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1. INIRODUCTION

1.1

T o

Limit Design for Structural Concrete

In recent years, the literature on ultimate strength design

has become very extensive, Since 1950, a consolidation of kndwledge

has been carried out

(1) *

and new important test data have been pub-
lished,

Ultimate design theory has been adopted in Russia, Brazil,
“and several countries in ﬁurope(z) and became a practical reality in
the United States with the 1956 AC Building Code,

é Rt il/'.:;, v,l

However, this de-
sign theory only takes into account the inelastic behavior of concrete

for each individual cross section and it does not consider moment re-

~distribution in the whole structure, Thus, an elastic analysis is still

necessary to deteer?e the elastie¢ moment distribution throughout the

Structure, It would appéér'thBé logical and consistent to use the

,r_;;i*v

inelastic design theory for both the whele Tt

dual sections,

1.2 Diff@rengg’Béggégg Liqiglyggggn_inugggggg;e_and Plastic Des
in Steel

ign
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:‘F !,;!E;

of moment. This is possible because the steel has a relatively long

plastic region BC as shown in Fig, 1 which is usually adequate to per-
mit each hinge to_de§é10p its full plastic moment if the certain fac-
tors such as local or lateral buckling or brittle failure are not a

(3) e

problem, i

R

: tdy 'J&'ﬁ'»""’-“f' .

In reinforced concrete, the behayior is AtEferamtrriny iig %
piésﬁié'regiéﬁ?BCLié'ébsént'ana'shortly after any one of the hinges
reaches its maximum capacity, complete rupture of the hinge section
takes place. As soon as such rupture takes place, the structure may
be said to have reached its ultimate capacity irrespective of the total
number of plastic sections which may not be sufficient to form the
structure into a mMechanism, Thus the local rupture of a plastic hinge
section prevents the structure from moment redistribution. Therefore,
the safe availabie.rotﬁtiOn capacity of the plastic hinge sections in
limit design becomes an important factor for the amount of moment re-

distribution,

1.3 The Effect of Lateral Steel on Concrete Ultimate Strain

It has been shown that the sudden failures observed in concrete

compression tests are relétedwtoqthe‘releaserof energy stored in the

testing machine. By using suitably stiff testing machines, stress-

(4)

strain relations have been observed beyond the maximum load, An ex-

ample of such relation observed by the U.S, Bureau of Reclamation is

L

- iy L PRI a = N
A Y M» S,




given in Fig. 2, which implies that the ductility of concrete beyond

the maximum load is relatively long and can be transformed into a

¢

ductile material with constant load by the application of lateral
pressure,
This may be accomplished by using sufficient lateral steel in

the concrete, Results from bound concrete block tests (Fig, 21b,

Fig. 22c) showed that the ultimate strain and the rotation capacity

e

g
_r"

b

(Fig. 23, Fig, 24) increase~con$idérably"withéut &egreasing;tﬁé ulti-

e, R .. - 4.;,.",.:‘
G EAT) SR S w e o+ .

mate stress,

L T AR

1.4 Theories of Limit Design

o | (6)
Many theories, such as those of Protessor G. C. ErnStS ) Pro-

(®)

fessor H., A. Sawyer(J) and Professor A, L. L., Baker, ' have been pro-

posed to determine the required rotation capacity. The most widely

applicable theory of limit design so far produced is probably that
developed by A.L.L., Baker., Instead of using the general elastic equa-
tions of virtual work principle in elastic analysis, he used the

" following modifiediequationg:




. \
§
. - _ - - =4
; . + + oo ~. . g. - v
Bro F X Ay X Ay XA % i
+ X + X + ..t = -
S0 ¥ X By H Xy A, X %on %
\ | | ‘* (1.1)
+ + + ..+ = -
Aho Xl Ahl X2 Ahz +XnAhn On
/ ) |
where AiO"Ail’ AiZ coo Ahn = influence coefficients,
: At A SRS B L S T %‘1%553,-3.;“” »\if‘“;,"%:;:?%%%‘b,«jj /,s. :
(Amn = the rotation of hinge at m due to unit bending moment
acting at hinge n in direction Xn in a structure that
has become statically determinate by the assumed in- )
. sertion or formation of sufficient hinges),
M M .1
Ahn = mn Lo ( . indicates a summation
. - . str, EI str, over the entire
A E ‘structure,)
Mm' = moment at any point in the structure when X.In = 1 and
all other X's are zero,
¥
AiO’ A?Oh;*' Aho etc, are the rotations at hinges 1, 2, ... n
due to the applied loads when Xil,X2 o Xn are zero,
IMn = moment at any point in the structure when Xn =1 énd 
all other X's are zero,
| MM ds "
T % _ n o
0 . v
str. EI -

. S SO P PSR
It G T M L P P S L Sl I e et -




| — N |

m_| p_r— - )

S

i
i 0 —5"

L S | | | ‘ %

]

c - Mmoment at any point in the structure due to applied loads
when X, X .., X are all zero,
17 72 n

X = unananament at hinge section m, For elastic conditions

equal and opposite unknown bending moments are’ assumed

9

to act at the hinges, and 0, must be equal to zero
since compatibility condition must be satisfied at the

hinge section, -

For plastic conditions the known plastic moment of the
P |

section is assumed to act at the hinges and remains

mﬂ"& s - ' . " ‘ M L Y - ) ™t ¥l .‘
A SRS ST

constant under increasing load, From Eq, (1.1), there-

a
. e M . '..
<« N

g‘;, o 0 o 9

fore, the required rotation capacities 91*5“2 000 O

etc, may be determined.

Professor Baker suggested a trial-and-adjustment method of de-
sign in using these general equations, The method is as follows: the
+ Ppositions of plastic hinges are first assumed and the values of plastie

moments X, x2 e Xﬁ, based on an econdbmical distribution-of'bending

. moments are also assumed, Values of Ql, 92 o0 o Qn are obtained from
the general equations. The positions of the hinges have been correctly
| chose; if the computed.rotations.fronlforegoing equations are positive;
j if @'s are negative, adjustmeqts must be made to the values of X until
' the values of © ;re‘positiveo The © values so obtained must be less
; than the permissible rotétions of Fhe hinges; that is, in the hinges
; the maximum concrete strain must be less than the permissible values,
; If the concrete strain exceeds the permissible value, lateral steel
; o




af”

may be used to increase maximum concrete compression strain or adjust-
ments may be made to the values of X, so that the values of Q@ are within

the permissible range,

The following two major assumptions are made in the application

of Eq. (1.1): P

, (1lww1h§,glggﬁigmhiﬁ§@gwane RTINS

N members between hinges remain elastic,

(2) Ultimate load is reached when n plastic hinges form for

Since it is also desirable to avoid excessive deflections and
wide cracks under working load, an adequate load factor must be pro-

vided in the limit analysis.

1.5 Advantages of Limit Design

Since the members can be reinforced in such a manner that the
plastic hinges will be formed at the position chosen, the congestion

of reinforcements in one place can then be avoided.

The assumption of plastic hinges in frames can greatly simplify
.the calculations for structures which are many times statically in-

determinate,

Furthermore, the limit analysis of a structure provides a con-

sistent basis between the actual behavior of aastructure‘with its




QQ
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{.

theoretical analysis; a tfue load factor against.structural-failure,

and the most economical use pf materials can be achieved,

e ./(').: b
X g

%

1.6 Object and Scope of Thesis

The most widely applicable theory of limit design so far pro-
duced is first reviewed in section 1.4, A rapid method of determining
the available rotation capécity is devéloped. Since thiggmethod is

R

based on a generalized stress-strain curve for plain and bound con-
crete, several concrete blocks were tested to obtain some chdhacter-
istic constants of the assumed curve, Finally the effect of lateral

steel ratio on concrete ultimate strain was also obtained from the re-

sults of concrete block tests,

g




2. AVAILABLE HINGE ROTATION CAPACITY

\\-,; NS

201' Introduction -
e

For a given concrete structure, a method of determining the
‘ j

available rotation capacity at each given hinge is deyeloped} In this

analytical study, a generalized stress-strain relationship for nlain
’ P P

—r

and bound concrete is first proposed, a method based on this relation-

ship for determining the concrete compressive stress factor K1 and K2
TR T " |
Y s e . . ,
Sl . is then developed, and finally the available hinge rotation capacity

. -~ ) N 2

-..'-"’ N S < ., S . ' 4:, Lo

~ A ™ (L SPTY g A]
o - R A hd

»

is readily computed from the above information,

A numerical example using this method is presented in the

Appendix,

2.2 Stress-Strain Relation for Concrete

» = e e T

>
-

The generalized stress-strain relationship for concrete as shown
in Fig, 3 is used in this study, It consists of a parabola and a slop-

ing straight line. A cubic parabola is used to represent the relation

up to € and a 1iﬁear varigtion is used after .
P o) ] €o

2.2.1 For g<& eo

o The general cubic equation is expressed in the following form,

f=Ae +Ac+ A +A

1 9 3 (2.1)

4

The coefficients of EQi (2.1) are determined using the following

four boundary conditions:




. . . caL e : e wp el Sl Seens s e et e e e Rpesie aae I I T I S . - s A - ..
- b k) et L e - - el N e - sem il B wn 9
&
4

— df

€ = 0, f - O d€ - EC.

€ = ¢ , f = £" ‘éi = 0

o c de ]
Equation (2,1) becomes
fe( —5—) €+ (—5=25)+ec (2.2
- - € .. €
0 o
where f =concrete compressive stress

f'! =maximum concrete compressive stress in flexure

€ =unit concrete strain, and

€, =gtrain at the stress fg

20 202 For €> EO

The sloﬁing straight line is expressed in the following form:

f=fl +o(E (e - ¢ ) (2.3)

The value o< can be determined from experimental tests, It will vary

with the amount of lateral steel, characteristics of concrete and many

other factors, ’

The ultimate strain< of concrete may be defined as follows:

- X E (e, - €) =0.15 £ - (2.4)

Solving for o we obtain
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{
| -0.15 £" -
ol = ' (2.5)
EC (eu(- eo) f
Substituting Eq. (2.5) into Eq. (2.3),
(e - eo)
f=1f"-20,15 " (2.6)
fe e (e~ €)
. : ﬁ u o
where eu = ultimate strain of concrete at;the stress 0.85 fg .

2.2,3 Limitation of cubic equationfg)

If the initial slope is too steep, the cubic parabola reaches a
maximum value at a smaller value of € and then becomes a minimum at

€ = €. It must therefore be stipulated that

|

. which leads to the result

- £
eOEo 3 fé < 0
€ E |
o cC

£1
C .

<3 (2.7)

2.3 Concrete Compressive Stress Factors Kl’ K2 at Any Stress Stage

TR

The two dimensionless factors K1 and K2 are defined as follows:

A e W R S N WU




_ total concrete compressive force
S bef" T :
c

.\
'o.-"»,;\‘. 4%;) : . -

K2c = distance from extreme compressive fiber to the
- center of gravity of compressive force in concrete

in which b = width of section

c = distance from extreme compressive fiber to

neutral axis,

R

| %
It is of interest to note that the stress factors K1 and K2 so defined

)
will be valid at any stress stage, As the extreme concrete compressive
strain €. reaches its ultimate value'eu, the meaning of K, and K. at

1 2

that stress stage will be the same as the meaning commonly used for K

1

and K2 in ultimate strength design; in other words, the meaning of k1
- and k2 defined in ultimate strength design is only a special case of

the meaning of K1 and K2 used in this thesis.

For a rectangular section (see Fig, 4) the values of Ki andiKé

can then be derived,

The two major assumptions are made:

(1) Linear distribution of strain, and
(2) Concrete compressive stress is a function of
strain only, £ = F(e¢). Effects of other fac-

tors are neglected,

=

Linear strain distribution

¢ x
- —— -— [F . - ) d
2 = dx €




» | -12

Total Cdmpreeiéive force = ~K1K3bcfé
c €
| bc ¢ " be
= b F(e ) dx = — F(e_)de_ = — Area (OAB)
X € XX €
c . o ‘
0 /o
_ Area (0AB) _  Area (OAB) .
Kl K. f'e ~ Area (ODCB) (2.8)
3 cc |
in which " = K, f' |
C 3¢
Taking moment about N.A.
| C bcz (—:c
! — < dv = e—m———
KlKBbCfc (l.sz) c=5> S F(ex) x dx 5 ( F(ex)exdex
0 €c 0
€. Moment area (OQAB)
j F(ex) €. deX about f axis
l - K = P2 = 5 —  (2.9)
! '
€c:KchKl €c:KchKl

For a given concrete," Kl’ K2 may be plotted against strain € since

all the constants are known., A numerical example is presented in the
{

Appendix,

.

2.4 Numerical Procedure for Plotting Kl’ K2 Vs ’ec\» Curves

ZTTL o e, T T

> — -

"~ A simple procedure in plotting these curves may be obtained by

the application of numerical approximation, In thj‘.sg;approach we first
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congider the concrete stress-strain curve as an imaginary distributed
loading., For an approximation we can convert this distributed loading
to a number of equivalent concentrated reactions and Kl,—K2 can be

computed from these reactions by using Eq. (2.8) and (2.9).

2,4.1 _Equivalent concentrated reaction formulas

A distribution that varies according to the ordinates to an arc
of a second degree parabola isg sufficiently accurate to represent a
cubic curve in a gubdivided region. Formulas for the equivalent con-
| . . N (10) | r
centrations for guch a load are given in Fig. 5 in terms of three
ordinates to the load distribution curve. The formulas ¢given in Fig,.

->a are for a smooth cubic loading curve and in Fig., 5b for a polygonal .

loading curve,

24,2 K, and equivalent reactions

T -r - —abd %

The stress-strain curve becomes a series of concentrated re-

- i

actions.by using the formulas as shown in Fig. 6,

From Eq. (2.8)

- S - At A 1.
! !
RS X 2 NKyEL
€1 a €2
K - b1t At Ay 1 o 2.10)
_ . e .
3 ] Ky £V

in which A1 = Ro + R1L’ A2 = R1R + R2L" A3 = R2R + R3L




2.4.3 K, and equivalent reactions

The moments of the areas Al’ (Al'ﬁ AZ)’ (A1 +-A2 +-A3)~
about o are as follows:
For A, . RlL/\1
el A, (R R N + Ry 2N (2.11)

A1'*"15‘24"‘\3 CRR I F Ry R ) 27\1+R 3N
By substituting Eq. (2.10) and the quantities (2,11) into Eq. (2.9),

the corresponding value of K2 is determined.

>3

The numerical procedure is much simplified by using a table-type
computation form, The same numerical example as used in section 2.3
18 presented in Appendix for comparison, and it demonstrates a very good

agreement with exact value,

2.5 The Determination of N,A. Location. Kd

. Since the stress-strain relationship is generalized for plain
and bound concrete and concrete compressive stregs factors K1 K, are
fully establish:d by the previous method, the stress analysis in re-
inforced concrete with and without lateral steel becomes a routine pro-

cedure by application of equilibrium conditions with the assumption of

linear strain variation across the section




Thesge conditions can be

applied to any type of loading and the

entire stage of stress history can thug be detnrmined and the Kd can

N
be determined- correspondingly,
S ,-:; - % %f»m,*' q‘) :N \\;‘,ﬁ m.‘;‘-v ;ﬁ;\:/’l’b‘ ‘nﬁ;?\,“:‘) e | . %w% 7‘2-.«‘ .
A AT AR R *“”Z'S’T Kecféégular beam w1th ten31on relnforcement onlz
: We obtain by equilibrium of forceg and of momentg (Fig°v7)
2 H=0
. O“,FK1 K fC bd Asfs (2.12)
z M -
Ag
= K| K £ (1-K ) bd’ (2.13)
Linear strain distribution
€ € 4
C S , 1=K

X = IX €y = €¢ ( z ) | (2,;4)

5 ¢ .
For es ey
i N 3 1-K
fs — Eses - ecEs ( K (2015)
For esj;'ey
fS‘ = jfy r (2,16)




- * | _ 1 6

. ond

from the fully established Ki, K, v&8 €, curves. The actual unknown

values of K and €. can be determined by trial‘and error from Eqs. (2.12)

to (2.16),

am with compression reinforcements

2.5.2 Rectangular beam wil

R o ¢

We also obtéih»by‘eqéiiibrium of forces and of moments (Fig. 8):

. 2H=0
0 = =1 _ , -3 B
0 K1 Kfc bd Asfs +>A8 (f8 f) (2.17)
Z:Mﬁs = 0
y) |
= 7 - ' 5o L
M K1 K.fc (1 KQK) bd +.A8 (fs £f) (d-d') (2.18)
Linear strain distribution
. |
For esfg;ey
B
€. g , K-d'/d
mK,_mKe-ds/d fs""‘€cE8 ( K ‘) l(2019)
\
685£;€y
€ € |
cC _ 8 e 1 - K
. X " T1T-K f8 = ecEs ( % ) (2.20)
1 ' -
For €82 ey, €g = ey
fg=fg =1 (2.21)
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The value of

strain relationship as soon as
- Equations(2,17) to (2.21) can

€ITor as in section 2,.5,1,

be solved by trial and

to neglect the gmalj stress f which ig the concrete compreggion stress

Lt

replaced by compression Steel,

2.5.3 Flexure and direct load on rectaggular sectiong
B e S i = - S I e~ e Smneny

——

5. StTess analysis will pe €xactly the same as in 2.5.1 ang
O™ \“"{‘i'k\."‘tqy Y . . o .
"\‘,;. e 2, ‘}?- . ‘2: "of‘:":{\.f?..': > s s (PR B
. ‘i PR ,8: v gl
$ s 2 ) 5 . 2 .

It will not be developed in this thesig.

2.6 Plastic Length L,

w—rr

may define the length ending at the section where the tension stee] just

8tarts to yield ip an under-rej

assumed to gtart its inelastic behavior

results for some 8pecial

concrete,

Thus, the plastic length I,

o

can be computed ag follows:

’_{ ..
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Mult = ultimate ﬁoment at the section where plasticity starts
first |
My = yielding moment at the section as defined above where

mplasticity ends,

Figure 9 shows the free body diagram of the plastic length Lp.' The load

on this short portion Lp may be neglected.

SM=0

| M - M
L = ult, Yy | (2.22)

in which, V = shear force at the plastic hinge, Here V can be readily

¥

computed from the member between two plastic hinges.

2.7 Available Rotation Capacity

The angle of discontinuity over the short plastic length is re-
ferred to as the rotation of the hinge. To be able to calculatefit%
rotation, the type of plastic hinge must be known. Hinges may.be classﬂ-

’fied as follows:

2.7.1 Tensile plastic hinges
Rotation of a tensile plastic hinge is due mainly t¢ yielding of

the tensile steel, accompanied by a rise of neutral axis.

;) The strain distribution is shown in Fig. 10. (a) is the posi-

tion of the neutral axis at the commencement of yielding of the steel.
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(b) is the position at failure, (c) is the positlon of the neutral axis

for the CEange of strain in the concrete and is above (b),

Trwss : |
JAsysoon as the ‘steel starts to vield, the compatibility condi-

tion will not be fulfilled and the redigtribution of moment in a member
occurs, Therefore the available rotation capacity of a plastic hinge
for the moment redistribution ig the angle at ﬁbint (c) as shown in Fig,

11. ,This angle can be computed as follows:

| L € L ¢ o
1Y) = - = LU].to - -—E——-—e
4 B ’ 4&. h/r Ku d Kd (2023)

Here .

£ <= total hinge rotation capacity (elastic rotation +

plastic rotation)

plastig rotation capacity, available for moment re-

/ distribution, The required value for complete moment
redistribution ig computed from the modified general

.elastic equations of virtual work principle,

4:X~= elastic rotation capacity, Com@atibility condition
of the gection at thig stage must be fulfilled.

In a bound concrete hinge, the ultimate strain ig high in comparison

with the elastic sgtrain, Ignoring elastic rotation may not incur serious

eérror,

2.7.2 Compressive plastic hinges

There is no tension in the section, thus the neutral axig is

§

located outside the section,
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Available rotation (see Fig. 12)
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O_
L
1
Sl
1
LI
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i
LLI
o=
C
[I
o
=
L=

(e, - € )
| €2

1 C2 S (2.24) -
d d ‘ ~ |

The safe available value may be obtained from test results of bound

N | concrete block tests as shown in Figs. 23 and 24, A reasonable safe

limiting value for (ec - €, ) would appear to be 0,005, provided that

1 2

suitable lateral steel is used ag is indicated in tﬁe“figﬁfes;

(\\
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3.1 Introduction
w

The prime purposes of the concrete block tegts with different

lateral steel ratios were to provide in detail:

. - (1) verification of the generalized stresg-gtrain relationship

for plain and laterally bounded concrete’,

o,
i

(2) determination of the effect of lateral steel ratio on the
ultimate strain of concrete,

Three blocks with different lateral Steel were tesgted to fail-

ure under an eccentricity of half inch, three with different lateral

sSteel wer In addition to the

block tests with latera] steel, a number of testsg were conducted “on

Plain concrete blockg and cylinders to determine the stress-strain

properties;of the concrete,

3.2 Test Specimens

3.2.1 Materiag )

(1) Concrete: The concrete was designed to have gz 28-day étrength

of 5000 psi and a slump of 4 inches,

The proportions of the mix by weight were:
Type II1I portland cement 1.00"

Coarse Aggregate (Max, gize of 3/4 in.) 3.20

©w2] =
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Fine Aggregate 3.30
Water 0.60

v;?%ﬁfm- v

The property of the concrete was determined from 6 x 12 in, cylinders,
The cylinders were capped with carbo-vitrobond on the top and bottom

sBurfaces, The average stress-strain relationship of the concrete is

- .
ghown in Figs, 13a and 13b,

(2) Steel: 3/16 in. diameter bars were used ag the lateral ... ecwiiiig
steel for all blocks, All blocks were longitudinally reinferced with ™ "
four No. 2 deformed bars, The idealized stregs-strain relationship for
No. 2 bar is assumed as shown in Fig, 14,

3.2.2 Manufacture
All specimens were cast on their sides in 6 x 6 x 36 in, forms
B with plates used to divide the forms into three 12 in. lengths, All
specimens were stripped at 3 days and cured in a moist room and tested
at the end of 28 days.
3.2.3 Details
i‘ Details of the specimens tested are given in Table 1, Fig. 15
and Fig, 16,
? 3.3 -Test Procedure ~ -
f'& All tests were conducted in the 300,000 1b, hydraulic test ma-
é chine. The loading was applied through semi-circular pins and thick
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o

end plates as shown in Fig, 17.

Strain measurements for the first three specimens were made by

uging 0.0001 in, Ames dial gages as shown in Fig, 15, All other speci-

..
b ¢
|

mens were measured by using 5 in. Whittemore gages applied at reference
points consisting of drilled holes in coppef and aluminum IUgs'which
were embeded in the specimens for No. 4, No. 5, and No; 6 as shown in
Fig. 16 and were attached with Armstrong's glue on the concrete sur-
‘face for No. 7. Each specimen had two gage lengths on each face, De-
flections were measured for eccentrically loaded specimens at the cen-

trold of less stressed face with 0,0001 in, Ames dial gages,

Loads were added to the specimens in ten kip incrementsg up to
120 kips. As the loading became higher, congiderable deformation of
concrete occurred and in order to get mé;e accurate stress-gtrain re-
lationship in thig porti&h the loadingvincrements were gradually re-

Y
R
duced to one kip, Y

/

The strain of cylinders was measured by compressormeter and

they were loaded to failure in 14-16 increments of load.

3.4 Analysis

Stresses can be calculated from the corresponding strain and

loading measurements if the following two reasonable agsumptions are .

Lo

made:




2%
Eii | ) + (1) Linear distribution of strain, and
o L | o (2) Concrete Sstress is a function of sgtrain only, f = F(e).
EEL;:— :
. .
=
1 |

[

F i 2 of
I - ‘
i |

= '

3.4.1 N.A, outside the section

["
1

e

From equilibrium of forces

n—"—q B ey

and of momentsg (Fig. 18) we obtain
> H=0

¢

g o

o AN 'l
e IR
=LA 10 n

- P = ' - = | = I ‘
i Asfsl A‘st2 b J f dx = b J F(e,l)dx (3.1)
- o o

X
€= €. *tT (e - ¢ )
X c:2 t cl’ | c2
€ = €.
de = L _— 2 dx (3.2)
Subgtituting (3.2) into (3.1)
A (Fe, )
' bt |
P - Asfsl - Asfsz == s F'(ex)dex | (3.3)
C C
1 2 J
¢
2
Taking moment about 0
Z:Mb =0
A | ! t -d!
P(e + t/2) [Asfszd :+ Asfsl (t-d )] |
t - ' €. o (354)
- 2 [ ¢ |
- b = Crme— -
x fdx (e - )2 (ex €. )F(ex)dsx,
, C c 2 .
/o 1 2 /
~ c
. 2. )
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For simplicity, demote
= a _ o Al L
m P(e + t/2) {A.sf3 d +=As fs (t q )]
2 1 71 :
fo =P - A;f - Asfs
3 2
Equation (3.3) and (3.4) then reduce to
€ Y
| ¢y | N
- ﬁ‘e"(eg,,m;fc ) = bt Fley) de ~(3.3a)
| T Cp
€
2
J
€c
2 2 L |
mb(eé - €, Y°= bt (ex - €, )F(ex)dex (3.4a)
1 L2 2
. €.
2
2 .
Differentiate Eq. (3.4a) with respect to €
1
(e c )2 dm decz
/ = o i - .
c; . <, T tm (e, c.) (1 i )
c 1 2 c
1 1
, /?cl
| 2 d :
| = bt de (ex " e ) F(€x> dex (3.4b)
? c1 2
; /ec
§ "From the theory.éf integration( )
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[
d ( ) Fe) d
dec <~ ecz  x/ %€4
1
)ecz . . idh
€ ¢
[ €1 de_
, | 2
= (e, - e IF(e ) =~ (e -c )F(e )- F(e_)de ,
¢y €, <, ¢, c ) X' °x dgcl
/e
_ cz
g & B o ~
sy r W / cl d€ | . v b
. 5 |
= (eclm ecz) fcl - F(ex)dex rras (3.4c)
4 ¢,
in which
fy = F(e’ )
€1 €1

Subgtitute Eq, (3°3a) and (3.4c) into Egq, (3.4b) which finally leads
td the result

, dgmba - decz dec2
bt™f = (¢ - ¢ ) - 4+ 2m (1 - ) + £t
c c c de = 0 de o de
1 1 2 c c c
1 1 1
Rearrange
bt fC = (ec - ec ) P +*(fot m_Zmb) F +-2mb (3.5)
1 1 2 ¢y | 1
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) - F(e ) —2| =»ptlf . €27
1" e, de Tl e, W@ (3.3b)

After ki _ . - | | |
cracklng OCCUI’S, fcz = O, £xrom qu (3°3b) | i

gae, - T
T Tt | I o R’ *

ey as Ao 7 AT w4

g
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, ) e e e T et p e b e e w8 Sy e RTF TS
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. PR :'l b ot LTI L PR L it Nl ar e bl .,--" "’T - 3" R “L,’J‘“ ) ‘ l ‘ &

) & C . £ . — B LSRRG Z S SN P i R s o s 2 mh «9@’?” e e
bt fc ~ de fo(ec - € )
, N S (3.6)

From Eq. (3.3b) associated with Eq. (3.5)

Strain only
tension and compression,

From equilibrium of forces and of moments (see




The plane sectio% remaing plane after bénding,

I “
€x C t=-C
Ec et (w q)
de = == dx = —= dx
X t-c¢

fec (Gt
; L c tmc, T |
P-A'f +Af =Db |- F(e ) de. - —— F(e_) de (3.10)
8's s's € X X € / X X
1 2 | C /J X
' ‘ 20 | } O -
o N P e e
Taking mcmént:;bout N.A. and associated with Eq, gghgj
L My, =0
_ _E . . ‘ ) ; ) _ wlm '
P(e + c 2’) Asfs (c-d") Asfs (F c = d')
; 1 2 |
e/ " tec el
=b xfdx + xfdx
S R o n
bl [ [ (e I
= :5“ €. F(ex) deX +- ; € F(ex) dex (3.11)
c X o o )
For simplicity, denote
bef' = P - A'f 4+ A f
0 878 S 8
" 1 2
2 | . B B |
be m P‘(e +c - t/2) = Asfsl (c = d*) Asf82 (t - ¢ =-4d")




1 .
. ZE— € F(ex? d€x+ € F(ex) dgx (3.11a)
C

\)o | )0 J

i ! |
Differentiate Eqs, (3.10a) and (3.11a) with regpect to €.,

) R I .
. e e 0 5 e o e TS T TR E’?-';'}* e
-,

O

+-
Fh
O =
i
j—h
§
Fh
'—r

R w (3.10b)

¢c d ¢ o C ’cfc,5' t t d e (3.11b)

fc = F(gc) and ft.= F(et)
d et

Eliminate between Eqs, (3.10b) and(3.11b)

C

) d mg d fé
) )
c g EC +.2m.oec + Ecet 3 ec +foet

Rearranging finally leads to the result

| ' —_ 9 ! '
C (e + et) “c ‘Emg +‘2mb€c +'ecet d e + foet (3.12)

After cracking occurs, f, = 0, from Eq, (3.10b)
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d f' | e £

- o) '=_°gm y =_...d_,._. CoO
fc T e d €. + fo dec (cho) dec ( be ) (3.13)

Here f 1s defined in section 3.4.1 as f =P - A'f - A f agssuming
0 0 s's 8 s

f 1 2
tension is negative in‘fé, we have fé =‘E% . By substituting (see Eq.
(3.9) ) .
o\= =
| e£+ €e
into Eq. (3.13), we obtain -
btf = d (e, +e¢ ) £ (3.14)
B d €. t ¢’ "o . e
WUsing € = ~ec2, €. = €c1 and fc ='fcl as 1n comparison with Eq, (3.,6),
these two equations are identical,

¢

3.4.3 Application of these formulae

P = e e g

wn

Equations (3.5), (3.6), (3.7), (3.12), and (3.14) give con-
crete stress as a function of the cohtinuously measured strain, load-

ing, deflection and specimen's dimensions, The differentials may be

closely approximated by finite differencés,

T

It should be noted that the eccentricity e used in thesge for-

mulas should include the deflections of tested specimens measured in

the tests,

3.5 Test Results

3.5.1 Stress-strain curves

rd

’ ~

By assuming that gtrain is distributed linearly, the strain
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relationship between the measuring dial gages and the straing at the

specimen surfaces as well as the strains at reinforced bars can be

= _Pﬂ_r{’,r_]‘q

. .& o
.0 =
L —

easily established as shown in Fig; 20,

(.

v// h

From the figure |

i
i

‘1 % 1 2
e € = ea + 002 (Eﬂ - es )
€2 & €1 2
€, = e, +0,75 (¢! - ¢')
.1 8 ‘1 %
€ = eé + 0,25 (eé = ¢e')
Sy & 1 %
and also,
. 8 2 2
€ = 0,002 in,/in, A=A"=2x0,05 in,“ = 0,10 in,
y | 8 s
E_= 30 x 10° kei. £ = 60 ki
For € < €y
: . 3 3
Af =0,1x30x 10 € =3 xe x10
B 8 8 8
1 1 1
| 3 3
Asfs = 0,1 x 30 x 10 €q = 3 x €y X 10
2 ) 2 2
Xz From above Information, the m_ and fo'can be computed for each load
stage. .
— 4 L - ' ' -
m = P(e + 7 ) [Asfs A ALE (- dh)
2 o1 y
f,=P-Af - Af *
| s s, |




andm , f , ¢ vg ¢ are plotted as shown in Figs. 2l1a and 22a.
| o’ "o’ “e, ¢
By finite differences 2"  and 0%,  are obtained from the.
A€ DU
| cl A€c

1

graphic curves, Eq. (3.5) then can be ugsed to derive complete stress-

strain relationship for bound concrete in flexure, The stress-strain

curves obtained are shown in Fig, 21b and Fig, 22c.

It should be noted that when cracking occurs, Eq.(3.6) should

be used instead of Eq. (3.5). Thus f (¢ - ¢ ) V8 ¢
0" ¢y c, ¢y
shown in Fig, 22b and the same procedure ig followed.

is plotted as

When tension

is occurring in the section before cracking, Eq. (3.12) may be uged

for a more accurate analysis during such loading stages,

3.5.2 Rotation characterigtics
O AR T R A e X X S X T s ™ s o

.
Two typically characteristic rotation curves are shown in Fig,

23 and Fig, 24 and the special values of strains in concrete and re-

inforced bars are self-explained in the figures,

3.5.3 Def{ggtignﬂpugveg

The center deflections of each specimen have been used ag a

modified eccentricity in computing stress-strain relationship for

section 3.5,1, One of the three deflection curves ig shown in Fig, 25,

-

3.5.4 The effect of lateral steel ratio to ultimate gtrain in concrete
———— e T T e, Sroa e, X0 X S T A X Rt g g e

e e

The relationship between lateral steel ratio and ultimate strain
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in concrete is shown in Fig, 26, Here the lateral steel ratio is

given by

p = Volume of total lateral steel
'8 Volume of total concrete

36 Conclusions : | &

A rapid method of determining the available rotation capa-

<+

city is developed in Chapter 2. This method is based on a general- 1

i

ized gtress-strain relationship for plain and bound concrete which

is shown from the tests to be sufficiently accurate,

Concrete deformation is considerably limited by brittleness
and tests show that lateral steel can intrease its ductile ability,
(Fig. 22c) providing it with a considerable long horizontal plastic

deformation without decreasing the net stress., This is very helpful

J
*

in the development of,limit design theory in con%;gte structures,

The initial moduli of elasticity'énd ultimate stress of con-

crete obtained from plain concrete blocks, and lateral bound blocks

‘were essentially the same. : |
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4, APPENDIX - SAMPLE CALCULATION

41 K,, K2 VS €. Curves (Exact Method)

4.1.1 Properties of the concrete

. 4 E
e, =0.003, — = 1000,

From Kq. (2.7), we obtain

B - € E
”J N . ?"f f v Q C' :

T
C

= 3 (4.1)

4.1.2 For € K5

The generalized stress-strain curve for the concrete is ob-

~tained by the substitution of the values in section 4.1.1 into Eq.

(2.2)., '

9

£ _10° 3 10°
€ 3€

fll . 7
C

2.+ 1036' 3 (4.2)

Area (0AB) (see Fig, 4), bounded by the generalized curve and €-axis,
is then -obtained by integration,

€
Area (0AB) = J f de

!
.

(€c 9 6 |

S ( 10 S c 2 4 103 e_)de
X - X X

5 |

54 - (12) 10° e, + 105 ecz

ax s

cC ¢ 108

"
et
-
Mm

34
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' | ¢ - . Jj..
Area (OLCB) = ¢ f" o .
c ¢ a ) ,
From Eq.'(2;8), we obtain <
K = Area (OAB)
1 Area (ODCB) x-
54 - (12) 10% € + 10° et _
= e 08 10 €. . (4.3)
. A}
Mrment area (0AB) about the f axis is also obtained by inte-
gration.
€
_) ) C \
s ( f
Moment area (OAB) = f" —= ¢ de
N c ) fc X X
5 |
fe 6
’ | 10 4 10 3 3 2
- 14 mmpa—" o em—
fc \ ( 27 Sx 3 ¢x + lQl €x )dex
. /’ /o
107 2 180 - 45) 10° € + (&) 10° ¢ 2
- = ,,_m,,fm___gs — S Ae SRS, C
3 . 180
From Eq. (2.9), we obtain . -
1K, =Mome§£‘q£§§m§OA§labout f axis
€. K3 fC K1 |
;; - o o liSO - (45) _103 e, *+ (4) 106€¢2:}103€c |
= A e <44
| 540 K

1

At the strain EC §~50_= 0.003, we have

. K, = 3/4 =0 75

.............
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- 4,1,3 For €> <

Area (OEG) (See Fig, 4) and its moment ares about the f-axis

are determined by the same procedure as discussed in section 4.1,2,

Area (OEG) = Aréa (OAB)at e = ¢ + (_‘e_c - eo) f’c'\
c o |

= (2.25) 1073 1+ e - (3) 107 | gn

-3
- no_ "
e £ - (0.75) 19“ £

- n
Area (QOEFD) ecfc

Substituting into Eq, (2.8), we obtain

_ Area (OBG) . (0,75) 1073

K = Area (OEFD) €,

(4.5)

Moment area (OEG) about the fe-axis iﬁ

Moment area (0AB) €~ €4
= - ] . (- 11 .
about f-axis + (_g.c eo)fc (e0 + 5 )

at e=c¢
o]

= 2 -y | _ "
| (1- Kz)ec fc Ky | + (Ec eEo)fc(‘so + 2

at e=e¢
0

=

| -6 "
= (1-0.8) (9) 1077 (0.75) £ + 2

=6 oy ...:.l., 2 oy -6 _,
(4.05) 10 £ + 5 €. fn - (4.5) 10 fc

0.5 ¢ 2" . (0.45) 107° £
C ¢ Cc

|

7 ARy Pt e oo R T e B O e O e T P e SO s
RS S RS T A T W e ST A I L T R N R R e SRR TN e e B e T AR PN e e, SUREAASL e T L e
BT IR T B R LA I s AR T e A VRS RN - F T e A S e T R ST TR T ey G .
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b




-37 .
Substituting into quh(2,§y;'we obtain
, Moment area (OEG) about f-axisg
1 - K, = -~S2=i.8r€a (OEG) about B ke
2 2 fll K
S Ky
- 0,5 ¢ 2 " ~ {0.45) 10 0 !
= e C ] C
— ..%%mxw T
“c fc Kl
, Ecz - (0,9)w10m6
I e = S > - (406)
e I
L

4.1.4 The stress factors K.. K

12 K, can be plotted againgt concrete

strain ec

, 8ince they are now expressed as a function of €. alone,

The curves obtained from Eqs. (4.3), (4.4), (4.5) and (406),are.plotted

in Fig. 27 and sone corresponding values are tabulated in Table 2.

4.2 -:Kl'K2 Vs € Curves (Numerical Approximation) ‘
e B L o kT e =T oy == 1— o= -T-n=:__:

Details of the table-type computation for . stressg factors K

Kﬁ VS €. are given in Table 3.

values (see Table 2),

4.3 § vs M Curve for a Rectan ular Beam with Tension Reinforcements
C ORTo——————-=2L.2 _Rhectangular Beam

L .
4.3.1 Given
By =30 x10° psi,  p = 0,02, e, = 0001
£ = K { 1 n - ! | == Ty |
£ = 5000 psi (£ = RyE], K, = 1)




ﬁvl&‘ W,

4,3.2 For eségf;

From Eq. (2.13), we obtain

M - .
Cc

Solving Eq. (2,12) for K and making the substitution er'fS i

from Eq. (2.15) lead to the result

o

pue | 4K,
( -1 + 1 + =

2 K1 pmec

) (4,8)

where ” . - ?
S S

“«f"ig 3 \P T %"a

i

Substituting the given values in section 4.3,1 into Eq. (4.8),

< ' ;‘
we obtain E
F

SsSe—TY

60 ¢

K

(4.9)

v '

4,3.3 F:Lr € 2, EZ |

L W mmet e —

Solving Eq. (2.12) for K and substituting the given values

fy

from section 4w3;1 into it we obtain

Asf pf 0.12 . |
LD /A A (4.10)

Klfgbd" Klfg - K,

&n

K

4.3.4 Using the curves in Fig. 27; the corresponding values of K1

e — o ‘:1"". alnl o likE- -

and K2 are determined for different values of €. Substituting these

»
! ur— . K -ldlll‘rlﬂr—'_'l'=-l - L




values of K, and K, into Eqs. (4.7), (4.9), or (4,10), the values

of K and M are obtaihed for different values of ec. Some of these

‘results are tabulated in Table 4. The steel strain Es is also listed

in the Table. The K vs €. and M vs €. curves are plotted in Fig. 28,

At e = ¢ , we have
8 J

M=M =0,1045 f° ».b-dz
Yy C

At ec—ecxsy?wé.have

g e .
R R ) 'lf BRI PR i
i .

. . EITRRC I S S ‘“‘.‘ ',"'/.'-’ e
oy ] Fogweriagt X T e e T
- O R . . - . i . H
— —
M=M = 0,113 f' bd
[ .

€ oo
C N

~ &

-, C e q;““ T 3 ”
oo E o, Sty O -x“% > \\.’. Yt e I ! A > >
SRR ;{*’i;:‘ e 2:1 A7 'T\ Ll W gy P ,\. s NGS5 el
) . 5 eV Sy L'k;'f' PIR " . P} W ¥ % ¥ .
8 w - B . e 2N . ? :
g o e e N U Lo » o ;‘R,)",?L,f fzg:‘.)g'}. SN .
A . PP ) e e iy By A DR e .

4.3,5 Ultimate moment (by the 1956 ACI Building Code)

From the Code, we have

Moo= L2 £l g (- 0.59 q) s

where

d = of /f' = 000 SL9.001) (30)(10°) _ 6

Substituting the value of q into Eq. (4.11), we obtain .

v B A
Cpaler 6| (05906 ...
. Mg = PdEl =5 |1 - =5 = .09;1.11'4 bd

—

C

This ultimate moment calculated by the Code is in good agree-

ment with the two values shown in section 4,3.4 since it falls be-

tween&M 'and M '
y €C—90<> |
-3
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r\;

From Table 4, we“dbtain.eé-= 0.7 x 107

4,3.6 @ vs M curve

For non-dimensional plot denote

- i 8 b
e €

e c
P = curvature =

Kd

@ = curvature (at ¢ = ¢ )
QY ( 8 :y)

€
e

(Kd)

at € = ¢
sy

where

- “ ¢ = corresponding concrete strainfeé at QSf:'gy

3

0,001, Thus,
3 3

.« e €0,7) 1077 (1,72) 1077
y 0,407 d d

.
]

and

8 fe 12}
¢y ~(1.72) 10-2 K 4,12,

The values of ¢/¢y corresponding to different values of €. are also
tabulated in Table 4, ThefM/f(':bd2 VS Q/@y curve is then plotted in
Fig. 28. - k

:J&_g\

@,

4.4 -Plastic Length PR"

= 0.1114 £! bd” - S

Use Mult,

M_ = 0,1045 f”lbdz (see Table 4 at ¢_ = €_)
y C | S y

s s T 4

o, S R st




Assuming uniform load w along the member, we havé, (see Fig.29)

_ WL
V= 2
Mol 22
M = 3 wL = 2Multo
W2 =16 M .. =1.78 £' bd?
, ult, c
Substituting these values into Eq. (2.22), we obtain |
M. - M 0.0069 £' bd?
. I '=.“UIt$¢mfl o C _ L
. - tp T Ty o Fel ~ % 130
- 5 wL — 2 - "

L = length of the member between two plastic hinges

<
I

shear force at the hinges.

4.5 Available Rotation Capacity

Use

€ :'OV©03

e = 0,0007 (see Table 4 at ¢ = ¢ )
e | s = Sy

K = 0.407 = constant corresponding to €

(see Table 4 at ¢ = ¢ )
S y

K, = 0.16 = constant corresponding to ¢

(see Table 4 at e, = 0.003)

U].t;,

From Eq, (2.23) (See Fig. 11)




-42
/ _p ‘ult ‘ERiS
2 ff =zl -cr- Kd  ~ Kd
v

L ¢ € K

— _.R U].to ( 1 -. e _‘_H‘ >
Kud €u1t. K

L € _ ~
L = 0,908 —E Uit ] . (4.13)
u

If the elastic rotation is neglected, i.e, the second term in Eq.

>
~

(4.13) is neglected, the error involved is about 10% on the unsafe

. " " side.n this pafrticular example, If the hinge is bounded with ~ - - -
sufficient lateral steel, the concrete ultimate strain may increase
| €
’ e 0,000 = .
to 0,01, then the second term = el 7 = 0,07, and the error
; € 0.01 |
‘ . ult,

is about 2%.
4.6 Required Rotation Capacity

A continuous beam subject to bending moments due to a load
as shown at Mo in Fig. 30 where the plastic hinges are assumed to

H

occur at the supports, Bending moments are plotted on the tensile

side of the beams and for each hinges as shown atM1 and M, in Fig,

2
30. The general Baker's equations give (see Eq. (1.1) ).

Mo t R4 T XA, 1
Popg F XAy F XAy, = - 6,

!
!
©

Graphic integration gives
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For an economical bending moment distribution throughout. the

b

beam, we choose

5

Substituting ébﬁagd X into Baker's general equations, we obtain

i
wiro
i =

+
wiro
N =
=

+
oM =
mir—*
-

m’t-* mgt-‘
— —
+

]
wiro
=
+
o
1§

b~
N =

NI
wiro

which leads to the result

£l
S

N
=
e
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All valués of O are positivé. The positions of the hinges
have therefore been correctly chosen., The hinge sections must be
checked to ensure that the rotations ML/4EIL can develop without

failure which will be discussed in detail in section 4.7. In

general, the required rotation capacity may be written in the follow-

ing generalized form,

o
}

\ ’ A TR
L T * o« wr T RY
[ . ) o o e T » \ e (I S .
' o K R

a= ﬁconstant (may be determined from Eq. (1.1) ).

4,7 Required Rotation Vs, Available Rotation Capacity

Given:

Mu1t°m

a E 1
c

Required rotation =

(Using M = Mu1t.)

o

C C C

H‘
| @ Jpe

. bd>
12

“§

=
!

XL

M - 0.111 £'bd® (See Table 4 at e_ = 0.0015)
ult, - C , c

\




=
|

u T 0:223 (See Table 4 at ¢_ = 0,0015)

. = 0,0007 (See Table 4 at ¢ = ¢ )

m
il
]

K = 0.407 (See Table 4 at ¢

]
m
-’

Available Rotation = Required Rotation

cup o Setp _ Mael o 15
o - S 4.14

.. R “"Sﬁbstitutin_g‘ the given values into Eq. (4.14) we obtain <

€ XL 0.0007 XL 0.111f! bd? 191

0.225d 0.4074d A E, g .

-,

_ (1,332) (1Q121;L
ad

Rearrange,

If a = 4, which usually gives a high value of required rotation, and

€y = 0.0015 then X = 0.0674 = 1/15, If X is too high, lateral steel

may be provided to increase the ultimate strain of concrete and thus

i

correspondingly decrease the'plasticvlength Lpo The safe limiting

value of Lp a8 was investigated by Professor Baker is about equal to

d where d is the effective depth of beam,




5, NOMENCLATURE

) a = Comstant defimed in sectiom 4.6
€ = Comcrete strain
€ = Comcrete strain at the stress fg
€qlt. = Comcrete strain at wltimate
€c1 = Concrete straim at the most stressed face
€c? = Concrete strain at the less stressed face

fosm, = Defined in sectiom 3.4.1

f‘;,mo Defined in section 3.4.2
T wl’p‘g e o L AR QS‘:D" &E-‘ c:):; %r‘\! ‘* { ¢ . ’
PN el N * S et
& S e e Dt s Y w " s -
g “toncrete compressive stress -
fg = Maximym concrete compressive stress in flexwre

Kl’KZ = Concrete compressive stress factors defined inm
| section 2.3 |

LP %? Plastic length defined in sectiom 2.6
v = Shear force at the hinges g
‘Amn = Influence coefficients
Xm = Enknown moments at hinge section m
6 = Hinge rotation
ol = Concrete characteristic constant defised i; Eq; (2.5)
@
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6. TARLES AND FIGURES
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Table | OU'TT.TNE OF TESTS

Reinforcement Lateral Steel Eccen-
tricity’ Re-

Aé A Dia, Pitch [Total No,
(inodiaj(inogia) "~ (in.) (in.) (N) (e)

3
16

- '1,';_':‘ T | . NO. B Size

2 x 1 | 12 | -% in,

=

| | 1
1 : | _2x.4

Nof

2%

£l

’in," ,j.

)
o)
N |

in,

ﬁﬁh‘
}—s
(@)

| 2 x

Bl

o b WO} 'y

-—
-
' - B X ) e s T W S - a 3},\ @ \ v
' o= ‘ . v ol s TR IR BT N P i ' =y Py v 7 ISR = & . G % @ AL
S T U S T et A L DA ™ B N i T N RN, A T o . ek B N ) E S
dati Q AL LS ST [ STV MR e r e ‘-"=fu‘='&x‘at'ﬁ°'n‘”‘«‘. - ,.".)M._ osma s r‘ ‘f«ﬁ:’:j’;‘q{\/%f> ,mr' o "i g {('*w sy Nl L ¢ oy 3,‘\? oa%ow N w\'&j E%r?\:‘ ¢ :
o P i , ! ? y
-
]

o) =
o

#

¥

i
I
(@)}

)i
£l
'—_l
o

Total

3
Blocks

* . I T Total
Noqe g None | None | O 7
| : | | Cyl.

1 ; 7 ﬁt | None ;éNoﬁe' | None ? None 0 f 0

Table 2 VALUES OF Kl , K2 VS ec'
(BY EXACT METHOD) ;

T T A ;
05 | Lo | 15 | 2.0 2.5 3.0 | 3.5 | 6.0

7 Ky 10,223 | 0,398 | 0,532 0,030 0.706 | 0,750 - 0.785 | 0.875

| K, |0.343 |0.353°| 0.367 | 0.377| 0.39 | 0.400 | 0.409 0. 444
L ] e | ,




~Table 3

%0
]

NUMERICAL APPROXIMATION IN COMP

YA N N I Cimiy ARy, Lo
PR S EE TS PL L (TN N S g KTt S g A (IR El

0 | o.001

0.002

0.003

o- | 0.704

W.T#~“”'-~ »...;wq~ﬂ,
6,080 | 9.

L ae

93¢ 110,750

=k

| o
{13.340 11,940 -

1,000

112.070(12.(p

24,07

9,33

TS e ey e

!
i

79.36 %

0 | 0. 389

0.627

T 6.08

37.50"

o

0 ~ 0.652

0.624

0.597

0 | 0.342

©0.374

(96)

0.862

292, 20

0.565

‘0. 435

Note:

The same numerical example as used in ‘section 4.1 is
presented here for comparison,

*See next page.

&

."‘_
L)
v
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Table 3 - Continued

Remarks:

(1) The generalized stress-strain curve for given concrete is
obtained in section 4.1.2 (see Eq. (4.2) ).

6 |
.—%w= lQ_ €3 '-lg“ 62 +-103 € (¢ "4-5 |

|
’—l
~

0 . ‘ _ o X . . [

. ﬁ\ . i) & Y [ ~&’ - ; “1 . % A X 7, .‘1 _ JL‘ v *‘}I
. 2l

; ’ ' "% e .7 . P ° s }

&

The® value of f is obtained by substituting the correspondlng T
values of ccilnto above equations.

(2) Equivaleﬁt reactions are obtained by using the formulas as
- given in Fig. 5 (here, 5= 0.001), %

(3), 1(4), (5). By the application of Eq. (2.10) in section 2.4.2.

o

T e e ey

(6), (7), (8). By the application of Eqs. (2. 9) (2,11) in
sections 2.3 and 2.4.3.

T

“"




Table g,

VALUES OF K, M/f'bd?, /¢ and
C Yy :

9/,

o L) O 2

0.100

0.340

N . ___"___._.._—.{

0.384
0.0334

10.000321 |

0:392

Ofoéﬁé

0.543

0.406

0,860

0. 300

0.351 0.355
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Concrete Strain

CONCRETE STRESS-'STRAIN CURVES BEYOND MAXTMUM
- STRESS (OBSERVED BY THE U.S. BUREAU OF
- RECLAMATION) ;
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Cubic Parabola

————
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Fig, 3 GENERALIZED STRESS-STRAIN RELATIONSHIP FOR BOTH
BOUND AND PLAIN CONCRETE

£
C

o P —

Stress £

I

Strafn €

> (a) Stress-Strain Relation (b) Strain m (c) Stress

Fig. 4 DERIVATION OF COﬁbRETE COMPRESSIVE STRESS
FACTOR K, AND K.2 AT ANY STRESS STAGE
(See Chapter 2,” section 2.3)
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.\ K,Kd
Kf''bd
C
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|

- N.A,

S

J_ LT 7777777

H—-T=Af
_ss

(a) Strain Distribution (c) Stress Distribution

(b) Section

" RECTANGULAR BEAM WITH TENSION REINFORCEMENT ONLY
~ (See Chapter 2, section 2,5,1)

ca ] m | m % . ".;Flog ™ 7

(a) Strain Distribution (b) Section (c) Stress Distribution

Fig, 8 RECTANGULAR BEAM WITH COMPRESSION REINFORCEMENTS
(See Chapter 2, section 2.5.2)
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(See Chapter 2, P section 2.6)
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,7 Steel Strain Due -~ “NSteel Strain at
| to Yield ~ Yield Point

Fig., 10 TENSILE PLASTIC HINGES
(See Chapter 2, section 2.7.1)
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Concrete Stress in Ksi

3

I

| | | | f' = 4.9 ksi
£ .\: | ?‘ | (o

0 0.0004  0.0008  0.0012 _ 0.0016 0.0020  0.0024

Fig. 13a  STRESS-STRAIN RELATIONSHIP FOR THREE
6 x 12 IN, CYLINDERS AT 28 DAYS
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(8,1

Stress in Ksi

Al

D ‘t\

N B oy fov]
.«)733:‘»;",»-*»#;

R AT P h s C R

-y

}g' ‘:X._‘y -_’g'_'}"?*‘)l"?"é
AR - £

5 N A S R e oy B
" -Wﬂi@ s WU
T A e 3l L e ..ﬁ-.;...‘?".'..4.3,--;.,«4““'

S A

\”‘l‘yﬂ?‘ "a
O ST |

£!

4.58 x 103 ksi

5.15 ksi

13b

« 5.00083°" 0.0012

59,00165””

©0.0020

STRESS- STRAIN RELATIONSHIP FOR THREE
6 x 12 IN. CYLINDERS AT 35 DAYS

&

0.0024

SR &»\ - %y dq‘ . e 2 xJ
- SRR

2% &ﬁb”,,r’ T

= Yall

o

BRI e O

EEE




Sp—s S

80

Stress

(ksi)

40

20

#2 Bar A
s

0.05 sq.in. -

€ =

i

0.002 in./in .

30 x 10° psi
60 ksi

Fig,

12

IDEALIZED STRESS-STRAIN CURVE FOR NO. 2 DEF

Strain’

*._'

¢ x 1077

3

&

-~
~

28

ORMED BARS




-61

T
I

3"

3!! | ‘ ' ’ 3"

et | 8 ars| |e"

r

o s LY

v ﬁ TS ;r‘,‘;f»;."' LN
No., 1
Fig, 15  DETAILS OF THE TEST SPECIMENS { No, 2
No. 3
[ro— | 11_1;” l" ¢
T 3 b—h 2 ’7&
30 1'{ = ol [ 1"
¢ =Dt 1, -
15 | 4 1,
e S 2 =1 ) i
| '—fF St I B "
= " —n 1
a 12 3 1 5 1 _1., |
2

L

1

RS
1.5" 3" 1.,5"
No. 4

Fig., 16 DETAILS OF THE TEST SPECIMENS {NO. 5
| . LNo, 6

O A A e )
B k{?frﬁf.“.fl*; BRI

A

i

‘}L

;-5:" “~
4 , </




-62

J J 7
diameter

boscx dezios 5 g
“d

’
L4
in,

' -
7
2

Steel Plate

6 x 8 x 1 in,

Steel Roller,
LOADING ARRANGEMENT

— N
mﬁw. l'f§MW7

17

Eccentricity

Fig,

Dial}Gage

S —— —— S
a.,H[l_H__mﬁ. 7I_L|___ - |I__Wm[ ‘

I:___L r

I |[ | =



(a) Strain Distribution - (b) Section (c) Stress Distribution

feors v STRESS WNALYSIS, (N.A. OUTSIDE THE SECTION ) .
N'%(gee Chapter 3, section 3¢4.1) * '

., g s prm w0 webogeD .
* R T AT il le iy A A SN - o RN
; VTR § 2 ,e?s_,_v:y,é,,.,:-.; et S AN g ae r i B N A b Aran G SO e

- (a) Strain Distribution (b) Section (c) Stress Distribution

Fig. 19 ~ STRESS ANALYSIS,(N.A., INSIDE THE SECTION)
: (See Chapter 3, section 3.4,2)

-




Dial Gage —— Specimen Surfaces . ... = Dial Gage
-Readings | - \ Readings ——

Reinforced Bars.

&

. _l i
T 5 S oy
1 2 1 i
RSN S Sy R - |
1 i s !l":}l
= e e

W —

Fig. 20  STRAIN RELATIONSHIP OF TESTED
SPECIMENS (See Chapter 3, section
3.5.1)




. Q\
-65
Formula 3.5
d €
2 | d m.O | - c2
bt"f = (e - € ) , + (£t - 2m) + 2 m
C c c d e ) o’ d e o)
1 1 2 C C
- 1 1
500 !
- - ® 7 H
o ° m VS €
) / o Gl b
. W0 ————
@Qw ,;~ A | . .‘ :a Y T = B
300 X . | NO. 2 Ecz
- - 3
| |8 = 1-1/2" | (x 10 7)
m
O e = 1 on
(ian) . /
N =8
j
200 . : 1.0
~~C Q - . AW
T e 0—0mg ) Q_, €. VS €
| A > l O 2 Cl
7 - | ‘
2 P ) T U -0
100 j | |
{ . —f #8. € 0.5
; o) c
, . 1
£ 4
L&) g
2 4 6 8 10= 12
Strain € x710-3
C
1
Fig, 2la m Ve, € , € vs, € and f vs ¢ CURVES
o) c1 c2 c1 o c1

T e
R A




-66

porl e ’

N B v AU o s N . " Tl g o H ¥
4 : e : o e T gy Bt Y W . N Ak o ’
: et e e SRR Ry “‘b} Ay EA# TOIN I S T, o
s R S gy .,‘g\}; . }}’- T fd ! gt\g .o n . . L T ohas JAG s TG
e e o A AS LIS B WAL ."f\-.@-..' ;"”i.": WT&)’ W ey R .‘.'-,<.‘..Ji’,t’-»z,'x»;'~.~'&:»-.-'m:rx» PR 200 SIS S L Tl ey L% B Wi w0 WY et ?

NO.,\ 2
1-1/2" N =8

1]
!

f' = 467 ksi

Concrete Stfeéé in Ksi
w

4.0 x 10° ksi

=
]

12"

0 0.002 0.004 0.006 0.008 0.010  0.012

i | Concrete Strain, in,/in.

Fig, 21b STRESS- STRAIN RELATIONSHIP FOR BOUND CONCRETE,
SPECIMEN NO, 2

B o Y e o Yt e ey e ——_——— . : . ’
BN r}ﬁg};z R e NS e ESER e




Zisn it raciitteaorainsy -

Formula 3.5

btzfc = (¢ -
s B |

20

y i R ' i
. i
: ¥ o

400) S D P —
| ; . e e e

0
|
-

=

424
|

-
N

-

| | C e . : ! .. Oo 5

0.4

10.3

J 002

10.1




| Cracked Section USeNFormula 3.6

bt £ =

c, de - ecz) £ Use b = 5,0 in, “t = 5,5 in,

Concrete Spalling- n
= 2 > .

3.0
. 6"

‘ . o - 1
e e RE AN 5 Do AL
’ . N SO Y PUNRN S R R Rl TN 47 ) 0
' e ot RAR VL a1 3 A AL L et Sha & ’ - X P VU /S LY | 3
| | | | ‘ . B S ‘? SRR MR S G el P BN 2 per L S VR BT g FEg e Y v .
. ' % : ’
1 . . [

1.5

¢ e

< 1,0——r

’ 2 4 | 6 i 8 10 T 12
- .' Strain € x 10”‘3
1

= €, ) fo vs €, CURVE

Fig. 22b (ec
| 1 2 1




~69
Use Formula 3.6
Cracking Beging — bt f = d'd fo(ec - €, )
At B Side €1 €c1 1 &

Uneracked Section

Wik g e g | # g -« | Use Formula 3.5 - | d e
TR N ¥ R 2 B L L P ¢
e QUG e B g R e T : . : >
I be™f  2(e, -e get(f t-2m )
1 | 2% €c.
+ 2m
o)
No. 1
8 = 1" N — 12 ‘

f* = 5.09 ksi

=1
il

c 4.16 x 10'3 ksi

e/’b P

TP, 7O~ ;
an ==1r
EC it /Cl
2]
M ‘ T s 1om
6'"g . g=1" ]
d 1
N=12-" T}
0.002 0.004 0.006 0.008 0.010  0.019

Concrete Strain, in./ia,

7
Fig, 22c¢ STRESS-STRAIN RELATIONSHIP FOR BOUND CONCRETE




160

Locad P in Kips

€. =¢_= 0,002 in,/in,
Sl Y i ) - )’
Yielding Begins E 1
Concrete Spalling € = 0 Changing Frzm=
At A S{EE/;7 | 2 Comp, to Ten, 1
L * ! c.=0.002
| ; | fY 3
| 'E =30x110 " ksi
| 3 8 5
| Concrete CracLs la =a’=]0,1 in,
L. o~ s ! S S
| At B Slde;7 | T )
120 }— | ] N 6"x6"x12
; — — h
| | | e =20 e = 0,0014 ~¢
1 ; %E///7’ 82 . N R
. - {tension)
i O ' /
80 _
40

o
s
€ = ¢ (Percent) |
cy c,
/
Fig. 23 LOAD VS STRAIN DIFFERENCE ACROSS SECTION (6"x 6'"x 12"

BOUNDED CONCRETE BILOCK)

- {




Kips

in

Load P

160

120

80

€

/

i o

g = €, = 0.002 in./in,
1 stéel Yielding Begins (Comp. ) {

F.d-;;”_i»‘;:#fvtw:“;‘?": N

.:ﬁ

Concrete Spalling
< At _.A Side

//////////;7

e B A P VT e e o e e
i }, ‘,aﬁ . i ey 4'. ;,...‘:—.,.,7,;.' ®
gty TR gty B v

. > "?ﬁ’:
. b S K” ¥ L=

\
\

TN P

| Con;:;:;\\\\

\_ Cracks AtdBwSide
€

L.

gt Aotrr
. M{ffc’
V% e

I
8, g i
AT !
Yy u &

= 0 —
C

Ch%nging From Comp,
to Ten,

6"x6"x12”

Yielding Begins

No, 2

™
i

1/2"

0.5 1.0 1.5 ! 7.0 2.5 3.0

€ - €, (Pércent)
1 2

Fig. 24 LOAD VS STRAIN DIFFERENCE ACROSS SECTION
(6" x 6" x 12" BOUNDED CONCRETE BLOCK)

“""] )



-
H
:
[
i
i
x
:5- N
33
b
=
=
=
B2t
i
.

Load - Kips

160

120

0]
-

40

¥
A
é
“

»

)

0.

05

' Fig, 25

0.

10 | 0.15 0.20

Deflection at Center (in.)

TYPICAL DEFLECTION CURVE AT CENTER

0.

25

.30




. &ﬁ

S

Ultimate Strai

0.008

Su

n

3

$

0.002

* 0.006

0.004

|
//
0.4 0.8 1.2 1.6 2.0
Lateral Steel Ratio Pl (Per}cent)
P = Volume of Lateral Steel
L Volume of Total Concrete

/
Fig, 26

LATERAL STEEL RATIO P, VS CONCRETE
ULTIMATE STRAIN €4




1> K

Values of K

&

1

0.8]

o
@)}

0.4

0.2

By Numerical Approximation

Kl (By Integriti}L
Y ¢ -

LN
ARG LS

R
R Voo X
oL iy

ié
i

- g

B . ,,g @ 2.
X b'% A

*“”'KZ (By Integration)

= )—

\\By Numerical Approxi-
mation

Fig. 27

€

CONCRETE COMPRESSIVE STRESS FACTOR K, AND K2 VS ¢

Strain x 10

3

\‘x

—

WL~

AN




10

.. M
Limit Value of sryg = 0.113
T 5 -~ ;.
1 /}P // \\_,,-Curvatureﬁvs'Moment
L t—* t
Moment vs Concrete Strain
(J -‘, .ﬁ”{
“ A |
|
|
N - ,
| J
| | | Rectangular Beams With
i | i Tension Reinforcement Only
| | { CE_ =30 x 10° psi  K,= 1
7 1 i}
: £! = 5000 psi p =0.02
\ -?2 = lOOO'r €5 = 0,003
| 3 |
’ - ;r/éK: vs Concrete Strain
| — T \
It Steel Starts — -
To Yield Limit Value of Ku = 0.12
_ -
1 2
Strain e in,/in, x 10-3 ;
Curvature ¢/¢y #
——M—z VS ——Q— n_ VS € AND K vs € _CURVES
Fig, 28 fé bd ) ¢y ? fé bd< c o o

GL-




PN AR A AR M R e i e L T R I T T B i e
L Y

R

BN .

(See Appendix, section 4, 4)

F i g o 3

CONTINUOUS BEAM (EXAMPLE)
LOAD MOMENTS AND PLASTIC-HINGE
MOMENTS (See Appendix,section 4.6)

e O o~
ﬂvaaﬁvme‘h\

. PLASTIC LENGTH (mmfm Rearsin

1“&‘

-76

,A» ;,2 5
\Vﬁ

\‘_!
\

' .
v.m-k

: H « t 13 ot - -
;. - -3 T,
\. ¥ l',JA (A T R R
b - s

A




7  REFERENCES

1, ASCE-ACI Joint Commlttee on Ultimate Strength Design
REPORT OF ASCE~ACI JOINT COMMITTEE ON ULTIMATE STRENGTH
DESIGN, Proceedings of the American Society of Civil
anlneers V.6l, Separate No., 809, October, 1955 p.809-1
to 309-68

2, Yu, C.W. and Hognestad, E,

| REVIEW OF LIMIT DESIGN FOR STRUCIURAL CONCRETE, Proceed-
ings of the American Society of Civil Englneers V.84,
Separate No. 1878, December, 1958

3. Beedle L,S. o -
o 2 W*{g = 5”"’ S QF STEEL. ;
"}‘{ g,, ft.a zx;w ‘:% TR BB K e Y R

Nt

RAMES . Fohn Wiley, 1358, pp. 199-204

4, Hognestad, E., Hanson, N.W., and McHenry, D.
CONCRETE SIRESS DISTRIBUTTON IN ULTIMATE STRENGTH DESIGN,

Journal of the American Concrete Institute, V.52, December,
1955, p.459

5. Chan, W.W.L,
THE ULTIMATE STRENGTH.AND DEFORMATION OF PLASTIC HINGES IN
REINFORCED CONCRETE FRAMEWORKS, Magazine of Concrete Re-
search, V.7, No. 21, November, 1955, pp.121-132

6. Ernst, G.C,

| A BRIEF FOR LIMIT DESIGN, Proceedings of the American
Society of Civil Engineers, V.81, Separate No. 583, January,
1956, pps. 583-5 - 583-21 -

£
7. Sawyer, H.A.
ELASTICnPLASTIC DESIGN OF SINGLE SPAN BEAMS AND FRAMES,
Proceedings of the American Society of Civil Engineers, V.81,
Separate No, 851, 1955, pps. 1-29
. 8s . Baker, A,L.L.
THE ULTIMATE LOAD THEORY APPLIED TO THE DESIGN OF REINFORCED
AND PRESTRESSED CONCRETE FRAMES, Concrete Publications,
London, 1956
9. Warner, R.F.
PROBABLE FATIGUE LIFE OF PRESTRESSED CONCRETE FLEXURAL
MEMBERS, Unpublished Ph,D. Dissertation, Fritz Engineering
\ Laboratory Report No, 223,24, Lehigh Unlver31ty, September,
1961
. | / .
10, Newmark, N.M, / 4

NUMERICAL PROCEDURE FOR COMPUTING DEFLECTIONS, MOMENTS, AND
BUCKLING LOADS, Transactions of American Soc1ety of C1v11
Engineers, V, 108 Paper No. 2202, 1943, p.1161

~77-




e R

.78

11, Taylor, Angus E. .
, THE THEORY OF INTEGRATION, Advanced Calculus, Ginn & Co., 1955,
pps. 519-525 .
12, +“Hoghestad E.
ULTIMATE STRENGTH OF REINFORCED CONCRETE IN AMERICAN DESIGN
PRACTICE, Proceedings cof a Symposium on the Strength of Con-
crete Structures( London May, 1956 .
13. Hognestad, E. " |
CONFIRMATION OF INELASTLC STRESS DISTRIBUTION IN CONCRETE, i
Proceedings of the American Society of Civil Engineers,
Proceedings Paper 1189, V,83, No, SI2, Marchy, 1957
14,  Mattock, A.H.
N R :\&w‘ ’BEDISTRIBUTION OF DESIi{N- BENDLNC MOMENTS: IN REINFORCED CONCRETE
‘“?Adﬁigfﬁpgﬁefﬁﬁﬁ* v. .« . YconTINtOUS BEAMS, Prc-ecediifes Of the Institute of Civil Engineers,
‘ Paper No. 6314, Vol 13, 1959, p.35
“15.  Kriz, L.B.
ULTIMATE STRENGTH CRITERIA FOR REINFORCED CONCRETE, Proceedings
of the American Society of Civil Engineers, Proceed;ngs Paper
2095, V.85, No. EM3, July, 1959
L~ \
- g/l




chm

8. VITA

. The author was born in Ching-Tien, Ckekiang, China, on
* December 23, 1936, the son of You-Chao and Shui-Da Chen, He
entered Cheng-Kung University in September, 1955,

and was awarded

a Bachelor of Civil Engineering Degree in June 1959,

In.September, 1961 the anthor joined the staff of Fritz
Engineering Labaratﬁry5 Lﬁhigh_UniVErSity’ as a Baldwin Fellow,

He was appointed to hig present position of Research Assistant

in Civil Engineering in 1962,

+79.




	Lehigh University
	Lehigh Preserve
	1963

	A study of limit design in structural concrete
	Wai-Fah Chen
	Recommended Citation


	tmp.1528232050.pdf.KIeE6

