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ABSTRACT

This paper represents an attempt to'unify some fairly

recent results in the field of point-set topology. With the

| .
emphasis on clarification and, in some instances, simplifi-

cation we have tried to characterize certain properties of
X in terms of itsStone-éecﬂ7cqmpactification, B(X). For
this reason we consider only completely regular spaces
throughout the discussion. The concepts with which we shall
be chiefly concerned are topological completeness, paracom-
éactness, the Lindelosf property, real compacﬁness,ﬁang-comﬁ

plete metrizability.

‘Sections I and I cotitain preliminary terminology and a

brief discussion of uniformities, pseudometric uniformities,
and uniformly. continuous and continuous pseudometrics. In

Section III partitions of unity are introduced and an im-

‘pbrtant~theoremyrelating open coverings of anormal space to

partitions of unity is proved. Section;IV:contains the

standard result concerning pséﬂdbmetrizable.spaces and para-
compactness, i.e. pseudometrizable implies paracompact. The
theorem is proved without the usual restrictions of reqular-
ity or Hausdorff on the space. In Section V g(X) is defined

and its maximality among compactifications of X is demon-
‘ o NE

strated.

Section VI begins the main body of the thesis. Within
this section the first major equivalence theorem is proved

equating paracompactness to several other properties of X in
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8(X). Sections VII - IX are.analogous to Section VI in that
the method of proof of-the theorems within is exactly the
same. The interrelations betwéeh the essentially differeﬁt
concepts is thus made clear. ‘

In Section X we prdve tech's theorem: A metric space
is.a'Ga in B(X) if and énly if it is completely metrizable.
The proof is given in its original form with the exception
of several clarifying comments. In conclusion these results

are discussed and a still furtheruquéstion is formulated.




N Infroduction
- B(X) was first introduced and its properties studied by
Stone and Cech. Their interests'lay chiefly in metric spaces
with the main result being Cech's well-known theorem: A metric

space X 1s a G6 in g(X) if and only if it is completely

metrizable. Thus a metric is imbedded in its Stone-éech com—
pactification in'fhe same way in which it 1is imbedded in any
compactification. The question naturally arose as éo what
could be said about X if its properties were less restricted,
for exaﬁple, if X were only completely regular. Some of the
major contributions in'this direction were made by Tamano and
Michael, part of whose work is studied in this paper. Tamano,
especially, has deveioped_some very exact conditions under
which a space X will be paracompact, topologically complete,
and real compact. We shall study these results and attempt
to make evident their.corielations, The main point of inter-
est will be the striking similarities in both statement and
method of proof of these theorems. As a result one is quite
easily able to list these properties of a space in a sort of
hierarchy depending on the corresponding equivalent conditions
:that the space satisfies when imbedded in B (X).

The first five sections of this paper contain the pre-
liminary development of some ideas that we shall need later
in our discussion and, although some interesting results are
proved, their main purpose is to supply us with some machinery
for proving ﬁore {ﬁportant theorems.

Sections VI-X constitute the main body of the thesis.




The equivalence theorems proved therein represent the focal
point of our discussion. These theorems, which are the result
of work done by Tamano, have been enlarged to a certain extent
to provide a clearer understanding of the motivations behind
Varioﬂsconstructions and arguments.

With Cech's theorem in Section X we have a furthér
characterization of X in B(X) if X is metric. This was one
of the first theoréms.toappear which related X to B(X), iﬁ 
that i;,éompletely describes metric séaCes which are Gé's
in B(X).

It is hoped that the ordering and ptesentation of this
material will provide a systematic approach to this type of
study and will make clear the general mode of argument used

[}
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I
In the following discussion the topological spaces of

chief cdncern will be completely regular spaces so that from

" the outset it will be assumed that any arbitrary space X is -

completely reqular unless otherwise stated. These are spaces
for which the existence ofuniformity is known and this prop-
erty will prove useful in providing ceftain results.
For any topological space X and subset A denote the int-
erior of A in X by IntXA and the closure of A in X by ClXA
X-A designates the complement of A in X. The diagonal of A
in,X'isrthe set A,={(x,x)eXXX| xeA}. A collection of subsets

of X is written {B.| ael} or {B }

When the indexing set
o oel”

1s of no partlcular 1mportance we abbreviate this to {B }

If X is a topological space then C(X) de51gnates the set
of all continuous functions f:X - R, where R is fhe real num-
bers. C*(X) is the set of all bounded continuous functions
£f:X > R. Fof an arbitrary function f:X - R let O(f)={xeX|

f(x)#0} and Z(f)={xeX| £(x)=0}. O(f) is called the support

of f in X ang Z(f), the zero set of f in X.

If X is a subspace of Y and U is open 1n X then an open
set U of Y is an extension of U prOV1ded u'n X=U. The lar-
gest such extension is called the proper extension of U and

I1

Let X be any arbitrary set. By a uniformity on X we

mean a collection p of subsets of XXX having the following

properties:




i.) If Ueu then A c U.

. -1
1i.) If Ueu then U "eu. (If U=U then
U is said to be symmetric.) |

iii.) If Uep then there is a Veu such
that Veve U.

iv.) If U,Vep then UAVeyu.
v.) If Uep and Ue€ V then Veyp.

The resulting structure (X,n) 1is a uniform space. In a
uniform space(Xru) property iii.) can actually be strengthened~
by -saying that for any Ueu there is a symmetric Wep such that
WoWe U. For the V of property iii.) let W=VAN V—l. Then W is
symmetric and WoWe< U. Moreover, we may argue inductively that

for any Uey and for any integer n>0 there is a symmetric Weu

such that WoWe...°W (n-times) = W'e U.

From the:unifOrmity U we may construct a topology Tu for
)
the set X in the following manner. Let fu;consisﬁ of all the
sets Oc X such that for each xe0O there is a Uey with U[x]c O

where U[x]={yeX| (x,y)eU}. 1In view of the definition of a

uniformity it is not difficult to verify that T is indeed a

topology for X. Tu.is called the uniform topology. If (X,T)

is a topological space and u is a uniformity for X then we

N
say that p is compatible with X if L

If there exist uniformities p,z for a set X and uec

then we say that y is weaker than g and write u<g. If p is

a pseudometric on X then we may construct a uniformity M for
X by taking as a base, all subsets of XXX of the form {(x,y)e¢

X¥X | p(x,y)<r} for r>0. It is easily proven that M is a

uniformity for X. We say that a uniform space (X,z) is

6




pseudometrizable if and only:if there exists a pseudqmetric p
on X such that up=;. A pseudometriq p on the uniform space
(X,z) 1is said to be ﬁniformly continuous on XxX if and only
if upi;. If (X,1) is.a topological space and b is a pseudo-
metric on X then o isvéaid to be a topologically weaker pseu-
‘dometric if ipiT‘where ip is the topology inducediby b. A

basic property of unifgimitiesnis;given by the following:

¢ L

Theorem 2.1: Let u be a uniformity compatible with (X,t) and

Ueu. Then there exists a uniformly continuous pseudometric p
on X such that

Wn={(x,y)eXXX| p(x,y)<2—n}.

Proof: Let~U0=U. Then there exists a symmetric U,eu such

 that U °U °U< U,. For n>} suppose U has been defined. Let

% ) '« and have the Bronarty +hat 3
Un+15u.be symmetric. and have the property that Un+1c:Un‘ We

thus obtain the collection {U_} of sj

metric members of .

Now define a real wvalued function f on XxX as follows:
I3 'if.aﬁdﬂonly if'(Xiyanﬁ=U}

£(x,y)= | pnl if and only if (x,y)eU _;-U_,n>0

0 :if and,inY if§(x,y)eUn,in=0,l,.@

(

| " |

For each (x,y)eXXX set p(XiY)=min{1,inf(2*f(xi,xi+l)|vi=0,l,-7ﬂ
20 _

where the infimum is taken over all finite sequences'{xo,xl,

} with x.=x and x From the definition of p

KoreeerXna1 0 nt+l *°
it is clear that p(x,2)<p(x,y) + p(y,z) for any x,y,zeX.

Also since each Un_is symmetric f£(x,y)=f(y,x) for all x,yeX |
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and hence p (x,y)=p (¥,X). If x=y then f(x,y)=0 and thus
p(x,y)=0. Therefore p is a pseudometric on X.
We proceed now by induction to show that
f(xo,x 412 220{f(x /x;.1) | 1=0, 1,...,n}
This isszclearly the case for n=0. Assﬁme that the inequality
is valid for all k<n-l. We agree to call 2 £(x;,%x, ) the
i=r

length of the chain from r to s+l and a the length of the en-

. tire chain Z f(x. Let t be the largest integer such

i=0 l'xi$l)‘

that the length of the chain from 0 to t is at most a/2.

The chain from t+1 to n+l is then also of length at most a/2.

Hence by'hYpothésis‘f(XAfxt)“ 2(a/2)=a and f(xt+l,x +l)<a.

It is clear that f(xt,xt+l) a. Let m be the smallest integer
such that 2 mﬁg. Then we have £ (x,,x )< 2L so that
(xo,xt)¢ Um 1 Um Hénce (x0 )eU and in the same way

(x t+l’xn+1)’ (xt,xt+l)eU . Therefbre‘(xa,xn*l)eumfl and
f(xg,x )< 27" < 2a= 2{2 £(x;,x;,) b

1=0
Now if p(x,y)<l then f(x,y)<2 and (x,y)eU,=U. For
n=0,1,... let W ={(x,y)eXXX| p(x,y)< 2™}, then we have:

CQ‘QWCW C.O.CWCU'.

n-1 0

We have left to show only that Upiu° Lét-thp. Then

for some r>0 {(x,y)eXXX| 0 (xX,y)<r} V. Choose n so large

that zén<r, then Wnc:V. Now p(x,y)if(x,y) so that if

(x,y)eUn+l, f(x,y)'_<_.2-n_l and hence p(x,y)i_z_n-l. Thus we
have Un+lc:Wn. But Un+l€u so Veup by the definition of uni-
formity.

A consequence of the previous theorem is the following:

\\
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Theorem 2.2: The uniform space (X,u) is pseudométrizable if

and onlf.if u has a countable base.

Proof: The necessity of the condition is clear. To prove
the sufficiency let'{Un| n=0,1,...} be a countable base for

w. For each U we may apply Theorem 2.2 to obtain a uniform-
./ n

- 1y continuous pseudometric N which satisfies the descending

chain property. Let p(x,y)= ]

pn(sz)/Zn‘ p is clearly the

desired pseudometric on X.

A uniformity of a veiz/special-nature is the fine uni-
formity u* which consists 6f all sets U€ XxX such that there
exists some continuous pseudometricp on XxX with Wg
W8={(x,y)eXxX| p(x,y)<l}, u* is clearly é uniformity on X.

C U where

Furthermore it is the largest uniformity compatible with X
for by Theorem 2.2, every uniférmity u compatible with the
space (X,t) 1is conta;ned in u* sinceupip implies %pc:r;

A subset V€ XxX is said to be a'sﬁrrounding for X if and
iny“if?Vwis.a.member of some uniformity compatible with X.
In view of the‘maxiﬁalitY”Propertyof'the fine uniformity u*,
V is a_SUrrOuﬁding for X if;and‘qnly'if‘Veu*. Thus V is a
surrounding for X if and only if there exists a continuous

pseudometric p on XXX such that Wp<:V'where |

0
Wo={ (x,y) eXxX| o (x,y)<1}.
Before introducing the concept of complete uniformity we

need some terminology concerning nets. A net'{Sn, neD} is

eventually in a subset A of X if there exists an meD such that

SneA for all n>m. With this in mind we say that a net{Sn,neD}

in the topological space (X,1) converges to a point seX if

M 15




:{Sn,'neD} is eventually in eaéh neighborhdod of s. A net
'{Sn, neD} in the uniform space (X,u) is a Cauchy net if and
only if for each Ueu there is an meD such that (Sk,Sn)eU for

all k,nzm; Evidently this is equivalent to requiring that
the net'{ﬂsk,sn), (k,n)erD} is eventually in each member of

some base foryu. If (X:U)'is a uniform space then we say that

(X,u) is complete if and only if every Cauchy net in X conver-

ges to a point in X.

I1I

A partition of unity on a space X is a féﬁily F of con-
tinuous functions f:X - R'+~,'Rf+ the non-negative real numbers,
such that Ejf(x)l feF}:l for each xeX and all but a finite
_humbef.ofimembers¢of F vanish on some neighborhocod of each
that the family of supports of F i%a.locallyfinite covering
of X. 1In connectioﬁ with locally finite coverings and parti-
tions of unity, normal spaces have a characteristic property.
If ¢ is a covering of the space X and }{f| feF}=1 is a parti-
tion of unity on X then we say that F is subordinate to ¢ 1if
for each feF, O(f)c U for some Uer. Then, for each locally
finite covering ¢ of a norﬁal space X there is a partitioﬁ of
unity which is subordinate to rz. Before proving this We re-

quire the following lemma:

Lemma 3.1l: If ¢ is a locally finite open covering of a normal

space X then for each Ueg there is an open set G(U) such that

C1,G(U)c U and {G(U) | Uec} is a covering of X.

10




Proof: We employ Zorn's Lemma in the following manner. Let
F bé a set function'défined on a subfamily of ;'éatisfying
thepropérties:

i@) }Ddeomain df F is a subfamily of tc.

ii.) F(U) is an open set such that
| ClX{‘-F(U)}CU for each UeDF.

iii.) UI{F(U)| UeD JWU{V| Ver, V£D}=X.

Consider the set Y of all such set functions F. V is a
fﬁOn-empty collection; for choose@any Ve¥ and néte that thg
.set A=X-t}{U| Ue¥, U#V} is a closed set and ACV. If A=¢
then let F be the set function defined only on V such that
F(V)=¢. Clearly F satisfies the above three properties. If
A#® then there is a continuous function g such that g:I[onj
,X-V and g=0 on A. (The existence of g follows from theé norm-
| ality of X and Urysohn's Lemma.) Let F(V)={xeV| g(x)<l/2}.
Then ClX{F(V)} <V, Dpct, and property iii.) 1s also satis-
fied since A€F (V).

The collection ¥ is partially oédered by the obvious
cD

relation: F<G if and only if D and GlDF=F, Let 9 be

F G
a linearly ordered subset of Y. Define a new set function pt
in the following way. Let DF+= {DF| FeQ} and for'UeDF+ define
F+(U)=l){F(U)J FeQ}. It is clear t’hatF:‘+ satisfies properties
i.) and iii.) above. In addition F+(U) is open and since

is a-locally-finite collection Clx{F+(U)}=ClXL}{F(U)|FeQ}=
U{ClX;F(U)| FeQl&€U. Hence ‘r"iF+ for each FeQ. Applying

- Zorn's Lemma we denote the maximal element of ¥ by G, and we

further assert that DG=§. Assume by way of contradiction that

;-DG#¢ and let Vec-DG. Let H be the set function'whose domain

11
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DH=DGLJ{V}, H(U)=G(U) for UeDG and define H(V):'in this way:

Let A=X-{U{G(U) | UeD } U U {W| Wet, WDy, WAVY}. If A=g

let H(V)=¢; We then have H>G which is a contradiction. Now
suppose A#9d. Then A is a closed set and A€V. Let h be the
function which is 0 on A and 1 on X-V. The existence of h

1s again guaranteed by Urysohn's Lemma. Now we set H (V)=

{xeX| h(x)<1/2} and note that AcCH(V). We also have

ClX{H (V) }&V so that only property iii) remalns to be veri-

fied. To prove this we observe that:

U{H(D) | UeD,} U U {Weg| Wp‘D_H}=H(V) V U {G(U) ] UeD, U
UlWez| WeDy, WAV}
DAU(i(—A)=X.
Hence we have.HeW’and-HiG. But G is maximal, and therefore
we must have c—DG=¢ and LJ{G(U)| Uec}=X.

Furnished with this lemma we are now prepared to prove:

Theorem‘3.2; If ¢ is a locally finite open covering of the
normal space X then there is a partition of unity subordinate
to t. |

Proof: Applying‘Lemma 3.1 choose for each Ué:r an open set

G(U)e U such that~ClX{G(U)}<:U and {G(U)| Uez} is a covering

¥ | e :
of X. For each Uer there is a continuous function f.. on X

U
such that fU=l on ClX{G(U)} and fU=O on X-U. Furthermore,

for each xeX there exists a neighborhood V(x) such that for
each yeV(x), fU(y)=O for all but a finite number of Uec.

Hence z{fU(x)erg}lis bounded for each xeX. For Uer let

gU= —_— Since.fU is continuous 94 is clearly

Z{fUI UFC}
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continuous for each Uez and furthermore Z{gU(x)l Ueg}=1 for

each xeX. {f | Uez} has the property that all but a finite

number vanish on some neighborhood of each point of X and SO

9y also has this same property. 'Thusffgul Uez} is the de--

sired partition of unity.
From the proof of this theorem we observe that the par-
tition of unity can actually be chosen so that the cardinality

of its indexing set is the same agr'the cardinality of the

covering .
IV

If u is an open covering of the space X then we say that
a collection ;. of subsets of X is a locally finite refinement
of y if:

i.) F or each Ver there is a Ueu such that
Ve U.

ii.) For each xeX there is a nelghborhood
O(x) such that O(x) meets at most a
finite number of Vert.
iii.)  YLV] Verl=X.
A space X is said to be paracompact;ifﬁevery-ogen'eov—
ering of X has an open locally finite réfinement. Note that
we do not require X to be Hausdorff or reqgular but the fol-

lowing result remains valid:

Theorem 4.1: Every pseudometrizéblEESpaGe X is paracompact.

Before proceeding to prove this theorem we need some
|

preliminary definitions. If (X,p) is a pseudometric space

and A,B are subsets of X then o (A,B)=inf{p (x,y) | xeA, yeB}

13
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is called the distance between the sets A ang B. TIf one of

‘the'sets, for example A, ¢onsists=of a single point {x} then

p(A,B)=p(x,B) is called the distance between the point x and
the set B. Note'that 1f xeB then p (x,B)=0 and i1f B is cldsed
and x#£B then p(x,B)>0. For any set ECX let_Bn(E)={xeX| |
p(x,E)<1/2n}. Bn(E)_is an open;set and E<:B£(E). If E={x}
then Bn(E)=Bn$x) is just the ball of radius 1/2n aboﬁt'x‘

If we define-cn(E)={xeX| B (X)< E} then it is easy to see
that C;n :(:E)=X-Bn(X-E) . Cn (E) is a closed set and Crl (E)C E.

We also have Bh{Cn(E)}c:E and ifm>n.ClX{Bm(E)}<:Bn(E). Let
xeC (E) and yeX-E. Then o (x,v)>1/2" from the definition of
Cn(E)'andvhence p(CnKE),X-E)i;/Zn. We now prove Theorem 4.1

in the following slightly altered form:

Theorem 4.2: For eévery open covering of a pseudometrizable

Space (X,1) there is an. open locally finitezcovering which
refines if.

Proof: Let o béwa-pseudOmetric.on'X*which:gives the topolo-
gy t. Suppose {Ga}aeA is ény open covering of_X'and assume

that A has been well-ordered. For €ach integer n define

.En=Cn(G -U EV) for each aeA. .Foreach;point xeX let ¢=

o o B<a B

min{q| XeG }. Since G, 1s open there is an integer n such

n _yYen :
that Bn(x)c:Gg. If xx_‘EE, then Bn(x) <tGg B<£EB' Since

| n n
Bn (x) G_g' we have Bn(x) N B\!EEB#?" Thus Bn(x)f\Ea;ﬂD for

Some o<¢ and we have for this a,
n, __ _ n _ n
XeB (E ) Bn{Cn(Ga B‘-!OLEB)}CGOL BLZ];IBCGOL.

Bgt this is a contradiction since f=min{a| xeGa}. Hence we

14




must have erg and'{EE] o€EA, neN+}mis a covering of X.

+ : n__. n |
| For each neN and aceA we define Fa-ClX{Bn+3(Ea)} and |
n_ n : o n n : .
Ga—Bn+2(Ea)2m It is clear that FaCZGa. We wish to show flrst
of all that p(FZ,Fg)il/2n+l whenever a#8. To do this it is

sufficient to show that p(En,En)_>_l/2n whenever o#B.. Now

| n, PP n _ n_ , -n o _
,Bn(EB)—Bn{Cn(GB ayBEa)}CGB ag E,C X-E_ for a<g. Hence

B
Bn(EI;)nE2=¢ for all B and for all a<B. Thus we have

S(EE,EE) g_l/Zn whenever o#8. - Therefore p (F',F7) 31/2:“1' and
if we setFn=(éFn then Fnhis*a closed set for each n.

We are now prepared to construct the refinement of

"{Ga[ aeA}. Let V€=GnF b’Fk:for each neN” and for each aeA.

o k<n

Vz 1s an open set for each pair n,a.
. ) . n. + o o o
Let xe¢X. Then since {FglineN r acA} is a covering of X
there exists a least integer n such that xng for .some geA.

We have

xeF- U UpKph_
B " a

k n k_ n
ok Y Y F e G - Yre=vl,

k<n a k<n

'Hence.{V2| neN', acA} is an open covering of X. It is clear

from the construction of{VET,deA, neN+} that this collection

1s a refinement of {Gal a€A}. Thus we have only to show that

'the,cOllection.ﬂvgl neN+; aeA} is locally finite.

Let xeX and suppose XeE". Then Pn+3(x)c:Bn+3(Ea)<:

- Nng__n __n | | _ 3
Clx{Bny3 (B )=F € F".  Thus B . (x)n v =¢ for all k>n and for
: n _n n+1 Co
all aeA. Since p(Fa,FB);l/Z , for a fixed kin,Bn+3(x) can
intersect at most one Gt and consequently can intersect at
most one VE. We now have a neighborhood of x which intersects

at most a finite number of Vt's. Hence'{VEI neN+, aeA} is




locally finite and we are finished. | " T
Now since every open coVering of a pseudometrizable

space X has an open locally finite refinement we have shown

that X is paracompact.

A compactification of éspace X is a pair (Y,f) where
f:X > Y is an imbedding, Y is dbmpact and CIY{f(X)}=Y. By
an imbeddi?g f:X » Y'wé.shall mean a continuous function
such that 1f £(X) is given the relative topology of Y then
£:X > f(X) is a hdmegmqrphism; We aréain£erested only‘in
that largeStwcémp&CtificatiGn of a Tychonoff space X, the
Stone-tech compactification. Let Q=[0,1] and let F(X) be
the collection of all continuous functions f:X - Q. If
we let A=cardinality of F(X) thentﬂ(fd){x > QA is a contin-

uous mapping where m is the usual evaluation mapping. We

note that QA is compact, Héusdorff'and-regular; The S$tone-

Lech compactification is (B(X),nfa)’Whére B(X)=C1(wfd[X})-

8(X) is evidently compact, Hausdorff and, since regularity

is hereditary, B(X) is regular. We nOW'state*Without proof

a theorem that enables us to say that among all of the com-
pactifications of X B(X) is the largest in the following

sense:

g

Theorem 5.1: If X is a Tychonoff space and f:X - Y is a

continuous function where Y is a compact Hausdorff space,

g

. % | o
then there is a continuous function f :B(X) > Y such that

*
f |x=f.

16
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In particular if (Y,h) is ‘any other compactification‘of

: o _ %* k
X then there is a continuous function h :8(X) + Y such that

. “
|X=h; that is, B(X) is' the largest compactification of X.
VI

We now begin the main body of our discussion with some
results relating the paracompactness of a Tychonoff space X

to B(X)

Theorem 6.1: The topological space X is paracompact if and

only if for eachwcompact set Fc:B(X)-X"there exists a locally
finite open covering {U } of X such that ClB(X)U NF=¢ for
~each 2. |
Proof: Suppose first of all that.X'is,paracompaCt and let
F& B (X)-X be any compact set. Since 8(X) is regular there is
for each xeX a neigthrhoOdAuz,open in B(X), siich that er*"
and ClB(X)U NF=0¢, Fbr-X€XQlet&U'=U*le {U } is now an
open coverlng of X and since X is baracompact there is an
:open:locallyflnlteArefInement~{Ux} of {U'}. For each A
there is ~an XeX such that ClB(X) AC:ClB(X)U q:ClB(X) ;
Hence ClB(X)U N F=% for each ).

To prove the sufficiencyﬂlet {Ua}.be‘any*op€n'CQVering
of X. For each o fix one Open‘set'U: in B(X) such that
U:n X=U . Let F =B(X) -U: for each o and let F= Q F . F is
closed in g(X) for each g and hence F is c¢losed and compact;
furthermore, FC B (X)-X. By‘hchfhesisthere is a locally
finite open covering {O } of X such that C1 (X)O NF=¢ for

each A. Therefore ClB(X)OACU U for each A and, since

17




ClB(X) ) is compact there is a finite subcollectlon {U }
m

such that ClB(X) < L/U‘ for each A, hence we also have

m N m
O,& U U, . Since U A X=U. we have O, &< J U, for each ). Now
A 1 k k k A 1 k

| - m
let HA,k=Ukn O, k=l,:.._.,m,. for each A. Then OA:tl} Hk,k and

H, 4 1s open for each A and for each k. Furthermore X={J H
i A,k

and by the construction {HA k} is a locally finite reflnement
of fUa}.

If for any set V XxX we deflne U;Int Vv

B (X) %8 (X) "1 8 (X) X8 (X)
we are led to the follOW1ng

Theorem 6.2: Let F&CB(X)-X be any compact set:. If there is

a surrounding V of X such that VA A =%, then there exists a

locally finite open covering {U } of X such that C1 U”1F=¢.

B (X)

Proof: Since V is a surrounding fbr X;therewexists-a;(topd’
logically) weaker pseudometric 4 on X such ‘that

.. .wnc W _.C .. < W,CV where ,

W o={(x,y)eXxX| d(x,y)<1/2"}.

Let u be the uniformity generated by d. Then T is the
pseudometric‘tOPOlogy'on)X generated by d, so (X,Tu) is para-
compact. <Consider the covering ofleby'{W3[x]| xeX}. There
is a locally finite open covering-{U.} which-refines'{w [x]}
in (X, ) and ClB(X)UA,\F_¢ for each A. For suppose by way

of contradlctlon that there is an element peCl U'fIF for

B (X)
some A. Then U CW [x ] for some erX since {U } refines

'{W3[x]}. Hence p is an accumulation point of W3[x0]. Let

18




oty

dx :dlxoxx. dx (p) < 1/23< 1/22 and there is a neighborhood
0 0

* | ' _ %
O of p open in g(X) such that dx (y) < 1/22 for each yec0=0n X.
N 0 J

Hence 0x0€ W,={(x,y)eXxX| d(x,y)<1/2}. But 00 NapCiy N, c
vllAF=¢ and this clearly cannot happen. Therefore we must
have ClB(X) AITF—@ for each A and (v, } is the desired cover-
ing.

i

Corollary: Let Feg(X)-X be any compact set. If there exists

a surroundlng V of X such that W/\A =% then X is paracompact.
Proof: If such a surrounding, V, exists then we may find a

locally finite open cover_{UA} of X such that.Cl N F=¢

8 (X) U
for each A. X is paracompact by Theorem 6.1.

which are equivalent to paracompactness in Tychonoff spaces.

In a normal space X we have shown that for any locally*finite

coverlng {U,} there is a partition of unity o= {9, |Z¢ =1} sub-
A

ordinate to the covering {U }

Theorem 6.3: In a Tychonoff space X theAfolIOWiﬁg are

equivalent:

i.) X is paracompact.

1i.) For each compact set FCB(X)-X, there is a
locally finite chering‘{UA} of‘XASuch.that
C1 B(X)U N F=¢ for each A..’

iii.) For each compact set FCB(X) -X, there is a
partition of unity ®={¢ | Z¢A—l} such that
Ccl B(X){O(¢ ) }NF=0% for each X.

> | 19
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iv.) PFor each compact set F€ B (X)-X there is a

surrounding V such that V11AF=¢.
"V.) XXB(X) is normal.
vi.) If G=XXC is a closed subset of Xx8(X) such

that GI1AX=® then G and A, are separated

X
*
by some member of C (XXB(X)).

Proof: i.) implies ii.). This is the necessary condition

of Theorem 6.1.

?

ii.) implies iii.). Let F&€B(X)-X be any compact set and let

{u_} be a locally finite covering of X such that Cl U _NF=2

8 (X)

for each a. ‘Since'{Ua} is a locally finite covering there is
a partition of unity @={¢X[ 2¢A=l}_on X subordinate to'{Ua}.
X

Hence for each X, ClB (X) {O( ch) INFE€C1 B‘ (X) Ua N F= # for -some o.

iii.) implies iv.). Let F&€B8(X)-X be any compact set and

suppose that @=f¢x1 2¢ =1} is a partition of unity on X such

that Cly o,

{0(¢,) }N F=¢ for each A. Let d(xyy)=][¢, (x)=¢,(¥) |

A

and set Vn={(x,y)eXxX| d(x,y)<1/2n}. Then V ,is d surrounding

1

for X and we need only show that %i/lA =6, Suppose on the

F
contrary that (p,p)e%i/\AF. Then since Vi is open in

| x o
B(X)XB(X) there is a neighborhood U of p open in B(X) such

* * * L e W e . .
that U xU & v. . Choose xeU=U A X. At most finitely many by

1

say ¢x '¢A ""’¢X , do not vanish at x. ;Forﬁk=l,2,...,n let

1, "2

- | n

Hk={yeX| ¢y (y)>0}. If vA\J Hy then we have the following:

a(x,y)=]|o, (x)=0, (¥) [=)¢, (x) + }¢,(y)>1 and y£U. Hence
| A7 07 17k A
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peC 1

k
since ClB(Xj{O(¢A)}leE@ and we havé a contradiction. There-

fore we must have Ql/IAF=¢ and Vy is the desired surrounding.

iv.) implies i.). This is the content of the Corollary to

Theorem 6.2.

i.) implies v.). If X is paracompact then Xxg8(X) is para-

compact hence normal.

v.) implies vi.). Suppose XXB(X) is hormal‘aﬂd let G=XxC be
a closed subset of XXBiX) such that GI\AX=®. Since G and
A, are two closed disjoint subsets of XxB(X) by Uryssohn's
Lemma there is an feC*(XxB(X)) such that f£(G)=0 and f(Ax¥=l§

vi.) implies iii.). Let C be any compact set in 8(X)-X and
1et_FcC*(XXB(X)) be‘suchthat.F(xx€)=l.éndfF(AX)=0- Let*Ex
be the restriction of F to {x}xXB(X) and put
d(x,y)=|| Fy(p)-F (p) | l-pggzzx) [Fy(@)-F ()], 4 is

clearly a pseudometric on X.

Let 1 be the induced tépdlbgy of d. The topological
space (X,1) is paracompact. Let.uxéfyexl d(x,y)<1/2} and
consider the coVeringﬁ{Ux{;xeX}. Let fOX}Ibe a locally

S

finite refinement of'{ka xeX} and let @ﬁ{¢kl_2¢x=l} be a
KA )\ EAM

partition of unity on X subcrdihate‘to'{ox}. If d(%,y)<1/2
then lFx(y)]=|Fx(y)—Fy(y)|<l/2 and therefore Fx(p)il/z for

each peCl But Fx(p)=F(x,p)=l for each peC and hence

B(X)UX'

U N C=% for each xeX. Thus Cl {O(¢A)}I)C-® for each

B(X) B (X)

21




Asince ¢ is subordinate to {OX} and this covering is in turn

a refinement of {Ux}.

VII

A t0pologicai space X is said to be topologically complete
if there is a uniformity for X relative to which X is complete.
fIfE{Va} is a uniformity for X in which X is complete then this

is equivalent to Ax= Q Va. Hence the uniform space {X;{Va}}
- N Ve(B(X)XB(X) ) .

is complete if and only if Ay= 1) .

Theorem 7.1: For a Tychonoff space X the following are
equivalent: W !

i.) X is topologically complete.

ii.) For each point peg(X)-X there is a locally
finite covering {UX}‘suchfthat:pgclB(X)Uk
for each ). |

iii.) For each point peB (X)=X there is a par-

| tition.ofﬁunity‘®5{¢xrg¢k=l} such that
P£CL, 4 10(4,)} for each 1.

iv.) For each point pef(X)-X there is a sur-
£0unding V’such that (p,p)¢V.

V.) For each point peg(X) if (Xxp) A A =0 then

AXp and A, are separated by some member of
C(XXB(X)) .
Proof: Let'{vq} be a uniformity on X relative to which X is

=N V" (B(X)XB(X)). We wish to show first

complete; that is, Ay=N vV .
v

that i.) implies ii.). For each peB (X)-X there is a Va suéh

that (p,p)ﬂvz(s(x)xe(x)). Let d be a pseudometric on X such

that d(x,y)=1 whenever (x,y)¢Vd and let t dethe~the‘induced
| 22 “ .




4

topology. Then (X,1) is paracompact. Consider the open cov-
ering of X by'{le xXeX} where Uxﬁ{yexl d(x,y)<1/22} and let

{OA} be a locally finite open refinement of {Ux}. p;fClB(X)Ux

for each xeX. For“suppose peClB(X)Ux for some xeX. Then
for any neighborhood U* of p open in R(X), d(x,y)<l/22 for'
some yeU*Mx. Let d, (y)=d(x,y) and let d; be the extension
of d (y) over B(X). Then a, (p)<.1/2%<1/2, hence there is a

*
neighborhood W of p open in B(X) such that

* % %* * |
[W xW ] A (XxXX)=[W A X] x ]W A X]C Vafor each a.
Thus (p,ngS(B(X)XB(X)) but this is a contradiction. There-

fore we must have pgCl 0, for each VR | o

B (X)

ii,) implies iii.). Shppo$efo&} is 4 locally finite cover-

ing of X with the property that pgCl for each ) and for

B.(X) 2
any peB(X)-X. Then since X is normal we may find a partition
Z¢x=1}“WhiCh‘iSVSubordinate o {Ux}~ That

A ) "
prCLl, x) {0(¢,)} for each X and for any peB(X)-X follows

of unity-¢={¢xl

immediately.

1ii.) implies iwv.). _LétwpeB(X)-X and SQPPQSe¥¢£f¢x[ Xﬁxil}

is a partition of unity on X such that pfCl, ) {0(4,)} for

each A. Let d be defined by d(x,y)=) | 0, (x)=¢, (y)| for

(x,y) eXxX and let5Vhé{(x,y)eXxX| d(x,y)<l/2n?. It is clear

that Vl is a surrounding. Furthermore, (p,p)¢§l. :

iv.) implies i.). For each point peB(X)-X there is a surround-
ing V such that (p,p)i%. Letf{Va} be the collection of all

such surroundings. '{X;{Va}};is a uniform space and 13 Va=Ax,
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N

Hence X is topologically complete.

iii.) implies v,). For each point peB (X)-X assume thete is a
partition of unity ¢={¢ | Z¢A=l} such that pﬂClB(x){O(¢A)}

for each A. Let d(x,y)= Z|¢A(x)-¢x(y)| for (x,y)eXxX and let
a” be the continuous exten51on of d over Xx8(X). Let peB(X)-X

then (Xxp)Aa.=e. d *~1 on Xxp and d*=0 on 2., 4" eC (XXB (X)) .

Xl

v.) implies iii.). If peB(X) and (XxP)liAX=® then peB (X)-X.

Let FeC(XXB (X)) be such that F=1 on XXp and F=0 on AX' Let

FX=F|'{x}xB(X) and set d(x,y)=|| F (p)-F (p) ||

=sup |F, (p)-F_(p)|.
| | | peB (X) ~
d is a pseudometric on X. Let T4 be the topolch induced by

d. Then (X,Td) is paxécompact. Consider a covering of X by

AU | xeX} where_Ux={yeX| d(x,y)<1/2} and let {O_} be a local-

ly finite open refinement of {le-xéX}. There is a partition

~ of unity ¢={¢, | Z¢x=1} on X subordinate to {O_} and it is

A |
clear that pgCl, ., {0(¢,)} for each Xx.

B (X)

VIII

We shall say that a space X is real compact if it is
complete relative to the weakest uniformity fom X with respect
to which every continuous function on X is uniformly contin-
uous. It is not difficult to show that this uniformity is
generated by sets of the fOrm Vf={(X,Y)sXXX| | £(x)-£f(y) |<}for
feC(X).(Cf. [“7]). Hence X 1is réal-compact if and only if

A= N V;(B(X)XB(X) ) , and we have the following theorem:
f

Theorem 8.1: Let X be a Tychonoff space. Then the following
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are equivalent:

i.) X is real compact.

ii.) For each point peB(X)-X there is a closed
GG set, C, of B(X) such that peCCB(—X)-X.

iii.) ‘For*eaCH point peB(X)-X there is a -
countable Star-fiﬁite partition of unity

§={¢n1'£¢=1}.dn.x such that Pfgla(xy@(%n)

for each n.

,-4

o x | o
Proof: Let R be the one-point compactification of R, the
| | N *
real numbers. Then for any feC(X) there is an f eC(B(X))
- such that f.LX=f; Lét’Xf={peB(X)1 f (p)eR} and let the com-

Plementary setth=B(X)-X For each feC(X) let

£
Vf={(x,y)eXXX| lf(x)-f(y)|<l}.

c (B(X)XB (X))

We wish to show that A= N VE

If“xgxffhen there
f -

1s a neighborhood U of % open in 8(X) such that | £(x)-£(y) | <1
*

for each yeU . Hence (XJX)EVé for each xeX.. Conversely,

‘ | | R | . o
1if ple then for every neighborhood 0 of p open in g(X),
there are points X,yeO0 such that If(x)—f(y)|>l and hence

| 5 , €

We have A.Xf_AB (X)f\ Vf- But anC AB(X) and therefore X

is real compact if and only if X= A X

£ f

£° S
-Sétpof’B(X), CfCZB(X)-X and every cldsedﬁGS,set'in B(X)-X is

a Cy for some feC(X). Hence we have proved that i.) and ii.)

are equivalent.

et

1i.) implies iii.). If feC(X) is such that Z(f )=CCB(X)-X

_25




then let

n+l/n(x-1/n) + 1/n2 if 1/n+lix§}/n
hn(x)= -(n-1) /n(x~1/n) + l/n2 if 1/n<x<1l/n-1

0 otherwise

{

.(l

.hﬁ is' a continuous function on R, the real numbers. ILet
g9,=h °f; then 9, 18 continuous. Now set ¢n‘ Jn . Note
19,
n

that'ZgniZ 1/n2<w_ By thissconStructian_m={¢h} Z¢ﬁ=l} is a
. n! L%,

R

countable star-finite partition of unity and clearly C/\O(¢n)=¢

for each n.

1ii.) implies ii.). If e={g | L#,=1} is a countable star-

finite partition of unity on X such that l {O(¢ )} for

PECL %)

each n and for peg (X)-X then f= Z¢ /2 s a continuous function

on X and peZ(f )& B (X)-X.
IX

It is known that in a regular space X the property of being
Lindeldf is equivalent to the following: Every open covering

of X has has a c¢ountable star-finite opén‘refinement (CE. [4])

Theorem 9.1: ©Let B(X) be any compactification of X. Then
the following are equivalent: |

i.) X is Lindelsf.
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ii.) For each compact set C&€B(X)-X there
% | "is a countable star-flnlte partition

of unity @-{¢ | X¢n=l} on X such that
n

| C/)ClB(X){O(¢n)}=¢ for each n.

iii.) For each compact set C¢:B(X)-X there
is a closed GG set F of B(X) such
that CCFE€ B (X)-X.

iv.) For each compaqt set C&€&B(X)-X there

is a COuntableﬁfamily'{Gn} of compact

subsets of B(X) such that G_ANC=¢ for

tn

each n and Gn:> X.
1

Proof: i.) implies ii.). Suppose X is a Lindelsf space and
let C€B(X)-X be any -c‘:ompa?c:t- set. For each xeX let U ~be a

covering of~X;by {le xeX}. Since X is Lindelsf there is a

countable star-finite refinement {W_ } of {U | xeX}. Let

o=1{ ¢ n| Z¢n=l} be a partition of unity on X which is subordinate

to {W }. We can do this since X is normal. Then clearly

Cl {O(¢ )}/\ c=$ for each n.

B (X)

ii.) implies iii.). Let £ eC (B(X)) be such that 0< £ <1, f‘ﬁ‘=-07‘ |

on C, and f —l on ClB(X){O(¢ ). Set f—gfn/Z . Z(f) is a

closed Gy set of B(X) and furthermore CeZz(f)€ B(X) -X.

iii.) implies iv.). Note that the complement of a G& set. in

';B(x) is an Fo set. Now if for C&B(X)-X there is;arGS set G
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in B(X) such that CCGEB(X)-X, then B(X)-G2X and B (X)-G= UGn
1

where Gn is closed in B(X) and hence compact for each n.

iv.) implies i.). Let {Ua} be any open covering of X and let
‘Ui be the proper extension of Ua over B(X) for each o. Let

C=B (X) - UIUE. Then C is a closed subset of B(X)=-X. If there
- .

exists a collection {Gn} of compact subsets of B(X) such that

Gnn C=¢ for each n and UGﬁ:) X, then each Gn is covered by a
o N

finite number of UE'S’ say {U§¥},,for'each n. Hence LjGn 1is

covered by a countable subfamily of,{Uz}. Therefore we have

X€ UUS and hence X€U U  and X is Lindelsf.
1 %k 1 %k

A metric space Xzis-called.metrically complete_if given
any Cauchy sequence-{xh} in X, there exists<ajpointfx¢X such
that.%ig X, =X. A topological space is said to be completely
metrizable if it is homeomorphiC'with‘a me£rically complete

space. We now prove the well-known result:

in B(X) if and

Theorem 10.1: A metric space (X,p) is a'Ga
oﬁly if it is:completely metrizable.

Proof: We may suppose first of all that p(x,y)<l for every
pair (x,y)eXxX for if not then we may replace p by the equl-

valent metric pl-mln(l p(x,y)). For any erX- p(xo,y) is a

bounded contlnuous function on X hence there exists a con-
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(X)=p(x6,x) for

tinuous function y_ eC(B(X)) such that P
%0 %0 |
each xeX. It is clear that p (X,¥) < wx(z) + \py(z) for x,veX,

and for any zeB(X).

For XqeX and n=1,2,... let 'I-‘7(-’xo;,inf).‘ié:{xeB(X) | Ve (x)-él/h }eo
, 0

I'(x,,n) is an open subset of g(X) for each X, X and for every

n=1,2,... . Thus Gn=x(:.éx I'(x,,n) is open in B(X). X€G for

each n and hence X€ { G . Let ye{ G . Then there exist
1l - 1

points X X% eX such that o (X /X )< wxn('y’) + q;xm (y) <1/n+1/m.

Therefore {x)[ n=1,2,...} is a Cauchy sequence in X and there

);

is some point xex such that %}){3 X =X. The claim is that x=y.
Suppose on the contrary that x#y. Then there exist open sets
U,V of B(X) such-that xeU, yeV and UNV=¢. Now xeUANX hence
there is én integer n>0 such that 1f p(x,z)<2/n then z<UNX.
If we set W={zeB(X)| xpr(z-), <2/n} then W is open in g(X) and
XAWe U. Now si;lce X 1s dense in B(X) we have,

UcAB (X) -V,

WeCl (XNAW)< Cl

B (X) B (X)
hence WANV=¢. For each zeV we have wx'(z);}iz./,n.. In particular
Vv, (¥)>2/n, hence for each zeX we have

o(x,2)< o (x,x ) + o (x ,2) < 1/n-+-a(xn,z)

and therefore,

;px;(}z); < xpx (z) + 1/n for each zeg(X). But then we ﬁh.,a‘vei,-
| n

wx(y)i by (y) + l/n,‘ <1l/n + 1/n =2/n and this is a

n
, 00 :
- contradiction. Thus we must have x=y and X={J G . X is then
. | 1 |
a G 5 in B(X).and iz o ST
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s in B(X). B(X)-X=() F. where F_ is
" s o 7 “n n
closed in B(X). If B(X)-X=¢ then X=g(X) and X is a compact

Now suppose X is a G

“metric space and is metrically complete. Thus we may assume
X#8 (X) . For any xeX, p(x,y) is a bounded continuous function
on X and hence has a continuous extension by to B(X). If x#y
"Athen there exist open sets U,V of B(X) such that xeU, yeV and
UNV=¢. There exists an ¢>0 suchhthat p(x,2) <e for evVery
zeUNX. Then p(x,z)<e for every zeClB(X)(UI\X) and since -

Uc B (X)=-V= ClB(X)(B(X)-V) we have Cl UCRB(X)-V. Thus

B (X)

Thus yeg (X)-C1l U and WX(Y)Z€° Thus for every yeg(X)

B (X)
wx(y)>0 if x#y. Since F is closed in B (X), wx(y) attains a
minimum value in F_, say o (x,F ). Since xeX, F NX=¢ we have
o(x,Fn)>0. |

If x,yeX then p(x,2)< p(X,y) + p(y,2z) for every zeX and

“hence y_(2z)< o (x,y) + ¥, (z) for every zeg(X). Thus,

o(x,F n) <P (X,Y) + oy, Fn) and similar ly

S

U(Y'Fn)i o(x,y) + o(x,Fn). Therefore,

I Y (xan) =0 (Y'Fn) |_<_ p (X IY)-
For x;yeX set fn(x,y)= p(x,y)+o(x,Fn)+o(y,Fn) >0 and

9, (xyy)=p (X,¥) DO=O(X1Y) + ) 2~ h gn(x,y). Ofrgn_i; so the
£ (x:y) 1 o

series converges. It is cleax;po(x,y)=p(y,x) and po(x,x)=0.
If x#y then po(x,y)>6. From the definition of gn(x,z) it
follows that

9, (x,2)< _p(xX,y) + po(y,2) . _
p(x,y) + p(y,z) + oCx,Eh) +‘o(z,Fn)
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Also since a{y,Fn)i.p(x,y) + o(x,F)

and o(Y,F )< o (y,z) + o(z,F ) we have

(-

_ . . o (X,¥)+o (x,F ) +o(y,F )
PX,y) + o(y,z) + o(x,F) + o(z,F )> |

D(YIZ)+U(YIFH)+0(ZIFn)
(
Thus gn(x,z)i_gn(x,y) + gn(y,z) and evidently

po(xlz)f_ po (XIY) + po(y"Iz).' |

We have thus shown that Pg 1s a distance function for X.

We wish to prove that o and;p;0 are equivalent metrics. Let

'{xn} be a Cauchy'sequencelconverging to x in'the'metric'po,

Now let ¢>0 and choose an integer k>0 such that 1Z2k+l<e.
Then for all n=1,2

F & oo

‘00! 0

Z 27" gi(XHJX)E‘ z: | 2él<a/2 and hence

k. |

P (X, rX)< P (X 1X) +ff _ -ww
p(xn'x)+?(X'Fi)+°(xani)

1=1

k.
elxx) + 7 27h e (x,,x) + e/,
) i=1

Slnce.%%g p(xn,X)=0¢

5~ D@anx)

It~

e

=0 sa.there
i

! D(an%)+0(eri)

exists an integer p such that for n>p,

k,-i o (x_,x) < . [ s
0<=)y 2~ n' < ¢/2. We then have
i=1 |

oy o (X /X)+a(x,F,)
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since ¢>0 is arbitrary. Thus we have shown that prpg are

equivalent metrics for X or that (X,p),(x,po)'are homeomorphic.

~We wish to show now that (X,po) is metrically complete.
Suppose'{xn} is a Cauéhy sequence in (X,po). We prove the
existence of a point xXeX such that %£§ pg(x,/X)=0 or equi-
valently %i& p(xn,x)=0.

Since B(X) is compact there exists a point xeg(X) such
that given any neighborhood U of x in’B(X), X €U for an in-
finite number of n. We will show that xeX which will complete
the proof. Suppose on the contrary that xeg(X)-X= O Fn.
~ Then there exists an integer k such that xeF,. Forls>0 there-

exists an integer'p>0:$pch that for n,m>p, p(Xn,Xm)ipo(xn,xm)<e

- then o(xn,ﬁ;) is the minimum value of ¢x (y) on Fk’ therefore
\ ) P n

O<o(xn,Fk)iwx (x). There exists a;neighborhood‘Vﬁ of x in
n | | |

B(X) such that wa (z) =y, (x) | <e¢ for every‘ZEVn and there is

an integer m . >p such that X eVn hence | by (%

(x) |,<€ y

or equivalently |p(x_,X
or equivalently lp( n’ m_ . n'*m_

hence {_, (x)<2e. Therefore o(x_,F, )<2¢ for n>p so we have
K n' -k

%&g o(xn,Fk)=0. Since {xh} is a ‘Cauchy sequence in CX,pO)

M

there exists an integer p>0 such that pO(Xn,XP)KZ-k-Q for

every n>p. We then have‘po(xn,xp)i Z_k gk(thxp)=

Z-k i P (Xn ’ XE)
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and therefore,

o -k+1 p(x s X)
po(xn,xp)z 2 | P

(xd,x ) + o(x ,Fk)
51n¢e o(xp ,F )< p(x ,x ) + o(x ,Fk)

Hence for each n>p;

0< p(xﬁ’fg) | < 2'k'2 and thus'

1)

péanXp)<0(xn,Fk). But lim O(XD,Fk)=0 and therefore

o (xn,xp) o(x ,F

%iﬂ D(Xn,xp)=0. There exists an-integer g>p such that for

Svery mrd p(xn'xp)<l/2.wx.(X)’ There is a neighborhood U of

x in 8(X) such that ¢  (z)> 1/2 v{y, (x) for any ztU. Hence
) p P

there exists an integer n>g such that x €U and we have

p(xn,xp)=wxp(xn)> 1/2 wxp(x). But this is a contradiction

ﬁince.xn + X in B(X). Hence we must have xeX and (X,oo)lis

metrically complete.

N\

As is evident, the properties which we have investigated
yield some very concise results. At the risk of appearing
repetitious let us review these conclusions in a different
light with an eye to finding somercdnnection between the
seemingly different properties.

In Theorem 6.3 we showed that_if.a Tychonoff space X'is

paracompact then we can, in a sense, separate X from any com--
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pact subset of B(X)-X; One method whereby we can agcomplish
this is by means of a locally finite covering. Although this
does not imply any definite measure concepts for the elements
of the covering it does give us an idea of just what is hap-
pening. The same is true for the other methods of separation,
i.e. by partitions of unity and by surroundings. Theorem 7.1
supplies the analogous conditions under which a Tychonoff
space will be topologically complete. This occurs when we
can separate X from points in g(X)-X in exactly the same way
as we separated compact subsets of g(X)-X from X in Theorem 6.3.
| -Thﬁs we make the obvious inference that a paracompact Tycho-
noff space is topologically complete.

AgainfTheorem'S.l repeats this same type of structure.
ol staﬁes that a Tychonoff space is real compact if we éan
separéte points in B(X)-X from X by means of closed Ga's'in
B(X). The parallel is Theorem;9.1 for the Lindeldf property.
One of the conditions is that X can be separated from compact
sﬁbsets of B(X)-X, where B(X) 1is now'any'compactification of

X, by means of closed G.'s in B(X). Hence if a space is Lin-

o
delof it is.real cbmpact@
Eech's theorem completely‘char§9terizes‘spaces which are

G;ls in B8(X); they are completely metrizable spaces. The

J
pattern is therefore clear except for one link which seems
to be lacking. We have as yet no equivalence condition for
X metric. It seems that there should be some analogue in the

case where X is metric in B(X). Tamano has studied this pro-

blem and given a solution which involves X in XXB (X) but this
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seems to be unsatisfactory. The question is: What property

| of X in B(X) will insure that X is metric?

35




B e JU VA —
IS St iy S I M O SR

BIBLIOGRAPHY

[1] éedh, Eduard. "On Bicompact Spaces" Annals of Math. (4)

Vol. 38 (1937) pp. 823 - 844.

[2] Kelley, J.L. General'Topdlogz New York: D. Van

| ]
Nostrand Co., Inc., 1955. | !

[3] Michael, Ernest. "A Note on Paracompact Spaces” Proc.

Amer. Math. Soc. (4) -(1953), pp.831 -
838. |
[4] Morita, K. "Star-finite Coverings and the Star-finite

Property" Mathematica Japonicae Vol. 1

(1948) pp. 60 - 68.

[5}] Pervin, W.J. Foundations of General Topology New York:
Academic Press 1964. -

[6] Tamano, Hisahiro. "On Paracompactness" Pacific J. Math.

10 (1960) pp. 1043 - 1047.

M .. "On Compactificatidns“"thMa;h,ﬁKgotq

Univ. 1-2 (1962) pp. 162 = 193. ;

8] _________ "some Properties of the Stone-Cech

Compactification"” Journal of the Math.

Soc. of Japan (1) Vol. 12 (1960) k

pPp-. 104 - 117.

36




VITA

Patrick J..Dempsey, Jr. was bornito Mary F. and Joseph 
P. Dempsey on November 15, 1942 in Norwood, Massachusetts.
He obtained his A.B. degree from Boston College in June of
1964 and for the past two years has held a Graduate Assist-

antship in the Department of Mathematics and Astronomy at

Lehigh University, while working for his M.S. degree.




	Lehigh University
	Lehigh Preserve
	1966

	Characterization of x in beta(x)
	Patrick Jr. J. Dempsey
	Recommended Citation


	tmp.1528232050.pdf.gxN8O

