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. ABSTRACT 
' t 

The location-allocation problem is treated from the standpoin~ 

of the computational efficiency of a mixed-integer programming formu-
'-I' 

lation solved by a branch-and-bound algorithm. Previous fonnulations 

of the problem are analyzed and a new formulation is developed. The 
• 

new formulation ~s shown to be computationally superior to prior 

models from analytic and experimental results obtained with the 
f ' 

branch-and-bound algorithm used. A mathematical expression for the 

expected numbbr of nodes that must be evaluated to obtain a solution 

for problems of varying size is developed. The results obtained • 

. concur with the contention made by some that the efficiency of the 
/ 

branch-and-bound method is dependent upon both the problem at hand 

and the algorithm used for solution. The structure of these elements 

must be considered simultaneously for computational efficiency . 
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I INTRODUCTION 

' The at~empts to apply quantitative methods to the solution of 

problfms formerly re~egated to qualitative analysis_ and solution by 
• 

. "'tt " -insight or guess has forced the problem solver to utilize the con-

cepts and techniques developed for use in diverse fields as well as 

requiring him to develop new tools unique to his situat'ion~ The 

concept of mathe~atical models, used extensively in the physical 

sciences, has certainly been applied to great advantage in the 

"management" sciences. It frequently occurs, however, that a given 

mathematical model cannot readily be solved for the optimal or near 

optimal parameters with existing· techniques. Consequently, new 

tools must be developed to overcome this situation. 

Frequently, a mathematical model of a physical situation takes 

the form of a combinatorial problem; i.e., its solution requires the .. 
' r;;., 

examination of numerous comhination.s of the variables over their 

allowed ranges. These problems always have associated with them some • 

function to be optimized and often restrictions are imposed on the 

combinations -~that can be used to optimize the function of interest . 
• 

. 
In a loose sense, the myriad of problems efficiently s.olved by 

linear programming algorithms can be considered combinatorial prob-

lems. In th~ case of these problems amenable to solution by· linear 

programming~ the tools for solution have been developed to a high 
/"' 

degree of efficiency. There are, however, numerous coll}binatorial 

problems which cannot be solved by linear programming because one 

' •,•,··-~•·•--•~-··~-·-•.=.-,,.,,.,·- .. ·,;a·.,,•{,·- .... .":,•·_;·, I'_,· ....... , ... ·. -~' -- l : ; ·'. · '" ---~ t :~. :-.:~ _ ~-·.·'., :.':-> ·: i·-.,. ,>>1~:~.:/.'.;;'_t'\~.\{.'.~/.~~f?JitSi/!J~;i~-~~;:~~A-f:l;,:t/?.::f1lVttttc:{ri~1:l:r;~r<< . 
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or more of the variables in the model are not continuous over their 
. " 

,, 

range. The techn,iques of integer programming, mixed-:integer program-

"' 

ming, dynamic programming, or the branch-and-bound m~thod must be 

u·sed if one is not willing to enumerate all possible combinations. 

Unfortunately, the present body of knowledge on integer and mixed

integer programming is not as developed as in the case of 1inear 

progranuning. Consequently, the efficiency of the existing algorithms 

precludes their use in many- problems. Dynamic programming will not 

apply to problems unless they fit the mold of the dynamic programming 

theory. The branch-and-bound method's efficiency is a function of 

the particular problem and may degenerate to a complete enumeration 

-, 

in some cases. Clearly, one is·faoed with a dilemma if a problem's 

solution requires the use of one of these techniques. This thesis 

is addressed to the solution of such a problem. It has been named 

the location-allocation problem and can pe classified as an optimal 

facility planning problem. 

The general problem of optimal· facility planning. has been 

stated by Elmaghraby (15) in the following way: given the location 

of each consuming center, together with its demand and the cost. of 

transportation from any p1ace to each consuming center, find the 

numbe.r, location, and capacit¥ of each source that must be prov.ided 

iii order to minimize the system's total c.ost of operation. The 

location-allocation problem is simultaneously concernerl with the ,_. 

allocation of consumers to sources. The problem is :restricted h.ere 
~ r 

to a single~stage problem; i.e-., one transportat~on st~ge. _ Ideally, 
' . )i ' . 

.• 
\' 
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., 

it would ·be desirab·le to optimally locate sources considering two 
';. . ' 

or oore transportation stages; but as will be shown, the ·single

stage problem poses enough difficulties to induce one to set aside 
.. 

consideration of the multi-stage problem until the~single-stage prob-

lem can be solved ef_ficiently. 

" . ,, " " d " . " The terms location, consumer, an. capacity _should be 

•considered gene!-i.c rather .than literal.· For· example, in tlie prob,lem 

of optimally locating a switching center in a communication network, 

the term "capacity" will certainly have a different connotation than 

in the problem of locating warehouses. 

In the purely mathematical literature this problem, in one form 

or.another, is very old. Cooper (8) reports finding references dating 

back to 1647 when Cavalieri considered the problem of finding the 

• 
point the sum of whose distances from three given points is a minimum. 

It has only been in the last few years, however, that significant. 

literature has appeared proposing methodologies for the solution of 

various types of location-allocation problems of industrial interest. 
' 

The most recent approache_s (12) (23) formulate versions of the 

problem as mixed-integer prog.ramming problems. In ( 12) , the solution 

of the mixed-integer program is.obtained by a branch-and-bound algor

ithm. As discussed in (2) and (22), the efficiency of the branch

and-bound method varies greatly with the structure of the particular 

algorithm use~. Using the branch-and-bound method suggested in (22), 

the formulation i~~(l2) proves to be unsatisfactory from a computation-· 

al standpoint. 

. ) 

.. 

. ,; 

' .. ·-:.:_:--·-~----'--

: . ,, , .; .\~,~;-...(;,..,~"',t•<1r.11·,-);:,t~,,,J~<('~.;.!~i:'~~;.·:o'J>u· .. •-•~~· .,_,v ~-·1 -' _.., ~=''"' •·•• .. ,,. ..•.. -- ,- .. ,.,,..., • ' 
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This thesis will analyze the reasons for the computational in-

efficiency in (12) and develop a more efficient mixed-integer pro

gramming formulation from the standpoint· of computational efficien·cy •. 

The· improvement will be demonstrated ·and an attempt will be made 

to indicate computing· requirements of problems with varying size. 

The"thesis is organized in the following manner .. Chapter II 

,~ontains the statement of the problem as it will be considered' here. 

This is necessary because the gre·at. :in:terest in this topic has gene

r·ated nume~o~s ramifications of the problem statement nnd approaches 

to a solution. Chapter III will review some of the literature that 

has appeared on the subject. The branch-and-bound method is dis-

> 

cussed in Chapter IV and Chapter V contains the mathematical develop-

ment of the mixed-integer program and the' algorithm for its solution • 

. The computational results and comparisons are presented in Chapter 

VI. 
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I I THE PROBLEM 

The general location-allocation problem can be stated as follows: 

·given the location of a number of consuming points, together with 

their demands and the transportation costs from any place to each 

consuming point, find the number, lecation, capacity, and consumer 

allocations of each source that must be provided in order to minimize 
, . .i, 

the sum of transportation costs and cost of operating the sources. 

This statement deserves investigation into the precise meanings of 

its tenns in order to ·arrive at a formal statement of the problem. 

Such an inquiry will be the theme of this chapter. 

A Mathematical Formulation 

~ 

Disregarding momentarily the requirement that each source's 

capacity must be determined, the remaining mathematical problem has 

been stated (8) as follows: suppose that, if mis the number of 

sources, the costs associated .with the operation of these sources, ,. 

z1 , is given by· some function of m, i.e., 

eq. 1 

Further, let the cost of supplying the given set of n demand points 

be z 2 , which is again a function of m, given by: 

eq". 2 · 

·where z2 is the minimum cost solution, i.e., the transportation 

costs to supply. then demand points from m optimally located sources. 
,. 

The total cost is then given·by: 

eq. 3 
,·. 

. ' 

I• 

... 

' . 
I 

~·-··•• -~J.,-..~•'"·-T>'-·"...._,u.~..,_ ,.,.-..,,,' ··•-., ... ;.,..,.,,.-,•., :::,-,,;;:,.•.~,<..', ,: :ia;,·.,'•, •.~,,.,-·.~ ,,";,-.·.~:_-;:,,.,;~_-·-'• ,.,",.;-<'··,:',. '>.' , 1 ;~~:: :,,,,,.j,~1.;, ··, •::": ;,·.,·:,-.:: .. ;.' ;: ,,. •.,··,_; .; 1\~~· ;.,~ :·:, 
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.. 

Since m, the number of sources, is clearly ·discrete, the minimum 

cost solution is obtained when: 
... 

and 

for all m, 

where m* is the number of locations minimizing Z. 

Assuming that the operation of m sources is independent of their 

locations, equation 1 can be obtained by fitting cost data with some 

emperica~ equation. A more complex problem is the determination of 

z2 for some fixed m. If it were possible to determine z2 for various 

values of m, the determination of z2 for ~11 m is again a problem · 

of fitting data. A critical assumption here is the independence of 

z1 and the locations of them sources. With this assumption, the 

problem can be solved as two distinct problems, i.e. obtaining a 

function for z1 and z2 and then ~-computing tl:}e minimum -of Z. Un

fortunately, the determination of z2 is of no small consequence . 

. 
Cooper (8) considers the determination-of z2 for some ·fixed 

:.m,. let the location of the n demand points be given by (Xj, Y j); 

j = l,·2, 
' 

. . . , n, their Cartesian coordinates. Similarly, let the 

coordinates of the m sources to be determined be given by (Xi, Yi); 

i = l.,· 2, .... , m. Ass~e that any demand poi.nt, henceforth ref erred· · 
l 

. ' 

·to as a -conswn~r, can be supp lied by any source. Then • 

a . . (l) (X
1
. , Y . , X . , Y . ) 

l.J.- 1 J J 
eq. 4 

i:"• 

.. 
.. ; 
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... . . 
where 

~ ' .. 

' 1 if source i serves conswner j --
O otherwise 

<%>(Xi, Yi, Xj, Y j) - transportation costs associated with 
, 

serving the j th consumer from the i th 

source. 

' 

In order to find the set of (X., Y.) minimizing z2 , differe~
l. 1 

tiate equation 4 with respect to X. and Y. and solve the equations 1 1 

resulting from setting these derivat·ives equal to zero. Then 

n 

j=l 
.. 

.. and 

n 

oZ2 
~aij 

d<P(Xi, Y;' X· Y·l J , .] -- dY · dY- 1 
1 

- Q: 

j=l r 

1,:.,.. 

This then results in a set of 2m equations which when solved as 

pairs yield them sets of optimal (Xi, Yi) which minimize z2 for 

some set of a ... There are., however, form sources and n consumers, lJ 

S(n,m) possible allocations of n consumers tom sources, where S(n,m) 

ls the Sti.rling number of the second kind and is given by 

,1-,: ... 

.. .. , 

1 S(n,m) = 1 m. 
.. 

m· 

2 : (:y-n \m-k) n 

1-- =0 

.. ·.; 

i_. 

, 
! 
I 
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This th~:t ·-a cbnsumer . supplied by only For assumes l.S one su ,trc u. 
, 

. .. 

very large n, these Stirl'ing numbers can be formidably large. For 

" 

example, S(25, 3) ~ 14.1 (1010), a truly magnificent number (1). 

Equations 5 would then require solution S(n ,m). times and th-.: mini-· 

mum of these solutions wi 11 be z2 for s_ome m. As Cooper poin.t:_s 

out, .for large scale problems ·of industrial importance ·tJ1e amoµn:t· 
•.•. 'I'_ 

'o:ti computation is prohibitive. Cooper develops an iterative p:ro.-

cedure for the solution of equations 5 in .. which cl>(X., Y., XJ .. , ·y ~) 
1. 1. . . J 

-~ 

is a linear function of the Euclidean distance between :so,urces. an:d 

cqnsumers. Although the procedure is of interest, it will not b.e· 

,.l 

discussed further here. Of more import toward obtaining a fo:nna.l 

statement of the problem to be considere_d in this thesis 1·s a 

review of this mathematical formulation and t'he. signift:ca.p.ce o·f 

the results . 

An Analysis of the Formulation .. 

Consider the cost function, equation 1, f·or the .operation of 

m sources. It is assumed by Cooper, although not explicitly stated, 

that equation 1 is a function of only the: value of m. This does 

not- appear to be a realistic assumption from a prac.tical standpo-int. 

s 

Factors such. as real estate availability, labor costs, tax; .rates·, 

etc. will vary the fixed co.sts associated with the establishment 

and ope.ration of a source as a function of where it is sited. 

_Clearly, z1 is then no longer a function of ·m alone, · but also of 

.the particular m points chosen. Then for each m, there exists a 

set ~l of fixed costs for all possible distinct combinations of 1n 

~ J• 

I 

' 
I 
! 
f 
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points selected from all possi'ble source locat·ions .. Then,' if S is. 
.· ' ,' . 

the set of M (X., Yi) that are possible locations for sources and . . 1 . . . . 

z1 is the minimum fixed cost for some m, the following is true: 

where 

; ' ... :· ~ ,.• .. , -

z 1 
' = min z1 = g1(m, f 1), 

' l Zi ~: l·,g-,1{m, fi) I (X1, _Yi)E S Vi r ; 

~-

fi = the fixed costs of a source at (X1 , Yi); and 

:~1-(mi f 1) - the fixed costs associated with the location 

.. of m sources at one of the (:) possible loca-

;. 

.,, 

tion sets. 

Returning now to the transportation co·sts·,. the -minimum cost 

solution.for some fixed m will again be 

since the transportation costs are clearly not a function of the 

f i as~ociated· with the m ~,Qint·s determined by equations 5. The 

total cost·is then 

eq. 8 

Recall that in equation 3, the former total cost expression, a 

minirnwn can be obtained since Z was only a function of m. Equation 
. 

8, however, is a function of m and the f. 'A associated with them 
]. 

points formerly computed from equation 2. Obviously, it is no 

longer possible to obtain a minimum cost solution by treating the. 

··co~t components of Z independently as was done previ<;>usly. It. 

follows then that a solution of the problem requires the optimization 

of Z where the location of m sources affect not· only the transport-a-

'• 

.• 
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•··· t ion costs but also the fixed. costs. . ' 

Consider now the significance of the solution obtained. by. 

Cooper; that fs, the location of them sources expressed as Cartesian 

coordinates. )'his allows the solution to fall in an infinity of ., . 

points--a generalization of the classic Weber problem posed by· 

Alfred Weber (29) in 1909. It would be more realistic, in pro~lems 
.. of industrial importance/' to consider some finite set of points as, 

feasible solutibn points .rather than the continuum. The solution 

locating a.plant in a large lake or sparsely populated area would 

be of little ·or no value in a practical pr.oblem. ~ 

Assume th~h that the possible locations for sources are limited 

to some finite set of points. It is then of no significance to 

express the location ·of the consumers in terms of Cartesian coordinates, 

but rather the distances between the consurners and the possible source 

locations are of interest. The transportati (Jn costs will certainly 

be a function of distance and not necessarily straight line distances, 

as is often assumed, but physical distances over which the carrier 

must travel. In view of the previoµs dibciission, the problem to 

which this thesis is devoted can now be stated .. 

Stat.f3ment of the Problem 

Given: {a) a set c =. 1 cj I cj E c f oi· J - ) ,. :.2:., 
of n ~onsumer points 1 :: J , 

.• .. ' n} 

- • i 2 - . .L , , . . . ' m} (b) a.sets= {s11si E s Jori 

of m possible points, ~i' 
located, 

at wh.ich a source can ·be 

( c) the dem;jn 1; e: j. j - 1 2. · . . i~ n ,. for some commodity 

,. 

..... -:· 

•'· ...... 

·,. 

I 

1.1 
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at cj·, 

(d·) the distance, X . . ' lJ from any Si to any Cj 

·•. 

(e). the transportation cost, tij' of providing one unit 

of dj. from Si per unit distance and 

Find: 
' ... 

Such that: 

' 

(f) the fixed cost, f. ' 1 
of operating a 

~ 

(a) the number of sources required, 
' .. -~ ... "' 

• (b) the location in S of each source, 

( c) the capacfty, K. ' 1 
required at each 

(d) the Cj allocated to each source. 

(a) each dj- is satisfi~d and 

source 

source 

(b) .the total cost of- operation is minimized. 

at Si. 

and >--

This problem can be considered a single-stage location problem 

as opposed to a multi-stage location problem. As Kuehn and Hamburger 

(19) treated a warehouse location problem, the problem as stated here 

is in ,,fact a ·subset of a bigger problem. TheiT warehouse locations ; ... (=" 

are determi-ned·as a filnction of the plant~' lo.cations supplying the 

war~houses as well as the locations of the consumers drawing on the 

warehouses. This is in fact treating two distribution stages, i.e., 

from pl_ant to w.arehouse and from \\,arehouse to consumer. Only the 

single-stage problem will be considered here. 
" 

As alluded ·to earlier, even the single-stage problem can take 

on a varied structure. Of particular interest is the general problem 

in which all consumer locations· are considered as possible source· 

locations. It follows that in this case,. S aqua ls C; i.e. ,. Si = · 

!,/ 

. . n and. where '· 
m and·j - 1, 2, 

6 i.j, ' . . ' 

·:-::=::::----;,.· 

' '\:,I' ,...,. ... a •• ,.,,., •.. 
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is the Kronecker delta defined by: 

6 i.j -

1 if. i == j 

0 if,' i -A: j 

Clearly, it follows that m ·--.. n. f .. or this case. 

,,. ' I • ' 

11:. · . .,•• 

Hakimi (17) has conceptualized a s irni lar problem in a communica-

tion system context as a weighted graph. Maranzana (25) has also •'· 
' 

drawn this analogy i·n an approach to the location problem minimizing 

transport cost-s with some fixed number of warehouses or "supply 

. t " po1n s. Figure 1. illustrates a weighted graph of the general lo-

cation-allocatio~ problem in which S = C. 

·.\r-. 

[tl4't4l'Xl4] 

·;. . 

. ·, 

'. 

I 

FIGURE 1 A Weighted Graph Representation 
of the Location-Allocation Problem 
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Associated wi.th each ve~te~, analogous t ,) the. Ci, is a set of -

weights corresponding to the.· dema.nd, di, at i ;tnd the fixf;)d cost, 

fi, of establishing a source at i. Associ~ted with each edge, 

-analogous to the transportation links, is a ·set of weights corres-

ponding to the per unit transportation costs, tiJ' and t .. , and the ·. J l. 

distance, xij' from i to j. Some observations that should be made 
• 

. . about Figure 1 are: the per unit transportation costs need not 

necessarily be equal on the same edge; an edge's length may or may 

not represent its relative actual distance but rather x1j is the 

measure of distance; and finally, there need not be an edge between 

. " "() all pairs of vertices, i.e., the graph need not be complete 7 

but it must be connected. 

Given this weighted graph, the problem remaining is one of 

determining at which vertices sources should be established and the 

consumers allocated to ea-ch source. Before reviewing the prior 

approaches to obtaining a solution to this problem in hopes of 

benefiting from these·:attempts, mention will be made of some vari-

ations that will be considered. Firstly, the set Scan reasonably 

be a subset of Cina practical problem. Secondly, the set C may 

be a ·subset of S. This will increase the problem',s dimension but 
ill, 

it may be a valid situation which will be considered. 
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III A REVIEW OF THE LITERATURE 

To exhaustively review all the literature pertaining to the 

numerous ramifications of the location-allocation problem would 

require a volume in itself. Consequently, this chapter will be 

primarily concerned with the literature related to the problem 

stated in the previous chapter. One might ask, "What does this 
. ' . . .. . • . • i 

.' ti • L • exclude from review? .. To answer th'is question, a brief discussion 

of sane related works follows. 

Aside from the purely mathematical literature, the location 

problem has been treated from many fronts. Haley (18) has treated 

the multi-stage location problem through- the use of a mechanical 

analog. The analog consists of a set of k + n pulleys; k plants a 

and n consumers, located on a vertical plane corresponding to their 

relative locations. Strings are passed over the pulleys. One end 

of each string supports a weight proportional· to the demand or out-

put; i.e., demand for consumer and output for plant, times the trans

portation costs per unit per dist.ance un-it. The ends of the strings 
' 

J • .... 

are tie~ together and released coming to rest with the knot at the 

minim.um cost location for a single distribution center. The assump

tion here is that transportation costs are linear with distances and 

that the friction. tn .the system can be ignored. Burstall, et .. al. (6), 

independently of Hal·ey and almost simultaneously, used the mechanical 

analog to determine_the near optimum locations of a pair of factories. 

They extended the analog· sol.uticn with subsequent comparison by 

• digital compu~er· of s.everal alternatives obtained f.ran the analog. 

"· '' 
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Eiseman ·c 14) has presented a·n ident fcal mechanical. analog to the 
. . 

single location problem. Eilon and Deziel (13) present the solution 
* 

to a single warehouse location problem as well as a two warehouse 

locat:_ion problem utilizing an electronic analog computer to obtain 

the solution. 

; - -·-

Closely related to the approaches utilizing a mechanical·analog 
' 

to obtain the single optimum location for a warehouse is the concept 

of determining the '' '' center of the demand system by mathematical 
... 

means. Smykay and Fredericks (28) compute a "ton-mile center" for a 

. " " system of consumers by computing the pull in two orthogonal di-

rections from a reference point. The "ton-mile center" will yield 

the minimum transportation costs assuming straight line transportatim 

links and linear-costs with quantity. Hakimi (17) presents a compu

tational technique to determine an m-median of a graph which mini

mizes the total interconnecting wire lengths if the graph represents 

. 
a communication switchi~g system. Unfortunately, his technique con-

sists of completely enumerating all combinations of m points se

lected from then consumers. For large n, the enumeration is 

prohibitive from a computational standpoint. Maranzana (25) de- -

termines the "center of gravi t.y of a set of weighted nodes" in a 

heuristic algorith~ to locate a fixed m number of distribution 

~oints to minimiz~ transportation costs. '' . " The center of gravity 

turns out to be equivalent to the "median" found by Hakimi. 

Kuehn and Hamburger (19) have treated the multi-stage location 

• 
problem through the use of a heuristic.program.· As stated earlier,· 
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the program attempts ,to mini'mize transporta-oton costs from k fixed 

plants to m warehouses·, the location and number of which is to be 

determined, and the transportation costs ton consumers from them 

warehouses while simultaneously minimizing the fixed warehouse costs. 

Baumol and Wolfe (4) treated the same problem from a mathematical 

'--··-·-programming approach. The procec;:ture consists of repeated solution 
' ,,d •• • 

I of the transportation algorithm until no further cost improvements 

are reali~ed and the process is terminated. 

This excursion into related problems was by necessity not all 

encompassing. It may nevertheless be fruitful to pernse these re

lated problems for imbedded in their methodologies may be the tools 

needed to solve the problem at hand. More closely associated with 

the problem of concern here are the following papers. 

Cooper (9), in "Heuristic Methods for Location-Allocation 

' " ' ·.ProbleJpS, continues his study of the location-allocation problem 

presented in Chapter II by applying heuristic methods. -Heuristics, 

as referred to by Simon (27), are rules of thumbs selected on the 

basis that they will aid in problem solving. Cooper attempts to 

determine the effect of _applying some heuristics to reduce the compu

tational effort involved in solving equations 5. Recall that the 
> 

solution to equation 5 gives the locations fo~ m sources as (Xi, Yi), 

i,,= 1, 2, ... , m. Cooper reaffirms results obtained in (8) indi

cating that the solution obtained from equations 5 will be closely 

';,., approximated by enumeration of all .possible combinations of the n 

demand points taken m at a /time, <!>, ·and se'lecting the minimum cost 

I . 

•·•·•·,;---o--·~",, . ._-,' ,.·,a ,··• --,, < •.-,~••, .• , '··' ~--··~· 
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combination as the ~ptimal solution. This then .suppprts the· contention····· 

made earlier.· The . enumeration is not trivial·, howe·ver. He reports 

that the computation of ( 6~) took 3i hours on an IBM 7072 computer. 

The next "heuristic" investigated is the error in sampling from the 

(~) combinations and selecting the smallest of these as the optimal 

solution. As an empirical rule, the sampling was st~pped when a 
' . ' ··· value between Ii to 2 standard deviations below the mean and the· 

samples t~a:ken up to that time had been obtained. It was found that 
·\ 

the mean percent error obtained by sampling to solve 100 problems 

was 2.518% from the optimal solutions obtained-by solving equations 

5. 

Cooper further investigates the error in determining the optimal 
-

location of 2 sources and adding additional sources until m sources 

are locate.d. On the same 100 problems, the mean percent error was 

7.0861. Finally, then consumer locations are divided into m sub

sets and a source is optimally located within each of them subsets. 

Tl's results for this heuristic approach yielded a mean percent error 
... 

of 2.582%. Of significance in these results are the small errors 

found. Cooper states that in the location-allocation problems he 

has experimented with, a relatively flat minimum was observed. It 
' 

should be noted, however, t~at all the computational techniques in

volved only the optimal location of a fixed m sources. 

Manne (23) formulates the single stage, location-allocation 
' problem· in mathematical programming .. terms. In the context of a 

plant location problem, let 
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-= annual rate of manufacture at source i for shipment·to 

consumer j, 

y 1 = fraction of fixed costs incurred fo·r operation of a 

source at i, 

tij = transport cost/unit from source i to consumer j, 

c. = manufacturing cost/unit at source 1, 1 

b ..L 
. j -1. Ci + tij' 

f. - fixed annual cost incurred for a source at 1, 1 

d. - annual demand at consumer j. J 

Then the total system costs are given by: 

m 

z - E 
i=l 

subject to:. ,.. 

':: -~ . 

-~ 

'· 

m 

E P1J = dj 
i=l 

pij ,. 
= 0 if yi = 0 

~ 0 if = 1 Yi 

J = 1,. 2 , .... , n 

l ~_. 1.,· 02' , • . . , m 

= o, 1 i = 1; 2, ... , m 

·;} 

Although the system of constraint equations resembles the transpor~ 
' 

tation problem, there are two important differences: 

1 .· The y 1 must be set equal to one L~o allow. pij > 0 in the i ·th 

group. The transportation algorithm cannot be used unless· 

ri = l, for i = 1, 2, ... , m. This ~learly .is not the aim ·.-, .. 

of this fo~mulation. 
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2. There are no capacity limitations on the sources. This 

again is not ameni-able to solution by the transportation 

algorithm. 

"· 
The first differen·ce is then merely a restatement of the in-

ability of the transportation algorithm to minimize Z. Recall, the 

transportation algorithm is designed to minimize transportation costs 
,. . i ... 

or some cost function C, where 

m n 
C - ~ 

i=l 

Manne ut-ilizes an adaptation of SAOPMA (steepest-ascent one-point move 

algorithm), ·introduced by Sherman and Reiter (26), to obtain a feasible 

solution to the problem. SAOJ'MA is a heuristic rule beginning with 

a random selection of some m source locations and makes . . " one-point 

moves" until no further economic advantage is realized. 

For example, consider the case when j = 4. Implicit in ~his 

formulation is the fact that S = C. Then th·e possible combinations 

of y. 's can be considered as lattice points of a unit hypercube in 1 

the yi space. ·The lattice ·point (0110) would represent sources at 

i = 2 and i = 3. The "one-point move" requires evaluating the cost 

· of· any a·djacent lattice point and shifting to the lowest cost point. l 

. -
The adjacent lattice ·points fqr (0110) are (1110), (0111), (0010) 

and (0100). If at any of these pointEt Z<·z -at (0110), the Z for the· 

adjacent lattice points to that point are evaluated and the process 

is· continued until no !mp.rovem(:!nt is obtained at any, of the adjacent 
", 
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points. ·clearly, the solut·ion will o.ften be a local minimum. Manne 

found the error from true optimum for a number of problems to be 

approximately 4.5%. Of significance in Manne's approach tq the location-
., 

·allocation problem are: the mathematical programming formulation; 

the heuristic rule applied to solve a seemingly unsolvable, from a 

computational standpoint, mathematical programming problem; and the 

small percent error obtained with SAOPMA. 

Efroymson and Ray (12) formulate the single-stage, location

allocation problem as a mixed-integer progrannning problem similar 

·· to Kanne's formulation. 

·Let. 

dj = the demand at consumer j, 

ti. - transportation cost/unit from source i to consumer j, J 

b .. - tij dj = .the total transporta·t ion costs to supply consumer lJ 
• ..... 

j from ~ource • 1, 

"'\~ 
~ 

- the fraction of dj supplied from source • P·j - 1' 1. 

f.i - the fixed cost of operating source i, 

N. = the set of sources that can supply consumer j, J 
•. 

Pi -.the set of consumers that can be supplieq from source i, 

The problem is then stated as 

m n m .;-;.:;t ., 

E E E 
: 

min z - bijpij + f1Y1 -
i=l j=l. ... ·i=l 

'+ 

_su_bject . ~o: 
.. :1, 

·,, 
~= 
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" ·'· >O ,·1 ··.;..·. 1 Pij -~ - . , 

Yi - 0, 1 i - 1, -

• 
j·= 1, 2, . . . ,. 'Ii 

. i = 1, 2, ... , m 

2·' j ' 1, m; -• • • ' -
2, • • • , m 

2, • • • ' 
n 

..• 
··,:. 

In the termfnology used in Chapter II, this formulation will solve 

the general problem if and only if: 

and 

N- = S J 

p. = C 
1 

the latter of which implies that: 

j = 1 · 2· . .. ·· n· . ' . ·- ' . . . ' ' ,. 

i = l: ,: 2, , ··: •.• ,, n ;: · 

:, 

i = 1, 2~ ... , n. ·,, 
The solution· of this mathematical program is not trivial.· 

'' '' Efroymson and Ray utilize a branch-and-bound algorithm. It will 

·:·. ·:· 

suffice to note here that unlike SAOPMA, a branch-and-bound algorithm 

guarantees a global minimum solution to the mathematical program. 

Efroymson and Ray's formulation of the location-allocation problem and 

its subsequent solution by a branch-and-bound algorithm will be re-

viewed in more detail in later portions of thia paper. 
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I\t 'IHE BRANCH-AND-BOUND METHOD 

As pointed out earlier in this paper, one approach.to the solu

tion of combinatorial problems is the enumeration of all possible 
_, 

combinations defining the solution space. Problems of industrial 

importance, however, are usually of such dimensions that this approach 

becomes infeasible rrom computational aspects. " " A better mousetrap . 
• 

must be devised. The branch-and-bound method is such an improvement. 

Like dynamic programming, the branch-and-bound method is an 

intelligently structured search for the optimum solution in the 

feasible solution space of a particular problem. The concepts of 

" " " " branching and bounding are utilized to repeatedly partition the 

feasible solution space into smaller and smaller subsets and a bound 
.\ 

is determined for each solution in a particular partitioned subset. 

That subset with the most favorable bound is further partitioned 

until a feasible solution is obtained that is more favorable than _.;;_,J:•' 

" 

any previously obtained subset bound. Favorable is used here to 

denote that the bound is either the smallest or largest bound 

obtained depending on whethe-r the problem is one of minimizing or 

maximizing some objective function. Lawler and Wood (22) have 

recently published a survey of branch-and-bound applications in 

which diverse types of constrained optimization problems are cited. 

· Their paper includes an, extensive bibliography on the subject. To 
--. . . . 

demonstrate the ~ssential features qr concepts of the branch-and- · 

bou-nd method, the following discussion, closely paralleling that 
. 

·of Lawler and Wood, is presented.-

·' 
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' " 

',. Suppose it is desired to solve a "difficult" constrained 

optimization problem. Consider "difficult" to mean that there is 

no efficient te~hni~:ue to solve the problem directly. Let the 

problem, Z, be: 

minimize Z=g(p) ·~ 

subject to gl(p) > 0 -
g2(p) > 0 -

• • 
• • 
• • 

gm(p) 2: 0 
,:· 

p E P, 
attd .. • .' .. · .. ', 

where P denotes the feasible solution space and p denotes a vector. 

(p1 ,p2 , .•. , pn). A solution vector pis a feasible solution if 

and only if p E P and satisfies the constraints. · The optimal feasible 

_solution, p
0

, occurs when g(p) is minimal. 

" " easy problem, Z', exists. Let Assume now t.hat a related 
r . 

..... 

this problem be: 

minimize z I =g' (p) 

' subject to gl (p) ~ 0 

' g2 (p) > 0 -
• • .. . 

• • 
• • 

and . ~m9~ (p) > 0 -
p E P. 

Assume further that the following condition holds: 

. . ' ,, . '' . . 

This is-· then a bound on min Z. ·It follows. that if p 1; is a f~a~ible · \ 0 

' solutiori to Zand 

' ;·. 
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then p0 is the optimal solution to z. · It is then possible to ere-ate . 

a set Z', z", ... , Z(n) of bounding problems which for some zCi) 

yields p as a feasible solution to Zand in addition 0 

g(i)(p) = g(p ). 
0 0 

This is then the optimal solution to Z. If the structure of zCi+l) 

' " ( i) . is a function of the solutions of Z , Z , ... , Z ; 1.e., the bounds 

p:rev·fously obtained, the process of 'finding the optimal solution t.o 

" " Z c-n be represented as a tree. Figure 2 is a ·tree representation, 
,. 

of" .the branch-and-bound-method. 

. .... _,. 

,· 

~.. •, 

*Denotes Optimal Solution 
.. ; 

Figure 2 A Branch-and-Bound Tree 
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Each node represents a problem. '!be branches ema,iat~ng from a 

node Z(i) replace Z(i) in the bounding set. Consequently, at a 

" " particular stage in the compu~ation, .the free nodes which have 

not bee.n -branched from are the bounds of Z. At each stage branching 
'· 

occurs from the smallest node (Z is still a minimization problem) 

creating new bounds. If at any stage i; p
0 

is a feasible solution 

to z and all bounds are greater than 
(1) 

g. po' the optima.I solution 

to z has been obtained and 

min Z - g(p) = min z(i) = g(i)(p) 
0. 0 

.:Fo·r exai:nple, tracing through the tree in Figure 2, node Z is 

r·epresentati ve of the solution of Z which is to be found. Nodes 

' " Z and Z are the solution. of two bounding problems. Branching 

..,,: 

from z'·' implies . that z" < z'. 

can be concluded: 

Further, the following relationships 

and 

z<3> < min(z<4>, 

z(B) < min(z<6>, 

Z <5 ), Z') 

Z <-7) , Z',.. Z ( 4>., Z ( 5)) 

If, for example, the following condition had existed, i.e., 

Z' < min(z(3), z(4 ), z(5)) 

branching should have occurred from Z', • 

. 
The amount of computation is clearly a f-unctio,i. of the number 

of nodes in the tree. " " If the easy ·problem solved at each nod·e , 

does not bound the problem s .. uf f iciently well, the tre.e may grow to 
I . 

/ 

represent all feasible solutions of Z which is in fact a complete 

enumeration. 'file number of nodes·which have not been branched from 
,, 

/.' . 
;'!-_ 

" ' 

.. ;:. 

l. 
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w.111 cletennine the· amount of intennediate storage required. Tltat 
p -

is, it may be nece~sary to branch from a node determined early in 

the process so it must be stored. In shbrt,the branch-end-bound 
.... 

method's usef~lness and efficiency is a func~o~ of the particular 

algorithm used to construct the bounding problems at each node and .. 

" " the structure of the difficult problem as well. 

Agin · (2) .defines a ... branch-and-bound algorithm as " - . A set of-· 

rules for 

. 

.. 
1. branching from nodes to new nodes, 

:·2. determinfhg lower bounds for the new nodes, 

·3 .: · choosing en intennediate node from which to branch next, 

4-.. recognizing when a node contains only infeasible or non-

:-optimal solutions and -

'5. recognizing when a final node contains an optimal solution." 

From the discuss'ion of the branch-and-bound method and the definition 

given above, it follows that the .concepts of branching and bounding 

can be applied to.a myriad· of problems. It should also be recognized 

that unlike the simplex algorithm in 1 inea"i· programming, a branch-

' and~bound algorithm does not follow a common procedure for all 

problems .. It must be structured to the "difficult" pr_oblem at 

hand. / 

Land and Doig (21) ·consider the s·olution of mixed-integer· ,. 
.. • • 

J 

programming problems by the branch-and-bound method. 'nleir work 

a 

has subsequently been extended by .Beale and Small (5);''/ Dakin (10) ,-

and Driebeck (11). The approach to the mixed-integer problem is 
...... 

. 4t 

. ~-
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'. r 

(22): Solve the mixed problem., b~ the ,_simplex algorithm. If the 

solution obtained has integral values for the required variables, 

th~ optimum solution has been obtained. If not, restrict some non

integral "integer" variable to the next lower and n-ext higher -

integral value and apply the simplex algorithm for each case. 

This process is repeated until the solution is feasible and no 
\-, .. -~- .. ' 

intennediate node is more favorable. Of particular interest here 

' 

is the mixed-integer programming problem in which the integer 

variables are Bool~an variables, i.e., of the zero or one type. 

Consider the solution of the :following problem. 

Minimize 

subje.ct. to, 

and 

z - g(p,y) 
.•,.;. 

gl (p,y) --~ 0 

g2 (p!y) 
- • . 

• 

gm(p,y) 

p E P. 

y ·E y 

> 0 - .: 

• .. 
> 0 - . ' 

where P = the feasible solution space for p, 

Y= the feasible solution space for Y, 

P. - (pl' p2, •.• , p ) 
n-

y - (yl, Y2,•••,Yn) -
... 

g(p,y), 'gl (p 'y) ' •.. 'g {p' y) - linear functions -m ., 

In particular, let 
• .'.1' . 

• I#' :·\ 

~-

.• 

.#. ,._ I. 

.~:-

-.~ . 

in-p and y. 

..... ,. 
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:, ... , 

·y - (yl, Y2, Y3), -
•.. 

p - the positive real numbers 
... 

y ,;\. . q and - the integers 0 or 1. 

There are then 23 = 8 different solution points satisfying Y or in 

the SAOPMA terminology, eight lattice points of the unit hypercube 

in 3-space. Associated with each of these lattice points is an 
.. . . ... ..... , .. , -.r 

"easy·'.~ bounding problem, the sol uti-on of which may be infeasible 

with respect to P. " " The easy problem is a solution of the linear 
,·, 

-programming proplem defined at that lattice point, i.e., the ~roblem 

with the yi constrained to equal one of the eight feasible solutions 

One appro.a.ch to the solution of Z would then be t~ solve the 

eight problems a~~- select the minimum solution. Let the problem 

at a lattice point by Z(y1 , y2 , y3) where in pa~ticular Z(0,1,1) 

, 

denotes the probl~m with the y1 's constrained as: y1 =.O, y2 = 1, 

' y = 1. The tree of all possible problem~ is then represented in 3 

Figure 3 •. 

.. Figure 3 · An Enumeration Tree 

( . 
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·.~ ,: 

For _a large number of yi's, this is not computationally feasible. 

If y = (y1 , y2 , ••• , y15>., the number of lattiL·=- poi~t problems 

that exist is 215 = 32,768. 

Consider a branch-and-bound approach. Let the initial problem 

be the continuous version of the mixed-integer problem denoted by 

Z(-,-,-) where· the dashes indicate that none ?f the yi's are 
: . , . ' 

'Constrained to be integers. It follows from the theory of linear 

programming (16) that the absolute minimum for Z will be the 

solution of Z(-,-,-). Construct two new problems based on the 

values of the y1 's in the solution of Z(-,-,-). Let these problems 

:-constrain some non-integer y i to zero and one. Using the solutions 

to these problems as new bounds, branch fr an the lowest,· bound and 

create two more problems. This process will continue until all 

y.'s are integers and no lower bound exists which has not been 1 

branched from. This is· the-optimal feasible solution to Z. If 
'.r 

.. I . 

at some node the s<ftution is infeasible, the subset .defined by that 

.node is no longer considered for further partitioning. 

Of importance to this approach is the structure of Z. If Z 

is structured to drive the y.'s to integral values at earl~ stages ... 1 

of the tree growth, the tree size may be small when an optimum solu- -

tion is obtained. Conversely, with a " . " poor _structure from the . 

v~ewpoint of introducing integral values early, the tree may grow , 

to a complete enumeration tree. As pointed out by Agin (2), the · 

decision rules applied to create the new problems branching from 

a #ode can be a deciding factor in the size 'of t.he tree. ' 
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. . .. · V A BRANCH-AND-BOUND APPROACH 

This chapter is-addressed to the development. of a mathematical 

formulation of the location~allocation problem, including the implicit 

assumptions, and the branch-and-bound a~gorithm for its solution. 

As alluded to in prior discussions, these ele:nents ·of the branch

and-bound method are not d-isj oint from the standpoint . of computational .. .,, 

efficiency. 

The Mathematical Formulation 

.. 

Recal 1 ing the problem statement in Chapter II, -a weighted graph;. 

G, Figure 1, defines the problem req!liring solution. G can be repre

sented in matrix form to facilitate further development. Consider 

first the general problem in which S =·c~ 

Let X be an n x n matrix representing the "distance between any 

two vertices on the graph. Then 

xij if Ci and cj are adjacent vertices 

X. j= 0 if Ci - C. -1. J 

a) if Ci and cj are not adjacent vertices 

Recall that x1j = xji for i = 1, 2, ... , n- and .j = 1, 2, ... , n. 
'l'·· ... 

·:~,i· 
Obtain now the shortest distance b·etween any pair of vertices in G. 

This is· not .a trivial problem. ·Some· approaches to the problem are 

., 

presented ·in (15).. The discussion of this problem is outside the 

scope of this paper and it is· therefore assumed that a technique is 

I •:.-:,· 

.. 

used to. obtain the s.ho·rtest paths. .• 

. ' 
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Let the matrix X represent the shortest paths obtained. 

Then 

I = [i1j] where 

' 

- if • ~ j xij 1 -xi. --J 
0 if • • l. - J. 

xij is then the shortest path connecting Ci and Cj. 

Let 

be a vector representing the dj a.t each Cj. Further, let the trans

portation GOsts be represented by: 

T = [ t .. ] where . lJ 

t. . if i /; j . 
l.J 

0 if i = j, 

... ., 
and t. . is the cost to transport one unit of d. from S 1 · per unit l] J 

distance. The total transportation costs to provided, from s1 J 

can then be given by: ., . 

B = _[ .bij ] where 

The remainder of the graph consists of F, the vector of fixed costs 
... 

for operation of a source s1 at i. In the former notation, 

The essential costs are then·~epresented in matrix Band vector F . . ...... 
. ?--~:r 
'.~.: . .? 

It· is noteworthy at thfs point that B wfll Have zeros on the d.iagonal 

·-"· ;; 

·- •1 

. . . -· -·, .• .,- •... ,,---. "· ·' ... ,-_ ·~·-··- .,. . -· . .,,., ·' . •, .. : ., .. ' ,.;,i,:.- ,, ...... ,<, -, ,' 
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.. 

which m~rely ·implies th.at the satisfaction of dj from a source at 

j will not require transportation· costs. This assumption does not 

appear unreasonable when considered with respect to the transportation 

costs tij when i ~ j. Also impl_J9it in the foregoing development 

is the linearity of transportation costs with distance and quantity. 

The validity of this assumption will be a function of the particular 

application. It will here be conside.red to apply in all cases .. 

Cont~nuing with the development:, 1·et pij be the fraction of 

dj supplied from Si and let yi represent the fraction of a source 

at i. Minimizing the operating costs of the system will again 
,. 

require the minimization of fixed costs and transportation costs. 

The fixed costs are: 

n 

z1,. = E f1Y1 
i=l 

' The transportation costs can be expressed 

n n 

z2 - E E bijpij 
·1=1 j=l 

and the· total· operating .costs are then: 

·,. 

.. ' 

n 

E 
i=l 

f.y. + 
1 1 

as: 

n 

E 
i=l 

;., 

n 

:E bijpij 
j=l 

z is identical to the total cost expression obtained by·· Efroy1:11son 

and Ray. 

... · 

To insure that each dj is sa~isfiec;t,· a· constraint must be imposed 

: ~: 
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.. ~---·-· 
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,., . 
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on the minimization process~ Since ~ij is the fr act ion of d j sup-... , 
. 

plied from Si' the sum of th~ :pij for each j must equal one, i.e., 

.j - 1 , 2 ., . . . , n 

~ther, consider y1 ~ 1; i.e , a maximum fraction equalling a 
r. 

complete source. It is required to constrain the number of consumers 

that c~n·be served by a source. This constraintis expressed as: 

n 

L Pij ~ .·nyi i = l ,: .2 , ••• ,. :µ. 

j=l 

It is unreasonable, from a practical standpoint, to consider yi to 

be continuous in the interval Oto 1. Consequently, require that 

'•. 

Yi=· 0, 1 i = l, 2, ... , n 

That is, there either does or does not exist a source at i. The 

above set of constraints is identical to the·set imposed by Efroymson 

and ~ay if their Pi= Sand Nj = C for all i and j. 

Consider the solution of this IJ!.!xed-integer programming problem 

-by a branch-and-bound method. Using the approach indicated in 

Chapter IV, t~e procedure, begins with the minimization of Z with 

the p .. and Y.
1
. con~idere.d to .be continuous, i.e., in the former ' ' lJ 

notation, Z(-,-, . . ,-) is solved. Subsequent nodes involve the 

solution of some Z(Io, I1, I2> where Io denotes ,,the set of i's' for 

the yi's that have been fixed at zero, 11 denotes the set ~f i's 

• ':'9'-,,' 

r . 

I. ' 

i ,, 
' ;'"J,l" 
'· i~~'· 
I. > 

! , 
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for the y i's that have },ecn fixed at one and I 2 denote·s the set of 
.. 

i's for the y i's not in l O or I 1 . 0 Then in Z( - , - , ... . --) ; Io = 0, 

I 1 = 0 and I 2 = 1 , 2 , . . . , n . , 

In the optimal solution at some node, note th .. 

the constraint 

n 

E p. j < ny .. 
1. - · 1 

.j=l 

will be a strict equality. Then 

n 

E P .. - .nv ... . lJ .... 1 
j=l 

o.r 

n 

E Pij - Y. -n 1 

j=l 

Substituting this result into Z, the 
(., 

n 

E E E 
p .. 

.", 

f. lJ min z - + f .· 
1 1 n 

iEI1 iEI2 j=l 

n 
E . 1:.· ·!.! p .. 

. n l..J iEI2 j=l 

n 

4-

• .. 

'' 

problem at a node 

n 

E 
i=l 

., 

n 

+ E 
i=l 

n 

E b .. p ... ;, 
lJ lJ 

j=l 

n 

L biJ. P,t.J .. · . 
j"=l 

n 

... 

. 
1S 

c!i E f. +.·E· -E b ... Pij + E E + bij_)Pij. - n 1 lJ 
iEll ~E I 1 j=l iEI2 j=l 

' .. 

·since for the ieI1 ; yi = 1,. the first term is a constant at a node 

and the minimization process is con.cerned ·with tne r~maining t,erms. 

,_./ 

'l 

'
...\."'-" ..... 
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It is then desired to find 

n 
min Z' = + l: . l: bij pij 

iEI1 j=l 
eq. 9 

Recalling the constraint that 

n 

. . ... .E P,ij = 1 
i=l 

the minimum. for Z' will result when 

p. . = 0 .. lJ . l.J 

unless for some jEI2 and iEI1 UI2 , 

If, in fact 

then 

f· 
b· ·<::.l. l.J n 

. ' fi b .. > _;J__ . ··1J n 

:and the minimum soluti"on will be: '. .. : .. 

p .. - 1 
JJ 

. . 

ineq. 10 

since b. . = -0 for all j 
JJ 

'for all jEI2 

In addition, f-or any jil0 ,. the following .must hold:· 

' Jo: '· _, .. ,. . ......•. ,., ,,., •...••. , ... , ... -, .. , '"": ,. ' 

l:. 
iEI· UI ·1 2 

=· 1 

'-:· 

'I,' 

.. 
.... ·. 

j EI . 0 ' 
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;-·' '"·"··· ,.:.:·'-( ,;.:,, •• ~,.·.·,.,_; ·:.· ~--, ,. ·.: ..... •.•·,' "-._...,, :::~- ;: ' ··- ••. ,- • ,-, .. , • ··• ,,., _-, •• ',, •<. ,' • ,' i ' -· ' ' ' . . -.•.. , .. ' .. "' ; ,', .<. '.i!;'".1< ;'-,'<· ','. ,, ·::;' • ·, .":>: ';-, ,' -~-...... ·: . ,·, "," , •. ,, ,., .• n.,,,_ .. ,.,,,,,"',,,.,.,,,,r;,_,,,u·• 

t. 

.. 

.... 

,\ 

l\,ij 
l ·:. 

I '., 
I .\ 

· j ' 
' 

' ' 
' 

1 f· 

i 

I 

' 

1 
,! 
J 

-l 

l \ 



:.: 

. .. 

37 
.. 

It follows from equation 9 that 
··r--
""··· 

1 if bi. + (gi/n) = min t bij J 

p .. 
itI 1 U I2 -

lJ 
0 otherwise 

where 

.. f i' if ifl 
2 

g. -
l 

0 if iEI 
1 

Then, _if n' is the number of j's allocated to itI2 , 

n 

E 
.j=l 

p .. 
lJ 

n' 
Y· = -.1 n 

- n' 

• 

+ (gi/n) J 
.. 

.. 

• 

·1!t 

-, . .. 

: ,n· 

unless inequality 10 holds for all iEI2 . What does this result mean 

in terms ·of the branch-and-bound method? Simply that for· all iEI2 
.. 

~ta node, the solution of the linear program at that node yields 

the same 12 unless n' = n. In most practical situations, n'<n. 

It would be advantageous to reduce I 2 at each node so that I2 ap-

:-._ proaches the null set; or equivalently, that all y i-' s have taken on 

integer values-. 

Consider the addition~of another constraint set. Let this con-

straint require that .a source be at i be:fore a -consumer at i can 

be served from i. That is, require that 

-i = 1,. 2, ... , n 
• 

· The -,~allowing ~ill then be· true in· the optimal solution at a node: 

.... 

' . - ~ . .. " . ··- - ... 

,, 
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" ....... . 

and 

Substituting the latter equality into the objective function yields 
,> 

;i. • 

the followi~g problem at a node: 

min Z - + 
n "I 

L L b1jPij 
iEI1 j=l . 

As befpre, the problem reduces to: 

n 
,, 

Z' E ~ bijPij E min - + fipii 
iEI 1 J=l ieI2 

or 

n n 

+ 

+ 

E f.p .. 
1 .11 

iEI2 

n 

n 

+ E Ebi·P·j 
iEl2 j=l J 1 

. 

I: ~bijpij 
iEI2 J =1 '_i, 

,\,;: 

min Z' - E E bijPij + E E Co1jfi +b1j>P1j eq •. 11 
iEI1 j=l iE'.t j=l . 

:.~ 2 

with the constraint that 

n 
. E P .. = 1 
i=l lJ 

still in the problem. Recall that the minimum solution to equation 9 

r 

was 
' 

unless the inequality 10 held. This result does not however follow 

in equation 11. For as the is increased to satisfy d. with .,, · · P11 1 

.. 

\ 
I ' 
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' 

h11 = O, Z' is increased-by fipii as opposed to the increase of 

f 
~ pii in equation 9. Although it is difficult to show analytically, 

this will generally reduce 12 at the initial node and consequently 

approach the optimal feasible solution to Z more rapidly. 

The.mixed-integer programming problem is then: 

n 

min Z = E f'1y 1 
i=l 

'S)1bj e c_t to-: 

Note that if s 

n 

tp .. - 1 
1.J 

i=l 

n 

"p .. < ny. LI 1.J - 1. 
j=l 

pi. < y. 1- 1 

' 0, ri -
• 1S a proper 

n n 

:., 

1 

subset of c····· 
. ' 

:... 

J = .l,. 2 ,. •. •. , .. ,: ... 
n 

:• .•• ,: .n 

.... · 

i - 1, 2, J;l,. - . . . ' 
.; 

... 
1, 2, 1 - ... ' n -

for s . I c, let f. " any - co. -1 1 

Further, if C is a proper subset of S; for any Ci I S, let di . = O. 

In the optimal feasible solution to th~1 problem, the ieI 1 will 

• 
be·the locations of sburce~ and all i 1.11 , i.~.; all iEI

0
, will be 

:.. supplied by ·some Si where iEI
1

. For any p .. > O", i will be in I 1 1.J 

and j will be in 10 • This .then determines. the allocation of the Cj -

to.__ 1:~~e Si. It remains then to determine the required capacities for 

th~ Si.· ·clearly, the necessary capacity Ki at s1·.will be: 

n 

K. - L Pijd .. 
1 J ·• 

i = J., 2 , • -~ • , n 
'-. 

j=l 

.; 

~-

··~· 
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An additional observ,ation regarding the optimal feas~ble solution to 

Z will be made at this point. 

,0 

It is noted that the optimal solution to Z will be all integer, 

i.e,, the p .. 's as well as the y.'s will be e.ither zero or one in lJ 1 

the optimal solution. The proof of this result follows: note that 

• in the ~ptimal feasible sol~io~, 12 = 0. The objective function at 
4 

the node is then 

miil .z' -

.;· 

s:ubj.e·ct t:o<:. 

.• 

p .. = 1 lJ 'j ·~ l, 2 , •.. , n. 

Theµ by the constraint ~hove 

' ' j ::;. l, -~ ,· ·• .. :•: ., .. _µ: 

or 

.t,J~ • ·~ .l - p_. . 
, , 1 lr"'bJ 

IJ' 
j = 1, 2, •.. , n 

Recall that for a point P to be the optimal £easible solution to Z 

obtained by the simplex method, i~ must be an extreme point of the 

convex solution set. P is an extreme point of the convex set if and. 

only if there do not exist other points P1, p2; P1 # P2, in the set 

such that.P =X~+(l-X)P2, O<X<l (16). It follows then that for P 

to be the optimal solution to Z, 

= 0 or 1 j ~: 1 .. , .2·,- •.... ' . ·n. 
" 

). 

,I 

,I 

') 

ti 
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Clearly, this ·is the only solution not obtainable from a convex 

combination of two other points. The problem as formulated is then 

actually an all-intege:a,· programming problem with Boolean variables. 

From the standpoint of a branch-and-bound algorithm, this result 

~s ignored because it on~y applies when 12 = 0. It is of interest, 

however, that this integer programming probl~m allows solution by 
,-- ' 

the branch-and-bound method when considering it a mixed-integer 

progranuning problem. The algorithm capitalizing on this behavior 

is discussed in the next section of this chapter. 

The Branch-and-Bound Algorithm I 

Recalling the definition of a branch-and-bound algorithm stated 

in Chapter IV, the algorithm :used to solve the mathematical program 

of the previous section will be described by stating the rules and 

the rationale behind them for the five elements of the algoritlua~ 

The-terminology and notation will be that-of the previous section 

and Chapter IV. Some repetition wil 1 occur on those points previously 

discussed in generalities for the sake of continuity. Appendix A 

contains the algorithm in flow diagram form. Consider, now the five 

elements in the definition. 

Determination of Bounds - The bound at a node will be obtatped 
.if,.,"+ 

" by solving a linear prqgram of.the problem at that node. Clearly, 

any solution in the subset.defined by a node can be no less than the. 

bound obtained from the linear ·program. The problem a-t the node 

is defined by I 0 , I 1 , and I 2 . Similarly, the solution at the node 
I ' . ' can be defined by the value of ,z and some new 10 , I 1 , and I obt.ained 

2 
'r ' ' t from the values of the· y 1 ' s in the solution. ;!!'he· I0 ·,· 1

1 -and 12 at 

• 

,_.,._ ••• ;._:.> ·:.-,-• .. 1~..c, ... :u._.,-:.• ,, . .:•.~,.,-• · .,1._..._,-, ""'·· , .• 
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. ' _ a node will be used to determine the probl-ems _at the nodes branching 
"' 

from that node. 

Branching from Nodes to New Nodes - Following the approach in 
(21), there will be two nodes, z(i+l) and z(i+2), branching f~om the 

,. 

most favorable node z(j). In·z(i+l) constrain the maximum yi; 

y i (max) , for HI; at Z (j) , equal to zero and in zCi -12) constrain 
. , . ~ . 

I yi(max) to one. Recall that in equation 11 all y1 = pii for itI2 . 

Since bii = 0 for all i, ·a large pii = y i i~dicates that the trans
portation costs t.o supply i from some other j are h_igh and also that 
there exists some j for which b.j is small. 1 . Consequently, let the , 

' largest y
1

, iEI
2 , be the first integer variable integerized. 

Choosing the Next Node to Branch from - Agin (2) discusses 

three alternatives for selecting the node from which branching con

tinues. The first alternative, the one used here, branches from the 
·1 

"f " ree node with the smallest bound found so far. The r·ationale 

behind this alternative is that the optimal feasible solution is 

most likely contained in the subse~1 defined by that node. This .,.- ~' 

approach favors nodes created early in the process where few of the 
yi's have been assigned integers. It is therefore important that ) 

early nodes force integers into the solution so that the bounds are 

not close to the absolute minimum obtained from the solution of the 
in-itial node. The second alternative proposed in (2) is to continue 
branching 1

1 

from the ·smallest of z(i+l) and z(i+2). For the location- · 
.... alloca ... . i ori n1i_ .. ~ed-integer program, this will generally mean that 

.. ,.;, branching continues from zCi+l); i.e., the n~cte with yi{max) = O • 

.. · 

·., 

..... , 

,;,... 
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' 

• This may lead to the evaluation·of several nodes in a subset which 

does not c·ontain the optimal solution before branchtng occurs to a 

node bounding a·different subset. The third alternative consists. of 

t. 1) (. +2) branc~ing from the smallest of Z i+ and Z 1
, until all nodes are 

either infeasible, their bounds exceed a known solution, or I 2 = 0 

for the last node in the branch. Th~ next.node. is chosen by tracing. 
~ ... . . . . .... • ' ., ~ • • • • I • • 

• --
.~ • ... • • • • •• • .• • ' • ""'·:. ';,,· .;... • A ~- • 

back up the tree to the first node z(i) in which z(i+l) is not -in-

feasible if z(i+2 ) was the node branched from the first time z(i) was 

l>ranched from. This approach suffers from the same disadvantage as 

the second alternative. 

Recognizing When a Subset Contains Only Infeasible or Non-Optimal 

·solutions - The problem of infeasibility does not arise with the 

location-allocation formulation, for there always exists a feasible 

solution to the problem. Recognizing that only non-optimal solutions 

are possible in a given subset occurs when a· subset is not further . 

partitioned because the bound is greater than a feasible solution 

obtained. 

Recognizing an· Opt.imal Solution - A"ri optimal solution is. obtained ':·.Jo 

' when 12 =.O and no bound exists which is less than the solution at 

' the node with I2 = 0. 

Given this set of rules for the branch-and-bound) algorithm, it 

is of interest to determine the computational efficiency of the 

algorithm. Recognizing that certain of the rules are arrived at 

through the use of heuristics, the computational results must be 
• the final evaluators. This ~~pie is the theme of the next chapter. 

I• ,, 
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VI COMPUTATIONAL RESULTS 

The study of the computational ~spects of the branch-and-bound 

algorithm was centered on the following areas: 

1. Comparison of the solution times for the Efroymson and 
t~ 

Ray formulation vs. the ~ormulation developed here and 

2. Solution times for pro.blems with varying n 
...,. -.:, ... ' . • • • ... • lw, ' • 

Before discussing the results obtained, the programs used for the 

study are briefly described. 

The Computer Programs 

The branch-an·d~bound algorithm and various support subroutines 

we.re programmed in Fortran IV and run on an IBM System 360/50 with 

256,000 bytes of main memory. A listing of the programs is contained 

in Appendix B. The linear pr.ogramming subroutine is a simplex 

algorithm which begins with all slack or artificial variables in 

the-initial basis. The yi(max) is constrained to zerQ. or one 
"-

by making its coefficient in the L.P. matrix a l~rge positive or 

negative number. The functional value and the values for the. y1 

for free nodes are stored in a main memory file which allows the 
.. 

storage of up to 150 nodes. W}len branching occurs from a node in 

the file, a large positive value is assigned to the functional 

at that node to preclude branching from this node in the future. 

Subroutine CREATE was used to generate the problems used in 
'1 

the computattons. The problem generation consists.of sampling 

from uniform distributions for the elements in i, D and F. The 

• 
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tij were defined as: 

1 if i ~ j 

tij --
0 if i - j. -

f· Since for large n, b .. >.:::J. will generally hold, the uniform distrilJ n 

- butions sampled from were chosen to guarantee the above)inequality. 

.·, 

The mean of the distribution for F was chosen to yield approximately 

20 to.33% of the consumer locations as source locations in the optimal 

solution. In addition, five subroutines were written to determine the 

optimum locations by complete enumeration as suggested in (5). 

The branch-and-bound program is presently restricted to a 

maximum problem size of n = 15 due to core storage requirements. 

Because of this restriction, the program is not suited for most 

problems of industrial importance. Significant programming will 

be required, however, to increase the limit on n. If in the solution 

at a node a y1 differed from an integer by no more than 10-4 , it was 

set identically equal to the integer. A total of 30 problems were 

generated and solved by the programs to arrive at the results 

discussed in the following sections. 

Solution Time Comparison 

It was originally decided to study the difference in solution 

times of the Efroymson and Bay ·formulation and the formulation 

developed here by performing an analysis of variance on the solution 

times of some number of problems of a fixed size. Consequently, 
• 

·• 

.'.j' 

., 
...... ·'1• 
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10 problems with n = 10 were generated for solution wit·h both. for-

• 
mulations. After attempting to solve the first three of the problems ... ' 

using the Efroymson and Ray formulation, the contention made in 

Chapter V that the algorithm will not allow efficient solution of 

th~ir formulation was stronglrsupported and the analys~s of 

variance was d~emed unnec_essary ~ As shown in Chapter V, 12 does 
. . : ;.," · .. ·• .... · . . ~ . . .. '. . ._ .... \. ... . • . . <.... .. - '• .. ·,·· . . 

not reduce by more than Yi(max) at each stage. - This may lead.to 
' . ' 

a complete enumeration. On all three problems attempted with their 

formulation a solution had not been obtained when the algorithm was 

·stopped after filing the 150th free node in the file. If the al

gorithm degenerates to a complete enumeration, the solution will 

involve evaluating 2n + 1 nodes. If, however, I
2 

is reduced early 

in the process the total number of possible problems will be greatly i 

reduced. Note that to this point solution times have only been 
• 

expressed in terms of the number of nodes evaluated, The reason 

for this is that the solution time will be a machine dependent variable 
" 

whereas the number of nodes is machine independent. Recalling the 

additional n constraints in this paper's formulation over the 

Efroymson and Ray mixed-integer program, the node evaluation times 

.,, 
differed. The Efroymson and Ray model req~ired .213 minutes to 

evaluate a node as compared to .449 minutes for the proposed formu

lation for a problem with n = 10. Because of this increase in 

node evaluation time, the number of nodes for the Efroymson and 

Ray formulation must be at least twice the number for the other 

formulation to gain an advantage in computing time. In light of 

.. 
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this, the following is presented. . . 
' . 

Consider ·the solution obtained at the initial· node where 12 = 

1, 2, · ... , n. The number of possible problems or nodes resulting 

from this node-will be a function of the size of I 2 Din.the solution. 

For example, if n = 10, 2n + 1 = 1025; i.e., the algorithm may de

generate to solving 1025 linear programs to obtain the optimal 
.. ,.._ ... 

. . ... . 

9'." •• 

feasible solution. If in the soJ,ution at the first node, only.five 

of the yi's are in 1;, the number of possible problems reduces to 

32. Figure 4 shows a portion of the branch-and-bound tree obtained 

with the algorithm using the Efroymson and Ray formulation and 

Figure 5 shows the tree obtained with the .proposed formulation for 

the same problem. Tables 1 and 2 present the results obtained at 

the nodes for Figures 4 and 5, respectively. 

It can ·be seen from Figure 4 and Table 1, that with the 

branch-and-bound algorithm used her~, the process appears to be 

degenerating into a complete enumeration. On some problems with 

n = 4, the solution with their formulation did in fact require com

plete enumeration where with the proposed for .. mulation the optimum 

feasible solution was often obtained after evaluating only the initial. 

node. It should be pointed out, however, that this is a comparison 

of the formulations solved by this branch-and-bound algorithm and not 

tke algorithm used by Efroymson· and Ray. Although their algorithm . 

differs in determining which yi to integerize at each stage, the 
"\. 

.. size of the tree depends on reducing I
2 at each stage and as was 

shown earlier this does not occur by solving' their linear programming 

formulation at a nod<3., The results obtained for each of the problems I 
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Figure 4 A Portion of the Tree Obtained with The 
Efroymson and Ray Formulation 
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I 
I Node z Y1 Y2 Y3 Y4 - Y5 y6 Y7 Ye . Yg Y10 
• I 

i 
l 369.4 ,10 .10 .10 .10 .10 .10 .10 .10 .10 .10 · 

! 
t 
i 2 523.8 0.0 .10 .20 .10 .10 .10 .10 .10 .10 .10 
I 

.. i 3 722.4 1.0 .10 .10 .10 .10 .10 .10 .10 .10 .10 i 4 651.1 0.0 .20 o. .10 .10 .20 .10 .10 .10 .10 
I 
1: 

i -5 840.8 0.0 .10 1.0 .10 .10 · .10 · .10 .10 .10 .10 

; 
i 

6 763.1 0.0 0.0 0.0 .10 .10 .20 .20 .20 .10 .10 7 941.8 0.0 1.0 0.0 .10 .10 .20 .10 .10 .10 .10 8 831.2 1.0 0.0 .10 .10 .10 .10 .10 .20 .10 .10 9 1049.3 1.0 1.0 .10 .10 .10 .10 .10 .10 .10 .10 10 973.8 0.0 o.o 0.0 .10 .20 0.0 .28 .30 .10 .10 l 11 1044.8 0.0 0.0 0.0 .10 .20 1.0 .20 .20 .10 .. 10 ti 

I 

--~ :·~· 
I 12 950.1 1.0 0.0 .20 .10 .10 .10 -.10 o.o .20 . ..10 c.n 
l 

13 1111.3 1.0 0.0 .10 · .10 .10 .10 .10 1.0 .10 .10 0 

I 
I 
1 14 914.6 0.0 0.0 1.0 .10 .10 .10· .10 .10 .10 .10 
' i 
! 15 1167.8 0.0 1.0 1.,0 .10 .10 . 10 .10 .10 . .10 .10 I 16 1082.6 0.0 0.0 1.0 o.o .10 .10 .10 .20 .10 .10 i 17 1238.8 0.0 0.0 1.0 1.0 .10 .10 .. 10 .10 .10 .10 
j 

l 18. 1118.3 0.0 1.0 0.0 .10 .10 0.0 .10 - .20 .10 .10 · :-.?_.-;·. . I 19 . 1223. 6 0.0 1.0 0.0 .10 .10 1.0 .10 .10 .10 .10 
\ 

i 
i ~o 1071. 8 1. 0 ~ o.o 0.0 .10 .10 .10 .10 0.0 . 20 .10 . 

1 
! 

21 1267.0 1.0 0.0 1.0 .10 .10 .10 .10 0.0 .20 .10 
I 
i 

22 1171.7 0.0 0.0 0.0 .10 .30 0.0 .30 

I 

0.0 .·20 .10 

I 
I 

23 12i8.9 0.0 0.0 0.0 .10 .20 o.o .20 1.0 .10 .10 

j 

l 

TABI,E 1. The Results at the Nodes of Figure 4 . 
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i Node z Y· Y2 Y3 Y4 Y5 Y6 Y7 y8 Yg , Y10 l 1 

1 .~. -~ • 

l~O 0 0 .20 .10 .. 20 
t 24 1145.2 0.0 0.0 0.0 .10 .20 ' 

.... I 25 1361.1 0.0 0.0 0.0 .10 .10 1.0 1.0 .20 .10 .10 
I 
1 

26 1130.7 1. 0 1.0 0.0 .10 .10 .10 .10 .10 .10 .10 27· 1405.7 1.0 1.0 1.0 .10 .10 .10 .10 .10 .10 .· .10 .. i 

28 1181.2 1.0 0.0 0.0 .20 .10 .10 .10 0.0 0.0 .10 ·. t 

• 29 1386.5 1.0 0.0 0.0 .10 .10 .10 .10 0.0 1.0 .10 ' 
i 30 1214.1 0.0 0.0 1.0 0.0 .10 .10. .10 0.0 .30 .10 
) 

i 
l 31 1362.8 0.0 0.0 1.0 0.0 .10 .10 .10 1.0 .10 .10 
. 

\: 

·i 
J 32 1192.8 1.0 0.0 0.0 .10 .10 .10 .10 1.0 .10 .10 ·. ~ I 1467.7 1.0 .10 ·. I 33 \ 0.0 1.0 .10 .10 .10 1.0 .10 .-10 1 l 34 1197.8 0.0 1.0 0.0 .10 .10 0.0 .20 0.0 .10 .10 '1 I 

(II 
' J I 35 1398.6 0.0 1.0 0.0 .10 .10 o.·o .10 1.0 

. 
.10 .10 .... I 

.· J, 

36 1298.8 1.0 1.0 0.0 0.0 .10 .10 .10 .20 .10 .10 .. 
I 

37 1454.7 1.0 1.0 0.0 1.0 .10 .10 .10 .10 .10 .10 38 1303.3 0.0 0.0 0.0 .10 0.0 1.0 0.0 .20 .20 .20 39 1418.4 0.0 0.0 0.0 .10 1.0 1.0 0.0 .20 .10 ~20 I 40- 1335.8 0.0 1.0 1.0 o.o .10 .10 .10 .20 .10 .10 41 1491.7 0.0 1.0 1· .• o. 1.0 .10 .10 .10 .10 .10 .10 I ; 
, I 

l{ 

. I I I 

' : 
- ·: I ·TABI,E 1 (continued) . i 
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;l.. 

·Node z Y1· Y2 Y3 Y4 Y5 Ya Y7 Y9 Yg Y10- _ 
1 1456~6 .200 .075 .2.00 0.00 0.00 0.00 .100 .325 0.00 · .100 2 1530.6 .176 .111 .412 0.00 0.00 0.00 .. 212 0.00 0.00 •• os8· 3 1600.0 .200 0.00 .200 0.00 o.oo 0.00 .100 1.00 0.00 .100 4. 1765.9 .543 .111 0.0 0.00 0.00 0.00 .264 0.00 0.00 .088 5 1657.6 .lll .111 1.00 0.00 0.00 0.00 .222 0.00 0.00 o.o 6 i729.2 0.00 o .. 00' .333 0.00 0.00 0.00 .175 1. 00 0.00 .092 7 176(;>.3 1.00 0.00 .111 0.00 0.00 0.'00 .100 1.00 0.0 .100 8 1752.9 .111 .222 1.00 0.00 0.00 0.00 0.00 0.00 0. 00 .... ·. o·.oo 

;..\ 

9 1888.1 .. 111 .111 1. 00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 .. 10 1813.5 0.00 0.00 0.00 0.00 0.00 0.00 .200 1.00 0.00 .200 . ·~. 1·1 1870.2 0.00 0.00 1.00 0.00 0.00 0.00 .111 1.00 0.00 ·o.oo ......... ..• _ .. ,. 12 1812.1 .722 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13 1950.0 .111 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 th 
1"' 14 

f, 
1851.8 0.00 .444 0.00 0.00 0.00 0.00 .375 0.00 0.00 .181 15 1835.7 1.00 .111 0.00 0.00 0.00 0.00 -.212 0.00 0.00 .088 16 1790.-6 1.00 0.00 0.00 0.00 0.00 o.oo .100 1.00 0.00 .100 ~--'-17 1988.2 1.00 0.00 1.00 0.00 · o .. 00 0.00 .111 1.00 0.00 0.00 18 1835.5 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 .111 ' • ·-: I,,, 

19· 2031. 3 1.00 0.00 o.oo 0.00 0.00 0.00 1.00 1.00 ·0.00 0.00 · 20 1944.0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 21 1987.0 1.00 0.00 1.00 0.00 o.·oo 0.00 0.00 0.00 o.oo o.oo. 22 1877.7 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 1.00 o. 00 /• .222 23 2007. 5 0.00 0.00 0.00 0.00 0.00 o.oo 1.00 1.00· 0.00 .111 24 1852. 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 --
25 1989.0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 26 1896.9 1.00 .111 0.00 0.00 0.00 0.00 0.00 0.00 0.00 .222 27 2046.7 1.00 .111 0.00 0.00 G.00 0.00 1.00 0.00 0.00 0.00 28 2082 .4 0.00 0.00 0.00 0.00 o.oo 0.00 . 750 0.00 0.00 .750 29 1917.6 0.00 1.00 0.00 0.00 o.oo o.oo .325 0.00 0.00 .075 ·soln 1852 1.00 o.oo 0.00 0.00 0.00 o.oo- 0.00 1.00 ·0.00 0.00 

TAM,E 2. Results at the Node of Figure 5 ,. 
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with the formulation of this thesis-. are given in tabular f<>rm in 

Table 3. ·,. ' ;i • . . ~ 

Solution Times with Varying n 

As indicated earlier, the programs used. in this thesis are 

not applicab~e to the solution of problems with n > 15. Most 

~ -~ problems of industrial impoftance will however require that n is 

greater than 15. It would be of interest then to predict the 

amound of computation that would be necessary to solve problems 
' . witl1 n large. Toward this end, a second set of 20 problems with 

varying n were generated and solved by the algorithm. Table 4 

presents the pertinent information obtained from the solution of 

the problems. 

To continue the analysis in machine independent terms, an 

expression for the expected number of nodes that must be evaluated 

to obtain a solution for a given n will be developed. From Table 4, 

obtain the fraction of all possible nodes evaluated to obtain a 

solution. Let the fraction be defined by: 

number of nodes evaluated 
Fr(n) -

Figure 6 is a plot of ln Fr(n) vs. n for the 20 problems of Table 4 

. and the line fi tte.d to the data by the method of least squares. 

The equation for the line i"s: 

·1nFr(n) = .836 - .459n eq. 12 

. t\ , . . ~-
,.· . 

.. 

. .. 

'K 

r
' ··;_ 
.:''.-• .. ,, 

[-( 
L. 
(', ... 

!
!·. :': 

,.:: 

I:" I . 

.I. 
I 

·' 
'I 

J 
! 

1 
\ 

·j 

) 
! 
' J 

:1 
i 

' " 



l 
i 
I 
i a 
~ 
$ 
r. 

l • i 
~ 
i I 
$ ... 
'.q 

l 
} 
i 

l 
i 
i 

' 
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No. 

l 

:2 

3 

4 

5 

6 

7 

8 

9 

10 

,: 

. 

~.' 

Computing Time 
• 1n 

• 

. 01 hrs . 

28.5 

21.2 

8.9 

12.4 

1.1 . 6,. 

40.8 

17.2 

27.8 

1.9.2 

30.-4: 

No. of Nodes 
Evaluated 

41 

12 

11 

15 

15 

59 

23 

39 

25 

4l 

Fraction of 
2°+1 Evaluated 

~!,:, 

.04000 

.. 01171 

.01073 

.01463 

.01463 

.05756 

.02244 

.03805 

.02439 

.04000 

• 

' 

Ave •. Node Comp. 
• • Time in .01 Hrs. 

.695 

~730 

.809 

.820 

.777 

.693 

.748 

.713 

.741 

·' 

TABT,E 3. 'the Results of 10 Problems with n = 10 

·• 

Tot~l 
Free 

No. of 
Nodes 

37 

26 

9 

13 

11 

54 

21 

34 

22 

39 
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Computing Time 
No. n in .01 Hrs. 

11 4 .2 
12 4 .2 
13 5 .4 
14 5 .8 

.:~' ,,. 15 6 1.6 
16 6 1.0 

r 

17 7 5.8 
18 7 3.0 
) .. 8 4.8 ~.., 
,-. -

. ;&U 8 4.9 
l 2] 9 14.3 l 
l 
I 
i ,, . ,. 

9 14 .1 f -~ 
23 10 14.5 ! 

r 
! 

24 10 8.2 • ! 
1 25 11 22.4 ~ ; 
I ~', 11 18.8 t 
i 12 24.5 t 
~ 12 34.0 ~ 
I 

~i 2·~ 14 131.8 1 .. · .J .1 

i 3·G 14 63.2 s r 
~ 
fi 
ll 

~ - ·--
i 
~ 
; 

·:;. l-

TABl,E 4. 

( 
. 1 

! 
! 
' 

... ,. 

No. of Nodes 
Evaluated 

3 
7 
3 

t 9 
13 

7 
31 
15 
17 
17 
39 
35 
27 
15 
29 
25 
25 
33 

.. 

81 
,37: 

The Results of 

Fraction of 
2n+1 Evaluated 

.17647 

.41176 

.09091 

.27273 

.20000 

.10769 

.24031 

.11628 

.06615 

.06615 

.07602 

.06823 

.02634 

.01463 

. 01415 . 

. 01220 

.00610 

.00805 

.00494 

.00225 

20 Problems with 

. . 

Ave. Node Comp. 
Time in .01 Hrs. 

.0666 

.0286 

.1333 

.0889 

.1231 

.1429 

.1871 

.2000 

.2.824 

.2824 

.3667 

.4029 

.5370 

.5467 

. 7724 

.7520 

.9800 
1 .. 0303 
1.6272 
1.7081 

~ 

Varyir;,.g n 

14':{;,, 

Total No. of 
Free Nodes 

1 
5 
1 

6 
9 
5 

28 
13 
13 
13 
36 
32 
24 
12 .;,.., . 

27 
22 
20 
27 
77 
32 

\ 

... 

:.-

;~ '. 

-'. 

--

c.n 
c.n. 

.. 

.. 
~~ 

... .. , 
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Figure 6 A Plot of ln Fr( n) 
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. 
Fr(n) _ e.836 0 --:459n 

and 

Fr(n) = 2.307 e-. 459n. eq. 13 

From this the expected number of nodes, E( i) ., that must be evaluated 

to obtain a solution for some n can be obtained . Obtain: 

E(i) - Fr(n) (2n + 1) 

-or 

E( i) - 2. 307 [ e - ._ 4 s9 n (2-n) + 9 - • 459n] 

:or-

E(i) _ 2. 307 [e~.459n + a693n + 8 -.459~]· 

·:~:1-:ict final 1 y 

E(i) = 2.307 [e~234n +·e-.459nJ e·.q.~ ·14, 

Assuming now that the random variables, lnFr(nJ; are inde

pendently distributed with nbrmal ·distributioos having means given 

by equation 12 and a common variance a 2 , obtain the unbiased 
.. 

estimate of u 2 and the standard error of the estimate. The 

unbiased estimate for 2 a is: 

where 

82 = 1 
e 

k - 2 

lnFr(n). 
l 

- the 

for 

lnFr(n)~ - the 
l 

• k the -
r 

k 2 ! [ lnFr(tl) 1 - lnFr(n) ') 
i=l 

observed value of lnFr(n) 

the ith n, 

result obtained from equation 

number of observed • pairs. 

12 and 
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i 
., 
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The s'tandard error of the estimate is given bys • 
e 

,,., 
. . -

'rile following were obtained from·the data in Table· .4·: 

• ;;l 

' 

Se= .4912 

With the statistic se, the limits of prediction for lnFr(n)' can 
,· 

be obtained. As defined in (24), the limits of prediction for . 

l k(no -)2 + - n lnFr(no>' - ta Se 1 +- + R 
k 2 k 

~ 
k L 2 

- < L ni> n. 
. 1 1 1::: l=l 

where 

~ = 1 - the confidence interval, 

..·· .. 

t = the Student's t Statistic with k,-,2 91:ig:te'es of freedom (l 

T 

n0 - the· v~:l .. ge ,of· n f·or which 1 nFr ( ri) is t·o .be predicted. 

:r.et' 

d(n ) = 
0 

.l 

k(n - n) 2 
1 ) 

1 + - + --,.k- --·-
k k }:n 2 

i=l 

'· 
Then for any n0 , the prediction limits for lnFr(n

0
)' are:: 

. 
lnFr(n0)'. - .836 - ~459n ! d(nl ·). 

Equation 13 can then be rewritten as: 

Fr( ) , 2 307 -.459n. ! d(n,.,. n 0 = . · e 

t· ., 
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Further it follows that the limits of i' are given by: 

1·', = Fr(n ) ' (2J;10 + ll. 
0 

Figure 1·1s a plot of i' vs. n for a= .05 with the results of the 

20 problems plotted·on the graph. As can be seen from Figure 7, 

' the E(i) and limits of prediction for i' grow rapi~ly with n . 
. 

The 
"-

1 i mi ts of prediction·for i' are 373 to -18 (103) computed as pre-

viously indicated. If the linearity of lnFr(n) is assumed to hold 

for n = 30,3.47 (10-7) S Fr(30)'S 16.75 (10-4). It should also 

be evident that as n increases, the solution time at a node will 

increase. In short then, the expected computing time will increase 

at a rate somewhat higher than expressed in equation 14 due to the 

increased node evaluation time as n increases . 
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··: VII CONCLUSIONS 
r •· 4 

) 

The analytic and experimental work of this thesis has brought 

to· light several interesting results. Although the results were 

obtained in the context of the general location-allocation problem, 

as it was defined here, they appear to be applicable to problems 

unrelated to the thesis topic. The significant conclusions will 

• • "i" be discussed from the standpoint of the thesis subject and extensions 

will be indicated where appropriate. 

Consider first the solution of the mixed-integer programming 

formulation of the general location-allocation problem. The analytic 

and experimental results tmequivocally demonstrated the computational 

superiority of the fonnulation developed in this paper over the 
\ 

formulation of Efroymson and Ray. However, a qualification of the' 

.preceding statement is in order. This superiority existed with the ' 

branch-and-bound algorithm of this paper and it should therefore 

not be construed to apply to all branch-and-bound algorithms that 

could be devised to solve the problem. As alluded to in the grow

ing body of literature on applications of the branch-and-bound 

method, the computational ef.flciency is a function of both the 

algorithm and the bounding problem at a node. The results obtained 

1n· this thesis strongly support this contention. 

The increased computational efficiency obtained with the form

ulation developed here was a direct result of the additional con

straints imposed on the minimization process. These constraints 

violated none of the assumptions of the model and in fact were 
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redundant when considering the solution of the mixed-integer program 
directly., However, from the standpoint of solving the mixed-integer 

.. 
. , . . . .. 

program by repeated solution of some linear programming analog, the 
results wer~ dramatic. The additional constraints forced the linear 
program solution to determine integral values for some subset of the 
integer variables. This result app_ears to be" significant in reducing . -
computational effort for mixed-integer programming problems in ge_neral 
~f solved by a similar branch-and-bound algorithm. The additional 
constraints must, of course, be consistent with the physical problem. 

The results obtained from solving problems of various size in ·.an 

attempt· to. predict the number of .nodes that must be evaluated for a 

problem·of a given size were received with mixed emotions. Over 
'--. , the range of problem sizes investigated, ·the expected number of nodes 

that required evaluation for a given size problem followed an ex

ponential function. Fortunately·, the fun9tion does not increase at· 
.J 

the same rate as the total possible nodes for a given problem size . • 
It is nevertheless true, if the expression for the expected number 

of nodes. is assumed to hold, that for a problem with 30 consumer 

locations, the expected number of nodes re.quiring solution will be 

approximately 9193. That is, 9193 linear programs will have to be 

solved. Even with a problem of this relatively small dimension, the· 
computational effort will be immense. It can only be concluded that 

., this borders on comput,ational infeasibility.· 

; .. 
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VIII SUGGESTIONS FOR FURTHER STUDY 

A branch-and-bound algorithm is at bes,t a set of rules, arrived 
', • Ill' •. ·- • 

.,;, 

at through the use of heuristics, that efficiently guide the search 

,. .. 

for an optimal solution to a particular problem. The computational 

efficiency of the algorithm depends upon t-he validity of the heuristics 

used· to devise the necessary decision rules :of the _procedure. An 

investigation into this set of rules may prove the algorithm used in 

this thesis to be relatively inefficient. For example, the n·umber 

of nodes may be reduced by a different decision rule used to determine 

the next node to branch from or computations may be reduced by an 

alternate procedure to determine they. to next integerize for new 
1 

I 

bounding problems. The investigation of these aspects of the branch-

and-bound method appears to be seldom done for a particular ·algorithm. 

As demonstrated in the thesis, the optimal feasible solution to 

the mixed-integer programming formulation is in fact an all-integer 

solution wi t,h Boolean variables. Balas (3) reports the development of 

an efficient algorithm for problems of this type. It would be of 

value to determine if improved computing time can be obtained with the 

algorithm of Balas. 

During the computational work of this thesis, it was observed 

that in almost all problems solved, the branch-and-bound algorithm 
'-

; ,7-· 

produced several feasible solutions to the mixed-integer program 

before the algorithm stoppedo Frequently, the optimal feasible so

lution was found but due to free nodes with lower bounds the al

gorithm continued until all free bounds were greater ·chan the 

' 

• 

.. ",, 
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,. 

f.easible solution obtained earlier. The extra computations are. 

_.!, clearly necessary to guaran~ee a global.minimum. It woul~ b! -of 

interest, however, to·· study the deviations from the optimal solution 

obtained with these intermediate feasi-ble solutions. 

As pointed out. by Cooper (8)(9), location-allocation problems 

generally exhibit a flat minimum. ·intuitively then, an intermediate 

feasible soluti·on should be close to the optimal solution or in fact 

the optimal solution itself. What then is the risk associated with 

. stopping the algorithm after one, two or three feasible solutions have 

been found and selecting the minimum of these? _An investigation of· 

this aspect of the algorithm may prove to be of great value in 

. reducing computational effort. 
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APPENDIX A 
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I 
Flow Diagram of the Branch·-and-Bound Algorithm 
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FILE Zi 

].
FILE Z 

FIND 
2 min(Z~,Z, 
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START 

·i=O 

SOLVE Z 
WITH ! 2 = 

' ' 

1,2,ooo,n 

i=i+l 
SOLVE zi 

~ 

WITH Yi(maxf 0 

i=i+l 

SOLVE z1 

ITH Y· 

.. 

! 

' f• 

YES ~ ,; . 

YES 

OPTIMUM 
FEASIBLE 
SOLUTION 

STOP 

~. 
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C 
C 
C 
C 
C 
C 
C 
C 

' C 
C 
C 
C 
C 
C 
C 
C 
C .. 
C 
C 
C 

·c 
C~ 
·c. 
C 
C 
C 
C 
C 
C 
C 
C 

LOCATION-ALLOCATION PROBLEM PROGRAM USING THE BRANCH-BOUND 
ALGORITHM AND A SIMPLEX LINEAR PROGRAM TO OBTAIN THE BOUNDS AND 
THE OPTIMAL INTEGER SOLUTIONo UP TO 15 INTEGER VARIABLES AND 60 
CONSTRAXNTS ARE MAXIMAL FOR THIS PROGRAM SIZEo THE TOTAL NUMBER 
OF VARKA8LE5 « XNTEGERo CONTINUOU&o AND SLA,K J .MUST @E lE5~ THAN 
319e THE PROG~~M t'l/H,ll A(;CEPT A PROBLEM INPUT ON CARDS OR CREATE 
CAN BE CALLED TO GENERATE A PROBLEM FOR EXPERIMENTAL PURPOSES Q 

COMMON A(62o~2Q»oL«~~» 
COMMON EC15Ql5)o LOGJC(15,15),F(l5J, MLOCC30,10) 
DIMENSIONSN0DECl6),KO(lS>,KlC1Sl,BC62,320),Ll(62) 
DIMENSION WNODE(l6),ZNODEC16),CC150,16) 

DEFINITION OF VARIABLES 

KOUNT•JTERATION OF THE BRANCH.AND BOUND ALGORITHM ~UST COMPLETED 
&NODE=ARRAV OF HNTEGER VARIABLES WITH VARIABLE IN QUESTION SET 

EQYAb TO ONE 
WNODE=ARRAV OF XNTEGER 

EQUAl 10 ZERO 
VARIABLES WITH VARIABLE IN QUESTION SET ... 

ITERaA BOOLEAN VARIABLE EQUAL TO ZERO IF YCil=O ANO EQUAL TO ONE 
I F Y « K » o l .. 

IONE•COLYMN NUMBER OF FXRST INTEGER VARIABLE 
ILAST:COLUMN NUMBER OF LA~l INTEGER VARIABLE 
NUM•NUMBER OF XNTEGER VARHABLES ~ ONE 
FUNCToADJUS1ED FUNC!XONAL VALUE FROM bP SOLUTION 
TFUNCa1EMPORARV FYNCTRONAl VALUES ADDEO TO DRIVE INTEGER VARIABLES 

10 fK1HER ZERO OR ONE 
'.!· 

SMALLBTHE FYNCiKONAl ~ALUE OF THE BEST NOOE'FOUND 
NOOE!ofHE NUMBER OF THE BEST NOOE IN FILE 
N0DE2ofHE COUNT OF lHf STORED NODES 

. ZNODEofHf SYORXNG NOOE 
KO•ARRAV OF V~RHABLES CONSTRAINED TO EQUAL ZERO. 
Kl•ARRAV OF VARKABLEi CONSTRAINED TO EQUAL ONE 
IVAR• THE INTEGER VARIABLE BEING TESTED AT THIS PASS 
IGEN~CONTROL VARIABLE FOR PROBLEM INPUT. IF IGEN NE Ot IGEN WILL 

..•. 

.. ~· 
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C BE THE INITIAL VALUE FOR THE RANDOM NUMBER ~ENERATOR USED IN C SUBROUTINE CREATE TO GiNERATE PROBLEMS 
C C•THE ARRAY OF NODES STORED DURING THE BRANCH AND BOUND ALGORITHM C 

C 

1 FORMATC2I4) 
2 FORMAT«2I4,F20e5) 

3011 FORMA1« 0 l 0 eT50e 1 PR0BLEM NUMBER 1 ,15//) 
2040 FORMAY«oo 0 oillo 9 KOUNT 9 tTl9,•ITER 1 ,T26, 1 lVAR 1 tT35, 1 FUNCTIONAL 1 tT68t , . 

1°VALUE OF HNT~GER VARIABLES') 
2030 FORMAT« 0 0°oll2oKijol7oEl9o8oFl4•8t4Fl5e8/ 1 1 ,45XtSF1S.S/t '•4SX, 

l5Fl5o8) . 
2080 FORM~T« 0 0°oT3ooooo FILING NUMBER 1 ,I4,T25,'IN FILE',El6e8,Fl4e8t 

l4Fl5o8/ 0 0 o~SXo5Fl5o8/ 0 0 o45Xo5Fl5e8) 
8010 FORMAT«° FXbE OVERFLOW 1 ) 

2510 FORMAT« 0 0°oT3o 0 **0*o BRANCHING TO N0DE 1 ,l4,T3l,'IN FILEe $MALLEST 
1BOUND HN FELE XS N0DE 0 oX4,T75t 1 WHICH HAS VALUE oFe,El6a8t• *****'> 

3020_FQRMAT« 0 0°oT30o 0 0PTXMAL SOLUTION----~-- FUNCTIONAL EQUAL5'tE20e8) 
3030 FORMAT( 0 0 oX20oElOo8) 
3040 FORMAT« 8 0°oT50o 0 LOCATIONS 1 ,T70t 1 VALUE 1 J 
3050 FORMAT« 0 0 oX53oF~3o8) 
3060 FORMAT( 0 0 oH53o110o 0 *****') 
3100 FORMA1« 0 0°oi~Oo 0 NOTE ***** DENOTES THAT THIS LOCATION WAS NOT IN l OPTIMAL BASXS 0 > 
3070 FORMAT« 0 0°oTS2o 8 ALL0CATIONS'> 
3080 FORMAT« 0 0°oT40, 1 FROM•tT55, 1 T0 1 ,T70, 1 VALUE'J 
3090 FORMAT« 0 0 ol4ltll4,F24e8) 
3110 FORMAT«IS> 

C*****DATA INITIALIZATION SECTION***** 
C 

READCle3l!O)!GEN 
IX•IGEN 

9996 READ«!o!»NYMBER 
IF«NYMBE~oEQoOJGOT09998 
0023Iml,l00 
0023J•l,16 

I -

.,,. 
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2 3 C' C 1 • -' ) • 0 • 
SMALL•l0•**35 
NODEl•O 
NODE2nO 
KOUNTaO 
ITER=O 
KUTOFF=O 
PHONYm90000eO 
TFUNC•Oe 
IVARaO 
FUNCT•O• 
NOOE3=0 
D02l!•l,15 
KOC X »mO 

21 Kl(K»mO 
D022Kol,62 
LlCX»oO 
LCl)=O 
DOZ2 .J•lt320 
BCl,J)•O, 

22 ACl,J)s:Oe 
C 

•- ·-- ---- -•- ~- •· • - "'•H- • ' .. :·· • . . ' 

~· . 

C***** INPUT OF PROBLEM***** 
C 

IFCIGENoNE,O> GO TO 20 
READ«lo!»IONE,ILAST 
READ«Ao!>Hl,.JJ 

11 READ«Ao2)K0J1X 
IF« X»!6ol6ol8 

18 A«KoJJaX 
GOiOll 

16 .JoJJ 
17 READ«l,2)1,JKtX 

IFC!)20t20t19 
19 ACl,J.J)•X 

LC I > •.JK 
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GOT017 
20- IF( IGENeEQeO) GO TO ·24 

READ(ltl) N&IZE 
CALL CREATE CNUMBER,NSIZE,IX,11,JJ,IONE,ILASTI 

24 NUMnXLAST-IONE+2 
lllmXJc{J:al 
DO 31 Kcl,111 
LlCK)oL(I) 
003!~a],oJJ ' 

31 ~XoJDoA(·ltJ) 
WRKTE«lo30ll)NUMBER 

1125 
C 

WR11FE(3o2040) 
CALL XLP Cll•JJ,111> 
KOUNT•KOUNT+l 

•• 

;.; 

C***** ROUNDING,. OF INTEGER VARIABLES TO ZERO OR ONE***** 
C . 

D0701NNs2,II 
IFCCLtNN>oLTelONE)e0ReCLCNN).GT•lLASTJ,GOT0701 
IFCACNNo~~»eGTeeOOOl> GO TO 702 
ACNNoJJ»oOo 

, GOT07Qil 
702 IFCA«NNoJJ)eLTe.9999) GO TO 701 

ACNNoJJ»olaO 
701 CONTINUE 

C, 
C***** OBJECTIVE FUNCTION CORRECTION***** 
C 

C 

FUNCT•AClll,jJ)-TFUNC 
IF(JTER)9998t713o73l 

C***** CREATION OF FIRST NODE. ***** 
C 

713 00714NN•l,16 
714 WNODECNN)•OeO 

00721NN•2•11 

, 

~· 

'· ., 

•. ~·. 

,. 

·V' 
'· 

,-
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-... 

;, 

IFCCL(NN>eLTeIONE)eORe(LCNN)eGTeILAST))GOT0721 
- WNOOECL(NN)~I0NE+2J•ACNN,JJ) 

C 

721 CON.f K NUE 
WNODE«l\»o~UNCT 
CALL CHECK «WNODE,Kl,KO,&S004,~S002) 

S004 WNOOE«lDo!Oo~*45 
5002 WRITE«3o2030»KO~NTtlTER,JVARtWNOOE 

IF(KOUNfoEQ.l)GOTOlOOl 
ITER=l · 
GOTOlOOl 

C***** CREATION OF SECOND NODE***** 
C 

731 D074l!mlol6 
ZNODE«K»oOe 

741 SNOOtE«H»oOeO 
D074iEo2oRI 

·' 

IFC«b«K»oLTelONE)eOReC~CIJeGTelLASTl)GOT0742 
&NODE«l«K»•IONE+2)•ACl,JJ) 

C 

742 CONTHNUE 
SNODlE«A»mFUNCT 
CALL CHECK (SNOOE,Kl,K0,~5003t,5001) 

5003 SNODE«ADalOe**45 
S001 WRKTE«302030)KOUNT,ITER,IVAR,SNODE 

ITERoO 
NODE2mN0DE2+l 
IF«NODE2sLEel50)GOT08002 
WRXTE«3o8010) 
PAUSE 0 RECORO CPU TIMER.READING' 
GOT09996 

C***** NODE STORING SECTION***** 
C 

8002 IFCSN00E(l)~WNOOE«1D»7Sl~761,77l 
751 IFC-WNODE(l)caSMALL>791,79lt753 
753 IF(SNODE(l)-SMALL)792,792,773 

;,,.: 

.. 

.,i, 

;1:. 

......... 
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•• .• I 

• 
.. 

i 761 IF C WNOOE < 1 >-SMALL) 79-1, 791t773 

I 771 IFCWNOOE(l)•SMALLJ772,782t773 
772 IF«SNOOE«l>~SMALL)781,78l,782 j 

' 773 D071io-X§l oNYM. 
1 
1 ·: 

-~ 774 ZNODE«H»~WNODECI> 
:-r.: ; 

WRITE«Jo20~0>NODE2,ZNOOE 
00171XoJloNUM •'.: 

777 CfNOOE2oK)oZNODECI> 
0077~X2!0NYM ~-:.: 

775 ZNODE«IJgiNOOE(I) 
NOOE2mNODf2,~.l 
IFCNODE2oLEol50)GOT08001 

I WRITE«3o8010) 
' PAUSE 0 RfECORD CPU TIMER READING• ~ :. ·- . 1 · 

... GOT09996 • >. ,. I 
i 

8001 D071~Jo!oNYM f 
i 

776 C«NODE2ol)mZN0DECI) i ·:>f.· ; 
WR K TE« 3 0·2oeo) NODE2 ,ZNOOE ··,: 

~ I 
c.., I , 

%" 0040021 Ro l 0NUM' 
4001 WNODE«l»mCCNODEltl) j 

I 
... 

NODEJoNODEl ....... · .. : 

- rl SMALlolOo*0:35 i• i . I l CCN0DE!o!»=l0e**40 
.jy_ • NODE!gO i 

., 
004003X 3 !oN0DE2 ·,·· ; 

IFCC«Eo!»oGTeSMALL)GOT04003 i 
I 
8 ,: 

SMALLaC«Xgl) · 1 
i 

NOOEAoX ·t 
., i 

I 4003 CONTXNUE l 
I 
I 

WRITE«3•2510)NODE3,NO~El,SMALL =.• l 
,,, 

i 
! 

GOTOAOOl i 

·' 

, 
-.; 

·1e1 SMALLr::SNODECl> 
' .... " .i 

·NOOf!oNODE2 ~-,"I • 
:.,. ! 

782 007S~Ho!oNUM 
:· ,· 783 ,ZNOOE ( I > •SNODE ( I ) ·J: 

GOT0799 ; ·.,;: 

.\ . 
I>· ' 

•. • .1. 

' . 

7'-' 
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791 SMALL=WNODECl) 
- NOOEl•NODE2 

792 007~!::,Xc!oNUM 
ZNOOE«X»mWNODECI) 

754 WNbDE~J)oSNODECI> 
799 WRITEC3o2080)NODE2,ZNODE 

·;'\007981 • l tNUM 
798 CINOOE2,l)•ZN0DECI> 

C 

' 

C***** SECTION TO DETERMINE 
C 

NEXT VARIABLE TO TEST 

1001 

-1021 

1003 

1004 
1005 

1006 

1002 

7 

IFCITER.EQel)GOTOllOO 
IVAR=O 
N=O 
.J•O 
D0l02ll•lt15 
Kl(!)•O 
KOC X » mO 
FLAGaO€) 
0010021•2,NUM 
IFCWNOOECIJ)l003,l003,1004 
.J•.J+! 
KO«J»mJc.al 
GOT0!002 
IF«WNOOECJ>-le0)1006tl005,1005 

' Nmf\\c:¢,! 
KA«~» o KC)! 
GOTC!002 
IF«WN0DE«l)eLEaFLAG>GOT01002 
FLAGoWNODECII 
IVARmKG.:ll 
CONTINUE 
IF(J+NoEQ.NUM•l) KUTOFF=l 
IF«KUiOFF.EQel)GOT01014 
K.OC-J+l>•IVAR 
GOT01014 

WP I ZR I n at mm 
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·'.1100_ DO 1104 · I=ltlS -
· IFC.KO( I> eNEelVAR)GO Tcf 1104 
· KO (I) •O 
, GO TO 110-5 

11·04 CON11NUE 
1105 DO 1103 1=1,15 

IF«K!«K>oNEeO)GOTOll03 
Kl«X)oHVAR 
GOTOlOl4 

- 1103 C:ON'fiNUE 
C 

·' ...... 

·:."" 

C***** SECTION TO LOAD Le Pe ANO MODIFY OB~ECTIVE FUNCTION***** 
C 

. ' 

C 

1014 

1011 
1007 

1008 

1009 

l•O 
OOlOllM-=ltlll 
LCM>•O .· 
DOlO!!jm!,JJ 
A(Moj)oB«M,~) 
IaK9! 
IF«~O«X»oEQ.O)GOTOlOOS 
A(loKO«X>+JONE-l>•PHONY 
GOTOl.007 
K aO 
TFUNC=O• 
Jul+! 
IF«KlCI)eEQeO)GOT01012 
ACl,KlCI)+IONE-l)•~PHONY 
TFUNCoTFYNC•PHONY-BCltKl<I>+IONE-1) 
GOT01009 

1012 0040!!XoloJ1I 
4011 LC! »oll.1 « K) 

CALL XLP «lltJJtlll) 
IFCKUVOFFeEQe0)GOT0ll2S 

'***** REPORT GENERATOR 
C ***** 

, 
·.~..,::;.~_:_;-., .,._---,--?.,-. :-. __ , ____ -~~-_ ........... _ ..... ..., ..... ...., ______ .. --~-- - ... - ------ -- -- ·--·--

. --.-:.-,--,-,~.,I.-··~:;;;.,·.~-,~~-"'·-"-~:.:.·.,_-..;; •. _:.~---~··-.•. - .• :.. ., ··. .-'. -~~ ·.•:_··;_,:-:'.'r•--10!·!·1"-~"'."'.""{'!S:1~;.r,J,,·~"::;.;:.t,.:i:-~cl!-.:J!N~rA-iM~~~i~·~1~~~t1,~ri-i.ui;;~~:,;:.:,;.:.;:;~~-...-.;---..-~---1ffll.:,;,6l.-~;:...a.~~~:i.~",::-~ -

.. , 

' 

> --- . -- ·--- ---. - -- ···--~ ---- - -· . --· . 

·' -·: . 

'; 

~ 

i ,: 

,;; 

, X 
-~~ 

•. 

~ ... 

. -.- . - -~- .... ···-:;~; ... ,.... . .. ;-_. -:- -; ·--~~-:'=:~r---,,.~~~,O-i'~--:..-~-:~ 



I 
l 
i 

I-· 
i 

,... 

., 

,-

... 

.. 
'> 

··,· t 

. ' 

FLlNCT•A<III,J~>~TFUNC 
- WLITEC3,30ll>NUMBER 

WRlTEC3o3020)FUNCT 
001301 x~2 ti· Ir, 

1301 WRiTEC3o3030)L(I),ACI,JJ) 
WRITE<3o30ll)NUMBER 
WRITE(3,3020)FUNCT 
WRITE(3,3040) 
NN=O 
DO :~!l t•IONE,ILAST · 
K•O 
. NN•NN+l 
00 1303 J=2,I1 
IFCL(J)eNEoI}GO TO 1303 
IFCA(doJ~)~GTeeOOOl) GO TO 1304 
ACJoJJ)mOo , 
GO. TO 1306 

1304 IFCA(JoJJ)eLTee9999) GO TO 1306 
A« ti o .J~ > ~le 0 

1.306 WR KTE « l 93050) NN,A CJ tJ.J > 
GO TO 1311 

-1303 CONTINUE 

WRIYEC3,3060)NN 
,' 

1~11 CON.TINUE .·, 
!F(f<oEQoO) GO TO 310-l 
WR!TE(3o3l00) 

·3101 WR!Tf·(3o3070) 
WRXTE(3o3080) 
DO . 13 2 ! K e1 2 ~ I I 

. IF4L«lioGEoI0NE)GO TO 1321 
IF«AC.loJJ>eGT •• 0001) GO TO 1322 
A ( X ·O J J » ~ 0 ev 
GO TO 1331 

1322 IF(A(IoJJ>@LTee9999) GO TO 1331 
A(ItJJ)=loO 
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133l IFCA(leJJ)eEQeOe) GO TO 1321 
NUMBR•LCI> 
NUMBRl=l 
IF(L<I»oLEeNUM-1) GO TO 1332 
DO 1333 J=l,14 
NUMBRoNUMBR-NUM+l 
NUMBRl2NUMBRl+l 
IFCNUMBRolEoNUM-l)GO TO 1132 

133.3 CONTINUE 
·1332 WRITE«3o3090JNUMBRl,NUMBRtACI,JJ) 
1321 CONTINUE 

IF(iGENoEQ~O> GO TO 9996 
CALL ENUM (NUMBERtNSIZEJ 
GOT09996 

·9998 STOP 
ENO 

·~. 
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701 
140 

.. 

., 

SUBROUTINEXLPCll•JJ,111) 

. · LINEAR PROGRAM SUBRt\UTJNE USING THE SIMPLEX ALGORITHM 
COMMON AC62o320»tLC62) 
COMMON f « 15 o l S ) , .LOG I C C 15 , 15 ) , F C Oi T C 1 ~ ) , ML OC C 3 0 , 10 ) DJ M~N£ X ON\rJ « 62 ) 
D010AKalo62 
W « X » sQ o O ~, 
FORMATC1H0,9HUNB0UNOEO> · 
kKKcO 
DO 102 l•l,-JJ 
0099Jm2,I1 
KP=L(J) 

' 

. - 99 ACIXXol )•A(Illtl)+A(J ,l)*A(lt~P) 
100 
102 

JF«X~J~>lOOtl02.,100 
A«IXlol)•AClll,l>-ACltl) 
CONTINUE 
KclRI 

44 .J•O 
WCK)•OeO 

.,,. 

L(K)•O 
42 J=J+l . 

IF«d-.J.J)4lt46t46 
41 IF«A«K,~))42,42,43 
·43 IFCW«K»~ACK,J))47t42.,42 
47 WCK)oA«K,J) 

LCK) 0 J 
GO TO 42 

46 KJnL(K) 
00 120 1•2,11 
IF(AlXoKj))l20,120tl21 

120 CONTXNUE 
WRITEC3,140) 
GOTOSO 

121 I •l 
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JK•O 
50 l•l+l 

IFCi-11)52,52,56 
52 IF«A«l,KJ)J50,S0tS1 
51 x~A«XoJJ)IA«X,KJ) 

IF«e:Jt<b5So53t55 
55 IF«~ 0 XMIN)53,50t50 

. 53 XMINrnX 
JKmI 
GO TO 50 

56 X•A«JK,KJ) 
L ( Jr(·) =KJ 

c;;~~ DO 5 1 X = l , I I I 
57 W«K»oA«XeKJ> 

IJmJKCl! 
DO 59 Xe!glJ 
DO 59 cJol\,f)J-J 
IF«ACJKoJ»JS8,59t58 

58 IF«W«X»»5S0t59t580 

·--·--- .. -- -- -

-.,:,, 

•· 

580 A«Xo~»2A(X1J)-WCl>*CACJKtJ)/X) 
59 CONTXNUE 

IJGJt(+l 
DO 61 I=I.J,III 
DO 61 -1•1,J-J 
IF«A«JK,J))60t6l,60 

60 IF«W«X»)600o6lt600 
600 A« ! o JJ » 0 A, « K o J » •W ( I ) *CA C JK t J.) / X ) 

61 CONYKNUE 
DO 205> jaloJJ 

205 AC~~o~)oA(JktJ)/X 
Kt<Kei"OC~+l 
JJoJJc,Jl 
DO i~ J•ltlJ 
IF«A«KoJ>-.0001)65,66,66 

65 CONTINUE 
GOTOSO 
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GO TO 44 
RETURN 
END 
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C 
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-
SUBROUTINE CHECK CANODE,K2,K3t*•*> 

-SUBROUTINE TO CHE,K WHETHER OR NOT A VARIABLE DETERMINED TO BE EQUAL TO EITHER ZERO OR ONE HAS TAKEN ON THAT VALUE 

DIMENSION ANODEC16)eK2Cl5JtK3(15J 
J•O 
l•O 

1 1•1+1 
IFCK2CI)eEQe0)GOT03= 

~ IFCANODECK2CI)+l)eNEaleO)GOT02 
GOTO! 

2 WRXTfC3t>ll) 
11 FORMAT ( 1 5UBRe CHECK FOUND AN ERROR IN A ONE VARIABLE'> Jol 

3 1•0 
4 l•I+l 

IFCK3(I>•EQeO)GOT06 
IF(ANODECK3( I )+1 J eNEeO·e )GOT05 
GOT04 

5 WR X TE « i o.12 ) 
12 FORMAY« 0 SUBRe CHECK FOUND AN ERROR IN A ZERO VARIABLE 1 J "RETURN! 

6 IFC~oEQeO)GO TO 7 
RETURN 1 

7 RETURN2 
END 

· •. ~.: 

, . 

j 

; ' 
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.c 
C 

·c 
,C 
C 
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&UBROUTINE CREATE C NPROB,NSIZE,IX,II,JJ,IONE,ILAST) "<;"." 

PROGRAM TO GENERATE PROBLEMS IN WHICH ALL POINTS ARE REACHABLE 
FROM ALL OTHER POKNTSo THIS PROGRAM IS A MODIFICATION OF THE 
PROGRAM USfD TO ~fNERATE PROBLEMS FOR THE CONSTRAINED CASEe 
THE DXSfAN~E£·ARE SAMPLED FROM A UNIFORM DKST~K~~TXON AblOWING 
THE XNTEGER5 AA THROUGH 300 THE DEMANDS ARE FROM A UNKFORM 
DISTRXBUVXON ALLOWXNG THE INTEGERS 6 THROUGH A5o 1HE ~KXED 
COSTS ARE SAMPLED FROM A UNIFORM DISTRIBUTION ALLOWING THE 
INTEGER~ BETWEEN 300 AND 400. 

COMMON A(62o320>, L(62) 
·COMMON C«l5ol5>, LOGIC(15,1S>,FC15J, MLOC(30tl0) 
OIMENSKON D«l5) 

30 FORMAT.« 0 ! 0 o40Xo 8 THE DISTANCE MATRIX FOR PROBLEM NUMBER'tl5////) 
50 FORMAT« 0 0°o!0Xol5F7e2) 
60 FORMAT« 0 ! 0 o40Xo0THE DEMAND VECTOR FOR PROSLEM NUMBER 1 ,15////) 
70 FORMAT«ll//~0Xo 0 THE FXXED COST VECTOR FOR THE PROBLEM'////) · 
80 FORMAT« 0 ! 0 o~0Xo 0 TH§ COST MATRIX FOR PROBLEM NUMBER 8 tl5////) 
90 FORMAT« 0 ! 0 o37Xo 0 THE REACHABILITY ~ATRIX FOR PROBLEM NUMBER 1 ,15////. l » 

100 FORMAT« 0 o 0 ~1ox,1s17) 
FIXo!OOOo 
DO 69 Kol,15 
O(l)rnQ 

FCJ)oOo 
DO 69 J=l,15 
C« X o~»mo. 

69 LOGX(b«XoJJ•O 
DO SO! E!:Jl,15 
F C I » oo o 

. D ( I D coo 

·oo so21 J•l,15 
CfltJDgOe 

,;.: 

. 5~1 LOGIC(l,~)•O 
NSTOP•NSIZE-1 

·:.: 

. ____ .... , ·- . .. 
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C 
C**************** GENERATING THE DISTANCE MATRIX***************** 
C ~ 

201 

202 

. 203 
.c 

DO 2()'2 I •l tNSTOP 
I l•K+l 
DO 202 J•II,NSIZE 
CALL RANDUCIX,URAND> 
RANDm20o-ttURANO 
~AND 8 !lo~RANO 
IRANOoRAND 
IF«XRAND~31)202,20l,201 
C(XoJ)gKRAND 
00 203 Kml,NSIZE 
I-IcX+! 
DO 203 JoIX,NSIZE 
CCJol>~CCl,J> 

C***************•* GENERATING 
C 

THE DEMAND VECTOR·******'** ... ******* 

C 

DO 204 I•l,NSIZE 
211 CALL RANOUCIX,URAND) 

URANDalOo*URAND 
URANOm6e+FLOAT«XFIX(URAN0)) 
IF(URAND~l6)204o2ll,211 

204 DCl)oURANO 
WRITE(3o30INPR0B 
WRITE«3o50»««CCl,J>,J•l,15>,I•l,15) 
WRITE«3o~O»NPROB 
WRITf(3o50)0 

C**************** GENERATING THE FIXED COST VECTOR***************** 
C 

DO 205 I•ltNSJZE 
CALL RANDUtlX,URANO> 
URAND•lOOe*URANO 

205 FCl,•300e+FLOATCIFIXCURANO)) 

J 

·~·· 

t 

~ . . . ________ .....,__ ,,...,-,.-:--,. ..,.,-_. 
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- WRITEf3t70) 
- W·RITEC3t50)F 

OMAX=32e 
C 

C***************** GENERATING THE REACHAiILITY MATRIX***************** C 

C 

DO 209 I=l,NSIZE 
DO 209 rJc!oNSIZE 
IFCC(IoJ)~DMAX)208t208t209 

208 LOGIC(I,J)=l 
209 CONTINUE 

C***************** GENERATING THE COST MATRIX******************* C 

C 

DO 210 .J•ltNSIZE 
DO 210 I=loNSIZE 

210 C(loJ>=C(XoJ>*O(J) 
WRITE(3£)80)NPR0B 
WRITE«3o50)aCC«l,J),~•l,15>11•1tl5) 
WRITE«3o90DNPR0B 
WRITEf39lOO»««LOGIC<I,~>,J•l,15),l=l,lS> 
IONEgNS!ZE*NSIZE+l 
ILA·ST~IONE+NSIZE=l 

"' I1=4~NSIZE+l 
J~=NSXZE*NS1ZE+6*NSIZE+l 

. IROW=l 
ICOL=O 

C***************** GENERATING THE OBJECTIVE FUNCTION****************** ·c 
DO 2 I=l,NSIZE 
00 2 -J=l,NSIZE 
ICOL=ICOL+l 

2 A(IROWolCOL>=C<I,~> 
DO 3 lmleN.SIZE 
JCOL=ICOL+l 



. \l(t. ·. ' . 

~ .. 

1 · ' 

( 

.. : 

1-

,;.. . 

'.: 
-, 

C 

.. 
.. L3 ACIROW,IC~,L>=F(I) 

NNN=2*NS:2.E 
DO 4 I=l,NNN 

._ ICOL=ICOL+l 
. 4 A ( I ROW, I COL) =FIX 

-1; 

C***************** GENERATING THE SUM OF XCI) EQUAL TO ONE CONSTRAINTS 
C 

V 

C 

XX'=laO 
AXX=-leO 
D·O 5 .J=l tNSI-ZE 
IROW=IROW+l 
DO 7 X=l,NSIZE 
K=I-! 
IFCLOGXC«XoJ)-1>7,6,6 

6 ICOLmK*NSiZE+J 
A C I R OW o I C O L > = X X 

7 CONTINUE 
ICOL=NSIZE*NSIZE+J+NSIZE 
A(IROWoICOL)=AXX 
ICOL=ICOL+NSIZE . 
A( IROW,ICOL)•XX 

5 CONTINUE 

'**'*************** GENE RAT I NG - THE SUM OF X CI > - - N*Y < I> LT O co,~s -, RA I .. ~ TS 
C 

DO 8 I=l,NSIZE 
IROW=IROW+l 
AA•O, 
K=I-1 
DO 9 .J=l,NilZE 
IFClOGICCI,J)-1)9,11,11 

. 11 AA=AA-1 ' 
9 CONTINUE 

DO 12 J=l,NSIZE 
I F ( LOG l C C 1 , ...: ) -1 > -12 , l 3 t l 3 

~. ; 

~.. .• 



-· . 

' 
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C 

13 ICOL•K*NSIZE+J 
AC~ROW,ICOL>•XX 

12 CONTINUE 
ICOLsNSKZE~NSIZE+I 
AC!ROWoXCOL>=AA 
ICOL=ICOL+3*NS1ZE 
A( IROW,ICOL)•XX 

8 CONTINUE 

. .,.. 

··•: 

.. 

C*****************· GENERATING THE YCI> LT 1 CONSTRAINTS 
C ( **************** 

C 

DO 15 l•IONE,ILAST 
IROW:mKROW+! 
IC0loX+4*NS1ZE 

·A( XROWoH Dgxx 
15 ·ACIROWoXCOL)•XX 

•.. 

C***************** GENERATING THE X<l> LT YCI) CONSTRAINTS************* C ";' .. 

'" '!.'. 

C 

Ja:0 
DO 14 I•l,NSIZE 
IROW=IROW+l 
.J•.J+l 
I J Js!cnl 
ICOL~IIl*N&IZE+J 

.A(.IROWolCOLl•XX 
ICOLoXONE+KXI 
A( IROWoKCOL)mAXX 
IC0La1COL+5~NS1ZE 

14 ACIROWoJCOb»mXX 

-,. 

C***********<tr*'°'*,o,* GENERATING THE .. RIGHT HANO SIDE*******'********** 
C 

J•ILAST+NSIZE 
DO 27 1=2,II 
.J•-J+l 

. ,. 
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IF~I-NSIZE-1>18,~8•19 
19 IF(·I-2*NS1ZE-l>2l,2l,23 
23 IFC·l-3*NSIZE-1>18,l8t21 
18 XX 3 le0 

GO TO 17 
21 XX=OoO 
17 LCX)mJ 

ACX,JJ)•XX 
27 CONTINUE 

RETURN 
END ..... 
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SUBROUTINE ENUM CMtNN> 

SUBROUTINE TO MANA~E TH~ INPUT~OUTPUT ANO CALLING OF THE 
'ENUMERATION ~USROUTINE LOClt LOC2, LOC3, ANO LOC4 

COMMON A(62o320),LC62) 
COMMON C(l5ol5Jt LOGIC(lS,15),FCOSTllS>_, LOC(30,10) 

110 FORMAT«2&1y» 
120 FORMAT(llF7o2} 
130 FORMAT.c 0 1°,2ox,•0PTIMUM LOCATIONS TO MINIMIZE TRANSPORT COSTS FOR 

lPROBLEM NUMBER 0 i I~) 
140 FORMAT«lHOo22Xo!7HOPTIMUM LOCATIONS,SX.lOHFIXED C0STt4X,14HTRANSPO' 

lRT COSTo~XolOHTOTAL COST) 
150 FORMAT(lH oA5X,1013,FlOe2tFl7e~tFl5e2) 
160 FORMAT«!HO) 
170 FORMAT«is,s, 

002Xolo30 
002.Jo!o!O 

2 LOC(XoJ)•O 
WRITIE«3,130)M 
WRITEC3,140) 

~ K•lr 
10 GO~Jb(ll,12,13•14,999),K 
11 CAtL LOCl CNN,T0C0STtTRCSTtFXCSTt&2l) 
12 CA~L LOC2 (NN,TOCOST&TRCSTtFXCST,&21) 
13 CAtLL LOC3 «NNoTOCOSToTRtSToFXCS.Tt&2-l) 
14 CiLL LOC4 CNNoTOC0SToTRCST,FXCSTt&2l> 
21 lgA 
22 IF«LOC(Ilol)oEQeO)GOTOlOO 

WRITE«3,lSO)CLOCCI,J),~•l,lO),FXCSTtTRCST,TO,oST 
1•1¢>! 
GOT022 

100 WRXTEC3tl60J 
K•K+l 
GOTOlO 

999- RETURN 
:END 

.,, 
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SUBROUTINE LOCl CN,SMALL,TRANS,FXCOSTt*> 
... 

6UBROUTINE TO DETERMINE THE BEST LOCATION FOR A SINGLE 
DISTRXBUTXON CfNTfR BASED ON MINIMUM TRANSPORTATION ANO FIXED 
COSTS BY COMPLETE ENUMERATION 

COMMON E«62o320»oLC62> 
COMMON A«l~o15», LOGI,(15,15),FCO$T(l5),MLO,c30,10,. 
INTEGERZ 
SMALLo99999999. 
0041~!,N 
TRCOSTmo. 
002 eJ= l o N 

2 TRCOSTmTRCOST+AClt~) 
TOCOS1gfRCO$T+FCOST(I) 
IFCT0C0ST~$MALL)5,3,4 

5 ~MALL:E:TOCO~T 
00 6 Z9 lo30 

6 MLOC«Ztl)=O 
LL=! 
TRANS=TRCOST 
FXCOST§FCOST(J) 
GOT07 

3 ;LLaLL+l 
7.MLOC«LL,l>•I 
4 CONTINUE -

RETURNl 
ENO 

} .... ; ~-· 

'<1· 

... 

:·~ 
-~ 

:- .. 

. ~.-

l 

If 

., 

·( 

. ....... ·'·\ :-.\: . 



J 

.j 

. I 

l 
l 

i 

I , 
1 
l 
I 
i 
I 

1 
. l 

I 
I 
i 
i 

·' 

·: ·-

: .. !;' . 

C 
C 
C 
C 
C 

-~-· 

I' 

SUBROUTINE LOC2 (N,SMALL,TRANS,FXCOSTt*) 

SUBROUTINE TO DETERMJNE THE BEST ,oMB!NATlON OF 2 POINTS TO 
LOCATE DISTRIBUTION CENTERS BA$EO ON MINIMUM TRANSPORTATION 
COSTS AND FIXED COSTS USING COMPLETE ENUMERATION 

COMMON E«62o320»oLNC62) 
COMMON A(l5olS>t LOGIC(1Stl5)tFCOST(lS)tMLOC(30tlO) · 
INTEGERZ 
SMALL099999999 • . 
DOlla!oN 
001.JoAoN 
TRCOSfraOe 
002Kol0N 
IFCA«l,K)-A(~•K>>3,3,4· ~ 

3 ADO~A«X,K) 
GOTO~ 

4 AODmA«.J,K) 
5 TRC05TsTRC0ST+ADD 
2 CONTINUE 

.. 

r 

TOC0ST~TRC0£T+FCOST(l)+FCOST(J) 
IF«TOC0ST~iMALL)7,6,1 

7 SMALLm'fOCOiT 
TRANSoTRCOST 
FXCOSToFCOST(l)+FCOSTCJ) 
LLml 
DO!! Zo!o30 
MLOC«loA»•O 

11 MLOC«Zo2>•0 
GOTO~ 

6 IOEN1ToO 
DO 12 Z•l,LL 

• 

·":·-

.•. 

IFC«lo£QeMLOCCZtl)eOReleEQeMLOCCZt2))eAN0e(JeEQeMLOCCZtl)eOReJeEQ. 
1MLOC«Zo2»)J IDENT•l 

12 CONTINUE 
JFCIDENTeEQ~l)GO TO l 

" 

=·. 

\ 
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. 

LL=LL+l 
MLOCCLL,l)•I 
MLOCCLL,2>•.J 
CONTINUE 
RETURNl 
END 

.. ,.. 
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SUBROUTINE LOC3 <N,SMAL.L,TRANS,FXCOST,•> 

SUBROUTINE TO DETERMIME THE BEST COMBINATION OF 3 POINTS TO 
LOCATE DISTRIBUTION CENTERS BASED ON MINIMUM TRANSPORTATION 
COSTS AND FIXED ,osr& USING COMPLETE ENUMERATION 

( 
COMMON EC62,320>,LN(62) 
COMMON AC15tlS>, LOGICC15t15)tFCO&T(l5)tMLOCC30tl0) 
INTEGERZoY 

'SMALLm199999999e 
D01Io!oN 
DOlJmloN 
-oOlK=l ,N 
TRCOST=O• 
002-Lel ,N 

• 
j 

IFCA«KoLJeLE•ACJtLJeANDeACltL>•LEeACK,LJJAOO•ACl,LJ 
IFCA«JoL).~E•ACltLleANOeACJ,L)eLEeA(K,L))AOD=A<~•L> 
IFCA«Kol»0LEeA(XoL»oAND0A(K0L)ebEsA(J0L))ADD=A(KtL) 

·2 TRCOS1°1RC05T+ADD 
TOCOSTmlRCOST~FCOST<I>~FCOSTCJ)+FCOSTCK) 
IF<TOC0ST~iMALL>7,6,l 

7 SMAl.L01TOCOj'f 
TRANSmTRCOST 
FXCOST=FCOST(I>+FCOST(JJ+FCOSTCK) 
LL=! 
00 11 Z=l,30 
DOA!V-=1,3 

11 MLOC(Z,Y)a::O 
GOTOS 

6 IDE-NT•O 
00 12 Z•l,LL 
lFCX11NEaMLOCCZtl)eANOeleNEeMLOCCZ,2JeANDeleNEeML0CtZ:t3))GO 
IFCJoNEoMLOC<Z,l).ANOeJeNEeMLOCCZ,2JeANDeJeNEeMLOCCZ,3)JGO 
IF«KeNEoMLOCCZ,ll.ANDeKeNEeMLOCCZ,2).ANOeKeNEeMLOCCZt3J)GO 
IOEN·T=l 

12 CONTINUE 

TO 12 
TO l, 
TO 12 

·,. 
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.\ 

IF·CIDENTeEQelJGO TO 1 
L.L•LL+l 

· 8 MLo·c C LL f> l ) • I 
M&.OC«LLo2)•.J 
MLOC«flL93)•K 

1 CONTINUE 
RETURN1 
END 

•j 
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SUBROUTINE LOC4 CN,SMALL,TRANStFXCOST,*) 

SUBROUTINE TO DETERMINE THE BEST COMBINATION OF 4 POINTS TO 
LOCATE DISTRIBUTION CENTERS BAS~O ON MINIMUM TRANSPORTATION 
COSTS AND FIXED CO$T& USJNG COMPLETE ENUMERATION 

COMMON EC62t320),LNC62) 
COMMON AC15tlS), LOGICC15t15J,FCOST(l~>•MLOCC30t10) 
INTEGERZtY 
$MALLc99999999e 
D01!0!0N 

.DOlJoleN 
DOlKcl,N 
D01Lml,N 
TRCOST•Oe 
00,MfnleN 
IFCA«X@M)eLE•A(~tM)eANDeACl,M)eLEeACK1M)eANOeACl,M>eLEeA(L1M))ADD• 

lACl~M» 
IF (Ag t::D oM) .o LE• A ( I eM I• ANDe AC J, M) •LE• ACK., M) •ANO• A ( ~ ,M > •LE• A< L, M > > ADO= 

lACJoM» 
J F CA« Ko M )·•LE• AC I tM) •AND• A ( K, M) •LE• AC .J ,M > •ANO• A< K ,M >•LE •AC Lt M) b ADO• 

lACKoM» . 
IF4A«L,M)eLEeACl,M)eANDeA(L,M).LEeA(J,M)eANOeA(LtM)eLE.ACK,M)JAOO• 

lACLoM» 
2 TRCOSTmTRCOST+ADD 

TOCOSTaTRCOST+FCOSTCI)+FCOST(J)+FCOST(K)+FCOST(L> 
IF(TOC0ST~&MALL)7~6,1 

7 SMALLofOCO£l 
L&.•l 
TRANSo1rRCOiT 
FXC:OSVnFCOS TC I ) +FCOS·T CJ) +FCOS TC K) +Fc·oa T ( L > 
DO Ji! lo!o30 
DO!!Volo&o. 

,. 

·11 MLOC(Z@Yi=O 
GOTOS 

,. 

6. IOENT•O 
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00 12 Z=l,LL ,~ 

IF C I• NE• MLOC ( Z, 1) • AND• I a NE •MLOC CZ• 2 >•AND •I• NE• MLOC (·Z t 3 J •AND• l eNE eM 
1LOC(Zo4)i GO TO 12 

IFCJoNEoMLOC(Zol>eANO.JeNEeMLOC(Zt2)eANOeJ•NEeM~OC(Ze3)oANDeJeNEeM 
1LOC<Zo4»» GO TO 12 

IF C Ko NE oMLOC « Z o l) oANOe ~. NE eMLOC CZ t2) eANO • K. NE e MLOC « l-·o 3) oAND.K.NE eM 
1LOC(Zo4>·» GO TO 12 

IF(LoNfoMLOC(Z,l>.ANO.~eNEeMLOCCZ,2>.AND.L.NEeMLOCCZtl)eAND.L~NEeM 
1LOC(Zo4J >GOTO 12 

IDENT=l 
12 CONTINUE 

IF«IOENT.EQel)GO TO 1 
LL=LLc}l 

8 MLOC«Llt:>l)•I 
MLOCCllo2)=.I 
Ml.OC«Llo3)=K 
MLOC«LL94>=L 

l CONTINUE 
RETURNl 
END 

:fir ·· 
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~UBROUTINE RANDU (IX,YFL) 

·J 8 M RANDOM NUMBER GENERATOR 

IY • IX*65539 
IFCIV)5o6o6 
IY mKV+2147483647+1 
YFL m XV 
YFL = YFL*a46566l3E~9 
Ix,= I Y 
RETURN 
Ef\JD 
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