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 ABSTRACT

s

‘The location-allocation problem is treated from the standpoint

of the computational efficiency of a mixed-integer programming formu-
lation solved by a branch-and-bound'élgorithm. Previous formulations

of the problem are analyzed and a new formulation is developed. The

new formulation is shown to be'computationall} superior to prior

models from analytic ;nd experimental results obtained with the ¢
branch-and-bound ;igorithm used. A mathematical expression for the ‘
expected numbtr of nodes that mustﬁge evaluated to obtain a solution

for problems of varying size is developed. The results obtained
.concur.with the contention made by som? that the efficiency of the

branch-and-bound method is dependent upon both the problem at hand

and the algorithm used for solution. The structure of these elements

must be considered simultaneously for computational efficiency.
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I INTRODUCTION

The attempfs to apply quantitative methods to the solution of
problgms formerly relegated to qualitative agalysis.and solution by
insight or "guess" has forced the problem solver to utilize the con-
cepts and techniques developed for use in diverse fields as well as
requiring him to develop new tools unique to his situation; The .
concepf of mathematical models,‘used extensively in the physical
sciences, has certainly-ﬁeen applied to great advantagé in the
"management"’ sciences. It frequently occurs, however, that a given
mathematical model cannot readily be solved for the optimal or near
optimal parameterg With existing‘techniques{ Consequently, new
tools must be developed to overcome this situation.

Frequently, a mathematical model of a physical situation takes

the form of a combinatorial problem; i.e., its solution requires the

oy . é.,

examination of numerous comhinations of the variables over their

allowed ranges. These problems always have associated with them some

function to be optimized and often restrictions are imposed on the

Acombinations’that can be used to optimize the function of interest.

In a loose sense, the myriad of problems efficiently solved by

linear programming algorithms can be considered combinatorial prob?

lems. In the case of these problems amenable to solution by linear

programming, the tools for solution have been developed to a high

.

degree of efficiency. There are, however, numerous combinatorial

problems which cannot be solved by linear programming because one
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__iqy_more of the variébles in the quel are noilconfinuoué over their

.range; The techpiques of integer programming, miXedfinteger program-
hing, dynaﬁic programming, or the branch-and-béﬁﬂd method muSt bé
used if one is not willing to enumerate all possible combinations.
Unfortunately, the present body of knowledge on integer and mixed-
iptgger programming ié not as developed as in’the case of linear
programming. Consequently, the'effiéiency df the existing algorithms
precludes their use in many.problems. Dynamic progr&mming will not
apply to problems unless they fit tﬁe mold of the dynamic programming
theory. The branch—and-boﬁnd method's efficiéncy is a funCtionfdf
the partiiular problem andvmayvdegenerate to a complete enumeration
in some éases. Clearly, one is faced with a dilemma if a problem's
solutioﬁ requires the use of one §f these techniques. This thesis

is addrésséd.to the solution of such a problem. It has been naméd
the locatiOn-allbcation problem and can be classified as an optimal
facility planning problem,

The general problem of Optimal-facilgty planning has been

stated by Elmaghraby (15) in the followinéhway: given the location
of each consuming center, togethér with its demand and the cost of
transportatidn from any place to each consuming center, find the
ﬁumber, location, and capacity of each source that must be provided
inorder tQ.minimize the system's total cost of‘operation; The
,iocation—allbcation problem is simultaneouSIy concerned with fhe
zallocation 6f consumers to sources. ?he pfoblem is festfiéted here

' to a single-stage problem; 1.e;, one transportation stage. Ideally,




it would be desirable to optimally locate sources considering two
or more transportation stages; but as will be shown, the single-

»’stage problem poses enough difficulties”to'induce one to set aside

consideration of the multi-stage problem unt&l the “single-stage prob-
lem can be solved efficiently.

The terms "location,'" "consumer," an§."capacity",shou1d be
‘considered genetic rather fhaniiterél."fof'examble, in the problem
of optimally locating a switching center in a communication network,
the term ''capacity' will certainly have a different connotation than

in the problem of locating warehouses.

In the_pureiy mathematical literature this problem, in one form

or another, is very old. Cooper (8) reports finding references dating
N back to 1647 ﬁhen Cavalieri considered the problem of finding the
poinf the.sum of whoée disténces from three given points is a minimum.
It has only been in the last few years, howevef, that significant.
literature has appeared proposing methodologies for the solution- of

various types of location-allocation problems of industrial interest.

The most recent aﬁprbaches (12) (23) formulate versions of the

problem as mixed-integer programming problems. In (12), the solution

of the mixXed-integer program is obtained by a branch-and-bound algor-

ithm. As discussed in (2) and (22), the efficiency of the branch-
~and-bound methbd’vafies greatly with the structure of the particular

aigorithm used; Usihg the braﬂch—and-bound method suggested in (22),
 the formulation in“(lZ) proves to be unsatisfactory from a computation-

~ al standpoint.
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‘This thesis will analyze the:reasons for‘the computational in=-

efficiency in (12) and develop a more efficient mixed-integer pro-

gramming formulation ffom the standpoint of computational efficiency.35

The improvement will be demonstrated and an attempt will be made
to indicate computing'requirements of problems with varying éize.

The ‘thesis is organized in the following manner. Chapter II

~contains the statement of the problem as it will be considered here.

This is necessary because the great interest in this topic has gene-
rated numer6uS-ramifications of the problem statement and approaches
to a solutioﬁ. Chapter III will review some of the literature that
has appeared on the subject. The branch-and-bound method is dis-

cussed in Chapter IV and Chapter V contains the mathematical develop-

‘ment of the mixed-integer program and the algorithm for its solution.

‘The computational results anq.comparisons are presented in Chapter

VI.
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11 THE PROBLEM

The general location-allocation problem can be Stéted.as follows:
lgiven the 1qcation of a number of consuming points, together with
their demands and the transportation costs from any place to each
consuming point, find the number, lecation, capacity, and consumer
allocations of eéch source that:must be provided in order to minimize
thé'sum of transportation'costs and cost of operating the sgﬁtées.

This Statement deserves investigation into the precise meanings of

its terms in order to arrive at a formal statement of the problem.

b

Such an inquiry will be the themg of this chapter.

A Mathematical Formulation

Disregarding momentarily the’requirement that each source's
capacitykmust be determinéd, the remaining mathematigal problem has
been étated (8) as follows: suppose that, if m is the number of
séprces, the costs associated with the operation of these soﬁrces,
Zl, is given by~sbme function of m, i.e.,

Z1 = gl(m) " eq. 1
Further, let the.cost of supplying the given set of n demand points
be Zz, which is again a function of m, given,by:

Z, = g,(m ;d. 2 -
‘where Zo is the minimum cost solution, i.e., the transportation

costs to supply.the'n demand pOints from m optimally located sourées.

The total cost is then given by:

Z = zl--l‘ 22 = gl(m) + gz.(m) - | ; qu. 3
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Since m, the'namger of sources,.is cléarly discrete, the miﬁimum
cost solution is obtained when:

A[gl(m*-l) + gz(m*—l)]<O<A[g1(m*) + go(n®)]
and . o ‘

Az[gl(m) + go(m)] 20 _ for all m,
| where m* is éhe number of.lOCatiOns minimizing Z.

Assuming that the operation of m sources is independent of théir
locations,'équation i.can be obtained by fitting'cost data with some
emperical eQuation. A more complex problem is the determinafion of
Z, for sdﬁe fixed m. If it were possible to determine Z, for various
values of m, the determination of Z, for'all m is again a problem'v
‘of fitting data. A critical assumption here is the independence of
Z, and the locations of the m sources. With this assumption, the
problem éan be solved as two distihct problems, i.e. obtaining a
function for 2, and Z, and thenvcompuiing the minimum of Z. Un-

fortunately, the'detefmination of 22 is of no small consequence.

-Cooper (8) considers the determination.of Z, for some -fixed

2
m. Let the location of the n demand points be given by (Xj, Yj);
"'j = 1, 2, .}., n, their'Cartesian coordinates. Similarly, let the

coordinates of the m sources to be determined be given by (Xi’ Yi);

i'= 1,-2,-,..,'m. Assume fhat any demand potint, henceforth referred

to as a consumer, can be supplied by any source. Then

Zz = E ; E : aij,d)(xi ’ Yi’ XJ ’ YJ) | eq. 4
i=1 J=1 .

i 5 Ly I

.i-w_..,...,,,__.,{
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1 if source i serves consumer J

o
!

O otherwise
Y,) = transportation costs associated with
serving the j th consumer from the i th

source,

In order to find the set of (Xi’ Yi) minimizing Zz,'differen-'

tiate equation 4 with respect to X, and Y, and solve the equations

resulting from setting these derivatives equal to zero. Then

. ) | | eq. 5
and

j=1 o "

This then results in a set of 2m equations which when solved as
pairs yield the m sets of optimal (Xi’ Yi) which minimiZe 4o for
some set of aij' There are, however, for m sources and n consumers,
S(n,m) possible allocations of n consumers to m sources, where S(n,m)

is the Stirling number of the second kind and is given by R

.
k n
S(n,m) = ll- "\(-D (n-K R
m. — : ' - - : \

&J‘—'
il
o
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Thié assumes th@?*a péqsumer'is supplied by only one SoATC.. qu
very large n, these Stirling numbers ¢can be formidably lérge. For
example, S(25, 3).§=14.1 (1010), a tfuly magnificent number (i).
Equations 5 would then requiré solution S(n,m)~times and th. mini-
mum of these_solufions will be Z2 for some m,.-As Cooper points
:Qut, for large sgale probleQS'Qf industrial importance the amount
" “of computation is prohibitivé; Codper'develops an iterafiVefproe

. c'edu,re. for the solution of _eqqations 5 in which cb(xi, Yi’ ’X‘ji" YJ)
Iis a linear function of.the Euclidean distance between sdﬁrces and
consumers, Although.the procedure ié of interest, it will not be
discu%sed further here. Of more import toward obtaining a ermél
statement of the problem to be consideéred in this thesis is a
'review of this mathematical formulation and'thé,Significance of
the resulfs.

An Analysis of the Formulation

Consider the cost fuhction, equafion 1, for the operation of

N -

1 sources. It is assumed by Cooper, although not explicitly stated,

that equation 1 is a function of only the value of m. This does

not appear to be a realistic assumption from a'praqtical standpoint.

§ .

Factors such as real estate'availability, labor costs, tax rates;,
etc. will vary the fixed costs associated'with the establiShment
and operation of a source as a function of where it is sited.

Clearly, Z, is then no longer a function of m alone, but also of

1

the particular m points chosen. Then for each m, there exists a

set Zl of fixed costs for all possible distinct combinations of m

e e e
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poihts selected from all possible source locations..,Then; if S 1§  N

the set of M (Xi, Yi) that are possible locations for sources and

Zl is the minimum fixed cost for some m, the following is true:

W
L

1 ]
Zl = min Zl = gl(m, fl)’

“~

where

¥

7y = {g1tm, £) | (X3, Y)esvi};

1

fi‘ the fixed costs of a source at (Xj, Yi); and

g1 (m, fi) = the fixed costs associated with the location

of m sources at one of the (ﬁ) possible loca-
tion sets.
Retprning now to the transpoftation costs, the minimum cost
solution for some fixed m will again be
zz = go(m)
since the transportatipn costé are clearly not a function of the
£y as$oéiated~with the m ppints deterﬁined by equations 5. The
total cost is then

]

Z Z1 + Zz = gl(WJ fi) + gz(m) eq. 8

Recall that in equation 3, thé former total cost expression, 4
minimum can be obtained since Z was oﬂly a function of m. Equation
8,.howéver, is aifunction of m and the fi's associatéd with the m
'pointé formerly computed from equation 2. Obviously, it is no

longer possible to obtain a minimum cost soiution by treating the.
~co§% components of Z independently as was done previouSly. It
follows then that a solution oflthe problgm requireé‘the optimization

of Z where the location of m sources affect notfonly the transporta-
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tion ¢osté‘but'also the fixedNCOstgf_

-

Consider now the significance of the solution oBtained by 

'Cobper; that i§; the location of the m sources expressed as Cartesian -

coordihates. This allqws the solution to fall in an infinity of
poinfs--a generalization of the classic Weber problem pOSed by -
Alfred Weber (29) in 1909. It would be more realistic;'in problemsﬂ
of industrial importanéef'to consider some finite sef bf péints as”
feésible solution points rather than the continuum.‘ The solution

locating a plant in a large lake or sparsely populated area would

be of little or no value in a practical probien.  &

Assume theh that the possible locations for sources are limited
to some finite set of points. It is then of no significance to

express the location of the consumers in terms of Cartesian coordinates,

buf rathér the distances between the consumers and the possible source
locations are of interest. The transportation costs will certainly

be a.fﬁnctibn of distanée and not neceséariLyAétraight line distances,
as is often assumed, but physical distances over which the carrier
must traVei. In view of the previqps discihssion, the problem to

which this thesis,is devoted can now be stuted..

Statement of the Problem

’é . y . Given: (a) a set C =‘{Cj|Cj € C for j o= 1,52;:,.., n}
| | - of n consumer points, Sy | |

. .

'gb) a.sef S = {SiISi € S jor i =7}, 2, c ey m}
of m possible points, 5;, at which a source can be

v ‘ "' located,

(c) the demuni; aj‘ J =1 fo.., n, for some cbmmodity

|}




at Cj) | o “f““

o~

(d) fhe'disténcé; xij’ from any S; to any Cj

[

(e).the'tfansportation cost, tij’ of providing one unit
of dJ from S; per unit distance and

(f) the fixed cost, fi, of operating a sourcé at Si‘

Find: (a) the number of sources required, |
| (b) the location in S of each source,

" (e) the capacity, K., required at each source and —— S -
| i

(d) the Cj allocated to each source.

Such that: (a) each d; is satisfied and

(b) the total cost of operation is minimized.

This problem can be considered a single-stage location problem

-

as opposed to a multiéstége location problem. As Kuehn and Hamburger

(19) treated a warehouse location problem, the problem as stated here

1s in fact a subset of a bigger problem. Their warehouse locations

*y
-~

5

are determined -as a fhnction of the plahts' locations supplying the
warehouses as well as the locations of the consumers drawing on the
‘warehouses. This is in fact‘treéting_two distribﬁtion stages, i;e.,
from plant to wéfeh6USe and from warehouse to consumer. Only thé
single-stage problem will be considered here.

”

As élluded‘té earlier, even the single4stage problem can take

on a varied structure. Of particular interest is the general problem

in which all consumer 1ocations'are considered as possible source
locations. It follows that in this case, S equals C; i.e., S5; =

6ijcj‘for i f.l, 2, ..., m and‘le 1, 2{ .+, 1 and,whe;e 613\
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is thé Kronecker delta defined by:

1 if i = j

T b4y =

0 if i # j

CléarIY, it follows that m = n for this case.

. Hakimi (17) has conceptualized a similar problem‘in a communica-

tion System context as a weighted graph. Maranzana (25 has also

- drawn this analogy in an approach to the location problem minimizing g
transport costs with some fixed number of warehouses or "supply %

points." Figure 1 illustrates a weighted graph of the general lo- é

cation-allocation problem in which § = C. :

C) {1),d,] ?

Yo

C3 {£3,d5}

FIGURE 1 A'Weighted Graph Representation
of the Location-Allocation Problem
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Associated with each vertex, analogous ! the C;, is a set of .
‘weights corresponding to the demand, d;, at i .nd the fixed cost,

fi’ of establishing a source at i. Associated with each edge,

analogous to the transportation links, is a set of weights corres-

bonding to the per unit transportation costs, t.

ij and tji’ and the

distance, xij’ from‘i to j. Some observationé ﬁhatghould be made
about'Figﬁrell'are: the per unit transportagion costs need not
necessarily be equal on the same edge; an edge'sllength may or may
not represent its relative actual distance but rather x1J is the
'measure_of distance;.and finally, there need not be én edge between

a%% all pairs of verticés, i.e., the graph need not be "complete" (7)

£ but it must be connected.

Given this weighted graph, the problem remaining is one of | %

determinihg at which vertices sources should be established and the

consumers allocated to each source. Before reviewing the prior !

approaches to obtaining a solution to this problem in hopes of
benefiting from these attempts, mention will be made of some vari-

ations that will be considered. Firstly, the set S can reasonably

e i e B 3 A A e T e S

be a subset of C in a practical problem. Secondly, the set C may

be a subset of S. This will increase the problem's dimension but

® .
it may be a valid situation which will be considered.
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II1I A REVIEW OF THE LITERATURE

To exhaustively review all the literature pertaining to the
o numerous ramifications of the location-allocation problem would

require a volume in itself. Consequently, this chapter will be

primarily concerned with the literature related to the problem

stated in the»preyious chapter. One might ask,v"What does this
exéiudéwffém revié;?“' To énSwef-this question, a brief discdssion
of some related works foilows.

Aside from the purely mathematicallliterafure, the location
problem has been treated from many fronts. Haley (18) has treated
the multi-stage location problem through- the ﬁse of é mechanical
analog. The analog consists of a set of k + n pulleys; k plants
and n consumers, located on a vertical plane corresponding to their
relative loéations. Strings are passed over the pulleys. One end
of each string supports a weight proportional to the demand or out-
put; i.e., demand for'coﬁsumer and output for plant, times the trans-
portation costs per unit per distance.unit: The ends of the strings
are tied together and reieased coming to rest with the knot at the
minimum cost location;for a single distribution center. The assnmp-
tion here is that transportation costs are linear with distances and

that the frictioh.inAthe system can be ignored. Burstall, et. al. (6),

independently of Haley and almost simultaneously, used the mechanical
analog to determine the hear optimum locations of a pair of factories.
They extended the analog solution with subsequent comparison by

digital computer'of several alternatives obtained from the analog,
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»

» Eiseman (14) has presented an identiéai"meéhan1Ca1'analog to the

éingle Iocatioanroblem. Eilon and Deziel (13) preseﬁg’the solution

e et et e e e g o,

to a single warehouse location problem as well as a two warehouse

location problem utilizing an electronic analog ébmpnter to obtain

the solution.

to obtain the single optimum location for a warehousé 1s the concept

of determining the 'center'' of the demand system by mathematical ;

means. Smykay and Fredericks (28) compute a "ton-mile center' for a

system of consumers by computing the "pull’in two orthogonal di-

. | . 1 . " . | G
rections from a reference point. The ton-mile center will yield ) :

the minimum transportation costs assuming straight line transportatialh
links and linear*eostS‘with quantity. Hakimi (17) presents a compu-
| tational fechnique to determine an m~median of a graph which mini-
mizes the total interconnecting wire lengths if the graph represents
a communication switching system. Unfortunately, his teéhnique con-
o | sists of completely enumerating all combinations of m points se-
lected from the n consumers. For large n, the enumeration is
prohibitive from a computaﬁional stanapoint. Ma;anzana_(zs) de- -
termines the ''center of gravity of a set of weighted nodes' in a | | §
heuristic algorithm to locate a fined m number of distribution »
‘points to minimize transportation costs. The "center of‘gravityﬁ
A o " turns out to be equivalent to the "median""found byankini. - | E
‘Kuehn and Hamburger (19) hnve~treated‘thé multi-stage location | !

problem through the use of a heuristic.progfam.l As stated earlier,

- "’.“ i
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the'program-attemptsftO'minimize transportation costs from k fixed
plants to m warehoﬁsee; the location and number of which is to be
determined, and the transportation costs to n consumers from the m
warehouses while simultaneously minimizing the fixed warehouse costs.
Baumol and Wolfe (4) treated the same problem from a mathematical
programming approach. The procedure consists\ef"repeated solution
of the transportation algorithe eetil ne fuftﬁer cosé‘impreveeents
are realized and the process is terminated. |

Thiseglursion into related problems was by necessity not all
encompassing. It may neve?theless be fruitful to peruse these re-
lated problems for imbedded in their methodologies may be the tools
needed to eolve the problem at hand. More closely associated with
the problem of concern here are the following papers.

Cooper'(95, in "Heuristic Methods for Location-Allocation
‘fProbiems;" continues his study of the location-allocation problem
presented in Chapter II.by applying heuristic methods. -Heuristics, )
as referred to b& Simon (27), are rules of thumbs selected on the
basis that they will aid in problem solving. Cooper attempts to
determine the effect of'appiying some heuristics to reduce the compu-
tational effort involved in solving equations 5. Recall that the
~ solution to equation 5 gives the locations for m sources és'(xi, Yy,
i.=1, 2, ...,‘m. Cooper reaffirms results obtained in (8) indi- H
| 'hcating that the solutipnvobtained ffom equations S will be closely

approximated by enumeration of all possible cembinations of the n

demand points taken m at a time, (p), and selecting the minimum cost
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combination as the optimal solution. This then supports the contention -

- made earlier. The enumeration is not trivial, however. He reports

that the computation of.(eg) took 3% hours oa an IBM 7072 computer.
The next "heuristic" investigated is the error in sampling from the
(3) combinations and selecting the smallest of these as the optimal

solution. As an empirical rule, the sampling was stopped when a

4

value between 13 to 2 standard deviations below tﬁe\mean and the

samples taken up to that time had been obtained. It was found that
| ¥ |
the mean percent error obtained by sampling to solve 100 problems
was 2.518% from the optimal solutions obtained*by solving equations
5.
| - Cooper further investigates‘the error in determining the optimal

location of 2 sources and adding additional sources until m sources
are located. On the same 100 problems, the mean percent error was
7.086%. Finally, the n consumer locatioqs are divided ;nto m sub-
sets and a source is optimally located within each of the m subsets.

The results for this heuristic approach yielded a mean percent error

of 2.582%. Of significance in these results are the small errors

found. Cooper states that in the’location-allocation problems he

has experimented with, a relatively flat minimum was observed. It
should be noted, however, that all the computational techniques in-

valved only the optimal location of a fixed m sources.

Manne (23) formulates the single stage, location-allocation

| problem~inlmathematiéa1 programming terms. In the context of a

plant locetion problem, let

T - TR TRSR KLY e L T A B R it
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- Pjj = annual rate of manufacture at source i for shipment to |
W R ~ consumer j,
yi = fraction of fixed éosts incurred for operation of a
source at i,
tjj = transport cost/unit from source i to consumer j,
¢; = manufacturing cost/unit at source i,
, . , *
b1j = ci + tiJ’
fi = fixed annual cost incurred for a source at i,
dj = annual demand at consumer j. 5
Then the total system costs are given by: %
i=1 j=1 i=1 :
subject to: - . | §
Zpi,j:d;j ij=1,2, ..., n 7 :
i=l .
=0ify, =0 .
pijr i=1,2, ..., m
| 201fyi=1
| 'y, =0,1 i=1,2,..,m
Although the system of constraint equations resembles the transporé §

tatioh'prbblem, thére'are two important differences:

n A R SR S R R AT A

1. The'yi must be set equal to one to allow,pij:>0 in the i th

Y
‘“‘“'«l

group. The transportation algorithm cannot be used unless

AT T AR T

Yi # 1, f°r i.zﬂlv 2, ..., m. This clearly .is not the aim | " | g

of this formulation.»
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2. There are‘nd caﬁgcity limitations on fhe sources.‘.This
again is nbt‘émeniablé‘fo solution’by the tfansportation
algorithm.
The-ff;gf—difference is then merely a restatément of the in-
ability of the transportation algorithm to minimize 7Z. Recall, the

transportation élgorithm is designed to minimize transportation costs

.- >

or some cost function C, where

.om n o
C = Z Z | biJP
"13

o i=1 J:l ,
Manne utilizes an adaptation of SAOPMA (steepest-ascent one-point move
algorithm), ‘introduced by Sherman and Reiter (26),to obtain a feasible
solution to the problem. SAOPMA is a heiiristic rule beginning with
a8 random selection of some m source locations and makes "one-point

” o , . .
moves until no further economic advantage is realized.

For example, consider the case when j 4. Implicit in this
formulation is the fact that S = C. Then the possible combinations
'of_yi's can be considered as lattice points of a unit hypercube in
théyi space. The 1at§ice-point (0110)“wou1drepresent sources at
i =2 and i = 3.‘ The "one-point move"' requires evaluating the coét

" of any adjaceht lattiqe point and shifting to the lowest cost point.

The adjacent lattice points for (0110) are (1110), (0111), (0010)

-”W»and (0100). If at any of these points Z<Z at (o110), thé Z for the

| adJacent,latfice points to that point are evaluated and the process

isfcontinuéd unti1 no 1mpro§ement is obtained at any of the adJacent

T A et N O AL W S R i T T
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points. Clearly, the solution will often be a local minimum. Manne
found the error from true optimum for a number of problems to be
approximately 4.5%. Of significance in Manne's approach to the location-  _

allocation problem are: the mathematical programming formulation;

the heuristic rule applied to solve a seemingly unsolvable, from a

'computational\standpoinﬁ, mathematical programming proﬁlem; and the | | | E

. f. | ﬂ, small perceht error obtained with SAOPMA. |
| Efroymson and Ray (12) formulate the single-stage, location-
allocation problem as a mixed-integer programming problem similar

+to Manne's formulation.

Let

dj = the demand af copsumer J,

tij = transportation cost/unit from source i to consumer j,

bij = tij dJ = the total transportatiqn costs to supply consumer

'j from;sou;ce i; |
PiJ = the fréﬁtio; of dJ suppiied from source i,
1?ﬂ‘ £f; = the fixed cost of operatingusource i,

] Nj = the set of sources that can supply consumer J,

Pi = the set of consumers that can be supplied from source i, |

n, = the&numbqr Qf“Coﬁhumers in Pi. A %

The problem is then stated as

. m  n m
min Z = 2, X b..p.. + O f.y.
o i=l j=1 iJ-iJ' ©i=l 171

B8 .

" subject .to:

e AR T Y B Aot e -
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pijzo - 1=1, 2, ..., m j=1,2, ..., n

y =0, 1  i=1,2, ..., n

In the terminology used in Chapter II, this formulation will solve
the general problem if and only if:

J

and P. =¢C i
i

N, = S_. N Jj = 1, 2, W93;vnf

]
-
N
=

the latter of which implies that:
ni =n i # 1,-25'...,_n.

The solutidn‘of‘this mathematicai program is not triVial."'i
Efroymson and Ray utilize a "branch-and-boﬁnd" algorithm. It will
suffice to note here that unlike SAOPMA, a brangh-and-bound algorifhm'
guarantees a global minimum solution to thé mathematical program.

Efrdymédn and’Ray's formulation of the 10cation-allo¢ation problem and
 its subséquent solution by a branch-and-bound algorithm will be‘re-,‘

viewed in more detail in later portions of this paper.
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IV THE BRANCH-AND-BOUND METHOD

As pointed out earlier in this paper, one approach to the solu-
tion of combinstorisl problems is the enumsration of all possible
combinations defining:the solution space. Problems of industrial
importance, howéver, are usually of sush dimensions that this approach
becomes infeasible from computational aspects. A "bettsr mousetrep"
mus t be'd'evi:sed.~ The branch-and-bound method is:such sn improvement.

Like dynamic programming, the branch-and-bound metsod is en
intelligently structured search for the optimum solution in the
feasibie-soiution space of a particular problem. The concepts of
"pranching” and "bounding" are utilized to repeatedly partition the
_feasible sslutioﬁ space iﬁto smaller and smaller subsets and e bound
is*determfned for each solution in a parficular partitioned subset.
That subset with the most favorable bound is further partifioned'
until a feasible solution is obtsinquthat is more favorable than
any_previously obtained subset bound. Favorable is used here to
denote that the bound is either the smallest or largest bound
obtained depending on whether the problem is one of minimizing or
maximizing some objective functisn. Lawler and Wood (22) have
~ recently published a surVey of branch-and-bound eapplications in
which diverse types of constrained optimization probiems are cifed.

' Their paper 1nc1udes‘an~extens1ve bfbliography on the subject. 5To
‘demanstrsts"the essential features or concepts of the branch-and-
bound method, the following discussion, closely paralleling that

 Qf Laﬁleriand Wbod, is'preSéntéd;'

‘ 1
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., Suppose it is desifedﬁto solve a "difficult” constrained
optimization problem. Consider "difficult' to mean that there is
no efficient technicue to solve the problem directly. Let the

problem, Z, be:

?é minimize Z=g(p)
subject to gl(p) 20
g,(p) 20
and . g(()20
m -
- p € P,

where P denotes the feasible solution space and p denotes a vector.

(P1»Pz»°--» pn). A solution vector p is a feasible solution if
and only if p ¢ P and satisfies the constraints. The Optimal.feasible
_solution, p, occurs when g(p) is minimal.

Assume now that a related "easy' problem, Z', exists. Let

. . this problem be:
: minimize | Z;=g'(p)
subject to | gl'(p) >0
| gz'(p) 2 0
and | | gy (p) > 0
. p € P.
~Assume furthér thaﬁ‘the following condition holds: | | I .

min Z' = s'(po) < min Z = g(p)

This is then a "pbound" on min Z. ‘It follows.that if P, is a f<e_a$ible~'=

,$oiution to Z and

"~ g8'(po) = g(py
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then p, is the optimal solution to Z. It is then possible to create .
? 11 (n) . ' ( i) p
asetz2 , 2 ,..., Z of bounding problems which for some Z .

yields p_ as a feasible solution to Z and in addition

g(i)(po) = g(p_) .

This is then the optimal solution to Z. If the structure of Z(i+1)

is a function of the solutions of z', z",..., Z(i);'i.e., the bounds

previously obtained, the process of finding the optimal solution to

Z can be represented as a 'tree.' Figure 2 is a tree representation

of the branch-and-bOundfmethod.

<

——= .-

1"

o

@ ‘ ' *
*Denotes Optimal Solution

Figure 2 A Branch-and-Bound Tree
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Each node represents & problem. The branches emanating from a

| (1) (1) N .

node 2 replace Z in the bounding set. Consequently, at =
particular stage in the computation, the 'free' nodes which have
not been -branched from are the bounds of Z. At each stage'branching_
occurs from the smallest node (Z is still a minimization problem)

creating new bounds. If at ahy stage i, P, is a feasible solution

(1)p0, the optimal solution

to Z énd all bounds are greater than g

to Z has been obtained and |
| min Z :Ig(po) =Amin.Z(1) = g(i)(po)

fFo'r'exar_np_l_e, tracing through theitree in Figure 2, node Z is

representative of the solﬁtiOn of Z which is to be found. Nodes

Z' and Z' are the solution of two bounding problems. Brenching

11

from A implies that z'< 7', Furtherf‘the following relationships

can be concluded:

23 < min@®, ASEADY |
_Z(S) <m1n(Z(6), Z(7), Z',‘ 2(4)" Z(S))
and min 2 = ¢®) o) —minz = gp)

If, for example, the following condition had existed, i.e.,
z' < min@®, 2, 205
branching shouid have occurred from Z'.
The amoﬁnt of computation is clearly a functién‘of the number
of nodes%in the tree. If the "easy"-problem'SOIVea at each nﬁdé '
does not bound fhe problem %yfficiently weli; the-trée may gfo@ to

‘represent all feasible solutions of Z which is in fact a}complete

. enumeration. The number of nodes which have not been branched from -

ey
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- will determine the amount of intermediate storage required. That
is, 1t may be necessary;to brahch.fram a hode determihed early in
the process S0 it must be stored. In short, the branch-and-bound

qethed's usefglness and effieiency ie afunct{en_of the particular

e

algorithm used to construct the bounding problems at each node and

-

the structure of the "difficult" problem as well.
. Agin "(2) defines a. branch-and-bound algorithm &s "A set of
rules forv
}.‘ branching from_nedea to new nodes,
2. determinfhg lewer"bounds for the new nodes,
3. choosing &en intermediate node from which to branch next,
4. recogniiing when & nodeé contains only infeasible or non-
optimal solutions and
;5. recogniaing when & final node contains an optimal solution."
From the discusaion of the branch-and-bound method and the definitioh
.giveh above, it~foliows that theeoncepts of branchingland bounding
can be applied to_a myriad-of problems. It should elso be recognized
thatuniihe the'simplex algorithm in linear programming, a branch-
and-bound algorifhm does net follow a common procedure for all
problems. It mast\be structured_to the "difficult” problem at
hand. | | | o
| Land and Doig (21)*censider“the solution of mixed-integer
hrogramming prebléme b§ the branch-and-bound meéhed. fheir'wOrk‘
_“hassubsequently been extended‘by,Beale and Small (5)12Dakinl(10);

.'and Driebeck (11). The approach to the mixed-integer problem.is

-~
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(22): Solve the mixed problem by the;simplex algorithm; If the

solution obteined has integral values for the required variébles,

the optimum solution has been obtained. If not, restrict some non-

integral "integer' variable to the next lower and next higher ~

integral value and apply the simplex algorithm for each case.

" This process is repeated until the solution is femasible and no

»

intermediate ndde is more favoféble. Of partiéular interest hé}é
is the mixed—integer progfamming problem in which the infeger . <

variébles are Boolean variables, i.e., of the zero or one type.

Consider the solution of the following problem.

Minimize | Z = g(p,y)
subject to ) gl(P,&)iziO
gzip:yi 20
g, (p,y) 2.6,‘ g
and E R p € Pi
| | y €Y

where P = the feasible solution space for p,

Y

the feasible solution space for vy,

ey P)

P.= (Py, Py,

¥y =y ygree0¥y)

g(p,y), gl(p,y),...,gm(p,y) = linear functions in p and y.

~ -~ .

 In particulér,'lét

) P = (pl’pz)’

-~
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'y = (yl’ yZ’ y3)§

the positive real numbers

.

ana Y = the integers 0 or 1.
There are then 23 = 8 different solution points satisfying Y or in
the SAOPMA términdlogy, eight lattice points of the unit hypercube |
in 3-space. Associéted with each of these lattice po{nts is an
"éaéYﬁ bouﬁdihg problem, thé solﬁtion of which m;;“be infeésiblé
with respect to P. The "easy" problem is a sQlution of the linear
p?ogramming problem defined ;t that‘lattice point, i.e., the problem
with the Y4 constfained to equal one of the eight feasible solutions
in Y.

One.approaCh_to the solution of Z‘W0u1d then be to solve the
eight problems and select the minimum solution. Let the problem
at a lattice point by Z(yl, Yo, ¥3) where inipafticular z(0,1,1)
denotes-the prqblém with the yi's constraihed as: y, =0, yo =1,

y3 = 1. The tree of all pdséible problems is then represented in

Figure 3.

2(0,0,0)

Figure 3 An Enpmeration'Tree
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’constraiued.to be integérs. It follows from the theory of linear

. a node can be a deciding factor in the size ‘of the tree.

30

For a large number of yi's; this is not computationally feasible.
If y = (yl, Yoseoos yls),‘theAnumber of lattic - poiut problems
that exist is 215 = 32 768.

Consider a branchQand-bound approach. Let the initial problem
be the continuous version uf the mixed-integer problem denoted by
Z(-,-,-) where the dashes indicarg rhat noue uf the yi's are
programming (16) thét the absolute minimum for Z will_be the
solution of Z(-,-,~). Construct fwo new problems'based on the
values of the yi's in the solutipn of Z(-,-,-). Let these problems

constrain some non-integer yi to zero and one. Using the solutions

" to these problems as new bounds, branch fram the lowest bound and

create two more problems. This process will continue until all
yi's are integers and no lower bound exists which has not been
branched from. This is the optimal feasible solution to Z. If

at some node the sdélution is infeasible, thevsubsetwdefined by that

" node is no longer considered for further partitioning.

Of importance to this approach is the structure of Z. If Z

is structured to drive the_yi's to integral values at early stages

of the tree growth, the tree size may be small when an optimum solu--

tion is obtained."Conversely, with a "pOor".structure from the .
viewpoint of introducing integral values early, the tree may grow .
to a complete enumeration tree. As pointed out by Agin (2),'the'

decision rules applied to create the new problems branching from

e r ey R B AL B AL S R i A e sy . .
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" 'V A BRANCH-AND-BOUND APPROACH

hThis chapter 1s-addressed to the development‘of a mathematical
formulation of the locaticn-allocation problen, including the implicit
gssumptions, and the branch-and-bound algorithm for its solution.
As alluded to in prior discussions, these elements of the branch- "
andfbound methoq are not diéJoint from_thé standpgint.of_qomputatioyal y

efficiency.

The Mathematical Formulation

Recaiiing thé problem statement in Chapter II, a weighted graph;
G, Figure 1, defines the problem redgiring éolution. G can be repre-
sented in matrix form to facilitate furtﬁer development. ‘Consider
first the general problem in which S = C.

Let X be an n x n matrix represenfing the distance between any

two vertices on the graph. Then

X = [xij] where

xiJ if Ci and C.j are édJacent‘vertices

coif C

i and Cj are not adjacent vertices

Recall that xij = Xy for i =1, 2, ..., nand j =1, 2, ..., n. [ él
Obtain'ﬂow the shortest distance between'any'péir of vertices in G. | o \{
This is not .a trivial problenmn. -Some approaches to the problem are

|

|

presented in (15). The discussion of this problem is outside the R ﬁg
- | | B . |

!

l

scope of this paper and it;is~therefore assumed that a technique is

used to obtain the shortest paths. = = . - iA S 5 T '§~
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Let the matrix i_fepresent the shortest paths obtained.

¥
Then .
X = [;iJ ] where
_ iij if i # 3
Xij < |
0 if i = 3.
. - . , iij is then the shortest path connecting C; and qj.
Let
D = (dl, d2, ey dn)

be a vector representing the dj at each C Further, let the trans-

J-.

portation costs be represented by:

T = ‘[tij] where

N tij if i #‘J
tij = |
O if i = j,
~and tij is the cost to»transport one unit of dj from Si per"unit
. distance. The total transportation costs to provide_dj from Si

can then be given by:

B = [ ‘.bij] where

The remainder of the graph consiéts.of F, the vector of fixed costs

- | | ¥ | .
for operation of a source S; at i. In the former notation,

, £.).

F=(fy, 1, e £

The essential costs are then represented in matrix B and vector F.

Iflig notéwOrthy at this»pointthat B will Have'zeros on thé diagona1
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i

¢

which merely implies that the satisfaction of dj from a source at

J will not require transportation costs. This assumption does not

appear unreasonable when considered with respect to the transportation

\

—_———

costs tij when i # j. Also implicit in the foregoing development
is the linearity of transportation costs with distance and quantity.
The validity’af this assumption Wil} be a function of the particular
éﬁplication. It will here be considéred‘to apply in all ééses, B

- Continuing with the development, let pij be the fraction of
dj supplied from Si and lét yi_represent the fraction of a source
at i. Minimizing the'operating costs of the system will again

require the minimization of fixed costs and transpdrtatioﬂ costs.

Thé fixed costs are:

and the total operating costs ére then:

| n n n |
Z=2,+%Z = 2, fy. + Y 2 b..p. .
I e R i=1 j=1 W

Z is identical to the total cost expression obtained by Efroymson
and Ray.

- To insure that each dy is satisfied, a‘constraint must be imposed
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on the minimization process. Since piJ is the fraction of dJ‘Sup- .

plied from Si’ the sum of thefpij for.eéch j must equal 6ne, i.e.,

© -FRiurther, consider yd.S l; i.e , a maximum fraction equalling a

cdmplete source. It is required to constrain the number of consumers

that can be served by a source. This constraintis expressed as:

-

It is unreasonable, from a practical standpoint, to consider Yi to

be continuous in the interval O to 1. Consequently, require that

T e T g it T S (e b o S T s iy L e o s e
RN 2T SRR S HORERR T2 L S DL SRIXPAIR i,

yi =0, 1 i=1,2, ..., n

M SRR E

That is, there either does or does not exist a source at i. The

above set of constraints is identical to the set imposed by Efroymson

J

T R A T i A e N e S N R KT

and Ray if their P, = § and N; = C for all i and j.

- Consider the soiution of this mixed-integer programming problem
by a brénch-and—bound method. Using the approach indicated in
Chapter IV, the procédure:begins with the minimization of Z with

the Pi and Yi_cbnsidered to be continuous, i.e., in the former

notation, Z(-,-,..,=) is solved. Subsequent nodes involve the | | |

. solution of some Z(Id, I, 12):where I_ denotes the set of i's for

0

the yi's that have been fixed at zero, I1 denotes the sgt'of_i's
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for the yi's'that have hecn fixed at one and I, denotes the set of

i's for the yi's not in id or Il,_“Thén in Z(-,-,... 9); Ig =0,

I, = 0 and I

1 9 = l, 2, ..., n..

»

In the optimal solution at some hode, note th. fuor the i ¢ 12

the constraint

n ‘
Pijs ™y
j=1

will be a strict equality. Then

or

‘min 4 = Z .Hfi + Z ) Z 8'11'1"1 + Z b,. P..
| i€l i€1, j=1 jo1 o1 13D
| 'n P n n
= f: + Y Lop 4+ b.. D
126:1l ' ié:l2 | Jz=:l n Y 1§1 =

I
™

h
-

+
wE
o

Ca
e
&
~
™
”
o
+
o

&

\
)
&

‘Since for the iell; yi = l, the first term is a constant at a node

and the minimization process is concerned with the\remaining terms.

U T
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b. . 2 + b..
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and the minimum solution will-be:

p,. =1
JJ

36 N
It is then desired to find
| n n
min Z' = Z Z(-l-ll + bij)pij + Z Zbij piJ eq. 9
Recalling the constraint that
n
. Zp'ij = 1 J = 1,_2-;,’ . , N
| i=1
the minimum for Z' will result whén |
Pij =8 ;; el
unless for some jelz and iellkjlz,
b-#<:£i ine 10
i35 q. |
If, in fact
. f
.bij>;l-

since bj = 0 for all j

J

"for all 3612

In addition, for any‘jeIO,’the following must hold:

pey

. jGIOA'
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It follows from equation 9 that

1 if bij + (gi/n) ='min { biJ + (gi/n)’

_ ICIIU 12 )
pij = | |
0 otherwise » -
where
. £j if  del, \ | ; e
g. = .
* 0 if ieI1

Then, if n’is,the number of j's allocated to iely,

&

n . :
p.. = n' ~ | iel,
=1
or :
B—'— 'GI
n , ) 1 2

yi <

unless inequality 10 holds for all i€I,. What does this result mean

in terms ‘of the branch-and-bound method? Simply that for all ieI,

at a node, the solution of the linear program at that node yiélds

the same I2 unless n' = n. In most practical situations, n'<n.

It would be advantageous to reduce I, at each node so that I, ap-

~ proaches the null set; or equivalently, that all yifs have taken on

integer values.
‘.Consider the addition#of another constraint set. Let this con-

straint require that a source be at i before a consumer at i can

&

' be served from i. That is,.require that

Pyi<yy i=1,2, ...,

- 'The following will then be true im the optimal solution at a node:




%he following problem'at 8 node:

38

2: E%l = Yi . 1¢12

and

pii = yi 1612 ) . %

Substituting the latter equality into the objective function yields

min Z = Z £, + Z Zbijpij + Z fipii Z Zlep

1611 | iely j=1 1612 1612 j=1

As before, the problem reduces to:~

C ot
- min Z° = }: Zb1jp1j + , $;Pyy Z Zbijpij
iel; j= | ieI2 1612 j=1
or
min 2' = Z Zbljplj Z Z(¢§i‘]f1+b13)p:lJ - eq. 11
1611 1612 J= |

A

with the constraint that

Egile é’. | } | : J = I?'z% tnmjﬁh

still in the problem. Recall that the minimum solution to equation 9
was
. . €
Pij .613, 1el,
unless the inequality 10 held. This result does not however follow

;n~?quation_11.. For as the pii is increased to satisfy di_with
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b11 =0, Z' is increaSéd‘by fipii as opposed to the increase of

éi Py 1 in equation 9. Although it is difficult to show analytically,

this will generally reduce-I2 at the initial node and consequently

L

approach the optimal feasible solution to Z more rapidly.

The mixed-integer programming problem is then:

n n n
min Z = Z‘fiyi + Z bijpij_
i= i=l j=1

i=

3 1 y 2’ oe ey n

1,2’ 0.50, n

Note that if S is a proper subset of C; for any 8, £ C, let fi = oo,

Further, if C is a proper subset of S; for any Ci £8S, let d

§ = 0.

In the optimal feasible sdlutionvto the, problem, the ieI; will

be the locations of sources and all i £ 1, i.e., all iel,, will be
. supplied by some S, where i€l

and j will be in IO. This then determines the allocation of the C

1

. For any pij

>0,i will be in I

1

J

to the Si' It remains then to'detefmine the required capacities for

thexSi.'ICIearly, the necesséry capacity Ki at Si]will be:

v
b

|
E
|
L
r,
i
g
P
-
1
v
%..,

SNt i gaaere o
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An additional observation regarding the optimal'féasible solution to
Z will be made at this point. ‘

It is noted that the optimal solution to Z will be all integer,
i.e,, the pij's as well as the yi's will Be either zero or one in
. the optimal solution. The proof of this result follows: note that

in the optimal feasible solution, 12 = 0. The objebtive function at
. . T N, P . o '

. .
L}

the node is then

iel.

, o n '
1 ‘ -~ iely j=1

subject to:

1611 .

LetAI1 = {il; 12 }. Thép'by the cdnstraint'above

p -1 " J=1,2, ..., n

AR D P
i1j 7 Pigj

or

b = L= p. =1,2, ..., n
k.'.'] ;23 J ’ ] . ’

| Recéll that.for a point P to be the optimal feasible.solution to Z
obtained by the simplex method, it must be an extreme point of the
'cqnvex solution set. P iszan"extreme point of the convex set if and
'oniy'if there do not exist other points Pl,.Pz; Pl # Pz, in(the set
éuch‘ that P =)\ P1+(1-X)P2, 0()\<1i (:1_6) . It follows theh that_fox; P

to be the optimal solution to Z,

pilj

=0or1l | j = 1¢:232;~:i;n—

‘ a
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Clearly, thisiis the bnly solution not obtainablé_from a convex
combination of twaother points. Thé pfoblem‘as foréulated is then
acfﬁglly.an all-intégei’programming problem.with Boolean variables.
From the standpoint of a branch-and-bound algorithm, this result

is ignored because it only applies when 12 = 0. It is of interest,

[

however, that this jnteger programming problem.a}lows solution by
the branch-and-bound méthod when cohsidering it a mixed-intgger
programming probiem. The algorithm capitalizing on this-behavior
is discussed in the neXt section‘of this chapter._

The Branch-and-Bound Algorithm

Récalling_the definition of a branch-and-bound algorithm stated
in Chapter IV, the algorithm used to solve the mathematical program
of the previous section will be described by stating the rules and
the rationaie behind them for the five elements of the algorithm;
The~terminology and notation will be that'of the previous section
and Chapter IV. Some repetition will oééur on those points previously
digcussed in generalitieé for the sake of continuity. Appendix A
contains the_algorithm in flow diagram form. Consider, now the five
elements in the definition. |

Determinétion of Bounds - The bound at a node_will be obtained
by solving a liﬁéar prqgram of.the prob1em.at that'node,. Cléarly,
any solution in fhe.subSet'definea by a node canlbe'no lesé than the.

bound obtained from the linear program. The problem at the node

is defined by IO; Il, and 12. Simiiarly, the solution at the‘node

. - 1 |
can be defined by the value of -Z and some new 16, Il, and 12 obtained

. ' " t
from the val ues of the'yi's in the solution. The I'

r ’
0> I; and I, at

R R R A R e R R R B
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initial node. The second alternative proposed in (2)

alloca..icn mi.-.ed-integer program, this will generally mean that

T AL L ke um-numw-mum-nm.%.._wm_“,4-'. A
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-8 node will be used to determine the probIems;at the nodes branching

from that node.

Branching from Nodes to New Nodes - Following the approach in

(21), there will be two nodes, Z(i+1) and Z(i+2), branching from the

most favorable node Z(J). In Z(i+1) constrain the maximum yi,

yi(max)’ for ieI2 at Z(J) equal to zero and in Z(i+2) constrain

¢ -

yi(max) to one. Recall that in equation 11 all Yy = pi for 1512,

i
Since b;; = 0 for all i, a large Pijj = Y; indicates that the trans-
portation costs to supply i from some other j are high and also that

there exists some j for which bij 1s small. Consequently, let the

| .
largest,yi, 1612, be the first integer variable integerized.

tinues. The'first alternative, the one used here, branches from the
'free" node with the smallest bound found so far. The rationale
behind this alternative is that the dptimal feasible solution is

most likely contained in the subseg_defined by that node. This

approach favors nodes created early in the process where few of the

yi's have been assigned integers. It is therefore impdrtant that

J

early nodes force integers into the solution so that the bounds are

not close to the absolute minimum obtained from the solution of the

is to continue

branching from the smalléSt,of z(i+1) and z(142) For the location-

\

. | — N | ' . _
branching cqntinues from Z "3 1.e., the node with yi(max)- 0.
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‘Thie»may lead to the evaluationhof several nodes in a suhSet which
 does not eontainAthe optimal‘soiution before branching occurs to a
node bounding a'different subset. The third alternative consists. of
branching from the smallest of Z?i+1> and Z(i+2) until all nodes are
either infeasible, their bounds exceed a known solution, or I2 =0
fer the last node in the branch. The next node 1s chosen by trac1ng
mjback up the”tree’to the flrst node Z( ) in which Z(i+1) is not -in- |
feasible if Z¢1*2) yas the node branched from the first time z(1? yas
nranehed from. This approach suffers from the same disadvantage as
the second alternative.

»Recognizing When a Subset Contains Only Infeasible or anTOptimal
Solutions - The problem of infeasibility does not arise with the
location-allocation formulation, for there always exists a feasible
solution to the problem. Recognizing that onl& non-optimal solutions
are pOSsible in a given subset occurs when a subset is not further
partitioned because the bound is greater than a feasible solution
obtained.

Recognizing an Optimal Solution - An optimal solution is- obtained
When Ié = 0 and no bound exists which is less than the solution at
thelnode with i; = 0.

EiGiven this set of rules for the branch-and-bound, algorithm, it
is ef'interest to determine the computational efficiency of the

algorithm. Recognizing that certain of the rules are arrived at

"through the uSe of heuristics, the ecomputational results must be

the final evaluators. This topic is the theme of the next chapter.
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VI COMPUTATIONAL RESULTS

The study of thé computational aspécts of the branch-and-bound
algorithm was centered on the foilowing areas:
1. Comparfson of the solution times for the Efroymson and
Ray formulation vs. theﬁ%ormulation developed here and
2.' Solution t}pgs for.problegﬁ_yith_yapying‘n .
Before discussing thetrésulté obtained, the programs used for the
stud& are briefly described.

The Computer Ppggrams

- The branch-and-bound algorithm and various support subroutines

were programmed in Fortran IV and run on an IBM System 360/50 with

256,000 bYtes of main memory. A listing of the programs is contained

in Appendix B. The 1inear programming subroutine is a simplex
algorithm which begins with all slack or artificial variables in
the initial baéis. Thelyi(max) is constréined to zero or one

b§ making its coefficient in the L.P. matrixg large positive or
negative number. The functional value and_the values for theuyi
for free nodes are stored in a main memory file which allows the
storage of up to 150 nodes. Whén branching occurs from a node in
the file, a large positive value is aséigned to the functional

at that Aode to preclude bfaqching from this node in the future.

Subroutine CREATE was used to generate the problems used in
' L)

the compﬁtations. The problem generation consists of sampling

from uniform distributions for the elements in X, D and F. The

e e A e S e i ol S £ £ s St B i e e T S P e R i e TS A A SR S it T R
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tiJ}were deflned as:

1 if 1 # j

0 if i = j. . ~

' . f . ’ :
Since for large n, bij>>51-will generally hold, the uniform distri-

"butions sampled from were chosen to guarantee the above’inequality.

The mean of the distribution for F was chosen to yield approximétely

20 to 33% of the consumer locations as source locations in the optimal

solution. In addition, five subroutines were written to determine the

optimum locations by complete enumeration as suggested-in (5). |
The branch—and-bound program is presently restricted to a

maximum problem size of n = 15 due to core storage requirements.

Because of this restriction, the program is not suited for most

problems of industrial importance. Significant programming will

be required, however, to increase the limit on n. If in the solution

at a node a Y4 differed from an integer by no mbfe than 10_4, it was
set identically equal to the integer. A total of 30 problems were
generated and solved by the programs to arrive at the results
discussed in.the following sections.

Solution Time ngparison

It was originally decided to study the difference in solution
times of the Efroymson and Ray formulation and the formulation

developed here by performing an analysis of variance on the solution

times of some number of problems of a fixed size. Consequently,

f
%
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lolproblems with n = 10'were generated for solution with both for- o,

mulations. After attempting to solve the first three of the problems
using the Efroymson and Ray formulation, the contention made in
Chapter V that the algorithm will not allow efficient solution of

their formulation was strongly supported and the analysis of

variance was deemed unnecessary. As shown in Chapter V, I2 does

e e

- not reduce by more than y.

i(max) at each stage. This may lead to

e

.
SHELERT

a complete enumeration. On all three problems éttempted with their
formulation a solution had not been obtained when the'algorithm was
'sfopped after filing the 150th free'node in the file. If the al-
gorithm degenerates to a complete enumeration, the solution will

involve evaluating 2™ + 1 nodes. 1If, however, I_ is reduced early

2

in the process the total number of possible problems will be greatly *

reduced. Note that to this point solution times have only been

expressed in terms of the number of nodes evaluated, The reaSon'

for this is fhat the sglution time will be a machine‘dependent variable -
whereas the number of nodes is machine independent.' Recalling the
additional n constraints in this paper's formulation over the
Efroymson and Ray mixed-integer program, the node evaluation times . . | ]
differed. The Efroymson and Ra}wmodel fquired .213 minutes to
evaluate a node as compared tQ .449 minutes for the proposed formu- ;f
lation for a problem with n = 10. Because of this increase in

node evaluation time, the number of nodes for the Efroymson and

Ray formulation must be at least twice the number for the other

formulation to gain an advantage in computing time. In light of
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this, the:folldwing is presented.
Coneider’the»SOIution obtained at the initial node where 12 =
1, 2, ..., n. The number of possible problems or nodes resulting

from this node will be a function of the size of Iz»in'the solution.

1025; i.e., the algorithm may de-

For example, if n = 10, 2P + 1
generate to solving 1025 linear programs toobtﬁ}n the optimal

feasible solution. If in the solution at the first node, only five

of the yi's are in Ié, the number of possible probiems reduces to

- 32. Figure 4 shows a portion of the branch-and-bound tree obtained
with the algorithm using the Efroymson and Ray formulation and

Figure 5 shows the tree obtained with the .proposed formulation for

the same problem. Tables 1 and 2 present the results obtained at

the nodes for Figures 4 and 5, respectiVely.

It can be seen from Figure 4 and Table 1, that with the
branch-and-bound algorithm used here, the process appears to be
degenerating into a complete enumeration. On some problems with
n = 4, the solution with their formulation did in fact require com-
plete enumeration where with the proposed formulation the optimum
feasible solution was often obtained after evaluating only the initial
node. It should be pointed eut, however, that this is a comparison
of the formulations solved by this branch-and-bound aigorithm and not
the algorithm used by EfrOymeon—and Ray. Although thei? algorithﬁ
differs in determining which Yy to integerize at_each stage, the

“ |

size of the tree depends on reducing Iz at each étage and as was

shown earlier this does not occur by solving their linear programming

formulation at a node.ﬁ The results obtained for each of the problems
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Figure 4 A Portion of the Tree Obtained with The
Efroymson and Ray Formulation
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Node Z Yy Yo Y3 Yq Ys Ye Yo Vg Yo Y10
1 369.4 , 10 .10 10 .10 .10 .10 .10 .10 .10 .10
2 523-8 0.0 .10 20 .10 .10 .10 .10 .10 .10 .10
3 722 .4 1.0 .10 .10 .10 .10 .10 .10 .10 .10 .10
4 651.1 0.0 .20 0. .10 .10 .20 .10 .10 .10 - .10
5 840.8 0.0 .10 1.0 .10 .10 - .10 .10 .10 .10 .10
6 763.1 0.0 0.0 0.0 .10 .10 .20 .20 .20 .10 .10
7 941.8 0.0 1.0 0.0 .10 .10 .20 .10 .10 .10 .10
8 831.2 1.0 0.0 .10 .10 .10 .10 .10 .20 .10~ .10
g 1049.3 1.0 1.0 .10 .10 .10 .10 .10 .10 .10 .10
10 973.8 0.0 0.0 0.0 .10 .20 0.0 .20 .30 .10 .10 S
11 1044.8 0.0 0.0 0.0 .10 .20 1.0 .20 .20 .10 .10 LN
12 950.1 1.0 0.0 .20 .10 .10 .10 .10 0.0 .20 .10 o, -‘ o
13 1111.3 1.0 0.0 .10 .10 .10 .10 .10 1.0 .10 .10 ©
14 914.6 0.0 0.0 1.0 .10 .10 .10° .10 .10 .10 .10
15 1167.8 0.0 1.0 1.0 .10 .10 .10 .10 .10 .10 .10
16 1082.6 0.0 0.0 1.0 0.0 .10 .10 .10 .20 .10 .10
17 1238.8 0.0 0.0 1.0 1.0 .10 .10 .10 .10 .10 .10
18 . 1118.3 0.0 1.0 0.0 .10 .10 0.0 .10 - . .20 .10 .10
19 1 1223.6 0.0 1.0 0.0 .10 .10 1.0 .10 .10 .10 - .10
20 1071.8 1.0. 0.0 0.0 .10 .10 .10 .10 0.0 .20 .10
21 1267.0 1.0 0.0 1.0 .10 .10 .10 .10 0.0 .20 .10
22 1171.7 0.0 0.0 0.0 .10 .30 0.0 .30 0.0 .20 .10
23 1218.9 0.0 0.0 0.0 .10 .20 0.0 .20 1.0

.10 .10

5 | TABLE 1. The Results at the Nodes of Figure 4.
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Node

<« .
H.

Yo ¥3 Y4 Y6 Yq 3 9 Y10

24 1145.2 0.0 0.0 0.0 .10 .20 1.0 00 .20 .10 .20
25 1361.1 0.0 0.0 0.0 .10 .10 1.0 1.0 .20 .10 .10
26 1130.7 1.0 1.0 0.0 .10 .10 10 10 10 .10 .10
27 1405.7 1.0 1.0 1.0 .10 .10 10 10 .10 .10 .10
28 1181.2 1.0 0.0 0.0 .20 .10 .10 10 0.0 0.0 .10
29 1386.5 1.0 0.0 0.0 .10 .10 .10 .10 0.0 1.0 .10
30 1214.1 0.0 0.0 1.0 0.0 .10 10 10 0.0 .30 .10
31 1362.8 0.0 0.0 1.0 0.0 .10 10 .10 1.0 .10 .10
32 1192.8 1.0 0.0 0.0 .10 .10 10 .10 1.0 .10 .10
33 1467 .7 1.0 0.0 1.0 ° .10 .10 .10 .10 1.0 .10 .10
34 1197.8 0.0 1.0 0.0 .10 .10 0.0 .20 0.0 .10 .10
35 1398.6 0.0 1.0 0.0 .10 .10 0.0 .10 1.0 .10 .10
36 1298.8 1.0 1.0 0.0 0.0 .10 10 .10 20 .10 .10
37 1454.7 1.0 1.0 0.0 1.0 .10 .10 .10 10 .10 .10
38 1303.3 0.0 0.0 0.0 .10 0.0 1.0 0.0 .20 .20 .20
39 1418.4 0.0 0.0 0.0 .10 1.0 1.0 0.0 .20 .10 .20
40- 1335.8 0.0 1.0 1.0 0.0 .10 10 .10 20 .10 .10
41 1491 .7 - 0.0 1.0 1.0 1.0 .10 .10 .10 .10 .10 .10

‘TABLE 1 (continued)

1S
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Z Yy Yo Yq Y4 Vs Ve Yo yg Yo
1 1456.6 .200 .075 .200 0.00 0.00 0.00 .100 .325 0.00
2 1530.6 .176 .111 .412 0.00 0.00 0.00 ..212 0.00 0.00
3 1600.0 .200 0.00 .200 0.00 0.00 0.00 100 1.00 0.00
4 1765.9 .543 .111 0.0 0.00 0.00 0.00 .264 0.00 0.00
5 1657.6 .111 .111 1.00 0.00 0.00 0.00 .222 0.00 0.00
6 1729.2 0.00 0.00 .333 0.00 0.00 0.00 .175 1.00 0.00
7 1766.3 1.00 0.00 .111 0.00 0.00 0.00 .100 1.00 0.0
8 1752.9 .111 .222 1.00 0.00 0.00 0.00 0.00 0.00 0.00_ .
9 1888.1 111 .111 1.00 0.00 0.00 0.00 1.00 0.00 0.00 -
10 1813.5 0.00 0.00 0.00 0.00 0.00 0.00 .200 1.00 0.00
11 1870.2 0.00 0.00 1.00 0.00 0.00 0.00 .111 1.00 0.00
12 1812.1 722 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
13 1950.0 .111 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
14 1851.8 0.00 .444 0.00 0.00 0.00 0.00 .375 0.00 0.00
15 1835.7 1.00 .111 0.00 0.00 0.00 0.00 .212 0.00 0.00
16 1790.6 1.00 0.00 0.00 0.00 0.00 0.00 .100 1.00 0.00
<17 1988.2 1.00 0.00 1.00 0.00" 0.00 0.00 .111 1.00 0.00
18 1835.5 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
19° 2031.3 1.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 Q.00
20 1944.0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
21 1987.0 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
22 1877.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 =
23 2007.5 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00
24 1852.0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
25 1989.0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
26 1896.9 1.00 .111 0.00 0.00 0.00 0.00 0.00 0.00 0.00
27 2046 .7 1.00 .111 0.00 0.00 G.00 0.00 1.00 0.00 0.00
28 2082.4 0.00 0. 00 0.00 0.00 0.00 0.00 .750 0.00 0.00
29 1917.6 0.00 1.00 0.00 0.00 0.00 0.00 .325 0.00 0.00
'Soln 1852 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 -0.00

TABLE 2. Results at the Node of Figure 5
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with the formulation of this thesis ' are given in tabular form in

Table 3.

Solutibn Times with Vagz}ng n

As indicated earlier, the programs used in this thesis are
not applicable to the solution of problems with n > 15. Most
problems of industrial importance will_howeVer.require that n is
greater than 15. It would be of interest then to predict the
amound of computation that.would be necessary to solve problems
with n large. Toward this end, a second set of 20 problems with
varying n were generated and solved by the algorithm. Table 4
presents the pertinent information obtained from the solution of
the problems.

To continue the analysis in machine independent terms, an

. expression for the expected number of nodes that must be evaluated

to obtain a solution for a given n will be developed. From Table 4,
obtain the fractidn of all possible nodes evaluated to obtain a

solution. Let the fraction be defined by:

number of nodes evaluated

Fr(n) = o

2+ 1

Figure 6 is a plot of 1n Fr(n) vs. n for the 20 problems of Table 4
and the line fitted to the data by the method of least squafes.
The equation for the line is:

‘1nFr(n) = .836 - .459n -  eq. 12




of

Computing Time No. of Nodes Fraction of Ave.. Node Comp. Total No.

No. in .0l hrs. Evaluated 2%+1 Evaluated Time in .01 Hrs. Free Nodes
1 28.5 41 . 04000 .695 - 37

2 21.2 12 . 01171 .730 26

3 8.9 11 .01073 .809 9

4 - 12.4 185 . 01463_ . 820 13

S 11.6 15 . 01463 777 11

6 40.9 99 . 05756 .693 o4
.7 17.2 23 . 02244 . 748 21

8 27.8 39 . 03805 .713 34

9 19.2 25 .02439 .768, 22
10_{ 30.4 41 ;04000 .741 39 .

” TABLE 3.  fhe Results of 10 Problems with n = ld
]

S .




Computing Time No. of Nodes Fraction of Ave. Node Comp. Total No. of
No. n in .0l Hrs. Evaluated 2B41 Evaluated Time in .01 Hrs. Free Nodes
| 11 4 .2 3 .17647 .0666 1
12 4 .2 7 .41176 .0286 5
| 13 5 .4 3 .09091 .1333 1
| 14 5 .8 ' 9 .27273 . 0889 6
15 6 1.6 13 .20000 .1231 9
16 6 1.0 7 .10769 .1429 5
17 7 5.8 31 .24031 .1871 28
| 18 7 3.0 15 .11628 .2000 13
| 1 8 4.8 17 .06615 .2824 13
| 20 8 4.9 17 . 06615 .2824 13
21 9 14.3 39 .07602 .3667 36 .
o 9 14.1 35 .06823 .4029 32 3)
* 23 10 14.5 27 .02634 .5370 23
3 24 10 8.2 15 .01463 .5467 12 =
25 11 22.4 29 .01415 , .7724 27
] 28 11 18.8 25 .01220 .7520 22
; . 12 24.5 25 .00610 .9800 20
] a 12 34.0 33 . 00805 . 1.0303 27
¢ 25 14 131.8 81 .00494 1.6272 77
; 36 14 63.2 37 . 00225 1.7081 . 32
% TABLE 4. The Results of 20 Problems with Varying n
|
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or | |
. Fr(n) = o836 g~-459n

‘and

Fr(n) = 2.307 ¢~ -499n, eq. 13

From this the expected number of nodes, E(i), that must be evaluated

to obtain a solution for some n can be obtained. Obtain:

E(i) = Fr(n) (2" + 1)

- Oor |
E(i) = 2.3~O7[e-"~459n 2™ + e"°'459n]
or.
E(1) = 2.307 [o~ 259 + .693n X e~.459n]'
and finally
E(i) = 2.307 [e-234n f“e’f459n] | , ‘eq. 14

Assuming now that the random variables, inFr(n),-are inde-
‘pendently distributed with normal distributions haVing means given
by equatidn 12 and a common variance az, obtain the unbiased

a

2 and the standard error of the estimate. The

estimate of o

unbiased estimate for ¢12 is:

‘ 2
[lnFr'(r'i“Si - 1nFr(n)’ i]

e . .

k
k -2 i=

1

where lnFr(n)i = the observed value of 1nFr(n)

for the ith n,

lnFr(n); = the result obtained from equation»12 and

" k = the number of observed pairs.

%
=
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The standard error of the estimate is given by s
The fOIIOW1ng were obtalned from the data in Table 4:

2
Sg = .2413

S. = .4912

With the statistic s, the 11m1ts of prediction for lnFr(n)' can

" be obtained. As deflned in (24) the llmits of prediction for
lnFr(nO)' are:
_ 1%
| + 1 k(ng - m)2
InFr(n,)' T t S 1l +— 4+ —
0 a “e k S Kk 0
z kLni -(Zni)
_ i=1 | 1=1 J'
where
a =1 - the confidence intervai,
- “q = the Student's t statistic with k-2 degrees of freedom
2 |
n, = the value of n for whibhilnFr(n) is to be predicted.
Let
] k(n -'_)2' 73
d(n) =t 1+ 1 + P
o’ ~ _E_Se 71'{'  k 'k 2
2 I k 2on % - (3 n)
i=1 i=1 =

Then for any no, the predlctlon limits for lnFr(n )' are:
lnFr(n )" = .836 - .459n ¥ d(n 1.
Equation 13 can then be rewritten as:

- 4s + 4
Fr(n))' = 2.307 e -459n. Zd(n,),

e L e e e KA T K P A e e
A,
~
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Further it follows that the limits of 1' are given by:
4" = Fr(ny))' (2% + 1).

Figure 7 is a plot of i' vs. n for a = .05 with the results of the
20 problems plotted on the graph. As can be seen from Figure 7,

the E(i) and limits of prediction for i' grow rapidly with n.

- Consider, however, that for n = .30, 20 + 1 = 10.737 (108). The

‘y

limits of prediction for i' g}e 373 to 18 (103) cbmputed as pre-
viously indicated; If the linearify of 1nFr(n) is aésumed to hold
for n = 30,3.47 (10~7) < Fr(30) € 16.75 (10™%). It should also

be evident that as_n increases, the SOIution time at a node will
increase. In short then, the expected compUting time will increase

at a rate somewhat higher than expressed in equatioh 14 due to the

increased node evaluation time as n increases.

g .
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VII CONCLUSIONS

The analytic and experimental wofk of this thesis has brought -
to light several interesting results.. Although the results were
obtained in the context of the general location-allocation prob}em,
as it was defined here, they appear to be applicable to problems
unrelated to the thesis topie.  The significant‘conclusioﬂs will
be discussed from the'standpoint of the thesis subject and extehsioﬁs
will be indicated where appropriate.

Consider first the solution of the mixed-integer programming
formulation of the general locatien-allocation problem. The analytic
and experimental results unequivocally demonstrated the computational.
superiority of the formulation developed in this paper over the
formulation of Efroymson and Ray. However, a qualification of the
.precedieg statement is in order. This superiority existed with the
branch-and-bound algerithm of this paper and it should therefore
not be construed to apply to all branch-and-bound algorithms that
could be devised to solve the problem. As alluded to in the grow-
ing body of literature on applications of the branch-and-bound
method, the computational efficiency is a function of both the
algorithm and the bounding problem at a node. The results obtained
in this thesis strongly support this contention. |

The increased computational efficiency obtained with the form-
ulation developed here was a direct result of the additional con-

straints 1mposed on the minimization process. These constraints

violated none of the assumptions of the model and in fact were

) 7 S Ly e S AN 1 it A B e i 0
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;edundant when cohsidering the solufiqn of the mixed-integer prOgram
directly. Héwever,»fromtthe stahdpdint of solvihg the mixed-integer
pfogram by repeated&sélﬁtion ;f some linéar programming analog, the
resﬁlts wef; dramatic. The additional constraints fo;éed the linear
program solution to determine integral values for somégsubset of the
_ﬁnteger'variables,_ Th{g reéulf,appears to be significant in reducing
computatioﬁal effortlfor mixed-integer programming problems in general
if solved.by a similar branch-and-bound algorithm. The additional
cqnstraints must, of course, be consistent with the physical problem.
The results obtained from solving problems of various size in -an
attempt'fo predict the number of nodes that must beevaluateé for a
problem of a given size were received with mixed émotions. Over
. the range of problem sizes investigated,“the\expected number of nodes
that required evaluation for a given size problem followed an ex-
ponential function. Fortunately, the function does not increase at
the sam; rate as the total possible nodes for a given problem size.
It is nevertheless true, if the expression for the expected number
of nodes is assumed to hold, that for a problem with 30}consumer
locations, the expected number of nddes requiring solution will be
apprqximately 9193. That is, 9193 linear programs will have to be

solved. Even with a problem of this relatively small dimension, the

computafional effort will be immense. It can only be concluded that

. this borders on computational infeasibility.
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VIII SUGGESTIONS FOR FURTHER STUDY

2

A branch-and-bound algorithm is at best a set of rules, arrived
at through the use of heuristics that efficiently guide the search
for an optimal solution to a particular problem. The computational

efficiency of the algorithm depends upon the validity of the heuristics

-~ used  to devise the necessary decision rules of the procedure. An

investigation into this sat of rules may prove the algorithm used in
this thesis to be relatively inefficient. For example, the number
of nodes may be reduced by-a different decision rule used to determine
the next node to branch from or computations may be reduced by an
alternate procedure to determine the Y4 to next integerize for new
bounding problems. The’investigation of these aspects of the branch-
and-bound method appears to be seldom done for a particular algorithm.
As demonstrated in the thesis, the optimal feasible solugiga to
the mixed-integer programming formulation is'in fact an alléinteéer
solution with Boolean variabies. Balas (3) reportsithe development of
an efficient algorithm for problems of this type. It would be of
value to determine if improved computing time can be obtained with the
| algorithm of Balas.
During the computational work of this thesis, it was observed
'that in almost all problems solved, the branch-and-bound algqrithm
produced severallfeasible solutions to the mixed-integgr program
before the algorithm stopped. Frequently, the optimal feasible so-

lution was found but due to free nodes with lower bounds the al-

gorithm continued until all free bounds were greater than the

a
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feasiﬁle solution obtained earlier. The extra computations\arew_

- clearly necessary to guarantee a global minimum. It would bé of

interest, however, to study the deviations from the optimal solution
obtained with these intermediate feasible solutions.
As pointed out by Cooper (8)(9), location-allocation problems

generally exhibit a flat minimum, Intuitively then, an intermediate

: feasible solution should be close to the optimal solution or in fact

the optimal solution itself. What then is the risk associated with

- stopping the algorithm after one, two or three feasible solutions have

been found and selecting the minimum of these? An investigation of -

this aspect of the algorithm may prove to be of great value in

- reducing computational effort,
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LOCATION=ALLOCATION PROBLEM PROGRAM USING THE BRANCH=BOUND
ALGORITHM AND A SIMPLEX LINEAR PROGRAM TO OBTAIN THE BOUNDS AND
THE OPTIMAL INTEGER SOLUTIONe UP TO 15 INTEGER VYVARIABLES AND 60
CONSTRAINTS ARE MAXIMAL FOR THIS PROGRAM SIZEo THE TOTAL NUMBER

OF VARIABLES ( INTEGERo CONTINUOUSo AND SLACK ) MUST BE LESS THAN

319« THE PROGRAM WILL ACCEPT A PROBLEM INPUT ON CARDS OR CREATE
CAN BE CALLED TO GENERATE A PROBLEM FOR EXPERIMENTAL PURPOSES

COMMON A(620320)0L(62)

COMMON E(15015) LOGIC(15415)sF(15)s MLOC(304510)
DlMENSKONSNODE@lé)9KO(15)9K1(15)08(620320)0L1(62)
DIMENS ION WNODE(Ib)oZNODEKlé)oC(150916)

" DEFINITION OF VARIABLES

KOUNT=ITERATION OF THE BRANCH. AND BOUND ALGORITHM JUST COMPLETED

SNODE=ARRAY OF INTEGER VARIABLES WITH VARIABLE IN QUESTION SET
EQUAL TO ONE | | ‘ B

WNODE=ARRAY OF INTEGER VARIABLES WITH VARIABLE IN QUESTION SET
EQUAL TO ZERO ,

ITER=A BOOLEAN VARIABLE EQUAL TO ZERO IF Y(I)=0 AND EQUAL TO ONE
IF Y(I)o}. -

IONE=COLUMN NUMBER OF FIRST INTEGER VARIABLE

ILAST=COLUMN NUMBER OF LAST INTEGER VARIABLE

NUM=NUMBER OF INTEGER VARIABLES < ONE

FUNCTSADJUSTED FUNCT IONAL VALUE FROM LP SOLUTION

TFUNC=TEMPORARY FUNCTIONAL VALUES ADDED TO DRIVE INTEGER VARIABLES

TO EITHER ZERO OR ONE |
SMALL=THE FUNCTIONAL VALUE OF THE BEST NODE ‘FOUND
NODE1=THE NUMBER OF THE BEST NODE IN FILE

- NODE2=THE COUNT OF THE STORED NODES

ENODE=THE STORING NODE

KO=ARRAY OF VARIABLES CONSTRAINED TO EQUAL ZERO

K1=ARRAY OF VARIABLES CONSTRAINED TO EQUAL ONE

IVAR= THE INTEGER VARIABLE BEING TESTED AT THIS PASS
IGEN=CONTROL VARIABLE FOR PROBLEM INPUTe IF IGEN NE Os IGEN WILL

89
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BE THE INITIAL VALUE FOR THE RANDOM NUMBER GENERATOR USED IN
SUBROUTINE CREATE TO GENERATE PROBLEMS
C=THE ARRAY OF NODES STORED DURING THE BRANCH AND BOUND ALGOR]THM

1 FORMAT (214)
2 FORMAT(214+F2045)
3011 FORMAT(°1°2T505'PROBLEM NUMBER 's15//)

2040 FQRMAFG°Q°o?llogKOUNT’quss'lTER‘9T26o‘IVAR'.TBS»'FUNCTIONAL'07680

L°VALUE OF JINTEGER YARIABLES?)

2030 FORMAT@°@°QKLZQK@Q379519989F14o8,4F1508/' Y945X95F15e8/7°% 445X,
15F15.8)

2080 FORMAT (000 ¢T3, 0 iz FILING NUMBER's149T250'IN FILE' sEL6eBsFlboB s

14F 1568/ 9045X05F15,8/° 045X 05F1568)
8010 FORMAT (°© FELE OVERFLOW ') - |
2510 FORMAT (900 oT3, it srrss BRANCHING TO NODE'»I49T319°IN FILE, SMALLEST
1BOUND IN FILE IS NODE?oI4sT755 'WHICH HAS VALUE OF "9E16¢89 " #u#su#xt)
3020 FORMATI(°0°0T300°0PT IMAL SOLUTION ===eaae FUNCTIONAL EQUALS'9E20.8)
3030 FORMAT(? °93200E30,8) | | ~
3040 FORM&T@°O°9TSOOOLO€&F10NS'9T70¢'VALUE')
3050 FORMATI(® °91530F2308)

- 3060 FORMAT (" 0955307700 @ #auunt)

3100 FORMAT (90997400 'NOTE ¥#xux DENOTES THAT THIS LOCATION WAS NOT IN
1 OPTIMAL BASIS®) |
3070 FORMATI(°0°0T5209ALLOCATIONS')

3080 FORMAT ('0°0T405*FROM! 9T55+'TO'sT70s '"VALUE' )

C

C
C

3090 FORMAT(® 903419114 9F2448)
3110 FORMAT(15) |

HENnXDATA INITIALIZATION SECT ION## %%

READ(153110) IGEN
IX=1GEN

9996 READ(101)NUMBER
IF (NUMBERGEQo0)GOT09998
D0231=1,100
D023J=1,16

69




23_C110J)'00
SMALL=]10¢%%#35
NODE1l=0
NODE2=0
KOUNT=0
ITER=0
KUTOFF=0 . | : .
PHONY=9000060 . - | "
TFUNC=0, : ' -
IVAR=0Q
FUNCT=0.
NODE3=0
DO21lI=1+s15 " :
KO{Il}=0 | T | n - '
21 K1l{(i)=0 | | ’ |
D0L22I=1962
L1(I)=0
L(I)=0
D022 J=19320
B(loJd)=0o
22 Al(lIsJd)=00

C
- Coenn® INPUT OF PROBLEM #*aai#%
; C
IF(IGENsNEeO) GO TO 20
READ(201)IONEs ILAST
READ(3101)1%oJdJ
1l READ(Ao2)IodeX
IF(I)16516618
18 Allod)aX
GOTO11
16 J=JJ
17 READ(1902)1sJKoeX
IF(1120+20919 | - )
19 AllsJdJd)sX | -
L(I)=JK - : ‘) - '
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C

C

C { |
Cuu#s OBJECTIVE FUNCTION CORRECTION ###u#

C

C
C

. 20

24

31

1125

702

701

713
714

GOTO17 |
IF(IGENCEQeO) GO TO 24
READ(151) NSIZE

CALL CREATE (NUMBERJNSIZEsIXoIIsJJsIONEsILAST)
NUM=JLAST=IONE+2
I1I=83+1

DO 31 I=lelll

LA¢EdoL (k)

D031J51 o JJ ,
BAoJd)=AlTsd)
WRITE(353011)NUMBER
WRITE(302040)

CALL XLP (I1sJJdslIl)
KOUNT=KOUNT +1

Ce#nes ROUNDING OF INTEGER VARIABLES TO ZERO OR ONE #as

DO701NN=2511

IF(@L@%NBQLT@IONE)oORo(L(NN)-GT-ILAST))GOTO701

IF(AINNOJII) cGTee0001) GO TO 702
A(NNoJJ)s0o

GOTO701

IF(A(NNOJSJI) e LT 069999) GO TQ 701
A(NNoJJI)=le0

CONTINUE

FUNCT=A(TII19sJJ)=TFUNC
IF(ITER) 999807136731

Cexuux CREATION OF FIRST NODE #w#s®

DOT714NN=1916

WNODE(NN) =040
DO721NN=2s11
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IFCCLINN) oLTo IONE) ¢ORs (L (NN)eGT o ILAST) )GOTO721 |
. WNODE(L (NN)=IONE+2)=A(NNsJJ) | | |
721 CONTINUE | e
WNODE (1) oFUNCT ~ -
CALL CHECK (WNODE sK1sKO+&55004 565002 )
5004 WNODE(1)o100445
5002 WRITE(302030)KOUNT s ITER» IVAR sWNODE
IF (KOUNToEQe1)GOTO100

ITER=1 |
G0T01001
C - | |
Connnx CREATION OF SECOND NODE ###%%
C

731 DO741i-1,26
ZNODE( ) =0,

741 SNODE(I)=060
DO742f=201} | - S
IFQQ&@EDgL?oIONE).ORo(L(I)oGToILAST))GOTO742
SNODE(L(Z)=IONE+2)=A(IsJJ) -

742 CONTINUE

- SNODE(2)=FUNCT

CALL CREECK (SNODE 9K1sK0965003+565001)

5003 SNODE(1)=10,%#45

5001 WRITE(392030)KOUNT s ITERsIVAR s SNODE
ITER=0
NODE2=NODE2+1 |
IF{NODE2:LEe150)GOT08002
WRITE(308010)
PAUSE'RECORD CPU TIMER READING'
GOT09996

4

c

CHuuw® NODE STORING SECTION ##%un

C
8002 [F(SNODE(1)=WNODE(1))75157619771
751 IF(WNODE(1)=SMALL)T79197915753
753 IF (SNODE(1)=SMALL) 792,792,773
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761
771
772
773
- 774

7177
775

8001

N 776

4001

IF (WNODE (1)=SMALL) 7915791773
IF (WNODE (1)=SMALL)772+7824773
IF {SNODE(1)=SMALL) 781,781,782
DO77&1=1 oNUM
ZMODE ( 1) sWNODE (I )
WRITE(302080) NODE2 » ZNODE
DO7771I=1 o NUM
C(NODE20o 1) =ZNODE( I )

DO7755=1 oNUM

ZNODE( §)=SNODE(I)
NODE2sNODE2¢1

IF (NODE2,LE-150)GOTO8001
WRITE(308010)

PAUSE *RECORD CPU TIMER READING
GOT09996

DO776151 oNUM
C(NODE201)=ZNODE(I)
WRITE(352080) NODE2 » ZNODE
DO%00L [=1oNUM

WNODE ( § ) =C (NODEL o1 )

- NODE3=NODE

4003

781

782
783 .

SMALLS100%#0235
CINODElo1l)=10e%%40

NODE1l=0

D04003I=1 o NODE2
IFIC(Iol)oGTeSMALL)GOTO4003
SMALL=C(Jo1)

NODElaz |

CORNT INUE
NRKTE@3@2510)NODE3ONODE1OSMALL
GOTOl001 |
SMALL=SNODE (1)

NODE1=NODE2

DO783I=1 o NUM
ZNODE(1)=SNODE(1)

GOTO799

gL




"~ 791 SMALL=WNODE(1)
" NODE1l=NODE2
792 DO75&121 oNUM
ﬁ ZNODE( ) sWNODE(I) | ; | |
754 WNODE(I)=SNODE(I) : : o
799 WRITE(392080)NODE2»ZNODE
"DO7981=1 ¢ NUM
798 CINODE2s1)=ZNODE(I)

C . | |
Cennx SECTION TO DETERMINE NEXT VARIABLE TO TEST %%
e
1001 IF(ITER.EQ41)GOTO1100
| IVAR=0
S o J=0
4 » " - DO10211I=1415
Kl{i)=0
1021 KO(1)=0
| FLAG=0,
DO10021I=2 9y NUM
' IF{WNODE(I))1003+100351004
1003 JsJ+1d '
KOlJliel=}
| GOTO1002
, . 1004 IF(WNODE(I)=1¢0)1006+100551005
| 1005 N=N+1 |
KL{N)ol=]
| GOTO1002
1006 IF(WNODE(1)eLEeFLAG)GOTO1002

K7

FLAGSWNODE (1)
IVAR=]=1}
1002 CONTINUE |
 IF(J*NoEQsNUM=1) KUTOFF=1
IF(KUTOFFeEQe1)GOTO1014
KO(J+1)=IVAR
GOTO1014




'1100. DO 1104 1= 1915

IF(KOCI)oNEoIVAR)GO TO 1104
" KO(I)=0Q

"GO TO 1105
1104 CONT INUE |
1105 DO 1103 I=1,15
IFIKL(I)eNEe«O)GOTO1103
Kl{I)=]IVAR
GOTO101 4
- 1103 CONTINUE
C
CH##xx SECTION TO LOAD Le Poe AND MODIFY OBJECTIVE FUNCTION 3 3 34 94 2%
. C
B 1014 1=0
’ DO1011M=1,s]11
LiM)=0
DO1011J=ledd
1011 A(MoJ)I=B(Med)
1007 Isi<+dl | |
IF(KO(I)cEQe0O)GOTOL008
A(LoKO(I)+IONE=1)=PHONY
| GOT01007
1008 =0 . | ﬂ
- TFUNC=0., - ﬁ f ._ -
1009 I=f<1l | | o s
IFIK1(I)eEQe0)GOTOL1012 | 3 e :
Al2oKA(I)+IONE=1)==PHONY
TFUNC=TFUNC=PHONY=B(19K1(1)+IONE=1)
- GOTC1009
1012 DO%0i1Eslolll
4011 LEZ)olL2( )
- CALL XLP (3IedJdslll) | C
IF(KUTOFFsEQe0)GOTO1125 | ¥

C

Cauuu® REPORT GENERATOR %%
C

) B " *‘;
.o b




FUNCT=A(IIIsdJ)=TFUNC

- WHITE(3+3011)NUMBER

1301

1304
1306

1303

1211

3101

1322

WR’TE(B@BO&D}FUNCT
DCL301I=2,1 ¢
WRITE(303030)L(TI)sA(IsJd)
WRITE(303011)NUMBER
WRITE(353020)FUNCT

WRITE(393040)

NN=0
DO 2211 T=IGUNEsILAST
K=0

NN=NN+]

DO 1303 J=2s1i1
IF(L{J)oNEcI!GO TO 1303

IF(A(IoJI) 65T ee0001) GO TO 1304

Aldodd)=0o _
GO TO 1306

EF@A@JQJJ)eLT..9999) GO TO 1306

Aldodd)=le0
WRKTEK393050)NN9A(JOJJ)
GO TO 1311

CONTINUE

K=l

wRZTE€39306O)NN
CONTINUE ‘
IF{KcEQoO) GO TO 3101
WRITE(303100})
WRITE(303070}
WRITE(3,3080)

DO 13234 I=2¢11
IFLIT)0oGECIONE)GO TO 1321
[F{A(T0JJI) 0GTea0001) GO TO 1322

Allodd)=06
GO TO 1331

IF(ALLo0dJ) el Te09999) GO TO 1331

A(loJdJi=160

9L




gt
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-3

m’ -4 5 -

1331

1333

1332
1321

9998

IF(ACTI 23JJ) eEQeDe) GO TO 1321

NUMBR=L (1)
NUMBR1=1

IF(L(I)oLEeNUM=1) GO TO 1332

DO 1333 J=1sl164

NUMB

RENUMBR=NUM+ 1

NUMBR1=NUMBR1+1

IF(NUMBR@LEQNUM-I)GO TO 1332

CONTINUE

WRITE(3+,3090)NUMBRL s NUMBR »A

CONTINUE

CALL ENUM
GOT09996
STOP

END

IF(IGEN.EQeO) GO TO 9996

(NUMBERSNSIZE)

(19JJ)
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. SUBROUTINEXLP(IIsJJseII])

701
140

- 99

100
102

4t

42

41
43
47

46
120

122

- LINEAR PROGRAM SUBROUTINE USING THE SIMPLEX ALGORI THM

COMMON A(620320)oL(62) : ‘ n Y
COMMON E(15015) 4 LOGIC(15915)0FCOST(15)9MLOC(30010) - ‘
DIMENSIONW(62) |

DO7011=2062

W@E?agog « |

FORMAT&1H0.9HUNBOUNDED)

KKK=0

DO 102 I=1,yy

D099Je2 4,11

KP=L(J)

ACIEIoE )=A(ILIsI)+A(Y s IRA(19KP)

IF(I=4J)100+102+100

A«zznggsaAcxxx.x»-Ac1.1>

CONTINUE

Kaljil
J=Q
W(K)=060
L(K)=0
J=Jd+l
IF&J@JJ)41046¢46 | B

IF(AIKJ) V42042443 . <

xFauaK»mAcKoJ))47.42.42 | . . %
WIK)IsA(Ked) | | | . | : e
LiK)sy '. L |
GO TO 42

KJdzL{K)

DO 120 I=24]1 3

IFCATEoKJ))I12091209121

CONT I NUE

WRITE(34140)

GOTO080 |

I=]

8L
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50

52
51

55
53

56

)

57

58
580
59

60
600

61
205

65

JK=0

[=]+1 |
IF(I=11)52+52956
IFLA{IoKJ))I50950951
XesA(loJdJ) /AL sKJ)
IF(JK)I55053955
IFIX=XMIN)53950050
XMINsX

JK= ] -

GO TO 50

Xz2A(JKoKJ)

L{JKI=KJ ~

DO 57 I=1s111
WEI)sACT oKJ)
lJaJK=1

DO 59 JamlolJ

DO 59 Jz=lodd
IFK&«JK9J3358'59’58
IF(W(TI))5800599580
AlloJdispAllod)mW(I)IR(A(IKIJ)I/X)
CONTINUE

[J=JK+1

DO 61 I=1Jselll

DO 61 Js=lieJdJ
IF(A(JK o) V60961960
IF(WII))600061+600
Allod)sA(lod)=W(I)R(A(JIKIJ)/X)
GONT INUE

DO 205 Jsododd
A{JRod)I=A(IKIJI) /X
KKEsRKK+]

lJdedd=}

DO 65 J=lelJ
lF@A@KgJ)-oOOOI)65966o66
CONTINUE

GOTO080

6L
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66 GO TO 44
80 RETURN

-

END
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3 R . - SUBROUTINE CHECK (ANODEsK2esK3s% %)

SUBROUTINE TO CHECK WHETHER OR NOT A VARIABLE DETERMINED TO BE
EQUAL TO EITHER ZERO OR ONE HAS TAKEN ON THAT VALVE

nAnn

DIMENS ION ANODE(16) sK2(15)9K3(15)
J=(

- I=0

1 I=sl«+l
IFIK2(I)eEQs0)GOTO3 . |

S

IF (ANODE(K2(I)+1)eNEele0)GOTO2
GOTO1 .
2 WRITE(3511)
11 FORMAT (' SUBRe CHECK FOUND AN ERROR IN A ONE VARIABLE ')
Jo) |
3 I=0
4 I=s]+]
IF(K3(1)sEQe0)GOTO6
IF (ANODE (K3 (I)+1) eNEeOs)GOTO5
. GOTO% |
5 WRETE(3012) - |
12 FORMAT(° SUBRe CHECK FOUND AN ERROR IN A ZERO VARIABLE')
'RETURN1 |
6 IF{JoEQe0}GO TO 7
RETURN 1
7 RETURN2
END

18

S
20
.3
pr. )
ol
= E:4
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o o | SUBROUTINE CREATE ( NPRQBINSIZE»sIXsIIsJJsIONEsILAST)

. PROGRAM TO GENERATE PROBLEMS IN WHICH ALL POINTS ARE REACHABLE

FROM ALL OTHER POINTS. THIS PROGRAM IS A MODIFICATION OF THE
PROGRAM USED TO GENERATE PROBLEMS FOR THE CONSTRAINED CASEe
THE DISTANCES "ARE SAMPLED FROM A UNIFORM DISTRIBUTION ALLOWING
THE INTEGERS 11 THROUGH 300 THE DEMANDS ARE FROM A UNI FORM
DISTRIBUTION ALLOWING THE INTEGERS 6 THROUGH 150 THE FIXED
COSTS ARE SAMPLED FROM A UNIFORM DISTRIBUTION ALLOWING THE
INTEGERS BETWEEN 300 AND 400, | |

NNNNONOONA

- COMMON A(620320)s L(62)
'COMMON C(15515)s LOGIC(15915) sF(15) MLOC(30910)
DIMENSION D(15) |
30 FORMAT (%1°040X0o'THE DISTANCE MATRIX FOR PROBLEM NUMBER's15///7)
50 FORMAT(°0°510X015F7e2) | |
60 FORMAT(?1°040Xo9THE DEMAND VECTOR FOR PROBLEM NUMBER's15//777)
70 FORMAT(////40%0°THE FIXED COST VECTOR FOR THE PROBLEM'/s///)
80 FORMAT(°2°040X0'THE COST MATRIX FOR PROBLEM NUMBER® 915////)
90 FORMAT(°1°037X0'THE REACHABILITY MATRI X FOR PROBLEM NUMBER's15////
1) | |
100 FORMAT(°0°510X91517 - ,
FIX2l000o : |
DO 69 =115 y | o
D(I)=0
F(I)=0,
- DO 69 J=lyl5
| ClIoJdIm0e
69 LOGIG(IoJ)=Q
. DO 501 I=1,15
| F(I)=20o,
D(I)=0o
DO 501 JU=l,yl5
 CUllosd)=0s
' 501 LOGIC(IsJ)=0
NSTOP=NSIZE=1

(4




T S TSI 2 7 e i

C L . \ |
CHRENEXNRRNERAERE GENERATING THE DISTANCE MATRIX 4363363556 3638 35 35 38 38 96 0638 3 3¢

N « | | | |
CHRERMAENERNAANNEE GENERATING THE FIXED COST VECTOR 348548 06383 3 3 36 36 6 3 3 5 3 ¢

C

201

202

- 203
C

211

204

C

205

e e o L Ty B T T i e B WA i H s s e S ot TS n e e e e o T,
SRS TTIE R A TR S AR IS e £ v o e L K

)

DO 202 I=1sNSTOP
I1=1+1 )

DO 202 J=l11yNSIZE
CALL RANDU(IXsURAND)
RAND=20 o #URAND
RAND=110+RAND

IRAND=RAND |
IF{ IRAND=31)202+2019201

C(1oJ)=IRAND

DO 203 I=10oNSIZE -
1I=]+1 | . | |
DO 203 J=iioNSIZE

Cldold=ClIod)

'c***fafﬁﬂffﬁnanfﬁﬁ GENERATING THE DEMAND vecToR.***QQ**Q**§¥*§¢§¢
C ‘ - ' : . .

DO 204 I=14NSIZE

CALL RANDU(IXsURAND)

URAND= 10 o *URAND |

URAND=6 o +FLOAT ( IFIX (URAND) )
IF(URAND=16)2040211+211

D(I)=URAND

WRITE(3,30)NPROB
WRITE(3050)((C(IsJ)sJdmlsl5)sl=lsl5)
WRITE(3060)NPROB

WRITE(3550)D

DO 205 I=19NS]ZE

CALL RANDU(IXsURAND)
URAND=100 ¢ #URAND ﬂ
F(I)=3004+FLOAT(IFIX(URAND))

LS T O A SO TR g
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T
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" WRITE(3,70)
- WRITE(3950)F
DMAX=32,
C

363636 3695 98 38 9496 36 36 3¢ 96 96 4 2

C

GENERATING THE REACHABILITY MATRIX L L T T

DO 209 I=1oNSIZE
DO 209 J=1,NSIZE

IF(C(IoJ)=DMAX)208+208,209 | - -

208 LOGIC(IsJ)=1
209 CONTINUE
C

P 96 3 96 96 3 3 3 5 96 36 36 96 298 9 %

- C

GENERATING THE COST MATRIX b

DO 210 J=14NSIZE
| DO 210 I=1¢NSIZE
210 ClLloU)=ClIoduD(Y)
WRITE(3,80)NPROB

WRITE(3050) ((C(IsJ)sJm1915)9Imlel5)
WRITE(3:90)NPROB

WRITEGB@&O@ﬁ@@LOGIC(IoJ)9J=1015),I=1915)
IONEEN§EZE%N§E£E¢1 _ |
ILAST= JONE+NS I ZE=1

[1=4%NSTZE+]

JI=NSIZE*NSIZE+6%NSIZE+1

- IROW=1]
| ICOL=0
C |
C 9696 36966 98 38 36 98 90 96 96 96 46 96 3¢ 96

C

GENERATING THE OBJECTIVE FUNCTION #4388 1351000420054 2

DO 2 I=1sNSIZE
DO 2 JU=1sNSIZE

ICOL=ICOL+]

2 A(IROWICOL)=C(lsd)
DO 3 I=1¢NSIZE |

ICOL=ICOL+1]

8




C L3 AUIROWSICLLI=F(I)
S . NNN=2*N5 7E |
o - DO 4 [=1sNNN ,
- - » _ ICcoL=ICoL+] R _ : g
4 A(IROWsICOL)=FIX o o | | “ N
C : |
C 3696 3696 3036 96 36 36 36 96 38 36 36 36 24 3¢ GENERATING THE SUM OF X(I) EQUAL TO ONE CONSTRAINTS
C |
XX%1e0
AXX3°100
V DO 5 J=1sNSIZE
| IROW=IROW+1
DO 7 I=19NSIZE
Kz]=1 |
IF(LOGIC (I oJ)=1)T79646
" 6 ICOL=K#NSIZE+J
A({IROW,ICOL )=XX
7 CONTINUE
ICOL=NSIZE®NSIZE+J+NSIZE
A(IROWoICOL)=AXX
ICOL=ICOL+NSIZE
A(IROWsICOL)=XX
5 CONTINUE

98 |

C .
CRIFUNMXXRUNRRRXAM® GENERATING THE SUM OF X(I) = N*Y(]) LT O CONSIRAINTS
C
DO 8 I=1sNSIZE
) IROW=IROW+1
AA'OQ |
K=]=1
DO 9 JU=19sNSIZE
[FILOGIC(I9J)=1)9911y11
"11 AA=AA=] | )
9 CONTINUE
DO 12 J=1sNSIZE
IF(LOGIC(is . )=1)12913913




Y s s £ st v,

c %

13 ICOL=K®*NSIZE+J
A(IROWs ICOL)=aXX
12 CONTINUE | |
ICOLSNSIZESNSIZE+I - - . o | N
A(IROW,ICOL)=AA o ’ =
ICOL=ICOL+3#NSIZE
A({IROWsICOL)=XX
| 8 CONTINUE
C
CHUERRERRANNEXNRER® GENERATING THE Y(I) LT 1 CONSTRAINTS 3340464610 9 36 36 2 3¢ 4636 ¢
DO 15 I=IONEsILAST
IROW=I RO+ | | | | |
ICOLoI+4BNSIZE H | | 3
A(IROWo I V= XX

15 A{IROWoICOL )=XX
C
C 996 36 36 36 96 96 36 98 36 3 96 36 9 9% 9 3¢

GENERATING
C : - |

THE X(I) LT Y(I) CONSTRAINTS 33 36 96 3 3 36 34 9 % 9 %
J=O
DO 14 I=1eNSIZE |
IROW=IROW+1 | - o
Jad+] *
Illsl=1 :
[ICOL=I JI®NSIZE+J
ALTROWoICOL ) =xX
- ICOL=IONE+11
A(IROWoICOL)=AXX
ICOL=ICOL+B4NSIZE
14 A(IROWoICOL)Y=XX

=

C |
C 63 296 3 9 9% % % 25214340 S22 0 8% GENERATING

C

THE RIGHT HAND SIDE #3993 3 33 3 % % 3 % 3 3 3% %

JeILAST+NSIZE
DO 27 1=2,11
J=J+1l B

N
S

98




19

23
18

21
17

27

IF(I=NSIZE=1)18+18+19
IF(I=2%NSIZE=1)21+21+23

IF(I=3#NSIZE=1)18+18+21

XX=1le0
GO TO 17

XX=000

L{I)=J

AlloJdJ)=XX

CONTINUE

RETURN ~ :
END | »

L8




nann

110

120
130

140

150
160

170

10
11
12
13
14
21
22

100

999

SUBROUTINE ENUM (MsNN)

- SUBROUTINE TO MANAGE THE INPUT=OQUTPUT AND CALLING OF THE
ENUMERATION SUBROUTINE LOClse LOC2s LOC3s AND LOC4 -

COMMON A (6203201 9L (62) v

COMMON C(15015)9 LOGIC(15915) sFCOST(15) LOC(30910?
FORMAT (214 ) ; ‘
FORMAT (11F702)

FORMAT(°2°920X9'OPTIMUM LOCATIONS TO MINIMIZE TRANSPORT COSTS FOR

LPROBLEM NUMBER'o 1&) h

FORMAT (1HO 022X 0 L THOP T I MUM LOCATIONS:BXQIOHFIXED:COST94X014HTRANSPO’

IRT COSTo&XolOHTOTAL COST)

FORMAT(1H 015X91013sF1l0e29F17e29F1562)
FORMAT ( 2H0)

FORMAT ({21515

D02i=)1630

DO2Js1510

LOC(IosJ)=0

WRITE(32130)M

WRITE(3,140)

Ke} .

GOTO(119129139149999) 9K |

CAEL LOC1l (NNsTOCOSToTRCSTSFXCST9621)
CALL LOC2 (MNNoTOCOSTsTRCSTsFXCSTs621)
CALL LOC3 (NNoTOCOSToTRCSToFXCST9621)
CALL LOC& (NMoTOCOSToTRCST sFXCST 0621 )
Is}

IF(LOC(I01)eEQe0)GOTOL100
WRITE(30150)(LOC(IIsJ)9U=1410)9sFXCSTITRCST»TOCOST
I=]<]) | ~
GOT022

WRITE(3+160)

KaKel

GOTO10

RETURN

88
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SUBROUTINE LOC1 (NsSMALL »TRANSsFXCOST »%)

DISTRIBUTION CENTER BASED ON MINIMUM TRANSPORTATION AND FIXED
COSTS BY COMPLETE ENUMERAT ION ~ |

COMMON E(62:5320) oL (62)
COMMON A(15015]) LOGIC(15+15)sFCOST(15)sMLOC(30,510)
INTEGERZ

SMALL29999999¢, | - I .
D04 =] 5N - | \ - .
TRCOST=0, ‘ S

DO2J=1 N |

TRCOST=TRCOST+A(I+J)

TOCOST=TRCOST+FCOST(I)

IF(TOCOST=SMALL)S5 234

SMALL=TOCOST

DO 6 Z=1,30 | o | -
MLOC(Z51)=0 | - ®

LL=) - ﬂ

TRANS=TRCOST

FXCOST=FCOST(])

GOTO7

AlsLi+l

‘MLOC(LLsl)m]

CONTINUE

RETURN1 o x

END

68
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SUBROUTINE LOC2 (NsSMALL»TRANSsFXCOST ¢%)

SUBROUTINE TO DETERMINE THE BEST COMBINATION OF 2 POINTS TO
LOCATE DISTRIBUTION CENTERS BASED ON MINIMUM TRANSPORTATION
COSTS AND FIXED COSTS USING COMPLETE ENUMERATION

aNaNaNaXa!

COMMON E(620320)oLN(62) |
COMMON. A(15515) 4 LOGIC(ISQIS)vFCOST(l5)0MLOC(30olO)'
INTEGERZ -
SMALL29999999¢9,
DOli=1oN ' |
DOlJ=1 oN -
TRCO&ET=0, - |

. T DO2K=1 N |

R | f - IFLACT oK )=A(JsK) )3 9394 .

S - ADDsA(JeK) N

GOTO5 ' e
ADD=A(JeK) | o

TRCOST=TRCOST+ADD |

S ’ CONT INUE |

S . | TOQO&TETRQ@@T#FCOST(I)+FCOST(J)

| | - . : IF@TQ€O$T°5MALL)796’1 : =
7 SMALL=TOCOST ' | i ' |
TRANS=TRCOST -

o

DU W
06

L L FXCO&FEFC@&T(I)+FCOST(J)
¢ | LL=] |
’ - | DO 11 2214630
MLOC(Zol) =0
11 MLOC(Z,2)=0
GOTOS8
6 IDENT=O o
DO 12 Z=1l,LL

IFGKKbEQoMLOC(Zgl)oOR-loEQ-MLOC(szl)oANDo(JoEQoMLOC(Zpl)oORoJoEQ.
IMLOC(Z62))) IDENTel | - |
12 CONTINUE

IF(IDENTWEQe1)GO TO 1




LL=LL+1
8 MLOC(LLs1l)=]
MLOC(LLs2)=y
1 CONTINUE -
RETURN]1
> END
, O !
" = |
o
|
j
!:
|
[
|
1
. 1
|
|




SUBROUTINE LOC3 (NsSMALLTRANSSFXCOST o)

SUBROUTINE TO DETERMINE THE BEST COMBINATION OF 3 POINTS TO
LOCATE DISTRIBUTION CENTERS BASED ON MINIMUM TRANSPORTATION
COSTS AND FIXED COSTS USING COMPLETE ENUMERAT ION

(

N aNaNaXaXa

COMMON E(624320) sLN(62)
- COMMON A(15415), LOGIC(ISQIS)9FC0$T(15)0MLOC(30910)
INTEGERZ oY |
' SMALL=99999999,
DOli=1¢N
- DO1dJ=1oN
DOlK=1 N S )
TRCO&T&O. ) : | ' *
DO2L=15N | }
IF‘A(KQL)OLEOA‘JOL)QANDOA‘lOL)OLEOA‘K’L,)ADD'A(IOL,
IF(A@J@LDoLEoA(loL)oANDoA(J’L)oLEoA(KoL))ADD=A(J0L)
IF(A@KQL&@BE@A(XQL»@AND@QKK@LQ@EE@A(J@&BQADDzA(KOL) | | | |
2 TRCOST=TRCOST+ADD | | | £
TOCOST@TRQO&T¢FQOST(l)tFCOST(J)+FCOST(K) | ‘
IF{TOCOST=SMALL)7+641
7 SMALL=TOCOST
TRANS=TRCOST .
FXCQST%FCOST(I)+FCOST(J)+FCO$T(K)’
LL=1
; DO 11 Z2=1,30
¥ | DOL1lY=1e3
. 11 MLOC(ZoY)=0 - | | .- .
GOTO08 ' | | | | ¢
6 IDENT=0 | | | o
DO 12 Zs=loLL ~
IF@K@NgaMLOC(Zol)oANDoIoNEoMLOC(ZOZ)oANDoIoNEoMLOC‘Z)3))GO T0 12

IF@J@NE@MLQQ(ZQI).AND.J.NE-MLOC(ZoZ).AND.J.NE.MLOC(ZbB))GO T0 12
IF&K@NE@MLOC(Zol).AND.K.NE-MLOC(Z:Z).AND.K.NE.MLQC(Z’3))GO TO 12
S - : c IDENT=1 «

s o ;12 CONTINUE

26




eSS M A AR N e e T e R vl
. B
|
|

IF(IDENTeEQel)GO TO 1

LLs={L+]
MLOC(LLo 1) =]
MLOC(LLo2)=J
MLOC(LL o3 ) =K
CONT INUE

RETURN1
END

£6
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SUBROUTINE LOC4 (NsSMALL»TRANS sFXCOST ¢ %)

SUBROUTINE TO DETERMINE THE BEST COMBINATION OF 4 POINTS TG
LOCATE DISTRIBUTION CENTERS BASED ON MINIMUM TRANSPORTAT ION
COSTS AND FIXED COSTS USING COMPLETE ENUMERAT ION

COMMON E(629320)sLN(62) '

COMMON A(15915) LOGIC(15015)0FC05T(15)0MLOC(30010)
INTEGERZ oY |
SMALL=99999999,

DOlI=slioN ’

DOlJ=lsN

DO1K=1 N

DOli=1sN

TRCOST=0,

DO2ME ] oN

IF(A@E@M)oLEoA(J.M)oANDoA(l0M)oLEoA(KoM)oANDoA(I.M)oLEoA(LoM))ADDS
dA(IoM) |

: IF(A@JOM?@LEQA(E@MD.ANDoA(JcM)oLEoAkK’M)oANDoA‘JtM)oLEoA(LvMB)ADD=

- LAtJIoM) | | -
lF(AKKoM)-LEoA(KOM)QANDoA(KQM)-LE.A(JOM)oANDoA(KoM)oLEoA(L0M3BADDS
1A(KoM) , ' |
IF&A@L@M).LE.ACIoM)oANDoA(L’M)oLEcA(J’M)oANDoA(L9M)oLEoA(KoM))ADD'
lA(LoM) |
2 TRCOST=TRCOST+ADD | |
| TOCOS?@TRCO&T#FCOST(I)+FCOST(J)+FCO$T(K)+FCOST(L)
IF{TOCOST=SMALL )T 9641
7 SMALL=TOCOST |
- Llk=] |
TRANSSTRCOST | | | | |
'FXC©$VBFC05TCI)*FCOST(J)+FCOST(KI+FCD$T(L)
DO 11 Zs=1630 | |
DOLAY=lo4&
11 MLOC(Z,Y)=0
) GOT08
6 IDENT=Q

S v e B R BT S S e e A T i 2 s T b e R i R e o T L AT R Tl e S U S
T A S B B S i e S s alhE S EENNPEL ] R
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DO 12 Z=1sLL | | .

IF(Ie NE@MLOC(Z’I)oANDoIaNEoMLOC(ZOZ)oANDoIONEOMLOC(ZQ3)QANDQIONEQM

1LOC(Zo4)) GO TO 12
IF{JoNEo MLQQ@Z@&?@AND.J.NEoMLOC(Zoz).AND.J.NE.MLQCQZ@&B@ANQ@JeNEoM
1L0C(Z0&)) GO TO 12 |
IF{KoNEoMLOCIZ01) e ANDeKe eNEeMLOC(Z+92) eANDsKeNEoMLOCEZ03 ) 0cANDeKeoNE oM
ILOC(Z04)) GO TO 12
IF{LoNEoMLOC(Zs1)eANDoL e NE.MLOC(Z,Z).AND.L.NE.MLOC(Z:B).AND.uwNE.M
1LOC(Zo4:) GO TO 12 N .
IDENT=] | | .

12 CONTINUE

IF({IDENT+EQel)GO TO 1
LL=LL+]

MLOC(LLol) =]
MLOC(LLo2) =y
MLOC(LLo3) =K
MLOC(LLo& ) =L

CONT INUE

RETURN1

END

C6
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' SUBROUTINE RANDU (IX,YFL)

1 B M RANDOM NUMBER GENERATOR

IY = [X#65539
IFLIY)S0606

1Y 3lY+2147483647+1
YFL & 1Y |
YFL = YEL%e4656613E=9
IX=1Yv

RETURN

END

96




10,

11.

12,

13.

e Ty L g ain s L e e s i e e ey

POl P08 10 e 5l g e 42 B T roobiZ i b e

97

BIBLIOGRAPHY

Abramowitz, M. and I. A. Stegun, eds., Handbook of Mathematical
Functions, U. S. Government Printing Office, Washington, D. C.,
1964.

Agin, N., "Optimum Seeking with Branch and Bound," Maqggement
Science, Vol. 13 (1966) pp. 176-185,

Balas, E., "An additive.Algorithm for Solving Linear: Programs

" ~with Zero-One Variables," Operations Research, Vol. 13 (1965) ,

pp. 517-546.

Baumol, W. J. and P. Wolfe, "A Warehouse- ~Location Problem, "
Operations Research, Vol. 6 (1958), pp. 252-263.

Beale, E. M. L. and R. E. Small "Mixed Integer Programming by
a Branch-and-Bound Technique," Proceedlqgs of IFIP Congress 65,
pp. 450-451, 1965.

Burstall, R. M., R. A, Leaver and J. E. Susséms, "Evaluation of
Transport Costs for Alternative Factory Sites--A Case Study,"
Operational Research Quarterly, Vol. 13 (1962), pp. 345-354.

Busacker R. G. and T. L. Saaty,‘glnlte Graphs and Networks' An
Introduction w1th.App11cations, McGraw-Hill, New York, N. Y.
1965 . ' -

. Cooper, L. "Location-Allocation Problems, ggerations Research,
~Vol. 11 (1963), pp. 331-343. |

, "'Heuristic Methods for location-Allocation Problems,"

'STAM Review, Vol. 6 (1964), pp. 37-53.

Dakin, R. J., A Tree-search Algorithm for Mixed Integer Program-
ming Problems, The Computer Journal, Vol 8 (1965), pp. 250-255.

Driebeck, N. J., "An Algorithm for the Solution of Mixed Integer

‘Programming Problems," Management Science, Vol. 12 (1966),
pp. 576-587.

Efroymson, M. A, and T. L. Ray, "A Branch-Bound Algorithm for
Plant location," Operations Research, Vol. 14 (1966), pp. 361-368.

Eilon' S. and D. P. Deziel, "The Use of an Analogue'Computer in
Some Operational Research Problems, Operatlonal Researc__guart ly,

Vol. 16 (1965), pp. 341-365.




14.
15.
16.

17.
18.
19.
20.
21.

22,

23.

24.

25.

26.

" Vol. 4 (1962), pp. 394-395.

98

{

BIBLIOGRAPHY (cont'd)

Eiseman, K., "The Optimum Location of g Center, SIAM Review,

Elmaghraby, S. E., The Design of Productionﬂgxgtems, Reinhold,
New York, N. Y., 1966. ~ "

Hadley, G., Linear Programming, Addison-Wesley, Reading, Mass.

1962.

Hakimi, S. L , "Optimum Distribution of Switching Centers in a
Communication Network and Some Related Graph Theoretic Problems,"

- Operations Research, Vol. 13 (1965), pp. 462-475.

Haley, K. B , "The Siting of Depots," International Journal of
Production Research, Vol. 2 (1962), pp. 45-45.

Kuehn, A. A., and M. J Hamburger, ''A Heuristic Program for
Locating Warehouses,"‘Mangggment Science, Vol. 10 (1963),
pp. 643-666.

Kuhn, H. W., and R. E. Kuenne, 'An Efficient Algorithm for the
Numerical Solution of the Generalized Weber Problem in Spatial
Economics,"” Journal of Regional Science, Vol. 4 (1962), pp. 21-33.

Land, A. H , and A. G. Doig, "An Automatic Method of Solving

‘Discrete Programming Problems, " Econometrica, Vol.\28 (1960) .

Lawler, E. L., and D. E Wood, "Branch-and-Bound Methods: A
Survey,".ggerations Regsearch, Vol. 14 (1966), pp. 699-719.

Manne, A. S , "Plant Location Under Ecohomies-of-Scale--
Decentralization and Computation," Management Science, Vol. 11
(1964), pp. 213-235.

Miller, I., and J. E. Freund, Probability and Statistics for
Engineers,'Prentice-Hall, Englewood Cliffs, N. J., 1965.

Maranzana, F. E., ''On the Location of Supply Points to Minimize
Transport Costs, Operational Research Quarterly, Vol. 15 (1964),
pp. 261-270. " |

Reiter, 8., and G. R. Sherman, "Allocating Indivisible Resources
Affording External Eeonomies or Diseconomies,".International

Economic Review, Vol. 3 (1962), pp. 108-135.

et o s,

B g T e e e S




i L e B YTt . o Wt~ A St e - VR Y A )

27.

28.

29.

99

BIBLIOGRAPHY (cont'd)

Simon, H., "Modeling Human Mental Processes," Proceedings of the
1961 Western Joint Computer Conference.

4

Smykay, E. W , and W. A. Fredericks, 'An Index Based Method for
Evaluating Warehouse Locations,” Transportation Journal, Vol. 3
(1963) , pp. 30-34.

Weber, A , Uber den Standorf Der Industrien,7 Tubingen, 1909.

~Translated as 'Alfred Weber's Theory of the Location of In-

dustries’ by C. J. Friedrich in 1929.

e v o B : . L R S T T




100

VITA
Personal History . o
Name: Robert Erwin Fleisher

Birth Place: Sfettin, Germany |

Birthdate: December 13, 1939

Parents: i Fred and Margaret Fleisher

Wife: | | Anna Jane (Hunt) Fleisher |
Ch}ldfen: Katherine Ann and Robert Erwin, Jr; |

Educational Background

Junior College of Kansas City, Mo.
Associate of Science . 1958-1960

| University of Kansas
- Bachelor of Science in o ' | :
Electrical Engineering 1960-1962 | | -

Lehigh University
Candidate for Master of | |
Science in Industrial Engineering - 1965-1967

R R e B S A T B Eadea i b AT DS i s 1

Professional Experience

Western Electric Co., Inc. ,
Lee's Summit, Mo. | | | A
Manufacturing Planning Engineer * 1962-1965 o

Western Electric Co., Inc.
Princeton, N. J. \ | o
Research Engineer : o 1965-1967




	Lehigh University
	Lehigh Preserve
	1967

	On the solution of the general single-stage location-allocation problem by a branch-and-bound algorithim
	Robert E. Fleisher
	Recommended Citation


	tmp.1528232050.pdf.XlFdD

