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* ABSTRACT |

Two basically different apprbachés to fOrecaétiné, spectral
analysis and adaptive exponential smoothing, are coﬁpared by
measuring squared error of forecasts on controlled cbmputer-gen-
erated time series. Three adaptive models,; each using three vari-
ations of expongnt ial smoothing are compared Yith three vét‘;i\.\ations
of spectral analysis. 3Thé?}e5ulting squared forecast errors are
used in a series of F~tests to detect those parameter combinations
_for.which each forecasting technique is not satisfactory. All of

tAe techniques are 'then compared for significant forecasting diff-
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erences via another series of F-tests. The spectral analysis tech-

—

)
-
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niques are found to be significantly better over most of the param-
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CHAPTER 1

INTRODUCT ION

The accuracy of forecasts is one of the principal factors in-

fluencing the effectiveness of management control. For most‘COmpanies,

decisions in~thé areas of production planning, purchasing, employment -

rates and employee utilization, inventory levels, sales effort, etc.

are all dependent upon forecasted requirements., Large inaccuracies

in these forecasts will often result in considerable

additional

costs from additional inventory carrying costs, unsellable goods,

lost sales, ioSSth:goodwill.from backorders, and reduced facility

utilization.

v

In order to impr0ve~forecasting spéedrand'agcuracy,‘a.number;

of techniques are avaiiable which permit machine computation of pro-

Jected values of time series, A large number pf‘itemsucaﬁ~be fore-

cast in a short time by computer, and a variety of co

nsiderations

may be introduced into ‘the forecasting technique"to take advantage

of any additional available information. The results

of thgée fore-

caStS“cantthEn.beﬁused directly in-qomputerizéd'policy optimization

systems if so desired. R o7

There is a considerable range.of'cbmplexity?avai¥5ble in foref

casting techniques. One basic method which has fogﬁd~

considerable

'écceptance and is.widely.usedgisgékponentialASmoothing. The ease

and speed of computation together‘withtheVery sma1l

-

amount of stored

information required to pro ject histOrical'dataxintosthe'future;makes

exponential forecastingfa highly useful tool. ‘Brown3’4ztr¢atsthe

»
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basic properties of exponential smoothing models and develops'several
variations which remedy certain shortcomings of the basic model. A |

| 12
whole group of models has been discussed_ by Fleisher.

The presence of various p?oper%ies in the time‘se£ies data has
been exploited in the design of some models. Cohen5 considers the
affect of autocorrelation in the input data. Hinich and Farley
consider the problem of model desigﬁ for data with nonstationary
~mean,’ One particular~type~ofgmbdel-Which has'attracted;attention is
the adaptive exponential smoothing'mgdel. An adaptive model adjusts
the nature of»the.for;cast'according to the accuracy of prior fore-
casts. Basson52 discusses the propérties of adaptive forecasts under
certain conditions of error and,ﬁhenwnonstationary data is being
handled. 'Hester21 looks at the adaptation to data which has step
jﬁmps in the mean. Nerlove and Wage32 andTheil~and€Wagé4OéQQSider“

some of the factors determining an optimal adaptive forecasting tech-

| \.
nique. " Y

Chapter 2 will consider someof the general prdpertiesuofiexpon—

iential smoothing, and will consider the adaptive»exponentiaffémbothing

) 41 . 39
model of Trigg and Leach4lAanddtwo of the models of Salmon.

‘Another forecasting technique which has had considerable theoreti-

cal treatment is spectréi_ana}ysis, This procedure haSnéVOIVed.ouf__

of research in-the.areasﬁﬁf power spectra anaixsis énd:cémmunicatiop o
theéry. A number of~works;havetreéted Withﬂthé:theony of spectral
aﬂél&sié for time séries analjéis, includingthébOORSIOf‘Blaékmani

and Tukey1 and Grenander and Rosenblatt,17 and articles by Parzen.3§’34’35
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A number of additional works dealing with the theory of spectral \\\;\\\\\\\\\

analysis appear in the bibliography.

Application of sﬁectral analysis has been made in a wide variety
ofareas.‘éféﬂééfandﬁatanaka16=discussthe ﬁséofwsﬁééifélaﬁAIYSis
in handling economic time series data. Nerlove31 applies it to
analysis of seasonally adjusted.econémic data. Elmaghrabfguses-it
in;forecasting for inventory control. Examples of the appliéatibn

of spectral analysis in analyzing data are found in Fishman and

iKiviat'sll work with simulation models and Larson'sz8 application ‘to

sequences of numbers generated_by a random number“generatqr; Analysis

of-oceanographic-aﬁd:meteorlogical détamhaSTbeen another1aréé¢of
application,.

In order for spectral analysis theory to 'a;).p.l-y_, certain assump-
tions are required to be met by the data. Most 11ve data will not
completely fulfill these -rf’equ,,ir‘ejnen;t;s + In addition, the technique
is far more Qifficult to apply and requires considerable data and
computations. The theory of spectral.analysis, tqgethef Withwthe
associatedilimitations’andzdraWbéckSJOf'theiteéhnique,iwili be

- ‘discussed in Chapter 3.

—

The intent of thiszstudyfis tdugompare;3§vera1 adgptixe_expggen-”_;nxm.

tial smoothing techniques with spectral analysis via a controlled
set of simulation experimenfs. In order to do this, a time series
- generator, described in Chapter 4 was designed. The:Selection of

-~ P

values for various'parameters in this model permitted evalﬁatidh~b£

the forecasting capabilities.of ﬁhe.ghosenmprocedures." The techniques

e NSl & L) M™% o oot o s oo 1
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- , P -
| ¥ of Fiddleman10 and Hester<l in the construction of forecast compari-
B | Son tests were considered with respect to mnature of the time series
ﬂ | generator and evaluation of the results.
The parameter choices, experimental data, and statistical
methods used to analyze it are discussed in Chapter 5,
The results of the analysis and conclusions drawn are treated
E | ) r“ .
; 1 * in Chapter 6.
Some additional areas of investigation were suggested by cer-
~ ,)- " tain problems eéncountered during the experimentation. Other possible
f eXtensions of the=workralso seemed of interest., These are discussed
in Chapter 7.
! |
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EXPONENTIAL SMOOTHING MODELS

2.1 Moving Averages‘and Elementary Exponential-Smoothing'Models
Exponéntial smoothing has found great acceptance as a forecasting
technique. The broperties of this technique can be shown by first
considerihg_moving averages. Given a discrete time series X(tl),
X(tz),..., Xiti),..,, X(tn) one proceduré available:for prediction

of the next period is the average of the latest K periods, i.e. s
1

K-1
f.n+1 = E Z Xn-i
i=0

where $n+1 is'the fo;ecast fOr perianfI4
— K is an integer,fKi> 0, )

‘ X,y is the:Vﬁlue-for*time n-i,:i.e; Xhﬁi':“x(th-i)’

\ The response of such ‘da model can be quite satisfactory for a
stable process with 1little ﬁrxn01ééasonal or trend effect. The
magnitude of K determines the rate.Of‘response:tozéhanges in the time
series data. A,Iarge value for K causes réaqtionto.aﬁchange‘intthe
time series to be slow; but_yiéldS'a-more;stabléffarecagtfwhgn'there
is présenta large random error; A small value ibr;KgcauseS'more~

rapid reaction to changes, butfat the eXpenseaofjstabilipy; When a.

- trend in the mean is present in:the time series, the moving average

will constantly lag behind the trend. The presence of seasonal com-

ponents in the'timefseries_ganihave‘differént results dependent upon

K. For smaligvalues'of'K,Zthéfmodel”rQSpOnds to the seasonalicbmponent;

but lags behind the variation caused by the ‘component. For K of

magnitude about equal to the period of a seasonal component, thé‘éfféctsa'

-
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of the seasonal variation will be averaged out, and no fesponse to

the component will result.

Exponential smoothing can be viewed as a form of weighted moving

| ; | . 3 ‘
8 average. As presented by Brown » 4 the basic model for exponential

t _ smoothing is:

‘n+l

(2.1) £ .= aXn +(1-a )£ ‘_ .4 .

'ﬁhere fijisifhe_fOrecast for period i,

a is the smoothing constant, 0 a < 1

— ’

'Xn,is?tﬁe historical value for period n,

By application of relation (2.1) re cursively the following relationship

is found:
\ & . &ed ) X n+l v n n_l R W \ 4 hadlp & n—2 e.e o )
- + * e
a(l a)kkn_K ,
| 7.~ It can be seen in equation (2.2) that ‘the forecast £ .1 uses all
‘ - historic data, but reduces the effect of data that is Kil periods

. | : k ’ e
} past by the exponential weight a (l1-a)". For a constant (infinite)

I e ey W e ey b v v

seriés~X1 = Xz = see = X2 = ... = X, the forecast,would.ﬁe*X,-sihce:

*'f'-n+;1 = aX + a(l a)X.+ ces a(l-a) X +

&
L T L T At e

a X [l + (l-a) -+ (1—0)25-}- ..?]

: ) ’ 1 _ a_x _ o - _ |
o X [ 1-(1-a )J_ a = X. : | -

1 it
, ] &
: e

7 ; - . . 5. [

‘The effect of applying the technique to a finite constant time " ¥ i
!

SinGS;of'iength" n is as follows: w"}“ ) | B}

I -

......
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fn+1 = aX + a(I a)x+ ceo. *+ a (1-a) 1x

=aX |1+ Q-a)+ ...+ (l-q)

. - _ '- n
o X [ 1-(1-a ) ]___ X [1_(l_a)n]°
. 1-(1-a )

n-1

s~

Al

Since a >0, (1-a) ¢ 1 and for moderate n, the size of (l-a ).n will

be small. Hence, the error of this forecast will normally be small

when using a finite amouht'of history data, e.g.:

—_—

| n
10 25

0.1 .349 7.6°10"

4 .. -8 Sample of errers for)

0.5 9.7‘10— 3.10 ° - .

a given and n.
The result of using exponential smoothing is to weigh the most
recent historical value by a , and every other historical value by

lesser weight. One;measureuOf:the'pe}formance ef*theitechnique is

1ts response to specific perturbances in the time series data. One

The exponential smoothing'model reacts‘by a change of aq times the
difference in the two levels in the firSf;fonecaSt»fOllewing the jump.
Subsequent foreeastsrapﬁroach thenewvalue‘alongeé5geom€tric.curve,ﬁ

The response to an impulse (a one periodqperturbahee) is ‘the
same in the fi’r;st pe”riqd- :;fb‘llo;w._i{ng as -lfo,.r the: jump in .m"e,an-,; The

& .

original value is approachéd during subsequent5perigds;aiong;aw

geometric curve, | -
'The-eXponential smoothing model does not react in as satisfactory -~

4y

a faShionlto a time series with a trend in the mean. When a trend is

introduced into a constant time series, the subsequent forecasted




values will fall for several periods farther and‘farther behind the

actual Values untii reaching a point where the forecasts change at

a rate equaf to the trend, butllag a éonstant émount béhind.hhln
order to correct the lag behind trend cOmponents, several variatioﬁé
of the basic exponential smoothing model have been deﬁeloped. One of
these is the trend adjusted model which adds to the forecasted vélue

an adjustment term representing the estimate of the trend. The model

=

is as follows:

~ _ l1-a |
fn+1'" Yn * . b,

and Y, = a‘Xn + (l—a')yn—l
bn = q (yn = Yn._.l_) + (1- a)bn-l
where y, the smoothed average for the i'™™ period

:b,i is the smoothed trend estimate for'fhe ithaperiqd

~aVeragé and usihg the-resultingAestimate'of theftrend.to‘adjust the

forecasted value.,
Another model which is aisoafrend adjusting;is the se¢ond order

exponential smoothing model, This model has the following reciirsive

Hence, the model uses the most recent present value, together with
| )} ; ol

| 1
the forecasts for the latest two periods and uses a s

moothed value of
the error and direction of change in these forecasts to calculate

the next forecaStEdivalue;'

The response to changes in time series

1 o et gt D e A R e
L T R T ey o wcr e R L T T AT e et
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data is féirly'rapid (dependent upon the gelue of a ),fbut the fore--

casts will overshoot any"continuing perturbance before stabilizing.

at the correct value.

2.2 Advantages and ﬁisadvantages of the Models

| Several problems exist with the moving average ap‘.proach° As
mentioned pfeviously, the moving avera;e model lacks proper response
to.'*'tx"ended data. Depending vupen the choice of K; (the number of
periods used in the averége) the model may be either overly sensitive
~te.single,period_perturbances, or onerly slow in reacting to persist-
ihg‘ehéngeszinithe data,_ Another drawback of the meving average
approach is that all of the past K periods must be stored so that as
each new point becomes ava.jil:a'bl'e;_; “the K+1 point in ‘the pas t can be
deleted from the“?nerageu . A
Most of the problems -associated with moving averages are to some
‘degree remediediby exponential smoothing=teéhniques, Firstiqrder
exponential smoothing most closely resemﬁles?the;mQVing average
approach in effect, but has the edvantage-that'only One%value~need?

o

be stored for use in the next forecast. This perm;tg-ecendmyxdf

' aad

Storage,A

The trend adJusted model has ‘the further advantage of correctly

-

respondlng to the presence of_a trend nnt”at tne expense of storing

_three values inétéad,of dne, and3requireS'moretgaleulating to achieve
tnéifbrecaSt. The trend adjustedvmodel_hesdthe propertyfdf Qversneote
vingngchange'in-mean:befdre finally settling down to the preper~va1ue.

In- turn, however, it is also more responsive than the flrst/order

¥
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model to change.

e

-y
el

The second or&er mpdei'requires the storing of the two previous
forecasted values. The calculation is npt very much more extensive
than the-first order model. T;e trend tracking is satisfactory, but
the model tends toovershootcontinuing perturbanceélbefore finally

‘ 1 | stabilizing. The speed of response .is good: |

Expohentiﬁl smoothing models hence satisfactérily replace moving
average modeis{since the response of a3 K pgriod average may Ee emulated
by an exponentiallstOthing model with proper a ..‘ané-of these
models, however, w111 adjust correctly to seasonal fluctuations,

2.3 Adaptive Models

of- the time series aIGVdeteéted'td change. These types of models
‘are generally'termedCadaptive models. A number of techniqués;are

available for'determining the nature and duratioh of the adjustment

analysis. These are:

1. Trigg-Leach model (Reference 41)
2, Raiij.omOdel k-Referen»ce 39)

3. Panic model (Réferénce<39)
2.3.1 "i_Tir-ig'g-Leagh Model Description )

The Trigg-Leach model uses a tracking signal to,monitor'the

performance of the mbdel. The appropriate smoothing value a is .

determined from the tradking signal, Fbr'each;foreCast a-new a is
\ | o | |

T T TS I e e ey
R TN SO fpry et i &

T T e e yepa
N G T = il
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o R g A Ho i Bt e
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calculated. ;

The tracking signal is calculated as follows:

ts = Sen
e
n sa n

and se Y (X -f ) + (1-v)se,_,

where ts  is the tracking signal for period n,
se; 1s the smoothed error for period i,
saei is the smoothed absolute error for period i,
Y is the=smqothing:c0n8tant for the error.

For the experiments, €y~was~aSsigned the value 0.1.

TThe smoothing vélue for'beriéd*n,anj is taken as ltsn_l, It
is clear that so long as the syStemziS‘tracking;pfgperly, the
xmoothed absolute error Will‘remain n9ar-zér0, and the trackihg
signal will.flucfuate‘about‘zero,. Should the error increase in a
direhfith thé’ratioofﬁhe‘SmoothedAabsQlute.error and.smoothed error
will~m0Ve either’iO&ard +1 or -1, and the resulting a, will cause the !
most .re_:c‘ent'_; hlstory values to be we‘i*ghe'c1§ more heavily 1n the forecast.
‘AS the forecasts again decrease in.efror,-thgcorresbondiﬁg'Smodthing_
values will again drop féward zero. The smoothing done?tobfﬁe error
measﬁreﬁents prevents over-reaction to random fluctuations in the

time series.

2.3.2 Ratio Model Description

The ratiOﬁmoﬁel.uses two measures of the absolute error of the

s T _ e
B e R

s e - . 4

4
)

,,,,,,,
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forecast, a "fast" measure which responds to changes quickly, and a
"slow" measure which is much slower in reacting to such changes.
Each measure is calculated via the following first order smoothing

r

formula:

an’J = aJ. l (Xn-fn) l + (1- aJ-)an_l_v’.J-:

~where a; j is the jth measure for period i, ) : |
y Lo s

J is fast or slow,
aj is the smoothing constant for the jth measure,

The values used for afast and a

slow VYere 0.25 and 0.05 respectively.

These were the values used by Salmon and were derived f rom simulation
trials,

The value of the smoot hing value a., for the exponential ‘smocth-
ing model is determined from a n,fast and a, ,slow as follows:

.

For 2, fast > 2, siow

‘. = A + (1 - 2n,slow -
ey T ey + (1 - ) (a - a ;)
‘ n, fast

and. for &, soot { 2n,slow

A.. foct. |
o = a_ - nyfasty (o0~ a4 Y
a:n.; n-1 + (1 : Iy ) ( a n-=1 aim'in')'
n,slow : ’

-

where a, 1s the smoothing constant for the ithgpering

a . is'the ’upper'"l imit which “1 may attain,

and a_. 18 the lower 1limit which a. may attain.
- - Imin S 1 )
_For’the experiment amax‘ang, a . ip Vere assigned the values Of5 and

0.025 respectively. These values again were selected so as to agree

“with values used by Salmon.,
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.52'.,.3'.'.'3 Panic Model Description -

The panic.model_.use_s consecutive period .meafs,.u_resA‘o’f the abSQlute o
smoothed error to detect when the syéte"m: 1is no longer in control.
Thetmchosen measure is an estimated error of more than three standard
deviations from forecasted value, When such an error‘ is detécted,
the smoothing value a is adjusted to a larger value. The a is
subsequently pe'rmfit'té,d to return to its original (ilow)r-‘;lfegvel as the
system stays within the controlled limits. The me:‘:tho,dt as described
by Salmon has the fo 11‘0jv‘1_;ing relations:

AN

W= e |Gy -l v ase ey

where aj 1is the ;abs_o.‘l.ﬁ_te' smoothed error for period i ,

a, is the smoothing value for period i.

where r, is the measure of error.

A value of ..rn_ =1 represents an error of three standard deviations

(3a), r, { 1 is an error greater than 3 o, I, > 1l is an error less
than 3 o,

For r 4 1,

_ - 1 o
- | | | an B an-l + (lh?n)( h-1 ~ “mi?rlif)

where q ___ and %min @Y€ as described in section 2.3.2.

ax
- : _To show that r = 1 corresponds to an error of 3¢, -the following

development suffices:
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1

The ratio of the smoothed abSolute error to the standard devia- | ,

~

~tion is about 0.8 for a number of distributions. Hence, a,_, = 0.8
is a reasonable estimate to use for a stable process. Assume that an

error of 3 ¢ occurs in a forecast. Hence

8 = @y1°30 +(1-a,1)0.80 =080 +2.20: a ;.

(2.75 a,_1+1)°0.8¢ ~ 2.20ay.) * 0.8¢
2.20°a, _;+ 0.8¢ 2.20aq__. + 0.8¢

=1,

-
I

n-1

The above formulation adjusts the smoothing valué to correct for
increase in error When operat,ing" at less than 3 o error, the
smoothing value is stab.illized at a min’ It then takes an error in
excess of 3 0 to trigger a modification of the. 'sm‘ooth'ing value.,

One: problem 'waé found to be present in the above fb'mulea-f;i;o.n{.-
‘When an error of 3¢ occurs, the value an--lf_ for -use- in the next period
has been ;increased' as a result of smoothing the absolute errér. The
use: of the 2.75 value in calculating rn ,;req;_u--i'ires- an error ;ajrge-,r ;t;han-_
3¢ for triggering a fesponrs,e . If the first error was 3 ¢, the second
error E' must be 3.875.¢ as shown below ( a, = 0.1):

a = 0.130 + (;-1,—_(;) ..,, 1)-0.80 = 1,020

a .41 = 0.1‘E' + 09102 o =0.1E' + .9180

(2,75:0,1+1)1.020  1.275+1.020
*n+1 T T0.1E' +..918¢ = T 0.1E'+.9180

-

For a response, r

n+1 $ 1y Hence the minimum triggering value .

:i;S’ Et SLlCh ’that rn+1 =1]. He—nce:

19275°1.020'

rn+1 -

R I S A et e
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E' - 1.275.10026 - 09186

= 3.8250.
o1

Hence, the test for errors is desensitized if the 2.75 test value is
used. The procedure was modified to adjust this test value when the

smoothing value was adjusted. The adjustment used was determined as
-
follows:

An error E' equal to or in excess of 3 g causes

a =0.1E' + 0.9:0.80 = ,72 ¢ + 0.1E'

Let 2.75 be the test value K. We now wish to change K

so. that an error of 3 ¢ causes r to equal 1. But

n+1l1

= . "y —
a 41 = 0.1:30 + 0.9 (.720 + 0.1E'")

.30 + .6480 + ,09E' = ,948¢ + .Q9E'

Thus 1, = (K<0.1 + 1)(.72 ¢ + 0.1E'") = 1,7or

(.948 ¢ + .09E"')

2.28 0 - 0.1E' 3¢ - T
K = _ = -1 + —— = =] + ——i
720 + 0,1E' 72 0 + 0.1E" <72 + 0.1E'
o
But it was assumed that a = 0,80, or o= 2n-1
n=1 - e 0.8
3 .3
Hence K = -1 + = =1 + — o
| | .72 + 0.1E',.0.8 .72 + .08E'
qn-1 | %n-1

Since K is initially at 2.75, thus K = Ki i¢ = 3.75 +

72 + ,08E'

8nh-1

In order to restore K after :a'd-jﬁstment, the following was used

( T+l > D

Knew = Kprev + (1 - Tl )(2.75 - Kprev)

T o e AT A, T S oty v a1 1 et Y

S A A Sy
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This revised formulation was used dﬁring the tests.,

. 2.4 Experimental Models and Initialization Values
The three adaptive fechniques discussed in Section 2;3 wete each
tested in the experiment. The reSulting smoothing values were used
in first order, first order with trend adjustment and in sécond order
. exponential smoothing models.

- The models are somewhat sensitive to starting values for limited
history forecastid;. In order to start each model with similar values,
it wds decided to have the forecast for period 2 equal to the period
1l value, and the smoothing value equal to 0.1_for this initial fore-

cast. The forecast initial value was the first period value. The

proper values to assign to the other parameters for each model were

-

determined as follows:
2.4.1 Initialization by Method

Trigg-Leach method:

se) = 0.1(X;-f,) + 0.98e; = 0.1(X;-X;) + 0.9seo = 0.9sey,
sae = 0.1 (Xl-fl)l + 0.9saey, = 0.1 I(Xl-xl)] + 0.9sae,
= O.QSaeo,
ts, = 0.9860 = Seo
1 ——é—— —
0. sae, sae,
o = |5%
1 sae_
] H
For al = 0.1, se, was assigned the initial value 0.1 and sae, was

given the value 1.




"
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Ratio méthod:

al’fas't = 0.25 |(x1 - fl)l + (0’75)a0,f88t =
0025 l(XI - xl)l + (0‘75)a0,fast = O.7sao’fastl
Similarly 3) slow = 0.95 a

o, Slow

Since when 2] fast = 2] glow’ "-6 is not changed, the values
9 .
chosen were &, fast = 0.95 and ao’,slow = 0,75, a, = 0.1,
? : .
Panic method:

a; = dg, |(Xl - fl), + (1- ao)a0

ao |(X; - XD + (1-ag)a, = (1- ay)a,.

(2.75a, + 1)a, _2.75a5 + 1

8]

r. = 2 1.

(1 - ao)‘a0 1l - a,

0.1 =a_ -(-17% yca - .025)

. o
© 2.75a0+1
| 2
,275 a, + 0.1 =2.75 a.o + a, -
(2.75a_ +1 -1 - a )(a_ - .025) =
2 | . 2 .
2.7 a + a_ -1.75 a + 06875 a
o o o o
2 N
a *+ 79375 a -0.1 =0
(o) (o) i
‘ = .11 |
%

a_ was arbitrarily assigned the value 1.
2.4.2 Initialization by Model
First Order model:

)X

Il
o]
=~

1771

fz - alxl + (1- al)fl = alxl + (1‘- a

a

No additional values to be initialized.

First Order with Trend Adjustment model:

1 - ay

I, =X +_ < © By

e

1
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| wherelxl = o.ixl + (1- a“l)’xo 2
and by = ¢,( X - X,) + (1 - a )b,
= o"‘l( °‘1X1 + Xo - “1xo, - X)) + (1- al)bo |
al(al 179 o) + (1 l) o
| » - (1- a)) 2 20—
= @ - 1 . - -
Hence f2 lxl + (1 al)Xo + - ( alxl alxo + bo boa.l)
-a, -
- oX +% -aX +aX - o X +P -p -a%
= 0% T T % T T Y10 ey T o T T
2 | | — -
+ alxo - bo + b1 a, = 2 alxl - 2 alxo‘-+ X,
bo 2 2_ a
+ al -bo- 01X1.+ alXo -b0+bo 1
For bo assigned the value O, io assigned value Xl,
f_ =2 X. -2aX, +X a.zx+a2 =X
2 - < %% 117N 1M1 11 - 1t
Second Order model:
f2 = °1x1 + 2(1 - al)fl - (1 —u.l)f0
_Eor f2 = Xl and fl = Xl, thus
fl = alxl + 2(1 - a.l')Xl - (l-al)fo
Hence. fo = = = xl.
1l -a -1 -a
) 1
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CHAPTER 3
SPECTRAL ANALYSIS

The forecasting procedures preViouély déscribed disregard the
presence of'any autocorrelation in\the time series data in determin-
ing the forecast. The technique of spectral analysis attempts_to
utilize the information bresent in the estimate of the autocovariance
function in determining a forecast. This is done by both determining
any périodic components indipated in the time éeries data, and by
determining’"optimal" weights to assign to the historical data.

In order for the theory of spectral anglysig to be applicable,
certain assumptions about thg.naturé‘of the time series are neceésafy;
Chief among these assumptions is that of weak stationarity which.
requifes that the following hold: E(Xn ) Xn+ Y= £(7), i.e.‘the‘expecﬁed"
value of the product of two points séparated by an interval r be a
function of 7 only. This assumption is very stringent ih its require-
ments upon the time series data. One of the goals of the experiment
was to determine thefaccuracy of spectral analysis in case of viola-
tion of this assumption.

3.1 Continuous History
The theory of spectral analysis derives from consideration Qf"q_
.ég;tiﬁﬁéus function f(t’.. The autocovariance function, given infinite -

history, may be calculated. The reéﬁlting autocovariance function

c(r) is a function of the lag 7 alone, as a result of the assumption

¢

of stationarity. This function gives sufficient information to derive

an "optimal" weighting function for weighting the historical function

.
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:f(t) for forecasting purposes.
The spectral function derived from the autocovariance iS'a trans-

formation from the time domain into the frequency domain. The follow-

ing relation defines this-transformation:

. = .
p(f) = c(r) cos (2rf1)dT
- : . £
where-p(f)»ig\the spectral transform of the autocovariance
fﬁnction c(r).

An inverse transform also exists, i.e.:

D
c(r) = p(f) cos (2wxfr)df.

—

The spectral function which results from the first tranéform
permits analysis of the contributions of components at various
frequencies to the variance of the source function f(t). Tpe¢pr§5ence
of;periodiC'cdmponents may be detected from such an analysis.

In order td-detectpfrequen¢yHcomponénts present, but slightly
diffused or obscured, a_smdothing‘fHHCtiQn is usualiy app1ied to the
spectral function befdre“analySis (akin to a power filter). The
resulting smoothed function has*theéprbperty thaf high frequency
componénts are reduced in éffect, permitting bettér determination of

less prominent features. The smoothing functions,,usuallyzcalled

‘spectral windows, apply weighting functions to intervals in the range

of the function. These weighting functions have a peak in the center
of each interval and rapidly decrease on either side of the center.
Unfortunately, there will be present side loops which permit a small

amount of leakage from other frequencies. The following figure is an
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example of how such a smoothing function would appear:

Spectral window centered

on (fi, f )

itk

Ty itk

A number of spectral windows have been discussed in the iiterature.r
In some cases the choice may be made so as to minimize the leakage
from other frequencies, especially when large contributions at cer-
tain frequencies'are known to be present. " The smoothed function
resulting from the application of a spectrai window can be analyzed
for contributions at various frequencies. A reverse transformation
into the time domain yields a smoothed autocovariance functionrwh}onw__
can be used in determining forecasts. .

3.2 Discrete Case

Given discrete data, estimates can be made of the autocovariance

function. For a time'serieskx

autocovariance function is obtained from the lag products C defined:
| r
1 ~ | - y
°r = ar X Zqer fOor ¥ =0,1,...,m

where Cr is the estimate of the aﬁtocovariance function for
.

lag r (C, is an estimate of the varianoe)£
and m is the maximum lag for which the estimate is made (0{ m{n).

For forecasting purposes, the estimated autocovariance function could

be used in calculating the weights to assign to previous data points.

T

It is advantageous, however, to smooth the autocovariance function so

as to be able to determine less prominent contributing features by
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reductibnbflthe'effeété.ofL%hé.iargést-comp&hénts.fSmoothing.of tﬁe
.raw autocovariancefunctionAGiféctlyalso7int£bthes prbbiems in '
statistically placing confidence'iﬁtervaiS'on the accuracy'oi,fhe.
resulting function.-.By,performing the spectral'transformation\ﬁriof;
to smoothing, the-préblems.céncerning‘confidenceintervalsare elimin~
"ated ;;ncewell established‘statistical procedures may. be used. .This’
!faét has,been&ggeof the.more ;mportant mqtiVétioné towﬁrd using
spéétral anaiysié. o |

For the discreteicasg, a ﬂiscrete:épectrgl-transform is.rgquired.

the transfoimationnis_defined'by:
| m-1 .
| omJr - | g -
j=1 | ‘ :

where S, is the r'" discrete spectral value. The inverse relation is:

1

Cr =jﬁ(so t 2

ryr
j 9% m

+ Sh Cos rr) for r = 0, 1, ..., m

3=
A number of diécréte smoothing functions mayﬁbe aPp1ieg-%Q~thé §pectraI
fﬁnctioh}"The one used in the‘QXperiments Was the_Hémming function
defined by:

UO = .9 SO +. .5 Sl

IA
in
SZ
l
-

r * e r=1 1

., 1< r
r+1 ‘

+ .5 s
- Y m

where Ui is the:ith term of theySmooﬁhedfSpectnal.function.

- From the smoothed spectral function it -is possible to-check fbr*the
presence df.variOUS'pgriodic.cbmpOpents in the time series data. This
feasure of spectral analysis'has been used in the analysis of meteoro-

logical, oceanographic and economic time serics data.

-
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‘In order to formulate a forecast, the smoothed spectral function

can be converted back into a smbothed autocovariance function.

‘resulting function may then be used to calculate the weights which

- The

to assign to the prev1ous hlstory values in forecasting.
| - )

the previous m-1 periods:

'Given: Time series X1+ X35-.., X, with mean zero, and auto-

covariance_function Co’ Cl’ Cz,..., Qm, and assuming

weak stationarity (1 e. E(X.X;,) = ¢C,).

‘Tb_Fiﬁd; a_, al,..;,jam_l such that fn+l = aOXn + alX

+ am_l anm+1, the forecast for period n+l,{has

n 1 + ‘0 ‘e 4’

minimum expected value for squared error,

i.e.
E|(f - )2 is a miniﬁum
n+l n+]“ .
| o _
S'.t.'E. -_: E [(fn+l -Xn+l) ]= E [(aoxn + alxn_l +o.,?,o+ am_lxn_m+1
2 : ~
~ Xn+1)
m-1 m-1 m-1 2
“EIC X Z 21Ky -2 1%n-1%n41 * Xpap)
d 1=0 J=0 i=o
m"l m-l m-..l
T L L %% E(xn 1 n-J) -2 2 3 E(.Xn-ixn+1)
1=0 Jj=o = i=o
“,+ gxn+l).v o SR o IO
m-1 . | - m-1 ;
=X Z aya; C liog] T2 X 8Ciy + ¢,
i=0 '=0

(as a result of the assumptlon of stat1onar1ty)

Taking the partial derlvatlves with respect to ab’wal”"” a
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*

resulting eXpressions -equal to zero yields:

ﬁ_ﬂ_n_f_] m_M

/M

a_

8(S.E.) - n=l | R | -

6a, = %% " 2¢ =0

]
[\V)

0(S.E.)

. n

]
N

83 Z %O Ja] "2G=o

[i-3) 72 Gy

O
D
| )
1
[ \)
- =
]
L0
b
[N
Q
]
o

6(S.E.) _ n-1

Solving for the a;'s ylelds-' . N
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The resulting ai's are the weights to apply to the historical values

———— S % wa

X _fori=0,1, 2, ..., o1,
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3 3 Problems in the Use of Spectral Analysis

Ryl

Several problems are encountered in ‘the practical application

Lo
=R

of spectrallanalysis to time series. One major problem is in

v s o e aemn

~ ( determining whethef the assumption of'stationarity is met. Ordinarily, ?;l

gi the time series will not be stationary. The applicability of the_ :fj

: g technique appears then to be dependen? upon the extent of the devia- ;f

: : i }

H tion of the time series,frOm statibnarityiialthough few practical :%ﬁ

results in the area are available, Grﬂ::l.n_g;egrl’6 does discuss the effects %g

oqf4Certain“types‘of deviation upon the resultsr~ Associated with the %;

| i

problem of non-stationarity is the de51rab111ty of trend removal and i%

adjustment of ﬁhe-mean te:zero; The performing of these adjustments %I

on the source-data.maY”Yield.a time’series=SUfficient1yﬂnear to station- | 1

ary for the techniques of section-3;2%to‘be'applied; One of the goals =~ - 5 I

0f the experiments was éo determine;hbw.se;erely the presence of highly | ‘

- non-stationary data affects the resulting forecast when uSiné spectral™ g g

analysis. : . ; ? ;
Intrinsically bound up in.fhe:theery"of spectral anaiysis is the g

requirement for large amounts of time series data if the resulting
analysis is to be meaningful. In order fer~fhe results to be stable
withodt too-high a variance, it is suggested that m, the‘number of lags,

not exceed 10% of the total hlstorlcal data used In addition, it

is des1rable that the number of history p01nts used in forming ‘the
*
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.Hence, ifa component of périod,lz is present.in‘the time series,
at least 13 lag products shbuid bé éalcuiatedwf;;m;;timates of the;
éutocovariance function, so that 12 hiStOrical values wili be used
in the forecast. 1In order that ;o more than 10% of the total history
be used in the final forecast, it is required.that at least 130 time
series values be available., Anothér goal of the 9xperiments was to
evaluate-the effects of limited amounts df.data and use of more than
10% of the data on the resulting forecasts, I

| Large amplitude periodic' components can obscure other features
of the time serieséduring analysis. One procedure.that helps'reduce
this problem.isjsmqathingj'Whicﬁ was discﬁsséd,in,section.3.2. A
second technique, which can be applied to the source data, also helps
in reducing this problem. The technique is;prewhitening3'WhiCh-con-
~sists of crudely estimating'theﬁSPéthal"functidn3~determining‘strongly
contributing componeﬁts, and filtering-théSe-cOﬁponents from the source
'data; The resulting filtered data can be processed in the usual way,
and otherwise secondary components will be more feadily detected.
For use in forecasting, hdwe§er, the use of prewhitening has the draw-
back of requiring either additional adjus;ment of the final smoothed
autocovariance iunptiOn, or addifion of adjustment terms, in forming
the forecast.

A.prbbleﬁ, heretofore unmentioned is that ijaliasing. When

' performing the_spectral transform, the autocovariancé function is'

mapped into a set of discrete frequency intervals. It is not possible,

however, to determiné frequencies greater than é'cycle per interval
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of measurement. Ffequencies greater than this value (which is called

the Nyquist frequency) are mapped into lower frequencies. When an

attempt is made to analyze the frequency properties of the time series

the high frequency components are indistinguishably confounded with

- the lower frequencies. In the following figure an example is given

of the impossibility of distinguishing the two sinusoidal components

—

with a sampling interval of At:
Confounding of two-

components given a

sampling interval A t.

In order to prevent the loss of significant componénts in_ana1ysis
of time series data, it is hence necessary that the sampling interval
be of_sufficiently short length to permit deteétion of‘the;component.
If this is not done; any high frequency components will resqlt in
enlaéged values being determined for corresponding lower freduency
elements.

A final significant problem in the use of spectral analysis_is

the considerable number of calculations required to form a forecast.

'wihe calculation of lag products, performing of two finite Fourier

transforms, smoothing, matrix formation, inversion and multiplication,

and final forecast calculation require a vast number of calculations
and considerable time. It is hence necessary to assess whether any

additional accuracy possible in the final forecast is worth the addi-

tional cost associated with the extensive computational requirements

oy
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CHAPTER 4 = L o ~ !
TIME SERIES GENERATOR

In order_toicompare the forecastihg techniques gnderwexamina-
tibn, a time series generator was designed which permitted selection i

and control of several parameters while still permitting the basic

variables of the time series to be random variables. The basic model

Sy

for' the time series values used an additive model consisting of a term

for mean with trend, a term for perioﬁic éomponents, and a term fof | ﬁ
~error. Hence, the time series value TS has the folloWing form: y %
o
TSp = My + Py + Eg f;%
where TS is the time series value, i
M is the trended value for the mean,
P is the total periodic component,j
E is the error,
< and all values are calculated for period n. é
Each of the abéve values~wi11 be discussed in detail subsequently, 5
In order to.select the form of the time series generator several 5
works were considered. Gross and Ray18 mention briefly a set .of param- ;
eters which control their time series generator, FiddlemanlO used g §
rather simple modei in tﬁ; generation‘of his time series test values.
Hester21 used an additive model similar to Fiddleman's, with the
additional ﬁroperty of discrete jumps in mean.' The construction of
the generator for this experiment was aimed at_permitting contbol of —
all parameters considered of inferest for examination, whiie permitting. ;
.
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emulation of most feitures present  in the_mOdels‘diSCussed by the

above authors. ‘An additional aim was to permit generation of time

series which were highly non-stationary. The model which was finally

——

designéa\géémed\to\gg\gireasonable compromise of any conflicts in the

several desired goals.

were used to generate the uniform and normal random deviates respec-

T S AT S L T e T T e T L S T e T I e DR P e
T e YA R e AT e 2 i S T T T R e e e e Ca s e RS Sl G A s r R RN R I e G LT
L AV A TS, BTy S SR e A e L e D T e 5 hhis 25 = 4 Fn IC A DAL S A e T e T} Lol e T Y
( - .
»

tivély required in the CQUrse;of‘thevexperiments; A médifiéation of

GAUSS was used in-generatingﬁautoéorrelated values for evaluation of

autocorrelation;on:time:seriés analysis.
. , 4.1 Mean, Autocorrelation and Trend

The mean generated by the modél consisted of several components. .
The initial value fﬁr the mean wés fed to the program, together with
ian-autocorrelaﬁidn.number and standard deviation. Subsequent values
for the mean were derived from the current value By selection (using.
GAUSS) from a normal distribution with the current value as mean and
with the given'staﬁdard deviation., The autocorrelation number was’
used to select a degree of autocorrelation between the current value
of the mean and thg new Value. The_autqcorrelation was achieved by
reﬁse-of vdlﬁeﬁjuséq_by,GAUSS is ¢alculatingfhe normal deViate; The
o value for ﬁntrended meaﬁ was thnsfcalculated: ~
. : | MO = N(M1, SD, A)
where SD is the standard deviation,

M1l is the current Valﬁe for the mean,

A is tﬁe autocorrelation number,
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N(a,b,c) is a normal distribﬁtion with parameters a,
b, c

‘The calculation for the normal deviate was made by the following

technique:
412 _
5= 3 R
i=1
MO = (S -6) * sD + M1
where S = sum of twélve random numberS'Ri
(Ri uniform on the interval (0,1).)=
L

The reusé~ofﬂone QeroredRi causes a degree of autocorrelatién
between successive values. The degree of thiS'aqtdcdrrélation was
c0ntroi1ed by A,'WhichspeQified the number offRifs to be reused
in the calculation:of‘suCCessive means,

The trend components were linear and quadratic. The coefficient
for the linear element was selected from a uniform distribution
Qpegified'by parameters. The quadratic coefficientlwa3~obtained from
a normal distribution with mean zero and paramqterfépecified standard
deviation.A The durations of these trend values were also treated as
random variables, selected from a uniform diétfibution whose limits

were specified by input parameter. When the length of time'specified

for mean and the trend coefficients were changed. The choice for new

value of the mean was selected from a normal distribution with. current

mean .as the distribution mean, and parameter specified standard devia-

tion. Hence, the mean plus trend was calculated by the following:'

;
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D = U(D1, D2)
Qhere D is the duration‘of the trend comﬁonents,’
U is the uniform distributionAon interval (D1, D2).
e M=MO+1t 'L+t2Q .
where M is the value for the-mean,.
| * MO is fhe new mean without trend,
. t: is the number of periods for which the current trend.
values have been in effect (0 < t < D),
L is the linear trend coefficient, ﬂ
- Q is the quadréticﬁtrend coéffigient,
When the frend components had reached the end of their period of
effect (t > D), the following changes were made:
M, =N (MO', SM)
?Where:"Mn is the adjustedealué of=thegcurreht:mean,}
M, is the former value of the current mean, i
i and SM.is;the Jump-point standard deviation of the mean,
L = U(P1, pz) '
where Pl, P2 are the end points of the uniform interval U.
Q = NO, 5Q)
where‘.SQ_is/the quadratic component Stapdgerdev;ation.

A new value for D was also selected from its uniform distribution. ’\\
The rationale for the choices made in the construction of the
mean is the following: for some processes it is reasonable to suppose

‘that on occasion, the factorS'controlling the process will suddenly g

alter, causing a change in the mean to some new level. . For processes
Ll T4
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such as saleé'or usage, it is also reasonable to-suppbse"that preiibus_
trend values will no ldnger be appropriate when a*change in level
occurs. Hence, the changes in mean and trend have been chosen to
occur simultaneously. Tﬁe choices of distributions from which_to draw
new valﬁes were primarily arbitrary; but to some extent selected for
reasonableness and similarity to distributions used in the other data 
generators previously mentioned.
4.2 Periodic Perturbances

In order to permit some flexibility in the periodicycomponénts
of the model, three separate periodic elements were permitted. Each
had individual parameters available for specification of its properties.
The periodic terms were each sinusoidal with specifiable éeriod and
amplitude. In order to permit greater flexibility of these terms
two additional sets of parameters were used., One_set.controlled'fhe
period location of §ach componen% at time zero. The other set of
parameters specified a standard deviation for each'periodic'component.
These standard deviations were used in a normai distribution in order
to vary the exact periodicity of the components. The reason for the
inclusion of such an element was to permit some testing of the effec-
" tiveness of smoothing the spectral function in detecting diffused"
periodic-components; The perngiq components were calculated_as
follows: |

P = Al * sin(2wPl1) + A2 - sin(2m P22) + A3 - sin(2r . P33)

where P is the periodic component,

{ N

. Ai is the amplitude of the ith compbnent, i=1, 2,3
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and Py, = (M +cC, + Vi)/P;, i=1, 2, 3
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where M is the period number

P

C; = N(o, Si), a perturbance normally distributed with .
- mean zero and standard deviation Si’ .. , | '

s

V, is the period at time M = 0

b

and P; is the period of component i,
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o
el

4;3 Error Term

—t

TS

S T

" The error term was chosen to correspond to the common assumptions

RS

about the nature of the error, namely that the errors are normally

distributed with mean zero and have no autocorrelation, Hence, the ‘/*{

error term had the following form:

A B S D s T

E = N(O, SDE)

where E is the error term with standard deviation SDE.

4.4 Summary

d. In order

to test the forecasting ability of the various models, the parameters

were adjusted so as to increase the contribution to the time series )

of certain components.

The forecasting models were then tested in

forecasting the resulting series,

The'flexibility of the generator

in emulating many different models permi

4

tted a number of characteristics

of_time series to be evaluated as to effect on.forecasts.




- CHAPTER 5 L

PARAMETERS, DATA, AND ANALYSIS PROCEDURE
In éonduCting the experiment, certéin of the>§§ailab1e para-
meters werelchosen as those for which evaluatiqn of the various
forecasting techniques was of interest. 'Thesepgrgmeteré were
then assigned levels and experiments were performed. The resulting
data were in thé.form Qf sqﬁared;fdrecast error for the last
twehtyffohr:periodsﬁ0£athe.geneféted'timelseries, These data
were then ;'an-a.-lﬁy_zﬁed by X 2 tests for ;é.-‘,ign‘if_i’c<an,ce- of each techique
over combinations of treatments and for significance of the
-ﬁ%e'é'hlniqjucs. when compared. From these analyses, the conclusion

oijHapter.G'wera‘drawn,

5.1 Choices of Parameters and Levels

tOf‘theknumCrousparameters avairableyin'the*timéﬁSeries-madeL

for evaluation, each at two level S. These were:

if ’Numberfof"points}generateduin the time series. The low
level was 75; the high was 150. 1In each case, the last.

24 were forecasted.

2. -Autocorrelation of the»meén. For each new value of the
mean, twelvéyunif01m§random numbers were used to calcuiate‘
thé.new valuéhfrom.thefprevious value. (See séction_4;1)w
’The-autocorrélﬁtion.Was:determined by the number ofivalues

' used in common from. one period to € next. The low level

for adjustment, six parameters (or groups of parameters) were chosen
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was choseh as g; the'hiéh 1eve1 was'10.
3. The error standard deviation. The errors were drawn from
a normal diStribution with mean 0.' Thellow_value for
the standard deviation waé..Ol, the high value .05..
B '4,.:The Standard deviation of the mean. After a.base velde
“ - | ' fer the mean was selected, an amended base value was
'selectedgfromia normal distribution with mean equal to tpe;
original base value, and assigned.standafd deviatidne
The low level of this standard deviation was 1, and the
high level 5.
5. Trend components (See section 4.1). Two pbétidnSidf'thé

trend were varied'together@ The first was thedlength 6£

the tredd, whichiwaS'unifbrmiiﬂdistributed.over*an.aSSign~
ed range. The low level w;;a'.e set at. 2 to 6 periods, and
the high at 9 to 15 periods. 'In'eonjuﬁetion WithffHESe.
values ‘was the choice of standard deviation of theiquadra-
tic component coefficient. Associated‘withdthe low level
g . :ef'the trend length was a StﬁﬁdardeeViatiod'fdr the
quadratic component of 1, and with the high level, a valiie

of .05. The‘Smailer'VaIﬁeffor the high level was necessary
so that the larger number .of periads for_Whidh a particular

trend was in effect did not result in'the‘qpadratic com-

ponent dominating the trend. ) - o -

6. .The periodic components. Three periodic components. | ;
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were perﬁifted in each_timesefieé geherated.. For the
1experiﬁents, these components were assigned periods
of twelve, six and four. The maximum amplitudes of
these three componEHféiﬁére assigned two ;evels, a iow
level of 5, 0, and O and a h;gh level of 5,2,iand i,
All other variablés were held at fixed levelé; There were:
Starting random number = 127.
Beginping;mean = 100.
Coefficient of linéar component of the;trénd} uniform
on 1-5.
Periodic component periods = 12, 6, 4.
Standardfdeviationé of periddicxcomponenfs‘:»Oxfor&each,
Points in~periods:of;périodic componenfS at t = 0 were
l, ,02 2.
A fuller description of the meaning of each of these parameters
is found in ‘Chapter 4,

5.2 Nature of Experimental Data

It was assumed that the forecast;érrgrs for a forecasting
techniquefwere normally diSf?ibuteda Under thisiaésumption,
 éé¢h EQﬁared;f&regast"erfﬁr‘wQUId;be Zkg;ﬁisffibutéd withi1 dégree
- " 'Oi'fréedbmw ’TW?hty&fbur conseCUfive-pQriOdS,andfheir associated

squared forecast errors were used as the evaluation for each

four values for a technique in each experiment should then be Ixz
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_;Nwith 24 degrees of freedom.

5.3 Statistical Procedure Used to Analyze the Data

Two types of information were desired from the data. Infor-

mation concerning the effectivéness of a technique in forecastihg

a time series Qith a feature oi set'Oflfeatures present was de-
sired, In qddition,;an_overall}cpmﬁafison'of the'férecastingz
techniques over those values for-Whid£ é'technique was fouhd to be
effective was of extreme interest., In order to obtain these types
of information, the analysis was carried out in two: parts. The

first portion of this analysis looked at each technique separately

over the 64 (6 factors at 2 levels each) treatments on which the
technique was tested. fEOr each treatment (representing a parficular
fixed level for each of the parameter sets), the data was divided
into two equal sets of 32_points; One of these;sé£é¥fépresented a
high level measure of the treatment, and the other a 10w-leve1.

An F-test was performed for these values by dividing the larger

by the smaller. The degrees of freedom for the numerator and

-denominator“were.bOth equal to 32 x 24 = 768. A ratio in'excéés &

of 1,33 represented a significant difference at the 99% level.

This denoted a failure_of the techniguekinysuqceséfully handliné;_ ’ .

the treatment. 1In this fashion, each of the techniques ov;r
_ alilpf its treatments could be so classified.

In order to then compare the performance of the techniques,

another series of F-tests was performed. The experimental data
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was adjusted on the basis of the results of the first'Fitests
by removal of those points for each technique for which it did

not Satisfactorily perform. The remaining points for each

technique were then summed. The resuiting“valuesiwere then x 2

with Ci degrees of freedom wheTE@Ci-=*24 n,, and«ni = number of
points used in the sum farftechnique*(i)jfiv=~1+12; . These values

were then evaluated in pairs with F-tests; dividing the values

by their respective degreeswof‘frEedom‘and“thengchegking the

e gt e ey L,

ratios againStwthe?correqunding_Fﬁvalue for the number of degrees

of freedom of numerator and denominator. The values here were

tééted'at the 99% levelf with those values in excess of 1.19 peing

considered significant. Significance indicated a real difference

of the two techniques inlfOreCastingability”over those factors

Tor which each was' satisfactory.,
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T - '~ ~CHAPTER 6

— . EXPERIMENTAL RESULTS AND CONCLUSIONS
- The data which resulted»from the’experimeﬂts éonsisted of

V&luesﬁfor each df the.lz‘forecasfingtechn;qugs at ea¢ﬁ‘of‘£he'

64 treatment points-(représenting each of the 6 factor groups

at 2 levels), QEach.of'tﬁésefdata points was assumed X 2 with

24 degrees of freedom. -(See 5.2) The results of the two stages

of analysis (See 5.3) follow in the next two sections.,

6,1 ResultSzoffTechnique Evaluation over Each Treatment

Each of the techniques tested was found to fail on at
least: two treatments. The results, by technique, follow:
1. RatiO“with'First~qrder‘Smoothingy,Eailed oﬁ:twa‘treayments:
a. Trend alone.

- b. Interaction of Number of Points, Trend, and Mean

Standa£d Déviéti0nu
;Za»lRatiquith TrEnd-Adapted‘First:ordér:Smoﬁthing@ Failed
-Qn.threeﬂtreatment5$ 1
a, Number of Points alone.
b. Trend alone.,
va-iMeﬁn-StandafﬁfDeviatién alorne .,
;S;T_Rafi0>with Second Order Smoothing. Faﬂlednbn;two-treatments:

2. Mean Standard Deviation alone.

i} b. Autocorrelation Level alone.,

s et




4, Panic with First Order Smoothing. Failed on eight treatments:

a. Number of Points alone.
b. Interaction of Trenﬁ and. Number of Points.
Trend alone.

Mean Standard Deriation alone:

Interaction of AthCerelaﬁion‘Level and Trend..

Interaction of‘Autoqorrelatiph‘bevél, Trend and

Number of Points.
Interaction of Autocorrelation Level and Number of
Points.
h. Autocorrelation Level alone.
Pani¢ with Trend Adapted First Order'Smogﬁhingm Failed
on ele&en‘treatmentsi
a. Number of Points alone.
Interaction of Periodic COmponént;and_Number“éf"Pdintsi
lﬁteractiﬁnan‘Trend and Periodic;COmponént.
Interaction of Trend and Number of Points.
Interaction of Mean Standard Deviation, Trend, and
Number of Points.
.
 Méan'Sténdafd,Déviéfion:aioﬁe@
Interaction of Autocofrelation,Level and Mean
Standard Deviation,% | ﬁ

Interaction of-Autocorrelation Level, Mean Standard

Deviation, Trqu, andJNumber*offPointst

¥




k.,

Interaction of Autocorrelation Level and Trend.

Interaction of Autocorrelation Level, Trend, and

Number of Points..

Autocorrelation Level alone.

Panic with Second Order Smoothing- Failed on eleven

treatments;

a' )

Number of Points.

Number of Points alone.
Interaction of Trend and. Number of Pointé,
Trend alone.

Interaction of Mean Standardgﬁeyiatian,7Tréndﬁ.andg

Number of Points.

Interaction of Mean Standard Deviation and Periodic
Component, .
Interaction of Autocorrelation Level, Mean ‘Standard

Deviétionﬂand Periodic Component,

i

Ihtéraction,oftAutocbrrélationfnevel;'Mean Standard

fDéViatiQﬁj Trend, andiPerio&ic Component.,

Interaction of Autocorrelation Level, Mean Standard

Deviation, Trend, and Number of Points.

. Interaction of Autocorrelation Level, Mean Standard

Deviation, and Trend.

Interaction of Autocorrelation Level,“ngnd, and

—_—

v -

Interaction of Autocorrelation Number snd Numbér

of Points.
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10.

Trigg-Leach with First Order Smoothing. Failed on four

treatments: - -

a.

b

- Number of Points_aldne‘

Trend alone.

~——

Mean Standard Deviation alone.

Autocorrelation Level alone.

.l

Trigg-Leach with Trend Adapted First Order Smoothing.

Failed on all treatments.

Trigg-Leach.With~Second Order Smoothing. Failed on

six treatments:

a.

.b.

Co

f .
Spectral Analysis - 7% of History. Failed on seven treatments:
 a,

b.

Co

2.

Number of Points alone.

Trend alone.

Mean Standard Deviation alone.
'InteractionJof;Autoéorrelation,Leveland Mean
Standard Deviation.
Interactioﬁ<Qf~AutdcgrrelationfLeveI,nMeahjStandard.
~Deviation¢ and Nuniber of Points.

Autocorrelation Level alone.

Interaction of Trend and Number of Points.
Trend alone, | | |
Inter;ction_of Mean Standard Deviation and Number
of Points.

Mean Standard Deviation .alone.
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Interaction of'Autocorrelétion Level and Mean
Standard Deviation.
Interaction of Autocorrelation Level and Trend.

Autocorrelation Level alone.

Spectral Analysisv; 10% of History: Failed :on six:

treatments:

a.

b.

eo

f.

Trend alone

Interaction of Mean Standafd Deviation and Number
of Points.

Mean Standérdeeviation.alﬁneg
Interaction of Autocorrelation Level and Mean
Standard Deviation.

fhteraction of Autocorrelation Level and Trend.

Autocorrelation Level alone.

Spectral Analysis - 20% of History. Failed on six

Q.

b

treatments.

‘Trend alone.

Interaction of Mean Standard Deviation and Number
of Points.

Mean StaﬁaardeéQiatibn"aiéne;‘

Interaction of AutocorrelﬁtionwLevelvand'Mean
Standard DeViation.‘ .

Interaction of Autocorrelation Level and Trend.

- Autocorrelation Level aldne}




These results indicate'which techniQues should be avoided for:
time series doﬁiﬁated by certain'types of errors.

6.2 Results of Technique Comparisons with Points of Failure:

Removed

N

The results presented in 6.1 were used to delete those points
for each technique for which the technique had failed. The
remaining points were then compared as described in 5.3 with.the

following results:

Technique | Sum of Degrees of
(Numbered as in 6.1) Points " Freedom

1 179,048 1488
2 84,820 i 1464 -
3 94,897 1488
4 3,742,480 1344
5 445,396 1272
6 712,126 B 1272

o€

7 76,301 1440

9 77,348 1392
10 " 64,579 . 1368

12 63,281 - | | - 1392

s ottt A - o 2 =

R, By T Ty O N Y ey e s PRt ~ IV T = e L) Lot g

Cob T Ty T X 2 A T e L e e 5 A e R e R R R e DA S 5 R e cR s e
.

.

T e P ey oy et Y Err e Rt T
B o S i RN e O e RS e AT Sk emos v p e n

I e e e o e 2 R T i P



The F-tests conducted on the above values yielded the
follo&ing results.

Techniqué 11 better than 1,2,3,4,5,6,7,9.

* Technique 12 better than l,2,3,4,5;6;9;

Technique 7 better than 1,3,4,5,6,.

Technique 9 better than 1,4,5,6.

Technique 2 better than 1,4,5,6.

Technique 3 betterv%han 1,4,5,6.

Techn%gue 1 bettethhanu4;5,6;

Technique 5 better than 4,6.

Technique & bétter than 4.

Technique ‘8 was not includsd in the analysis as a result of

having been found ineffectual for thé:fachrssunder~consideration,;

6.3 Observations and Conclusions

Based upon the resulfé discussed in 6.1 and 6.2, certain
~conclusions can be drawn. Spectral analysis, using 10% of the
available history data in forming the forecast, performed with

higher accuracy overall thanxanyfofwthe adaptive forecasting

techhiqUeS'teStedo The three spectral analysis forecasting models

-, all performed better.than thé panic ahd ratio adaptive techniques., -

In addition, the three spectral analysis techniques all failed to

perform satisfactorily when certain components dominated the time

¢

series, Thése componants were trend or stanidard deviation of the

Y

mean or autocorrelation of successive means, and some of the

interactions of these components. The problems with trend and

R R e vy T e e D eyl Y
e SRRl

o
AT

s

e EERTTS

2

DORR SO ri e




mean dev1at199_cou1d have been anticipated, since spectral
analysis is not designed to deal with these types of variation.
The lack of proper response fo conseeutive period autoqorrelation
is surprising in that the technique relies upon autocorrelation
-espimates to operate. fhewsuccess'of spectral analysis on the
number of points factor Was.alsouof'interest. It is normally
suggested in the analysis of statlonary time by spectral analysis
that as many as 200 points of hiStoryare“desirableafor successful
operation. Heére it was found that as fewwas_si points of history
'apparently could be used. (The first forecast for 75 p01nts used
only that amount). Using the ranges from 51-74 and 126-149 did
not seem to result in significantly different foreeastqaecuracies;

The complete failure of the Trigg-Leach'with-trend-adapted
first order smoothing model, taken'with the good performance of
the other two Trigg-Leach models i1s very interesting. It appears
that some degree of interierence.mﬂst~arise between the‘adaptive
technique and hybrid,smOOthing model. The problems which_may
arise in combining two techniques,PErfOrming-different function
into a singlewunif is indicated.

Another 1nterest1ng result of the experiments was -the fallure -

of all but two of the adaptive models to handle satisfactorily‘the

change in number:of history points. There appears to develope,
over the course of operatien,bf'these models, a build up of

inaccuracy. This may be a result of the continuous modification

~of the‘smoothing value;‘mhich causes the eéxponential smoothing
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model no longer to be representable even remotely by a
geometrically weighed series. Since the smoothing value is
permitted to vary téward 1. at-times, the historical data can be
very rapidly discounted and thus lost. This property df adaptive.
modeis sh6u1d be investigated if the model is to be used over a
long period of time.

The similarity of response of variations of each technique
(excluding the Trigg-Leach model with trend adapted first order
aasmoothing) waS'eyidencédﬂby'the.grouping'Which‘occurpéd in the -

final comparisons, and‘the-general similarities in points of

niques;, in.general; d0minateda The:

failure; The spectral tech

the other adaptive models. The panic models, despité the changes:
to improve sensitivity, Still.gaveﬁunsatisfactory'perfOrmanges,’
with fewer successful treatment handlings, and larger overall
errors. The ratio model was much léss successful when used with .
first order smoothing than with the other two-smpothing'models.v
For the panic and ratio models the best performance was found in
uéing the first order %rehd-adaptivefmodel, But, as notedg‘the

'. Trigg4iie ach model completely failed when usmg the model .

In géneral, it would gppearfthat spect?al analySis{ forﬁaccuracy,
Wéives the best forecaStinglagcgraey-fqr'series.pot dominated by
short variable trends, wide variations in the values of_thelmean,

and autocorrelation between the means of successible periods. This

aceuracy is obtained, however, at the expense of much greater




cho 1Ce o

o0

N0 g, T
e

computational'and storage requirements and much more fimé than the
adaptivé exponential smoothing techniques; Thefbest adaptivb model
tested was the Trigg-Leach with first order smoothing. It outper-
formed all but the Trigg-Leach with,second order smoothing model
and the ratio model withvtrend adapted first order smoothing, which
were not found to be significantly poorer in the E>teSts performed. -
The Trigg-Leach model is theé most simple‘of the:aﬁaptive_modéls
used and requireé the least CQmputation. Care is indicated as
necessary, howéver, in selecting a model for use. The complete

failure of thé one”TriggaLeachgmodél indicates that lack of proper

eévaluation may result in a totally unsatisfactory forecasting

'With-regards~td.the-six factor groupsmevaluated, thegfblléwing“'
selection of modelsfis indicated:
1. Autocorrelatioh,Bétween‘SucéesSive'Means.dQMinating; Ratio
model with trendiadapted'first order model.
2. Error dominating: Vaiues,selegt¢d~gaVéhno.indicatignasz

to best methOd C L

3. 'Variation.of‘Mean dominating; ARétioﬁmOdel-Wiih;firstzqrdér-

j\) o M.

4

4. Trend dominating: Ratio model with second order smoothing,
5. ’Periodic.COmpOnénts dominating: Spectral analysis. )

6. Number of Available History Points (assumed at least 50):

Spectral analysis.
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All interaction series save those dominated by trend,

autocorrelation and mean variation may be forecasted by spectral
analysis. Those series with those interactions dominating may

be forecasted by the Trigg-Leach with first order smoothing model .,
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Chapter 7 | B

SUGGESTIONS FOR FURTHER INVESTIGAT ION

Sey?ral areas of investigation, associated with the'procedures
involved in the paper, appear to be interesting and worthy of
further inVestigétidn. One of these is an extension of the ranges
of the parameters used'in;thé;e#periments so far performed, with
the purpose of further clarifying and characterizing the properties
of the forecasting models. - Incorporation of some of the parameters
held constant during the experiments of this work woul@ also expand
the characterizat;dn.af'the forecasting techniques as to application
to certain types of time serieég

Anather mode of analysis could well be appliedjtojthe
experimental data resulting from this type of experiment. In the
:present work, the measure of error was chosen: to be squared error.
This choice was made becausé the formulation of spectral analysis
for choosing optimal Weights‘was based'updn;the_assumption that
the error measure would be squared error., Had error itself been
the criterion, analysis of variance could have been used for data
anélysis,:andfsome ranking technique such as Duncan's Multiple
range test-used-to~finally evaluate the techniQués. Had absolute
error been chosenjasithe‘error‘measure, thg;data would have been
hélf-normalf andﬁbthér_statiStical techhiques could havé been,usedlz

A problempencduﬁtered in applyinngpectral analysis existed

With respect to trend"removal. It would have been most desirable

‘to detect and remove the short range trend contributions. Several

"~
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approaches were investigated, but none was‘found to be effective.
Among the approaches looked at (although not in depth) were first
order and second order differences of the time eeries date, two
period differences, and first erder and ‘second order smoothing
velues. None of these series of valiues would properly detect

the short, range trend components of-the;fest series. Should some
'effecfive‘tool_fﬁr~trend:deteétion.be feuhd, the ability'to fore-
“casf.acCuratelthoﬁld'be-well-advanced,

- "'The panic forecesting.modelsiuse&'in this workvstilledid not
perform well despite changes made to improve their-SenSitiVity;
More work on these models would perhaps yield an improved adaptive
model of this type.

The whole area of adaptive models would appear to merit further
study:.. 1some of the failures of most of these models in the experi-

ments perfOrmedﬁwere:unegpected; ,Bqth;Study-oiltheSe models: for

removing these'feults could prove fruitful.

The use of spectral analySis;for'fcrecastinginbnrstationary

‘time: series gives rise to a number of possible investigations. The

number of history points used in this work was found to cause
insignificant differences. Awfurther'inveStigation“of‘the range of

points is warrented. Another such extension could involve the

amount of history data to be used in fOrmulatingythe final forecast.
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The spectral analysis procedure used in this work utilized a
standard smoothing technique (spectral wihdow). A number of
spectral windows have been suggested, mést giving excelleﬁt results
under certain time series conditions. An investigation of these

windows over the classes of time series possible with the time

* series model uséd might help further clarify the relations between

time series nature and'"bptimaI” Sm00thing~function¢

An alternate approach to'forecaSting-by~the?use.éf spectral

analysis is possible. When the estimated autocorrelation function

hasibéen transformed into the Spectrai.functionm.cértain information
concerning period“components of the time series is available. The I
use of this-infOrmafion for formulation of a model of the time
series is possible. The resulting model could theh be used as a
forecasting tool directly. Many problems are associated with the

implementation of this approach, but successful construction of

such models could yield a powerful new forecasting ‘technique.
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