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_INTRODUCTION 

. ' In recent years many interesting and-important topics . 
· ~ on differential geometry have been developed quite well. One 

. . of these.topics is the.affine connections and groups.of hol- . . " 
. , 

onomy on differentiable manifolds. The purpose of this thesis 
is to make a primary study on this topic by using the technique 
of principal bundles in algebraic topology. 

I~ §1 we first define a manifold {M,"Fk} to be a separable 
Hausdorff space M with a family Fk (l~k~oo) of,real-valued 

functions defined on open-subsets of Mand satisfying certain 
conditions. This definition is identical with the usual one 

' by means of overlapping neighborhoods. It is shown that it is 
possible to determine the family Fk from the knowledge of a 
certain sub-family of Fk. Finally the product space of two 
differentiable manifolds is defined. 

In §2 we define first the equivalence classes of functions 
o.f Fk at a point p on a differentiable manifold {M, Fk} and 
then the spaces of tangent covectors and vectors at p. It is 
proved that every tangent space of a differentiable manifold 
of dimension n is a vector space of dimension n. 

Exterior differentiation and multiplication on the dif­
ferential forms, and the. properties of the Grassman ring are 
defined and given in §3. 

In §4 on a differentiable manifold Ma certain structure 
called an affine connection is- first defined. This introduces 

-1-
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.. the covariant differentiation of tensor fields; the torsion , · · 

tensor and the curvature·tensor. 

The principal bundle B on a differentiable manifold M 
is defined in §5. Equ~tion of structure and'Bianchi.identities 
are derived. Necessary and sufficient conditions for a syst_em 
of linear differential forms in.B to define an affine connect­
ion on Mare obtained, and a geometrical interpretation of an 
affine connection in terms of the relationship between Mand 
Bis given. 

In §6 it is proved that an affine connection is locally 
. .. 

flat, if and only if the torsion tensor and the curvature 
tensor vanish. A disc·ussion on frames and principal bundles 
leads to the definition of the group of holonomy. · 

1. DIFFERENTIABLE MANIFOLDS 

DEFINITION 1:l. ! differentiable manifold is.! separable 
Hausdorff space M with~ family Fk (l~k~oo) of real-valued 
functions, defined on open subsets of M such that the follow­
ing conditions are satisfied: 

1) Every function f, whose domain U of definition on M 
is the union of~ family of open sets Ua, belongs to Fk, if 
and only if its restriction £1ua .!:£. each Ua belongs.!:£. Fk. 

2) For each ,EOint p e M there is .! neighborhood U of p 
and~ homeomorphism h : U - h(U) C: E0

, where En is an n-.dimen-
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. si·onal Euclidean space, such that the family F~of functions 
' defined in an o:een subset V, p e V c U, is identical with the ·· 

family go h., where g runs over all functions of.class kin 
h(V). (! function in an ,QPen subset V8 of En is said to be ~·· < ·,~,Jll of class k., .if it has parti§!.l_ derivatives of order ~k at every 
point of the subset, and .those of order k are continuouso) 

The functions of the family Fk are called functions of 
class k on M., aqd are said to define a differentiable structure 
of class k on M. The differentiable manifold ·and" the Hausdorff ' 

space Mare said to be of dimension n. The space Mis called· 
the underlying' topological space. The differentiable manifold 
will be denoted by {M, Fk}' and also by M when ever there is 
no danger of confusion. If we let g run only over the ana­
lytic functions in h(V)., that is, all functions which at every 
point of their domains of definition can be expanded into con-· 
vergent power series, then the manifold to be denoted by {M, F~} 
is called analytic. 

Leth be defined by 

(1.1) h(q)·= (h'(q), . . . ' 
then we can write 

(1.2) g O h(q) = g(h'(q), ... ., hn(q)), q EV. 
jf 

The functions h'(q), . . . ' hn(~), which obviously belong to Fk' 
are called the local coordinates in U or the local coordinates .,,, 

\ at the point p. \ 

· Suppose that~ instead of U, there exists a different neigh-

J '_1 

. -·-· --,,-•-·-····· .... _._.,.,,-,--,_-,.,-----,=~~r-=v,•c;"e.."'e."<t';~',•c""'"'-="~',----.-. -·::,-:,"'!---:!..,_,,~,.r, ... ,•:•,~;;,,,,"'"--'...:,--~•-:•·-~10 . .,.,,,,!<.~'-~'"-"11:<1"1"";1/r.'iA-:"'•'""'.,,._.,-,..-.... ~ ... ~-,,.....-.- . ' · · - .· ·-·. 
-····•·'""'''"~----..-··~• ,---, .. ·•··-·,·•',·-· _ -•,•· •... ,, --_. •.• -·--·-•·•-• ----- _ _. ___ ~ ,....-.....-..-,.,.__, ... ,._._.._,__,., ...... ~.,,. •• _,_r.-1 ~~••·• ,.,.._ .• _~..,--~-~-·--•'!" .- .. ,.-, .•.•. --,-..... ......,, ------.-·,,.,•-· 
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· borhood-u' of p, with the, homeomorphism hi : u'• -+h 1 (U'), hav-.• 

ing the same properties. By rest_ricting · to a smaller neighbor­
. hood when necessary,· We assume U = U'. Then h' · o h-l is a 

homeomorphism of h(U) onto h' (U) and can be defined by the 
equations 

(1 .. 3) i = 1, ... , n· 
' 

where the functions in the right-hand side are of class k,. 

· · h' 1 ( ) h' n( ) f t · f 1 k · U A since q , .. o , q are unc 1/0ns o c ass in . · 

function of class k in V can now be· written in one of.~-the 

two forms: 

f = g O h = g' 0 h', 

and we have 

(1.5) g = g' 0 h' 0 h-l 

or 

(1.6) (h , hn) = g J • • • ' 

,'Jt ., 

.... 

This formula gives the relation between two ''representation°s'' 
g, g' of a function of class kin Vin terms of two systems of· 

local coordinates. 

From the family of functions Fk we can select a subfamily 
Fk having the following property: 

(k) To every point p EM there is a neighborhood Ucon-
. n taining pin which there are n functions h', ... ,h of Fk such 

that 

1) The mapping h : · U -+ h(U) of U onto an open subset · 
. n 

h(U) of E -defined by 

··,1 

. ··.t' 

, . 
t2- I 

t'., :t 
r :_, 

, -- , . -·,···•- .------=-~"'~r-~,-..... ..-...---...... --.!"",_....._,.....,... __ . __ ~----··'·,•-v·•-•--'""'.-''·' ·.-.· ••_·>,-_"'":;.::'·~·"1-;';~ .. ··. "; - ··~ -,······-~,- . :. , ; . , , · .... 1-".,.: _:,.' :-;·• .•,, 7"'::":':':S0 .. ('' ,., .. ';··>-:· _.·,.::,_., '.·" ..... '.."· ... >, ... :-_;,,·,:·~:,,.-r ·"C ·,:~ ... , -~~(\0/,•,~c·,· • • --
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-_ - h(q) = ·(h I (q) J • ·• • i hn(q)), 

--- . is a homeomorphism. 

~. ... . 

2) : If f E. Fie is. defined at p, there is an open subset 
V of U, p E V, such that £Iv is identical with g o h, g being 
a function of class kin h(V). 

'l'his shows that if we know Fie we can determine' Fk by the 
following theorem: 

THEOREM 1.1. Let M be .!. sep-arable Hausdorff space with 

~ familX Fk of real~valued functions defined on open subsets 
of M such that property (k) holds. There exists one and only 

one minimal family of functions Fk defined on open subsets of 

: M, which contains Fk_ as _e. sub-familx, such that {M, Fk} is .e. 
differentiable manifold. 

Let f e Fie defined on an open subset U' c M. Let p e U' 

with U as its .neighborhood having_ property (k). Suppose there 

is a neighborhood V c U "U' such that £IV is identical with 

g o hJ where g._ is a function of class k in h(V). If f has 

this property at every point p EU', then it belongs to any 

family Fk of functions, which contain Fk., and defines a dif­

ferentiable structure of class k on M. 

Let Fk be the family of all these functions f. Then it 

is easy to verify condition.s 1) and -- 2) of definition (1.1), 

so that {M, Fk} is a differentiable manifold of class k. 
COROLLARY 1.1. A differentiable structure of class k -

on M defines !. (minimal) differen.tiable structure of class 

\ 

.------·- -----··--·--------·--·-··------- ··- - ·--- ·······--·--,-····-------------------·--··--·--··---·-·--·- ··-- ~-··--· ~--
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· l<k .EI.. the condition that the fun.ctions of class k are also 
functions-of class 1. 

·-

We can define the family of functionsFk in the-topological 
; · sense, that there exists a countable open covering {ua} of M 

n such ·that to each a there are n functions u~, ... , ua of a 
family Ilk~ which also determine the dif.ferentia~le structure, 
with Ua, as ,=heir domain of definition and the mapping 
ha : Ua -+ En defined by 

ha(q) = h~(q), •.. , h~(q), q e Ua 
is a homeOillorphism of Ua onto the open subset ha (Ua) of En. 
Also we might add that if ·f e Hk is defined at p and p E Ua' 
there exists an open subset vc: Ua containing p such that fjV 
is identical with go ha, where g is a function of class kin 
ha,(V). From the above discussion we have: 

THEOREM 1.2. The underlying, space M of.!. differentiable 
manifold {M, Fk} has .e_ countable open covering {ua} with the 
following properties: 

1) To each a there is .e_ homeomorphism ha · : U a -+ En. 
\ / . \ 2) If p e Ua n U~, there exists!. neighborhood V of p 

such that each coordinate of the _Eoint h~ha=l(q), q E ha(V} is 
.! function of class kin ha(V), and the functional determinant. 
of these n coordinate functions ·is / 0. 

Conversely, given on .!. swarable Hausdorff space M !. count­
able open covering_ {ua} a~d !. homeomorphism ha : Ua -+ En for 
each~ a, such that condition 2) is satisfied, there exists 

., 
·; 

' l 

-.~_·o-r:··~·,.,·~··<,·;···: ·:~~.~:!'\m;"tr:'.':'1~~~!!".~.".'t .. H.~.<:!-;;,.,.. ....... · 

~ ... 
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.! un.iguely determined differentiable structure of class k on 

M which admits .,;the coordinate· functions in ha(U
0

) as functions. 

of class.k. 

When a differentiable manifold has a covel;'ing {ua.} with . 

the properties 1), 2) of the above theorem, then we call Ua 

the coordinate neighborhoods, and the coordinate ha,(P) relative 

to Ua are called the local coordinates of p. 

DEFINITION 1.2. Given two differentiable manifolds. 

{M, Fk}' M', F:i}, and _!_map_ Q): M -1-M 1
• 

f I o cp/ (p (U') defined in the open subset 

If the function 

Q1 (U ') correspond-

ing !Q. !! function f'I u• in Fk, belongs to Fk for every f' of 

Fk_, then c;p is call_ed differentiable. 

. DEFINITION 1. 3. Let {M, F k} ~nd {M' , Fk} be two different- . 

iable manifolds of the same class k. · Let 1T: MxM' -+-M, 

1r~"'> : MxM' ~ M' be the projections defined respectively EZ. 
1r(p,p') = p, 7T I (p, p I) = p It• 

/ 
1 ~ To ~ function fl U in Fk corresponds f! function f o Tr .,,.- (U), . 

and similarly,"' to~ function f'lu' in Fk_ corresponds!! function 

f' o .,,.,1.,,.,-l(U'). These functions define!! differentiable 

structure of class k with the underlying space MxiVL 0
o It is 

called the product SJ?ace of the two given manifolds . 

. 2. TANGENT SPACES 

Let p E M be a point on a differen~iable manifold {M, Fk}. 

.. 
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}.\ya function of class k at p we mean·a function of Fk with 
. . 

. · a domain. of definition which· is a neighborhood of p. To· such 
.· -~ .. -fun~tions we introduce an equivalence relation: two functions 

() 

• I 

f and g of class k ··a:t· p belong to the same class if they are 
identical in a rteighborhood of p. Thisfs clearly an equi-

·valence relation. Define addition and scalar multiplication· 
of two classes of functions {f} and {g} by adding and multip­
lying their representative~ respectively. With this definition 
o·f addition and scalar ·multiplication, all classes of functions 
of class k at p form an infinite-dimensional vector space de-
noted by SP. 

Let Ube a neighborhood of p, and u: U -+u(U) a homeo­
morphism of u. ·onto an open subset of E", defined by 

' I ) n ) u(q) = (u (q , ... , u (q ), q e U, 
where u'(q), ... , u0 (q) are n functions ~f .class kin U. Then 
·a function f of class k at p has the form f =go u, with g 
of class k ~ 1; f is said to have zero differential at p, if 
all the first partial derivatives of g with respect to u' , ..• , un 
vanish at u(p). This property is obviously a property of a 
class of functions {f} at p, and is also independent of the 
choice of the local coordinates u', ... , n u . F .f ,1 ,n or, i u , ... , u 
form another. local coordinate sys.tern at p, the two representa­
tions g, g' off are related by the formula (1.6). Using the · 
formula for the partial derivatives of a composite function, we 
g~t 

·. ! .-~-·."'. 

" · . 
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.. I 

l 

. . . ,·< >+'. : . . -!"' 

.n .· • / ·,-9-
-~ =l c)g' <)u•J 

. . • • ' ~u1 <)u•J u, (p) du
1 

i = 1, ..... , .. · n . 
u(p) -,j=l u(p) 

I 
I 

· 'lt follows that · the vanishing of. the partial ~erivatives 

:-:dg 
1 

• . iniplies the vanishing of ( Ogi • , 
c:)u'l. u' (p} . . . C,u u(p) 

Thus it is per£ ectly · meaning.ful to speak of the classes 

of functions of zero differential ~t p. Clearly they form a 

linear subspace of S, which we shall denote by zp. p . 

DEFINITION 2. 1. The quotient space V~ = sp/zp ¥J. called 

· the space of tangent covectors at p, ·its elements being tangent, 

covectors or covectors. The duel space VP of V~ is called the 

_space of tangen~ vectors or the tangent space at p, its elements 

being tangent vectors .Q!. vectors. 

A covector at pis therefore a.residue class relative to 

Zp of a class of functions ff}. It is uniquety determined by 

a representative f, and shall denote it by df(p) or df. A 

vector will be denoted by X(p) or X. The scalar product of X 

and df will be defined by (X, df) = Xf. 

THEOREM 2.1. Let f, £', ... , fm be functions of class k at 

p, such that 

(2.1) f = F(f 1 , •• ·., fm), 

where F(f', ... , fm) is,.!. function of class 1 in.! neighborhood 

m dfj(p). 
f (p)) .. 

.. 

of (f'(p), ... , fm(p)). Then 
m 

. df(p) = l ( <)Fj) ' . 
j=l c}f (f (p), ••. , 

• • • ,_ .,,. ·-,._,,,,~• ~ r" ,, .. •ro·••--.•-·~-,- •'·••·'· .-, '"'•·• . 
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.... 

'· . .. I' ' FQr simplicity · let us Wt'ite 
. ...... ~,.,~,..-····· 

• f-. -<}F . ·a. == • 
J - ~~- m ' j' = 1, .• ~, m. 

·" 
(f'(p), •. . , f (p)) . 

The theorem then asserts that the function 
m • 

f - \ a.fJ· . L J 
.. j=l 

has zero differential at p. In terms of a local coordinate 
system h 1 , ••• , hn at p let g, g', ... , gm be the representations 
of£,£', ... , f~ respectively, so that 

f = g Oh, fj = gj Oh. 
Then we have, by applying £e homeomorphism~~()~ (2.4?)", · 

i(· 

n n) \ m( , n)) g(h I J ••• J h ) = F(g I (h I J ••• J h J -; • J g h J ••• ' h . 
Hence the function 

~ . 
g - L.. a'jgJ 

j=l 

has all first partial derivatives equal to Oat h(p). 
COROLLARY 2.1. The covectors at p satisfy the identities 

(2.1) d(af + ~g) = adf + ~dg, 
(2.2) d(fg) = f(p)dg + g(p)df; 
where f, g are functions of class k at p, and a,~ are real 
numbers. 

COROLLARY 2.2. Every tangent space of!. differentiable 
manifold of dimension n is a vector space of dimension n. - -

PROOF~ Since every function f of class _k at p • ' 

1S repre-
1 sented by F(u , ... , un), df is a linear combination. of dU I, ••• , 

0 

:!-I_ 
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By·Corollar, 2.1., a relation of the form 
1 n ···· · a 1du .. + ... + a du = O, n . 

a1, . ·· . , °'n being real _numbers, ~mp lies . ,€i -

· 1 n d(a1 u + ... + anu ) = 01 

~­which means that a1 u
1 + . . . + a

0 
un has zero differential at 

. _ J:1;- But this· is true only when all the a' s are zero. Hence 
we conclude that the tangent space of dimension n is a.vector 
space of dimension n. 

(2.3) 

(2. 4) 

COROLLARY 2.3. 

X(af + f3g) = aXf + t3Xg, 

· X(fg) = f(p)Xg + g(p)Xf. 

3. EXTERIOR DIFFERENTIATION AND MULTIPLICATION 

.. At first let us consider vector spaces Vr of ant~-sym-
metric tensor of order (r, o), r = 1, ... , n; and define 

J•' 

V = V
0 

+ v1 + ... + Vn, V
0 

being the one dimensional vector 
space isomorphic to the real field. Then Vis a vector space 
of· dimension 2n. 

V becomes a ring called Grassman ring, by introducing 
a multiplication A which has the following properties; 
(3.1) 

(3.2) 

(3.3) 

f A (g1 + g2) =·£A g1 + f" g2, 

(fl + f2) /\ g = fl " g + f2 " g, 

If f E Vr' g E V
8

, then 

i. ·f /\ g = (-l)rsg" g. 

, 

.~ .... ·,J•_ ....... 

·,.- .. ·~, 

~ ·--·-- -

,1t·,: 

'11 

I 

. I 
i 
I 

.J 

I• 



I: 
• I i 

,,.,··,i·: 
. ' 

I 

.. 

~12-
"' . . . 

· A differential polynomial is a mapping ro : M -+ W., where 

W = UGp and G .is the Grassman ring associated with the point 
peM p . . . . . 

. p. This mapping m is always · to be locally diff erent.iable of 
.. > . 

class = 2. If· ro(p), p E M, .is· a form of degree r, ru is called .. 

a differentiable form of degree r. 

We,~ball define an operation d, called exterior different­

iation which carries differential polynomials into different­

ial polynomials by the. following properties: 

. (3. 4) 

(3. 5) 

d < (J)1 + (J)2 > = arn1 + drnz • 

d((J)l " (J)2> = drnl /\ (l)2 + {-l)r(J)l /\ drnz, 

where m1 is a differential form of degree r. 

(3. 6) If f is a scalar (that is, a differential form. of 

degree zero), df is the covariant vector such that d(df} = O. 

Let us choose for v1 a base with the differentials 

(i = 1, ... , n). 
• • ]_ ]_ 

dx 1 A dx 2 /\ 

Then a ?ase for Vr will be 
ir 

. . . I\ dx ' il < iz < ... < i . r 
Hence we can write a differential form m of order r as 

(3. 7) (J) =\a. . L 1 1 ... 1. 

i1<· .. <irr 

where the coefficients may be assumed to be anti-symn1etric. 

It follows from (3.5), (3.6), (3.7), 
• • • l.l . ]_ 
d( dx /\ . . . A dx r) = O, 

l .. il 
dru = da. . ~ dx /\ 

11 · .. ]_ . < <. r 1 1 ··· 1 r 

0 .: • 

• • • 

d(drn) = o. 

• l. 
A dx r, 

\. 

' ' 

,,· ! 
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· A differential form ru is called ~act 

-13-· 

if <lo= 0., and is· 

call·ed derived if there exists a differential form e such that· 

·co=. cfB! Then from d(cko) = ·O it follows that every'derived form 
• exact.,.~, J l.S 

" 

Let (x 1 2 xn) be the local coordinates of a point , X , ... ' 
u, where u • subset in M, Then we define the X € l.S an open 

• 
exterior multiplication A on the differentials dx1 by the fol-

lowing propertie$.:; 

(·3. 8) 

(3.9) 

(3 .10)" 

(3.11) 

(3.12) 

• • • • • 
dx:1 A dxJ = -dxJ A dx1

, 

• 

a /\ dx1 = 
• 
l. adx , 

• 

:-

·where a is a real function of x1
, ••• , 

n 
X • From (3.10) we thus 

...... ~· 

have 
• • 

dx1 A dx1 = 0, 
• • 

dx1 
/\ dxJ =/ 0 for i i j . 

4. AFFINE CONNECTIONS 

In order that differentiation of tensors;be defined on a 

differentiable manifold M intrinsically, that is, independent • 

~f the choice of local coordinates,_ we shall need an additional 

structure called.~~ affine connection, 

·DEFINITION 4 .1. An affine connection i.s defined,. B.I giving 

., 
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. in every coordinate neighborhood, .!. set of linear~ differential 
i • . . 

. forms c{., such that!!! the intersection of two coordinate 

neighborhoods U, V, ~ have 

(4.1) i *i k i k dp. + m kp. = pkru.:, J . J . J 
.............. ...,-,:;. 

where repeated indices imply summation, and 
• (1) *i 

(4.2) p~ = _xG 
• • J ~XJ 

the x11 s and x *i, s being the respective local coordinates . 
. To show the consistency of the above definition, consider 

. *. **i in three local coordinate systems x1
, x 1

, x .. 
~ '~i .... . ~ a/ck ~ *i .. 

d ( oX. ). + (.l) )'(l.oX = oX OS~ J 

OXJ ~ k~XJ axk J 

~x**i **iax~*k ~x**i *k. 
d(dx*j )+ 0\ ~x*j = dx*k mj ' 

from which we get 

d(~x~i) + ~*li:dx~*k = 
<)xJ c)xJ 

<)x **i ax *l k 
= *l k m. dX OX J 

--
c)x-lc*i k 

k (1). J 

<lx J 

which proves the consistency of the definition, that is, the 

.relation (4.1) in one local coordinate system.is a consequence 

of the relation in other two coordinate systems. 

By i11:troducing 

(4.3) 
. ~.i 
l. oX 

qk = *k' , <}x ·-~· 
·\. 

. .I 

' ··- ··--------·-·-·····" ··-···, ... ~ ····•,;"'"•'•"···"''·'"'"'. ----~-.--"··''"··'- __ .. _,..,, ______ . .., ... ,~··«·~··~·--·~- ~--,•,· ,_ '. 

. i 
I 

i 
I 
I 
1 
i 

l 
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• (l.,. 

· .·we-have. 

j k j k· k (4.4) piqj = qipj = 61, 
I • • 

that is, the matrices (pj_) and ,(qf) are inverses to each othet, 

and 6t are the Kronecker deltas. Differenti.ating any one of 

these sets of equations (4.4), after simplification we obtain 
; O k e *k 

d -+ ]_ 1' q • ~ q . = qkrn • . 
J K J J 

(4.5) 

These conditions are clearly equivalent to (4.1). 

Now let"US assume an affine connection be given on a dif­

ferentiable manifold M, and consider a contravariant vector 

field X, whose components in two local coordinate systems 
. *. . ~,~· 

x1 and x 1 are X1 and X ~i respectively. Then we 1can write 

(4.6) x*i = p;Xj . 
J 

By differentiating (4.6) and using (4.1) we get 

(4.7) a.x*i • • • • 
- 1d.XJ + xJdpj - p. 

.. f ;,' J • • . k 
w*ip~)Xj 1dXJ + (p~illj - p. -- ' J k J 

or 

(4.8) 

Define 

(4.9) DXi = x}. dxj = dXi + m~j . 
J J • 

1 Then X, j are the components of a tensor field of type (1.1). 

Moreover, we 

(4.10) 
• 

can write (4.8) in the form 
*. . . ox 1 = p~nxJ , 

J 
so that DX1 are linear differential forms behaving like contra-

, :1 t J • 

-variant vector. They are said to define the covariant differ-

ential of the vector field X. 

I, 

i 
~ 
I 

1 
I 
I 

''• -··-•"•""--·•~·'••·•-d•.,,.,,<' ,~•-•,•"•"•, >I,' •'c ,.,,,,, ,·,•,•,C•,,••~•·'~e,(,.,,,,,-,,·~_,,,,.,C~,,,-,..,,C~q,.,•,."•••·•-~--•--·~••- •·•·•-·•- • .,.,, •• 
• • • . •• .. , ...... * ···--·~··~~-,-.,,-.• -.. .. . . • . I 

I 



---

. . 

. ..,,, 

- ··.,,,,__... ' ' 

. · .. j. 
t----

.... 

' . -16;.·. 
. 

. Now let us extend our investigation to a ·component of a 
. e • 

I 

tensor field x1 Jk- of the type (2, 1) relative to the local 
• . . 1 coordinates x, and show that by the existence of the affine 

connection on the manifold we can get a component of a tensor 
field of the type (2,2); Under a change of the local co­
ordinates we have 

(4.11) x*ij = pipjqrxlm k lmk r· 
By differentiating (4.11), and using (4.1) and (4.5) we can 

Putting 

(4.12) DXijk = xijk,ldxl 
_ axij + roixlj + Jxil _ co.lxij - k 1 k _ 1 k K 1 ' 

we· then have 

(4.13) nx*ij = pipjqrnx1m le lmk r· 
From (4.12) it follows that Xijk,l define a tensor field of type 
(2,2). Again we shall say that DXijk define the covariant 

e e 
I ' differential of the tensor field x1 J k. ·' 

i , ,_I 

L 
L 

i 

i 
• t 

i: 
" 
l 

I 
;' . ; 11 

··1 

' 

,· 1 

I I 
l;:-1 

. I 

f-1 
,.f 

"~ )I I 

: I 

• I 

I 

: I 

I 

• 1 

I 
D 
I 

--
1 

_.\ 
D 

"' -9 - ---· - ..... -· - "ti Similarly, with the same procedure we can extend our defin- ~ 
~ ition to a tensor field of any type. In particular, for a ~ 

~ tensor field of type (0,0) its covariant differential is the 0 

ordinary differential . 
. . 

. ' In the previous discussion, especially in the construction • 

of (4.9), (4.13) from (4.7), (4.11) we notice that the covariant 
.. 

'J> 

''I ! , 
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differentiation of a tensor leads ·to a·new tensor field with 

one more covariant index, and this depends only on the affine 

connection~ 

Now we introduc.e. :~he differential form .·.··.- ~ 

(4.14) i ri. j °1c = jkdx . 
To find i-jk' substituting (4.14) in (4.1) we ~btain 

cl2x *i k ~i c}x *k *l c}x *i k h 
( 4.15) c}~ axk dx + ' lkc}xj dx = clxk r hj dx • 

Multiplication·of (4.15) by ~xP. thus gives 
c)x*i 

t4.16) p _ a2x*i ~xP r*i clx*k ~x~~ clxP 
r-hj - axj~xn ax*i + lkc}~ c}~h c}x*i' 

which are the classical formulas for transformation of the 
• 

components r-'jk of an affine connection. Now let C be a 

:- .. ,_,. 

parametrized curve in M with parameter t. The tangent vectors 

X(t) are said to be parallel along C, if DXi = 0, or1from (4.9), 

(4.14) 

(4.17) d.Xi ri dxj k 
dt + jkdt ~ = O . 

! 

~ This generalized notion of parallelism is called the 

parallelism of Levi-Civ·ita. (4.17) are a system of ordinary 

differential equations of the first order. From the existence 

theorem of differential equations, this system has unique 

solutions xi(t), when the initial values xi(t) are given. 0 ' 
' In other words, every tangent vector can be displaced parallely 

along a curve C. 

A parametrized curve is called an auto-parallel curve, or 

I I 

1 
. ; 

J 

: I 
\.'1 
, : I 
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a path, or a geodesic, if its tangent vectors ·are parallel 
• • I 

along it. If the arc lengths is taken as the parameter of a 

curve C, then the components of the tangent vectors of Care 

given by 

(4.18) 

If C is a 

(4.19) 

• 
geodesic, then from (4.17) X1 satisfies 

dXi i j k 
d + r .kX X = 0 . s ' J. 

Under a parallel 1 displacement, the scalar product of two 

tangent vectors remain unchanged. Moreover, we have 
- 1 2 . 

(4.29) ~(xlx2) = f ~2 + f ~1 . 

Consider first a scalar function f. Relative to a local 
• 

coordinate system x1
, by definition we obtain 

• 
f,i = clf/ax1

, (4.21) 

( 4. 22) 

_ el2f rk elf 
f,i'j - axiaxj - jiaxk' 

el2f k elf 
f,j'i = elxjaxi - f7ijelxk. 

From (4.22) it follows 

. (4.23) 

Define 

(4~.24) 

f, . , . -
]. J 

k k c)f 
f,.,. = <r .. - r-·> k . J l. l. J J l. <)x 

k k k 
T ij = f'ij - r-'ji' 

k' 
where T . . is anti~symmetrtc in i and j, and is called the l.J 

Torsion Tensor. 

Next consider a contravariant vector field with the com­

ponents x1. By definition we have 

(4.25) ·Xi,.= c}X~ +r~ x1 . 
. J <}xJ J 1 

•'. ,.,) 

<' 
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Covariantly differelltiat;ng (4~ 25) "With respect ~o · xk we get 

' i ~xl.,; ·+ ri xh . rh xi 
( 4. 2 6) X 'j ' k = clxk tr . kh . 'j - j k 'h 

where the term: . in the parentheses are synnnetric in j , k. 
' '. 

Similarly, 
• 

(4.27) ]_ 

X 'k' j 

(4.28) 
• • ]. ]. 

X 'j'k - X·,k'j = 

where 

(4.29) 

and are the components of tensor fields of types (1,3), (0,2) 
• 

respectively. R
1 ljk is called the Curvature Tensor. 

From (4.29) it follows 

(4.30) a a 
R .. k = - R .k. l.J ' ]_ J 1; ;_,. 

1..:1·, 

'I 

f 
l 

r 

I 
I .. I 
I 

I 
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for all affine connections, and 

(4. 31) 
a a · a · 

R .. ,, .• .k+ R .k.+. R .. k .. = 0. : .. iJ. ' J l. . . .+J 
. · for· all symmetric affine connections. 

f 

If we take the derivatives of similar formulas for general 

tensor fields, we do not -get new tensors of the affine con­

nection. We shall discuss this by simplifying the computation 

by using the principal bundle. 

5. THE PRINCIPAL :BUNDLES 

DEFINITION 5.1. A frame is the object formed .EI.!. point 

p on! differentiable manifold M of dimension. n and n .. linearly 

independent tangen~ vectors!! p. 

DEFINITION 5.2. The principal bundle Bis the space of 

11 f M . d. . . 2 + a rames over ; its imension is n n. -------­
• 

To a local coordinate system x1 on M there corresponds a 

system of local coordinates xi, X~ in B such that then vectors 
i 

of the frame are given by 

(5.1) 1 -xkc). 
i - i dXk • 

Since these vectors are linearly independent, 

(5.2) Let ext> i o. 
Let the matrix eYf) be inverse to the matrix ext) so that 

) j k j k k (5.3 X.Y. = Y.X. = 5 •• 
1 J i J 1 

Suppose we restrict our discussion 1 to a neighborhood,)'in. 
. *. which the x1 and the second local coordinate system x 1 are 

- ~-----;-.· 

. I 

f 
. 1 

. I 
, 
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system of local coordinates in B· 

c6rresponding to 

(5.4) 

. *k ,c_-

the Y. we then have 
. . ]. 

(5.5) 

the last of which implies, in particular, 

(5.6) . y*idx· *j - Yid j 
• - • X • 
J J • 

It follows that the differential form'a1 having as represent-

atives both sides of (5.6) is independent of the choice of 

local coordinates and is defined in B. 

Now suppose an affine connection to be given in M. In the 

expression for DXi in (4.9} we regard the xi as independent 

variables and apply it to each of the vectors of our frame. 

Then 

(5.7) 
. . . k 

DX~ = dX~ + 11Jx. 
1 1 Ki 

are linear differential 
. *. 

(5.8) DX~~ 
]. 

which and (5.5) imply 

• 
f 

. ]. orms in x, 
c)x1'j k 

= k DX. , 
«lx J. 

(5.9} y*~x*J = Y~X~ , 
J ]_ J ]_ 

k x .. 
]. 

From (4.10) we obtain 

~ I 

It follows that the two members of (5.9), denoted by a~, are 
]_ 

. . h d. i d -;'c-i • 1 f representatives int e coor inates x an x respective yo 

differential forms in B. Notice that ai, at are defined on B 
' by means of the differential structure and the affine connect-

ion on M respectively. It is clear that these n2 + n linear 

differential forms ai, at are linearly independent. 

... -.· 

:•,···· -··.--;; ,. ·, ,.·--~·-··- ···--~-··-···'"'' ·.·•·-·"··• .. -.. --.. -.. ~--· ..... .,.~,- .. --,,., 1--~,..,--,--.. - .. -······-··'"··-···"·"······ ··-
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---· 
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Rewriting equations ·(5.6) and (5.9), we have 

. . · k k· - . · 1 (5.10) a 1 = Y~dxJ , a .. = Y. (dX~ + mJ1x.) ·. J 1 J 1 1 
or, by (5.3), 

(5.11) 
·, ,,,· .... 

• • • 
dx1 = X~aJ, - - . J. 

k . k k_l ' ,, x.a~ = d.X. + (1)~1-.x. •. ,.1 , . ' 1 , .... ' -- l: . .. ,. ··+i· ......... -, .. , .... ··--·- . - J" • 

Applying exterior differentiation to the first equation of· 
(5.11).and using (5.11), (4.14) we obtain 

Since 

I 

we have 

(5.12) 

x~a! /\ aj + xjdo) = a{" dxk = rijdxk /\ dxj . 

i· k j i j k ,kjdx /\ c1x = -r kjdx " dx . 
1 ,, i· i k 

· · = 'Tcr kj - r jk>dx " 
1 i k j = zT kj dx /\ dx , 

1 ' 

= (J)~ /\ dxj 
J 
li dj/\dxk. = zT jk x 

. .-·~~. ,__.:.. 

Similarly, applying exterior differentiation to the second 
equation of (5 .11) and simplifying, we obtain 
(5 13) Xk(d j. ·. ,. · 1 j) xj (;L,,k 1 k) · · j 0 1- - ~a.i " °'l = i uwj - IDj " ml 

1 j k 1 d m =~X.R ·1dx /\ x. £ l. J m 
From (5.10), (5.11}, (5.12)~ (5.13) it follows 

(5.14) 

where 

(5.15) Pj = Y~ xPxqri lm l. 1 m pq' 

sjilm = YjX~XqXrRk . k 1 1 m pqr 
Equations (5.14) play an extremely important role in the theory 

• '. >• :~ • ,•. '"'-•''" n,.-..(••',·,,o• C -.•,~, "•',,. > .,·.-:, .,,, _..,,,,, ,,,., ,,,. ,• ~--·:,::, 
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·of affine connections, and we shall call them the equations 

of structure. Since both sides of (So 14) do not involve the··· 

local coordinates, they are defined on the whole space B. 

I · · · 1 · £ xk yk 6k n particu ar, 1 · . = • = . , . . .. 1. ]. l. •' 

--the:n from (5 .10) ai = ru/, a.~ = aJ, and therefore (5.14) is 
l. ]. 

reduced to 

- dxk A a{ = Tj lmdxl .A dxm ' 
· 1 . · 1_ j 1 m 
~ - roi ~ °1_ = ¥l ilmdx }. dx · 

(5.16) 

Sometimes it is convenient to introduce the ex.terior 

quadratic differential forms 
. 1 . 1 

@J = zPJlma A am ' 

@ i = ,!sj ilmal /\ a.m , 
(5 .. 17) 

so that (5.14) are written as 
• 

ak A aj ®j daJ - -k -
(5.18) • k . @i da~ - a.i " a.~ = 1. 

Exterior differentiation of (5.18) gives 

(5.19) 
d ® j = a.k " @a - ® k " a.a , 

d@i = a.t ,.. @a -®t /\a.a, 
which are called the Bianchi Identities. 

- ·- :, 

~) 

So far we have been assuming that there is an affine con­

nection in M; this in turn gives n2 + n linearly independent 

differential forms a.i, a~ in B, and the exterior derivatives of 
]. 

those· differential forms are given in a simple form. Now we 

need to investigate the possibility of getting an affine con­

nection from a set of differential forms a.~ by showing the type 
'" ' ]. . 
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.. ,. ·of structure; which they should have, in order to define an 
~:,affine connection. 

' ' 

· THEOREM 5. 1. In order that the linear differential forms 
af in B define an affine connection on M, it is necessary and 

• • • sufficient that af together with ~1. satisfy the equations of 
structure· (5.14). 

PROOF. ·Equations (5.14) are necessary condition. It re-
• mains only to prove that they are also sufficient. Since al. 

· are given in B by the differentiable structure of M., the problem 
• 

is to determine a~ so that (5.14) are satisfied. ·Exterior . 1 

differentiation of the first equations of (5.10) yields 
dai = dYt A dxk = - Y;dX1 A Yidxk 

= - Y~dXj /\ a1 . J 1. . 
Substituting the above equation in the first set of equations 
(5.14) we obtain 

j i 1 i .-1 i 1 a I\ (aj +¥jl°' - Y1dXj) = 0, 
which implies that a; - Y1

1·ax~ are linear combinations of ak, J J . 
and guided by the second set of formulas in (5.11) we shall put 

k j k Jc~-j x.a. - dX. = ar.x. J J 1 ·1 J l. 
where ror are linear combinations of dxi. Now we need only to 

(5.2,0) 

show that ro~ are linear differential forms~ in· xi only, or 
k r .. 1J are. independent of xr' since 

(5.21) k k i 
(l). = r .. dx J 1J • 

To this purpose applying the exterior differentiation to (5.20) 
""" , I and using (5.20), (5.16) we obtain 

. . 

. I 



' 

r 
Ii 
• • 

..,. __ 

- -- - - --- .. A- .. -.. -... -· .-. ---,-. --- .------, =-._= -,-.= =-·~cc_b 

l ··· 

' 

' 
-i .-25-

-: (5. 22) ·xj ( ..:11.~k I 1 . . k) lxksj · ·1 m _. uw. - ro. /\ ru1 = ~ • • 1- a~:cJA a , 
l. J J ~ J i m _"' .,., 

that clro~ is an exterior quadratic differential .· 
. J 

- which., implies 
• 

· form in dx1.. On the othe\ hand, from (5. 21) we have 
M' . k 

. cla.)~ = c) ij dxl A dxi + c) r i~ J\ dxi 
J 1 ,, m · ··-· 1 - - ' 

. I\ _ ~x . - c)Xl . · -
, fiem which it follows that 

,....... ' 

c)r~. 
. 1.J = 0 

. , 
c)~ ·• 

so that rtj are independent of ~­

proved. 

Thus Theorem. (5.1) is 

We now study the notion of a tensor field from the point 

of view of the principal bundle·. For definiteness, we consider 
. . . * .. 

a tensor field of type (2,1), whose components xl.Jk' X l.Jk ~!'.l 
. *. terms of two local coordinate systems x1

, x 1 are related by 

(4.11). 

(5.23) 

From (4.11) (5.4), (5 .. 5) it follows immediately 
y1'iyi(jx1c-sx*qr =· yiyj-xsxqr 

q r k s q r k s · 
The connnon expression of this equation is therefore a function 

in B, independent of the choice of local coordinates. There 

are altogether n3 such functions which we shall denote by Tijk. 

In general, for a tensor field of type {k,l) there will exist 

nk+l functions in B. -

Now we ask the question: When does· a set of functions 
• • 

Tl.Jk arise from a tensor field? A necessary and sufficient 

condition is that they have the expression on the right side of 

(5.23) in the local coordinate system xi. When there is an 

----------. 
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.. . '- ... 

·. affine connection on M this condition cc;tn · be giv~n in a dif-
• • 

· ferent form.- · To do this, we compute the differential dT1 J • .. k 

From (5.11) we have 
k k j k--J dX. = X. a. - ro·:-x. 
1 J ]. J :L· 

(5. 24) · 
,./ 

Differentiation of (5.3) and use of (5o24) yield immediately· 
k .k Ok 

(5.25) dY. = - Y~a. + ro~Y • .; 
1 ]. J ]. J 

From (5.23), (5.24)~ (5.25),· (4.12) it follows that 

(5. 26) dTij = d(YiYjxsxqr ) 
k q r k s 

- Tlj ai Til aj - - , 1 - k 1 
+ Tij al + yiyj XsDXqr . 

1 k q r k s · 
• • 

THEOREM 5.2. . In order for the function T1 Jk _i_n B to be 

of the form (5.23) and, therefore, 12, arise from.!_ tensor field 

MJ it is necessary and sufficient that they should satisfy 

(5. 27) dTij - Tlj ai - Til aj + Tij a1 + Tij a1 
k - - k 1 k 1 1 k kl . 

• • 
The functions T1 Jkl are related to the covariant differential 

nx'lr
8 

.Qf the tensor fieldf~ the formula 

( 5.28) Tij · a 1 = yiyjx8 (DXqr ) 
kl q r k s · 

Similar relations exist between tensor fields of general types 

Mand co~resEonding functions in B. 

The 

To prove 

functions 

necessity of this condition has been established above°:-1,-~­

fhe sufficiency we shall show that xCJ.x:yl<.r,ijk are 
1 J S 

• 
of x1 only. This follows 

d(x<J.x1:yi<.rij k) = o 
]. J s 

from the formula 
1 (mod. dx) , 

which can be verified by direct differentiation and use of 

(5.24)J (5.25), (5.27). Then formula (5.28) is a consequence 

~ of (5~26). · 
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T·o find a geometrical · interpretation of the affine con- · 

-
· · nection in terms of the relationship between M and B,· we notice 

that B has a group of homeomorphisms defined as follows: Let 
pe1 ... en be the frames over M. In B we call a translation T 

------ --; • • --· - C - - a 'homeomorphism 

.r 

(5. 29) 

defined by 

(5.30) 
• 

where af are constants 

I j e. = a.e. , 
1 ]. J 

• 
such that det(af) ~ O. 

·' . 

I• 

Clearly all 
;, 

the tran~lations in B form a group. From the general discussions 
on differentiable manifolds it follows that a translation T 
induces an isomorphism of the tangent space V(b) at a point 
b EB onto the tangent space V(T(b)) at the image point T(b). 

·- '·-- * . * This in turn induc··es a dual isomorphism of· V (T(b)) onto V (b). 
THEOREM 5. 3. Le·t 1r : B ~ M be the projection of B onto M, 

which assigns to!. frame b = pe1 ... en the point p. EM. The def­
inition of an affine connection Mis equivalent to that of a 

- ......-:::==="""'"- -- --- -==- -
family of linear subspaces g{b) supplementary to ~*v*(p) in 

' h f V'~(p) ) t e space~ covectors at b, such that the family g(b 
is invariant under the group of translations in B. 

PROOF. We notice that g(b) is a vector space of dimension 
n2. If B'. denotes the bundle over B of then-dimensional linear 
subspaces of covectors, then g is a-cross-section of this bundle. 
The subspace g(b) can be defined by n2 linear differential forms 

. * which, together with al., span V (b). From (5.4), (5.5) it 
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· follows that the forms defined in a local coordinate system 

by Y~dxJ are determined mod a1. · Since these forms are clearly J l. 

independent, g(b) defines and be defined by the n2 li~ear dif~ 

ferential forms 

(5. 31) 
Q.. - • T • • , . 
,'· le - ( dXj i- (lJj) yk 

1

• l.. 1 1 J 

. wh~re 0J are linear combinations of dxk. Our problem is to -- ]. 

• 

study the forms CJJi, if g(b) is invariant under the translation 

T. Denote by xi, x't the local coordinates at the·image 

point b' of the point b under T, and denote the corresponding 

quantities at b' by the same symbols with dashes. Then we 
have 

X'~ = 
]. 

• ]. 
yk = 

From (5.31), (5.32) it follows 

.33) T*a'~ = (a~dxJ1. + 17\1J)y'~, 
. 1 1 ~l. J 

where T* is the dual mapping of T. The invariance of g(b) 
under T therefore implies that 

• 

a}(Di (5.34) q,'f = • 

From (5.34), (5.32) it follows that 
(5.35) y•Jq,•~ = yJ ~ . 

]. J 1 J 

The expression on the right side of (5.35) is invariant tinder 

m the translation T, and is therefore independent of~- Hence 
we can put 

(5. 3.6) 

or-··--, 

. k k yJcp. = coi , 
1 J 

' 
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. k . k (5 ·. 37) . (/JJ. = x:ro. , 

J .1 k j where m • · are linear differential . .' forms in x c>nly. Sub-11 

stituting (5. 37) in (5. 31) we can see that a~ here obtained ]. 

are identical with those in (5.10). Hence the family of lin-
ear subspaces ·.g'(b) defines an affine connection. Also from 

. the discus.sion above it is shown that an affine connection de­
fines a family of g(b) with the properties given in the 
theorem. Thus the theorem is proved. 

6. GROUPS OF HOLONOMY · 

It is known that for the ordinary affine space relative 
to the affine coordinates, all f"'fj are zero. Therefore an 
affine connection is said to be locally flat, if there exists 

, ' . 
a local coordinate system with respect to which all r ~. are . 1J 
zero. In the case of a locally flat affine connection, the 
torsion tensor -and curvature tens.or must be zero, and the con­
verse is also true. 

THEOREM 6.1. An affine connectiona is locally flat, if,. 
., . 

and only if both the torsion tensor and the curvature tensor 
vanish. 

We need only to prove the sufficiency. By (4.1), (4.2) 
*i it suffices to prove that:-.a local .c9ordinate system x,. exists 

such that 

(6.1) 

.4& 



-

.. --- -~-

(6.2) 

In this 
,. 

i i i dpk = p .ru.- • 
. J K 

• • 
system we regard x1

, p~, 

·-30-. 

*i A- " x as variable4S • 

Let: F be a differential system of dimen~ion r on a mani-
fold M., so that for any point p EM, F(p) is .a linear sub­
space of dimension r of the tangent space V(p) of Mat p. 
A submanifold (~_,N) is called an integral manifold of F if, 
for any q EN, 'Z)(V(q)) is contained in F(~(q)). Fis called 
completely integrable., if every point p EM has a coordinate 
neighborhood with the local coor·dinates 1 

X ' • • • ' x0 such that 
r+l n the coordinate slices x = canst., ... , x = const • ., are 

integral manifolds of F. Let p EM andU a coordinate neigh­
borhood containing p. If Fis of class r ~ 1 it defines and 

I can be defined in U by a nonzero decomposable form ..fl. of 
degree n-r determined up to a nonzero factor. The system F 
is said to satisfy.the condition (C) at p, if -ucan be so 

··chosen' that d.J1- is a multiple of fl by a linear differential 
form. For the use in this section we shall only state, with-,:11 

out proof, 

THEOREM 6.2. (Frobenius). ! necessary and sufficient 
condition that ~, di,fferential system F of class r ~ 1 be 
completely integrable is that the condition (C) be satisfied 
at all points p E lvI. 

have 

(6.3) 

(6.4) 

By taking exterior differentiation of (6.1), (6.2)., we, 

I 1 '/ \ 
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-31-. . s·o- that the conditions in Frobenius' theorem. are· satisfied . . ' 

• It follows that in a neighborhood of a point (x~) in the 
space of the variables xi there are functions· x*i(xk), p~(xj) 
satisfying (6.1), (6.2) such that the initial values x*icx~), 
Pt<xi) can be arbitrarily assigned. In particular, we can 
assign the initia,l values such that r· pki(xJO. >I .f 0, which means 

-Jc. I by (6.1) th:~ the functional determinant I ::kl. (x~) =J O. . 
Therefore K.1 form a local coordinate system in the neigh-

• 
borhood of (x~), and the theorem is proved. 

* Now let us consider the principal bundles B., B of two 
affinely connected manifolds M, M* of dimension n. Then the 
affine connections determine 2(n2 + n) linear differential 
forms 

* V., V 

. . *. *. . * a1
, aj_ and a 1 , ttl in Band B respectively. Let 

be coordinate neighborhoods in Band B* with (xi,xt), 
( *i *k) h 1 1 d . 1 d 1 
x , X. as t eir oca coor inates respective y, an et .]. 

* f: V -+,V be a local differentiable homeomorphism such :that 
(6.5) f * 1(i ai a = , f -/( *j - j a . - a. , ]. ]. 

wher·e the differential forms denote their restriction to the 

* respective neighborhoods V and V. From the first equation . 
~ 

.,.~. of (6.5) it follows that a 1 = 0 implies a 1 
= O. Thus frames 

. h h . . . *< *> d. f h 
wit t e same origin in a V are mappe into rames wit 
the same origin in a(V), where cr, a* are the projections of 
B, B* onto M, M* respectively. Moreover, f induces a different­
iable homeomorphism f I : cr(V) ~ cr * cv*) . If by means of f I we 

' . . take the local coordinates x1 of p € cr(V) to be those of f'(p), 



I 

.. 
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then q € V and f (g) € v* have the same local coordinates (xi, ~). 
• • 

From the formulas for a1
, a~· ·in terms of the local coordinates l. ' 

i k * x , X. it follows that the affine connection in M has, relativ~ . 1 
• 1 to x, the same co~ponents as the affine connection in M. 

These considerations justify the definition: The. two affine 

connections are called locally equivalent (relatively ta, V, v*), . 
' 

* · if there is a differentiable homeomorphism f of V onto V such 

·that equations. ( 6. 5) hold. 

With the above notion of local equivalence, we can identify 

the locally flat affinely connected manifolds with those which 

are locally equivalent to the ordinary affine space. Denote 

by An the ordinary affine space, and by B
0 

its principal bun-
• 

dle. By definition there exist local coordinates x1 in a 

neighborhood of M relatively to which all the components of 

the affine connection equal to zero. Then the mapping f, 

which maps the point (xi, xt> of B into the frame An whose 
•• 

origin has x1 as the local coordinates and whose vectors have 
· 1 n) the components (xi, ... , xi, establishes the required local 

equivalence. Conversely, if the affine connection in Mis 

Jocally equivalent to that of An, then we can take the coordin­

ates of a point in An as the local coordinates of its corres-
"'·-,) 

ponding point in M. From (6.5) it follows that relative to 

.this local coordinate system the affine cqnnection will have'ill 

all its components equal to zero. 

By Theorem 6.1 we can conclude that if both torsion and 

, I 
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. 

curvature tensors of Mare ·zero, then the frames with origins 

in a neighborhood in M can be mapped by a homeomorphism onto 

the frames in a neighborhood in An so that (6.5) holds. 

It is obviously not possible to do the same for a general 

affine connection. But to generalize the above geometrical 

situation, we have to be restricted to the frames whose origin 

lie on a parametrized curves C(u) in M, where u is the para­

meter. We shall denote the restrictions of the differential ~ 
• • 

forms a 1 , cif to this submanifold.of frames by the same symbols. 

To describe these frames we take a particular family pa1 ..... an (u) 

along C(u), o.ne at each point of C(u). Then a general frame 

of the family will be p(u)e1 ... en' where 

(6. 6) ei = xtak<u> , where I xt\r o . 
.,,-I 

We need to show that the frames p(u)e1 ... en can be· mapped into 
• • 

frames in An such that a 1 , af are the dual images of the cor-

responding differential forms in An. Geometrically this can 

be described by saying that we "develop'' these frames into 

the affine space so that their relative position remain un­

changed. If p'ei~··e~ denotes the image.of pe1 ... en, this 
I 

means that the vectors p', el,···, en satisfy the differential 

system 
• 

dp 1 = a1 ej_ , 
I k . 

de. = a. ek' • 
]. ]. . 

This ,is a differential system with variable~, which are 

d th t f h I I I an e componen so t e vectors p ,e1, ... , en. Since 
'~- . __,, 

,, 

i 
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··· ··· @,f are quadratic in the di£ f erentials of the local coordinates, 

they vanish along a parametrized curve. Just as in the locally 
'flat case, it follows that (6.7) is completely integrable • 
Therefore, there is one and only one family of vectors 
p! ei,···, e~·satisfying (6e7) and taking arbitrary initial 

· · • · f ,..,,..- and xk. = I;. .. · ... ··.·1~. · • 

. positions:.>,. or u = u '-'· 0 ]. ', 

We shall first prove that p'ei···e~ 1l a frame, that is, 
that the vectors e1•, ... , e' are linearly independent, if the· . n 
same is true of the initial position. In fact let 
(6.8) A = ( e1., ... , e~) 
denote the determinant whose i 1.th column consists of the com­
ponents of 

Integration gives 

(6.9) 

• l. 

• 
e ' e1 e' e' e') i-1' i i' i+l' • · ·' n 

where~ denotes the initial value of the determinant. Hence 0 

A never vanishes if A
0 

I, 0 . 
• 

Moreover since a.1 are mult_iples · of du, p I is a function 
of u only so that its locus is a parametrized curve C'(u) in 

• An. L ' 1 
' b h · f To determ1.· ne· aJ. 

et p a1 ... an et e image o pa1 ... a0 . 
1 

• mod du we then·write, in a local coordinatte system x1 , . ' ~ . 

a.(u) = a~(u) .. 
(6.10) 

Let also 
i l. <)xJ yf be the element of the matrix 

. . k '~· inverse to (xi) so that 
0 

. ' 

······:-·-· · .. -······---, .""'" .-,----,---~,-..,,..~-,.._ .. ~,.~-,,-.. -- . . . ' ' . .. -
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From (6. 7), (6. 6) we have 

. . k de.= a~e. = a~x.ak, l l.J 1.J : ' k k de. = a. dx. + X. da. , .1 K. 1. 1 K 
which imply that 

(6.11)' a~x~ = dx~ (mod u) . l. J ]. 
From (5.10), (6.11), (6.11)' we thus have 

• m 1 (6.12) a1!1 = Y1!1dX~ = y1dx
1
. (mod du) • 1 J 1 

Differentiation and a use of (6.7), (6.12) give 
(6.13) ' d(y1e!) ]. J 

= 0 (mod du) , 

-35-
' l 

. . . ~ ... ' 

which is zero by differentiating and using (6.11). Therefore • 
· y~ e ! are functions of u only, and ]. J 

( 6.14} e! = x1a! (u) . ]_ 1. J 

• 

Y!ej = a:i_(u) or 
]I, This shows that the vector e! satisfying (6.7) are of a very ]. 

special form. 

The above discussions help us to define an affine trans­
formation .of the tangent space V(p(tt)) onto the tangent space 
V(p(u2)), where p(u1 ), p (u2) are two points of C(u) corres­
ponding to the two parameters u1 , u2 respectively. In fact1 
a point df the tangent space V(p(u)) can be defined by x1ai(U). ,. ·· We map the point xiai(u1) of V(p(u1)) into the point x*ia1(u2) ., ... of V(p(u2)), where x" 1 are defined by the equation 
(6.15) p'(u1) + xia:i_(u) = p'(u2) + x*iai(u2). 
Let us denote the above· af·fine transformation by Tu u • 

2 1 

.. ,,,. 

. . I 
' 

I, 
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.. 

~Equation (6.15) is the analytical expression of the operation 

of d·eveloping the tangent spaces along a curve into an affine 

space and compar~ng these tangent spaces by means of the develop­

ment. We notice from (6. 15) that p(u2) may not be the image 
. *. of p(u1) or x1 = O does not have to imply that x 1 = 0, so that 

T in general is not a linear mapping of the tangent spaces. u2ul 
However, there is a linear mapping T~ u of the vector space 

2 1 · . 
V(p(u1)) into V(p(u2)), :by which the vector x1 ai (q_) goes into 

. t1,· */(. 
the vector x 1 a1(u2), where x 1 are defined by 

(6.16) i ( ) *i ' ( ) x a. u1 = x a. u2· • 
]. ]. . 

In order for the mappings T and T' to be meaningful u2ul u2ul 
they must be independent of the following choices which have been 

made: 1) Choice of the initial frame p'ei···e~ for u = u
0 

and 

xt = 5t. 2) Choice of the family of frames pa1 ... a0
(u) along 

C(u). To prove their independence from the choice 1) we de-

note by p'k, e'~ the components of p', e! respectively. 1 ]. Then 

(6.7) can be written as 

(6.17) dp'k = aie•1:< 
]. J 

d ,k j ,k e • = a.e . , ]. ]. J 
from which it follows that if p'k, e'f are solutions of (6.17}, 

then the functions 

(6.18) 
11k hk + k I 1 p = glp ' 

e ,,k _ ke, 1 
i - gl i , / 

k k where g1, h are constants and also solutions of.. (6.17). More-

over, these are the most general solutions, since by a proper 

.r. · .. 

' 

:~· ' 
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· h · · f k hk the· 1 t· c 01ce o g1 , , sou ions p"k, e'~ ~an take arbitrary . 1 

1 f d -k. ~.k va ues or u. = u
0 

an x. = u •• 
. ]. I ]. 

The conditions (6.15), (6.16} 
remain unchanged, if p', e! - are replaced by p'', e~'. This shows i 

1 that T u , T~ u are independent of the choice 1) • Independ-u2 1 2 1 
ence of the choice 2) follows innnediately from (6. 6), ·(6.14), k when xi are taken as functions of u. 

From (6.15), (6.4) it is ~lear that the mappings T 
.u2ul and T' u have the following properties: . u2 1 

. / 
' 

T -1 = T 
' u2ul ulu2 

T' 
., 1 

= T'-
' u2ul ulu2 

values for u . 
.J>. 

where u1, u2, u3 are three distinct 
From the above discussions we can arrive at the definition 

of the group of holonomy. Let M be connected, and O a point 
on M. Let{~} be the family of closed parametrized curves in 

' l '', 

M with Oas initial point. To each closed curve~ there cor­
responds an affine transformation r1 of the tangent space Vat O. 
All these affine transformations form a group, which we shall 
call the group of holonomy at O and shall denote by H

0
• 

Similarly the linear mappings Ti corresponding to the curve 3 
also form a group, to be called the restricted group of holonomy 
at O and denoted by H~. 

. J 
Suppose that, instead of 0., we choose a point 0 1 as initial 

point. Let~ be a pa~~metrized curve joining-0 to O' .. By means of ~ we map a closed parametrized curve ~ through o· into .. 

,,' 

,. . 
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J = 13 1 13 • This induces a mapping of Ti into TJS'', and. 

·. defines a. homomorphism of H
0 

into H
0

,. It is easy to see that 
this homomorphism is an isomorphism ont·o. In particular., it 
.follows that the group of holonomy, as an abstract group, is 
independent of the choice of O. The same result holds for the­
restricted group of holonomy. 

..• DEFINITION 6.1. Let. (Cl be !. positive definite quadratic 
form. ·· t·f the restricted _grou~ of holonomy of an affine con­
nection leaves Q invariant, then the affine connection is_ 
called a metrical connectiono If the restricted grou~ of 
holonomy of an affine connection 1·eaves Q = 0 invariant, then 
it is called!!:. Weyl connectiono 

The importance of the groups of holonomy lies in the fact 
that notions which are invariant under them can be defined. 

.. For example, in the case of a metrical connection, we can define 
the scalar product of two ta~gent vectors with the same origin. 
To show this, suppose the scalar product of two.vectors at a 
point O be defined. Let v1, v 2 be two vectors at a point p e M. 
Join p and Oby a parametrized curve a, and denote by T~ the 
linear mapping of V(O) onto V(p). Then we define the scalar~ 
product as 

(6.20) 

To show that it is indepen_dent of the choice of a, let f3 be 
" 

a second parametrized curve joining O to p, and T~ the cor.:. 
responding linear mapping of V(O) onto V(p) .. Then T' = Ti-Lr~ 

~· J 

-IIL ... , ... 1 



( 

".. . . 

.. 

..39. 

is an element of H~, and· leaves the scalar product of vectors . 

a't O invariant. Hence we have 

- (4T- 'T~' - lv ) (T , T ' - lv ) - a 1 · a . 2 
( I -1 ) ( I -1 ) = Tf3 v1 • Tf3 v2 , 

/which shows that the definition (6.20) is independent of the 

choice of a. 
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