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The devea:opment of the theory of the caloulus of

_ variations has from the 'beginnin.g heen closely connected

with that of the differenti al and integral calculus.

Tany Of the ‘methods of” the latser are applicable to the
. celculus of veriat:.ons.- This is. :Lllustrated in Chapter

1, where a fairly careful study 1is mede of one of the

1east complicated problems. of the oalculus of variationms,
The..genera..l..statement— of. the simplest type of"

problems dealt with in the calculus of variations is as

follows: We are given a function f(x,d,f') of three ar-

guments, which in the region of the arguments considered

g,

Ms_emm_dm@jimoijh&ﬁn&

and second.orders.® If in the function f. we replace &4 by
: .
= g(x) and”ﬁ? by the derivative y' = @' (x),

_is cont

a nmc tion

f becomes & function of x, and an integral of the form

.I<¢..>j.=f . fx,3) ax

becomes a definite nnmber depending on the behavior of

the function.y = @(x); that is, the integral is a func-
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BPon of the funct:.cn ﬂ(x) '.l.‘he fundehentel '_i;'irobleol of
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o Among all the I‘unctlons wm oh are d fined nco_nijln.

J'uous and possess contlnucus first e.zzé eeeond deriva=

tives in the. interval X, =




| "boundary valuee yl = ﬂ!(xl) and Jp = ﬂ!(xz) are pre-

»ecribed, to £ind that for which the integrel I(ﬁ)

 ~has. the least possible value.

Thie general problem ie investigated in eome

detail in Chapter 2. In that. che;pter., the . fact :i:e es-

tebliehed that the eolution ‘of Euler's 'a differential

equation

]

yy,y' 'yb"'try,."’f

ing function y = ¢(x).' In general it is not possible

e e )

to solve Euler's differential equetion explicitly in

terms of elementary functions. | However, in important

speeial cases and in fact in most ef the claesieal ex-

amples of the calculus of variations, the equation can

— —y

“be solved by means of integration. We briefly mention

First is the case in which the function f does

o

1Y

not contain the derivative y' = ff' explicitly; that 19’

£ = f(x,f). Here, Euler's differential equation is no

R ST A L F-USUPE L SNPRY SREPE P, PR MSMre

&
= equa f{x,¥) = 0, which is an impiicit definition
5 gf the galutiam 5 M‘ 3 z_}: e e :.,-'. O OV g e
— B = ; ~ |

 The eeeen‘&mepecial' case-is that in which the

R 4 unetiea £ does not een%&iw the ~funetion 7= gﬂex) X




plicitly, that ts, f = f(x,y ). Here, Euler*s d&fferen-r e

xy'
= ¢, where ¢ is an arbitrary constant of in-

%14l equation: becomes- g—f = -0y--which at-once gives tham - '_ S
- result fy' _ ‘ ' |
tegration. This last equation may be used to express y'

- as a function g(x,c) and we thus h_a;e the equation

froﬁx\;whi:ch' we Obtain,by a aimple integrati’on

rx . |
'Vy'=f-o g(t,c) dt + a. - |

¥

The third special case is that in which £ does z

not contain x explicitly; that is, £ = £(y,¥'). It can
be shown that in this case | |

= £(y,5') - ¥'25.(y,7")
is an inteéral of Euler's differential equation. The

solution of Buler's differential equation, again obtain-

ed by' ’integration, will be of-'the”fdrm x = h(y,c) + a,

Prire ety

which can be solved for y to obtain the function x,(x C,8).
This third and most important special case is 1il-
lustrated by the problem ‘of Chapter 3; namely, the prob-

a-—as e uge SEOECETHLINLNE - & sutfeve o vrreiutitd of mnimasees

A Q} -— : ;’wﬂ#«mr‘“m&mynw~m < \:Nv‘- cxgzemraaivazes o S—
PO gr@?& ﬁi{%vis;m; £ .’.‘;.1%“5“; e “ s 5




U — GHAPTER T w
DETERMIHATION OF THE SHORTEST ARC BETWEEN TWO POINTS

The problem of determining the shortest arc be-

tween two given points can serve as an illustration of -

the general theory and methods of the calculus of varia-
tions, though it is a specialized case. We shall deal
w:Lth this problem in this chapter, asaﬁming at the out- .

set that we know nothing about shortest distances or
straight lines. Y
Let the coordinates of the two points to be

joined by an arc of minimal length be (x;,y;) and (x,,7,).

These points will be identified by the numbers 1 and 2.

The equatioh of the minimal-length arc, in case s‘udh% an

arc exista, will be supposed to be of the form

The 1ength of ‘any such arc is given by the line
integral I

s P2

X B I PARERIW M w o v LN amNT  ~ A ~ g TRoa e _;.gg;:?g,..-.m R ™AD" Ay . e - gy WG
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é@}‘w‘a’w i Ay © S ' o= 3?1’*”3&&**%“ .
' Thus the length of the arc is -

(1.1) I =f12 f(y'T‘dx,




where. £(y* =1y f{% B

" The only restrictions to be placed on rhe fune-

‘Wtions y(x) to be considered are that, on the interval
”xl sX sx?_, y(x) ‘must. be contimzous and it must consist
of a finite number of arcs on each of which it is con-

tt_ngouaiy ""'differentia’oi:e* - *I'hatis, the ares y = y(x)

are required to be continuous and to be composed of a

| finite 'iiizlmber of ai'cs on each of which .thé tangent to
the arc turns continuously. Such an arec will _'be calied
.an "admissible are ", and thé function defining such an
- arc will be called an "admiseible function" The prob-

1em of finding the shortest distance between the two

points 1 and 2 is therefore the problem of finding that
admissible function which satisfies the end conditions

and which makes the integril (1’1) a minimum, -

Let it be aupposed that a partieulaz: are, which
we ahall denote by Eios with the equation y = g(x), 1is
known to be the solution arc. Let N(x) be an admissible
function satisfying the further condition that n(x;)
n(x:) 2.0, Then, . g, equation 2 W

ﬂii ‘*‘%‘ LIS i n Jf. "3‘ wgé’%,’* é&&&“{’x) g% WrT el e

where a is any arbitrary constant, represents s one-parg-

‘meter family of admissible arcs, each of which passes

»ﬂ
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throug,h the two. peints 1 and 2, and the soluion arc is _”

‘included in this family (that is, ‘when a = O)
For this function y = g(x) + ap(x), the vaiue

of the integral (1.1) taken aloﬁg any arc. dependa on a, |

and is therefore writtem

(1'32)_ ) I(a)_ fxi f(g' + a)z ) dx.

.Alo the solution arc E,, this integral has the value

1(0) _
From elementary calculus it is kmown that if a ' :

function I(a) has a minimum value at a = &, then I' (al) =

0, where I (a) denetes the derivative of I(a) with re-

|

|
spect to the argument a. Hence the assumption that a 4{
3 ‘ .

!

solution is furnished by y = g(x) implies that in equa-

tion (1.2) we must have I'(0) = O. 'Erom (1.2) we find

that I 5
. fxz - T | | j
X ' o ) - .
(1.3) I1'(0) = Xy y'(g )72 dx = 0, | ) o |
where :_t‘_y.(_s").\denotes the 'dgriygt;vg of £(y') with re= - . . |

594@#&” «‘& JJ e“‘nmva’l “—% ! :ﬁ. ’.iugl...&m%.'..z - ,s;'mg{?’ ﬁm*hiﬁ ,@ﬁsi;?% vavar AR i e  eoeiw

tive I‘,,\g ) i§"a Iuncnon of x, 1t will be dengted by

M(x). ' S | B

o

~ The implicatione of the neceasi 5y of the eaﬁai

|
J

SPUNTT TS,

tion I (0) 0 will more easily be seen if we -first. prove
the following lemma, wl.zichqwill be used in later chapters |

i - ;
!




ae well as in tﬁe current problem.

F‘tmdamental Lemma: Let M(x) be a function either "
continuous on t'he@ interval X, < X< X, or elee such

that the intervai can be subdivi-dedr into a finite

number of eubintervals on each of which M(x) is

cont inuoue o Let

2w o
x, M(x))l'(x) dx = O

" for every admissible functie;}l}(x) satisfying

‘Then, M(x) is necesearily a constant.,

:To prove the lemma,.we note that since

fsz’)'()d -o.
x, MOx) ax = € | o -

for all N(x) such ‘that N (x_l) =7 (xz) = 0, then for all

of these same functions M(x), we must have
(1.4) fxz p(x) - oy (x) ax = o,
where C is any constant. Now, the function),(x), given

N e . AL ,!om - i . . . -~ 0 A ® e, o e . s - -1“ -~ g A . .

B \ =3 i sl '3 )
. . - Jus rtfala =1 &;; ;"" Cs {x Ay f -
t&i&'-*"-"““"“-’“"‘} s £1 - ‘_“‘f"”‘ / S '5- - s el T A

1e an admiss:.ble functian which vaniehee at xl. It will

aleo vanish at x2, previded we. eheeee Cl to satiefy




uwgwwmmwm~mmww~Le%w¢(x% &eﬁﬁ%e the- i&eremen% that must- bewaé&ed

 e————

Thus equation (1 4) must

) yielda

But this last equation is satisfied only if M(x) = C.
Thisnéoncludes the pfoqf-of the lemma. |

| Thué, along the sOiution arc E12’ direct applica-
tion of the above lemma to (1.3) yields the requirement
that | | | |

1.7) £f_ ., 1) = £ = C,
(1.7) 1y ‘3,) Feg? "

where C is some constant. From this it follows at once

that g' must itself equal a conétant, which 1n5#urh‘im-
plies that the solution arc E12 is a straight line join-.

ing thg,pginta_l@and_244$hat,ia,4aunecessary condition

for E12 to be an,arc_o£ minimal length is that E12 be &

straight line. @ ; R .
een shownﬂthat fhe agcve necess

ition is suffielent; we now show that such is

i s S - ’*&:’i‘iwaaae** .. N, <= | e -

ANE s WA fade s,

R P B e




any arbitrarily selected admissible are 012 ;]oining the

p ointe 1 and 2, That is, ‘012' ‘will have Aaa its equationiw.

of Cy, and E,, _canvbe expressed as

1(Cy,) - L(B,) =fzi[f(sf + g') - 2(g")]ax

or, using Taylor's formula,

(L8 1(oy,) - I(E‘lz>.-..=12 fyi(g)grax s

+f ;i £5150(8" + 08" %ax,

where fy'y' is .the second derivative of the function f

with respect to y', and ® is a suitable value bétween
- is - Wﬁ "
constant, by (1.7), and ¢(xl) = ﬁ(xz) = 0, 80 that the |

7first integral ,,,ya,nLahaa‘ mw ]

O and 1. »In this last equation, recall that f

= . .
v e PR . L. : - .. % ; ; ¥ T .
e o ,. . ” : a... ‘_u .%.:é‘ 1" " gaw-. Yy ™ . e L v e . .

L VO R

- - arpr
- A - [ P IR T e AT ) 9w o

ie clearly always posrt:i.ve, it follows that the second

N A T B o b -
"n egra.l. or \.L 5 18 never negatlve., ?ﬂls means tnat '

1—({}*}*-—- ffgw)?ﬁ, equahty ‘holding only if ¢' (X) 0,

'in which case #(z) = C; but since #(x,) = ﬁ‘lg) =0,




vv»this means that 012 coincides wi't;h Bpe—

e e e e

e e bt

Thus it he.s been proved ‘that the shornest are e

” between two points is necessarily the straight-line
'—segmen% aein-ing them, and that this aegment is actua—l—ly
- shorter than any- -other- adma&seib—le—arc with The same end

~points. However, the methods_ of this proof are not in

‘general extendable to|less specialized problers of the

i

calculus of veriati'ons. A second prooef which can be ex-

tended to somewhat more genere.l probleme is now given.

Consider a straight-line segment E3 49 of variable

fi_nite length, which moves B0 that its end points de-

. seribe simﬁitaneously two curves C and D, and let the

‘equations.of these curves in parametric form be

x, (), 7= 3,00, (b5t sty

g - ‘ e .
f We suppose that these functions a;re continuous on the
‘ given fnteg_valv, and that the 1nteml can be subdm e
into a finite number of eﬁbintervals on each of which
3 e -%ﬂe~f -%’iaaﬁ' Kive CONtLEUSUS dePTvaTIves Baslh- thEd- |
E x,z ey y’z 4 e. ) | . £
The Mne F-4 has ae length I g;ve,@ by P




and using the notat:lon p --——§ to denote its elope,

the differential of the length of. E3 . is

(dx - dx ) + p(dy4 - dy3)

) \fl + p
‘o'_i', equivalently and more neatly',
.o ar(g,) = LB

1+ |s

Now, consider the iht‘egral I* deﬁned' by the

| T*_Tngx_t d

l‘hia integral will be well defined along an arbitrary

curve C, when p is a function of x and y, :lf the inte- |
gral 18 calculated'by first substituting for x, y,"d"x“,' -
and dy their values in terms of t and dt as obtained
from the parametric equations of the curve C.

Now, let t3 and t5 be two parametric values
which define points % and 5 on curve G, and which simul-
ta,nwzmlw dafina the pointes 4 qwi & reaneotively on the

e

curve D, Im‘segrating {1.90) with respectv to ¢ from Ty

vy J‘}% ;v Z’& .*ztp & ua-\;

ALY :'snows tha‘c tne alrierence of tne J.engths l(ﬂvul

Al

and I(E 6) of the moving line segment in the two poai-—’»

o tions E34 and E56 is given by




(1 1o) IQ?}%) - 1(334) = I (1346) - 1*(o35)

e

We now introduce the notion of a field. A.A_For |

._“-onr purposes here, a field P is defined as a region of

family of stre.ight-line ] segments e&es of whlch inter-'
se;ct—s the -fixed ourve D exactly. once, and vwhic,h' has the
additional property that one and | only one of these seg-
ments passes through each point (x,y) of the field F.
At every poin'!%of F, the straight line of the

field through that po:Lnt has a slope D(ng), which we

osll the slope-function of the .fieldo The integral I*

defined above has a d—finttewaiuea%eng—&n}axn ,(.!35 1
~ the field P having equations o f the form

x=x(t), y=y(t). y(43$.tst5) :

Similarly, the integral I,, obtained by replacing the p

of I'if by the slope functi;on r(x,¥) s 8lso h‘as}a'definite
value along any such arec 035 80 ndefined. |

The 1ntegral Iy ‘has two interesting properties.

i
b
43
¢
-
2
o
t
-
3
et
S
(s
s
:
Cert
b
o
S
&:é*

ane .,ﬁ;s:eg a1} curves 4 35 b5 L g S S
s 3 and ‘;3; e prove |
'Qf § . - s :

am B4 A st s Al memme
the field havizg ths same end poi
b |
K

af C--. there is by

13
o siae 8 - ot Rarsgieryl

ﬂefinition of the field exactly one straight line of the

hm}

o) These straighb-hne segmenbs are for th:.s spec:.al case ths ‘so-called
exbremals, -defined for the general problan of Ghaghsr 2 on page el9%




i‘ield intersecting the curve D, | Applying .I 1’;_) to tnis

one-parameter family of etraight lines determined by the

points of 035 gives T e

- . *(C 5) = I*(D 6) - I(E56) + I(E34)

R

nnere every term of the right member of the equetiende
determined by the two points 3 and 5% that is, ,(035)
ie independent of the particular curve in F that ie ‘cho-

aen./

A second property of the integral I, is that

‘along each segment of any one of the straight lines of

the field F, the value of. I* is equal to the length of

~—the_segmeniu This is clear eince mﬁgwhmhese

lines the differentials dx and dy satisfy the equation-
dy = p dx, so that the integrand of I, reduces to sim-

Ply \{1 + p° dx, which is the integrand of the length

- Now, in order to conelude our eeoond proof that

a etraight-line segment 3oining a pair of pointe 1l and 2
ie shorter than every other arc joining them,' consider

. e BB 5, gt kb ex Yo
"%ﬂ f.u:.ui T P OLEEE Sy GOTIE

P L;e defined by pa




.:-'.;\ _ S S e
s =14~ |
- 3

Th; we have ;;;;;;;w;gm;;;, gfzw,;m:*“f jj;;A"}~¢;];§,

..;“‘k

If we now call e the angle between the tangent to 0 and

the tangent to E, we may write —— - .‘_'.‘  1;}f;f

L emes—Xrmi,
| - \/(1 + p°) (=2 + y' ) NI

 and since da = Jx'z + y'z at, then

a3 éoa o ds ,

80 that (1 11) may be extended to . . Lo

(1,14)' o ;(Eiz) =‘r:2 coa e de,

The difference hetween the values of I along 012 and

o . s L . - B ) . 4
. - O |

E12 is therefore

(1. 15) 1(012) - I(Elz) f 2 (1 - cos e) 48 20

where equality holds only if cos 6 = 1 at every point | e
of 012, that is, only if 012 coincides with E12 identi-

e . . _

cally.

ot 3 gl % R bRt o i P e B AL AR ANO TN AR AW L R aﬂw-wd--nmafaaw . g U, e W P12

- _ We have tnne‘ggggégdgd the second proof of the
Ew' P ﬁw e A fae?that %@t- sﬁﬁ;g’% ﬁxe .ml“ -G xnue%& Bﬁ%’f u‘er’%n&;

any other are Joining the points 1 and 26 Thls second

wpraoi 1s 1$self more genesal,sSane'thedclass of ares -




" However,

<

of even the second proof are still quite specialized,

! . . . . s

- 80 -.wé ‘proceed directly to the E_e'ner&l;l’rﬁﬂ?ﬂ‘f of the -

..;.c:alc?i,lué- of .faifiatifq.nﬁ? ’

pad A
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CHAPTER 2

THE 'GENERAL PROBLEM OF THE CALCULUS OF VARIATI ONS -

Ma.ny of the problems with which the calculus of

variations ie concerned involve minimizing integrale

which are epecial caeee' of the more general integral

o fxy : |
(2.1)‘ ‘ »,I- x, f(x,y,y ) dx

%

where for each pai'ticular_ problem “the integrand func-
tion f(x,y,y ) of (2.1) is known, Hence, it is desir-
s to find characteriatic propertiee of mianimizing
for thie more general integral. - - T
In order to defins a class of admiseible arce
for the general case above, let us assume thai: there
is a region R of sets of values (x,y,y' ) in which the
function f(r,y,y ) is contimzeus and has een%inucus
derivatives at least up to and including the fourth

order. The sets of values (x,5,7') “interior to the

region R will be called "admissible sets", An arc of

- the form
B il ol :«?a‘ "*“"“"'““ﬂ"“"""“w
' - : ) 2o e e uw .
(2.2} - F s FE \ (335;2

%ill be called an “ad"' Mmig8ible arc™ 1if it is continuous

and is continuously dfirfﬁe.nentieble at el but o finite
- _number of points and all of the ee%;t:'s-:-ofwai:ue-:g fxv,‘y—--;y%rj




_.'On" if Bi‘e 3dmif98'i’ﬁle sets. Thus~for an admissible arc _

Ly = y(x) the interval from x; to x, ea—n——aiwaye be divid-

ed into a ﬁnite number of subintervals on each of whiech.

y(x) ie continuous and ‘has a eontinuous derivetive._

‘be preved to be necessary fqr an arc to vminimize (2.1);
t'hej". will be numbered with Roman numerals in the develop-

ment that follows.

© +  Let us new' suppeae as{in the previous chapter | -

tha‘é e particular arc E, w:k_*_',

equation in the form (2, 2)

actually furnlehes a minimur for (2. 1) Let Tl(x) be an

gdmissible function satisfying q(xl) = N(x;) =0, Then
~ the family"

e

T ——————

(2.3) 7= 3(x) + an(x), (iieisxz)

where a is a parameter, contains E,, for any n(x) by set-
ting a =0, The 1ntegral (2.1) now 13

(2 4) I(a) -f 2 f(x,y + awz.y' + avz) ax - '

%

i
353

"'*7“.5!;

| where the particular value I(0) muat ‘be a minimum, thus
R T Y R *""ﬂﬂ‘adw *****

giving the requirement that I'(0) = 0,

S

an ) LA

Adtusl differentiation yields g

\ ,- PR | AL
L {2.5) . Ive) =| °l¢ n+ e qYax D
| I SR AT A S -

TR




-

”

v and fy. denote the partial derivatives of

f(x;y,y')_ with réspect to y and y' respectiveély.

-where f

. Integrating by parts the first member of the
‘integrand of (2.5) gives |

J"xé o "fx\
x, fytex =

or ‘since n_(xl) =’Q_'(x2.) = .°,' equation (2.5) may be written

(2.6)  1'(0) =f:i{;fy, '.le fyd;]'_]['dx.

The integral on .the right side must vanish for every ad-

missible function T which satisfies the end condiﬁtioné,

80 we may now apply the fundamental lemma of the first
chapter; that is, the bracketed part of the 1ntegi'and of
(2.6) 1is constant. This leads directly to the first nec-
essary condition. - |

I Por every minimizing are Eq s there exists a con-
" stant ¢ such that

A i o R MW AN AW - -

holds identiecally on k. -. I
' 'Furthermore; on each sub-are of E,, on
~_gent turns continuonsgly, we pust have

- (208) ‘a‘; fy. hand fy - 0.




This last equa*ion is obtained directly from (2 7) by
-differentiatlon and is the familiar Euler s &ifferen- _

: t'i al equation., |
2 \
’l‘he solutions of equation (2 7) are usually called

ext:eemals beca.use they are the only curves which can give

the integral Ian extreme value, However, we shall de- M'<~'~_*—-j*‘;~1'*"'~‘
;fj.ne. an’ _extremnl as a “solutlon of Eﬂier _s, eq‘uatlon which
has a 'cisntinugusly turning tangent (that is, is continu-
ously differentiable ). and which has a continuous ‘second

derivative y" (x).

Now let 3 be any arbitrary point on the minimig-

enough to 3 that the portion of the arc between them is
continuously diffefen‘ciable; that is, ‘choose the point ‘4
80 near to 3 that there is no corne,i' Vbetween then,
Through the point 3 pass an arbitrary curve C with equa-
tion given by y = Y(x). The fixed point 4 can now be
V’T;joined to a moveaﬁe point 5 on the curve C (see Figure
1) by a one-parameter family of ares E5 4 containing the

arce E34 as one of its members.

Paeom ety




. _xham_the paramej;_e,r_ 8 is simply 5o - B ‘

o f S It will be recalled that by hypotheais the arc

Elzmakes the integral I(Elz) given by (2. 1) a minimumo

.Therefore, as the point 5 moves along_ c away from the_

'point 3, the integral - j

(2.20) (055 + 354) f 2 £(x,1, ¥‘)dx + 1(354)

can not decreaae from the value I(E14) which it has when

the point 5 is at 3, and furthermore at the point 3, the

differential of (2 10) with respect to Xg must not be
negative, .
In order to express this result more neatly, con-

a;@;_er now a one-parameter family of extremal arcs

(2.11) RERCRINEEE 1

 satisfying the Euler differential equation of the form

where the partial derivative aymbol must e ﬁseﬂ sime

y is here a function of two variables. Regarding X3 14’ S

and b all as variables, the value of the integral I along -




an arc is of the form

(2 13) I(x.’.,x4,b) f 4 f(x, y(x b), y (x b)i-gij}_dx.

| Al‘“‘ga‘* "’éﬂ‘l‘emlf “91118(212)»*"9"116%

(2. 14) ?f

°

‘S0, the partial derivatives bf the fuﬁctioh I‘(x3_,x4,b)‘

“where the arguments .of f and its derivatives are under-
8tood to be the values y, ¥y' belonging to the family of

(2.11). Now, suppose the variables x3, Xy and b are

Afunctiona x3(t), 4(1:), b(t) respectively of a variable
t, so that the end-points 3 and 4 of the extremals (2 11)

describe simultaneously two curves C and D (see Figure 2)

TR

ﬁh@a > equations are

The differentiala along these curves | a.nd D are fauni ‘by

»




From (2.15) w pute ”MW‘WMG,WWWHWW“W [

= aT .. . 3l . N -
) (2.38) a1 - 52,055 + §5,0x, ¢ gsdb -
o | Y .
¢ dx + f  ¥,.db | .

With the help of eQQgtiens (2.17),“%hislmdy be written

(2.19) a1(Ey,) = £(x,3,0) + (8y = p ax)2y(x,7,P) -

This equation hblds at every poaition.where E34 1sran eX=
tremal, and at every position where it satisfiee (2 8) M

. -wmumﬁ veam BN DT M
In (2.19) the differentials dx and ﬂv are thos Of the :

— g oy

v

. Q%T?@& 2 ﬁﬁ@ Z at ths §aiﬁta Z gud 4 of Plgurs 2, and ths - - -

values of p are the slope of E34 at tnese two. paints.

el | ~ Now, let I** be defined by




* Vthen for E34 s.nd E56 of Figure 2 we hsve | -

*t2~21#:* IfE‘GI o I€E349 = 1**{ ) ~*1* ;;55§§M.\

We again introduce the notion of a field F, as
in Chapter 1, except that here we are not limited to
._straight’ lines a.s[_‘extremalso That is, we define a re-

gion F of the plane to be a field if it has associated

with it & one-parameter family of extremals; e each inter- -

secting a fixed curve D in sxactly one point, and such

that through each point (x,y) of the field T there passes
one and only one extremal of the family. We again de=
ﬁne the slopﬁunction of the field as the slope p(x,y)
| of the extremal at each point (x,y) of the field.
Substituting this slope function for p in Ii*!
- and dsn_g_t}ng the ‘resulting integral by I**, it is clear
that the integrand of I,, depends only on x, y, dx, and
dy. Hence,_ 'Iﬁ*(035) depends only ox’ the points 3 and 5,

. Swevtnng Bt wwl YR OTU E  A1 0 4 S0 S T s A T ey

Furthe-r, a-lshg an sxt*rfemal —aré of the field

F the value of I,, Ts“thssame ag- thatsf {-ftnse'




each extremal we have dy = p dx, which reduces the inte-‘

grand of I«-* to f(x,y,p) dx.

-~ TNow returning “to equation (2.107 , where (see

f»w»«mmsnrekl ). the arc- Dy 0f—(2.21)-ts-the fixed point 4y

note 'chat the derivat ive nfﬁtheﬂ’:&rstwai—ntegra}---af
‘that equation with respect to xs is. f(xs,Y '), Thus :
when 5 is at 3, the dlfi‘erential of 1(035 + E5 4) is the
value at 3 of the quantity |

|-

'(,2.22)”, o t(x,Y, Y')dx - f(x,y,y )dx -

(dY - Y'dx)fyt (107’3")0

-where dy and dx belong to C, and satisfy dy : Y'dx, AtV -
the p‘oi—n—t 3 - ,sine‘e the ordinates of C wdEareml, -

we may writé equation (2.22) in the form S

. (2.23) [f,(x,y,Y')-f(x,y,y',)-(Y'-y")iy.(x.y,g' )]Xm

~

The function (2.23) is called the Weierstrass
E-function and is usually denoted by E(x,y,y',Y').

Recalling now the earlier result on page 20 "thgt B
‘the difi‘erem;ial of 1(035 K E5 4 ) WidsT not be negativ““ cmETTR e e

ato-4. 8 eond re%naary eondition thm:" an are. -




C X - . . . . Ce
e . - .o . . B

every a&mlssible eet (X,Y9Y') different from (x,yoy e

When Taylor 8 fqrmula ie applied to the Weier- w;_37ﬁ

.,q

~strass E-function, it may be written in the form '

(2c24) E(xsye}"oy' “*(Y"‘y )2 y!(stsiY'“"e(Y"Y ))

“ .

Whe're 0<0 <.L“. Now, let Y! appreeeh y"“_"—end- we have i_m-,-

medietely a. third necessary condition,

III At every element (x,y,y ) of a minimizing are
312 the condition R

mnet be satisfied.

For the fourth neceesary condition, we first ob-

serve that through a fixed point 1, there passes in geme- ‘

ral a eneepdremeter"family of extremals. If such a fam-
ily has an envelope G, then the contact point 3 of an ex-

etremal arec E12 of the family with G will be oalled a

°

"poinx 3 conjugate to 1 on E12
Let.El4 and 313 be two extremale of the family
through the point 1 touchlng an envelope G at,their end

g g a wn an Sfer N T e . ""-u- :
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”QPOintS (Bee Figura 3) 1 we replace the arc 035 o£«~-
| equation (2. 21) by the fixed point 1 and the arc n46 |
“‘by'the arc. 643 we—have '

'(2'26); HTI(Elg) ',I(EEAIj I**(_43).~:“

Furthermore, since each extremal is tangent %o G,‘thé
slope of the envelope G is at each poinx the slopem |
function used to define I,, so that I**ﬂG43) = 1(643).
‘Hence we have that the~va1ues of the integral I along

t satisfy the relstion

arec E14 + G43 + E32 1n qunre 3 is equal to its value
along E12‘

It is now necessary to look at the possibility
of G43 itself being an extremal. By definition, an ex-

‘tremal has continuous first and second derivatives so

B il A mndinde L W N e

that along any extremal the Euler equation (2 8) can .be

writtes in the form

, e v et

e e

EES S

. . é- o L
(2.28) 55 fy ~fy = f syi *y y'? =Ty = 0.

A property of a differential eqnation.of thie




S g

e - i » 5 .‘ | o

type is that when it canm be solved for y" there is ome -
"ahd_Only'oﬁe'solﬁticn;of.ii %hrough any'aieitrarily- o

Veweeleeted.point—and dlrection.(x3,y3,y3) 'Glearly'it

can be solved for y" if we require that £oige De dif- . —

~feren$—£rem—zere~&# everyfpoint ofmthefextremel E12°'~"
Under theee conditlons, it is clearﬁthat if G4q were an

extremal it would neceeeerlly coincide with E12 at every

point, as it.wouldealso,W1th every other extremal are-

_thgough the point 1. Then, there would be no one-~para- - o

mepermfamily-eueh»és\haemheenﬁéwgpnaedo

Thus, G Gy3 can not be an extremal, 80 it can be

replaced by an are. 013 giveng Ia smaller valueo\ Con-

sequently, in every neighboraood of E12 there is a com=-
posite arc E14 + 043 + E32 giving I a smaller value than
E12 which contradicts the assumption that I(E 2) furnieh-
ed a minimum. " | B
This gives the feurth'neeeseefyfcehditiona7
IV On a minimizing extremal arc E,, with f - £0

everywhere on it, there can be no point 3 eonjugate

S ST

to 1 between 1 and 2.

,ie f r the integr,l (e,;) to be a.miaimum. With rela-

ik o Q'Wm‘ . R it ats | iticie Ly i i i ;-v_\ i vaiica
. 1 i . i E
M

thvely moderate changes, they can be made over into con- )

ditions which are alse euffleient to 1nsure an extreme




value for the—integral. Before 'inve*stigating these
ehanges in detal, we first consider a fun&amental snf-

ficiency theorem which for some problems of {‘.he calcu-

"1118 of varzaticne is all that is needed in the way of

v»-msuffieien%» econditi ensmf —

In order to establish this' thebrem_ it is in_e'c’e_s-_-

sary to be more explicit in stating the properties of

the family of extremal arcs of the field F defined ear-

lier in this chapter. It is supposed that tﬁe‘jfamny

" has the form

i oy o
L A A A e YA g S . X

(2.29)

where the funttions y(x,a), y' (x a.) and their partial

derivatives up to and 1nc1uding those of the second oY=
der as wel} as the functions x,(a) and x,(a) defining-
the end-points of the extremegle are all centinuoue. It

is further eupposed that the point of the curve D (see

Figure 4) on each extremal 1is defined by a functionx =

h(a) xghigx; with ,, ;,t;-_.___ifi__r:gt derivatives is continuous om . -




-

the interval from a:L to 32 a.nd“ alao it is aupp'daed *that
the partial derivative Vq is everywhere different from

zero on the ‘extremal arcs. We are further assuming

1,;} Tichj:éﬁhets;m_mique extremai o%the fial&

-through that point. Since we require that ya be differ- "

ent from zero, it can be proven that a(xgy) and its

first partial derivatives are eontmuous in Py whieh is
aleo true of the slope-function p(x,y) = ¥ (x a(x,y)) of
~ the field P, o R

(230) T

where it will be recalled p is the sl_gpel—functi.oa o{th’e
field P, has a definite value on each admieisible_ arc 012
in the field, and indeed this value 18 the same for all
auch arcs 012 with tha same end pointa. 'Sin,ce it has
also been shown earlier that this value is the same as

the value of the original integral (2 1) in the case

where the 201 nts 1 and 2 are end-»points of an extremal

el M o . s

- ard E]_, of the fielﬂ, we may writs \aae Figar 4

- . ;
B e . S B . [ S g 2, “ L L L w L - v

-y U

Subetitqting the values of the integrals 1 aad.i**, ‘we

Fid

have




”MmmwmmwmmEUNDAMPNTAL SUFFICIENCY THEOREN: —Tet- Flzwbe an_ex- “;‘

_tremal arc of a field P such that at each point (x,y)
‘of F the inequallty |

(2- 33) | ! E(X9Y9P(xey).syr)?- 0

holds for every admlssible aet (x,y,y ) different
from (x,y,p)o

.

1nequa11ty I(E,D)—-I(C,D) is satisfied for every ad-
missible arc: 012 in P jolnlng the points 1 and 20

irther; > QUG tv sicy S On S0 13X °

then.i(E ’j7<I(c 2) unlese 012 coincides with Elz

The theorem follows directly from (2. 32), since the hy~
pothesis (2.33) implies at once that I(Elz)"I(Cla)

If the E~function vanishes,only wheny!=upthen“the-wfmis
eqﬁélity°1(312)o='I(cié)“ean'hola'only«ifmthefeéhétion'”"

y' = p(z,y) is satisfied 'at every point of 012 in which

case, since the dlfferential equation y' = p(x,y) has.
" oné &nd vnly ohe soiution through the initial point 1, o

3 esg &‘uat QOiHQ'LdF‘ Wj"‘ th E" ‘}‘; ."“- P s L RN ‘:ﬂ m““’f, A -

';W,n useful oorg;;ary may now . ng”,;j,;é.iy-gggggg- )

ﬂﬁdeziag equation (2, 24) in the form

(2 34) E(xayypey ) = '&(Y "P)2 yt(x’YfP"'e(y"p))




In order to state the corollary more succinctly,

define e regular problem to ‘be one fcr which the deri-

vative fy g has the same sign for all admissib’e sets

(x,y,y ) and for which every set (x,y,y f_with the ¥y

fmmﬁ#~Blement"Sa$18fyfngﬁytié?*2FF"“is”aﬁmtBSIhie Wheneverw4rw

the eets (x,y,yl) and (x;y,ya) have this propertyo Equa-‘
tion (2.34) shows that for regular problems the hypotheaie
E(x,¥,0,¥"' ):>O when y' #,p surely holds provided fy'y'
_1s.p_ositive° This givee the corollary.

Gorollaryf——££%Em~she1mrex%remal—aro—cf%riﬁm&ﬂ~?
for a regﬁlar problem with f !y':>° then the inequal-fﬂ

ity 1(012) I(E,,) holds for every adm1831b1e arc 010

in F . different from Eio and ‘Joining the points 1 and 2.

- The problems of both Ghapter 1 end Ghapter 3, a8

well as several other classic problems of the calculus

of variations,are regulareprebleme with fy y' ”GQWT;;;f
Before constructing sets of sufficiency condi-

A

tions cut of the four_necessary conditions we prove the

following useful lemma:

R S AT - amit - & . ,.-_,..:-._.M

Lemma._ Every extremal arc E19 having f 12 £ 0 along

Atard containing no point soaj gs*s%«'~ s inderisee

to a field F”ofwhich 1t-itselfis an éXtremal'arc,'”““

To prove the lemma, we first observe tpat the arc E

-,

12_15L;;{ml_mr“,"




‘d -ﬁém‘n’:é"z?;ﬁfor‘\é » 0 of a one-parameter family of extrem-,

a.ls y = y(x a) having ya(x 0) dii‘fei-ent from zZero at

each point of E12“ We now proceed to construct such a

o femily. P A P P
e When £ y' ;‘ 0, there is a. family_gi__ngr_gmals .
(2 35) I ..y(xab) R ._._

contaixnng E12 for a special pair of parametric —Tues

ao,a,nd b o Further, this family may be chosen so that
3

t(he derivative with respect to x of the’ determinant

PO .
. N

rateagsby) %(xaoﬂ )

:La different from zero at the endnpoint 1 of E12’ a con-
‘dition that may be expressed by A\ (xl,xl) # 0. A poai—- |
tive»constant & may now be- ehesea so that- IQA :e,x )«i& I
not zero for every pa:i.r of values (x X, ) satisfying the | |

~~-~‘eenditions

B S T L AL

since fer smalz. £ tl;e g& s (zgz ) abev.,, are near i.zh.e

A . ,,‘;1,. o -

pair (xl,xl) ~ For every x satisfying the i‘irét condi—

tion of (2 37) the determinan!s A(x x ) vanishes at x

and its dermvative A‘(x,x ) is difi‘erent from 2ero ev-




arywhere on the interval expressed by the eecond condi..~w-;,_”“"“”
tion: of (2 37).

‘on- the interval xl-xsxlf-l--e andif x is ee.v.‘ected suf«-

R

ficiently near to xl then A(x X, ) will also be dlfferent

~ _:—_}é non:taine—-neﬂ:

‘pdin-t e6n5iigate to 1 ~the determinant Alx, xi)‘;"{vhese S
roe determine the conjugate points, must be dlfferent
from zero on x1+e<xsx2 80 that A(x X, ) will also have
this property when X, is near to. Xye |

Now 1et

_(, 2,38) X =

‘l‘hen a one parameter family with the properties lieted
at the beginning of the last paragraph is given by

y = Y(x,a°+--k<x,bo+ m«x)' = y(x,o(.)-

eince fer xX.= 0 it givee the arc 312 ‘and furthermere

~ its derivative .

(2.4&) ya(x,&) ya(‘x, .’b )R +.¥p(x48,,0, o= (x,x )

*ww gy oy ” = e . M- .. 18 LB R oY s ""v"‘iw
- DaE fg"different froml zero on ‘the entire interval X, <

. L!'k,z;ibe -anesparazeter farily (2. 39) simp z LOFRTE

L e S

f:xeiﬁ 1n -the- nelgnoornoo& of the arc El? since we

may take ¢ so small that the derivative 3, (x,oc) remains

different from zZero whenever X and o« eatisfy the inequali-




ties 1< x<x2 and locl<£. Such - field is shown in Fig—-

ure 5.

On any ordinate of this region F the value y(x,d) var-

ies monotonically as X increases from - £ to +E. Thus

- through each point o? F there passes a unique extremal

of the famlll, This means th eachoiaiM the

egnation ¥y = y(mLha&Hﬁiq&eﬁmmn wlx;y)s It
,m&y be shown that this function and ﬁ;‘g f‘irsﬁpgﬁiai" o ‘

derivatives are continuous in F, from which it follows

that the same is true of the slope function p(x,y) =

y! (x,d(xﬂ)) of the field’. This _eémpiete‘stﬁé proof oaf |

the lemma.

We are now i'n a positibn to prove a thedrem in-
volving suffiea.eney conditions ‘for a weak relative mini-

Jum. h-lobwm@ defined as folf_rnm'f the walne I(F—»\ is

e & .-l"“

a weak feiative mi”imum i1 tnere is & ne:.gnuor 100d K°

‘of the values \x,y,y ") on 1"12 ‘Biich "that the inequaiity

I(Ela) < 1(012) is true for all admlssible arcs 012 whose

elemenfs {x ,‘i‘{ff) e ii" RY,




.
X
l

¥
3
:

Theoremo. Let 312 be an arc without corners

the propertiesa

1) it 1s an extremal,”“ “m¥_:

S

'y y' >0 at every set of'values (x,y,y') on St,

3) 1t contains no point 3 conjugate to 10‘ ,me%M_
Then I(Elg) is surely a weak relative minimum; that
ie, the inequality I(E 2)<:I(C 2) holds for every ad-

miss;ble are 012 distinct from E12, joining 1 with.2.

and having imq elements {x,7,¥°) all in a sufficient-

ly small neighborhood R ' of those elements on.ﬁizb'

We note that the three numbered hypotheses of the

théorem are diractly’related respectively to- nhe»three'
necessary conditions I, III, amd IV, To prove the theowv

rem, choose a neighborhood R' of the values (x,y,y’) on

By, 80 emall that all elements (x,3,3') in R' have their

points (x,y) in a field F. The -existence of thisffield

~which has the arc By, as one of its extremals is guaran,'A

teed by the hypo%heses of the theorem and the lemma of

s e P “.W
of ® tha eleun

oy 5‘—.-& =

duisyibies =o ==t

and‘make f

y'y' ’ﬂ’“?

(2 41) E(x,ypp(x,y),y ) t(y'wp)z y.(x.y,we(y'~9))




is positive for all elementa (x,y,y ) in R' with y' not
equal to Po The proof*of this theorem is now completed

S — ty applving”‘the fundamen'tal sufficiency theorem of page

ﬂﬁ_-ﬂw ~-30- &wi--th R Lreplaeed by«R'»——i “the- de.fin:H;-xon of— admissibie

aets, S—

YR

A seoond eufficienoy theorem oan now be readily

proved which involves suffioienoy conditions for a strong

relat:we minimums; the value I(El*) will be called a

“strong relative minimum if there is a neighborhg_o_@rﬂ* of

‘and also the additional property
4) at every element (x,y,y ) in a neighborhood R'
of the elements on E12 the condition E(x,y,y','!')>0
- is satisfied for every admissible set (x,y,Y')
. S S i e s

with Y' # v'. | .
Srong - weli ative: aim oo bmmd dage e . e

{3

caken e e

~the ineq ality I(E: 2)\ :{{el.,) holds for every admismii'f — -
s:.bi*%ro "1 5 &fs*tmt' fronr **"jorning—iwm“%«ﬁn& ‘
having its points (x,y) all in a sufficiently small.




neighborhodd 3 éf thoae on. 312’ -

" Ae in the pravious theorem, properties 1) 2),

----faml 3) aga;in insu‘re the exmtence of a. field }3‘ having

"’”Edlz as one of 1ts extremals, IfJ we take the field P ——

small ,’chat all ,the elements (_;:,‘y,,p(x,y)) ‘belonging to
it are in the neighborhood R! ‘of property 4) then ac-

_cording to that hypothesis E(x,¥,p(x,¥),y') >0 must

hold for every element (x,7,5') in F distirict from

(x,hp(xgy)), so that again the fundamental sufflciency

theorem gives at once the conclusion of this theorem.

The. prece'ding theorems are by no means the only
- theorems 1nvolving sufﬁeiency condltions, ’aut they are .

general enough to cover a large portion of the probleme""

-encountered in »J&h—eﬂ-v-realculns of variations., 1I% Will be

'noted ‘that there are problems for which the latter two
théqrema do not apply; for example, a problem where the
minimizing arc is permitted to have coiﬁerS'. Hdﬁever; |
since most of the applications of the theory of the cal- —
culus of variations are to the class of regular problems

Q Ee?ined on page 31 we content ourselves for the mement

i 1. T
sack probivms,

- For regular problems, it can be shovm that a

~minimizing arc Em can have no carners and that 11; haa

a.continnous*second:deriva%ive'and’is=therefore anwega




FRps R (ST

tremal. Since the derivat we—I—ﬁ,—ae#er vaniehee in L

'Y
the neceesar_y" cond:z.ticn III _may be strengthened t'e hold

 for all aamiesible elemente (x,y,y ) having their pointa

(x,y) 5n a nelghborhood of ’t‘,hose on E129 and it nay be - |

further strex;gthened by ex_cluding the eque.li_ty sign.

If the "enielope of the one-parame ter famil‘y of ‘extremals .. :..:: L

through the point 1 has a branch projecting baekward

——from the conjugate point 3 then the proof of the necee«-
- sary conditlon Iv ehewe the.t the point 3 can 1ie neither

between 1 and 2 nor at 2 on E,, so that thie latter aué-

m"ented vereion of condition IV is now necessary fnr a

-minimum.. This gives ‘the following theorem:

o s~~-~‘£heerem‘.~ A ~m§:ai—-mi!zmgw arc E;, for a ,:regular., problem
~must be an extremal on which £, , 18 everywhere great-
er than zero., If the envelope of the one-parameter

—family of extremals throngh vthe | point 1 has a branch

.proje'cti-ng backvéard toward 1 fromi the point 3 conju-

*—ga‘ fe to 1 on E12, then the point 3 can be neither be-

tween 1 and 2 nor at 20 Fu;themore an arc E12 with

XY - ~zmr

“{thes€ propeTiies euf‘eiy furnishes a m;rong’ e.x.&lil?é

. ) - . - .
bl ‘ - ~ ', ~ - ) - ’ ‘s —".
A %mmk@ - Do & a. e E van en R T Ce et . Afeden aany - -
.

To complete the discussion of relative minima

for regular preblems, i% remame to. coneider what happens

when the envelope doee not- have the branch of the sbove

———— PR




*-theorem projecting backward toward the point& o . Iﬂhis _

caee,. the earlier proof of the necessary condition%an

’1101? be applied, but the condition IV is neverthelese nec-—‘v“fﬁ

‘essary, as can ve. shawn by a second proof, which is omit- -
T here, fhaT*“uses me secorrd &er::vativeﬁ’f”fﬁ)‘*of—the
) ___;_integral (2.4). N

Further extensions of the general theory of this

éﬁgptér are both possible and numerous, For instanc’e,

the problem where one or both of the end points of'the'

arc are variable has been’ given cons:.&éra‘ﬁle" attention

’

in the literature of the calculus of variations. However, |

an 1nvestigation into these further extensicna would re-
quire more space than is available here. Instead, we
‘now proceed to a relatively theraagh investigation of
one of the claeSiééI_prb“blems of the calculus of var;ia:L"'

tions.




CHAPTER 3

SURPACES OF REYOLUTIOﬁ or,mrnxmum;AREA

The problem of- determining a surface of revoluuw

tieneof mlnimum area is in many reepecte'the most satis«
factory illustration which we have of the princlples of
the general theory of the calculus of varlations. If a

wire circle is dipped'into a Soap eolution and withdrawn
and a second. smaller circle is first made to touch the

moircular dlek of soap £$lm bounded by the firslm_ire cir-

cle and then drawn away, the two circles will fhen be .

Joined by a surface of soap fiim._ In the case where the
circles are parallel and have their centeré on the same

axis perpendicular to their p1anee; theﬁsﬁrfeee ofrsoeﬁr
film is a surface of revolution. It is provable_bythe'WN 
principles of meohanics, and also intuitively true, that

a surface so formed must be one of minimum area, The =~

determination of the shapeof this film by analytio means
is the subject and purpose of this chapter.

s

Par ¢ evgggengsg let the _X-axis be the common

-

axig of the two ¢ix olee ,ﬁa ilet the points whers the Eip-

&

W o AL b "-}«»

olee.intersect the upner half on an xy-plane through their
\
axis be called 1 and 2. If the intersection of the sur-

face with thie plane is in the form y = y(x)\theﬁ_from

ordinary caleulus we know that the area of the eurfacer




of revqlntipn is 2 times fhé value of the

B

(- | Ifif(yoy)dx

”ihe‘rg ffy,y*) haa them--valae

Without loss o-f'genérhlity._, we may}immedi_ately'"

make the restriction that for all drcs 'y‘=~ y(x) which

we shall consider, it is true that

(3.3) - 320,

since if an are 'd.ées havé a portion or' portions below
the x-axis, the surface generat'ed when this arc is ro-
tated about | the x-axis is the sam;- as if the ~perti1m€s}“~ o
“below the axis had first been reflected above the axis.
Thus for this chapter an admissible arc y = y(x)
will be one which m‘me interval [xlgxz_g;is continuous |
“and haa” a t&ngent which turns conti_nuo'ﬁély except perhaps
at a finite numhan of goints and which in additicn satis-
i}ga cgnd_ition ( D ”5 ) - o

Our problem now is o determine amomg ail admis-.

sfiie arcs joining two éive"ﬁmpolfnts 1°and Z that one™
which minimizes the integral I of (3.I%

“The necesaary condition I of Ghapter 2 stated
that the minimizing arcs must be aﬁmmﬁfTﬁé?W




(304) : - fy' g fyg.x + Co.

For the problem of the minimum surf'ace of revolution,

_this i;akee the fox:m

(3.5) == 2
1 /1+y,_' 2 1
where s is the l_ehgth‘_o-f the minimizing arc measured

from the point 1 to the point whose abscissa is x., At
a point of "the are where‘y # 0 equation (3.5) can be

(3.6)

Since y and s are both continuous, “then so is y*' at Buch o

a point. But if y' is continuous, then both y and s

have continuous derivatiyee 8o that equation (3. 6) .8how

that y' must also have a continuous derivative. Thua

atallgeinte ‘above the x-axis the minimi zi_n_& arc has

continuous curvature and no corners.
When 1'& is knewn that along a mlnimizing arc
LR e M

~there 187¢ a . continuous derivative y" then Euler § equa-

tion ge;a) may be.written

“are ow:_lth_




eeconci 'd‘l‘etrivat‘i'tre y" we héve S R

(3 8) -d-;(fyf .)---y(

and hence

(3.9)

\

where b is a constant of integration.
| In-the problem of the minimum' surface of revo-

lution, equati.on (3.9) becomes

SR DT UU

(3.11) by =ax

which upon int_eérgtion yields the result

!

It follows readily by aelving this last equation for y

wwwe that the sxtremals

~_j~_f our our xm& grga;\l%,ﬂmg. the ares

| X=8 X8 e
- "f‘ig-l- f[é ’g"'i-e\"g']:"’b coshgésﬁ. = v

Arcs ‘of this type are ealled catena%es and their shape

is that assumed by a eha;n attached to the two points 1

and 2.




Ts

We see at once that a minimizing arc y = y(x)
with corners is: ‘impossible since as . was indicated earl-

ier such corners would have to be on the xX-axis and the

_,,,parts of the minimlzing arc between these corners an

“above the x-axis would have to be segments of catenar-

ies which have no points in common with the x—axiso

That ie, we have established the following lemma:

Lemma : Ifi and 2 are two points in the half plane

-4----_—77&*&55@ an aduissible are § = y(x) Joining them and

generating a surface of revolution of minimum area

must be a single arc withdut corners of one of the

catenaries of Qsmguggihli)_.__m_ o

Now we are ready to investigate the number and

the character of the catenaries (3.13) which pass through
~the two given points 1 and 2. The condition that a cate-

nary of the form (3.13) pass through the point 1 1o giv-

~en by the equation

(3.14)

B it et AR T

1t is now nonvenient to express the pmamptera 8 ami, b

. Ve eepreanss

—.(3.15) - 8

-




Now the one parameter family of oatenaries through the

point 1 15 given by

(.3.16) ¥ = Wosh(d+ cosh ot) = y(x,cl.)

C Ja

Denoting differentlation with respect to x and ol by

primes and subscrlpts respectively, we obtain

x"'xl - '
cosht), y{ = sinh «, -

(3.17) y' = sinh(cL +

Ab 2 I ‘y"l\

o) 3, - mil»--—%t-‘*r G

(x,y) are given in te‘rms of the runn:lng c‘oordinates

(X,Y) vy thé‘eqnatians.

(3:19) Y-y, =y{(X-x), Y-y=yX- ).

'Eliminating X from these equations, we obtain

© g e e e O SO

'(3.20)

so that, from equation (3.18), the derivative y, can be

3

written

~Hoiis - . S T e s

Thie iaet equation enables an interesting con-

““struction for the point conjugate to 1 on a catenary.

At the point of tangency P of a curve y = y(x,a) with |

P




‘the envelope G of ‘bhe family, the derivative must vanieh,
which means that the coordinate Y must be zero., Thus,

the tangents to the catenary af. the point 1 a}xd at' the

— Wﬁ'"? must in tef ect on the x-axis as shown in?igure (o ——

Figure 6

~ From Figure 6 and the formula (3.,21) it is clear
~_tha At as the point (wxgy) moves from the point 1 to the

right along the catenary y = y(xgob) the value of y, -is |
at first positive, and it becomes negative only if (’x,y)
In other words, yu =0 —

at a value X >Xy implies that there is no conjugate point
between 1 and (,343); while ¥, < O implies that there 18

such a point. We also note from Figure 6 that for points

(x,y) which are conjugate to 1 and have x >Xq 9 then y1<0

N Y R W Ny Sowe Ty N oSN »-40.::!’% T e AP W O N T
and yv'=0. Ugiza@, quations (3 16) (3 17), .21) and the

e A

equa’hon y,, = 0, we I’inu

Mo
£ Y L Py »

2

(3.22) oyt = -?2 cosh
S yl




We now look at the changes in the ordinates of
the catenary y = y(x ©) when x = is kept fixed and
ol varies, Using equation (3, 16) this ordinate may be

represenied in the form

X=X

(3 25) a, - ylcosh (—6'55—'" yll)coshoc
(x,cx,) — |~ — -

oL X=X
— +
cosh ol ¥,

ol ( ) cosh 4

Aa oL approaches either plus or. minus infinity we may use ‘

l'Hospital'e rule for evaluating the indeterminate form-

‘namely

(3.26) ,}39 cosh u },1:’3 simhu - 0 .

wa— A AT W AP-OE. TR AT D 5P

andeﬁ we gsge that the cv-é—-ian%e expressed

"ﬁivﬁ'a*é‘h*é’?é‘;‘;ﬁiﬁs "“iﬁfﬁiii}y “when & appioaches el %her“'filusfbr
minus infinity. Furthermore since by eqﬁation (3.24) we
know that .yﬁ> 0 then the derivative Y. changes from

negative to positive whenever it venishes, and hence can




vani sh onlronee o
Thus when x >xl is fixed and o varies from mi-

——nus. infini‘ty to plus infinity the ordinate y(xot) dimi -------

' __niahes from plus :Lni'lnlty to a minimgm andwthenlnc::easea

%o plus mfinity again.," If we denote this mn.nimum for a
fixed x by g(x) then the equaticm ¥ = g(x) definee a

curve which can be shown to be the envelope G of the fam-

ily of catenaries through the point 1, as shown in Figure 7.

From the above argument 1t follows that through

a point 2 above the en}relepe G there pass two catenaries

on which the derivative y, has opposite signs at 2, which

a8 previously noted means that one of the catenaries has

a point conjugate to 1 between 1 and 2 while the other

- o - > oas g R L T WL A e

catenary has none. Hence we have established the foll

Fws o o - d oy, - . ° R bl - - ¢ e o s =

Lng théoreém:

Theorem: A point 2 above the envelope G (as in Pig-

ure 7) is joined to the point 1 by two catenaries of
“the family y = b cosh [(x-a)/b] On oné¢ of these is a




”éuch cdnjugate point. A point 2 on the nhveIOpe‘G

1srﬁounmn ﬁb—lf%y~a—§ingiercatenaxy%cnfwhzvhfS“is

wtgengugaﬁe to 10” Ap01ntbelow G’is joined to 1 by

no catenary of the family. |
We are now ready to ﬁse-same of the résults of.
‘Chapter 2 to establish for the one—parameter family of
catenaries through the point 1 another theorem which

Figure 8 below will help to make clear.

Theoremf If two catenaries El4 and E13 of the fami-Hw

iykthraugh‘tha pcint 1 touch the enyelope G*at the
points 4 and 3, as in Figure 8, then the areas of
the surfaces of revolution generated by the ares

F "'r.‘alz ~aPeeyuais ~This i’i‘i"‘j *”‘”Kﬁfm?‘

Y LU ot

‘The proof ia eimpie with the help of formula (2 21) of
the preceding chapter where the curve C of thax ;ozmnla




is now the fixed point 1l and the eurve I) is the”%anve-
1ope G., That ie, the formula (2 21) may now be written

‘f - Lu;ﬁp,

Sinee at every point of the arc G we have dy = p dx,

where p is the slope of the catenary through that point,

we have

(3.29) I'**(G43) f [f(y.p)dx+(dy-pdx) .(y.p)}

=fz3 ‘f(yo-p)dx = I(G,3)

and the theorem is establishedo |

Thus the necessary condition IV of Chapter 2
may for this problem be stated as follows:

Theorem: If a catenary arc E,, is to generate a sur-
nface of r:evolﬁtion of minimum area then the contact i
point 3 (shown in Figixreye) of the catenary with

the envelope G of the one-parameter family of extrem-

als ~through the point 1 must not lie on Ey,.

. e R e . RE e - R

We see this is true because the are El‘ + 643 *»»Eag of .
SR " Pigire” 8 generates the ‘same surface area as "Ew, and the
ar»cz-(?r43 can always be replaced by an are C 45 which will

:generet‘e a smaller area since G 43' 18 not an ereof a

catenary of the family (3.13). That G, 43 can never be




such a catenary is- clear when we note that at each point

of- H the equaticn ( 3. 10) defmes a value b which is the

at that po:.n‘t but these va.:.ues b vary from point to

point on G, as shown by the. seeond equation of (3 15)

while on the catenaries they must be constant. %

We now might want to conclude that the surface

of revolution generated by a catenary joining l and 2

and having on it no con;jugate point is smaller than that

furnished by every other arc y = y(x) joining 1 and 2.
This conclusion need not be'valid, for while such a cate-
nary minimizes I with respect to other curves lying suf-
.ficiently near to it, there may be in some cases other

___curves not so near that give I a smaller value., That is,

we have so far shbwn that 'this ca‘be-»néry"- with ‘Jno conjugate
point is a weak relative minimum, as explaine‘a in the
theorem of the preceding chapter on page 35.

In order to obtain a more complete sufficiency

B;I‘ch s We now construct a field F of extremals for this

" T




'fi.szg,,»“

the point 3 eonjugate to O is to the right of 2, as 1n

‘Figure 9.

4
Figure 9

‘As before, the tangents to the catenary (3.30) meet on

the x-axis at a point 4. We nOW"EEKEWﬁEE”Uf“the—trEnB-_

formation
b

: (3031) X - 34 = "";" (x - X4)

which stretches the plane along the radii through the
point 4 in such a way that every point (x,y) is replaced
by a ioinf (X,Y). Using (3.31) we'see that the points
(x,y)—oh the catenary (3.30)’are transformed into the

points (X,Y) which satisfy the equation

(3.32) y=01 cosh'§' X - 24H+aéL (5&-: ag)] = y(x,b).
r R iatiag > i D

RN v R s N N P

Tuis-te-w entonery.of g@ faﬁnysg o4 soeh Zelowith ghe .- L ..
parameter a = Xy b{x ao)/bo.Nawif we treat b as | ’
a var;able we obtain a oneeparameﬁerwfamily of catenary

afdécohtaining‘thedriginalcatenanyl2 for the special
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value b = b, ?iujthermare, each of these arce is tan-
gent to the two tangent lines joining the point‘4 to
t ia elear that threugh each- peint

(x,y) of the V«shabé& reglon F bounded by the two radii

’mjéiﬁiﬁg”fﬁé”ﬁﬁiﬁf”4“fﬁmfﬁéwﬁﬁiﬁfﬁ“ﬁpéﬁﬁ”3mfﬁ§f§ ﬁﬁsees'

a?upique extréemal of the family (3.22) which justitiés
calling this region P a field of extremals.
This means that for each point (x,y) in F the

equation y = y(x,b) has a unique solution b(x,y) which

can be shown to be continuous within and on the boundary

of the V-shaped field F except at the point 4, and to

have continnoue derivatives in the interior of the fielﬂ°

The same propenmiea hold for the slope-function.p(x,y)
of the field; this alope#function can be expressed in

B » \,
the form 2

(3.33) ~p(x,y) = 3 (x(x,3)).

The extremal arc E12 giﬁén by equation.(3.30)
around which the field P has been constructed generates

f cpaldsTr BTef- IR B




‘Thia is’ true When we recall from chapter 2 that on}an

extremal (in this case a catenary) the values I and I**

o . .8aTe- equal ,-and-also that I** is iﬁvar:tant+~—:i;1r cther -
__ words, wehave
* (3035) I(Ela)_ = I.**(E],Z) =‘I**(01‘2)1 "
~and hence
. )
(3.36) I(C 2) " I(El2) = I(c 2) - I**(cla) >0
:_ where the equality sign holds on.ly if 012,,, oincides
= | These results can be summarized in- the follow-
» _, . :[ng“theorem. S O S
Theorem: An admissible arc y = y(x) (x;sxsx,) in
S S the half plane yéo, joining two given points 1 and 2
and generating a surface of revolution of minimum
= 7 “area when rotated about the x_axia, must have the
; properties: | e
N 1) It is a single arc without cérmers of ome of i
“’"‘“"_* S *‘mww*ma*m% g = vcosh mbmw -
- s 21 It bas oq 1’9*”’;;:; paint_of g@ntact witm the en=. .~ .. w-
- "~ -velope G of tne one-parameter family cf these

catenaries through the point 1.

Elz»--»is an axzehaving these p%eperties, 'End'ff‘i‘ is -




ona“éf-tﬂb V-shaped regions shown in Figure 9 con=-

,taining E12 in its interior and bounded by two tan-

géﬁts*tﬁ“the catenary E which meet on the x-axis,

fﬁbn fhe area_ of the surféée 6f revolution ggnerat-“ j1

Wed by El? is smaller thaa the aresa geﬁerated by
every ‘other arc 012 of the type (3 34) in ‘the reg-
ion P and ;)oining the points 1 and 2.

"It is at once evident that the V-shaped field
"P in which the catenary E12 furnishes a minimum in the -

above theorem is not %unique, for the. two points O and 3

can be chosen at slightly different locations and the
field will retain its properties. In fact, though the
proof will not be given here, the follewiag theorem can

now be established:

Theorem: If B, is a catenary of the family (3.13%)

_ having on it no point conjugate to 1 except possibly .

at 2,‘ then the surface of revolution which it gener-
ates is smallﬁr in area than that generated by every
other arc 612 with\equations of the type “(3.34) Jjoin-
“"ing 1 with 2 and, except possibly at 2, lying entire: T
1y 0oy Tue~sivel ope ¥ of the sutspsranetsy ITwmtly

of catenaries thrcugh the point 1.

We still need to determine what arc will provide

a8 minimunm surface of, revolution when the point 2 is be=-




=56-

b o —

‘low the envelope G; also, we do not yet know that the
catenary Joining 1 with 2 will provide the minimum sur-

'm_face_of revolution when we include for comparison ‘all

arcs C 12 Joining 1 with 2 regardless of whether or not

-”$hey are withln.the V— haped regicnoi We also need toA

know the minimizing arc when the point 2 is directly
beneath the paint 1- this latter case will be investi-

gated next. o .

. FOIEPAE U ‘(
yin R )

Censider a segment E,, of the vertical line
through the point 1, and also an arc Cy3 with length
“MwWMMw—EWequalwtew#haimofeErzfnaa;inlzigurg 10.

: 1\\\
4D

Let the points at a distance s from 1 on E12 and 013
“espectively have the ordinat If 013 has
a single point Y distinct from the corresponding point

S

y of E,,, we must have Y >y; eQuality holds therefore

oy $27075 GONNOLGER Witk Byz. ThuB;  THE” aifiereiice
of the areas of the surfaces of revolution generated

by the tweiarca is 27 times the difference

| ' | ! )




-’msn may be stated 1n a theorem as follows:

—&“heeaeem‘ If a v:ertinal atraiggt line ‘has its upper

e LT

. Aint l in common with an arc C of the same

length, as in Figure 10, then the area of the sur-

face of revolutionogenerated by rotating E,2 about
the x-axis is always less than that generated by (3]_3
unless 013 is coincident with Elao

Thus we conclude that if the points 1 and 2 are

thenm generates a smaller surface of revolution than that .

generated by every other arc Joining the same two points.
':Dhia last theorem leads directly to another re-

sult for the case when the points 1 and 2 are not in the

. same vertical line. Let 3 and 4 be points on the x-axis

directly beneath 1l and 2 respectively, as in Figure 11,

A D BRI T SDTRRE™




an arc C,, in the half plane y 20 has length greater

than Y1 *+ Yo then the area of themsurface of-revolﬁ-

<wt%en generated by 012 is greater. than-or equal to- that
generated by the broken line L1342. VThue if we take a

eighbofhood of 51342 ‘such as is represented by thé -
- dotted line and the x—axle in Figure 11 °°“¢iqae to
1342 that any arc in it joining 1 and 2 is necesearily

longer than Y1 + Yoo then in this neighborhood the 1ine
’1342 is a minimizing arc for the problem of determin-

~ing a-<curve jeiniag.l and.z and generating a surﬁace ef

revolution of minimum area, This is the eo-called Gold-

echmidt discontinuous solution.

We have shown that the Goldechmidt discontinnoue
solution.Ll342 ‘and the catenary arc E12 without contaet
with the envelope G both furnish minima with reepeet to

curves Iying near them. We now ask whether or not one —

every arc 012 joining the points 1 and 2 and lying in

the half plane y =0.

— e m ——— ENEWEY,_YB1Q wes_;.en, let _m.é,_hg any m*oin—

ing 1 and 2 aud alez*rci "\2 w l34a*and ente;eec she

Lo TR haad - R ol

eavnlepw ¢ fer the first tim at a° point 5, 2e sh

T T & ’ - .-:7 n

Figure 12¢ When the point 7 on G is near enough to the
point 3, the length of E17 + G 75 is greater than.yl + ¥s

-~




Pigure 12 
and hence from our previous theorem we have

- (3.38) I(C ‘ ".'«'I(El'l * Gq5) 21 lases)y

" where equality holds only when 5 is at 3 and Oy there-

~-~~~~~-—~~--—~~-~-~-—---—fore—~ea:l:nci"dmr’with"“li"ig;ﬁ“‘“"Furth‘ermor'e";"“‘i"f"‘ we allow 5 to

move along C,, toward the point 2, the difference

(3:39) 105) = I(iysee) = [ Pyas 23 F + 9D,

L

where s is arc length measujf-ed frox_L:L‘__tov;ard 5 on 015, -

‘has its derivative

(3.40)

‘with respect to s, always positive or gero, since the

maxinup. shoclute .wlus afethe matip A¥s/dn. Saunity

"~ -

e -

LLTOR

Hence the difference {5.33) is mever decrsas
moves toward 2 om 0

tive or zero value when the point 5 is on G, as 'showix o
by (3.38), then when 5 reaéhes 2 we have

“
»

S - ~




(3.41) . I(Cy,) ,-‘l(L1342).>.9..

.

1t can beshowntha%equamy holds only when C,, and

Clearly when the point 2 1s on or below the en-

- That is, we nave established the following fact: |

When there ar’e fewer than two oatenaries joining the “
points 1 and 2 the Goldschmidt discontinuous solution |

always furnishes an absolute minimum,

_bove G the catenary E,, having no contact with G, and the

Goldschmidt discontinuous solution L13‘42, both furnish
minima in sufficiently small neighborhoods, and the one

which generates a smaller area than the other surely pro-

vides.an absolute minimum. That is, in the case when

ues of I on arcs 012: above the envelope G by a previous

" theorem and also is smaller than the values 1(012) for

w‘_grves meeting G_gjuce for such curves I(Elg_‘_< I(L 3. )s _,.u..

.Lic....) A similar argument holds for lgnla,zz <'u31219

- o -~ s

and when the two 1ntegrals are equal, then each of the

arcs E12 and L13 42 generates a smaller surface of revo-

lution than other arcs with the same end points. S
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e

~ing which- of the values I(E,,) and 1(31342)-15 the smal-

'.1e_r,‘. we present a geometrie' argument, The diffez;ence of

- these valués is given by

i

P

s, T ST e G
‘ -3 ) (12)‘ (1342) o y@sA g(yi +3'2)_

" As the point 2 moves from 1 along & fixed catenary E the
dy2 , o
derivative y,(1 - E'é'é') of this difference is glways posi-

" tive since the tangent to the catenary is never vertical,
~ Purther, the absolute value of the ratio -d-yz/ds—z is never
as great as unity. Since I(Elz) = 0 when the point 2 is
| at lw’ ‘the diﬁjerence I(Elz)." I(I’l342,) is then‘negativ.e
and when 2 is on G the difference is positive since |

I(Ly 34 |
intersecting G. Thus I(-Elz) = I(I.13 42) for only one
- position of the point 2 on the catenary between these

extremes.

——In terms of the parameter

(3.43)  ued+ (x-x,) oshe
(3.43) us=0d+ (x-x) ¥,

——— - e iy wequa bieTts of the farilype{3.264e0f catenaTries through

- - > e

”*”tge~3“¢“?*»m%¥~be written
) xex ¢k (u - | “cosh u
(3044) X ""A xl +m »(u ... a)’ 'y = yl cos GL

- and the values of the two integrals in terms of the para-




meter u of the po_intﬁ 2 are fgﬁnd to be

‘(3.45) I(Em; f y-un y2 du =
L R — g‘,w .

—Ef—c — 93 [u + (einh u)(cosh u) ’d‘ . S

(3-0 46) - I(I‘1342) = % (Yi* Yg) = e :
2.
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This means that I(Elz)' = I(L1§42) 'fhen N R
2.

(3.47) u + sinh u cosh u - coah u =

oL+ 8inh« coehot. + coshzoL °

This last equation and the equation (3.43) define the
locus H of the points where I(E,,) =V1;__(L1342), It can

be shown that the shape of the curve H is similar to

that of G, as indicated in Figure 13.
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We now conclude our discusgion of surfaces of

revolution of minimum area with the following summary:




o

Fo; a point 2 above the curve H in Figure
qudschmidt discontinuous solution L1342

-1 towz-geae%axeszafmiaimumfwm fac

-lution relative to those generated by other arcs
and lying in a sufficiently- small ‘netghborhood of
mmniLi342, but the amallest surface

lute minimum, is in this case furnished by the

unique catenary are E12 Joining 1 with.z and hav-

ing on it no point of contact with,the envelnpe G,,.WMu 
~When 2 is on H the surfaces.generated by
L,54p and E;, are equai in area and smaller than

those generated by other arcs joining these two

points 1 and 2. |
When 2 is between H and G, the'catenary

arc E,, furnishes a relative minimum and the Gold-

schmidt discontinuodd)solution furnishes the abso-

~lute minimum. "

When 2 is on or below G the Goldschmidt
eolution is the only minimizing arc joining 1 and

.2;.8nd_ 1t furnishes an.absolute minimum,
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Kenneth 0. Bonchelle,' son of Mr. ana urs, Henry
- Wirt Bouchelle, Sr. was born in Elkton, Maryland on 'Aug-a
ust 1_9.,"”192‘7, He completed elementary school in 1940

f and high school in 1944, both in Elkton. ~ He rece:l:ved

__the Bachelor of Arts Degree, with a major in mathematice _ |

and a minor in physics, from Western Maryland eoﬂege,

Westminster, ‘Maryland in 1948. The next six years he
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County, Maryland, until he was drafted into the United
States Army in September, 1954, He served for two years

in the Signal Corps at the Army Electronic Proving Grounds,
Fort Huachuca, Arizona, _assignedto Combat Development

\

‘Department as a mathematician in the Scientific and Prof-

 essional Program. Upon discharge from the Al-‘!!!liﬂ_h?, taught
fon one year at Lindley Junior Hiéh School, »Gre‘eneboro,
North Carolina. In September of 1957, he came to Lehigh
University ae a Graduate Assistant in the Mathematics
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