstrate the techniques

ot

required for’thése two”pfocédqres adéquately. The major con-
éiderations used when designing the test'problems were that the
unit cost of the product decreased as the quantity increased L

KT

and that the cost of each product ét each level was within

<

LY

test problems are shown in Appendix IV.
C. Results .

A sample calculatién tOﬂdemoﬁéyrate how the pr computa--
tional téchniques were'appiied to the data is shown in
Apéendix V. The results of the éomputations for pribe structurés 
I and II at various levels of demand\aré-shown in Tables3 and 4.

Looking initially at Case I-the following results were

2

obtained:

1.  The‘nwmber<of feaéible.solutions'requiring a solution

7ow Lo . .

to obtain the optimunlsolution to the problem was re-
a0 ducedpby'betWeen 51% and 67% for the range’ofwrequire—
/o “ménfs'under'consideraxion using the first simplification

‘teChniqﬁe.

/ ?,

e i

<
e, Y Atieaalt
¥ OB
AT :
Bt « -
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;27Q o — e . é
. . 2. The resulting solution obtained was in all cases the ’ S é
) optimal_and in addition-all"nnique solutions were :
‘a N - - h ) AN
also obtained. This gives the person planning the
project alternate solutions which have higher costs
‘from which he may want to choose due to some other
— gy o : ) : 2
consideration not implicit in the set up of the pro-
. ‘blem:

B | - For Case 1I the following results wefe observed:

la. The number of feasiblé solntions requiring a

N

solntion to obtain the optimum solution to the -

ol

problem for Simplification I over the method of
total enumeration resulted in a savings. of be-

tween 14% and 58%. | .o
, ) | p

. . o Ty . N N
p'S - N

'flb. For Simplification II the number of feasible

solutions which had to be solved to obtain the

answer showed a reduction of up to 36% over

° ; gupu T gy

total enumeration of all solutions. e

lc. The solution obtained in all cases for Simpli-

- fication I were superior with respect to the

_"”/‘

/ T - amount of computation required compared to

{‘ e . A : ‘ . — wjki‘- *S_imp:];iij:—eai—igﬂ ‘I‘llw S G e ;;;;1 ;—i:%rif—:_gf e :

s

2. The answer obtained by both methods yielded the
optimum solution for all cases tested.

Cn

o Lo x P | | | o
o o S It should be noted that these conclusions are based on

*  two test problems qndfthe'total amount of product allocated was - |
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o - ,;(- . a smallqpercentage of the total amount available (5 to 25 per- '_' - i

cent). Plotting the total number of feasible solutions against

| . " )
the ratio of the total allocated for all products to. the total
overall quantity available, results similar to those shown in

Figure;7 would‘be expectéd fornbdth Cases Iaand IT. No general-‘

ization can be made about the general shape of a similar curve

D

-

PRl

IfOr unique solutions (the number of solutions necessary to be

~solved to obtain an optimum solution for Cases' I and II with

A, Loy

5 ‘ - o | |
Simplification 1). Only two points on such a curve are known

without testihg.' Theée are the extreme points:(o, m), (1, 1).

The resﬁlts for Case I and Case II using Test Problem 1 and 2 - ;

‘
&

are plotted respectively in Figures 8 and 9 as Percent Savings -

versus the ratio of the total quantity of all products allocated

:tb”the'total quantity of produCt available. This ratio was not

. . made >lf3”because for larger values the price breaks in. the

s

3Ji ;  - | cost functionilimits the numbeg of feasible solutions which

.jfw N “ ﬁf”*’éan be thained; This limitation would not afifect the

~computation 1in practice since this ratio would normally be a
. N . 4 . \i ) co
small number, i.e., the available capacity from which assigmments

4

5 “ x 9. - f | |
must be made normally is much larger then theﬁdemand, especially

L e e A -when allocating-orders to suppliers. [ e

simplifieation 2 did not yield as high a Percentage

_;“Séﬁings as was expected it might have (see Table 3), becausémgf

the design of thé test problem. Experiepcé with this procedure

&\efficiently'if’the'nﬁmﬁer;of

. ’ “ -~ has shown that it will work mos
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{ : - , S .
3 o s .t Test Problem 1 | N - ' ¥
| | _ o § . _

; -
w .

S U ‘ | o
Requirements , - Number of Feasible - Number of Required
Product Product Product . Solutions bx‘Total ' Solutions for S
1 2 3 | Enumeration E Simplification 1 ) - % Savings

200 = 200 200 - . - a3 21 - . s1%
300 . 300 300 43 L - 18 . 58%
. ‘ : . : N ’

400 . 400 400 89 o 33 63%

500 "7 500 500 . 89 o 33 - 637

Test Problem 2

100 | 100 100 | 15 S 5 T 6T%

200 | 200 200 43 - - 1 . 63%

Awn

300 | 300 300 .43 16 . 63%

500 500 500 “ 89 | 30 - e6% . . -

| T Table 2: Summary Case 'I
! . /%




Product Produ

-

1

Requirements

- 2

ct Product

-3

Number of Feasible Number of Required
Solutions by Total |

Test Probleﬁ 1

Solutions for
Simplification 1 -

&=

Number of Required
Solutions for

) :
)

" v

‘\ v

N

100

300

500

100

200

300

500

100
o
300
1

500

100

300

i
!

500 .

100
- 200
300

o200

Enumeration

7

16

28

16

196

28

Table 3:

5

Summary Case II

=

14.3%

.31.0%

53.5%

29%

44%

- 44%

46%

% Savings. Simplification 2

7
16

18

16

16

18

% Saviqg§’




“ment over the methdd‘of total-eﬁumeration_of all_pdssible feasible

_301utions_to~find the;pptimﬁm solution."Fbr Case 1I where two compu-
.ment over the second computatibna1 p;ocedure. _Thé first technique

linear programming formulation {(concave case) required for Case II

for small to moderate sized problems and it'hdlds even more promise

‘small problem turns out to be complicated and lengthy when using the

up to 6-8 suppliers (the limit is thé memory.siZéoffhe,compufef,and?

the time. necessary for the’sqlution)ﬁ The number of products involve

S T TN TR SNy NN AR et AP SR S ooy, 5 72t T

. X . . -
:_. . " . s
R ’ . . o . . 3 5 ) . . . i} » .
- LA a -~ - ’
-3 - . o ! . .
: B R ': , K S B 1
, . . e ) . g :

Conclusions B / .
. o . - L . "’. . . | ‘ 0 . ' i

Bofh»the'procedures which were eﬁaiuated represénted aniimproveff

.,

tat{gnal procedures were being compared, the first technique (look-

ing at all solutions from C(m,m) to C(m,1)) showed a definite improve=

#
# o -t

e

'éppéars to be a practical alternative to solving the mixed“integer

~ay

-

forCase I since the exact formulation to this problem is a more o é

b

- complicated IntegerfLi;ZE?*?}ogfamﬁing;Problem'orwa Quadratic Pro-

!

gramming_Problem with Integer Restrictioné. - . | -

 One additional drawbéek to the exact for ukationfof'this problem
= - . . . ' h -

is the size -of the resulting problem. What would appear to be a

‘integer and mixed integer algorithms. Althoﬁgh the size and timé

required to Sglve the problem by'the\twd'computa%ional-methods'pre—
sentédihere increase as the size of thé problem increases, for pro—h
. ' . . ) 7 N '

blems where there are less than 3 price Qfeaks for each product it~

appears‘fhat'these'methods could be used in a practical préblem,for-

5

éhould notvafféét'the'compufatibns required significantly but the a-

; | - S : oo .
- mount of{the total available product and the break-points in the price

L




structure significantly affec




.....

e “ o .:: . ;o2 _ i S _ ‘— 37“

.Recommendatioﬁs for.Addifional Work - - \Y S

‘The two problems under consideration both used the total

quantity purchased from a supplier as the criteria for defermining"

e " \ .
P . N .

“

‘which ﬁricé‘SChedule would be used;_'A iogicalfektension,of this

e R problevaoﬁld beﬂthé caseuwhere thé,pricg SQhedule used is a function

Mﬁf the total Value of the purchases frdm‘each supplier.- Iﬁ miéht S ) o

£

be possible to modify the procedure presented to solve this case
. ?‘ but at best it would show less savings than for the cases tested.

if it had been required‘to exclude certain supplieréproduct | . fi

: \ | - ) S
~-combinations from consideration, either because’ the supplier did -

not manufacture this product or for some other reason, it is

'~ necessary in the present set-up of the problem to associate a high

“cost with this supplier-product combiﬁation so that normally it .

s

P  will not enter into the solution. This WilY/not work in every case
- S ) becauséwat some stage of the problem (eSpecially Case II) the
assumption wiilébe made thdt each suﬁpliér will supply all of the

requifeﬁents. If this supplier is capab1e of*meetingvall the

réquirementsiﬁ'termsof;:ZFal quantity (a feasible solution) th;n
\the'problem will be set-up ahd sélved and this illegal supplier; \_t . .ﬁ : fgq
pfoduct.cémbinatioh will be forced infq the solution simply becaggea .

'.there.was no altefnate source of‘supply..

A refinement in the method of determining feasible solutions

and in the set,ﬁp """ offthg Linear Prdgramming Problem would eIiminate'

-4

'wthis s{tuation; "If there were only a few of these undesirable

1

L o _suppliér-prOduct combination thé above method would.wbrk adequately -

9




.

since even though a sdlutioh was found, the total cost-ef this I

vy

| solution would;bewso high that it would not be selected as an optimal

solution, If- there .were a large ﬁ%mbéxggf ~~~~ théééiﬁndésirableysupplier-

Tprdduct combinations, it is pdSsible,that fbr Simplification 2 when
applied-to Case II, the criteria for an optimum solution might be met

and yet dne or more of these undegirable supplier-product combinations

might -be in the solgtibn;' For this situation a iefinement in the

’_methdd of determing feasible solutions would be necessary.

'When‘considering.the exact fOrmulétion’of the,problem~of'the
/ R ) o : .

e
-

price offéfpgoduct°being°on1y a’functién'of‘the quantity purchaséd -

from that supplier two representations were pfesented, equation (15)

-

‘through.(iQ) and equation (20) through (23) which appear to be quite

similar. A closer look will show that for the same problem equation

2

(15) through (19) would have less Variables.(the s ame number'of
integer variables) butrﬁould have more equation that the repfeSent-_

ation in equation (20) through (23). It would be interesting to

formulate the- same prdblem in bqth representations and to compare

the necessary computational work to solve both feprésentations.

-~




" w

Append ix I 3 L |

: The Lmathematical° representation of the problem in equation = I

(32) through (37) is as followS: | o | .‘

ny

'wﬁ(33’ﬂ~Xi

AR A b g

RO S E T e

. J- 2: ®ri iy o e m
______ r=1 N '~ o |
| | R "
: B
: . < K m | >
-.-,- K IRYESD Y SRS
| r=1 i=1 .
.
| B a ~
(35) Vi S Z ri Yrij |
S ) | | ) ) ; |
K m : o N fj '\J# i
\ r=1 i=1 , o | . 3
- : m AR |
N : -~ S N L = P -1 - %
N P Z drij = 0  apy33 =0 - T _
. - i=1 ; L of | -
| These are two basic problems associated with ;the.sév i ’ b
_'represen’tations , one the cost fu'pct’ién has been expféssgd as
.the product of three terms - two of which are variables and the :
second problem is that any solution will be a mixed integer
form since the ari"s have 'been defined as a zefo-oné.var;i.ables.
-, To eliminate the product term it is possible to define two o )
new variables U .. and V_.. in the f6llowing manner: - R A f
. ‘. . ,?,ﬁI:lJv . rlJ '4 S B B ' . :

§
=
o - DI £

(38) Tpyy =2 Capgy =2 p> |

j

’

(39) _Vri' = (1/2) (qri'j + a.:) |




o

~~~~~~~

Doing the latter will restrict the set of possible solutions: to

40 .

Twr
Q

The product term ari g i,j’» can now be expressed as:

€

%ri Yrij B Virig = U rij o

With this simplif ication we can now represent the problem

=%

in the fqllo\iling-lw\ayﬁ; R

!
N
< .
\V)
|
)
|

(40) xy5-

IN
M=
M=
i~

<

~ N
&
1

=

~ DN
&

-’

(41) b

S K m | :
- _ . 2., . y2
(42) z.j - E Z - Cpij (Vrij "'Uri,j)

e

- u?

.
(43 yjrs L Vi ™ Uray)

At thig point there are now two techniques which could be

used to solve this representation of the problem, The first ié
to solve the problem as a Qu/a,;iratic Programming problem or

secondly the non—ﬁnearities can be approximated by a piepéé |

+
-

wise linear function (the resulting function will be convex).

o e

only certain values'fdepending upon the,nungber of llinearﬁ elements

‘used to approximate the quadratic 'function. This would increase

Py R R . Lt

Feu
‘. ¥
s o
- L £
]
1
i
b
i
L
H
b
h
[
x
v
<&

A,.‘-..,-.»‘N--A.-»..br\..-ﬁ.u(;»‘f{’_ﬁ;):y’\y’-{:‘qn-v-‘-v- " : bt A

|

MRS

R R R R e R

O A TR

the size! of the problem excessively and therefore it wo_uld not

be_.a"p'raCti‘cal approach i:;o the solution to ,this*;iroblem. ~
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| .ﬁw( g S  ' .Appendgx‘II.' )
; Linear'ProgrammihgYﬁepresenfation for Case I ¥
; — 'Ih ofdér‘toAdefermihe all feasible ébiutibns and the 16Wéét i
; o  ?_ cqst sblution amongqthe.sefﬁéf.feasiblé solutions,é program Was_
| written in FORTRAN IV which would determine which solutions were
%& feasible, set up the required Linear Programming Problem a;;_
“ . solve it fo}‘the mihimum;cost solﬁtioni  This p€ogram was --"v(n‘“ «
\,- o . written fq;' a maximum of 3‘p’i-'odu“é1i:“s, 4 suppliei's and 3 price'w.
 iT:f.i breaRqur eaph supﬁlier,= The inputgto;this'prbgram consists
| CE ¢h¢.fo116Wing¢§temsof data: - S, E |
1. 'Pfiée Bréak.Points for”eacg,Supplier. < 4 - o u ?E
S Zy_:;'zi;&ﬁost“far'eaéh produgglpetweén eachi?feak~Ppip#.
) ] 3.. gequirement fqr\eaéhvof the Pfoducts.,
o “‘ T | J  4. .Ing;rmatibn as - to which sdpplief will be supplying :
| . - e
producféltowards meeting the total_rgquirement.
: ~ Set-wp of the Probleml - | ‘
e The_Linegr Pfogrgmvwhich was\setaup by the cbmguter to
represe@f the pr§b1em=in Case I is showh in Eqd;tién (Ii—_l)' B
- throughm(II - 4). All cosfs which'éfe associated With‘
) éllocations which aré not allowed to ehter thesolution { !
- (because of thé‘iﬁifial assumption on allocatiops) are set at". BT j 1
| ‘ | | | - | . | ‘

e .. alarge positive cbst so that no allocation will be made to Lo I

these variables when minimizing.the cost function z. , o N

. - - : : T e ' 2 B
. o s ) . . ) ) , ) ' . ¥ -?.— ‘ . . k4 .
Theln o : : i . o " . H
b X . BN . . [ &




LS. (11 -1) A= DY, x s o0 A=, eeeemg e

oird

o are2) Lo 2 ) 21 Epgy  FEL .m0

‘ }g - oo we s . ;‘”‘ |

i = Product™ - i

R . . @

1" e 00 on S i '. : " W - i :

4

S | | )
P j = Supplier 5

© Lpg - Break point in price structure.for suppl‘ier j in
. | \ . _ \ NS K
units. 0<r<K | o

L Xpij - Quant,ity of product i "purcha'séd from supplier j l"at I

a cost associated with an allocation in the range
between Lﬁ‘:lj and L r’ j '1$rSK o o | - |
. N e... - Unit cost for product i from supplier j £SSOCiated
" ,,,,,,, ' | : L P L 5 - . ‘ ’ . | | o . K .

ot , . . : . . : | < \ ‘ . i.-'
with an allocatlop in the range I»Jr—l,j _rgl = Xri

'. - o <L " . | | 4 _ . x I
4 - = N : - rj : T | . / &

A, - Demand for product i.- N - | o

- ’The‘_breal; point ‘iln‘ quantity below which the
’“ o B  allocation has been assumed to be made (rma};')is;

determined . for | each Jj from :th.e ~a,ssﬁmpti_on,made

o




"ff7 . B .’-Read cost“aata- - -
A 4 _price breaks [ . ! l

requirements

B ) . . ) . ;
P ole . . .
e - . . e, g
! : ce & . . - .
T ' : [ s . -
. N ‘
Yz, % E -
S, bl .
LN > . - . -

/ S SR .~ |~ Determine wg%ch S ‘

: D | ¢ | | - suppliers will be | .. /the last
-~ ) considered when allocation
| ' making allocations consider m
| “ uppliers

e | 4

Can ,
ore feasable
sg%gtions
be found

" NO

R,

; , . Determine_rangefunder R
o - “, - Ce - | consideration for the | 5ﬁ2“ .

a - o allocations to each o . =
supplier . o .

feasable
solution

"f_ o /é) | Set"up gpd‘so1Vé the - o
- N - | Linear Programming B
- I - - - problem - o

(

Print results

s v =
.
Figure 10: Flow chart for program used to enumerate all e )
’ feasable solutions for Case I, } T
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) - Appendlx III |
B Llhear Proéra.nnnlng Repreéentatlon for Case 11 :
A prog;c-am whiqfug?:s the saxge functi_on- as. the hprogra.nf N = | : S
written foi- :"“C‘Ias.e ‘I;‘Waé p‘repare-d' for this ’.‘.c:ase. (seé Appendi;; 1). | 5 . :
lﬁ Thié" prog"ran{ Waé -d.c-;sﬂi.éned for a maximum qf three prbduc'ts, thre”ae -
| sgpﬁpliler’sv*and three p:gice breaks. The inputs ‘and outputs of g
o - gh; brdgram 'a1~re similar to those for thc; ﬁrogfa;ll 'fbr Caée -.Ig. -
o ';"-Se~t~--up of t}‘he Problem | .
’ The L1near Program which was set- Ilp by the c;;lput.er to
D,represent the problem 1nICase II is shown in equatlons (II1 - 1)
through (III - S)¢ All costs Wh1ch are: assoc1ated ‘with
allocations which are not allowed t-d enter the solution (be- \
- o " cause of the initial assumptilons on- allocations) are set at a ;
) - o 1~arge positive cosl’t so that allo'lh‘:ations‘ will not be made to
| tﬁe_se»when minimizing the cost function z. y.
(11D - 1) Lgs < Z 2: xrlJ =1, ... |
| .. 'R n.' _ | | | - ~ o
M (III""“ 2’“).. Aj = Z Z Xpij 1= 1y wnoom .
. S - r=1 J=1 | ) |
e . _ m , T
..~ o o (I1I - 3) f‘_-Lrj; < Z Xpij - TF 1, ... K
. o e e 1=1 o ; ~ e |
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o
s
]
el
Cu
n
M=
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These- variables have been defined earlier in Appendix II. -
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Segit

\ Read cost data
price breaks o
requirements . . ’ -

. el

) " Pt ’ ’ . "
b 2 . , ‘ . ; .
' ‘ v .. - - " | o "
’ .

Determine which | - -
-suppliers will be the last I
considered when allocation YES

s i

Sl

S T p s S L P

S N AT AT s

oty

making allocations consider m -
' — sdppliers _
R Can ' | -
“more feasable NO | + |
: solutions - .
be found ~ - _
| END
Determine range under |
} consideration for the | Cw T
) allocation to each o
supplier T : -
| . o .
e this a : ¢
‘NO o
) - feasable £ B
- solution
\ ,
— ‘ S _ _
‘| Set up and solve the
'Llnear Programming
problem
Print results
Flgure 11: EloW\chart for program used to enumerate all .
| feasable solutions for Case II. &\_ o . )
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S o | , | . Simplification #1 Cost. Structure 2 ",'f

wal R T e T e Case II | o .
S L S o o - Equivalent Solutions - | .

- - ;Aésuged Range Actual Allocation Cost that can be eliminated Same Solution .

" "Feasible for Supplier .SHEP&{er ‘ from considerations - as Solution #[  * I

* - Solution # _1 (2. 3 1 2 . 3 | 1 2 3 R A

.
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999 501 O 190
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Assumed Range ' Actual Allocation
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|  Simplification #2 Cost Structure 2 | -
. .~ * 4+ 'Feasible - Assumed Range for Supplier Cost ' - List of (Variables) and alloCatin

* . . Solution # 1 2 3 B | _ | * -

"~

#165  (2)'500  (12) 500 (19) 500.
160 - (5) 500 - (15) 500 - (22) 500 .
155 x (7) 500~ (18) 500 ((zé).soo.

© 0 g OUR W N

195 (1) 500  (14) 500 (22) 500 - ", ..
160 (5) 500  (15) 500  (22) 500 = - ”
o 190 (1) 500 (11) 500  (22) 500
.. 190 (1) 5000 (11) 500  (22) 500 . .| !
165 ~ (2) 500 (12) 500  (19) 500 & PR
185 (7) 500  (17) 500.  (22) 500 . . )
155*%  (7) 500 . (18) 500  (26) 500, . |
© Is0 (T 500 T (147500  (22) 500
- 18 (7)) 500  (17) 500  (22) 500
' 160 . (5) 500 , (15) 500  (22) 500
190  (7) 500  (17) 500 (19). 500
155% - (7) 500 (18) 500 ~  (26) 500 T
L - . 190 (7) 500 (1) 500 (19) 500 =~ - - K
190 (7)) 5000 (11) 500 (19) 500 © . -
165 _  (2) 500 (12) 500  (19) 500 -
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ST I e -~ Range A . No allocation is assumed
Lo L . : Range "B" 0-500 Units -
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*Opt imum SqutiQn-im any group = o - L - " o
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