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INTRODUCTION

In recent years many 1nterest1ng and- 1mportant t0p1cs

 f;1”};on d1fferent1a1 geometry have been developed qu1te well. One

of these topics is the affine connectlons and groups of hol-
. onqmy on differentiable manifolds. The purpose of this thesis
is to makeaprimety study on this topic by using the technique
of pr1nc1pa1 bundles in algebralc topology. |

In §1 we first define a manifold {M; Fk} to be a separable
Hausdorff spacefM'with a family F (1£k=x) of -real-valued
.functions defihed oh 0pes~subsets of M and satisfying certain
conditions. This Aefinition is identical with the usual one
by means of overlapping neighborhoods. It is shown that it is
‘possible to_determine the family F. fromwthe knowledge of a
certain sub-family of Fk' Finally the product space of two
differentiable manifolds is defined.

In §2 we define first the equivalence classes of functions
Qf Fk at a point p on a differentiable manifold-*ﬁ, Ek} and
then the spaces.of tangent covectors and vectors at p. It is
proved that every tangent space of a differentiable maﬁifold
of dimension n is a wvector spaee of‘dimension n.

Exterior differentiation and multiplication on the dif-
ferentlal forms, and the properties of the Grassman ring are
’deflned and given in §3.

In §4 on a dlfferentiable manifold M a certain structure

called an affine connection is first defined. This introduces

-1-
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'the covariant differentiation'of'tensor fié1ds, the torsionegf

\

tensor and the curvature tensor. | .
The principal bundle B on a dlfferentlable manlfoldiM

is deflned in §5. Equatlon of structure and Bianchi Ldentltles

are derived Necessary and sufficient condltlons for a system

of 11near dlfferentlal forms in B to define an afflne connect-“\

~ion onIM are obtained, and a geometrical interpretation of an
affine connection in terms of the relagiohship betweehiMand
B is given.
In §6 it is proved that an affine connection is 1oca11y
flat, 1f and only if the torsion tensor and the curvature
tensor vanish. A discussion on frames and principal bundles

leads to the definition of the group of holonomy.

1. DIFFERENTIABLE MANIFOLDS

DEFINITION 1.:1. é;differentiablemanifold'isngbsgparable

Hausdorff space M with a family F, (lékém) of real-valued

functions, defined on open subsets of M such that the follow-

ing conditions are satisfied:

1) Every function f, whose domain U of definition on M

is the union of a family of open sets U,, belongs to Fr, if

and only if its restriction fan to each U  belongs to Fk'
2) For each point p ¢ MIthereci§,§.neighborh@od'U.gghp

and a hom omogphlsm h : U—h(U) <E", where Eng._s_ an n-dimen-




s1ona1 Euclldean sEace, such that the anulz Fkof functlons

./.

defined in an open subset V, p ¢ V< U, is identical with the

family g o h where g runs over all functlons of class k in

h(V). (A function in an open subset V' of E? 1s sald to be

//0

of class k, if it has partial derivatives of order Sk at erz

201nt of the subset, and those of order k are contlnuous )

The functions of the family Fk are called functions of

h class k on M, and are said to deflne a differentiable structure
of class k on M. The dlfferentlable manifold and the Hausdorff
~ space M are said to be of dimension n. The space M is called
the underlYing’topological space. The differentiable manifold
will he denoted by %M, Fk}, and also by M when ever there is

no danger of confusion. If we let g run only over the ana-
lytic functions in h(V), that is, all functions which at every
point of their domains of definition can be expanded into con-

vergent power series, then the manifold to be denoted by {M F, }

is called analytic.

Let h be defined by

(1.1) h(q) = ('(q), ..., h™(q)), q e V,

then we can write |

(1.2) (&8 oh(@ = gt'(a), ..., b)), q e V.

The functions h'(q), ..., hn(q), which obviously belong to F

k’
are called the 1ocal coordlnates in U or the local coordinates

at the point p. | _ » n | | N

- Suppose that, instead of U, there exists a different neigh-
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" borhood U' of p, With..the homeomorphism h' :

e

~hood when necessary, we assume U = U'. Then h' o h™% ig a

homeomorphism of h(U) onto h' (U) and can be defined by'the
vequations | - | |

(1.3) Content@,,wY, io1,.. ., n,
where the functions in the r1ght4hand 51de are of class k,

since h'l(q),..., h'?(q) are functions of class k in U. - A

function of class k in V can now'be‘written in one of the

two forms.'
(1 4) L f

and we have

(1.5) | g

or

goh é-g' oh',

g' oh' ohl

(1.6) g(h" .., h™) = g'(h'l(h' ce.,h™, . LB, ..

ThlS formula gives the relation between two '"'representations"

g, g' of a function of class k in‘V in terms of two systems of

local coordinates.
From the family of functions F,  we can select a subfamily

F, having the following property:

(k) To every point p ¢ M there is a nelghborhood U con-
_talning p in which there are n functions h' .,h of Fk such
that

' 1) The mapping h : U-h(U) of U onto an open subset -
n(U) oflEn-defined by

- A‘o-a-‘
—*h}(U ), hav-*

ing the same properties By restricting to a smaller neighbor-

.,h™)).

N
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S 1s a homeomo:rphlsm

0 2) If £ ¢ Fk is deflned at P, there is an open subbet

V of U, p ¢ V, such that f'V is 1dent1cal with g o h, g be:Lng

a function of class k in h(V).

This shows that if we know Fk we can determlne’ Fk by the

following theorem:

THEOREM 1.1. Let M be a separable Hausdorff space with

a family F; of real-valued functions defined on open subsets
of M such that

ty (k) holds. There exists one and only

‘one minimal family of functions F, defined on open subsets of

M which contains Fl'c as a sub-family, such that {M Fk} is a

dlfferentlable manifold.

Let £ ¢ Fl'c defined on an open subset U'c M. Let p ¢ U'
with U as ité v,__neighborhood having property (k). Suppose there
is a neighborhood VC. UNU' such that £ leis identical with'
g 0 h, where g is a function of class k in h(V). If f has
this property at every point p ¢ U', tﬁen it belongs to any
family Fk of functions, which contaln Fl'c’ and defines a dif-
- ferentiable structure of class k on M.

Let F. be the family of all these functions f. Then it
is easy to ver:l.fy conditions 1) and 2) of definition (1.1), |

so that {M k} 1s a differentiable mam.fold of class k..

COROLLARY 1.1. A differentiable structure of class k

on M defines a (minimal) differentiable structure of class




'.“"1<k by the the cond:l.tlon that the functlons of class k are also

functlons of class 1.

We can deflne the family of functions: F, in the to'p,o]..ogi_c'al -

k

sense, that there exists a countable open covering {Ua} of M

such that to each a there are n functions ua,. oy un' of a
family Hk’ which also determine the differentiable structure,
with U, as the1r domain of definition and the mapping
ha U = E® defined by

hy (@) = hi(q@),..., hi(q), qeU,
is a homeomorphism of ch onto the open subset h (U ) o‘f E™.
Also we might add that if f ¢ Hy is defined at P and p ¢ U,
there exists an open subset V c U, containing p such that f]V

1s identical with g o h , where g is a function of class k in

h (V). From the above discussion we have:

THEOREM 1.2. The underlying space M of a differentiable

manifold ™ Fk} has 2 countable open covering {Ua} with the
following properties:

1) Io each a there is a homeomorphism ha 2 U, - E".

N
2) If p e U, 0 Uy, there exists a neighborhood V _9_\_f_ P

such that each coordinate of the point hﬁh ml(q), q € h (V) is

a funct].on of class k in h (V), and the functlonal determinant

' of these n coordinate functions is # 0.

Conversely, given on a segparable Hausdorff space M a count- -

able open covering {Ua} and a homeomorphism h, : U, ~ E' for

each o, such that condition 2) is satisfied, there exists

2T G A e
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M wh;l.eh admits the coordmate functions in h (U ) as functlons

of class k.

When a differentiable manifold hae a covering {Ua,} with
the properties 1), 2) of the above theorem, then.we call U '
‘the coordinate nelghborhoods, and the coordinate h (p) relatlve
to U, are called the local coordinates of p.

DEFINITION 1.2. Given two differentiable manifolds.
{M,' Fk}, iM', Fl'c}’ and =a% ma;ggo‘:v M-M", _l_f_ the function
f' 0@/ @ (U') defined in the open subset qu(U") correspond-

~ing to a function f'[U' in Fy belongs to F, for every f' of

F', then ¢ is called differentiable.
k> =€ @218 < _

-DEFINITION 1. 3. Let {M, Fk} and {M' , Fl'c} be two different-

iable manifolds of the same class k. Let m : MxM' — M,

: MxM' - M' be the projections defined respeetivelz by

T(p,p') = p, - T'(p,p") = p".

==

To a function f|U in F, corresponds a function f o le-l(U),

and similarly, to a function f'lU' in F; corresponds a function

f' o 7r'l7r"l(U'). These functions define a differentiable

structure of class k with the underlying space MxM'. It is

called the product space of the two given manifolds.

2. TANGENT SPACES

Let PeM be a point on a dlfferentlable manlfold '{M Fk}

e

o a»dniguelz-determined'differentiahle'strueture of class k on
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7*;::3y?a funetiOn of class k at p we meanfa,function"of Fk'with

a domaln of deflnltlon which is a nelghborhood of p. fTO'sueh'

functlons we 1ntroduce an equlvelence relation: two functlons,

f and g of class k- at' p belong to the same class if they are

————_— | U e e =

. | SR identical in a neighborhood of P. Thlsﬁls clearly an equi-
W f - ;valence relation. Define addltlon and scalar multiplication
 of two classes of functions {f} and {g} by adding and multip-
‘1y1ng their representatives respectively. With this definition
of addition and-scalar'multiplication, all classes of functions
of class k at p form an.infinite-dimensional vector space de-
noted by SP. ' |
Let U be a neighborhood of P, and u : U - u(U) a homeo-
morphism of ernto an open subset of EM, defined by
u(q) = (u'(q),..., u(q)), q €U,
where u'(q),..., un(q) are n functions of class k in U. Then
a function f of class k'at P has the form £ = g o u, ‘with g
of class k 2 1; £ is said to have zero differential at p, if
all the flrst partial derivatives of g with respect to u' ., ut
venlsh at u(p). This property is obviously a property of a

class of functions £ at p, and is also independent of the

choice of the local coordinates u' . un. For, if u'l .., u'l

form another local coordinate System at p, the two representa-

tions g, g' of £ are related by the formula (L.6). Using the

formula for the partial derivatives of a comp031te functlon we

get -




@) -

e It follows that the vanishing ofthepartial derlvatlves
' (_B_g_;_l) implies the vanishing of (QB )

Bui
Thus it is perfectly meaningful to speak of the classes

u'(p) u(p)

of functions of zero differential at p. Clearly they form a '

~linear subspace of S_, which we shall denote by Z

P P
DEFINITION 2.1. The quotient space V¥ = sp/zgg,called

P P

the space of tangent covectors at p, its elements being tangent

covectors or covectors. The duel space Vp of E is called the

space of tangent vectors or the tangent space at p, its elements

being tangent vectors or vectors.

A covector at p 1s therefore a residue clas.::; relati{re to
Zp of. a class of functions {f} It is -unique‘ly determined by
a representative £, and shall denote it by df(p) or df. A
vector will be denoted by X(p) or X; The scalar product of X
and df will be defined by (X, df) = Xf.

THEOREM 2.1. Let £, f',..., f" be functions of class k at

p, such that
(2.1) | f = F(£',..., f9),

 where F(f',..., £) is a function of class 1 in a neighBorhood
of (£'(p),..., £7(p)), Then ' | |

. ) ;aiz | | | . df] .
. (p) %'::l( BfJ)(f! ®),..., fm(p)). (P)‘

i e égi B Z (ég-) (aui , o i=l,...,n.
o T 1 ‘u (P)';u u(p) o IR

R s s SR o < : R TR o X 7 e e S pmrre I e . . ) . . ) : o -
o s T T e T T/ e T S TR R R TRy A A T 8 e AT S B S A A S AT s S e P S A S . o
S R s T DR R T B e R D o i e it ; . s




]

e
-

D

| = <. For simplicity let us write

: 'aj =(§EJ) B - s = l,..., m. ..
e e, ey

" The theorem then asserts that the functlon |
f - Z Q. fJ o | ., ;
. ;@

 has zero differentlal at p. 1In terms of a local coordinate

system h',..., h® at P let g, g',..., g™ be the representationsv
of f, f',..,, fﬁ respectively, so that o ' ﬁ

) f =g o h, £l o gj o h. | ‘ o
Then we have, by applying t( homeomorphlsm'ﬂ"l “To” (2.%T)y, |

gh',..., i) = F(g' (h',..., h ),.)., g'(h',..., nY).

Hence the function

m ‘ ) ' |
g 'Z.l O('jg

‘has all first partial derivatives equal to O at h(p)

COROLLARY 2.1. Igg{covectors.gt.p satisfy the identities
(2.1)  d(af + Bg) = adf + pdg, | |
(2.2) d(fg) = £(p)dg + g(p)df,

where £, g are functions of class k at p, and a, B are real

' ) |
numbers. - ) , |

COROLLARY 2.2. Every tangent space of a differentiable

manifold of dimension n is a vector space of dimension n.

"PROOF: Since every function f of class k at p is repre-

sented by F(u‘ ., U ), df is a linear combination of du',..., dun;

i
£
I
R
%%
i
-
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By Corollary 2.1, a relation of the forn

aldu 4+ ... +'andu = O,

~ Q35-.., @ being real numbers, impliesff

d(alul + ... +a un) =
1 . -

 which means that'alu + ... +-anu has zero dlfferentlal at

P+ But thlS is true only'When all the a's are zero. Hence

we conclude that the tangent space of dlmen31on nis a vector

space of dlmen31on n.

COROLLARY-2.3.

- (2.3) X(af + Bg) = oXf + BXg,

(2.4) - X(fg) = £(p)Xg + g(p)Xf.
‘3.  EXTERIOR DIFFERENTIATION AND MULTIPLICATION

At first let us consider vector‘spaces V. of anti-sym- 4
metric tensor of order (r, o), r = 1,..., n, and define
V=V, +V + .+» + V,, V_ being the one dimensional vector
space isomorphic to the real field. Then V is a vector space
of dimension 2. | L7

V becomes a fing called Grassman ring, by introducing
a multiplication A which has the following properties:

(3.1) £ A (g +g)) =fAg +fAg, I 81> 8y € V.

(3.3) Iff ¢ Ver 8 €V, then

fAg=(-1D"% A £ e

1
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(3.4) d(w; + @,) = do

A d1fferent1a1 polynomlal is a mapplng w s M -*W where .

L}G and GP is the Grassman rlng associated with the p01nt

P ThlS mapplng w is always to be locally differentiable of

class 2 2. If w(p), P € M, is a form of degree r, o is called

a differentiable form of degree r.

'Wemshall'define an operation’d, called exterior differquf*

iation which carries differential polynomiale into different-
iel polynomials by the follbwing properties:

1+ daw, .
(3.5) d(w; A a)z) = do; A o, + (-1)1'(1)l A dwy,

where W1 is a differential form of degree r.

(3.6) If £ is a scalar (that is, a differential form of

degree zero), df is the covariant vector such that d(df) =

Let us choose for Vl a base with the differentials

dx* (i =1,..., n). Then a base for V. will be
Y

i i i
1 2 T . . .
dx "A dx “A ... Adx T, 11 <15 < ... < 1.
Hence we can write a differential form w of order r as
v i. i, i
(3.7) a)=Zai i dx]'/\dxz/\.../\dxr,
- 1" .7 r |
1]_<...<1r

where the coefficients may be assumed to be anti-symmetric.

It follows from (3,5),.(3.6); (3.7),

1, i
d(dx ~ A . Adx T) =0,
i i
dw=Zdai cadx DA i A T
1. r
TRLE W
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"~ A differential form ® is called ‘exact if dov = O, and is N

3 TSy

. called derived if there eXists a differential form @ such that

W = d6, Then from d(dw) =0 it follows that every derived form'

ED.

- is exactg = - . S | ]

Let (xl, xz,i.., x") be the local coordinates Of a point | R

x € U, where U is an open subset in M, Then we define the f
exterior multiplication A on the differentials dx by the fol- é
% :”, ~ lowing propertiesg | | . . :
. (3.8) (dxi/\ dxj) A (dxk) =_dxi/\ (dxj,« dxk), S ';
.'(3.9) (dxi + dxj) A dik = dxi/\ dxk + dxj,A dxk, | . :
(3.10)  dx' A dxd = -dxd A dxl, |
(3.11) a AN dxi = adxi,
(3.12)  dx' A adxd = adxl A dxd,
~ ':where_avis'a real function 6f xi,..., xn. From (3.10) we thus
have
dx* A dxt = 0, | |
?i dxi,A dxJ 0 for i # j. %
; 4. AFFINE CONNECTIONS §
ff g
; In order that differentiation of tensors be defined on a i
E. differentiable manifold M intrinsicaily, that is, independent j
;, \\\Sf the choice of local coordinates, we shall need an additional
%. structure‘called,an affine connection,
DEFINITION 4.1. An affine connection is defined, by giving
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1n erx coordlnate nelghborhoo a set of 11nearj d:l.fferentlal‘

_.Aforms a)k, such that in the intersection of two coordlnate

elghborhoods U, V, we have

veq k k
_vg_l_lg_l_.‘_g repeated indices imply summation, and
| . %1
(4.2) pl o 8%
| i 3 S

the xl's and x" 1's bemg the r espectlve local coordlnates.

- ) N ESRY I . __,_,‘,' . ‘, T g de o
e e B R P T R R R e AR A P R I S R i B G HA A LS by e S e s

To show the consistency of the above definition, consider

in three local coordinate systems Xi, x*i, x* *1 %
| .
¥ L% *i %
d(ax. ) + a)ﬁt@—}s-r— = Q’-{-E—wK, §
oxJ - ox ox~ J
e i o hekk *kei
X **iox ox *k
d(=——=)+ — = 0,
*‘ | x “k ox 3 ox J
from which we get
(ax""‘l) PR~ Rl S SO Tl Y
oxJ k BXJ Bx* dxJ 1 ox K oxJ
ek Yok e 1Y | *k
ox [ ox *hidx X ox
= ——|d(&—) + 0 = ]+ d(=—)
3% 3x X 1 3% ox oxJ ,,
tante ol ' i
= ox 1[(0 13X.k + d(axv.cl)] |
ox L LK 3] dx) |
e S oo
_ox k . ox k |
= T '-waJ R I |
BX

which proves the consistency of the definition, that is, the
relation (4.1) in one local coordinate system is a consequence
of the relation in other two coordinate systems.

By introducing




P

- we have

ECHO R pqu alp¥ - k

1] 1]

that is, the'matrlces (pJ) and (qJ) are inverses to each other,

and 5? are the Kronecker deltas. leferentlatlng any one of
these sets of equations (4.4), after simplification we obtain

i ik i 7<k
(4.5) | d‘lj + qu = Q@ i
These conditions are clearly equivalent to (4.1).
Now let us assume an affine connection be given on a dif-

ferentiable manifold M, and consider a contravariant vector

field X, whose components in two local coordinate systems

i i *i

X~ and x ~ are Xl and X't respectively. Then we can write

(4.6) XL - p}Xj .

By differentiating (4.6) and using (4.1) we get

(4.7) . &t opiad + XJdpJ ‘
- J o - ol kyod
—-pjdX +(ka © (PIX

- or
‘ *i *1o%k 1, .0 j <K

(4.8) ' dX + @ X —pj(dX +cuf(X)’.

Define

(4.9) pxl - X];'jdxj = dx* + wf."Xj .

Then X}j are the components of a tensor field of type (1.1).
Moreover, we can write (4.8) in the form

(4.10) opxL_ p__i]DXj ,

so that DX are linear differential forms behaving like contra-

varlant vector. They are said to define the covariant dlffer-

ential of the vector field X.
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Now let us extend our 1nve3t1gat10n to a component of a

' -.*  tensor f1e1d.Xle of the type (2 1) relatlve to the local

l_{coordlnates xl, and show that by the ex1stence of the affine

connection on the manlfold we can get a component of a tensor

field of the type (2, 2) Under a change of the local co-

ordinates we have

' *.0
(4.11) | X le = P1PquX1mr .

By differentiating (4.11), and using (4.1) and (4.5) we can

easily obtain

ax )+ x Jhk o X o 3 - X e o
= plpi]nqlli(Xmm + wl],;Xhl + mX]'h r - cth]'m
Putting o
(4.12) ' pxid - ), jaxt .
- ax, + X, + olxt - ‘“ixijl

we then have

(4.13) B S STttt

From (4.12) it follows that X Jk 1 define a tensor field of type

- (2,2). Again we shall say that Dlek define the covariant

differential of the tensor field Xijk.

Similarly, with the same procedure we can extend our defin- |

ition to a tensor field of any type. In particular, for a

tensor field of type‘(0,0) its covariant differential is the

ordinary differential.

In the prev1ous dlscu551on, especially in the constructlon

of (4.9), (4.13) from (4.7), (4.11) we notice that the covariant
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dlfferentlatlon of a tensor leads to a neW'tensor flGld‘Wlth

one more covariant index, and this depends only'on,the afflne

connection.
Now we introducﬂ.e.,_.\..‘.the differential form
\_\M

(4.14) | cgk r"Jkdx
To find f” ik’ substituting (4 14) in (4. 1) we obtain

o X k i bx k *1 bx k . h
(4. 15) dx™ + = .dx .
bX bE r** ox [th

P
MMltiplication~of (4.15) by ax*i thus gives
| ox

4 | | 2 P ] 1 *k *1 p
(4.16) o0 °x ox 4+ CFLox  dx  oox ‘
rth axJax ax*l r 1kbe aéEf bx*l ,

which are the classical formulas for transformation of the

components r"}k of an affine connection. Now let C be a

parametrized curve in M with parameter t. The tangent vectors

X(t) are said to be parallel along C, if DXi = 0, or{from (4.9),

(4.14) .
dx*, i dxd k |
(4.17) a-t—-l' erH_X = 0

This generalized notion of parallelism is‘called the
parallelism of Levi-Civité; (4.17) are a system of ordinary
differential equations of the first order. From the existence
theorem of differential eqﬁations, this system has unique

solutions X*(t), when the initial values Xl(to) are given.

In other words, eﬁery tangent vector can be displaced parallely

along a curve C.

A parametrized curve is called an auto-parallel curve, or -

o T——— e —————————————
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Aa path or a geodes:l.c, 1f its tangent vectors are parallel

'along it. If the arc length s is taken as the ‘parameter of a

- curve C, ‘then the components of the tangent vectors of C are |

given by |
(4,18) | - Xi = dxk/ds .

IfC is a geodes:.c, then from (4 17) xt satisfies

(4. 19) ) | +,["J

Under a parallel displacement, the scalar product of two

tangent vectors remain unchanged Moreover, we have

(4.29)

| 1 2
(x'x?) - Fx? 4 &yl

Consider first a scalar function f. Relative to a local

coordinate system xl, by definition we obtain

(4.21) f,i = af/axi L
1% T oiag C | jit k¢
(4.22) ’ dx 1 dx’ ox
_¥%E ik of
3 axjaxi ijg .
From (4.22) it follows .
. _ k _ —k \of
(4”23) . f:i:j = f:j:i = (rij rji)a—xE .
Define
o ko —~k -k
(4,...24) . T ij =1 i; rji ,

where Tki 3 is antirsymmetric in i and j, and is called the

Next consider a contravarlant vector field with the com-

ponents X By definition we have
| . i
(4.25) xt, =0, il




v - -19;f7
'Covarlantly dlfferentlatlng (4. 25) with respect to xk we get

(4 26) ik —r“(" il ?kx *h

= _R‘L"" rkmrJl)X rk_] ’1

2,1
0~ X i bX i aX
* (BXIEBXJ * rJlb 3K r

where the term in the parentheses are symmetric in j,k.

3

Similarly, | Bl |
| i kl e . |
%21)  Kpog = e f"Jmf"kl)X - i
2,1
- Q~X i ax i bX
+ (T + 7 -7
axJax | k]' r
From (4.26), (4.27) it follows -
l;
. . [t ar |
1 1 - 1 :
l
i 1 l i ]
where _ » i
: ar“ o - |
1 kl 1 .
(4.29)  Ripgp = _‘k‘L (Ml k1 = Tl 5 - |

We notice that R 15k and T ik depend only on the affine connection,

and are the components of tensor fields of types (1,3), (0,2)

respectively. Rlljk is called the Curvature Tensor.

From (4.29) it follows
~ (4.30) _ R®




'_for all affine connections,and,‘ | |
431 R? it R gt R?k,ij: 0.
~for all symmetric affine connections. {
If we take the derivatives of similar formulas for general~}
tensor fields, we do not get new tensors of the affine con-
nection. We shall discuss thié by simplifying the computation

- by using the principal bundle.

5. THE PRINCIPAL BUNDLES

DEFINITION 5.1. A frame is the object formed by a point

p on a differentiable manifold M of dimension n and'n:linearlz

independent tangent vectors at p.

DEFINITION 5.2. The principal bundle B is the space of -

[ ] ® [ ] [ ] 2
all frames over M: its dimension is n”~ 4+ n.

1

To a local coordinate system x~ on M there corresponds a

1

System of local coordinates x, X? in B such that the n vectors

of the frame are given by

_Jk o

(5.1) li = X, S;E-.

Since these vectors are linearly independent,

(5.2) Let (Xli‘) # 0.

Let the matrix (Y?) be inverse to the matrix (X?) so that
o R jok  oiok |k

(5.3) Xin = Yin =05 .

Suppose we restrict our discussion to a neighborhood, .in

o 1 . . * [
which the xl and the second local coordinate system x L are
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"if~va11d. Let- *1’ X.k be the system of local coordlnates in B

- i
corresponding to x*l. By‘1ntroduc1ng the Y k'we then have
| *k o0 - ‘
| (_5.4) R ”Xi—a)xj X1’ . -
| R A o
| (5‘5) e Y k ~ Yj BX?:E 2

the last of which implies, in particular,
(5.6) f “1dx J - Y}'dxj .
It follows that the d1fferentia1 form a’ having as represent-

atives both sides of (5.6) is independent of the choice of
local coordinates and is defined in B.

Now suppose an affine connectién to be given in M. In the
expression for DX:.L in (4.9) we regard the Xi as independent
variables and apply it to each of the vectors of our frame.
Then
(5.7) | Dxi.i = dxd + mf;xl.‘

are 11near differential forms in xl, X?. From (4.10) we obtain
i |
]

(5.8) X 3 -al‘K-Dx
which and (5.5) imply
% >‘<j _ J
(5.9) Y ?DX J - Y?DXi ,
k

It follows that the two members of (5.9), denoted by ay, are

‘ [ d [ ] [ ] i 7'€. [
representatives in the coordinates x— and x + respectively of

differential forms in B. Notice that at a? are defined on B

2

by means of the differential structure and the affine connect-

ion on M respectively. It is clear that these n2.+ n linear

differential forms a’,

ag are linearly independent.

N




Rewrltlng equatlons (5 6) and (5 9), we have L

i i k _ Jk,oj T
(5 10) at = dex ,  as = Yj(dXi + olx]) . o

or, by (5.3), | | | | |
dxl - xio] kJ k kel "
Applylng exterior differentlatlon to the first equation of-

(5.11) and using (5.11), (4.14) we obtain

9 SN, [N DS T SO “SUNY L S

XkaJA Q +dea =@ A dx" = rkjd,x /\‘dx .
Since | |

' "1 ek A ] --ri dxd A daxf
rkj - k_]
k

| | | '=7(rk3 er)dx A dxd

we have

(5.12) X;'(dozj - oA ch) - w?:" A dx]
o I R k
= 2T jkdX N dx™ .

Similarly, applying exterior differentiation to the second
equation of (5.11) and simplifying, we obtain

k j < ; ] — j k - 1 k
(5.13) X;(dof - oy A of) = X3 (d;oJ w{ A @)
m
Jlmdx A dx
From (5.10), (5 11), (5.12), (5.13) it follows
- dCX,J -akl\ Oﬁi: jl alA am:
(5.14) , o

dai:j_ -‘oci/\ai_-.z j--a]'/\ o

ilm

= 7XJR.

3

NJ)I—' NJUI-*

where

Pq

gJ r Kk
= vIxPsdxE
ilm Y]X X].X R par -

. _ yigPgdpi
(5.15) P im yahxirt

Equatlons (5.14) play an extremely .s.mportant role in the theory

e e LA L e Y e s A, o AP o T it et 4+ T U A e e S S e o e S
2 F - ™ S RS : =T T o= = e -
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of afflne connectlons; and we shall call them the egyatlons

of structure. Since both sides of (5.14) do not involve the

local coordinates, they are defined on the whole space B.
| k _ ok _ ko ”

Inlparticular,,if Xi = Yi = 0;
then from (5.10) o’ = dx’, o} = o), and therefore (5.14) is
- reduced to | -
- dxA of = 1)) dx]‘/\ dx"
(5.16) dwg_-a):]i_')\w{=-]=RJ dx)\ dx™

Sometimes it is convenient to 1ntroduce the exterior
quadratic differential forms
@7 = 323000 Q"
U 1, o
@i = 78510 A O
so that (5.14) are written as

‘ - .~ k L] [
| _» o d(lJ - A G,J = J
(5.18) s . ®

J _ J_ ]
dai Qs A Ay = (:)i

(5.17)

Exterior differentiation of (5.18) gives
. e :
d@7 - - @F Aoy
] i K Aol
d(){ @A,

which are called the Bianchi Identities.

(5.19)

So far we have been assuming that there is an affine con-
neétion in M; this in turn gives n2 4+ n linearly independent
differential forms ai, a? in B, and the exterior derivatives of
those differential forms are given in a simple fqrm. Now we

need to investigate the possibility of getting an affine con-

nection from a set of differential forms a? by showing the type
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‘»a‘of structure, Wthh they'should have, in order to define an

'qugafflne connectlon.

THEOREM 5.1. 1In order that the linear differential forms R

| ai in B define an affine conneetlon on M, it is neeessary_and

suff1c1ent that aJ together wuth a satlsfz the eguatlons of

structure (5.14).

PROOF. ‘Equatione(5.14) are'necessary condition. It re-
_mains only to prove that they are also sufficient. Since ai
~are given in B by the differentiable structure of M, the problem
is to determine aJ so that (5. 14) are satisfied. Exterior |
dlfferentlatlon of the first equations of (5.10) ylelds

ol = avd A axX - - Ydei A Yidx®
= = Y dXJ A al .

£

Substltutlng the above equatlon in the first set of equations

(5.14) we obtain
1

1
OLJ/\(OL +7PJ1a-Y1dX) N

1

which implies that aJ - YidX. are linear combinations of ak

and guided by the second set of formulas in (5.11) we shall put

(5.20) X? i - dX; = kaJ
where w?are linear comblnatlons of dx*. Now we need only to

show that wﬁ'are linear differential forms in x; only, or

["gj are independent of Xi‘ since ‘

(5.21) | F‘

To thls purpose applylng the exterior differentiation to (5. 20)
and using (5. 20) (5 16) we 6bta1n




.5(5.22)’ .‘Xé(dwk - w

‘a tensor field of type (2,1), whose components Xijk, X r 1n

1 &y _Llksi L om
5 A W) = 72‘XS i1SAS

,’form in dx On the otheg hand, from (5.21) we have.

35

i ox - axl
f?cm'whlch it follows that

k
ATk,
oKy

=0,

so that r".. are independent'of X?. Thus Theorem (5.1) is
proved. | | \

We now study the notion of a tensor field from the point

of view.of the principal bundle. For definiteness, we consider
*ij

L] * ® .
terms of two local coordinate systems x°, x © are related by

(4.11). From (4.11) (5,4), (5.5) it follows immediately

%] *qr o _ JS+qr
(5.23) Y qY rx kx < YquXkX g -

The common expression of this equatlon is therefore a function

in B, independent of the choice of local coordinates. There

3

are altogether n™ such functions which we shall denote by Tijk.

In general, for a tensor field of type (k,1) there will exist
k1 |

n functions in B.

Now we ask the question: When does a set of functions
Tle arise from a tensor field? A necessary and sufficient
condition is that they have the expre331on on the right side of

(5. 23) in the local coordlnate system x*. ihen there is an

fwhlch 1mp11es that dh? is an exterior quadratic dlfferentlalff"\

""’T‘J’dx A dx 4 _E.eldxm A dX ) o 4
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(P aff:Lne connectlon on M thlS condltlon can be glven in a dif- \

._;     From (Sfll) we have .
(s.24) oo x50 - oix] e
| leferentlatlon of (5.3) a,nd; use of (5.24) y1e1d immediately
(5.25) - ayf - - YJag‘ + chY]; G
From (5. 23) (5.24), (5. 25), (4.12) it follows that
- (5.26) | dTle = d(Y YJXqur )
_ - TlJ’ai _ Tllkgi B .
+ 1 ol 4 YqY%XkDXgrS .

THEOREM 5.2. 1In oxrder for the function T]'Jk in B to be

of the form (5.23) and," therefore, to arise from a tensor field

M, it is necessary and sufficient that they should satisfy

Lo B

ij _ _ pli 1 il ] ij 1 ij 1
(5.27) ot = -1y - T o] T o + T ot

The functions Tle]_ are related to the covariant differential

px¥* g Of the tensor field/by the formula

ij 1 3 qr
(5.28) T 11 YquX (DX ) .

Similar relations exist between tensor fields of g eneral types

M and corresponding functions in B.

The necessity of this condition has been established above.

To prove the suff1c1ency we shall show that XqX YleJ are

~ functions of x% only. This follows from the formula

q ij § _ deet
d(xixjszlgr ) =0 (mod. dxl) |

which can be verified by direct differentiation and use of

(5.24), (5.25), (5.27). Then formula (5.28) is a c0hsequence_ |
of (5.26). |
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To f1nd a geometrlcal 1nterpretat10n of the afflne con-

"°> kf7nect1on in terms of the felatlonshlp between M and B, we notice

| *"that B has a group of homeomorphlsms defined as fOllOWS" Let

n

| pel...e be the frames-over'M._ In B'we;call a translation T

- a homeomorphism

- pej...e

(5.29) | pe;...e o

n

(5.30) 0 el=aje

where ag are constants such that det(ag) # 0. Cleafly ails

the translations in B form a group. From the general discussions
on differentiable manifolds it follows that a translation T
induces an isomorphism of the tangent space V(b) at a'point

b € B onto the tahgent space V(T(b)) at the image point T(b).
This in turn induces a dual isomorphism of’V*(T(b)) onto V*(b).

THEOREM 5.3. Let m : B =M be the projection of B onto M,

which assigns to.g’frame b = pe;...e  the the point p ¢ M. The def-

inition of an affine connection M is equivalent to that of a

family of linear subspaces g(b) supplementary to T V (p) in

the space of covectors V*(p) at b, such that the fam;;x_g(b)

is invariant under the group of translations in B.

PROOF. We notice that g(b) is a vector_space of dimension

nz. If B' denotes the bundle over B of the n-dimensional linear

~ subspaces of covectors, then g is a cross-section of this bundle.

The subspace g(b) can be defined by n2 linear differential forms

 which, together with ai, span V*(b). From (5.4), (5.5) it

e e e —
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follows that the forms defined in a local coordlnate system '

| by Y?dXJ are determlned mod oc]' Since these forms are clearly

| 1ndependent g(b) deflnes and be deflned by the n2 11near d1f-
' ferential forms } |
(5.31) ak (ax] +@d)ys

where @J are 11near combinations of dxk Our prob-lem is to

study the forms ¢~] if g(b) is 1nvar1ant under the translation )

T. Denote by xT, X'k the local coordlnates at the 1mage
'point b' of the point b under T, and denote the correspondlng

quantities at b' by the same symbols with dashes. Then we

~ have p
B ik 5ok
X.i = a]}Xj',
r 1 1]
a Yk = an i
From (5.31), (5.32) it follows |
.33) | T*q 'k (a dXJ + q;'J)Y'k

J
where T" is the dual mapplng of T. The invariance of g(b)

under T therefore impl:i.es that

(5.34) Q'J = a, ¢J
~From (5.34), (5.32) it follows that
(5.35) Y'J(D'k = YJ 3‘ :

The expression on the right 31de of (5.39 is invariant under

the translation T, and is therefore independent of X1 Hence

we can put

(5.36) gk ok

or L e
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(5.37) m;‘ - X;‘a)I: : .
where w ?/are linear differential'forms in xA only. Sub-
stltutlng (5.37) in (5.31) we can see that af’here obtained
are 1dent1ca1 with those in (5.10). Hence the famlly of lin-
ear subspaces g(b) defines an affine connection. Also from
.the dlscus31on above it is shown that an affine connection de-
fines a family of g(b)'with the properties given in the

theorem. Thus the theorem is proved.
6. GROUPS OF HOLONOMY

It is known that for the ordinary affine space relative
to.the affine coordinates, all r“?j are zero. Therefore an
affine connection is said to be locally flat, if there exists
a local coordinate system'w1th respect to which all{'" are
zero. 1In the case of a 1oca11y flat affine connection, the
tors@on tensor -and curvature tensor must be zero, and the con-

verse is also true.

THEOREM 6.1. An affine connectiow is locally flat, if

and only if both the torsion tensor and the Curvature tensor

vanish.

We need only to prove the sufficiency. By (4.1), (4.2)

1 .
1t suffices to prove that 3 local coordinate system x. - exists

~

such that

6.1) dx k

=pidx ,

T s s o - VIR PR ) R
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(6.2) D dpk - mek *{ .
In this system we regard xT , Pk’ X ~ as variables.

Let F be a dlfferentlal system of dimension r on a mani-
fold M, so that for any point p ¢ M, F(p) is a linear sub-
space of dimension r of the tangent space V(p) of M at p.

A submanifold (@,N) is called an integral manifold of F if,
for any q ¢ N, @(V(q)) is contalned in F(@(q)). F is called
completely 1ntegrab1e, if every point p ¢ M has a coordinate
neighborhood with the local coordinates xl,. .., X' such that
the coerdinate slices xr+1= const.,..., X" = const., are
integral manifolds of F. Let p ¢ M and U a coordinate neigh-
borhood containing p. If F is of class r ZAl it defines and
can be defined in .Ubya nonzero decomposable form /1 of
degreen-r determined up to a nonzero factor. The system F
is said to satisfy the condition (C) at p, if U can be so
~chosen that dN is a multiple of N by a linear differential
form. For the use in this section we shall only state, with-

out proof,

THEOREM 6.2. (Frobenius). A necessary and sufficient

condition that a differential system F of class r 21 be

completely integrable is that the condition (C) be satisfied

at all points p e M.

By taking exterior differentiation of (6.1), (6.2), we-
have

‘ k - k
(6.3) dpk/\dx pa)k/\dx =0 ,
(6.4) dp Acuf(+pdwk-<p(w-]/\wk +dy) =0,
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SO that the condltlons 1n Frobenlus theorem are satlsfled

It follows that in a nelghborhood of a point (x ) in the

space of the variables xt there are functlons %" (x ), k(XJ)

' hsatlsfylng (6.1), (6.2) such that the 1n1tlal values x" (X )s
 pk(xJ) can be arbitrarily ass1gned In partlcular we can

'as31gn the 1n1t1al values such that lpk(XJ)' #'0 Whlch means'

% i
@X l

3 £ 0.

Therefore x, * form a local coordinate system in the neigh-

by (6.1) that the functional determlnant

borhood of (x ), and the theorem is proved.

Now let us consider the pPrincipal bundles B, B* of two
affinely connected manifoldsiM,IM* of“dimension n. Then the I
affine connections determine 2(n2'+ n) linear differential
forms ai ag and a*i, ﬁ*q in B and B' respectlvely Let

Vv, V be coordinate neighborhoods in B and B with (x1 )
*i

(x —, X ) as their local coordinates respectlvely, and let

f : V’—*V’ be a local dlfferentlable homeomorphism such that
* %i % +J ]

(6.5) fa ™ =a" | f a =03 ,

where the differential forms denote their restriction to the
respective neighborhoods V and V*. From the first equation
of (6.5) it follows that a*i = 0 implies ai = 0. Thes frames
with the same origin in g*(V*) are mapped into frames with

oo |
the same origin in og(V), where 0, 0 are the projections of

B, B onto M, M respectively. Moreover, f induces 3 different-

%
iable homeomorphism f' - g(V) »¢ (V*)- If by means of f' we

take the local coordinates xi of p € (V) to be those of £'(p),




-32-

~ then qeV and £(g) : V" have the same local coordinates (Xi: X?"

From the formulas for al, ai"in‘terms of the local coordinates
X, X? it follows that the affine connection in M has, relative
i |

to X, the same components as the affine connection in M.
These considerations justify the definition: The two affine

| | | .
connections are called locally equivalent (relatively to V, V'),

if there is a differentiable homeomorphism f of V onto v such

‘that equations (6.5) hold.

With the above notion of local equivalence, we can identify
the locally flat affinely connected manifolds with those Which
are locally equivalent to the ordinary affine space. Denote
by A" the ordinary affine space, and by B, its principal bun-
dle. By definition there exist local coordinates xt in a
neighborhood of M relatively to which all the components of
the affine connection equal to zero. Then the mapping £,
which maps the point (xi,_Xg) of B into the frame An whose

[ ] [ 4 i 4 [ J )
origin has X~ as the local coordinates and whose vectors have

1

the components (x5, ..

. x?), establishes the required local

equivalence. Conversely, if the affine connection in M is

locally equivalent to that of A", then we can take the coordin-

ates of a point in A" as the local coordinates of its corres-

A

ponding point in M. From (6.5) it follows that relative to

this local coordinate system the affine connection will have

all its components equal to zero.

By Theorem 6.1 we can conclude that if both torsion and




- curvature tensors of M are zero, then the frames with origins
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in a neighborhood in M can be mspped.by a homeomorphism onto
thevfraﬁes in a~neighborhood in A" so that (6.5) holds. ,

It is obviously not possible to do the same for a general
affine connection. But to generalize the above geométrical
situation, we have to be restricted to the frames whose origin
lie on a parametrized curves C(u) in M, where u is the para-

meter. We shall denote the restrictions of the differential «

. - Y A P S T 1 e 4 e S e A P e A e St AT o L g™ o 2 1 0
L O e R T R N e R T e g o P o e P WD AU 4.

forms ai ag to this submanifold of frames by the same symbols.

To describe these frames we take a particular famlly pa;...a (u)

along C(u), one at each point of C(u). Then a general frame
of the family will be p(u)el...en, where

(6.6) es x?ak(u) ,  where lx§‘¥'0 .

We need to show that the frames p(u)el...en can be mapped into

frames in A" such that ai, ag are the dual images of the cor-
responding differential forms in A". Geometrically this can
Ee described by saying'that we "develop" these frames into
the affine space so that their relative position remain un-
changed. If p'ey.. e' denotes the image of pe;...e , this

!
means that the vectors p', ei,..., e_ satisfy the differential

n
system
dp: = alei 9
_ oKal
dei = iek" , ,
This is a differential system with variables, which are u, Xg

andvthe components of the vectors p',ei,..., e!. Since (:)1,
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.J are quadratlc in t:he dlfferentlals of the local coordlnates,.’ .

they vanish along a parametrlzed curve. Just as in the locally
flat case, it follows that (6. 7) is completely 1ntegrab1e..

Therefore there is one and only one family of vectors

p! e 1,...., eI'1 satisfying (6.7) and taking arbltrary 1n1t1a1

positions:for u < u, and Xk = ﬁi

We shall first prove that P e1 .e& ig a frame, that is,
that the vectors el,...,~eé are linearly independent, if the
same is true of the inifial pPosition. 1In factylet '
6.8) A= (ef,..., &)
denote the determinant whose i'th column consists of the com-

ponents of ei. We find

N/ | ' iy ' '
dA—Z.‘(el,..., e 1 Giei, T PR en)

= ?Zei)yA.
i

Integration gives Z‘
(6.9) | A=A

A", Let p'ai a_ be the lmage of Pdj...a . To determine aJ
mod du we then wWrite, in a local coordinate Ssystem xl,
(6.10) a (u) = ai]-(u)@;__

ox
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~ We map the point x'a. i (ug) of V(p(ul)) into the point x ai(uz)

o o . '"gﬁ#?”' i e I =35~
S (6.11) _xly ny = -v e
- From (6.7), (6.6) we have
‘ | = ade, = odxk,
dei = az Jk- a3x J a
de; = aydxy + xjday

which imply that
(6.11)' .ajx;f = dxk (mod u) .
From (5.10), (6 11), (6.11)' we thus have

- (6.12) Y dl\J = yldxl (mod du) .

D1fferent1at10n and a use of (6.7), (6. 12) give

(6.13) - d(y e') = dyJe yJ ?k

= (dyJ + ykdx yl)e =0  (mod du)
which is zero by differentiating and using (6.11). Therefore
| yJeJ are functions of u only, and

Je! = gt R
(6.14) yieJ. = a;(u) or e; = Xiaj (u) .

This shows that the vector ej'_ satisfying (6.7) are of a very

special form.

The above discussions help us to define an affine trans-

formation of the tangent space V(p(li)) onto the tangent space

V(p(uz)), where p(ul), p(uz) are two points of C(u) corres-

ponding to the two parameters 41, Uy respectively. 1In fact"f

a point of the tangent space V(p(u)) can be defined by x'a, (u).

of V(p(uz)), where x 'L are defined by the equatlon

(6.15) P (ul) + xla'(u) '(uz) +x 1a! (uz)

T v R : .
: v K oo

VRS

Let us denote the above affine transformatlon by T,

Uyl °
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-?EdﬁatiOnU(G 15) is the aﬁa1Ytiéa1 expression of the operation

~ of developlng the tangent spaces along a curve into an affine

5

5pace and comparlng these tangent spaces by means of the develop-

ment. We notice from (6.15) that p(uz)‘may'not be the image

of p(ul) or xi = 0 does not have to imply that x*i = 0, SO that
T in general is not a linear mappingdf'the tangent spaCes.
Hoéeier, thére is a linear mapping Tuzul of the vector space
V(p(ul)) into V(p(uz)),kby which the vector x* a (q) goes into
the vector xi.al(uz), where x © are defined by
(6.16) xiai(ul) = x*ia!(uz)

In order for the mappings T, uyu, and T'2 0 to be meaningful

they must‘be 1ndependent of the following choices which have been

made: 1) Choice of the initial frame p' e1 n for u = u, and
xg = @?. 2) Choice of the famlly of frames paj...a_ (u) along

C(u). To prove their 1ndependence from the choice 1) we de-

note by p'k ? the components of p', ei respectively. Then
(6.7) can be written as
(6.17) et o aferk
| Wk ik
de ;i = 0ze j
1k 4k

from which it follows that if p'", e ; are solutions of (6.17),

then the functions

" = b + glfp'l ,

(6.18) K K .1
e"i = gie'i s ‘gl, 7! O, |
where g%;'hk are constants and also solutions of (6,17). More-

over, these are the most general solutions, since by a proper
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 cho1ce of gf, hk

'e:values for u = u, and x§g= ¥; The conditions (6. 15), (6.16) -

remain unchanged, if p', o!

, the solutlons p"k’)e'gican take arbltrary

i are replaced by p", e"

that T N T' are independent of the choice 1).
2t 2%

ence of the choice 2) follows 1mmed1ate1y

eIndepend-

from (6.6), (6.14),
- when xf are taken as functions of u.

From (6.15), (6.4) it is clear that the mappings T

and T have the following properties: -
| uZul ' - | 1
-, _
| T =T T -, T =T i
i | u3“2 Yoty Uty et
T' = T' ' ' _ -1
uguy 3 Uy uguy Tuzul 1Y,
where u

From the above discussions we can arrive at the definition

of the group of holonomy. Let M be connected, and 0 a point

on M. Let {X} be the family of closed parametrized curves in

M with 0 as initial point. To each closed curve ¥ there cor-

responds an affine transformation Iy of the tangent space V at 0

All these afflne transformations form g group, which we shall

call the group of holonomy at O and shall denote by H

Similarly the linear mappings TX corresponding to the curve 5

also form a group, to be called the restrlcted group of holonomy

at 0 and denoted by H'

i This shows
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= B.X'B'l. ThlS induces a,mapplng of 15 1nto Tx , and.

 *def1nes a homomorphism of H, 1nto H .. It is easy to see that
~ this homomorphism is an 1somorphlsm,onto - In particular, it

follows that the group of holonomy, as an abstract group, 1s

1ndependent of the choice of 0. The same result holds for the™

restricted group of holonomy. -

DEFINITION 6.1. Let Q be a positive definite _ggadratlc

form. - If the restrlcted groug‘of holonomy of an affine con- '

nectlon leaves Q invariant, then the affine connection is

called 2 metrical connection. If the restricted group of

holonomy of an affine connection leaves Q = 0 invariant, then

it is called a Weyl connection.

The importance of the groups of holonomy lies in the fact

_that notions whlch are invariant under them can be defined.

For example, in the case of a metrical connection, we can define
the scalar product of two tangent vectors with the same origin.k
To show this, suppose the scalar Product of two vectors at a
point O be defined. Let Vi Vo be two vectors at a point p € M.
Join p and O by a parametrized curve a, and denote by T' the
linear mapping of V(0) onto'V(p) Then we define the scalar.

product as
(6.20) | Vv, = (T' vi).(T&'lvz) .

To show that it is independent of the choice of a, let B be

a second parametrized curve joining O to p, and Té the cor-

- responding linear mapping of V(0) onto V(p). Then T' = Té' T&




LTI

s

SRR

is an element of H], and leaves the scalar product of vectors

at 0 invariant. Hence we have

‘ -1 -1 ARy | | -1 -
_ e R G A N ~
| 1 ) | |
=@y |
‘which shows that the definition (6.20) is independent of the
choice of a. | , '
u . _
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