
Lehigh University
Lehigh Preserve

Theses and Dissertations

2018

Computational Methods for Discrete Conic
Optimization Problems
Aykut Bulut
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Bulut, Aykut, "Computational Methods for Discrete Conic Optimization Problems" (2018). Theses and Dissertations. 2981.
https://preserve.lehigh.edu/etd/2981

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228670632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2981&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2981&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2981&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F2981&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/2981?utm_source=preserve.lehigh.edu%2Fetd%2F2981&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Computational Methods for Discrete Conic Optimization

Problems

by

Aykut Bulut

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Industrial and Systems Engineering

Lehigh University

January 2018

c© Copyright by Aykut Bulut 2018

All Rights Reserved

ii

Approved and recommended for acceptance as a dissertation in partial fulfillment of

the requirements for the degree of Doctor of Philosophy.

Date

Dissertation Advisor

Committee Members:

Dr. Ted Ralphs, Committee Chair

Dr. Pietro Belotti

Dr. Julio C. Góez

Dr. Tamás Terlaky

Dr. Luis Zuluaga

iii

First of all, I would like to thank Dr. Ted Ralphs for accepting me as a student, being

a great mentor and a friend. He has my eternal gratitude for his patience with me, his

trust in me and giving me the freedom to pursue my own ideas.

I am grateful to my thesis committee members; Dr. Belotti, Dr. Góez, Dr. Terlaky

and Dr. Zuluaga for fruitful discussions, editing the earlier drafts of my dissertation and

the feedback they have provided. This work would not be possible without their input.

I appreciate all the great people of Lehigh ISE and CORAL Lab. They have provided

a wonderful research environment.

Elcin, Onur, Emre, Omid, Amy and Matt have been awesome friends. It would be

much harder for me to finish this thesis without their support and friendship.

I would like to thank my parents for their support and encouragement.

And finally, I am grateful to my beloved wife Yagmur for her endless love and being

there for me when I needed the most.

iv

Contents

List of Tables x

List of Tables x

List of Figures xiii

List of Figures xiii

Abstract 1

Notation 3

1 Introduction 5

1.1 Motivation . 5

1.2 Problem Classes . 10

1.2.1 Conic Optimization . 10

1.2.2 Second-Order Conic Optimization 11

1.2.3 Mixed Integer Linear Optimization 19

1.2.4 Mixed Integer Second-Order Cone Optimization 20

1.2.5 Inverse Optimization . 21

1.3 Computability and Computational Complexity 22

v

1.3.1 Overview . 22

1.3.2 Computational Complexity . 24

1.3.3 Complexity of Optimization Problems 26

1.4 Basic Algorithms . 28

1.4.1 Branch-and-Bound Algorithm . 28

1.4.2 Cutting-Plane Algorithm . 35

1.4.3 Branch-and-Cut Algorithm . 38

1.4.4 Global Optimization Algorithms . 38

1.4.5 Related Methodologies . 40

1.5 Contribution . 41

1.6 Outline . 44

2 Second-Order Cone Optimization Problems 46

2.1 Background . 47

2.1.1 Duality Theory . 47

2.1.2 Existing Algorithms . 48

2.2 A Cutting-Plane Algorithm . 53

2.2.1 The Separation Problem . 54

2.2.2 Overall Algorithm . 58

2.3 Comparison to Ben-Tal and Nemirovski Method 61

2.4 Comparison to IPM . 62

2.5 Conclusion . 63

3 Mixed Integer Second-Order Cone Optimization Problems 65

3.1 Existing Algorithms . 66

3.1.1 SOCP-based Branch and Bound . 66

3.1.2 Branch and Bound with Linear Relaxation 67

vi

3.1.3 Other Outer-Approximation Schemes 70

3.1.4 Global Optimization Approaches . 71

3.2 Valid Inequalities . 72

3.2.1 Conic MIR Cuts . 73

3.2.2 Conic Gomory Cuts . 77

3.2.3 Lift-and-Project Cuts for Mixed 0–1 Convex Sets 79

3.2.4 DCC and DCyC . 82

3.2.5 Two-Term Disjunctions on Lorentz Cone 86

3.3 A Branch-and-Cut Algorithm . 90

3.3.1 Relaxation and Bounding . 90

3.3.2 Generation of Valid Constraints . 92

3.3.3 Branching . 95

3.3.4 Search Strategy . 97

3.3.5 Cut Strategies . 97

3.3.6 Heuristics . 98

3.3.7 Control Mechanism . 98

3.3.8 Overall Algorithm . 100

3.4 Conclusion . 106

4 Software for MISOCP 108

4.1 OsiConic, A Solver Interface for SOCP . 110

4.1.1 Classes in OsiConic . 110

4.1.2 Interfacing to CPLEX, Mosek, and Ipopt 112

4.2 COLA: A solver library for SOCP . 113

4.3 CglConic, A Cut Library for MISCOP . 117

4.3.1 Implementing Disjunctive Cuts . 118

4.3.2 Conic Outer-Approximation (OA) Inequalities 121

vii

4.3.3 IPM Approximation Cuts . 122

4.4 DisCO, A Distributed-Memory-Parallel MISOCP Solver 123

4.4.1 COIN-OR High-Performance Parallel Search (CHiPPS) 125

4.4.2 Discrete Conic Optimization (DisCO) Solver Library 130

4.5 Conclusion . 138

5 Inverse MILP 143

5.1 Introduction . 143

5.1.1 Formal Definitions . 144

5.1.2 Previous Work . 147

5.2 Algorithmic Approach to Inverse MILP . 149

5.3 Complexity of Inverse MILP . 155

5.3.1 Complexity of MILP . 155

5.3.2 Complexity of Inverse MILP . 157

5.4 Conclusion and Future Directions . 169

6 Computational Experiments 171

6.1 Problem Set . 171

6.2 Algorithms and Parameter Settings . 173

6.3 Hardware . 176

6.4 COLA Experiments . 176

6.5 DisCO Experiments . 179

6.5.1 bb-socp with Various Solvers . 183

6.5.2 Branching Strategy for bb-socp . 186

6.5.3 Choosing OA Cut Parameters for bb-lp Algorithm 188

6.5.4 Branching Strategy for bb-lp Algorithm 190

6.5.5 MILP Cuts for bb-lp . 191

viii

6.5.6 bb-socp with Disjunctive Cuts . 193

6.5.7 bb-lp with Disjunctive Cuts . 194

6.5.8 Parallelization and Scalibility of bb-socp 197

6.5.9 Parallelization and Scalibility of bb-lp 199

6.5.10 bb-lp versus bb-socp . 200

6.6 Conclusion . 203

7 Conclusion and Future Work 206

A Details of Computational Results 225

Biography 252

ix

List of Tables

3.1 Subproblem Relaxation and Algorithm Choices 92

5.1 k, dk, xk and Ek values through iterations 155

6.1 Algorithms based on SOCP relaxations and Solvers That Implement Them 174

6.2 Algorithms based on LP relaxations and Solvers That Implement Them . . 174

6.3 COLA statistics on Góez’s random instances 179

6.4 COLA statistics on CBLIB 2014 Part 1 . 180

6.5 COLA statistics on CBLIB 2014 Part 2 . 181

A.1 bb-socp CPU Time and Number of Nodes with Various Solvers Part 1 . . . 226

A.2 bb-socp CPU Time and Number of Nodes with Various Solvers Part 2 . . . 227

A.3 bb-socp CPU Time and Number of Nodes with Various Solvers Part 3 . . . 228

A.4 bb-socp CPU Time and Number of Nodes with Different Branching Strate-

gies Part 1 . 229

A.5 bb-socp CPU Time and Number of Nodes with Different Branching Strate-

gies Part 2 . 230

A.6 bb-socp CPU Time and Number of Nodes with Different Branching Strate-

gies Part 3 . 231

x

A.7 bb-lp CPU Time and Number of Nodes with Different bb-lp OA Cut Pa-

rameter Values, Part 1 . 232

A.8 bb-lp CPU Time and Number of Nodes with Different bb-lp OA Cut Pa-

rameter Values, Part 2 . 233

A.9 bb-lp CPU Time and Number of Nodes with Different bb-lp OA Cut Pa-

rameter Values, Part 3 . 234

A.10 bb-lp CPU Time and Number of Nodes with Different bb-lp OA Cut Pa-

rameter Values, Part 4 . 235

A.11 bb-lp CPU Time and Number of Nodes with Different bb-lp OA Cut Pa-

rameter Values, Part 5 . 236

A.12 bb-lp CPU Time and Number of Nodes with Different bb-lp OA Cut Pa-

rameter Values, Part 6 . 237

A.13 bb-lp CPU Time and Number of Nodes with Different Branching Strategies

Part 1 . 238

A.14 bb-lp CPU Time and Number of Nodes with Different Branching Strategies

Part 2 . 239

A.15 bb-lp CPU Time and Number of Nodes with Different Branching Strategies

Part 3 . 240

A.16 bb-lp CPU Time and Number of Nodes with Different MILP Cutting Strate-

gies Part 1 . 241

A.17 bb-lp CPU Time and Number of Nodes with Different MILP Cutting Strate-

gies Part 2 . 242

A.18 bb-lp CPU Time and Number of Nodes with Different MILP Cutting Strate-

gies Part 3 . 243

A.19 bb-socp with Disjunctive Conic Cuts . 244

A.20 bb-lp with Disjunctive Conic Cuts . 245

xi

A.21 Parallel bb-socp with various number of processors Part 1 246

A.22 Parallel bb-socp with various number of processors Part 2 247

A.23 Parallel bb-socp with various number of processors Part 3 248

A.24 Parallel bb-lp with various number of processors Part 1 249

A.25 Parallel bb-lp with various number of processors Part 2 250

A.26 Parallel bb-lp with various number of processors Part 3 251

xii

List of Figures

1.1 3-dimensional Lorentz and rotated Lorentz cones (L3 and L3
rot) 12

1.2 Complexity classes ∆P
2 , DP, NP, coNP and P, assuming P 6= NP 26

4.1 CPLEX and Mosek conic interface inheritance diagram 113

4.2 Ipopt conic interface inheritance diagram 114

4.3 COLA inheritance diagram . 115

4.4 CGL and CglConic inheritance diagrams . 119

4.5 estein5 A branch-and-bound tree of DisCO generated by GrUMPy – 1 . . . 139

4.6 estein5 A branch-and-bound tree of DisCO generated by GrUMPy – 2 . . . 139

4.7 estein5 A branch-and-bound tree of DisCO generated by GrUMPy – 3 . . . 140

4.8 estein5 A branch-and-bound tree of DisCO generated by GrUMPy – 4 . . . 140

4.9 estein5 A branch-and-bound tree of DisCO generated by GrUMPy – 5 . . . 141

4.10 estein5 A branch-and-bound tree of DisCO generated by GrUMPy – 6 . . . 141

4.11 estein5 A branch-and-bound tree of DisCO generated GrUMPy – 7 142

5.1 Two dimensional inverse MILP . 147

5.2 Pictorial illustration of Algorithm 9 . 153

5.3 Pictorial illustration of algorithm for generating Fenchel cut 154

5.4 Feasible region and iterations of example problem 154

5.5 A small example demonstrates conv(S), K(γ), K∗(γ), conv(X (γ)) 163

xiii

5.6 Reduction Example . 164

5.7 Claim 2 on a Simple Example . 167

5.8 Claim 3 on a Simple Example . 168

6.1 bb-socp Algorithm, Performance Profile of CPU Time with Various Solvers 185

6.2 bb-socp Algorithm, Performance Profile of Number of Nodes Processed with

Various Solvers . 186

6.3 bb-socp Algorithm, Performance Profile of CPU Time with Different Branch-

ing Strategies . 187

6.4 bb-socp Algorithm, Performance Profile of Number of Nodes Processed with

Different Branching Strategies . 188

6.5 bb-lp Algorithm, Performance Profile of CPU Time with Different OA Cut

Parameter Values . 189

6.6 bb-lp Algorithm, Performance Profile of Number of Nodes Processed with

Different OA Cut Parameter Values . 190

6.7 bb-lp Algorithm, Performance Profile of CPU Time with Different Branch-

ing Strategies . 191

6.8 bb-lp Algorithm, Performance Profile of Number of Nodes Processed with

Different Branching Strategies . 192

6.9 bb-lp Algorithm, Performance Profile of CPU Time with and without MILP

Cuts . 192

6.10 bb-lp Algorithm, Performance Profile of Number of Nodes Processed with

and without MILP Cuts . 193

6.11 Performance Profile of CPU Time using disco-cplex with disjunctive cuts . 195

6.12 Performance Profile of Number of Nodes Processed using disco-cplex with

disjunctive cuts . 195

6.13 Performance Profile of CPU Time using bb-lp with disjunctive cuts 196

xiv

6.14 Performance Profile of Number of Nodes Processed using bb-lp with dis-

junctive cuts . 197

6.15 Performance Profile of CPU Time for disco-cplex-mpi for various number

of processors . 198

6.16 Performance Profile of Number of Nodes Processed for disco-cplex-mpi for

various number of processors . 198

6.17 Performance Profile of CPU Time for disco-oa-mpi for various number of

processors . 199

6.18 Performance Profile of Number of Nodes Processed for disco-oa-mpi for

various number of processors . 200

6.19 Performance Profile of CPU Time, bb-lp versus bb-socp 201

6.20 Performance Profile of Number of Nodes Processed, bb-lp versus bb-socp . 201

6.21 Performance Profile of CPU Time, bb-lp versus bb-socp, Problems with

Low Dimensional Cones . 202

6.22 Performance Profile of CPU Time, bb-lp (disco-oa) versus bb-socp (disco-

cplex) . 203

6.23 Performance Profile of CPU Time, bb-lp (disco-oa) versus bb-socp (disco-

cplex), Problems with Low Dimensional Cones 204

xv

Abstract

This thesis addresses computational aspects of discrete conic optimization. We study two

well-known classes of optimization problems closely related to mixed integer linear opti-

mization problems. The case of mixed integer second-order cone optimization problems

(MISOCP) is a generalization in which the requirement that solutions be in the non-

negative orthant is replaced by a requirement that they be in a second-order cone. Inverse

MILP, on the other hand, is the problem of determining the objective function that makes

a given solution to a given MILP optimal.

Although these classes seem unrelated on the surface, the proposed solution method-

ology for both classes involves outer approximation of a conic feasible region by linear

inequalities. In both cases, an iterative algorithm in which a separation problem is solved

to generate the approximation is employed. From a complexity standpoint, both MISOCP

and inverse MILP are NP–hard. As in the case of MILPs, the usual decision version of

MISOCP is NP-complete, whereas in contrast to MILP, we provide the first proof that a

certain decision version of inverse MILP is rather co-NP-complete.

With respect to MISOCP, we first introduce a basic outer approximation algorithm

to solve SOCPs based on a cutting-plane approach. As expected, the performance of our

implementation of such an algorithm is shown to lag behind the well-known interior point

method. Despite this, such a cutting-plane approach does have promise as a method of pro-

ducing bounds when embedded within a state-of-the-art branch-and-cut implementation

1

due to its superior ability to warm-start the bound computation after imposing branch-

ing constraints. Our outer-approximation-based branch-and-cut algorithm relaxes both

integrality and conic constraints to obtain a linear relaxation. This linear relaxation is

strengthened by the addition of valid inequalities obtained by separating infeasible points.

Valid inequalities may be obtained by separation from the convex hull of integer solution

lying within the relaxed feasible region or by separation from the feasible region described

by the (relaxed) conic constraints. Solutions are stored when both integer and conic feasi-

bility is achieved. We review the literature on cutting-plane procedures for MISOCP and

mixed integer convex optimization problems.

With respect to inverse MILP, we formulate this problem as a conic problem and derive

a cutting-plane algorithm for it. The separation problem in this algorithm is a modified

version of the original MILP. We show that there is a close relationship between this al-

gorithm and a similar iterative algorithm for separating infeasible points from the convex

hull of solutions to the original MILP that forms part of the basis for the well-known

result of Grötschel-Lovász-Schrijver that demonstrates the complexity-wise equivalence of

separation and optimization.

In order to test our ideas, we implement a number of software libraries that together

constitute DisCO, a full-featured solver for MISOCP. The first of the supporting libraries

is OsiConic, an abstract base class in C++ for interfacing to SOCP solvers. We provide

interfaces using this library for widely used commercial and open source SOCP/nonlinear

problem solvers. We also introduce CglConic, a library that implements cutting proce-

dures for MISOCP feasible set. We perform extensive computational experiments with

DisCO comparing a wide range of variants of our proposed algorithm, as well as other

approaches. As DisCO is built on top of a library for distributed parallel tree search algo-

rithms, we also perform experiments showing that our algorithm is effective and scalable

when parallelized.

2

Notation

R Set of real numbers.

R+ Set of non-negative real numbers.

Q Set of rational numbers.

Z Set of integer numbers.

Ln n dimensional Lorentz cone, i.e., {x ∈ Rn|x1 ≥ ‖x2:n‖}.

α, β, . . . Lower Greek letters denote scalars.

|α| Absolute value of scalar α.

a, b, x, . . . Lower case letters denote column vectors except when used for indices, i, j, k,

The distinction will be made obvious within the context.

xi i-th element of vector x.

xi:j Sub-vector of x, formed by elements of x from i to j.

‖x‖ Euclidean norm of x.

‖x‖p p-norm of x.

X,S, . . . Upper case letters denote matrices or index sets.

3

A,B, . . . Calligraphic upper case letters denote sets.

Q(Q, q, ρ) Triplet that denotes set {x ∈ Rn|x>Qx+ 2q>x+ ρ ≤ 0}

fi(x) Small case letters for mathematical function names.

4

Chapter 1

Introduction

1.1 Motivation

A mathematical optimization problem is the problem of finding a point in a given feasible

region that minimizes the value of a given objective function. More precisely, such a

problem is to find

x∗ ∈ argminx∈F f(x) (OPT)

where f : Rn → R is the objective function and

F = {x ∈ X | gi(x) ≤ 0 ∀i ∈M}

is the feasible region, described by constraint functions gi : Rn → R for i in finite set M

indexing the set of constraints and a set X ⊆ Rn, usually indicating the requirement that

some variables take on integer values. A point x in F is called a solution and the point

x∗ is an optimal solution and need not be unique. In this thesis, we use the convention

that f(x∗) = −∞ means (OPT) is unbounded and f(x∗) =∞ means infeasible.

Mathematical optimization can be thought of as a generalization of the problem of

5

1.1. MOTIVATION

finding a solution to a system of mathematical inequalities. The goal in mathematical

optimization is not only to find a solution that satisfies the given constraints but also find

the one that optimizes the given objective function among all the solutions.

Like many algorithms, all computational approaches discussed in this study work

within an error tolerance. When determining whether a given solution is either optimal

or feasible, we apply the following definitions for a chosen value of ε.

Definition 1.1. (ε-feasibility) A given point x ∈ Qn is said to be ε-feasible for a positive

ε, if the following holds,

min
y∈F
‖x− y‖ ≤ ε.

The set

Fε := {y ∈ Rn | ∃t ∈ F ‖y − t‖ ≤ ε}

of all ε-feasible solutions is call the epsilon-feasible set.

Definition 1.2. (ε-optimality) A given point x ∈ Qn is said to be ε-optimal for a positive

ε, if the following holds,

f(x) ≤ min
y∈Fε

f(y).

Mathematical optimization can be thought of as a generalization of the problem of

finding a solution to a system of mathematical inequalities. The goal in mathematical

optimization is not only to find a solution that satisfies the given constraints but also find

the one that optimizes the given objective function among all the solutions. Optimization

problems can be classified according to the form of the objective and constraint functions,

as well as the form of set X . The most widely studied form of mathematical optimization

6

1.1. MOTIVATION

problem is the linear optimization problem (LP), whose standard form is

min c>x (LPa)

s.t. Ax = b (LPb)

x ∈ Rn+, (LPc)

where A ∈ Qm×n, c ∈ Qn and b ∈ Qm. Here, the objective and all constraint functions

are linear, while X = Rn+ (the variables are all continuous and nonnegative). LPs are the

most basic form of mathematical optimization problems and can be considered to be a

core form to which more complex constraints may be added. Throughout this chapter, the

notation above will thus be used to denote similar input data for classes of optimization

that generalize (LP). One such class is the mixed integer linear optimization problem

(MILP), which is similar to an LP except that we have X = Zr+ × Rn−r+ , i.e., some of the

variables (those with index less than or equal to r, called integer variables), must take on

integer values. Although MILPs are difficult to solve in theory (see Section 1.3), they are

a well-studied class with specialized solution methods that are highly effective in practice.

Nonlinear optimization problems (NLPs) are those in which the objective and con-

straint functions are not assumed to be linear. Within this broad class, there is a fur-

ther division according to whether the objective function and feasible regions are convex

or non-convex. These two classes have very different properties. Historically, most re-

search about non-convex NLPs has focused on finding locally optimal solutions, which

are, roughly speaking, those satisfying conditions that ensure they are at least optimal

within a local neighborhood. Finding globally optimal solutions to problems for which

the feasible region is convex is an efficiently solvable problem in general, while non-convex

problems are at least as difficult to solve as MILPs.

Until relatively recently, technologies for solving MILPs and NLPs have been devel-

7

1.1. MOTIVATION

oped relatively independently due to the fact that solution methods for these two broad

classes of problems seem on the surface to have little in common. With solution tech-

nologies for these two classes of problems having now matured, there has been a more

recent movement towards development of more general solvers for a broader class that

encompasses both MILPs and NLPs. This class is a generalization of the NLP in which

we have X = Zr+ × Rn−r+ . Such problems are known as mixed integer nonlinear optimiza-

tion problems (MINLPs). It has now become feasible to develop practical solvers for this

very general class of problems that was considered highly intractable until only a decade

ago. The development of effective solvers for MINLPs requires the integration of methods

for nonlinear and discrete optimization problems into a single, coherent whole. Achiev-

ing this coherency is not easy, especially when developing a solver targeted at this most

general classes of problems. For this reason, it will be some time before such solvers are

robust enough to be used in production settings. It is therefore natural to consider more

restricted classes on which progress might be made more quickly or on which there are

efficiencies precluded by consideration of more general cases.

A topic of investigation in this dissertation is computational aspects of second-order

cone optimization problems (SOCPs), a class that generalizes the class of LPs and bridges

the gap between linear and nonlinear optimization. In particular, SOCPs are convex

nonlinear problems in which the non-negativity constraints (LPc) of (LP) are replaced by

the requirement that the solutions lie in one or more second-order cones (see Section 1.2.2

for formal definition). Just like LPs, SOCPs can be solved efficiently using the Interior

Point Method (IPM) (see Section 2.1.2), but are a general enough class that they can

be used to model many interesting problems that could not be modeled or compactly

approximated as pure linear optimization problems.

The mixed integer second-order cone optimization problem (MISOCP) is a general-

ization of the SOCP where some variables must take on integer values. An MISOCP is

8

1.1. MOTIVATION

formed by requiring some of the variables of an SOCP to take integer values. MISOCP

is a broad and extremely important class of optimization problem in practice. Because

many theoretical properties of MILPs, such as subadditive duality, extend naturally to

MISOCPs, we expect that this class can eventually be made as tractable as MILPs. This

dissertation aims to develop practical techniques for this important class of problems and

to demonstrate their effectiveness through computational experiments.

SOCP has a vast number of applications. Convex quadratic optimization problems

(QPs) and quadratically constrained quadratic optimization problems (QCQPs) can be

reformulated as SOCPs. Ben-Tal and Nemirovski [BN98] give SOCP formulations of

robust LP. Ghaoui and Lebret [GL97] use SOCP to find robust solutions to least squares

problems with uncertain data. Lobo et al. [Lob+98] formulate problems involving the

Euclidean norm—particularly, the minimization of the sum of norms, the minimization

of the maximum of norms, and the minimization of the sum of a fixed number of largest

norms—as SOCP. Alizadeh and Goldfarb [AG03] give SOCP formulations of structural

optimization, logarithmic Tchebychev approximation and finding smallest ball containing

a given set of ellipsoids. More practical application areas of SOCP include filter design,

antenna array design, truss design and grasping force optimization.

MISOCPs are used to model design of supply chain networks by Atamtürk, Berenguer,

and Shen [ABS12], telecommunication networks by Fampa and Maculan [FM04], cardi-

nality constrained portfolio optimization by Bertsimas and Shioda [BS09] and turbine

balancing by Drewes [Dre09]. Fampa and Maculan [FM04] also give MISOCP formulation

of Steiner tree problem. Aktürk, Atamtürk, and Gürel [AAG09] formulate machine job

assignment problem as MISOCP.

The broad topic of this thesis is to investigate existing computational approaches to

solve MISOCPs, as well as to propose and test new methods. Overall, we aim to develop

a flexible framework within which a large variety of algorithmic approaches can be com-

9

1.2. PROBLEM CLASSES

pared. This study covers both theoretical and computational aspects. Implementational

details are given and the proposed methods are implemented within the COIN-OR frame-

work [Lou03], which is an existing and widely used open source optimization framework.

In addition to traditional mathematical (forward) optimization, also consider herein

the related problem of inverse optimization. The goal of solving an optimization problem

is to determine the member of a given feasible set (the solution) that minimizes the value

of a given objective function, whereas the goal of inverse optimization is, given a solution

(usually one that is a member of a given feasible set), to determine the missing parameters

of the problem for which it is optimal.

1.2 Problem Classes

1.2.1 Conic Optimization

In a conic optimization problem, the feasible region is the intersection of an affine set and

cartesian product of a given set of cones. Some definitions related to cones are as follows.

Definition 1.3. (Cone) A subset K of a finite dimensional real space Rn is said to be a

cone if an x in K imply λx being in K for a λ greater than 0.

Definition 1.4. (Convex Cone) A cone is said to be a convex cone if it is convex.

Definition 1.5. (Proper Cone) A cone is called proper cone if K∩−K = {0}, where K is

closure of K.

Definition 1.6. (Dual and Self-Dual Cone) The dual cone of a given cone K is denoted

as K∗ and defined as K∗ := {y ∈ Rn | x>y ≥ 0 ∀x ∈ K}. K is self-dual if K = K∗.

Definition 1.7. (Linear Cone) Linear cone is a cone of the form {x ∈ Rn | x ≥ 0}.

Definition 1.8. (Semidefinite Cone) Semidefinite cone is a cone of the form {x ∈ Rn2 |

X ∈ Rn×n, x = vec(X), X = X>, X � 0}, where x is vectorized form of matrix X in

10

1.2. PROBLEM CLASSES

column-major order (same as row-major since X is symmetric) and vec(.) denotes this

operation. X � 0 denotes matrix X is positive semidefinite.

The canonical conic optimization problem is

min c>x

s.t. Ax = b

x ∈ KCP,

(CP)

where KCP is cartesian product of cones, and A, c, b are same as in (LP). Conic op-

timization problems form a broad class and tractability varies widely depending on the

cones in KCP. The most well-known conic optimization problem is (LP), in which KCP

is linear cone. Other well-studied cones from the optimization literature include second-

order cones (SOCs) [NN94; Lob+98], positive semi-definite cones [NN94], exponential

cones, power cones and copositive cones [Qui+98]. In this dissertation we study primarily

second-order cones.

1.2.2 Second-Order Conic Optimization

Recall that the set of feasible solutions of (LP) are precisely the solutions to the sys-

tem (LPb) of equations that lie in the non-negative orthant. In an SOCP, we replace the

requirement that the solution be in the non-negative orthant with a requirement that the

solution lies in the cartesian product of Lorentz cones.

Definition 1.9. (Lorentz Cone) A Lorentz cone is a cone of the form,

Lk := {x ∈ Rk | x1 ≥ ‖x2:k‖},

where k is the dimension of the cone and x2:k denotes the vector consisting all but the

first component of x. When k is 1, the Lorentz cone is {x ∈ R | x ≥ 0} = R+.

11

1.2. PROBLEM CLASSES

0
2

0.5

1 2

1x 1

1

1.5

x3

0

x2

0

2

-1 -1
-2 -2

(a) L3

0
2

0.5

1 2

1x 1

1.5

1.5

x3

0

x2

1

2

-1 0.5
-2 0

(b) L3
rot

Figure 1.1: 3-dimensional Lorentz and rotated Lorentz cones (L3 and L3
rot)

A closely related cone is the rotated Lorentz cone.

Definition 1.10. (Rotated Lorentz Cone) A rotated Lorentz cone is a cone of the form

Lkrot := {x ∈ Rk | 2x1x2 ≥ ‖x3:k‖2, x1 ≥ 0, x2 ≥ 0},

where k, dimension of the cone, is at least 3 and x3:k denotes the vector consisting all but

the first two components of x.

Figure 1.1 displays 3-dimensional Lorentz and rotated Lorentz cones. There is an obvious

relationship between Lorentz cones and rotated Lorentz cones that can be expressed in

terms of the orthogonal transformation

Tk =

1/
√

2 1/
√

2 0

1/
√

2 −1/
√

2 0

0 0 Ik−2

 ,

where k is at least 3 and Ik−2 is identity matrix of rank k − 2. In particular, we have

x ∈ Lk ⇔ Tkx ∈ Lkrot.

12

1.2. PROBLEM CLASSES

Note that Tk is a symmetric involutory matrix (i.e., equal to its inverse) and is also orthog-

onal, which means that it represents an isometry (a linear transformation which preserves

Euclidean distance). Hence, Lkrot is a rotation of Lk and the two sets are isometric.

We are now ready to formally define an SOCP as precisely the problem of optimizing

a linear objective function over a feasible region that is the intersection of a cartesian

product of Lorentz cones and an affine space. In other words, an SOCP is any conic

optimization problem of the form

min c>x

s.t. Ax = b

x ∈ K,

(SOCP)

where K is cartesian product of k Lorentz cones of dimensions n1, . . . , nk, i.e.,

K := Ln1 × Ln2 × · · · × Lnk .

Throughout the dissertation, we denote the feasible set of (SOCP) by SSOCP. When the

problem is given precisely in this form, it is referred to as standard form (or primal form

for reasons we discuss later), but there are a number of alternative forms in which an

SOCP can be specified, depending on exactly how the nonlinear constraints are integrated

with the linear constraints. These lead to alternative formulations for the SOCP.

Since it is not always obvious whether a given optimization problem actually is an

SOCP when it is given in one of the alternative forms, we would like to have a precise

characterization of when a set can be equivalently represented in the form given above.

[BN01a] build a theory of conic representability of general sets. They construct elemen-

tary sets that are conic representable (like the epigraph of a Euclidean norm) and give

elementary operations that conserve conic representability (like intersection of two conic

13

1.2. PROBLEM CLASSES

representable sets). From there, they prove that any set that can be written using the

given atomic sets and conic-property conserving operations is conic representable.

Herein, we consider the the most common forms in which conic sets can be represented

and show how to identify which set are in fact conic. We have the following definition of

conic representability.

Definition 1.11. (Conic Representability) A set S is called second-order conic repre-

sentable if there exist A ∈ Qn×m and b ∈ Qm such that

S = {x ∈ Rn | Ax = b, x ∈ K}.

In the remainder of this section, we introduce two alternative formulations and discuss (1)

when a conic set can be expressed in one of these forms and (2) when a set expressed in

one of these forms is a conic set. The first of these alternative forms is the dual form.

Definition 1.12. (Conic Dual Form) A set S is in conic dual form if it is defined as

S =
{
x ∈ Rn | ‖Aix− bi‖ ≤ di>x− γi, i = 1, . . . , k

}
, (1.1)

where Ai ∈ Qmi×ni are rational matrices of rank mi, b
i ∈ Qmi , di ∈ Qni and γi are scalars.

Sets in this form are said to be in conic dual form since they arise in formulating a certain

dual of (SOCP). The following theorem and proof show that a set is a conic set if and

only if it can be represented in conic dual form.

Theorem 1.2.1. A set S ⊆ Rn is a second-order conic representable set if and only if

there exists Ai ∈ Rmi×ni, bi ∈ Rmi, di ∈ Rni and γi ∈ R such that

S =
{
x ∈ Rn | ‖Aix− bi‖ ≤ di>x− γi, i = 1, . . . , k

}
. (1.2)

14

1.2. PROBLEM CLASSES

Proof. (⇒): Let S be a second-order conic representable set. There are two cases—the

case in which S = ∅ and the case S 6= ∅. When S = ∅, setting Ai, bi and di to be

identically 0 and γi = 1 for i = 1, . . . , k results in the set on the right-hand side of (1.2)

being the empty set, which proves the result when S = ∅. For the second case, we assume

S 6= ∅. Since S is a second-order conic set, it can be represented in standard form. Hence,

there exists matrix Ā ∈ Qm×n of rank m and b̄ ∈ Qm such that,

S = {x ∈ Rn | Āx = b̄, x ∈ K̄}.

where K̄ is a cartesian product of k̄ Lorentz cones of dimensions n̄1, . . . , n̄k̄, as earlier.

Let H ∈ Qn×(n−m) be a matrix such that its column vectors form an orthonormal basis

for the null space of Ā. Let x0 ∈ Qn be a solution to Āx = b̄ (such x0 exists since S is

non-empty). Using H and x0, S can be represented in dual form as

S =
{
x ∈ Rn | x = Hw + x0, Hw + x0 ∈ K, w ∈ Rn−m

}
.

Let H i ∈ Qn̄i×(n̄i−m̄i) denote the rows of matrix H corresponding to Lorentz cone Ln̄i

and H i
1 be the first row and H i

2:n̄i
be the rest of the rows of matrix H i. Similarly, define

x0i to denote the portion of x0 that corresponds to the Lorentz cone Ln̄i . Then S can be

written as

S =
{
x ∈ Rn | x = Hw + x0, ‖H i

2:n̄iw + x0i
2:n̄i‖ ≤ H

i
1w + x0i

1 , i = 1, . . . , k̄, w ∈ Rn−m
}
,

=
{
x ∈ Rn | ‖x−Hw − x0‖ ≤ 0,

‖H i
2:n̄iw + x0i

2:n̄i‖ ≤ H
i
1w + x0i

1 , i = 1, . . . , k̄, w ∈ Rn−m
}
.

S is written using conic dual forms in the last expression. This ends the first part of the

proof.

(⇐): Let arbitrary Ai ∈ Rm×n, bi ∈ Rm, di ∈ Rn and γi ∈ R for i ∈ 1, . . . , k be

15

1.2. PROBLEM CLASSES

given arbitrarily so that S is a set in conic dual form. S can be represented using linear

constraints and Lorentz cones as

S = {x ∈ Rn | ‖Aix− bi‖ ≤ di>x− γi, i = 1, . . . , k}

= {x ∈ Rn | ti = di>x− γi, si = Aix− bi, (ti, si) ∈ Lmi+1, i = 1, . . . , k}.

This proves that any non-empty set in conic dual forms is conic representable.

Having proved both directions, the theorem is proven.

A third way to represent conic sets is in terms of quadrics.

Definition 1.13. (Quadric) A quadric is a set of the form

Q =
{
x ∈ Rn | x>Qx+ 2q>x+ ρ ≤ 0

}
, (1.3)

where Q ∈ Qn×n is symmetric, q ∈ Qn, and ρ ∈ Q.

The conic representability of quadrics is not quite as straightforward as the conic dual

forms. Nevertheless, we describe below an explicit method to decide whether a set given

by a quadratic constraint is conic representable.

It is well-know that Q is conic representable when Q is positive semidefinite. In this

section, we show thatQmay be conic representable even when Q has 1 negative eigenvalue.

We begin by showing that second-order conic sets can be represented using quadrics.

Theorem 1.2.2. If a set S ⊆ Rn is second-order conic representable, then S can be

represented using quadrics.

Proof. Let a second-order conic representable set S be given. Then there exists Ā ∈ Qm×n

of rank m and b̄ ∈ Qm, and K̄, a cartesian product of k̄ Lorentz cones of dimensions

16

1.2. PROBLEM CLASSES

n̄1, . . . , n̄k̄ as earlier, such that

S = {x ∈ Rn | Āx = b̄, x ∈ K̄}.

First, we represent x using using a basis for the null space of Ā. Let H i ∈ Qn̄i×(n̄i−m̄i)

denote the rows of matrix H corresponding to Lorentz cone Ln̄i and H i
1 be the first row

and H i
2:n̄i

be the rest of the rows of matrix H i as before. Similarly, define x0i to denote

the portion of x0 that corresponds to the Lorentz cone Ln̄i as before. We can write S as

S ={x ∈ Rn | Āx = b̄, x ∈ K̄}

={x ∈ Rn | x = Hw + x0, x ∈ K̄, w ∈ Rn−m}.

Let matrix J i be an identity matrix of size n̄i× n̄i except with J i11 := −1. We can re-write

S using J i as

S ={x ∈ Rn | (x−Hw − x0)>(x−Hw − x0) ≤ 0,

w>H i>J iH iw + 2(H i>J ix0i)>w + x0i>J ix0i ≤ 0, i = 1, . . . , k̄, w ∈ Rn−m,

(H iw + x0i)1 ≥ 0, i = 1, . . . , k̄}.

When written in this form, the sets in the representation are in the form of quadrics and

S can therefore be represented using quadrics.

It is easy to see that not every quadric is convex, so it is clear that not all quadrics are

conic representable. Theorem 1.2.2 proves conic representable sets can be represented

with quadrics. The next theorem answers the question of under what conditions a quadric

is a conic set.

Theorem 1.2.3. Let quadric Q be given with a matrix Q with exactly 1 negative and n−1

17

1.2. PROBLEM CLASSES

positive eigenvalues. Q is union of two symmetric sets in conic dual form if there exists

x ∈ Rn such that Qx = q and ρ ≥ q>x.

Proof. First, observe that Q can be decomposed as M>JM for some matrix M where J

is identity except J11 = −1. Using x, quadric Q can be written as

Q =
{
x ∈ Rn | (x+ x)>Q(x+ x)− q>x+ ρ ≤ 0,

}

Using the mentioned decomposition of Q, quadric Q can be represented as

Q =
{
x ∈ Rn | (x+ x)>M>JM(x+ x)− q>x+ ρ ≤ 0

}
,

=
{
x ∈ Rn | (x+ x)>(M>2:nM2:n −M>1 M1)(x+ x)− q>x+ ρ ≤ 0

}
,

=
{
x ∈ Rn | (x+ x)>M>2:nM2:n(x+ x) ≤ (M1(x+ x))2 − (ρ− q>x)

}
.

At this point we can write the right hand side as a multiplication of two terms using

nonnegativity of ρ− q>x and represent the quadric Q as a union of Q+ and Q− that are

defined as follows

Q+ =

{
x ∈ Rn |

(
1√
2

(
M1(x+ x)−

√
ρ− q>x

)
,

1√
2

(
M1(x+ x) +

√
ρ− q>x

)
,

M2:n(x+ x)

)
∈ Ln+1

rot

}
,

Q− =

{
x ∈ Rn |

(
− 1√

2

(
M1(x+ x)−

√
ρ− q>x

)
,

− 1√
2

(
M1(x+ x) +

√
ρ− q>x

)
,

M2:n(x+ x)

)
∈ Ln+1

rot

}
.

18

1.2. PROBLEM CLASSES

Both Q+ and Q− are in conic dual form. Belotti et al. [Bel+13] report that Q is a

cone (geometrical shape) when ρ = q>x and is hyperboloid of two sheets when ρ > q>x.

Q+ and Q− each correspond to one sheet. We showed that each sheet is second-order

conic representable. In an optimization problem, a quadric can be reduced to either Q+

or Q− if it can be shown that its relaxation without the quadric intersects with only one

of the Q+ or Q−.

1.2.3 Mixed Integer Linear Optimization

Optimization problems, some of whose variables are constrained to have integer values,

are generally referred to as discrete optimization problems. The most well-studied class

of discrete optimization problems is the MILPs. An MILP can be given in the following

form,

min c>x

s.t. Ax = b

x ∈ Zr+ × Rn−r+ .

(MILP)

Note that this problem implicitly includes a conic constraint in the form of a requirement

for the variables to be non-negative. Without this conic constraint, finding a feasible solu-

tion to MILP is to solve a system of (linear) Diophantine equations. For integer matrices,

linear Diophantine equations can be solved by computing the Smith and Hermite normal

form of the matrix A. Kannan and Bachem [KB79] give an algorithm that computes the

Smith and Hermite normal form of an integer matrix in time bounded by a polynomial of

the encoding of the input matrix. The result holds in our case even though the matrix A

is not integral. The coefficients of the linear system are rational in our case. However, it

is easy to see that it can be made integral by scaling each individual equation by the min-

imum common multiple of its denominators. The encoding length of the resulting system

will be reasonable. In essence, we can conclude that the only difference between problem

19

1.2. PROBLEM CLASSES

of finding a feasible solution for MILP and linear Diophantine equations, is the presence

of the nonnegativity constraints in the former. The latter can be solved in polynomial

time and the presence of nonnegativity constraints makes the former NP-hard.

MILPs constitute a very well-studied, widely known problem class with which a vast

amount of literature is associated. For an introduction to basic theory, see, e.g., Gomory

[Gom60], Nemhauser and Wolsey [NW88], Cornuéjols [Cor08], and Linderoth and Ralphs

[LR05].

1.2.4 Mixed Integer Second-Order Cone Optimization

As with the generalization from linear optimization to conic optimization, problem (MILP)

can be generalized by replacing the requirement that solutions be in the non-negative

orthant with a more general requirement the solution lie in a given cone. We focus here

on the specific case in which the cone is the cartesian product of Lorentz cones, introduced

earlier as the MISOCP. The MISOCP is then

min c>x

s.t. Ax = b

x ∈ K

xi ∈ Z i ∈ I,

(MISOCP)

where I is the index set of integer variables. We use C as the index set of continuous

variables and SMISOCP as the feasible set of (MISOCP). AI is used to denote the matrix

composed of columns of A that corresponds to indices in set I. AC is defined similarly.

MISOCP can be thought of as a generalization of MILP. The continuous relaxation of

an MISOCP is (SOCP), introduced earlier. MISOCP is used to model many practical

applications. Chapter 3 discusses the application areas and solution methods for MISOCP.

20

1.2. PROBLEM CLASSES

1.2.5 Inverse Optimization

Another problem studied in this thesis is the so-called inverse MILP problem. When solv-

ing an optimization problem, the goal is to determine the member of a given feasible set

(the solution) that minimizes the value of a given objective function. In inverse optimiza-

tion, the goal is to determine the values of uncertain problem parameters (objective value,

constraints, etc.) such that a given point is optimal with those values as inputs.

We provide a conic formulation for a particular class of inverse MILP in which the

goal is to determine the objective coefficient vectors. Moreover, we provide evidence that

places this problem into the tightest complexity class possible without resolving the well-

known question of whether P = NP (see Section 1.3 for discussion). For a feasible set S,

the inverse optimization problem can be given as

min ‖c− d‖

s.t. d>x0 ≤ d>x ∀x ∈ P,
(Inverse)

where ‖.‖ is a given norm. In this formulation d, is the variable vector of the problem, c

and x0 are parameters. A feasible solution for the problem is a vector which minimizes x0

over S. The optimal solution is the feasible d that is closest to estimate c.

Note that the problem is always feasible since d← 0 is feasible for the problem. This

gives an upper bound ‖c‖ on the objective value. Moreover it is easy to see that objective

value is bounded from below by 0.

Ahuja and Orlin [AO01] study the case where S is a polyhedral and l1 or l∞ norm

is used as a distance measure. They prove that the inverse problem can be solved in

polynomial time when the forward problem can be solved in polynomial time. To obtain

this result they rely on the seminal work on separation–optimization of Grötschel, Lovász,

and Schrijver [GLS93].

Grötschel, Lovász, and Schrijver [GLS93] build a detailed theory of the relationship of

21

1.3. COMPUTABILITY AND COMPUTATIONAL COMPLEXITY

the separation and optimization problems associated with given convex sets. They show

that the separation problem associated with a given convex set is equivalent (in the sense

they define) to optimization over the same set and that efficient algorithms for each can be

implemented, given an oracle for the other. Using this equivalence, they show that some

of the combinatorial problems for which a compact formulation is unknown (but solving

the separation problem over their feasible set is easy) can be solved in polynomial time.

Chapter 5 contains a study of some theoretical properties of the inverse MILP, including

its computational complexity. A result similar to Ahuja and Orlin [AO01] can be obtained

for the case of MILP by applying the results from Grötschel, Lovász, and Schrijver [GLS93]

cited above. We show that for both the l1 and l∞ norms, given an oracle for optimizing

over P, the feasible region of an MILP, the associated inverse problem, can be solved in

polynomial time. This immediately results in a classification of the decision version of the

inverse optimization as being in the class ∆P
2 (see Section 1.3 for discussion). Chapter 5

goes beyond this result and proves that the decision version of inverse MILP is coNP–

complete for any given norm. This is the tightest complexity class that can be achieved

for inverse MILP without resolving the well-known question of whether P equals NP.

Discussion of these complexity classes is given next.

1.3 Computability and Computational Complexity

1.3.1 Overview

The modern theory of computation can be considered to have its origin with the state-

ment of Hilbert’s 10th problem, which was to find an algorithm to decide whether a given

polynomial equation with integer coefficients (Diophantine equation) has an integer so-

lution. After many years of consideration, it was finally shown that no such algorithm

exists. The result was the combined work of Yuri Matiyasevich, Julia Robinson, Martin

22

1.3. COMPUTABILITY AND COMPUTATIONAL COMPLEXITY

Davis and Hilary Putnam and is known as the MRDP theorem. Note that the problem of

solving a system of polynomial Diophantine equations is a special case of general MINLP,

so this shows that general MINLP is also undecidable, i.e., there is no algorithm (a Turing

machine or similar, as described next) that will terminate for all finite problem instances

in finite time.

Another problem formulated by Hilbert was the “Entscheidungsproblem” (German for

“decision problem”). The problem is to find an algorithm that decides whether a given

statement (in first order logic) is provable from the given axioms and can be considered

one historical reason that complexity theory is defined in terms of classes of decision

problems. Alonzo Church and Alan Turing independently prove that there is no solution

for this problem. In their proofs, Alonzo Church introduced lambda calculus and Turing

proposed a conceptual model akin to a modern computer in order to mathematically

formalize the computation. The model of the computational device introduced by Turing

has since become known as a Turing machine and many alternatives were subsequently

developed. One alternative was the Unlimited Register Machines (URM) proposed by

Shepherdson and Sturgis [SS63]. It is still widely used in the theory of computability

since it is easier to work with than the Turing machine model. For details on the URM

and its use in the theory of computability, see Cutland [Cut80].

Despite the many alternative models of computation proposed, most have turned out

in the end to be equivalent. For example, Turing [Tur37] proved that a function is λ–

computable if and only if it is Turing computable. To date, all models of computation have

turned out to result in the same set of computable functions and to obey an analogue of the

well-known Church–Turing thesis, which states that a function is computable if its values

can be found by a mechanical process. Bernstein and Vazirani [BV97] generalized the

Church–Turing thesis with efficiency considerations. The Extended Church–Turing thesis

states that all reasonable models of computation result in the same set of polynomially

23

1.3. COMPUTABILITY AND COMPUTATIONAL COMPLEXITY

computable functions. Reasonable models can be interpreted as those modeling machines

bounded by the laws of physics and no physical model of computation (including quantum

models of computation or possession of quantum computers) that defies the Extended

Church-Turing thesis has yet been perceived.

1.3.2 Computational Complexity

The studies we’ve mentioned up to this point concern computability of mathematical func-

tions. These efforts can be considered under the umbrella of the theory of computability.

Computational complexity theory, on the other hand, concerns the measurement of how

difficult a given problem is to solve in terms of the resources that are required. The

two resources most typically considered are time and space (memory, storage). From

computational complexity theory perspective, time has been considered a more valuable

resource than space. PSPACE is the class of all decision problems that can be solved using

an amount of space that is polynomial as a function of the size of the input. We know

that PSPACE contains all problems in all classes of the so-called polynomial hierarchy

(see formal description below). On the other hand, it is not known whether P, the class

of problems that can be solved in time polynomial in the size of the input, contains all

problems in the polynomial hierarchy, but it is considered extremely unlikely. This is the

aforementioned problem of deciding whether P = NP.

For the historical reasons mentioned earlier, the theory of computational complexity

is generally focused on decision problems, i.e., the problem of proving a given statement is

TRUE or FALSE. Such a problem can be seen as the evaluation of a function that take as

input a string of characters from a given alphabet and gives TRUE or FALSE as output.

A language is a set of strings that return the value TRUE with respect to a particular

question. A language can thus be thought of as a “problem,” while a particular input

string can be thought of as an “instance” of that problem. Given string s as an input

24

1.3. COMPUTABILITY AND COMPUTATIONAL COMPLEXITY

instance and a language L, a procedure that outputs TRUE whenever s ∈ L and FALSE

otherwise is said to recognize language L. In its original conception, a Turing machine

is the implementation of such a procedure using Turing’s original computation model. A

Turing machine can thus be thought of as an “algorithm” to solve a particular class of

problems.

The (time) complexity of an algorithm is determined by the running time function that

maps the size of the input (the length of the input string) to the worst-case time (number

of steps) required by the associated Turing machine across all possible inputs of the given

size. The (time) complexity of a problem (language), on the other hand, is the running

time function of the best known algorithm. Note that the for almost all problems, this

“best” running time is an upper bound, as it has been impossible to determine whether

the best known algorithm is the best possible.

Using the time complexity, problems can be placed into the aforementioned polynomial

hierarchy, which serves to divide problems into classes according to the efficiency of their

best known algorithms. The classes can be equivalently defined in multiple ways, but the

most straightforward is to define them recursively using the concept of an oracle. The

class P is the set of problems whose running time function is a polynomial function of

the input size. NP is the set of problems that can be solved in polynomial time on a

non-deterministic Turing machine, which can be roughly described as a Turing machine

with an infinite number of processors capable of exploring any number of execution paths

of the algorithm simultaneously. It is not difficult to see that a problem is in NP if and

only if for a given instance in the language, there exists a polynomial-sized string that can

be used to verify in polynomial time that the instance is in the language.

Papadimitriou and Yannakakis [PY82] define the class DP to be the class of languages

that are the intersection of two languages, the first of which is in NP and the second of

which is in coNP. DP is a broader class that includes NP and coNP.

25

1.3. COMPUTABILITY AND COMPUTATIONAL COMPLEXITY

Figure 1.2: Complexity classes ∆P
2 , DP, NP, coNP and P, assuming P 6= NP

The next class in the hierarchy is ∆P
2 , which is the set of problems that can be solved

in polynomial time in a Turing machine given an oracle capable of solving any problem

in NP in a single time step. It is a broader class that includes DP. Every problem in NP,

coNP or DP is also in ∆P
2 . Figure 1.2 illustrates class ∆P

2 relative to DP, NP, coNP and P,

assuming P 6= NP.

ΣP
2 is the set of problems that can be solved in polynomial time on a non-deterministic

Turing machine given the same NP oracle. Similarly ΣP
k is the set of problems that can

be solved in polynomial time on a non-deterministic Turing machine given a ΣP
k−1 oracle.

Note that ΣP
k contains ΣP

k−1, ΣP
2 contains ∆P

2 . If P = NP then the whole polynomial

hierarchy is same as P, which is called the collapse of the polynomial hierarchy to its first

level [Pap94]. A problem in a specific class is called complete for the class if all other

problems in the class can be reduced to it.

1.3.3 Complexity of Optimization Problems

Historically, the complexity of optimization problems was studied by converting them to

an equivalent decision problem. Optimization problems are converted to decision problems

by asking whether a feasible solution exists that leads to an objective value better than a

given threshold.

26

1.3. COMPUTABILITY AND COMPUTATIONAL COMPLEXITY

The invention of the Ellipsoid Method placed the decision version of LP (dLP) into

the class P of decision problems solvable in polynomial time. It is easy to see decision

version of MILP (dMILP) is in the class NP. Reduction from SAT proves that dMILP is

complete for class NP. Existence of IPM places decision version of SOCP (dSOCP) and

semidefinite optimization problems (dSDP) into class P. Similarly, the decision version of

MISOCP (dMISOCP) is NP–complete.

Another decision problem is asking whether the optimal solution of a given optimiza-

tion problem has objective function value γ for a given γ. It is easy to see that this

problem is polynomially solvable for optimization problems that are polynomially solv-

able, e.g., LP, SOCP, SDP, etc. Papadimitriou and Yannakakis [PY82] show that this

problem for MILP (see Section 5.3.1 for formal definition) is DP –complete. This means,

exact optimal value problem is not in NP or coNP unless P is NP.

A closely related problem is to decide whether the optimal solution is unique. Papadim-

itriou [Pap84] shows that deciding this for traveling salesman problem is ∆P
2 –complete.

This indicates that this problem is not in class NP or coNP unless P is NP.

Separation decision problem is deciding whether a given hyperplane separates a given

point from a given set. It is easy to see that this problem is in coNP for MILP case,

i.e., when separating from MILP feasible sets. Separation problem for MILPs (sMILP)

is in the same level of polynomial hierarchy as dMILP. In Chapter 5 we show that this

also holds for the inverse MILP. Decision version of inverse MILP is in the same level of

polynomial hierarchy with dMILP and sMILP.

27

1.4. BASIC ALGORITHMS

1.4 Basic Algorithms

1.4.1 Branch-and-Bound Algorithm

To date, almost all practical algorithms that have been suggested in the literature for

solving global optimization problems are based on the well-known branch-and-bound al-

gorithm first introduced by Land and Doig [LD60]. The branch-and-bound algorithm

recursively partitions the feasible region of the original optimization problem to obtain

smaller subproblems, which are solved recursively. The partitioning procedure also allows

for the computation of a bound on the value of an optimal solution to the original prob-

lem (the optimal value) by solving a relaxation of each of the subproblems. In particular

solving a relaxation of each subproblems yields a lower bound on the optimal value of

the subproblem and a bound on the optimal value of the original problem is given by

the minimum of the lower bounds for the subproblems. An upper bound for the original

problem, on the other hand, is given by the value of the best feasible solution.

More formally, the subproblems are created by imposing so-called valid disjunctions

on the original problem.

Definition 1.14. (Valid Disjunction) A valid disjunction for (OPT) is a disjoint collection

of finitely many sets Fi ⊆ Rn, i = 1, . . . , k such that

F ⊆
⋃

i=1,...,k

Fi.

Such a disjunction is violated by a given x̂ ∈ Rn if

x̂ 6∈
⋃

i=1,...,k

Fi.

Every disjunction can be associated with a disjunctive constraint which require that

solutions be contained in one of the sets Fi. When a disjunctive constraint is added to the

28

1.4. BASIC ALGORITHMS

optimization problem (OPT), the resulting optimization problem is known as a disjunc-

tive program [Bal79; Bal85]. The most straightforward way of solving such a disjunctive

program is to associate a subproblem with each term Fi of the disjunction that requires

solutions to that subproblems to be in set Fi. If the set Fi is a polyhedron (the set of

solution to a system of linear inequalities), then the requirement that solution be in Fi

does not change the form of the problem with respect to the classification in Section 1.2.

Algorithm 1 specifies a generic version of the branch-and-bound algorithm. The fol-

lowing algorithm does not assume a specific problem and describes the algorithm in its

most generic form. The details of how the algorithm is implemented in the particular case

of MISOCP will be given in Chapter 3.

Algorithm 1 A Generic Branch-and-Bound Algorithm

1: Q ← {0}.
2: LB ←∞.
3: UB ← −∞.
4: while LB < UB do
5: i← argmaxj∈Qpj .
6: Bound subproblem i to obtain LB(i) and UB(i).
7: Set UB ← min{UB(i), UB}.
8: if LB(i) < UB then
9: Branch to create children subproblems i1, . . . , ik of subproblem i with prior-

ities pi1 , . . . , pik ; initial lower bounds LB(i1), . . . , LB(ik); and initial upper bounds
UB(i1), . . . UB(ik), by partitioning the feasible region of subproblem i.

10: Q ← {i1, . . . , ik}.
11: Set LB ← mini∈Q LB(i).
12: end if
13: end while

Set Q contains the indices corresponding to the set of subproblems that are currently

waiting to be bounded, with index 0 corresponding to the original problem. LB and

UB denote lower and upper bounds, respectively, on the optimal value of the original

problem. These are updated throughout the algorithm until they become equal (the

termination criterion). In the bounding step (line 6), we compute upper and lower bounds

29

1.4. BASIC ALGORITHMS

for subproblem i, denoted by LB(i) and UB(i), respectively (see Section 1.4.1).

The details of exactly how the various components are implemented and the entire

process is managed are crucial to the overall effectiveness of the approach. Although the

procedure seems straightforward when presented in this form, it is well-known that a naive

implementation of this procedure will not work well in practice for most applications.

The branch-and-bound algorithm is inherently recursive in nature, since the feasible

region of a given subproblem is initially obtained by a partitioning of the parent sub-

problem and may itself be again partitioned at a later step to obtain children. Thus, the

evolution of the algorithm can be viewed as exploring a so-called search tree that visual-

izes the recursion process. Ralphs, Ladanyi, and Saltzman [RLS04] and Xu et al. [Xu+05]

suggest the branch-and-bound algorithm can be considered to be a specialized tree search

algorithm. In employing this metaphor, each subproblem generated is associated with a

node in the search tree. A typical tree search algorithm processes nodes one by one. In

a branch-and-bound algorithm, processing a node amounts to determining bounds on the

optimal value of the associated subproblem. The process of obtaining new subproblems

from existing ones by partitioning (typically by imposing a valid disjunction) is called

branching (line 9).

The tree itself is described through parent–child relationships, beginning with the root

node. Except for the root node, each subproblem has a parent and zero or more children.

Subproblems with no children are called terminal or leaf nodes. The depth of a node in the

tree is the length of the path to the root node in terms of the parent-child relationships.

From this point of view, the lower bound LB is the minimum of the lower bounds of all

leaf nodes of the current search tree. Upper bound UB is updated when a new solution

to the problem is found, as we describe below.

In the worst case, the branch-and-bound algorithm consists roughly of a complete

enumeration of all possible subproblems. The key to avoiding this is to generate enough

30

1.4. BASIC ALGORITHMS

information during the search in order to prove that the feasible regions of certain nodes

(and all their potential descendants) cannot contain improved solutions. Such nodes are

not processed in order to save computation. This elimination of unpromising nodes is

called fathoming and takes place on line 8 (in the case where LB(i) ≥ UB). Moreover,

the algorithm controls the order in which the nodes are processed based on priorities that

are modified dynamically as the search progresses. The decision of which node to process

next is answered based on this prioritization. This kind of prioritization and decisions are

called search strategy.

Even though we stated that branch and bound performs a complete enumeration in

the worst case, this seldom occurs in practice when the algorithm is implemented in a

sophisticated way. The success of the branch and bound compared to the complete enu-

meration is due to fathoming and search strategy. These two factors significantly reduce

the number of nodes processed and save computation time. In the following sections, we

briefly describe in more detail how each of the components of the algorithm just described

are implemented in practice.

Bounding

As mentioned earlier, in the most straightforward variant of branch and bound, bounding

is accomplished by solving a relaxation of the given subproblem. The optimal value of

this relaxation is always a lower bound on the optimal value of the subproblem (if the

relaxation is infeasible, then so is the the subproblem). Furthermore, if the solution to

the relaxation is feasible for the original problem, then the solution is optimal for the

subproblem and the optimal value is also an upper bound in this case.

For efficiency reasons, it is important that the relaxation solved to obtain the bound

be more tractable than the subproblem itself. Thus, the relaxation is often obtained by

approximating the feasible region by a convex set. In the case of an MILP (and MISOCP),

31

1.4. BASIC ALGORITHMS

such relaxation can most easily be obtained by relaxing integrality constraints.

Branching

Branching is the process of creating new subproblems from an existing one. As described

earlier, this is done by imposing a valid disjunction. Such a disjunction partitions the

feasible region of the parent subproblem. Ideally, the disjunction is chosen such that

the solution to the relaxation of the current subproblem is not is not contained in the

feasible regions of those of any of the created subproblems. Such valid disjunctions are

called violated valid disjunctions. The procedure by which the disjunctions are chosen (the

problem of choosing a disjunction is itself an optimization problem) is called branching

strategy.

In the case of MILP, when the relaxation is obtained by relaxing integrality constraints,

at least one integer variable must have fractional value in the solution to the relaxation.

For example, if the solution to the relaxation is x̂, then we have bx̂ic < x̂i < dx̂ie for some

i ∈ I. The solution therefore violates the valid disjunction

F1 = {x ∈ Rn : x̂i ≤ bx̂ic} OR F2 = {x ∈ Rn : x̂i ≥ dx̂ie}

In this case, the branching strategy is known as variable branching.

There are many tradeoffs and concerns involved in the branching process. To begin

with the process of determining the disjunction should itself be tractable. Bounding of

newly created subproblems should also be tractable, which means that the sets associated

with terms of the disjunction should themselves typically be convex. Moreover, a good

branch strategy should allow the employment of warm starting in solving the new sub-

problems created, using the information available from bounding process of the parent

subproblem.

Branching strategy should decide the disjunction to be used among possible alterna-

32

1.4. BASIC ALGORITHMS

tives. The goal is to choose disjunctions that will lead the optimal solution fastest. How

to achieve this goal with the information on hand is not clear. Typically strategies use

bounding information of the parent and new subproblems at this point. One idea is to use

disjunctions that will lead to new subproblems such that lower bound is improved most.

Computing lower bound improvement for all disjunction candidates might be computation-

ally expensive. Approximate methods are preferred over computing bound improvements

exactly. These phenomena are well studied in MILP case. Strong branching introduced

by Applegate et al. [App+95] for MILP case considers possible variable disjunctions and

computes bound improvement for all. Pseudocost branching first used by Bénichou et al.

[Bén+71], estimates, instead of computing exactly as in strong branching case, the bound

improvement for all possible disjunctions to save computation. Reliability branching given

by Achterberg [Ach07] combines pseudocost and strong branching. It initializes the pseu-

docosts of variables using strong branching and updates the pseudocost estimates that are

unreliable. Achterberg [Ach07] reports that reliability branching is the best performer in

terms of CPU time for the MILP case.

Search Strategy

In Algorithm 1, at the beginning of each iteration of the while loop, a subproblem should

be selected for processing. In another words, which node should be searched for a solution

next, should be decided. The way this decision is made is called search strategy.

Most widely known tree search strategies are breadth-first and depth-first search.

Breadth-first strategy searches all the children of the current node first, where depth-first

searches the first found children and then moves to its children. Note that branch-and-

bound tree is dynamically created during the execution. In a tree hanged from the root,

breadth-first search expands the tree horizontally, where depth-first search creates deeper

nodes and expands the tree vertically. Breath-first search creates more subproblems com-

33

1.4. BASIC ALGORITHMS

pared to depth-first search. In a branch-and-bound algorithm this means exponentially

many (in terms of the depth of the tree) candidate subproblems is created and this will

increase memory requirements. On the contrary, in depth first, the number of subprob-

lems increases linearly in terms of the depth of the tree. Hence memory requirements of

depth-first search is exponentially less than the breadth first.

Note that the deeper a node is in the tree, the more constraints will have been ac-

cumulated from the imposition of various disjunctions at ancestor nodes. When these

constraint tend to encourage feasibility (such as when they constraint a certain variables

value to a single integer), it becomes more likely that feasible solutions to the original

problem will be obtained by solving the relaxations to subproblems at nodes deeper in

the tree. On the other hand, the quality of such solutions is not guaranteed and highly

depends on the instance and in what part of the search tree they are obtained. As new

solutions improve the upper bound of the problem, it can be ascertained that depth-first

search aims to improve the upper bound. In breadth-first search, on the other hand, the

depth of the tree increases more slowly. This indicates that finding solutions is less likely

compared to depth-first search.

Another search strategy is best-first search which uses the objective values to decide

the next node to search. Note that both breadth-first and depth-first search strategies

employ parent–child relations. The best first search strategy, on the other hand, uses the

quality of the corresponding subproblems to decide which node to search next, it selects

the node with the best quality. One of the most common quality measure is the objective

value estimate. When a new subproblem is created its objective value estimate is set to

parents optimal objective value or its estimate. Achterberg [Ach07] proves that the best-

first strategy minimizes the size of the tree when branching is fixed and the right node is

picked from the ones with the same quality.

Hybrid-search strategy carries depth-first search until the node quality of the both

34

1.4. BASIC ALGORITHMS

siblings is worse than the best available by a certain threshold [Xu07]. Hybrid-search

strategy stops diving at this point and selects the node with the best quality next. Hybrid

search is a hybrid of depth-first and best-first search strategies.

Heuristics

Heuristics are auxiliary methods used as alternatives to solving the subproblem relax-

ation for the purpose of finding solutions to a given optimization problem. Unlike the

branch-and-bound method itself, heuristics typically use less resources but do not guar-

antee success. They can be considered an attempt to find a solution using minimal effort

by exploiting the information on hand.

Heuristics can be executed in tandem with the branch-and-bound algorithm. If they

use primal solution information obtained when solving the relaxations of the subproblems

are called primal heuristics. Such methods play a crucial role in all available state-of-the-

art optimization solvers, both open source and commercial. The literature is abundant

with heuristic methods, e.g., Bertacco, Fischetti, and Lodi [BFL07], Danna, Rothberg,

and Pape [DRP05], and Lodi, Allemand, and Liebling [LAL99].

1.4.2 Cutting-Plane Algorithm

The classical cutting-plane method is an iterative approach to solving optimization prob-

lems with a convex feasible region. The basic approach is to approximate the feasible

region from the outside with a polyhedron. This defines a relaxation of the problem that

is first solved to obtain a tentative solution. If the solution is infeasible, a hyperplane sepa-

rating the solution from the feasible region is generated (this is the separation problem and

an inequality corresponding to this separating hyperplane is then added to the description

of the approximating polyhedron. Under certain conditions, such a cutting-plane method

can be guaranteed to converge and to solve the original optimization problem. To state

35

1.4. BASIC ALGORITHMS

the method more formally, we need some definitions.

Definition 1.15. (Valid Inequality) With respect to a convex set C ⊆ Rn, a valid inequal-

ity is a pair (a, α) such that a ∈ Rn, α ∈ R and

C ⊆ {x ∈ Rn | a>x ≤ α}.

An inequality valid for C is violated by x̂ ∈ Rn if x̂ 6∈ {x ∈ Rn | a>x ≤ α}.

In the literature, a violated valid inequality is also known as a cutting plane or simply a cut,

which is the origin of the name. The separation problem is that of generating a violated

valid inequality whenever the solution to the current approximation is not feasible. We

define it formally as follows.

Definition 1.16. (Separation Problem) With respect to a given convex set C ⊆ Rn and

a given x̂ ∈ Rn, the separation problem is that of determining whether x̂ ∈ C and if not,

determining an inequality (a, α) valid for C but violated by x̂.

With these two definitions, we can state a generic version of the cutting plane algorithm

algorithm for solving

min
x∈C

c>x,

where C is a given convex set and c ∈ Qn, as follows. Algorithm 2 relaxes the original

problem, finds an optimal solution for the relaxed problem, solves the separation problem,

and refines the relaxation by adding the cuts generated. The algorithm stops when a

feasible solution is found (in practice, an ε-feasible solution are acceptable).

It should already be clear from this brief discussion that the separation problem with

respect to a given convex set is closely related to that of optimize a linear function over the

same set. In fact, Grötschel, Lovász, and Schrijver [GLS93] showed that optimization over

a convex set can be solved in polynomial time given an oracle for the separation problem

36

1.4. BASIC ALGORITHMS

Algorithm 2 A Generic Cutting-Plane Algorithm

1: Let P0 be a polyhedron such that P0 ⊇ C.
2: x̂0 ← minx∈P0 c>x
3: i← 0
4: while x̂i 6∈ C do
5: Solve the separation problem with respect to x̂i and C.
6: if x̂i ∈ C then
7: x̂0 is optimal
8: else
9: Let (ai, αi) be an inequality valid for C, but violated by x̂i.

10: Let P i+1 ← P i ∩ {x ∈ Rn : ai>x ≤ αi}
11: end if
12: end while

(and vice versa).

Since solving (MILP) is equivalent to optimizing over the convex hull of feasible so-

lution, which is a convex set, the cutting plane algorithm can be used, in principle, for

solving MILPs. In practice, however, the cutting-plane method is used in a modified form

with a branch-and-bound algorithm as a method for obtaining improved bounds on the

optimal values of the subproblems that arise. There are many methods for generating

valid inequalities for the convex hull of feasible solutions to an MILP in the literature.

Some of these are Gomory [Gom58], mixed integer rounding [NW90], clique [Sav94], flow

cover [PRW85; RW86], knapsack [Bal75; HJP75; Pad75], odd hole [Fis94; CG96], and

probing cuts [Sav94]. These cuts might not be effective when used in a pure cutting-plane

approach but they are extremely effective when used within a branch-and-bound approach.

The question of how to generate inequalities valid for the feasible region of MISOCP

is a question under active research. Conic mixed integer rounding, conic Gomory and

disjunctive conic cuts are among the ones proposed. These methods are reviewed in

Section 3.2.

37

1.4. BASIC ALGORITHMS

1.4.3 Branch-and-Cut Algorithm

In the case of MILPs, it has been shown through experimentation that cutting-plane

methods on their own are not effective. In practice, cutting-plane methods can be com-

bined with the branch-and-bound algorithm to produce an algorithmic approach that has

proven to be very effective overall in practice [Bal+96; Bix+00; Cor07]. When cutting-

plane methods are used within branch-and-bound framework, the resulting algorithm is

called branch and cut.

In branch-and-cut algorithms, a truncated version of the cutting-plane method can

be used to dynamically improve the relaxation of the subproblem solved at nodes in the

branch-and-bound tree [Mar+02; BCC96; FM05a]. In this approach, valid inequalities are

generated iteratively, as in the standard cutting-plane method, but the method is typically

terminated prior to full convergence once the rate of progress in improving the bound slows.

Once this occurs, the branching operation is invoked to create new subproblems.

The question of how to determine precisely when the cutting-plane phase should be

terminated and the branching method invoked is not particularly well-studied in the lit-

erature, although some answer to this question is required as part of the implementation

of this approach. Generally speaking, cutting planes are added more aggressively when

generating bounds at the root node, since the improvement of the formulation at this

early stage of the algorithm pays bigger dividends in general than the improvement of

the formulation for subproblems associated with nodes deeper in the tree. We propose

a branch-and-cut algorithm to solve MISOCP in Chapter 3 and discuss details of the

implementational issues in this context.

1.4.4 Global Optimization Algorithms

Global optimization is a broad field that involves the development of algorithms for find-

ing the so-called “global optimal solution” of mathematical optimization problems of the

38

1.4. BASIC ALGORITHMS

form (OPT). The word “global” is meant to be in contrast with the “locally optimal”

solutions which are the result of a different class of algorithms for nonlinear optimization

that attempt to find solutions satisfying necessary conditions for optimality but which are

not necessarily “global optimal.”

The fact that global optimization addresses a very broad class of problems without

many assumptions makes global optimization problems difficult to solve in general. Only

the very minimal assumptions necessary to ensure the convergence of given algorithms

are typically made. Some of the most common assumptions are continuity, Lipschitz

continuity, and differentiability of the functions used to describe the problem.

A variety of strategies are used to obtain global solutions to this broad class of prob-

lems. Pintér [Pin13] lists grid search, random search, tunneling, relaxation strategies, and

branch-and-bound methods as solution methods to global optimization problems. Grid

search looks for local solutions on uniformly distributed points that form a grid in the

relevant space. Random search samples the grid points randomly rather then selecting

them uniformly.

The global optimization methods most relevant to this study are the relaxation-based

strategies, such as the branch-and-bound and cutting-plane methods described earlier. In

relaxation strategies, constraints of the original problem are relaxed to obtain problems

that are easier to solve. By solving a series these relaxations and improving the relaxation

successively, a globally optimal solution is eventually produced.

As described earlier, in branch-and-bound method, some of the original constraints are

relaxed to obtain an easier subproblem (root node). Disjunctions are imposed in the root

subproblem that partition the feasible region of the original problem, ensuring that each

feasible solution to the original problem is feasible to one of the resulting subproblems, as

well as ensuring that the solution to the relaxation of the parent subproblem is not feasible

to the relaxations of either of the resulting subproblems (assuming the disjunction has two

39

1.4. BASIC ALGORITHMS

terms). In Section 3.1.4, we discuss both commercial and open source global optimization

solvers that can be used to solve MISOCPs.

1.4.5 Related Methodologies

Outer Approximation

Outer approximation is a term used to describe any number of strategies for either solution

of or computation of bounds for a given optimization problem [DG86; FL94; Ben98]. In an

outer-approximation method, the idea is to construct a set enclosing the original feasible

region of an optimization problem that is easier to optimize over than the original set,

e.g., it is convex. This approximating set defines a relaxation of the original one. If the

optimal value of the original problem and that of relaxation over the outer-approximating

set coincides, then the optimal solution is found. This general approach is closely related

to the cutting-plane method, which generates a sequence of polyhedral approximations.

Various methods in the literature are referred to as outer-approximation methods.

Polyhedral Approximation. Polyhedral approximation is the case when the outer-

approximation set is polyhedral, such as in a standard cutting-plane method. The set

being approximated may be either convex or non-convex. One such method for SOCP is

given by Ben-Tal and Nemirovski [BN01b]. Another polyhedral outer approximation is

given by Duran and Grossmann [DG86].

Convexification. Convexification is approximation of non-convex sets by their convex

hulls. When the objective function is a linear function and the feasible set is closed,

optimization over the convex hull is equivalent to optimization over the original feasible

region. Therefore, convexification can be used, in principle, to convert an optimization

from being over a non-convex region to being over a convex one. Naturally, this is not

a way around the fundamental complexity of a given problem, since the convex hull of a

40

1.5. CONTRIBUTION

given set is not always easy to describe explicitly and hence may not be easy to optimize

over. The cutting-plane method in MILP case can be considered as a convexification

method. The motivation is to optimize over the convex hull, which is equivalent when the

objective function is linear as long as the feasible set is closed.

1.5 Contribution

The primary motivation of this thesis is to propose and investigate various methods for

solving MISOCPs. These methods include a number of variants of the branch-and-cut al-

gorithm based on different relaxations, different methods of generating valid inequalities,

and different approaches to algorithmic control. We conduct an extensive set of experi-

ments to explore the effect of various algorithmic options, such as branching strategies,

cut generation strategies, and search strategies. We introduce new software tools to carry

out these experiments in a controlled environment. A particular highlight is the investi-

gation of a recent disjunctive cut procedure for MISOCP from literature. We also test the

scalibility of the tools introduced for parallel computers.

A second contribution is to formulate the inverse MILP problem as a conic optimization

problem. We provide a cutting-plane algorithm for it and show that that decision version

of inverse MILP is coNP–complete. Moreover, we prove that whether a given objective

value is optimal for the inverse problem is Dp–complete. This is also true for the traditional

MILP problem and one can hence argue that these problems are in the same complexity

class.

Contributions of this thesis can be listed as follows.

• We introduce an outer-approximation algorithm for solving the (continuous) second-

order cone optimization problems.

• We develop a unified algorithmic framework for solving MISOCP by a variety of

41

1.5. CONTRIBUTION

enumeration-based algorithms.

– The core methodology used in the algorithms is branch and bound.

– The relaxation employed can be either an SOCP or an LP relaxation.

– The solver for solving the relaxation can be either an interior point method or

the simplex algorithm.

– The relaxation is strengthened by addition of dynamically generated inequali-

ties customized for the chosen relaxation.

– Branching is performed on variable disjunctions.

• We develop a unified algorithmic framework for separation and dynamic generation

of violated valid inequalities.

– When the relaxation is linear, valid inequalities take into account violations of

relaxed conic structure.

– When the relaxation is conic, disjunctive conic cuts based on relaxed integrality

can be generated.

– Inequalities from known classes for MILP relaxation can also be utilized in LP

subproblems.

• We develop an extensive open source software framework that implements the ideas

described above. Moreover this framework can be used for comparative testing and

development of new algorithmic ideas. This framework includes the following.

– COLA, an outer-approximation based solver for second-order cone optimization

problems.

– OsiConic, a generic solver application programming interface (API) for conic

solvers, that extends the existing Open Solver Interface.

42

1.5. CONTRIBUTION

– OsiConic implementations for Mosek, Ipopt, CPLEX, and COLA.

– CGL-CONIC, a library of valid inequality generators for MISOCP.

– DisCO, a unified, distributed memory parallel, extensible solver for MISOCP,

implementing branch and cut.

• We perform extensive computational experiments to evaluate the effectiveness of

various computational approaches. These experiments include the following.

– Experiments to determine the optimal balance between branching and cutting

for the LP subproblem based branch-and-cut algorithm.

– Comparison of branching strategies for both LP and SOCP based branch and

cut algorithm.

– Investigation of the effectiveness of cuts from the MILP literature when used

within an LP-based branch-and-cut algorithm.

– Investigation of the effectiveness of disjunctive conic cuts for both LP- and

SOCP-based branch-and-cut algorithms.

– Evaluation of the scalibility of the introduced algorithms using parallel com-

puters.

– Comparison of the computational performance of SOCP and LP subproblem

based branch-and-cut algorithms.

• We define three decision versions of the inverse MILP and determine their compu-

tational complexity. These problems are complete for the determined classes. They

are the tightest complexity classes one can achieve without resolving P–NP problem.

43

1.6. OUTLINE

1.6 Outline

This thesis continues as follows. In Chapter 2 we introduce a simple procedure for separat-

ing a given point from a Lorentz cone. Based on this, we present an outer-approximation

method for solution of an SOCP. The outer-approximation method relaxes all conic con-

straints and iteratively solves the resulting LP relaxations in the fashion of the previously

described cutting-plane method. Solutions to the relaxations are checked for feasibility

with respect to the conic constraints. If a solution is ε-feasible, then the procedure ter-

minates. If not, the LP relaxation is improved by adding violated valid inequalities. The

algorithm continues in this fashion until a ε-feasible solution is found.

Chapter 3 introduces an algorithmic framework for solution of MISOCPs by a branch-

and-cut approach. The overall approach is similar to the branch-and-cut algorithms in

the MILP case except that in addition to the relaxation of integrality constraints, conic

constraints may also be relaxed. In the case where conic constraints are relaxed, the re-

laxation is an LP and thus easy to solve. A solution to the original MISOCP is found

whenever the solution to a given relaxation satisfies both integrality and conic constraints.

Valid inequalities are added to remove solutions that are conic infeasible from the relax-

ation feasible region, while solutions violating integrality conditions are removed either

by addition of valid inequalities or by branching. MILP cut procedures (Gomory, mixed

integer rounding, etc.) can also be used to improve the bounds of the subproblems.

Chapter 3 surveys different valid inequalities for MISOCP feasible set from literature.

Valid inequalities are meant to improve description of MISOCP feasible set by cutting

off integer-infeasible solutions of relaxation subproblems. We refer valid inequalities that

cuts integer-infeasible points as cut. Using cuts during branch-and-bound search is meant

to reduce size of the tree and speed up achieving optimal solution and termination of

algorithm. Chapter 3 investigates five of such cutting procedures from implementational

perspective.

44

1.6. OUTLINE

Chapter 4 introduces the various software libraries developed to solve MISOCP. One

fundamental library is OsiConic, a generic interface for conic solvers. Another project

is COLA (conic optimization with linear approximations) solver that uses an outer-

approximation method to solve SOCP. Chapter 4 also presents the implementation of

a conic solver interface for CPLEX, Ipopt, and Mosek. Another fundamental library pre-

sented is CglConic, which is a library of procedures for generating valid inequalities for

MISOCP. Finally, we introduce the solver DisCO that combines all the mentioned libraries

for the purpose of solving MISOCP. DisCO is a framework for implementing branch-and-

cut algorithms and combines all of the previously mentioned projects. The algorithms

in DisCO can be executed both on serial and on distributed-memory parallel computing

platforms.

Chapter 6 presents the results of computational experiments conducted. Experiments

were conducted on a standard set of benchmark instances for MISOCP. These instances

are random instances defined by Góez [Góe13], conic benchmark library 2014 (CBLIB)

instances [Fri16] and MISOCP formulations of Euclidean Steiner tree problem. COLA

is tested on the continuous relaxations of these problems. DisCO is tested with various

algorithmic approaches and using various solvers for solving the relaxations, including

COLA, CPLEX, Ipopt and Mosek. DisCO is tested both in serial and distributed-memory

parallel mode.

Chapter 5 introduces inverse MILP. We formulate inverse MILP as a general (not

necessarily second-order) conic optimization problem and give an algorithm that solves

inverse MILP. Chapter 5 defines various decision problems related to inverse MILP. We

derive the complexity of associated decision problems. Chapter 7 summarizes the work

completed and explains the research directions we propose to investigate in the future.

45

Chapter 2

Second-Order Cone Optimization

Problems

Second-Order Cone Optimization Problems (SOCPs) are an important special class of

nonlinear optimization problem that generalize the well-known and efficiently solvable

linear optimization problem. In SOCP, a linear objective function is optimized over the

intersection of an affine set with the cartesian product of Lorentz cones. Although SOCPs

are nonlinear (quadratic) convex optimization problems, the feasible region of an SOCP

is convex and the problem itself can therefore be solved efficiently by interior point algo-

rithms, among others.

In this Chapter, we first briefly discus duality theory and the interior point method

for SOCP. We then detail a procedure for dynamically constructing a polyhedral approx-

imation of a conic set and develop a cutting-plane algorithm based on this approximation

procedure. The software implementation of the method is described in Chapter 4 and

computational experiments with the method are described in Chapter 6.

46

2.1. BACKGROUND

2.1 Background

2.1.1 Duality Theory

In this section, we explore the duality theory for SOCP. The material presented here is

based on Andersen, Roos, and Terlaky [ART03] and interested readers are referred to the

paper for details. We assume an SOCP in the standard form (SOCP) given earlier, which

is repeated here for completeness.

min c>x

s.t. Ax = b

x ∈ K,

(SOCP)

where K is the cartesian product of Lorentz cones defined in (SOCP). We refer to this as

the primal problem in order to distinguish it from the dual problem, which is the following.

max b>y

s.t. A>y + s = c

s ∈ K.

(D-SOCP)

The conic constraints are the same in the primal and dual problems, since Lorentz cones

are self-dual.

Theorem 2.1.1 (Weak Duality). Let x be a feasible solution to (SOCP), and (y, s) be a

feasible solution to (D-SOCP), then

c>x ≥ b>y.

An SOCP is said to be strictly feasible, if there is a feasible solution to either (SOCP)

or (D-SOCP) that satisfies the conic constraint strictly, i.e., x ∈ int(K).

47

2.1. BACKGROUND

Theorem 2.1.2 (Strong Duality). If (SOCP) is strictly feasible and its optimal value

is bounded or if (D-SOCP) is strictly feasible and its optimal value is finite, then x and

(y, s) are optimal solutions if and only if

c>x− b>y = x>s = 0,

x is feasible for (SOCP) and (y, s) is feasible for (D-SOCP).

Theorem 2.1.3 (Primal Infeasibility). If there exists (y, s) with s ∈ K and such that

(y, s) satisfies

A>y + s = 0

b>y > 0,

then (SOCP) is infeasible.

Theorem 2.1.4 (Dual Infeasibility). If there exists x ∈ K satisfying

Ax = 0

c>x < 0,

then (D-SOCP) is infeasible.

See Ben-Tal and Nemirovski [BN01a] for the proofs of the duality theorems.

2.1.2 Existing Algorithms

There are two main existing algorithms for solving (SOCP). The first one is based on

a generalization of the well-known interior point algorithm (IPM) for solving linear opti-

mization problems [NS96; AA95]. The second one is based on lifting and approximating

the feasible region with a polyhedron [BN01b].

48

2.1. BACKGROUND

Interior Point Method

The most efficient method known to date to solve a single SOCP from scratch is the interior

point method (IPM). The IPM is a well-studied method for solving (LP), (SOCP) and

other convex optimization problems. In this section, we discuss IPMs for solving (SOCP).

Interested readers are referred to Andersen, Roos, and Terlaky [ART03] for details of the

computational implementation of IPMs for (SOCP).

We briefly present a primal-dual path-following IPM. This method is called a primal-

dual method because the Newton method is applied to both the primal and dual problems.

The primal-dual IPM presented works on the homogeneous model described by Kuhn,

Tucker, and Dantzig [KTD56], this model is known as the Goldman and Tucker homoge-

neous model and is given by

Ax− bτ = 0,

A>y + s− cτ = 0,

−c>x+ b>y − κ = 0,

(x, τ) ∈ K×R+,

(s, κ) ∈ K×R+.

(2.1)

The homogeneous model itself is always feasible. A solution provides either a certificate

of infeasibility or a solution to primal and dual problems. Lemma 2.1.5 gives this result.

Lemma 2.1.5. Let (x∗, τ∗, y∗, s∗, κ∗) be a solution to (2.1). Then

1. (x∗)> s∗ + τ∗κ∗ = 0.

2. If τ∗ > 0, then (x∗,y∗,τ∗)
τ∗ is a primal-dual optimal solution.

3. If κ∗ > 0, then at least one of the strict inequalities b>y∗ > 0 and c>x∗ < 0 holds. If

the former inequality holds, then (SOCP) is infeasible. If the latter inequality holds,

49

2.1. BACKGROUND

then (D-SOCP) is infeasible.

As such, the goal is to solve (2.1). In principle, one can try to do this directly using

the Newton method. Termination of the Newton method depends on assumptions that

may not be satisfied, however, and thus is not guaranteed. The IPM instead solves a

modified versions of (2.1) successively in a fashion that guarantees convergence to an

optimal solution in a finite number of iterations. The modified system solved in each

iteration is as follows.

Ax− bτ = γ(Ax0 − bτ0),

A>y + s− cτ = γ(A>y0 + s0 − cτ0),

−c>x+ b>y − κ = γ(−c>x0 + b>y0 − κ0),

XSe = γu0e,

τκ = γu0,

(2.2)

where

u0 :=
(x0)>s0 + τ0κ0

k + 1
,

X := diag(X1, . . . , Xk),

S := diag(S1, . . . , Sk),

Xi :=

 (T ixi)1 (T ixi)>2:n

(T ixi)2:n (T ixi)1I
>

 ,
Si :=

 (T isi)1 (T isi)>2:n

(T isi)2:n (T isi)1I
>

 .
If the ith cone is a Lorentz cone, then T i is an identity matrix. If it is a rotated Lorentz

50

2.1. BACKGROUND

cone, then T i is defined as

T i :=

1√
2

1√
2

0 . . . 0

1√
2
− 1√

2
0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1

.

(x0, τ0, y0, s0, κ0) is a given starting point for which x0 and s0 are strictly feasible. The

vector e is the vector of 1’s with appropriate dimension. Note that the right-hand side of

the complementarity constraint is modified to γu0e. The set of solutions of this system

with respect to varying γ is a smooth curve and called the central path. The central path

starts with (x0, τ0, y0, s0, κ0) (γ = 1) and ends at a solution of (2.1) (γ = 0).

The IPM follows the central path approximately in a way that guarantees convergence

to an optimal solution. Roughly speaking, (2.2) is solved approximately by Newton’s

method in each iteration for decreasing γ values. The approximate solution is guaranteed

to be in a certain neighborhood of the central path. Practical concerns for implementing

the algorithm include scaling and step-size selection. Step-size selection plays an important

role in the practical performance of the method.

Ben-Tal–Nemirovski Outer-Approximation Method

An alternative to the IPM is the outer-approximation method of Ben-Tal and Nemirovski

[BN01b]. At a high level, their approximation method works as follows. First, they

decompose all the cones in the problem to obtain a problem in which all cones are at most 3-

dimensional. Then they approximate the 3-dimensional cones with supporting hyperplanes

with respect to a given ε. At the end of the this process, they obtain an LP with larger

number of variables and constraints then the original SOCP. Any feasible solution to

51

2.1. BACKGROUND

this LP is ε-feasible for the original SOCP. The number of variables and constraints are

polynomials in the original number of variables, constraints and ε.

Rather than presenting the full details, we illustrate the cone decomposition process

briefly with a 5-dimensional cone. Let such a Lorentz cone be given as ‖(y0
1, y

0
2, y

0
3, y

0
4)‖ ≤ t.

The following is the decomposition of this cone into 3-dimensional cones.

‖(y0
1, y

0
2)‖ ≤ y1

1

‖(y0
3, y

0
4)‖ ≤ y1

2

‖(y1
1, y

1
2)‖ ≤ t.

Note the increase in the number of variables. In this decomposition, the superscript

represents the level of the variable. The first level variables are at level 0. Parents of yli

are yl−1
2i−1 and yl−1

2i . At the top level we have variable t. In this decomposition, at level 2,

we have variable t, at level 1, y1
1 and y1

2, and the original variables are at level 0.

After decomposing the larger cones to 3-dimensional cones, the 3-dimensional cones

are approximated with linear constraints. The following is the linear approximation of a

3-dimensional Lorentz cone.

ξ0 ≥ |x2|

η0 ≥ |x3|

ξj = cos
(π

2j+1

)
ξj−1 + sin

(π

2j+1

)
ηj−1 j = 1, . . . , ν

ηj ≥
∣∣∣− sin

(π

2j+1

)
ξj−1 + cos

(π

2j+1

)
ηj−1

∣∣∣ j = 1, . . . , ν

ξν ≤ x1

ην ≤ tan
(π

2ν+1

)
ξν ,

where ν is an integer parameter of construction that controls how fine the approximation

is. More variables (ξj , ηj) are added in this step. The number of linear constraints also

52

2.2. A CUTTING-PLANE ALGORITHM

increase. The increase in the number of variables depends on how fine the approximation

is.

2.2 A Cutting-Plane Algorithm

In Section 2.1.2, we reviewed the two main existing algorithms for (SOCP). In general,

the interior point algorithm has better performance [Gli00], but the Ben-Tal and Ne-

mirovski scheme has the distinct advantage that it reformulates the problem as a linear

program. This means that in the context of a branch-and-cut algorithm, the latter can

take advantage of the excellent warm-starting properties of linear programs to accelerate

the branch-and-bound process.

The obvious disadvantage of the Ben-Tal and Nemirovski scheme is that it must ap-

proximate the feasible region using a potentially very large number of inequalities in a

lifted space and the approximation is calculated a priori in order to ensure a given level of

accuracy. Increasing the level of accuracy increases the number of required inequalities.

To obtain an ε–accurate polyhedral approximation for an SOCP in dual conic form with

k cones, the number of additional variables and constraints required is O(k ln 2
ε). Solving

a linear program this large to a high accuracy may be problematic and may defeat the

advantage of the warm-starting.

On the other hand, it has long been known in the case of MILPs that there is a way

out of such dilemmas and that is to dynamically generate only the inequalities that are

required to produce the optimal solution, i.e., those inequalities that are binding at the

optimal extreme point. Thus, it is natural to ask whether a dynamic outer-approximation

scheme similar in spirit to Ben-Tal and Nemirovski approximation, but in which inequal-

ities are generated dynamically rather than statically might be competitive. To test this,

we developed and implemented such an algorithm.

53

2.2. A CUTTING-PLANE ALGORITHM

2.2.1 The Separation Problem

In this section, we introduce a method to solve the separation problem, introduced in Def-

inition 1.16, with respect to a given point x ∈ Rn and the Lorentz cone Ln. Theorem 2.2.1

presents the theoretical basis for the method. It is easy to check whether a given point is

in a given Lorentz cone, so the result focuses on the second step of producing a separating

hyperplane in the case that the given point is not in the Lorentz cone.

Theorem 2.2.1. For any x 6∈ Ln, we have that

(ax)>x ≥ 0 ∀x ∈ Ln (2.3)

and

(ax)>x < 0, (2.4)

where ax ∈ Rn is defined by

ax1 = ‖x2:n‖

ax2:n = x2:n.

Proof. Let x ∈ Rn \ Ln be given. We first show that the inequality defined in (2.3) is

valid for Ln. For the sake of contradiction, assume the inequality does not hold for some

x̂ ∈ Ln, i.e., 0 > ‖x2:n‖x̂1 − x>2:nx̂2:n. Since x̂ ∈ Ln, we have that x̂1 ≥ ‖x̂2:n‖. Then we

have that

0 > ‖x2:n‖x̂1 − x>2:nx̂2:n > ‖x2:n‖‖x̂2:n‖ − x>2:nx̂2:n ≥ 0.

The first inequality follows from our initial assumption, the second from x̂ ∈ Ln and

the third one is the Cauchy–Schwarz inequality. Hence, we have reached a contradiction.

There is no member of Ln that violates the given inequality.

54

2.2. A CUTTING-PLANE ALGORITHM

Next, we prove that x violates the given inequality, i.e.

‖x2:n‖x1 − x>2:nx2:n < 0.

For this, we use the fact that x 6∈ Ln, which means that x1 < ‖x2:n‖, so we have that

‖x2:n‖x1 − x>2:nx2:n = ‖x2:n‖x1 − ‖x2:n‖2 < ‖x2:n‖2 − ‖x2:n‖2 = 0,

and this completes the proof.

Note that same as cutting points, Theorem 2.2.1 can be used for restricting directions.

For a direction d /∈ Ln, (ad)>d < 0 and (ad)>x ≥ 0 ∀x ∈ Ln.

Theorem 2.2.2. The hyperplane

{x ∈ Rn | (ax)>x = 0} (2.5)

associated with the valid inequality described in Theorem 2.2.1 supports Ln along an ex-

treme ray E = {γax | γ ∈ R+}.

Proof. It is easy to see that E is an extreme ray of Ln. It is also in the given hyperplane.

Theorem 2.2.3. Among all hyperplanes separating a given x 6∈ Ln from Ln, the hyper-

plane (2.5) associated with the valid inequality given in Theorem 2.2.1 is maximally distant

from x in terms of the l2 norm.

Proof. To find the valid inequality whose associated hyperplane is maximally distant from

x, one needs to project x onto Ln and generate the supporting hyperplane passing through

this projected point.

x can be projected on Ln by finding the closest point of Ln to it. This point can be

55

2.2. A CUTTING-PLANE ALGORITHM

found by solving the following problem,

min z1

s.t. z2:n − x = −x

z ∈ Ln+1

x ∈ Ln.

(Projection)

Both the projection problem and its dual are strictly feasible and strong duality holds.

Any point satisfying the following optimality conditions is optimal.

(z1, x− x) ∈ Ln+1 (Primal Feasibility)

x ∈ Ln (Primal Feasibility)

(1,−u) ∈ Ln+1 (Dual Feasibility)

u ∈ Ln (Dual Feasibility)

z1 − u>(x− x) = 0 (Complimentary Slackness)

u>x = 0 (Complimentary Slackness)

z1 = −x>u. (Strong Duality)

Assuming x 6∈ Ln
⋃
−Ln (otherwise, the solution is trivially 0), the solution is

x∗ =
x1 + ‖x2:n‖

2‖x2:n‖

 ‖x2:n‖

x2:n

 .
The vector defining the valid inequality is then computed as the gradient (normal to the

tangent hyperplane) at x∗. The gradient is (x1,−x2, . . . ,−xn). Then we have that

x1 + ‖x2:n‖
2‖x2:n‖

(
‖x2:n‖x1 − x>2:nx2:n

)
≥ 0 ∀x ∈ Ln.

56

2.2. A CUTTING-PLANE ALGORITHM

This inequality is the one given in Theorem 2.2.1 except that it is scaled by x1+‖x2:n‖
2‖x2:n‖ . The

projected point x∗ is on the extreme ray of Theorem 2.2.2 that constitutes the support of

the hyperplane formed by the set of points that satisfy the inequality at equality.

Theorem 2.2.4. Given x 6∈ Lnrot, we have that

(axrot)
>x ≥ 0 ∀x ∈ Lnrot,

where axrot ∈ Rn is defined by

(axrot)1 =
√

(−x1 + x2)2 + 2x>3:nx3:n + (−x1 + x2),

(axrot)2 =
√

(−x1 + x2)2 + 2x>3:nx3:n − (−x1 + x2),

(axrot)3:n = −2x3:n.

and that

(axrot)
>x < 0.

Proof. For the sake of contradiction assume ∃x̂ ∈ Lnrot such that

(axrot)
>x̂ < 0.

Then a contradiction can be obtained by the following chain of equality and inequalities.

The first inequality is due to our assumption. The second and third equalities are obtained

by substituting values for axrot and performing some algebraic manipulations. The last

57

2.2. A CUTTING-PLANE ALGORITHM

inequality is the Cauchy–Schwarz inequality.

0 > (axrot)
>x

= (x̂1 + x̂2)

√
(−x1 + x2)2 + 2x>3:nx3:n + (x̂1 − x̂2)(−x1 + x2)− 2x>3:nx̂3:n

= (x̂1 + x̂2)

∥∥∥∥∥∥∥
x1 − x2

√
2x3:n

∥∥∥∥∥∥∥−
 x1 − x2

√
2x3:n

> x̂1 − x̂2

√
2x̂3:n

≥

∥∥∥∥∥∥∥
x̂1 − x̂2

√
2x̂3:n

∥∥∥∥∥∥∥
∥∥∥∥∥∥∥
x1 − x2

√
2x3:n

∥∥∥∥∥∥∥−
 x1 − x2

√
2x3:n

> x̂1 − x̂2

√
2x̂3:n

≥ 0.

The step before the Cauchy–Schwarz inequality is crucial and holds due to the fact that

x̂ ∈ Lnrot, so that

2x̂1x̂2 ≥ x̂>3:nx̂3:n

4x̂1x̂2 ≥ 2x̂>3:nx̂3:n

(x̂1 + x̂2)2 − (x̂1 − x̂2)2 ≥ 2x̂>3:nx̂3:n

(x̂1 + x̂2)2 ≥ (x̂1 − x̂2)2 + 2x̂>3:nx̂3:n

x̂1 + x̂2 ≥

∥∥∥∥∥∥∥
x̂1 − x̂2

√
2x̂3:n

∥∥∥∥∥∥∥ .

2.2.2 Overall Algorithm

Algorithm 3 presents a cutting-plane algorithm for (SOCP). It uses the separation pro-

cedure described in the previous section for dynamically generating the valid inequalities

associated with each of the cones comprising the cartesian product K. In the algorithm, we

58

2.2. A CUTTING-PLANE ALGORITHM

define a parametric family of polyhedra that contain the feasible region SSOCP of (SOCP)

as follows.

Definition 2.1. (P(E)) For a given set E ⊆ Qn, P(E) is the polyhedron defined by the

inequalities of Theorem 2.2.1 corresponding to the members of set E for each of the Lorentz

cones comprising the cartesian product K, plus the linear constraints from (SOCP). The

formal description of this polyhedron is

Ax = b

xi1 ≥ 0 i = 1, . . . , k

(ax
i
)>(xi) ≥ 0 x ∈ E , i ∈ K(x).

(P(E))

Here, 1, . . . , k are the indices of the Lorentz cones comprising K. For a given x ∈ Rn, K(x)

are the indices of cones to which x does not belong and ax
i

is the left-hand side vector of

the inequality from Theorem 2.2.1.

Note that initially, the constraint xi ∈ Lni is replaced by the relaxed constraint xi1 ≥ 0,

which a valid since {xi ∈ Rni | xi1 ≥ 0} ⊃ Lni . Algorithm 3 is the proposed cutting plane

algorithm for solving (SOCP). In this algorithm, the set Ej is the set of (infeasible) points

generated so far in the algorithm and P(Ej) is the current polyhedral approximation.

Algorithm 3 solves (SOCP) by solving a sequence of problems whose feasible regions

are successively tighter polyhedral approximations of the original feasible region. In it-

eration j of the algorithm, we optimize over the approximation P(Ej), which is either

infeasible, unbounded, or has an optimal solution. When it is infeasible, we conclude

that (SOCP) is infeasible (lines 12–13). When it is unbounded (lines 5–10), we determine

whether the direction of unboundedness d is ε-feasible for K. This can be done by check-

ing whether d is ε-feasible for each cone in K. If it is, then (SOCP) is unbounded. If

not, a valid inequality violated by the direction of unboundedness is generated according

59

2.2. A CUTTING-PLANE ALGORITHM

Algorithm 3 Cutting-plane Algorithm for (SOCP)

1: E0 ← ∅.
2: j ← 0.
3: while TRUE do
4: zj = minx∈P(Ej) c

>x.

5: if zj = −∞ then
6: Let αd ∈ P(Ej)∀α ∈ R+ and c>d < 0.
7: if d ∈ Kε then
8: (SOCP) is unbounded, STOP.
9: else

10: Ej+1 ← Ej
⋃
{d}.

11: end if
12: else if z0 =∞ then
13: (SOCP) is infeasible, STOP.
14: else
15: Let xj ∈ argminx∈P(Ej) c

>x

16: if xj /∈ Kε then
17: Ej+1 ← Ej

⋃
{xj}.

18: else
19: xj is ε-optimal for (SOCP), STOP.
20: end if
21: end if
22: j ← j + 1
23: end while

60

2.3. COMPARISON TO BEN-TAL AND NEMIROVSKI METHOD

to Theorem 2.2.1. If P(Ej) has an optimal solution (lines 14–19), then feasibility of the

solution xi with respect to conic constraints is checked. If xi is ε-feasible for K, then it is

also ε-optimal for (SOCP). If not, xi is added to E i, which means that the corresponding

valid inequalities are generated and added to the polyhedral approximation.

After augmenting the set of points generated so far, the relaxation is re-solved with

the improved polyhedral approximation P(Ej). These steps are repeated until one of the

three stopping criteria is achieved. In the presented algorithm, not all of the supporting

hyperplanes are generated a priori. Instead, approximating supports are generated and

added to LP dynamically as needed. This can be considered as a method of approximating

the conic constraints only in the region needed to solve the problem, as is usual with

cutting-plane algorithms.

Note that when the simplex method is used to solve the LPs, Algorithm 3 can exploit its

warm start capability. In each iteration, more constraints are added to the approximating

LP. The number of constraints added are at most equal to the number of cones comprising

K. The dual simplex method is known for its ability to quickly re-solve a given instance

after constraints are added to the problem.

Note that some of the cuts generated might become redundant in the subsequent

iterations. In practical implementations, redundant cuts can be removed from the (P(E))

formulation to reduce the size of (P(E)). Algorithm 3 is implemented in COLA solver

that is introduced in Section 4.2.

2.3 Comparison to Ben-Tal and Nemirovski Method

As discussed earlier, Ben-Tal and Nemirovski [BN01b] also proposed an outer approxi-

mation algorithm for (SOCP). The approach presented is Section 2.2 differs from their

procedure in important respects. The main differences are (1) the problem is not lifted

to higher dimensions to reduce the cone dimensions, (2) not all of the approximation

61

2.4. COMPARISON TO IPM

hyperplanes are added apiori. Ben-Tal and Nemirovski represent the whole problem as

an LP. Once the approximation is created, its solution will be an approximate solution

for (SOCP). The cutting-plane algorithm introduced in this section does not approximate

all cones fully. It initially replaces all conic constraints with constraints xj ≥ 0, where

xj is the leading variable. If the resulting relaxation yields a solution that is feasible for

some conic constraints, those cones are not approximated since they are already feasible.

Moreover, for the cones that the relaxation problem does not satisfy, the introduced algo-

rithm approximates them only with a single hyperplane corresponding to a valid inequality

violated by solution to the relaxation.

In summary, the cutting-plane algorithm presented approximates the cones dynam-

ically as needed, whereas the Ben-Tal and Nemirovski approach approximates all cones

fully a priori. In our approximation scheme, we add only linear constraints only. The

Ben-Tal and Nemirovski procedure both lifts the problem by adding additional variables

and adds constraints. We believe with the current LP technology (warm start capability

after addition of cuts), our approach is promising in terms of efficiency.

Glineur [Gli00] extends the Ben-Tal and Nemirovski approximation procedure by im-

proving the outer-approximation method so that it needs fewer variables and constraints

to approximate the feasible region of (SOCP). It also provides a computational study and

reports that solving the original SOCP with IPM is more efficient than solving the linear

approximations, even at low accuracies.

2.4 Comparison to IPM

IPM is a well studied method to solve (SOCP) with theoretical guarantees. The modern

implementations of IPM in commercial solvers have been successful in solving (SOCP)

efficiently. One disadvantage of the IPM is its relatively weaker warm starting capability

(compared to simplex) and this capability is heavily relied upon in solving discrete opti-

62

2.5. CONCLUSION

mization problems in a branch-and-bound framework. Warm starting IPM is an active

research topic [SAY13; ÇPT17]. Skajaa, Andersen, and Ye [SAY13] give a warm starting

method that reports reductions in solution time in the range of 30–75 % depending on

the problem class and magnitude of the problem perturbation. Where after bound update

on a variable, simplex method is expected to obtain optimality in a few iterations and

simplex iterations are cheap.

There have been computational studies that test the performance of outer-approximation

methods for (SOCP). One such study is Glineur [Gli00]. It suggests a variant of Ben-Tal

and Nemirovski outer approximation that leads to relatively smaller LP approximations

and reports that outer approximation is slow compared to IPM. Another computational

study is Vielma, Ahmed, and Nemhauser [VAN08]. This study is on discrete problems and

introduces a branch-and-bound algorithm based on Ben-Tal and Nemirovski approxima-

tion. It reports that branch and bound based on Ben-Tal and Nemirovski approximation

is favorable compared to an IPM based branch and bound.

In the cutting-plane algorithm proposed in this section, the feasible region of an SOCP

is approximated by a polyhedron. The relaxations are improved dynamically rather than

by constructing a single large polyhedral approximation a priori. One advantage of this

method is the cones are approximated well only in the relevant regions. A second advan-

tage is that the problems can be warm started when new approximating cuts are added.

Computational performance of this method will be compared to IPM in Chapter 6.

2.5 Conclusion

In this chapter, we introduced a closed form linear cut to separate a given point from

Lorentz and rotated Lorentz cones. We show that the valid inequality is the strongest

possible when measured in terms of depth and that it supports the cone along an extreme

ray.

63

2.5. CONCLUSION

We proposed a cutting-plane algorithm that uses the valid inequalities described to

solve (SOCP). We listed similarities and differences of the defined procedure to the existing

outer approximation methods.

In Chapter 3, we build a branch-and-bound algorithm on top of the separation pro-

cedure introduced. In Chapter 4, we introduce software libraries that implement the

separation procedure and cutting-plane algorithm introduced in this chapter. In Chap-

ter 6, we measure the performance of the algorithms introduced and compare them to

the IPM implementations of various commercial and open source solvers. We also test

the effectiveness of the procedures defined in a branch-and-bound algorithm at solving

MISOCP.

64

Chapter 3

Mixed Integer Second-Order Cone

Optimization Problems

This chapter addresses computational methods for solution of MISOCP. MISOCP is a

special case of the more general class of MINLPs and a generalization of the well-studied

case of MILP. As such, MISOCP is an NP–hard problem and no provably efficient algo-

rithm is yet known for it. Although the same is true for the case of MILP, progress in

recent decades has led to the successful implementation of algorithms that have proven to

work well in practice on many real-world instances. Our goal in this study is to exploit

the hard-won knowledge that has been gained regarding how to solve MILPs in order

to develop improved solution techniques for MISOCP. For a detailed introduction and

definitions of related problem classes like SOCP and LP, see Section 1.2.2.

As we have motivated earlier, there exist many important applications of MISOCP

in the literature. MISOCP is used to model design of supply chain networks [ABS12],

telecommunication networks [FM04], cardinality constrained portfolio optimization [BS09],

turbine balancing and minimum Steiner Tree problem [FM04].

In the remainder of the chapter, we review existing methodology and introduce our

65

3.1. EXISTING ALGORITHMS

proposed computational framework. In Section 3.1, we give an overview of the existing

approaches to solve MISOCP. This section includes a discussion of a branch-and-bound al-

gorithm based on Ben-Tal and Nemirovski outer-approximation method given by Vielma,

Ahmed, and Nemhauser [VAN08]. In Section 3.2, we review the known classes of valid

inequalities. In Section 3.3, we introduce a flexible branch-and-cut framework for MIS-

OCP designed to allow fine-tuning of various aspects of the algorithm for different problem

classes. Advantages of the proposed algorithmic framework as compared to existing ap-

proaches are also discussed.

3.1 Existing Algorithms

3.1.1 SOCP-based Branch and Bound

Branch and bound with SOCP relaxations is the most natural generalization of the branch-

and-bound algorithm for MISOCP solvers. In this approach, integrality constraints are

relaxed to obtain SOCP relaxations. The branch-and-bound algorithm, as described ear-

lier, is then utilized to systematically search for solutions to the original problem that

satisfy the relaxed integrality constraints. We refer this algorithm in what follows as

bb-socp. In this algorithm, the SOCP solver is employed as a black box and any available

solver can be used. In this study, we conduct experiments in which the SOCP subproblem

relaxations are solved both with IPM and with an outer-approximation approach similar

to the one described in Algorithm 3 in Chapter 2 with the additional allowance for valid

inequalities arising from violated valid disjunctions derived from integrality restrictions.

To the best of our knowledge, the commercial solver Mosek, which is a standard in the

field, uses such an SOCP-based branch-and-bound approach and solves the relaxations

with IPM [MOS15].

66

3.1. EXISTING ALGORITHMS

3.1.2 Branch and Bound with Linear Relaxation

In this section, we briefly describe a branch-and-bound method to solve MISOCP based

on the Ben-Tal and Nemirovski outer-approximation approach. Vielma, Ahmed, and

Nemhauser [VAN08] show that even though Ben-Tal and Nemirovski type of approxima-

tions are not very efficient for purely continuous problems, they are efficient at solving

MISOCP. They show this by introducing a branch-and-bound algorithm based on a lifted

polyhedral relaxation given by Ben-Tal and Nemirovski [BN01b] and Glineur [Gli00].

Vielma, Ahmed, and Nemhauser [VAN08] describe their algorithm in the context of

the more general class of nonlinear problems known as a mixed integer nonlinear convex

optimization problem (MICXP), stated as

zMICXP := min c>x+ d>y

s.t. (x, y) ∈ C

x ∈ Zn.

(MICXP)

where C is a convex set. This class clearly includes (MISOCP) as a special case. We

summarize their algorithm here.

First, we consider the continuous relaxation

zCXP := min c>x+ d>y

s.t. (x, y) ∈ C

x ∈ Rn.

(CXP)

of (MICXP). Now, let P denote a lifted polyhedral relaxation of C obtained using a

procedure similar to that of Ben-Tal and Nemirovski [BN01b]. The relationship between

C and P is

C ⊂ {(x, y) ∈ Rn+p | ∃v ∈ Rqs.t.(x, y, v) ∈ P}.

67

3.1. EXISTING ALGORITHMS

We denote by (CXLP) the approximation of (CXP) in the lifted space, as follows.

zCXLP := min c>x+ d>y

s.t. (x, y, v) ∈ P.
(CXLP)

For a given x̂ ∈ Zn, we define

zCXP(x̂) := min c>x̂+ d>y

s.t. (x̂, y) ∈ C.
(CXP(x̂))

For any (lk, uk) ∈ Zn, CXLP(lk, uk) denotes CXLP with additional constraints lk ≤ x ≤

uk, CXP(lk, uk) denotes CXP with additional constraints lk ≤ x ≤ uk. Branch-and-bound

node k is denoted by (lk, uk, LBk), where (lk, uk) are bounds for variable x and LBk is a

lower bound on zCXP(lk,uk).

Algorithm 4 gives the lifted branch-and-bound algorithm of Vielma, Ahmed, and

Nemhauser [VAN08]. Algorithm 4 does not assume that a solution for (CXLP) is also

a solution of (CXP). This is due to their relatively large choice of approximation parame-

ter value. Due to this, (CXP) is approximated loosely rather than high accuracy. (CXLP)

is considered as a loose approximation of (CXP). There are advantages and disadvantages

to this. Disadvantage is that (CXLP) approximates loosely and a solution of it can not

be considered a solution of (CXP). The advantage is size of (CXLP) is smaller since the

size increases with the accuracy demand. Due to the fact that a solution to (CXLP) may

not be a solution to (CXP), extra steps are needed in the branch-and-bound algorithm.

Algorithm 4 tries to achieve integer feasibility first by doing branch and bound on (CXLP)

problems until an integer solution is found, i.e. (x̂k, ŷk). When an integer solution is found

then we worry about its feasibility to other constraints. Integer (CXLP) solution is loosely

feasible to (CXP). Once this integer solution is found, we solve (CXP(x̂)). If (CXP(x̂)) is

68

3.1. EXISTING ALGORITHMS

Algorithm 4 Lifted branch-and-bound algorithm [VAN08]

1: LB0 ← −∞, UB ← +∞
2: l0i ← −∞, u0

i ← +∞ for all i ∈ {1, . . . , n}.
3: H ← {(l0, u0, LB0)}.
4: while H 6= ∅ do
5: Select and remove a node (lk, uk, LBk) ∈ H.
6: Solve CXLP(lk, uk).
7: if CXLP(lk, uk) is feasible and zCXLP (lk,uk) < UB then

8: Let (x̂k, ŷk) be the optimal solution to CXLP(lk, uk).
9: if x̂k ∈ Zn then

10: Solve CXP(x̂k).
11: if CXP(x̂k) is feasible and zCXP (x̂k) < UB then
12: UB ← zCXP (x̂k).
13: end if
14: if lk 6= uk and zCXLP (lk,uk) < UB then

15: Solve CXLP(lk, uk).
16: if CXLP(lk, uk) is feasible and zCXLP (lk,uk) < UB then

17: Let (x̃k, ỹk) be the optimal solution to CXLP(lk, uk).
18: if x̃k ∈ Zn then
19: UB ← zCXLP (lk,uk).
20: else
21: Pick i0 in {i ∈ {1, . . . , n} : x̃ki /∈ Z}.
22: li ← lki , ui ← uki for all i ∈ {1, . . . , n} \ {i0}.
23: ui0 ← bx̃ki0c, li0 ← bx̃ki0c+ 1.
24: H ← H∪ {(lk, u, zCXP (lk,uk)), (l, u

k, zCXP (lk,uk))}.
25: end if
26: end if
27: end if
28: else
29: Pick i0 in {i ∈ {1, . . . , n} : x̂ki /∈ Z}.
30: li ← lki , ui ← uki for all i ∈ {1, . . . , n} \ {i0}.
31: ui0 ← bx̂ki0c, li0 ← bx̂ki0c+ 1.
32: H ← H∪ {(lk, u, zCXLP (lk,uk)), (l, u

k, zCXLP (lk,uk))}.
33: end if
34: end if
35: Remove every node (lk, uk, LBk) ∈ H such that LBk > UB.
36: end while

69

3.1. EXISTING ALGORITHMS

feasible, then we check whether lower bound can be updated. Note that at this point even

though lower bound is updated we are not done with this node and an even better solution

(x variable values different than x̂ when lk 6= uk) might be feasible for this node. If this

is the case, then we have to solve the (CXP), which is the most expensive continuous

problem in the algorithm. If solution (x̃k, ỹk) is integer feasible, then we check whether

lower bound can be updated, if not branch.

Note that in this algorithm expensive steps occur when an integer solution to (CXLP)

is found. When this occurs, we need to solve both (CXP(x̂)) and CXP(lk, uk) assuming

node is not fathomed due to inferior bound.

3.1.3 Other Outer-Approximation Schemes

As noted earlier, (MISOCP) can be considered a special case of (MICXP). In this

section, we discuss outer-approximation schemes for (MICXP) that are also applicable

for (MISOCP).

There are various approaches for solving (MICXP) in the literature. Duran and Gross-

mann [DG86] give an outer-approximation algorithm for a special case of (MICXP) in

which the integer variables are in the linear constraints only. This algorithm requires the

solution of both convex NLP and MILP subproblem relaxations. Outer-approximation

cuts are generated at integer feasible solutions. Quesada and Grossmann [QG92] propose

an algorithm to solve (MICXP) for which the NLP relaxations are easy to solve. Abhishek,

Leyffer, and Linderoth [ALL10] present a solver based on the algorithm given in Quesada

and Grossmann [QG92]. Bonami et al. [Bon+08] propose a hybrid branch-and-bound al-

gorithm that uses OA together with the solution of convex NLP subproblem relaxations.

The Bonmin software is an (MICXP) solver that implements this algorithm, using IPM

to solve the convex NLPs that arise in the branch and bound.

Fletcher and Leyffer [FL94] solve (MICXP) by generalizing the outer approximation

70

3.1. EXISTING ALGORITHMS

method of Duran and Grossmann [DG86]. They relieve the restriction of integer variables

being in linear constraints only.

BONMIN (Basic Open-source Nonlinear Mixed INteger) is a solver for (MICXP).

BONMIN implements 3 algorithms, outer approximation (OA), NLP based branch and

bound and a hybrid algorithm that uses OA together with NLP solves. BONMIN uses

CBC to solve MILP approximation, CLP to solve LP approximations and CGL to generate

cuts for the MILP approximation. It uses Ipopt to solve CXPs. BONMIN warm starts

Ipopt by using primal and dual solutions of the parent node. Bonami et al. [Bon+08]

show that BONMIN hybrid algorithm performs best compared to pure OA and NLP

based branch and bound.

FilMINT is another solver for (MICXP) that implements a hybrid algorithm similar to

outer approximation given by Abhishek, Leyffer, and Linderoth [ALL10]. FilMINT solves

an MILP and enforces feasibility of nonlinear constraints through cuts. For each integer

solution found during branch and bound, it fixes the integer values found and solves NLP.

In outer-approximation algorithm, different MILPs are solved, where in FilMINT, only one

MILP formulation exists and this formulation is improved by the outer-approximation cuts

generated. FilMINT uses filterSQP solver by Fletcher, Leyffer, and Toint [FLT02] to solve

convex NLP, and MINTO (Mixed INTeger Optimizer) solver by Nemhauser, Savelsbergh,

and Sigismondi [NSS94] as MILP solver. filterSQP implements an active set algorithm

with warm starting capabilities that can exploit warm started primal and dual iterates.

In FilMINT solver, filterSQP is warm started with the LP solution.

3.1.4 Global Optimization Approaches

Global optimization algorithms/solvers can be used to solve (MISOCP). A brief introduc-

tion to global optimization approaches is given in Section 1.4.4.

There are a number of existing solvers, both open source and commercial, for solving

71

3.2. VALID INEQUALITIES

global optimization problems. These are ANTIGONE [MF14], BARON [TS05; Sah17],

COCOS, COUENNE [Bel+09], GlobSol [Kea03], ICOS [Leb09], LGO [Pin98], LINGO,

OQNLP, Premium solver, MINOS [MS83] and SCIP [VG16]. See Neumaier et al. [Neu+05]

for an earlier study on comparison of global optimization solvers.

COUENNE [Bel+09] is an exact global solver for MINLP with not necessarily convex

objective and constraints. It implements spatial branch and bound method. It carries

reformulation and linearization of the non-convex functions involved. COUENNE imple-

ments two different bound tightening methods, optimality based and feasibility based.

3.2 Valid Inequalities

This section surveys literature regarding different general inequalities valid for the feasible

set of (MISOCP). These valid inequalities are expressed for different versions of MISOCP

formulations in different publications.

Like MILPs, MISOCPs are solved using the branch-and-bound method. Valid inequal-

ities improve MISOCP feasible set by cutting off integer-infeasible solutions of relaxation

problems. We refer valid inequalities that cuts integer-infeasible points as cuts. Cuts are

used during branch-and-bound search to reduce size of the tree and speed up achieving

optimal solution.

In this section we investigate five different procedures for generating valid inequalities

violated by a given infeasible point. These are

• conic mixed-integer rounding (MIR) cuts given by Atamtürk and Narayanan [AN10]

for general mixed integer case,

• conic Gomory cuts given by Çezik and Iyengar [ÇI05] for mixed 0–1 problems,

• lift-and-project cuts defined by Stubbs and Mehrotra [SM99] for mixed 0–1 convex

problems,

72

3.2. VALID INEQUALITIES

• disjunctive conic cuts (DCC) and disjunctive cylindirical cuts (DCyC) defined by

Belotti et al. [Bel+13] for general mixed integer case,

• two-term disjunctions defined by Kılınç-Karzan and Yıldız [KY14] for general mixed

integer case.

Note that these cuts all apply to some subclass of MISOCP, though some can themselves

be applied in more general cases. The MIR cuts of Atamtürk and Narayanan [AN10] are

valid in the general MISOCP case, as are the cuts of Belotti et al. [Bel+13] and Kılınç-

Karzan and Yıldız [KY14].

The Gomory cuts described by Çezik and Iyengar [ÇI05] are for general conic optimiza-

tion problems with both binary and continuous variables. The inequalities of Stubbs and

Mehrotra [SM99] are for general convex optimization problems, again with both binary

and continuous variables.

3.2.1 Conic MIR Cuts

Conic MIR cuts, introduced by Atamtürk and Narayanan [AN10], are a generalization

of MIR cuts [NW90] for MILPs to the MISOCP case. Atamtürk and Narayanan [AN10]

describe the procedure for MISOCP formulation with constraints in conic dual form. This

section summarizes the cut procedure and discusses how it can be modified to be used for

the MISOCP formulation given in (MISOCP). From a computational standpoint, we only

give the steps in the procedure for generating the cut here. Interested readers are referred

to the related publication for details regarding intuition, motivation, and proofs.

Atamtürk and Narayanan [AN10] describe MIR cuts for a MISOCP given in the fol-

73

3.2. VALID INEQUALITIES

lowing form,

min c>x

s.t. ‖Ajx− bj‖ ≤ dj>x− γj , j = 1, 2, . . . , k

xi ∈ Z+, i ∈ I,

xi ∈ R+, i ∈ C,

(3.1)

where c ∈ Qn and γj ∈ Q, bj ∈ Qk, dj ∈ Qn, Aj ∈ Qmj×n for j = 1, . . . , k. Number

of variables is n, and I is the index set of integer variables. mj is the number of rows

in the jth conic constraint. Note that conic constraints of formulation (3.1) are as in

Definition 1.12, and has nonnegativity of variables in addition.

The generated inequalities are with respect to a relaxation that includes only one of

the of the k conic constraints in (3.1) above. Let us then consider the jth conic constraint

for a fixed j of the above form, e.g.,

‖Ajx− bj‖ ≤ dj>x− γj . (3.2)

By introducing (t1, t2,mj+1) ∈ R× Rmj , (3.2) can be rewritten as follows,

t1 ≤ dj>x− γj ,

tl+1 ≥ |Ajlx− b
j
l | l = 1, . . . ,mj ,

t1 ≥ ‖t2,mj+1‖,

(3.3)

where Ajl is lth row of Aj . We further relax the problem by considering only the lth row

in (3.3) for a fixed l. Let β represent bjl and vector a ∈ Qn represent Aj>l . We define S l,jMIR

as the set given by the lth row of (3.3) and it can be represented as

S l,jMIR := {(x, t) ∈ Rn+ × R | t ≥ |a>x− β|, xi ∈ Z ∀i ∈ I}.

74

3.2. VALID INEQUALITIES

Note that S l,jMIR is second-order cone with dimension 2, i.e., (t, a>x − β) ∈ L2. At this

point, we generate inequalities valid for set S l,jMIR—these are the MIR cuts. To do so, we

first define a piece-wise–linear function ϕf : R→ R by,

ϕf (a) :=

 (1− 2f)n− (a− n) if n ≤ a < n+ f

(1− 2f)n+ (a− n)− 2f if n+ f ≤ a < n+ 1

 .

Then, for any α 6= 0, we have that

∑
i∈I

ϕfα

(ai
α

)
xi − ϕfα

(
β

α

)
≤

(t+
∑

i∈C xi)

|α|
∀x ∈ S l,jMIR, (MIR)

where fα = β
α − b

β
αc. Moreover, if α is chosen such that α = ar and β

ar
> 0 for some

r ∈ {1, . . . , n} and ai ≤ β for all i ∈ {1, . . . , n} \ {r}, then the inequality is facet-defining

for conv(S l,jMIR). Note that the cuts generated are linear in the lifted space and nonlinear

in the original formulation space.

We next describe a procedure that generates MIR cuts for the MISOCP formulation

given in (MISOCP) but with nonnegativity constraints. It is important to note first that

the MIR procedure fails to cut any region from continuous relaxation when applied naively.

To see this, observe that second order conic constraints in Lorentz cone format for a fixed

cone j is in the form

xj ∈ Lnj

If we introduce variables (t1, t2:nj) ∈ Rnj and write the constraint as before, we obtain

t1 ≤ xj1

tl ≥ |xji |, i = 2, . . . , nj

t1 ≥ ‖t2:nj‖.

(3.4)

75

3.2. VALID INEQUALITIES

Now we generate the inequality (MIR) using a single constraint from (3.4), also as before.

Note that β = 0 in our case. This indicates fα is 0 for any value of α. Then, it is trivial

to observe that ϕfα : R → R is the identity function, i.e., ϕfα(a) := a. Thus, for ith row

of (3.4), the generated inequality is

xji
α
≤ ti
|α|

if i ∈ I

0 ≤
ti + xji
|α|

if i ∈ C
(3.5)

The inequality obtained is indeed valid for the feasible set of (MISOCP). Even though

the inequality is indeed valid, it cannot be useful, since it is also valid for the continuous

relaxation and thus redundant. This is because of the fact that we start with a different

formulation than the one given in Atamtürk and Narayanan [AN10].

To see how such inequalities should be generated, note that jth Lorentz cone in (MISOCP)

can be embedded in a lifted space by the reformulation

t ≥ |xji |

xj1 ≥ ‖(x
j
2, . . . , t, . . . , x

j
nj)‖.

The formulation (MISOCP) contains linear constraints. Let us assume that a single linear

constraint in (MISOCP) implies xji = a>x− β. We then generate a valid inequality with

respect to the following conic set,

{(x, t) ∈ Rn+1
+ | t ≥

∣∣∣a>x− β∣∣∣ , xi ∈ Z ∀i ∈ I}.

Once the cut is generated, in order to add it, we need to add variable t to the original

76

3.2. VALID INEQUALITIES

formulation by modifying the associated conic constraint to be

xj1 ≥ ‖(x
j
2, . . . , t, . . . , x

j
n)‖.

Note that with this method we lift the model with just one more variable and add only

one inequality. The problem size will increase with one more column and one more linear

row. Note also that since a conic MIR inequality is a generalization of the MIR inequality

in the MILP case every MIR inequality in the MILP case is also a conic MIR inequality.

3.2.2 Conic Gomory Cuts

Çezik and Iyengar [ÇI05] extend the well-known Gomory cuts for MILPs to linear, second-

order and semidefinite conic problems using the following equivalence

{x ∈ Rn | Ax− b ∈ K} =

{
x ∈ Rn |

(
A>u

)>
x ≥ u>b ∀u ∈ K∗

}
,

where K is either a linear, Lorentz, or semidefinite cone. For the cones we consider, cone

K is self-dual, so that K∗ = K. Çezik and Iyengar [ÇI05] cover Gomory cuts for problems

with binary variables only. Drewes [Dre09] extends the procedure to the mixed-integer

case.

We summarize the procedure for generating Gomory cuts for the problem given in the

form (MISOCP) with only 1 conic constraint and additional nonnegativity constraints on

x. This feasible set and its continuous relaxation can be given as

SG−MISOCP :=
{
x ∈ Rn+ | Ax = b, x ∈ Ln, xi ∈ Z+ ∀i ∈ I

}
,

SG−SOCP :=
{
x ∈ Rn+ | Ax = b, x ∈ Ln

}
.

77

3.2. VALID INEQUALITIES

SG−SOCP can be written as

SG−SOCP =
{
x ∈ Rn+ |

(
y>AI + u>I

)
xI +

(
y>AC + u>C

)
xC ≥ y>b ∀y ∈ Rm,

(u>I , u
>
C)> ∈ Ln

}
.

Then the projection of SG−SOCP onto the integer variables is

SIG−SOCP :=
{
xI ∈ RnI+ | ∃xC ∈ RnC+ |

(
y>AI + u>I

)
xI +

(
y>AC + u>C

)
xC ≥ y>b ∀y ∈ Rm,

(u>I , u
>
C)> ∈ Ln

}
,

where y and u are dual variables. Finally, SIG−SOCP can be rewritten as

SIG−SOCP =
{
xI ∈ RnI+ | ∃xC ∈ RnC+ |

(
y>AI + u>I

)
xI +

(
y>AC + u>C

)
xC ≥ y>b ∀y ∈ Rm,

(u>I , u
>
C)> ∈ Ln,

(
y>AC + u>C

)
≤ 0
}
.

Then we have that

dA>I y + uIe>xI ≥ dy>be ∀xI ∈ SIG−SOCP ∩ ZnI+ . (Gomory)

Let x be a solution to optimization over SG−SOCP and x /∈ SG−MISOCP and let

dA>I y + uIe>xI = y>b

hold. Assume y>b is not an integer. Then x is cut off by Gomory cut (Gomory) generated.

Drewes [Dre09] summarizes this result in the following theorem.

Theorem 3.2.1. ([Dre09]) Assume the continuous relaxation and its dual have feasible

interior points. Let x /∈ Zn be a solution to the continuous relaxation and (s, y) the

78

3.2. VALID INEQUALITIES

corresponding dual solution, then

dA>I (y −∆y) + sIe>xI ≥ d(y −∆y)
>be,

where ∆y solves −AC
AI

∆y =

 cC

0

 ,

is a valid inequality. Furthermore, if (y −∆y)
>b /∈ Z, this inequality separates x from the

integer feasible set SG−MISOCP.

3.2.3 Lift-and-Project Cuts for Mixed 0–1 Convex Sets

As was done with MIR inequalities, Stubbs and Mehrotra [SM99] generalized the tra-

ditional framework of the lift-and-project inequalities that are employed in the solution

of MILPs to general convex optimization problems. These were later implemented and

applied to the case of 0–1 SOCP by Drewes [Dre09]. In this section, we summarize how to

generate these cuts. Interested readers are referred to Drewes [Dre09] for the details. The

cuts are given for a special case of (MISOCP) where there is only one conic constraint

and all integer variables are binary. This feasible set is denoted as SSM−MISOCP and its

continuous relaxation as SSM−SOCP. These sets can be given as

SSM−MISOCP := {x ∈ Rn | Ax = b, x ∈ Ln, xi ∈ {0, 1} ∀i ∈ I} ,

SSM−SOCP := {x ∈ Rn | Ax = b, x ∈ Ln} .

79

3.2. VALID INEQUALITIES

We impose a disjunction on SSM−SOCP using a specific binary variable indexed by j and

define the following two sets,

Sj,0SM−SOCP := {x ∈ SSM−SOCP | xj = 0} and

Sj,1SM−SOCP := {x ∈ SSM−SOCP | xj = 1} .

We define set SjSM−SOCP as the union of Sj,0SM−SOCP and Sj,1SM−SOCP, which can be written

as

SjSM−SOCP := {x ∈ SSM−SOCP | xj ∈ {0, 1}} .

We define setMj(SSM−SOCP) to represent conv
(
SjSM−SOCP

)
. Using auxiliary variables u

and λ we can write Mj(SSM−SOCP) as

Mj(SSM−SOCP) :=

(x, u0, u1, λ0, λ1) ∈ R3n+2 |

λ0u0 + λ1u1 = x,

λ0 + λ1 = 1, λ0, λ1 ≥ 0

Au0 = b

Au1 = b

u0 ∈ Ln

u1 ∈ Ln

(u0)i ∈ [0, 1](i ∈ I, i 6= j)

(u1)i ∈ [0, 1](i ∈ I, i 6= j)

(u0)j = 0, (u1)j = 1

.

Note that u0 variables corresponds to feasible points in set Sj,0SM−SOCP and u1 corresponds

to Sj,0SM−SOCP. λ0 and λ1 are used to take their convex combination. Mj(SSM−SOCP)

can be rewritten so that it is in SOCP form given in introduction. For this we introduce

80

3.2. VALID INEQUALITIES

v0 := λ0u0 and v1 := λ1u1 and define

M̃j(SSM−SOCP) :=

(x, v0, v1, λ0, λ1) ∈ R3n+2 |

v0 + v1 = x,

λ0 + λ1 = 1, λ0, λ1 ≥ 0

Av0 − λ0b = 0

Av1 − λ1b = 0

v0 �K 0

v1 �K 0

(v0)i ∈ [0, λ0](i ∈ I, i 6= j)

(v1)i ∈ [0, λ1](i ∈ I, i 6= j)

(v0)j = 0, (v1)j = 1

.

Note that M̃j(SSM−SOCP) is a second-order conic representable set. We define Pj(SSM−SOCP)

as the projection of Mj(SSM−SOCP) to x–space,

Pj(SSM−SOCP) := {x ∈ Rn | (x, u0, u1, λ0, λ1) ∈Mj(SSM−SOCP)}.

Note that Pj(SSM−SOCP) can also be written as,

Pj(SSM−SOCP) = {x ∈ Rn | (x, v0, v1, λ0, λ1) ∈ M̃j(SSM−SOCP)}.

Given a continuous relaxation solution x where xj ∈ (0, 1), we can generate a cut by

solving the following problem,

min
x∈Pj(SSM−SOCP)

‖x− x‖.

81

3.2. VALID INEQUALITIES

This problem is equivalent to the following problem,

min
w∈M̃j(SSM−SOCP)

‖x− x‖. (3.6)

where w = (x, v0, v1, λ0, λ1). Note that the problem given in (3.6) is an SOCP. Let x̂ be

the optimal solution to (3.6), then the following constraint cuts x,

(x̂− x)>x ≥ x̂>(x̂− x).

3.2.4 DCC and DCyC

Belotti et al. [Bel+13] generate valid inequalities for convex hulls of disjunctions on (SOCP).

They consider disjunctions generated by both parallel and non-parallel hyperplanes. Here,

we discuss their results for a special case of (MISOCP) with only one cone. Feasible set

and its continuous relaxation can be given as

SDCC−MISOCP := {x ∈ Rn | Ax = b, x ∈ Ln, xi ∈ Z ∀i ∈ I},

SDCC−SOCP := {x ∈ Rn | Ax = b, x ∈ Ln}.

Using the technique we introduced in Section 1.2, SDCC−SOCP can be reformulated as

SDCC−SOCP = {x ∈ Rn | x = x0 +Hw,w ∈ Q, x1 ≥ 0},

Q = {w ∈ Rn−m | (x0 +Hw)>J(x0 +Hw) ≤ 0}.

where J , H, and x0 are as defined in Section 1.2. Note that quadric Q does not impose

nonnegativity on x1 and hence x0 + Hw ∈ Ln ∪ −Ln. Each w ∈ Rn−m such that (x0 +

Hw)1 ≥ 0 represents a linear combination of null space basis (given by columns of H),

hence it corresponds to an x ∈ SDCC−SOCP.

For a given x ∈ SDCC−SOCP there exists a unique w ∈ Q such that Hw = x−x0. Since

82

3.2. VALID INEQUALITIES

H is orthonormal, we have that H>H = I and thus

Hw = x− x0 ⇔ H>Hw = H>
(
x− x0

)
⇔ w = H>

(
x− x0

)
.

Note that not every w ∈ Q corresponds to an x ∈ SDCC−SOCP, since we might have

x1 = (x0 +Hw)1 < 0. For any w such that (x0 +Hw)1 ≥ 0, however, we have

x = x0 +Hw ∈ SDCC−SOCP. (3.7)

This analysis suggests that it might be possible to solve the problem of separating a given

x̂ ∈ Rn from SDCC−SOCP by instead separating the corresponding ŵ from Q.

Let U and V be two half spaces defined as

U := {x ∈ Rn | u>x ≥ ϕ},

V := {x ∈ Rn | v>x ≤ ω}.

The set conv (SDCC−SOCP ∩ (U ∪ V)) is a convex set that cannot contain any extremal

element of SDCC−SOCP that is not contained in U ∪ V, i.e., an inequality valid for

conv (SDCC−SOCP ∩ (U ∪ V)) should be violated by any extremal solution of SDCC−SOCP.

We now show how to represent U and V in w-space. As before, with each w ∈ Rn, we

can associate a unique x = x0 +Hw. Then we have that

U = {x ∈ Rn | ∃w ∈ Rn−m, x = x0 +Hw, u>Hw ≥ ϕ− u>x0}

V = {x ∈ Rn | ∃w ∈ Rn−m, x = x0 +Hw, v>Hw ≤ ω − v>x0}

Defining a> := u>H, α := ϕ− u>x0, d> := v>H and β := ω − v>x0, we can reformulate

83

3.2. VALID INEQUALITIES

U and V in w–space as

A :=
{
w ∈ Rn−m | a>w ≥ α

}
,

B :=
{
w ∈ Rn−m | d>w ≤ β

}
.

In other words, sets A and B are half-spaces consisting of all w ∈ Rn that map to points in

U and V, respectively. UsingA and B, we can further reformulate conv (SDCC−SOCP ∩ (U ∪ V))

as

SDCC−SOCP ∩ (U ∪ V) = {x ∈ Rn : x = x0 +Hw,w ∈ Q, w ∈ A ∪ B, x1 ≥ 0}.

We obtain a relaxation of this set by removing the constraint x1 ≥ 0 to get

Srelax
DCC−SOCP ∩ (U ∪ V) = {x ∈ Rn : x = x0 +Hw,w ∈ Q, w ∈ A ∪ B}.

If we let quadric Q be given by the triplet (Q, q, ρ), then Belotti et al. [Bel+13] show that

the family of quadrics that yields

Q(τ) = Q+ τ
ad> + da>

2
,

q(τ) = q − τ βa+ αd

2
,

ρ(τ) = ρ+ ταβ,

where τ ∈ R. We denote this parametric quadric family as Q(τ).

The shape of Q(τ) depends on the position of q(τ)>Q(τ)−1q(τ) − ρ(τ) with respect

to 0 in the real line. Belotti et al. [Bel+13] prove a closed form formula for this term as

follows,

q(τ)>Q(τ)−1q(τ)− ρ(τ) =
f(τ)

g(τ)
, (3.8)

84

3.2. VALID INEQUALITIES

where f(τ) and g(τ) are given as

f(τ) := τ2
[
−‖ua‖2(β + u>d uq)

2 − ‖ud‖2(α+ u>a uq)
2

+
(
‖ua‖2‖ud‖2 − (u>a ud)

2
)

(‖uq‖2 − ρ) + 2u>a ud(u
>
a uq + α)(u>d uq + β)

]
+ 4τ

[
−u>a ud(‖uq‖2 − ρ) + (α+ u>a uq)(β + u>d uq)

]
− 4

[
‖uq‖2 − ρ

]
,

g(τ) := τ2

(
‖ua‖2‖ud‖2 −

(
u>a ud

)2
)
− 4τu>a ud − 4.

For a given vector a, ua is defined as

ua := Q
−1
2 a.

Belotti et al. [Bel+13] show that for a given τ the shape of Q(τ) depends on the τ ’s

position with respect to roots of f and g on the real line. Let τ1 and τ2 denote the roots

of f and τ̂1 and τ̂2 denote the roots of g. Following theorem from Belotti et al. [Bel+13]

gives the possible shapes of Q(τ).

Theorem 3.2.2. ([Bel+13]) Quadric Q(τ) can have the following shapes for τ ∈ R:

• If τ1 and τ2 are distinct and different than τ̂1 and τ̂2, then Q(τ̂1) and Q(τ̂2) are

paraboloids, and Q(τ1) and Q(τ2) are cones.

• If τ1 and τ2 are distinct and one of them coincides with either Q(τ̂1) or Q(τ̂2), then

either Q(τ1) is a cylinder and Q(τ2) is a cone, or that Q(τ1) is a cone and Q(τ2)

is a cylinder.

• If τ1 and τ2 are distinct and one of them is same as τ̂1 and the other is same as τ̂2,

then both Q(τ̂1) and Q(τ̂2) are cylinders.

• τ1 = τ2 but are distinct from τ̂1 and τ̂2, then Q(τ1) is a cone and Q(τ̂1) and Q(τ̂2)

are paraboloids.

85

3.2. VALID INEQUALITIES

• τ1 and τ2 coincide and equal to either τ̂1 or τ̂2. Then, either Q(τ̂1) is a line and

Q(τ̂2) is a paraboloid, or Q(τ̂1) is a paraboloid and Q(τ̂2) is a line.

Theorem 3.2.2 shows that there is always a τ value such that Q(τ) is second-order

conic representable. We choose τ accordingly to obtain a second-order conic representable

cut.

Note that this is a conic cut in w space and the original formulation is in x space.

This cut should be represented in x space to be able to use it in the original formulation.

This is achieved using the equality x = x0 +Hw and inserting H>(x−x0) for w to obtain

the cone in x space. After this transformation a cone is in the x space in quadric form

is obtained. Belotti et al. [Bel+13] use singular value decomposition to represent it in

Lorentz cone format with additional linear constraints. We refer reader to Belotti et al.

[Bel+13] for details.

3.2.5 Two-Term Disjunctions on Lorentz Cone

This section summarizes the disjunctive cuts given by Kılınç-Karzan and Yıldız [KY14].

They generate representations of convex hull of a general disjunction on a Lorentz cone.

Kılınç-Karzan and Yıldız [KY14] argue that considering Lorentz cone is enough and can be

generalized to disjunctions on more general cones in dual form using affine transformation

given by Andersen and Jensen [AJ13].

Kılınç-Karzan and Yıldız [KY14] come up with representations, not necessarily conic,

of disjunctions on Ln. The disjunction is defined by the following two disjunctive sets,

C1 := {x ∈ Ln : c>1 x ≥ c1,0},

C2 := {x ∈ Ln : c>2 x ≥ c2,0},

where disjunctive inequalities are scaled such that c1,0, c2,0 ∈ {0,±1}. Kılınç-Karzan and

86

3.2. VALID INEQUALITIES

Yıldız [KY14] make the following two assumptions related to the disjunctions,

Assumption 3.2.3. C1 6⊆ C2 and C2 6⊆ C1.

Assumption 3.2.4. C1 ∩ int Ln 6= ∅ and C2 ∩ int Ln 6= ∅ .

From duality theory, a linear inequality µ>x ≥ µ0 is valid for conv(C1 ∪ C2) if and only if

there exist α1, α2, β1, β2 such that (µ, µ0, α1, α2, β1, β2) satisfies the following,

µ = α1 + β1c1

µ = α2 + β2c2

β1c1,0 ≥ µ0

β2c2,0 ≥ µ0

α1, α2 ∈ Ln

β1, β2 ∈ R+.

Some of the inequalities specified by the given system are dominated by the others. They

further improve the system of inequalities to include undominated ones only, we will skip

that step here. Finally, they give the following inequality that implies all non-dominated

valid inequalities (for β1 = β, β2 = 1) specified by the given system, for any β > 0 such

that βc1,0 ≥ c2,0 and βc1 − c2 6∈ Ln. We have that

2c2,0 − (βc1 + c2)>x ≤
√

((βc1 − c2)>x)2 +N1(β)
(
x2

1 − ‖x2:n‖2
)
∀x ∈ conv (C1 ∪ C2)

(3.9)

where

N1(β) := ‖βc1,2:n − c2,2:n‖22 − (βc1,1 − c2,1)2.

The set of points that are members of Ln and that satisfy the inequality given in (3.9)

87

3.2. VALID INEQUALITIES

can be written as

{
x ∈ Ln | 2c2,0 − (βc1 + c2)>x ≤

√
((βc1 − c2)>x)2 +N1(β)

(
x2

1 − ‖x2:n‖2
)}

, (3.10)

and it is convex. Inequality given in (3.9) can be cast in conic dual form as

N1(β)x+ 2(c>2 x− c2,0)

 βc1,2:n − c2,2:n

−βc1,1 + c2,1

 ∈ Ln (3.11)

for a β that satisfies the following,

β > 0, (3.12)

βc1,0 ≥ c2,0 (3.13)

βc1 − c2 6∈ ±Ln (3.14)

− 2c2,0 + (βc1 + c2)>x ≤
√

((βc1 − c2)>x)
2

+N1(β)
(
x2

1 − ‖x2:n‖2
)
∀x ∈ conv (C1 ∪ C2) .

(3.15)

Note that (3.9) is conic representable if such β exists. (3.11) is valid for conv (C1 ∪ C2) but

that does not mean it gives convex hull exactly. The valid inequality in conic dual form

given in (3.11) is equivalent to nonlinear cut (3.9) if the following condition holds.

{x ∈ Ln : βc>1 x > c2,0, c
>
2 x > c2,0} = ∅.

Kılınç-Karzan and Yıldız [KY14] give the following theorem which describes an inequality

that gives the convex hull of the disjunction.

Theorem 3.2.5. Assume c1 − c2 6∈ ±Ln, then the inequality

2c2,0 − (c1 + c2)>x ≤
√

((c1 − c2)>x)
2

+N
(
x2

1 − ‖x2:n‖2
)

(3.16)

88

3.2. VALID INEQUALITIES

is valid for conv(C1 ∪ C2) with N := ‖c1:2:n − c2,2:n‖22 − (c1,1 − c2,1)2. Furthermore,

conv(C1 ∪ C2) = {x ∈ Ln : x satisfies (3.16)}

when, in addition, we have

(i) c1 ∈ Ln, or c2 ∈ Ln, or

(ii) c1,0 = c2,0 ∈ {±1} and undominated valid linear inequalities that are tight on both

C1 and C2 are sufficient to describe conv(C1 ∪ C2).

Kılınç-Karzan and Yıldız [KY14] study disjunctions on a Lorentz cone, where Belotti et al.

[Bel+15] study disjunctions on a standard form SOCP problem with a single cone. Kılınç-

Karzan and Yıldız [KY14] give convex inequalities that are valid for the disjunctions.

Inequalities generated are conic representable under some other conditions that they do

not discuss how to validate. The conic cuts given by Kılınç-Karzan and Yıldız [KY14] do

not yield the convex hull of the disjunction. Kılınç-Karzan and Yıldız [KY14] do come up

with an inequality (Theorem 3.2.5) that gives convex hull but it is not second-order conic

representable.

On the other hand, Belotti et al. [Bel+15] start with more restrictive assumptions

(C1 ∩ C2 = ∅ and sets {x ∈ Ln : c>1 x = c1,0} and {x ∈ Ln : c>2 x = c2,0} are bounded) and

work with disjunctions on standard form feasible sets rather than Lorentz cone. The cuts

given by Belotti et al. [Bel+15] are second-order conic representable and give the convex

hull of the disjunction.

An interesting future research question would be investigating whether the conditions

where Kılınç-Karzan and Yıldız [KY14] yield conic cuts and starting assumptions of Belotti

et al. [Bel+15] are related.

89

3.3. A BRANCH-AND-CUT ALGORITHM

3.3 A Branch-and-Cut Algorithm

This section introduces an algorithmic framework for solution of MISOCP problems. This

framework is flexible and accommodates a wide variety of options for controlling the al-

gorithm execution. These options include algorithmic components such as choosing the

subproblem relaxation type, the bounding algorithm to be used to solve the subproblem

relaxations, the branching strategy, the search strategy, and the strategies for both gen-

erating and managing the valid constraints (i.e., cuts) used to strengthen the relaxations.

Depending on the choices made for each component of the algorithm and the overall con-

trol strategies, a wide variety of branch-and-cut algorithms can be obtained. The goal

of this flexibility is to discover what the most effective choices are by comparing various

algorithmic approaches in a controlled environment.

Chapter 4 describes the implementation of the framework introduced here in a software

package called DisCO. Chapter 6 further explores the computational results obtained with

this framework and provide insights on the effect of various choices.

3.3.1 Relaxation and Bounding

Choosing the proper relaxation for bounding is an important component of a branch-and-

bound/cut algorithm. In MISOCP there are three types of constraints, linear, conic and

integrality. In this section, we describe the two possible choices of relaxation: relaxing both

integrality and conic constraints initially (yielding an LP) and just relaxing integrality

constraints initially (yielding an SOCP). In both cases, the resulting relaxation can be

strengthened with the addition of the valid inequalities from the previous section.

Relaxing both conic and integrality constraints results in a relaxation that is an LP. LPs

are well-studied and efficient algorithms are known. Moreover branch-and-bound methods

that employ LP relaxations are one of the most studied algorithms in the optimization

literature. The simplex method is a natural choice in LP-based branch and bound, since it

90

3.3. A BRANCH-AND-CUT ALGORITHM

allows for efficient warm-starting after imposing valid inequalities or branching constraints.

In rare cases, the IPM may be a more effective choice and has the advantage that it can

be parallelized. However, the increased effectiveness must be traded off against the loss of

effective warm-starting capability.

Note that when LP relaxations are employed, the role of branching is to impose the

relaxed integer feasibility, while conic feasibility can only be restored by the addition of

the cuts from Theorem 2.2.1. A crucial component in this case is balancing these two

objectives. An important question that is answered by this study is how LP relaxations

compare to SOCPs as the relaxation of choice.

Relaxations that preserve the conic constraints are more difficult computationally. In

the presence of conic constraints, the relaxations become SOCPs, which can be solved in

polynomial time, just like LP. With SOCP relaxation, an SOCP-based branch-and-bound

that follows the classical outline of LP-based branch-and-bound for MILP is obtained.

There are two different choices of algorithm for solving the relaxation: IPM and the

cutting-plane algorithm we introduced in Section 2.2.2. IPM is faster than the cutting-

plane algorithm for solving a single SOCP, but as in the LP case, there is also a trade-off

involving warm-starting. With IPM, only a limited warm-start capability is available,

whereas with the cutting-plane method, we employ polyhedral approximations and re-

tain warm-start capability. Table 3.1 presents the subproblem relaxation and algorithm

options.

In what follows, we propose an algorithmic framework in which these two relaxations

can be used interchangeably and in which a hybrid strategy in which conic constraints are

relaxed initially, but conic approximations are built up using an approach similar to that

described in Chapter 2, but in which the process can be terminated at any time in favor

of branching. Valid inequalities of other classes, such as the many know classes valid for

MILPs, can also be dynamically integrated according to parameters to be described later.

91

3.3. A BRANCH-AND-CUT ALGORITHM

Table 3.1: Subproblem Relaxation and Algorithm Choices

Relaxation choices Algorithm options

SOCP IPM

SOCP Algorithm 2.2.2

LP IPM

LP simplex

From the perspective of bounding, there are various tradeoffs among the approaches

discussed. The SOCP relaxations are stronger and can be solved efficiently using IPM.

However, warm-starting is limited. State of art warm-starting approaches can save 30–

75% computation time compared to cold start [SAY13]. The cutting-plane algorithm is

slow for solving SOCP but has the potential of warm-starting when used in the context

of a branch-and-bound algorithm. A research question we investigate is exactly what the

trade-off is between the cutting-plane algorithm, which is slower but has a much better

warm start capability, and IPM, which is faster from a cold start, but has poorer warm-

starting capability. When SOCP is the relaxation of choice, which algorithm performs

best?

3.3.2 Generation of Valid Constraints

The addition of valid inequalities to the LP relaxation for the dual purpose of improving

the bound obtained by its solution and removing previously generated infeasible solu-

tions is a well-established technique in mixed integer linear programming. The additional

constraints are generated by solving the problem of separating a given solution to the

relaxation from the feasible set of the original problem. Iteratively strengthening the re-

laxation by solving a sequence of separation problems can be seen as a truncated version

of the cutting-plane algorithm described in Algorithm 2.

In the case of MILP, the valid inequalities generated in the course of the branch-and-

cut algorithm remove solutions to the relaxation that violate the integrality condition.

92

3.3. A BRANCH-AND-CUT ALGORITHM

In practice, generation of valid inequalities has proven to be an extremely important

part of solution algorithms and numerous procedures have been suggested in the litera-

ture [Gom58; Bal79; Bal+96; Bix+00]. Valid inequalities approximate (or improve the

approximation of) the convex hull of feasible solutions of the MILP and improve the

continuous relaxations of it.

In the case of MISOCP solved with an LP relaxation-based algorithm, the procedure for

generating valid inequalities must also consider solutions that violate the conic constraints

and as a result, we must generate valid inequalities to enforce conic feasibility as well. To

ensure that the relaxations remain linear, the valid inequalities generated and added to

the relaxations must be linear. For this purpose, we generate valid inequalities using the

results of Theorems 2.2.1 and 2.2.4. Research on other types of inequalities and constraints

for MISOCP, such as those mentioned in Section 3.2, is relatively new and is currently

an active field [Bel+15; ÇI05; KY14; MKV15]. Studies involving the generation of valid

inequalities for more general convex problems [SM99] have also appeared.

In the proposed algorithm, both valid conic constraints and valid inequalities are gen-

erated to improve the subproblem relaxations and to obtain better bounds. The conditions

under which these additional constraints get generated and added can be controlled by

specifying the parameters. The classes of valid constraints used in the algorithm are

• disjunctive conic cuts,

• linear cuts to approximate conic constraints, and

• cuts from MILP literature.

Disjunctive conic cuts can be used for any choice of subproblem relaxation, whereas the

other two are used only in LP relaxation case. Approximation cuts are not needed in

the case of SOCP relaxations, since the relaxation solutions will satisfy conic constraints

automatically. Generation of MILP cuts is not an option when relaxations are SOCP.

93

3.3. A BRANCH-AND-CUT ALGORITHM

Generating Disjunctive Conic Constraints

The proposed algorithm provides the option of generating disjunctive constraints in the

root node to improve the initial bound. We use the disjunctive conic cuts given by Belotti

et al. [Bel+15] as described in Section 3.2.4. As we mentioned above, disjunctive conic cuts

can be generated for both of the subproblem relaxation choices. In LP relaxation case,

they are treated same as original conic constraints and outer approximation inequalities

are generated using them.

Disjunctive conic constraints are different than outer approximation cuts in terms of

the computational effort required to compute them and computational burden of solution

of the relaxations resulting from adding them. Typically a linear cut is a single linear

constraint added to the subproblem relaxation. A disjunctive conic constraint, when in

conic dual form, is of the dimension of the starting conic constraint, when represented in

dual form.

For a conic constraint given in the conic dual form, the generated disjunctive conic

constraint will be the same size of the given constraint. Addition of this newly generated

constraint is a large increase in the size of the problem if the problem has a low number

of cones. For a problem with a single large cone, it means doubling the number of conic

constraints. Nevertheless, disjunctive conic constraints improve the relaxation more than

linear valid inequalities. Linear cuts are half spaces that improve the relaxation in some

specific part of the feasible region. Conic cuts are cones and they might improve the

relaxation not in a specific corner but all around the feasible region. See [Bel+13] and

[Bel+15] for figures that demonstrate this. In summary, conic cuts are computationally

expensive to generate and use, but improve the relaxation to a greater extent than linear

cuts. This indicates that decisions regarding to generation and use of conic cuts should be

made with care. There will be consequences. Computational experiments that investigate

this can be found in Section 6.5.6 and 6.5.7.

94

3.3. A BRANCH-AND-CUT ALGORITHM

Generating Approximation Cuts

As we have already mentioned, when LP relaxations are used, the solutions produced are

not necessarily conic feasible. The valid inequalities given in Theorem 2.2.1 and 2.2.4

are used to remove these infeasible points from the feasible region of the relaxation. The

procedure is very simple, since these inequalities are obtained by a closed-form function

of the given infeasible solution.

Generating MILP cuts

When LP relaxations are employed, there is an opportunity to use cuts from the MILP

literature to cut integer infeasible solutions. Since the feasible regions of the relaxations

are polyhedra, we can consider valid inequalities with respect to the convex hull of integer

points inside these approximating polyhedra. This convex hull is itself a relaxation of the

original MISOCP, which means that cuts valid for it are also valid for the MISOCP.

While approximation cuts remove conic infeasible solutions, MILP cuts remove integer

infeasible solutions. Among the research questions we investigate later in Sections 6.5.5

and 6.5.3 are the following. Is removing integer infeasible solutions from the MILP relax-

ation worth the effort? What cuts should be generated when a relaxation solution is both

integer and conic infeasible? These questions are answered through computational exper-

iments in the pointed sections. To generate inequalities valid for the MILP relaxations,

COIN-OR’s cut generation library is used. Details are discussed in Chapter 4.

3.3.3 Branching

In our algorithm, variable disjunctions are the only disjunctions used for branching. We

use two different branching strategies for selecting the branching disjunction from among

those violated by a given solution to the relaxation: (1) strong branching [App+95] and

(2) pseudocost branching [Bén+71; LS99].

95

3.3. A BRANCH-AND-CUT ALGORITHM

In strong branching, in case of LP relaxations, dual simplex algorithm is used for

its warm starting capability and relaxations are not solved to optimality for efficiency

reasons. Dual simplex iterations are limited to 50. For each variable, a score is computed

by combining the bound improvement of the two children nodes. The variable with the

largest score is used for creating the disjunction.

In case of SOCP based relaxations, relaxations are solved to optimality for each dis-

junction variable candidate and the best in terms of bound improvement is picked.

Compared to the pseudocost branching, strong branching is costly. Pseudocost branch-

ing uses some statistics from the past branching decisions to estimate the bound improve-

ment of a variable without performing costly simplex iterations. We implement pseudo-

cost branching as described by Achterberg [Ach07]. For each integer variable, we keep two

statistics, average amount of change in the objective function value with respect to unit

change in down and up directions. Let ϕ−j and ϕ+
j be the average objective value change

for unit change in xj for all the past branching of jth variable in down and up directions

respectively. Then a score sj for variable xj is computed as

sj =(1− µ)×min
{

(xj − bxjc)ϕ−j , (dxje − xj)ϕ
+
j

}
+ µ×max

{
(xj − bxjc)ϕ−j , (dxje − xj)ϕ

+
j

}
.

µ is a parameter of the branching strategy that is between 0 and 1. There are various

suggestions for the value of µ in the literature. We follow Achterberg [Ach07] and use

µ := 1
6 . Pseudocost branching picks the variable with the highest score to branch.

When branch-and-cut algorithm is solved in parallel mode, pseudocost statistics are

not shared by different processes. Each process solves subtree assigned to it and keeps its

own pseudocost statistics for the assigned subtree.

96

3.3. A BRANCH-AND-CUT ALGORITHM

3.3.4 Search Strategy

We use hybrid search strategy given by Xu [Xu07] in the computational experiments of the

branch-and-cut algorithm. The search strategy part is implemented by the framework used

to implement the proposed branch-and-cut algorithm. Hybrid search is the default search

strategy in this framework. Implementational details of the branch-and-cut algorithm is

given in Chapter 4. Implementational details of the search strategy is given by Xu et al.

[Xu+05] and Xu [Xu07].

3.3.5 Cut Strategies

One of the important decisions in a branch-and-cut algorithm is when to generate valid

inequalities. Valid inequalities might improve relaxations but requires computational effort

to generate and also increase the size of the relaxation. In the case of MILP, two strategies

that are tested and commonly used are adding cuts at the root node only and adding

periodically for every fixed number of nodes.

In this study, we test adding disjunctive conic constraints in the root node. Variable

disjunctions are used to generate disjunctive conic constraints as explained in Section 3.2.4.

A variable should be decided to use for generating the disjunction. We test two different

approaches (1) generating all possible disjunctive conic constraints and adding them as

long as they are numerically robust. The second approach is generating every possible

disjunctive conic constraint and selecting the best according to the criteria of bound

improvement. Note that in this approach, we solve the SOCP relaxation after adding

each disjunctive conic cut. At the end we pick the most bound improving and ignore the

others. The first approach is better at improving the relaxation, but increases the problem

size. The second approach improves the relaxations less then the first, but relaxations are

relatively smaller.

Note that once we generate disjunctive constraints in the root node, we add them to

97

3.3. A BRANCH-AND-CUT ALGORITHM

our initial relaxation. These cuts remain in all of the relaxations in the branch-and-bound

tree.

For LP based relaxations we have the option to add MILP cuts (Gomory, MIR, etc.).

We add MILP cuts periodically for every fixed number of nodes when the LP solutions

are both conic and integer infeasible. The cuts are added as long as they improve the LP

relaxation during bounding loop.

We do not accept all MILP cuts produced by our cut generators. We reject cuts that

have a (1) bad scaling, (2) almost parallel to existing constraints or cuts already in the

relaxation or (3) dense.

3.3.6 Heuristics

We use a rounding heuristic to search for solutions. The heuristic used is an implemen-

tation of the rounding heuristic given in Nemhauser and Wolsey [NW88]. The implemen-

tation is based on the heuristic search provided in COIN-OR’s BLIS solver. When SOCP

relaxations are used, heuristic is run ignoring conic constraints. After an integer solution

satisfying linear constraints is found, conic feasibility is checked.

Running time of rounding heuristic is O(max{ñm, nk}) where n is the number of

variables, ñ is the number of integer variables, m is the number of rows and k is the

number of cones in the problem. The heuristic is computationally cheap and called for

each node after the bounding process.

3.3.7 Control Mechanism

A branch-and-cut algorithm need to make a decision between branching or cutting after

each subproblem relaxation solve call with an infeasible solution. This is true for the

algorithm being proposed. Both cutting and branching is aimed to close the optimality

gap. In the branch-and-cut algorithm being proposed the decision is between disjunctive

98

3.3. A BRANCH-AND-CUT ALGORITHM

conic cuts, MILP cuts, and conic approximation cuts versus branching.

Disjunctive conic cuts and MILP cuts work toward integer feasibility, whereas cone

approximation cuts work towards conic feasibility. Branching works towards integer fea-

sibility. The algorithm is flexible enough to make these type of branch-and-cut decisions

for LP and SOCP type of subproblem relaxations.

In case of SOCP relaxations, algorithm we propose use cuts only at the root node.

This use is parameterized and can be turned on and off when desired. We implemented

and conducted experiments with the disjunctive conic cuts given by Belotti et al. [Bel+13;

Bel+15]. Any other cut procedure can be used instead or together with the disjunctive

conic cuts without the need of modification of the rest of the algorithm.

In case of LP relaxations, the algorithm keeps some statistics and makes the decision

of whether to branch or cut using these statistics. The goal is to make the decision such

that the branch-and-bound tree and hence the computation time is minimized.

A pure branch strategy, ignoring conic feasibility, and branching all the way until inte-

ger feasibility is obtained will lead integer solutions that are very unlikely to satisfy conic

constraints. Once conic constraints are enforced the integer feasibility is lost. Moreover

we might end up with an irrelevant part of the branch-and-bound tree and enforcing not

the ideal disjunctions.

On the other hand, a pure cutting strategy, obtaining conic feasibility first at each

node before branching is also not ideal. Note that this approach defaults to solving

subproblem relaxations with the cutting-plane approach to optimality as in Algorithm 3

before branching. As discussed before, Algorithm 3 is slow compared to IPM. This means

we have ended up with an algorithm that does pure branch and bound, as in SOCP

relaxation case, and slower solving relaxations. However, a difference compared to using

IPM solver is having optimal simplex tableaus at each node at the end of the bounding

process. There are two advantages to this, (1) child nodes can be warm started, (2) integer

99

3.3. A BRANCH-AND-CUT ALGORITHM

infeasible solutions can be cut using rich cut procedures of MILP literature. An immediate

question that should be asked is whether these two advantages are good enough to beat

the IPM based branch-and-bound method.

The control mechanism of the algorithm proposed in the forthcoming section is pa-

rameterized and user can ask for a behavior of the discussed pure strategies by updating

three basic parameters. Default parameters do not follow a pure strategy. Default behav-

ior of the algorithm is in a middle ground that aims to satisfy both integrality and conic

constraints simultaneously.

3.3.8 Overall Algorithm

In this section we give the overall outer-approximation-based branch-and-cut algorithm.

Branch-and-cut algorithm based on LP relaxations is referred as bb-lp. The algorithm

based on SOCPs is referred as bb-socp. The algorithm is fairly simpler when subproblem

relaxations are SOCP. bb-lp case is more complicated and it is explained in detailed in

this section.

We discussed that Algorithm 3 is slow on solving SOCP compared to IPM. This ap-

proach suffers most when the conic constraints are large. When conic constraints are

large, many supporting hyperplanes are required during Algorithm 3. At some instances

we observed that 80% of the solution time is spent at the root node solving the initial

SOCP. Solving rest of the branch-and-bound tree takes 20% of the time even though it

includes many relaxation problems to solve. Rest of the tree is easier to solve for two

reasons, (1) we already built an approximation of the conic constraints in the root node,

(2) we exploit warm starting capability of the simplex algorithm in the lower level nodes.

This is the regular behavior we observed for instances with large cones. Even though we

exploit warm starting capability of simplex and gain advantage in the lower level nodes,

this gained advantage is not enough to cover the time lost in the root node. bb-socp with

100

3.3. A BRANCH-AND-CUT ALGORITHM

Algorithm 3 as solver was slow compared to bb-socp with an IPM based solver, especially

on problems with large cones.

Moreover, as we discussed before, in this approach SOCP solver itself uses LP relax-

ations but branch-and-bound algorithm is unaware of this. Things can be improved if we

let branch and bound be aware of this and stop using the cutting-plane algorithm as a black

box solver and control the whole process. In this new design branch-and-bound algorithm

is aware that subproblem relaxations are LP and it aims to get a solution that is both

integer and conic feasible. Note that bb-socp with Algorithm 3 becomes an edge case of

the new design. It is the case when the new algorithm is tuned to achieve conic feasibility

at each node and branch afterwards. Algorithm 5 gives the overall bb-lp algorithm.

First we define a parametric family of polyhedra that contain the feasible region

SMISOCP of (MISOCP) as follows.

Definition 3.1. (P(l, u, E)) For a given set E ⊆ Qn, P(l, u, E) is the polyhedron de-

fined by the inequalities of Theorem 2.2.1 corresponding to the members of set E for

each of the Lorentz cones comprising the cartesian product K, plus the linear constraints

from (MISOCP) and lower and upper bounds on variables denoted by l and u. The formal

description of this polyhedron is

Ax = b

xi1 ≥ 0 i = 1, . . . , k

ax
i
(xi) ≥ 0 x ∈ E , i ∈ K(x)

x ≥ l

x ≤ u.

(P(l, u, E))

Here, K(x) is the index set of violated Lorentz cones by x. ax
i

are vectors as given in

Theorems 2.2.1.

101

3.3. A BRANCH-AND-CUT ALGORITHM

Let H be the set of subproblems (corresponding to branch-and-bound tree nodes) to

be explored during bb-lp. We represent each subproblem with (l, u, LB, E), where l and u

are lower and upper bounds enforced on the variables for the corresponding subproblem,

LB is the objective value estimate of the subproblem and E is the set of points used to

generate supports for the conic constraints for the current subproblem. bb-lp populates E

dynamically as needed during solution process.

Algorithm 5 Outer-Approximation-Based Branch-and-Cut Algorithm (bb-lp)

1: Call warm start procedure.
2: UB ←∞.
3: LB ← −∞.
4: while H 6= ∅ do
5: Call bounding loop procedure.
6: end while

Algorithm 6 Warm Starting Procedure

1: Solve SOCP using IPM. Let x̂ be optimal solution.
2: E0 ← {x̂}
3: i← 0
4: do
5: z̃i ← minx∈P(l,u,Ei) c

>x, x̃i ← argminx∈P(l,u,Ei) c
>x

6: E i+1 ← E i ∪ {x̃i}
7: i← i+ 1
8: while i < iter limit and x̃i /∈ Kε

9: H ← {(−∞,∞, z̃i, E i)}

bb-lp algorithm for MISOCP is similar to MILP branch-and-cut algorithm. The dif-

ference is, when relaxing subproblems not only integrality constraints, but also conic con-

straints are relaxed. Subproblem relaxations become LPs when the conic constraints are

relaxed. A solution to the MISOCP is found when a relaxation solution satisfies both

integrality and conic constraints. Moreover linear cuts introduced in Section 2.2 are used

to cut solutions that are conic infeasible. MILP cut procedures (Gomory, mixed integer

rounding, etc.) can also be used to improve the bounds of the relaxations. The algorithm

102

3.3. A BRANCH-AND-CUT ALGORITHM

Algorithm 7 Bounding Loop

1: Select a problem (do not remove) from H, denote it (l, u, LB, E0).
2: j ← 0.
3: while true do
4: if LB ≥ UB then
5: H ← H \ {(l, u, LB, Ej)}.
6: Break loop.
7: end if
8: z̃j ← minx∈P(l,u,Ej) c

>x, x̃j ← argminx∈P(l,u,Ej) c
>x

9: lastImp← z̃j − LB.
10: LB ← min(l,u,LB,E)∈HLB

11: gap← UB−LB
UB × 100.

12: if z̃j ≥ UB then
13: H ← H \ {(l, u, LB, Ej)}.
14: Break loop.
15: end if
16: Apply cut cleaning.
17: if x̃j is both integer and conic feasible then
18: UB ← z̃j .
19: Break loop.
20: else
21: Call branch, constraint or price routine.
22: end if
23: if generateOAcuts or generateMILPcuts then
24: if generateOAcuts then
25: Ej+1 = Ej ∪ {x̃j}.
26: end if
27: if generateMILPcuts then
28: Generate MILP cuts and add to P(l, u, Ej).
29: end if
30: else
31: H ← H \ {(l, u, LB, Ej)}.
32: Pick i from {i ∈ I | x̃ji /∈ Z}.
33: û← u, ûi ← bx̃ic.
34: l̂← l, l̂i ← bx̃ic+ 1.
35: H ← H∪ {(l, û, z̃, Ej), (l̂, u, z̃, Ej)}.
36: Break loop.
37: end if
38: j ← j + 1.
39: end while

103

3.3. A BRANCH-AND-CUT ALGORITHM

Algorithm 8 Branch, constrain or price routine.

1: if x̃j /∈ Kε then
2: if (j < α or lastImp > β × gap) and j < γ then
3: generateOAcuts ← true
4: else
5: generateOAcuts ← false
6: end if
7: end if
8: if {i ∈ I | x̃ji /∈ Z} 6= ∅ then
9: if 0 ≡ node number (modκ) and lastImp ≥ δ then

10: generateMILPcuts ← true
11: else
12: generateMILPcuts ← false
13: end if
14: end if

has different flavors depending on the details of how/when the separation and MILP cuts

are added.

An important decision during bb-lp algorithm is whether to branch or add cuts for a

subproblem relaxation solution that violates both integrality and conic constraints. bb-lp

algorithm aims to achieve both integrality and conic feasibility. Adding conic approxi-

mation cuts works toward conic feasibility and branching works toward integer feasibility.

A pure strategy might ignore one and work toward the other. bb-lp tries to balance this

objectives by using parameters α, β and γ to decide between cut generation and branching.

At a relaxation solution both integer and conic infeasible, for α times we run the

cut generation procedure and add cuts to the subproblem. Moreover if number of cut

generation rounds is over α but cut generation is improving bounds more than β × gap

then we keep generating cuts. We stop generating cuts if number of cut generation rounds

exceed γ.

Note that bb-lp with large α, γ and small β values is same as bb-socp together with

Algorithm 3 to solve relaxations. bb-socp with Algorithm 3 implements a pure strategy

where cuts are generated for each subproblem until a conic feasible solution is found or

104

3.3. A BRANCH-AND-CUT ALGORITHM

problem becomes infeasible.

bb-lp is an outer-approximation algorithm like the one proposed in Vielma, Ahmed,

and Nemhauser [VAN08], but it differs on building the outer-approximation. Vielma,

Ahmed, and Nemhauser [VAN08] build the outer approximation fully (for some accu-

racy level) before starting the branch-and-bound process, where the algorithm proposed

here builds the outer approximation gradually. The outer approximation supports are

added to the problem when they are necessary to cut a conic infeasible solution. They are

also added only in the neighborhood of the related portion/corner of the feasible region,

regarding the objective direction.

Having a good approximation of conic constraints in the root node improves the sub-

problem relaxation objective value in the subsequent nodes. A warm starting procedure is

used in the root node for this purpose. In warm starting procedure, integrality constraints

are relaxed and the resulting continuous relaxation is solved. Supports to the conic con-

straints are added using the solution of this relaxation and results obtained in Section 2.2.

LP approximation of the problem is improved with the addition of these supports. After

this, the LP problem is solved repetitively. For each conic infeasible solution obtained,

cuts are generated using the procedures introduced in Section 2.2. This procedure stops

once an iteration limit is reached or relaxation solution is conic feasible. In other words

Algorithm 3 is used, but the problem is not solved to the optimality and the algorithm is

interrupted after a fixed number of iterations.

In the bounding loop procedure we proceed similar to a typical branch-and-cut algo-

rithm for MILP. The difference is when we check for the feasibility of solutions, we check

both integrality and conic feasibility. Note that when a subproblem relaxation solution

violates both integrality and conic constraints, algorithm should decide to branch or cut.

Branch, constrain or price (bcp) procedure decides on this. Behavior of this procedure

is controlled by OA cut parameters α, β and γ and MILP cut parameters κ and δ. If

105

3.4. CONCLUSION

iteration number is equal or greater than γ we decide to branch. If not, then, if iteration

number is less than α or the last time we generated OA cut, the objective improvement

was greater that β times the optimality gap, bcp procedure decides to generate more OA

cuts. At every κ number of nodes MILP cuts are generated in case the solution violates

integrality. MILP cuts are generated as long as the bound improvement is larger than δ.

bb-lp can be made to behave like bb-socp with Algorithm 3 as solver by choosing

appropriate values for α, β and γ parameters of branch, constraint and price procedure.

α :=∞, β := −1 and γ =∞ would give such a behavior.

In absence of conic constraints (MILPs) bb-lp reduces to branch and cut for MILP. At

each node in Algorithm 4, Vielma, Ahmed, and Nemhauser [VAN08] solve the linear ap-

proximation problem (CXLP), that approximates (CXP). Note that a solution to (CXLP)

is only approximately feasible to conic constraints, similar to solutions of (P(l, u, E)) in

bb-lp case. Solutions of (CXLP) are conic feasible for a fixed parameter of Ben-Tal and

Nemirovski approximation, where conic feasibility of solutions of (P(l, u, E)) depends on

the set E . Algorithm 4 obtains conic feasible solutions by solving (CXP) (SOCP in our

case). bb-lp obtains conic feasibility by a cutting-plane approach, i.e., generates cuts and

adds them to (P(l, u, E)) until a conic feasible solution is obtained.

3.4 Conclusion

In this chapter we propose a new outer-approximation algorithm to solve MISOCP. This

algorithm uses a closed form linear cut, introduced in Chapter 2, to separate a given

point. The algorithm introduced is a branch-and-cut algorithm based on LP relaxations.

In subproblems not only integrality constraints but also conic constraints are relaxed.

Conic constraints are enforced through linear cuts generated.

Algorithm is motivated by the warm start capability of simplex algorithm in branch-

and-bound frameworks. Algorithm introduced aims to satisfy integrality and conic con-

106

3.4. CONCLUSION

straints simultaneously. Level of enforcement of conic constraints are controlled through

parameters. Algorithm defaults to branch and bound with SOCP relaxations for specific

values of parameters.

Many questions are raised in this chapter at introduction of the algorithm regarding

the performance of various strategies and parameter values. These questions are answered

in Chapter 6 through computational experiments.

Algorithm introduced in this chapter is implemented within the COIN-OR framework.

Chapter 4 introduces the software libraries created for implementations. It explains the

design of these libraries and their relationship to the existing COIN-OR projects.

107

Chapter 4

Software for MISOCP

This chapter presents independent software libraries that are designed to solve MISOCP.

These libraries implement the algorithms introduced in Chapter 3. This chapter provides

the details of these software libraries and how they are used for solving MISOCP.

The software projects introduced in this chapter are tightly integrated within the cur-

rent projects of COIN-OR (COmputational INfrastructure for Operations Research) [Lou03]

initiative. Projects introduced here depend on various COIN-OR projects. These depen-

dent projects are,

• BuildTools [For+b],

• CoinUtils (Coin-or Utilities) [For+d],

• OSI (Open Solver Interface) [For+e],

• CLP (COIN-OR Linear Programming) [For+c] solver,

• CGL (Cut Generation Library) [For+a],

• Ipopt (Interior Point OPTimizer) [WB06],

108

• CHiPPS (COIN-OR High-Performance Parallel Search) framework [RLS04; Xu+05;

Xu+09; Xu+a; Xu+b].

The libraries we present share the same build and compilation process with current

COIN-OR projects. This is by design to achieve the two following goals: (1) taking

advantage of the current software provided by COIN-OR rather than re-inventing the

wheel, (2) attracting the current audience of the COIN-OR tools and making the software

accessible and natural to them.

The software libraries presented here are planned to be a part of the COIN-OR initia-

tive. Libraries introduced can be listed as follows.

• OsiConic: A generic interface class for SOCP solvers. This interface provides a way

to build and solve SOCPs that is uniform across a variety of solvers, as well as a

standard interface for querying the results.

• OsiXxxxx: Implementations of the interface for various open source and commercial

solvers.

• COLA: A solver for SOCP that implements the cutting-plane Algorithm 3.

• CglConic: A library of procedures for generating valid inequalities for MISOCP.

• DisCO: A solver library for MISOCP that uses all the libraries mentioned. This

library implements classical branch-and-bound type of algorithm and the outer ap-

proximation branch-and-cut algorithm given in Algorithm 5.

All libraries introduced here are implemented in C++. C++ is chosen as the language of

development due to its superior performance and compatibility with the current COIN-OR

initiative projects.

109

4.1. OSICONIC, A SOLVER INTERFACE FOR SOCP

4.1 OsiConic, A Solver Interface for SOCP

In this section, we introduce OsiConic [BR16g], a generic interface for SOCP solvers.

OsiConic is built on top of COIN-OR’s linear solver interface OSI and extends OSI to

SOCP. It is composed of classes for storing and manipulating the data required to describe

an SOCP, as well as a class containing the actual solver interface.

4.1.1 Classes in OsiConic

OsiCone

OsiCone is an abstract base class that provides an interface for storing a cone, i.e., a

conic constraint, and querying properties of the cone. It declares two virtual functions,

feasible and project. Function feasible checks feasibility of a given point. Function

project projects a given point that violates the conic constraint onto the cone boundary.

Function project is used at the linear approximation process of the cone.

OsiLorentzCone

OsiLorentzCone is a class for representing both Lorentz cones (L) and rotated Lorentz

cones. It inherits OsiCone and implements feasible and project functions.

OsiScaledCone

OsiScaledCone is a class to represent second-order cones given in conic dual form. OsiScaledCone

inherits and implements OsiCone. OsiScaledCone keeps coefficient matrix in sparse ma-

trix data structures provided by CoinUtils.

110

4.1. OSICONIC, A SOLVER INTERFACE FOR SOCP

OsiConicSolverInterface

OsiConicSolverInterface is an abstract base class for a SOCP solver. It provides func-

tions to build and solve SOCP.

OsiConicSolverInterface extends the OSI library’s OsiSolverInterface class for

LPs by methods specific to conic optimization problems, such as adding/removing/quer-

rying cones, etc.. It is designed to be compatible with OSI and easily understandable

by the current users of OSI. Current applications that depend on OsiSolverInterface

can compile with OsiConicSolverInterface (full backward compatibility). Moreover it

provides methods related to conic constraints.

A user of OsiSolverInterface has to learn the cone related functions of OsiConic

only, and can start writing applications on top of OsiConicSolverInterface immediately.

The interface of the OsiConicSolverInterface class is roughly as in Listing 4.1.

Listing 4.1: OsiConicSolverInterface class design

1 c l a s s Os iCon i cSo l v e r In t e r f a c e : v i r t u a l pub l i c O s i S o l v e r I n t e r f a c e {
2 pub l i c :
3 v i r t u a l void getConicConstra int (. . .) const = 0 ;
4 v i r t u a l void addConicConstraint (. . .) = 0 ;
5 v i r t u a l void removeConicConstraint (. . .) = 0 ;
6 v i r t u a l void modi fyConicConstraint (. . .) = 0 ;
7 v i r t u a l i n t getNumCones () const = 0 ;
8 v i r t u a l i n t getConeSize (i n t i) const = 0 ;
9 v i r t u a l OsiConeType getConeType (i n t i) const = 0 ;

10 v i r t u a l i n t readMps (const char ∗ f i l ename) ;

The OsiConicSolverInterface defines readMps function to read SOCP instances

from MPS input files. MPS format was originally developed for linear problems and

extended for SOCP. At the time this thesis is being written, there are two different

extended MPS formats from two different commercial solver companies, CPLEX and

Mosek. OsiConicSolverInterface assumes Mosek format. OsiConicSolverInterface

uses CoinUtils to implement readMps and CoinUtils assumes Mosek format.

111

4.1. OSICONIC, A SOLVER INTERFACE FOR SOCP

4.1.2 Interfacing to CPLEX, Mosek, and Ipopt

OsiConicSolverInterface is implemented for CPLEX, Mosek and Ipopt. OsiCplex [BR16b],

OsiMosek [BR16d] and OsiIpopt [BR16c] implements OsiConicSolverInterface for the

corresponding solvers.

A user developing applications using OsiConicSolverInterface can use her choice of

solver without modifying her code. She can use these solvers interchangeably without any

additional development effort. This flexibility is exploited further in the software that is

introduced in the forthcoming sections.

A simple application build on top of OsiConicSolverInterface is given in the fol-

lowing.

Listing 4.2: OsiConicSolverInterface class design

1 // So lve s con i c problems , reads them in mosek mps input format
2 // usage : . / c on t s o l v e r input .mps
3#inc lude <Os i I pop tSo l v e r I n t e r f a c e . hpp>
4#inc lude <iostream>
5
6 i n t main (i n t argc , char ∗∗ argv) {
7 Os iCon i cSo l v e r In t e r f a c e ∗ s o l v e r = new Os i I pop tSo l v e r I n t e r f a c e () ;
8 so lve r−>readMps (argv [1]) ;
9 so lve r−> i n i t i a l S o l v e () ;

10 std : : cout << ”Object ive i s ” << so lve r−>getObjValue () << std : : endl ;
11 d e l e t e s o l v e r ;
12 re turn 0 ;
13 }

The application given in 4.2 uses Ipopt to read a problem from an MPS input file

and solve it. Similarly, CPLEX or Mosek can be used by updating line 3 to include the

corresponding header and line 7 to create the right class instance. Users can also create

problems from scratch by adding constraints, variables etc. For this, check the examples

directory of the desired interfaces.

The OSI library already provides implementations of CPLEX and Mosek for linear

problems. OsiCplex and OsiMosek depends on these linear implementations. OsiCplex

and OsiMosek implements the relevant parts of the conic solver interface, i.e., conic spe-

112

4.2. COLA: A SOLVER LIBRARY FOR SOCP

OsiSolverInterface

OsiConicSolverInterface OsiCpxSolverInterface

OsiCplexSolverInterface

OsiMskSolverInterface

OsiMosekSolverInterface

Interfaces Linear Implementations

Conic Implementations

Figure 4.1: CPLEX and Mosek conic interface inheritance diagram

cific interface. The linear interface is inherited from the existing implementations in OSI

library. Inheritance diagram presented in Figure 4.1 demonstrates this relationship.

The design is a little different for the case of OsiIpopt. OsiIpopt conic interface

is implemented from scratch since no previous implementation of the interface existed.

Data structures provided by the CoinUtils library is used to store the linear part of the

SOCP, i.e., coefficient matrix, variable bounds, etc. Data structures provided by OsiConic

(OsiLorentzCone, OsiScaledCone) are used to store the conic part of the problem. Osi-

IpoptSolverInterface inherits TNLP class of Ipopt. The inheritance and membership

diagram presented in Figure 4.2 demonstrates the OsiIpopt design.

In OsiIpopt conic constraints are modeled using quadratic inequality x2
1−x2

2 · · ·−x2
n ≥ 0

and nonnegativity of the leading variable x1 ≥ 0.

4.2 COLA: A solver library for SOCP

COLA (Conic Optimization with Linear Approximations) [BR16a] is a solver library that

implements the outer-approximation algorithm given in Algorithm 3. COLA is built on top

113

4.2. COLA: A SOLVER LIBRARY FOR SOCP

OsiSolverInterface

OsiConicSolverInterface

OsiIpoptSolverInterface

Linear Interface

Ipopt Implementation

 Conic Interface

Interfaces

TNLP

Ipopt

Figure 4.2: Ipopt conic interface inheritance diagram

of CLP to solve linear optimization problems. COLA inherits CLP’s OSI implementation,

i.e., class named OsiClpSolverInterface, and extends it for conic needs by implementing

OsiConicSolverInterface abstract base class. Inheritance diagram of COLA’s problem

representation class ColaModel is presented in Figure 4.3. Following are the main classes

of COLA.

ColaModel

ColaModel is a class to represent an SOCP. It inherits two other classes, OsiClpSolver-

Interface and OsiConicSolverInterface. OsiClpSolverInterface is the CLP im-

plementation of the liner solver interface of COIN-OR, i.e. OsiSolverInterface. Os-

iConicSolverInterface is an abstract base class that defines an interface for SOCP.

OsiConicSolverInterface inherits OsiSolverInterface, rather than defining an inter-

face from scratch. SOCP is an extension of LP, similarly OsiConicSolverInterface is

extension of OsiSolverInterface. OsiSolverInterface already fixes a language for LP,

OsiConicSolverInterface adds the missing pieces for conic constraints.

Note that ColaModel inherits OsiSolverInterface twice, one from OsiConicSolver-

114

4.2. COLA: A SOLVER LIBRARY FOR SOCP

OsiSolverInterface

OsiConicSolverInterface OsiClpSolverInterface

ColaModel

Interfaces CLP Implementation

COLA Implementation

Figure 4.3: COLA inheritance diagram

Interface and once from OsiClpSolverInterface. This inheritance scheme might cre-

ate a problem known as the diamond inheritance if not handled carefully. The diamond

problem would occur if ColaModel would inherit a function that is implemented in both

OsiConicSolverInterface and OsiClpSolverInterface. ColaModel is designed to en-

sure that this does not happen. Moreover, since OsiSolverInterface is inherited twice,

another problem could arise, which is the possibility of having two copies of the same

object. This problem is prevented since OsiSolverInterface is inherited as virtual in

OsiConicSolverInterface (it is also inherited as virtual in OsiClpSolverInterface).

Virtual inheritance ensures that one and only one instance of OsiSolverInterface is

initiated when a new ColaModel object is created.

ColaModel only implements the conic related virtual functions of OsiConicInterface.

It does not need to implement the linear functions since they are already implemented

in the inherited OsiClpSolverInterface. ColaModel overwrites the definitions of the

following functions inherited from OsiClpSolverInterface,

115

4.2. COLA: A SOLVER LIBRARY FOR SOCP

• initialSolve,

• resolve,

• clone,

• writeMps,

• isAbandoned,

• isProvenOptimal,

• isProvenPrimalInfeasible,

• isProvenDualInfeasible,

• isPrimalObjectiveLimitReached,

• isDualObjectiveLimitReached,

• isIterationLimitReached.

COLA can be warm started by using resolve function. Warm starting is used when COLA

is the choice of solver in a branch-and-bound algorithm. Warm starting does use CLP’s

warm start capability.

LorentzCone

LorentzCone is COLA’s representation of Lorentz and rotated Lorentz cones. Lorentz-

Cone has functionality to check feasibility of a given point. It also has a function to

compute a supporting hyperplane that separates a given infeasible point.

Options

Options class is used to store user provided options. It provides an interface to set COLA

options.

116

4.3. CGLCONIC, A CUT LIBRARY FOR MISCOP

Separate

Separate class is used to separate a given point from all conic constraints of the problem.

Separate has functions to generate a set of linear constraints that separate the point from

the conic constraints.

4.3 CglConic, A Cut Library for MISCOP

CglConic [BR16e] is a library of procedures for generating valid inequalities for MISOCP.

CglConic can be thought as an extension of COIN-OR’s CGL for SOCP. It requires an

SOCP solver that implements OsiConic. CglConic use interface fixed by OsiConic to

communicate with the SOCP solver and is solver independent. User can provide the

SOCP solver to be used during compilation.

CglConic is designed after COIN-OR’s CGL and shares the same principles. As with

CGL, there is a generic interface to cut generators, CglConicCutGenerator, and imple-

mentations of this interface for various cut procedures.

CglConic is used to generate valid inequalities that improve the relaxations of underly-

ing MISOCP. Cuts generated by CglConic can be linear or second-order conic. Generated

cuts are valid for the MISOCP feasible set and are violated by given integer infeasible

or conic infeasible solutions of relaxations. CglConic currently implements procedures for

the generation of inequalities in the following classes.

• Disjunctive Cuts given by Belotti et al. [Bel+13],

• Outer-approximation inequalities given in Chapter 2,

• Interior point method approximation cuts.

Procedures for cuts in the following classes are being considered for future implemen-

tation.

117

4.3. CGLCONIC, A CUT LIBRARY FOR MISCOP

• Conic mixed-integer rounding (MIR) cuts by Atamtürk and Narayanan [AN10],

• Two-term disjunctions on the second-order cone by Kılınç-Karzan and Yıldız [KY14],

• Cuts for 0-1 mixed convex programming by Stubbs and Mehrotra [SM99],

• Cuts for mixed 0-1 conic programming by Çezik and Iyengar [ÇI05].

CglConic has two abstract base classes, CglConicCutGenerator and CglConicParam.

CglConicCutGenerator is a base class for defining the standard interface to procedures for

generating valid inequalities. Classes containing various implementations are build on top

of this base class and implement the interface it specifies. CglConicParam is a base class for

parameters, implementations extend it to implement parameters of their own. Other than

the base classes, CglConic also has implementations of the procedures listed above. One

such class is OsiConicGD1. It inherits the cut generator interface CglConicCutGenerator

and implements it for disjunctive cuts given by Belotti et al. [Bel+13].

Figure 4.4 presents the inheritance diagram of CGL and CglConic library classes and

demonstrates the analogy between them. CGL has various implementations of cut pro-

cedures from MILP literature (MIR, Gomory, etc.). Figure 4.4 includes MIR only for

simplicity. Similarly in conic case only general disjunctions and conic MIR cut procedures

are included for simplicity, excluding OA and IPM approximation cuts. Following sections

explains the implementations in detail.

4.3.1 Implementing Disjunctive Cuts

CglConicGD1 class implements the disjunctive cuts given by Belotti et al. [Bel+13]. It

inherits and implements the CglConicCutGenerator base class. generateAndAddCuts

function creates a clone of the input solver interface, generates cuts, adds them to the

clone and returns a pointer to it. The resulting solver interface is an improved version of

the starting solver with the generated cuts.

118

4.3. CGLCONIC, A CUT LIBRARY FOR MISCOP

CglCutGenerator

CglMixedIntegerRounding

CglConicCutGenerator

CglConicMIR

Linear Case

Conic Case

CglConicGD1

Figure 4.4: CGL and CglConic inheritance diagrams

CglConicGD1Cut is a class to generate and represent a disjunctive conic cut. It stores

the disjunction used to generate the cut and the resulting cut. It might return a linear

cut if one of the disjunctions is infeasible.

Computation of disjunctive cuts require singular value decomposition and solving a

system of equations with positive definite coefficient matrix. Basic Linear Algebra Sub-

programs (BLAS) package is used for these type of computations.

Listing 4.3: CglConicGD1 example application

1 i n t main (i n t argc , const char ∗argv []) {
2 s t r i n g mpsFileName = argv [1] ;
3 // I n s t a n t i a t e a s p e c i f i c s o l v e r i n t e r f a c e
4 Os iCon i cSo l v e r In t e r f a c e ∗ s i = new SOCP SOLVER() ;
5 // Read f i l e d e s c r i b i n g problem
6 s i−>readMps (mpsFileName . c s t r () , ”mps”) ;
7 // Solve cont inuous problem
8 s i−> i n i t i a l S o l v e () ;
9 // Save the o r i g socp r e l a x a t i o n value f o r

10 // comparisons l a t e r
11 double origSocpObj = s i−>getObjValue () ;
12 // I n s t a n t i a t e cut genera to r
13 CglConicGD1 cg (s i) ;
14 bool equalObj ;
15 CoinRelFltEq eq (0 . 0 0 0 1) ;

119

4.3. CGLCONIC, A CUT LIBRARY FOR MISCOP

16 i n t num cut = 0 ;
17 double obj ;
18 // Keep apply ing cuts u n t i l no more cuts are generated
19 do {
20 // Get cur rent s o l u t i o n value
21 obj = s i−>getObjValue () ;
22 // Generate and apply cuts
23 Os iCon i cSo l v e r In t e r f a c e ∗ n s i = cg . generateAndAddCuts (∗ s i) ;
24 d e l e t e s i ;
25 s i = ns i ;
26 s i−>r e s o l v e () ;
27 equalObj = eq (s i−>getObjValue () , obj) ;
28 } whi le (! equalObj) ;
29 // Pr int t o t a l number o f cuts appl ied ,
30 // and t o t a l improvement in the SOCP ob j e c t i v e va lue
31 cout << endl << endl << endl ;
32 cout << ”−−” ;
33 cout << ”Cut gene ra t i on phase completed : ” <<endl ;
34 cout << ” ” << cg . getNumCutsAdded () << ” many cuts added . ” << endl ;
35 cout << ” changing the SOCP ob j e c t i v e va lue from ” << origSocpObj
36 << ” to ” << s i−>getObjValue () <<endl ;
37 cout << ”−−”
38 << endl << endl << endl ;
39 d e l e t e s i ;
40 re turn 0 ;
41 }

Listing 4.3 presents the main function of an example application that use disjunc-

tive conic cuts. This application generates disjunctive cuts until objective function value

improvement diminishes. The function returns once cut statistics are printed. At each

iteration of the while loop, the generateAndAddCuts function returns a new SOCP solver

interface that contains the cuts generated. Main function assumes SOCP SOLVER macro is

defined with a valid SOCP solver interface. See examples directory of CglConic for the

complete application.

generateAndAddCuts function generates and adds all possible disjunctive cuts. It uses

the current solution stored in the input solver interface instance to create disjunctions.

It enumerates the fractional valued integer variables to generate simple variable disjunc-

tions. For each such variable it determines the cone it is in and then looks for equality

constraints that have nonzero coefficients for only members of this cone. The fractional

variable and the linear constraints determined are used to create the disjunctive conic cut.

generateAndAddCuts functions generates all possible cuts it can by searching variables

120

4.3. CGLCONIC, A CUT LIBRARY FOR MISCOP

and constraints that satisfy these criteria. In computational experiments, we modify the

behavior of this function to experiment with the performance with respect to number of

cuts added.

The disjunctive cut is in scaled cone form initially when computed. generateAndAd-

dCuts function converts it to standard form by introducing a new set of variables. Once

converted to standard form, a conic cut can be considered as a linear equality system

containing the starting variables and the newly introduced variables, plus restriction of

new variables into a Lorentz cone of relevant dimension. Adding a disjunctive conic cut

to a relaxation increase the number of variables and linear constraints of the problem.

Moreover it introduces a new conic constraint in Lorentz cone form.

4.3.2 Conic Outer-Approximation (OA) Inequalities

CglConic has an implementation for the OA inequalities introduced in Chapter 2. These

inequalities are used to approximate second-order cones when the conic constraints are

relaxed in solving an MISOCP. Listing 4.4 uses CglConic’s OA inequalities and presents

a cutting-plane solver for SOCP. This can be considered a more basic implementation of

the Algorithm 3. This example can be found in CglConic project’s examples directory.

Listing 4.4: OA algorithm using CglConic

1 // Implements s imple cutt ing−plane s o l v e r f o r SOCP.
2 // usage : c u t t i n g p l a n e s o l v e r i n p u t f i l e .mps
3#inc lude <CglConicOA . hpp>
4#inc lude <ColaModel . hpp>
5
6 i n t main (i n t argc , char ∗∗ argv) {
7 // c r e a t e a s o l v e r i n s t anc e
8 ColaModel ∗ c o n i c s o l v e r = new ColaModel () ;
9 // read problem inc l ud ing con i c c on s t r a i n t s

10 c on i c s o l v e r−>readMps (argv [1]) ;
11 // s o l v e i n i t i a l problem igno r i ng con i c c on s t r a i n t s .
12 c on i c s o l v e r−>Os iC lpSo l v e r In t e r f a c e : : i n i t i a l S o l v e () ;
13 // c r e a t e cut genera to r
14 CglConicOA cg (1 e−5);
15 OsiCuts ∗ cuts ;
16 i n t to ta l num cuts = 0 ;
17 c l o c k t s t a r t t ime = c lock () ;

121

4.3. CGLCONIC, A CUT LIBRARY FOR MISCOP

18 // s o l v e problem whi le we can generate cuts .
19 do {
20 // ignore con i c c on s t r a i n t s and so l v e LP
21 c on i c s o l v e r−>Os iC lpSo l v e r In t e r f a c e : : r e s o l v e () ;
22 // generate cuts
23 cuts = new OsiCuts () ;
24 cg . generateCuts (∗ c on i c s o l v e r , ∗ cuts) ;
25 // add cuts to the problem
26 i n t num cuts = cuts−>sizeRowCuts () ;
27 i f (num cuts==0) {
28 d e l e t e cuts ;
29 break ;
30 }
31 e l s e {
32 std : : cout << num cuts << ” many cuts produced . ” << std : : endl ;
33 }
34 tota l num cuts += num cuts ;
35 c on i c s o l v e r−>Os iSo l v e r I n t e r f a c e : : applyCuts (∗ cuts) ;
36 d e l e t e cuts ;
37 } whi le (t rue) ;
38 c l o c k t durat ion = c lock () − s t a r t t ime ;
39 // p r in t s o l u t i o n s t a tu s
40 c on i c s o l v e r−>r e p o r t f e a s i b i l i t y () ;
41 std : : cout << ”Total number o f cuts : ” << to ta l num cuts << std : : endl ;
42 std : : cout << ”Object ive va lue : ” << c on i c s o l v e r−>getObjValue ()
43 << std : : endl ;
44 std : : cout << ”CPU time : ”
45 << double (durat ion)/ double (CLOCKS PER SEC) << std : : endl ;
46 d e l e t e c o n i c s o l v e r ;
47 re turn 0 ;
48 }

4.3.3 IPM Approximation Cuts

IPM approximation cuts are also used to approximate second-order cones when the conic

constraints are relaxed. It produces linear constraints that support the underlying conic

constraint. Generation of IPM approximation cuts is different than OA cuts, however.

To generate IPM approximation cuts, the underlying SOCP is solved using IPM method

and linear supports are added at the optimal solution (and optionally points near optimal

solution) for the binding conic constraints. The intent of IPM approximation cuts is to

reduce the number of iterations when the point being separated is integer feasible but

violates the conic constraints in the branch-and-cut algorithm.

122

4.4. DISCO, A DISTRIBUTED-MEMORY-PARALLEL MISOCP SOLVER

4.4 DisCO, A Distributed-Memory-Parallel MISOCP Solver

In this section, we introduce the DisCO solver library [BR16f]. DisCO is a distributed-

memory-parallel solver library for MISOCP. DisCO is motivated by various research ques-

tions which are explicitly voiced in corresponding chapters while introducing the relevant

concepts. This section restates them briefly.

An important motivation for creating DisCO is to provide the ability to compare a

wide variety of branch-and-bound algorithms for MISOCP while holding as many aspects

of the algorithm constant as possible in order to make more rigorous comparisons possi-

ble. Among other things, the goal is to compare LP-based algorithms with SOCP-based

algorithms. DisCO is built to be able to perform detailed experiments comparing various

aspects of performance.

Another motivation of DisCO is to investigate the effectiveness of different strategies for

generation of valid inequalities. DisCO can be used to experiment with settings for the OA

cut generation parameters, for example, in the case of an LP relaxation-based algorithm.

Moreover, DisCO is aimed to resolve the question of whether the integration of procedures

for generating valid inequalities from the MILP literature can help in solving MISOCPs.

DisCO provides options for experimenting with various strategies for generating MILP

cuts. Finally, another motivation is to be able to experiment with the generation and

addition of disjunctive conic cuts. DisCO provides interfaces to enable generation of

disjunctive conic cuts in the root node.

DisCO can be used together with COLA, which implements the cutting-plane algo-

rithm introduced in Algorithm 3, for the case of SOCP relaxations. From preliminary

experiments with COLA, we know that this algorithm is slow compared to IPM for solv-

ing SOCP. However, the warm-starting capability of simplex can be exploited once this

algorithm is used in a branch-and-bound framework. A motivation of DisCO is to re-

solve whether the expected performance gain of cutting-plane algorithms from simplex

123

4.4. DISCO, A DISTRIBUTED-MEMORY-PARALLEL MISOCP SOLVER

warm-starting in branch and bound is good enough to compete with IPM.

Another use of DisCO is to assess performance of various branching strategies for dif-

ferent subproblems cases. The performance of branching strategies has been well-studied

in the case of MILP [Bén+71; Mit73; LS99; FM05b]. DisCO aims to explore Algorithm 5

under different branching strategies. Moreover, DisCO is aimed to answer whether a given

specific branching strategy performs similarly for each subproblem case. DisCO also ex-

plores strategies to balance cutting versus branching for branch-and-cut algorithm given

in Algorithm 5.

DisCO is used to answer the question of whether parallelizing branch-and-bound al-

gorithm help. The motivation is to measure parallel performance for each subproblem

case. There are studies that experiment and measure the scalibility of CHiPPS for MILP

case. DisCO is aimed to answer the same questions for MISOCP case. It is designed to

measure the scalibility of the CHIPPS framework for MISOCP problems for both of the

subproblem cases.

An important motivation of DisCO is to investigate these questions in a precisely

controlled environment. DisCO is flexible enough to implement all the research ques-

tions raised in this study. It provides interfaces to experiment with different parameter

variations of the underlying algorithms.

DisCO is built using the CHiPPS framework. It is tightly integrated with other COIN-

OR libraries. It uses COIN-OR’s BuildTools for building. It depends on CLP to solve LP

subproblems. It uses OSI to communicate with CLP and CoinUtils’ data structures for

logging messages and storing sparse matrices and vectors. CGL is used to generate cuts

from MILP literature.

DisCO depends on OsiConic and its implementations for COLA, CPLEX, Ipopt and

Mosek to solve SOCP. CglConic is used to generate disjunctive conic cuts and approxi-

mation cuts introduced in this dissertation.

124

4.4. DISCO, A DISTRIBUTED-MEMORY-PARALLEL MISOCP SOLVER

DisCO is similar to CHiPPS’ BLIS, MILP solver of the CHiPPS framework, in design.

The next section gives an overview of the CHiPPS framework. Understanding the CHiPPS

framework is vital to understand the design of DisCO. DisCO, its classes and design is

explained in the following section.

4.4.1 COIN-OR High-Performance Parallel Search (CHiPPS)

CHiPPS is a distributed memory parallel search framework for parallelizing searching the

branch-and-bound tree. It is composed of three layers of different software libraries, ALPS,

BCPS, and BLIS. In this section we briefly introduce these layers, their motivation and

design. But first, we start with explanation of the fundamental parallelization scheme of

the framework in the next subsection.

A different parallelization paradigm

The first layer in CHiPPS framework is ALPS. It is an abstract library for parallel tree

search. ALPS does not follow a master–slave parallelization paradigm. It inserts an-

other level in-between master and slave called hub. Master–hub–slave paradigm is pro-

posed by Ralphs, Ladanyi, and Saltzman [RLS04] to overcome the scaling problem of

master–slave paradigm. Master–slave paradigm does not scale well, since master becomes

a communication bottleneck as the number of workers increases. In master–hub–slave

paradigm, master node communicates with hub nodes, hub nodes communicate with slave

nodes. Slave nodes do not communicate with master node directly. Number of hubs is

determined by ALPS or can be given as an input by the user to balance the communi-

cation. Note that master–hub–slave paradigm reduces to master–slave paradigm when

master is the only hub. In master–hub–slave paradigm, communication workload of mas-

ter is pushed to hubs. The price paid to relieve the communication bottleneck is any

hub–slave cluster will not immediately have access to all the knowledge objects produced

125

4.4. DISCO, A DISTRIBUTED-MEMORY-PARALLEL MISOCP SOLVER

in other hub–slave clusters. Note that in master–slave paradigm, all slave nodes have

access to all the knowledge produced in any other slave node through master node. In

the master–hub–slave paradigm a knowledge produced in a slave will be available to other

hub–slave clusters (through master) only when the slave propagates the knowledge to its

hub and the hub to the master.

ALPS

ALPS was introduced by Xu et al. [Xu+05] and is designed to conduct parallel tree search

using master–hub–slave paradigm. ALPS parallelizes the branch-and-bound search by

distributing subtrees to be searched among hubs. A hub create more subtrees from the

given one and distribute them to its slaves.

Any tree search algorithm, i.e., DFS, BFS, Dijkstra’s algorithm or the branch-and-

bound algorithm for optimization problems, can be implemented as an application on

top of the ALPS. An application should implement the following classes that inherit the

correspondent classes from ALPS.

• A model class to represent the problem being solved and to keep the problem data.

• A tree node class to represent a tree node of the specific tree search algorithm being

implemented.

• A node description class to hold the data corresponding to a node of the tree, node

class and node description classes are separated for convenience. ALPS tree node

instances have a member that points to underlying node description instance.

• A solution class to store solutions of the problem.

The correspondent classes in ALPS are implemented as abstract base classes. ALPS

will be able to call the user implemented functions and carry the search since these func-

tions are defined as pure virtual.

126

4.4. DISCO, A DISTRIBUTED-MEMORY-PARALLEL MISOCP SOLVER

ALPS depends on Message Passing Interface (MPI) standard [CGH94] for network

communication. It can be compiled with both MPICH [Gro02] and OpenMPI [Gab+04]

implementations of MPI. ALPS can also work in serial when desired or an MPI library is

not available.

Branch, Constrain, and Price (BCPS) Library

BCPS given in Xu et al. [Xu+b] is the second layer of the CHiPPS framework. It is

another abstract library built on top of ALPS. ALPS is designed for an arbitrary tree

search without any assumptions regarding to the specifics of the search. BCPS is built

on top of ALPS and has two crucial assumptions, (1) an optimization problem is being

solved with (2) a branch–cut–price algorithm is being used. It does not assume anything

more about the problem (linear/nonlinear, discrete/continuous, convex/non-convex etc.).

It provides a basis for any kind of branch-and-bound solver. BCPS itself is not a solver

but rather a base library for building branch-and-bound based solvers.

BCPS implements the common framework that is shared by all branch-and-bound type

of algorithms. This is done without assuming the structure of the underlying optimization

problem. It inherits related abstract base classes of ALPS and extends them with the two

assumptions mentioned.

The backbone of BCPS can be considered as the node processing function provided

in its tree node class. This function calls the pure virtual functions that are implemented

by the solver application to process a node of the branch-and-bound tree. This func-

tion, together with bounding loop function it calls, is presented in Listing 4.5 with some

abstraction for saving the readers with copious details.

Listing 4.5: BCPS process and bounding loop functions

1 i n t BcpsTreeNode : : p roce s s (bool isRoot , bool rampUp) {
2 AlpsNodeStatus s t a tu s = getStatus () ;
3 BcpsModel ∗ model = dynamic cast<BcpsModel∗>(broker()−>getModel ()) ;
4 CoinMessageHandler ∗ message handler = model−>bcpsMessageHandler ;

127

4.4. DISCO, A DISTRIBUTED-MEMORY-PARALLEL MISOCP SOLVER

5 // check i f t h i s can be fathomed
6 i f (getQua l i ty () > broker()−>getBestQual i ty ()) {
7 // debug message
8 message handler−>message (0 , ”Bcps” ,
9 ”Node fathomed due to parent qua l i t y . ” ,

10 ’G’ , BCPS DLOG PROCESS) ;
11 // end o f debug message
12 s e tS ta tu s (AlpsNodeStatusFathomed) ;
13 re turn AlpsReturnStatusOk ;
14 }
15
16 i f (s t a tu s==AlpsNodeStatusCandidate or
17 s t a tu s==AlpsNodeStatusEvaluated) {
18 boundingLoop (isRoot , rampUp) ;
19 }
20 e l s e i f (s t a tu s==AlpsNodeStatusBranched or
21 s t a tu s==AlpsNodeStatusFathomed or
22 s t a tu s==AlpsNodeStatusDiscarded) {
23 // t h i s should not happen
24 message handler−>message (BCPS NODEUNEXPECTEDSTATUS,
25 model−>bcpsMessages)
26 << s t a t i c c a s t <int >(s t a tu s) << CoinMessageEol ;
27 }
28 return AlpsReturnStatusOk ;
29 }
30
31 i n t BcpsTreeNode : : boundingLoop (bool isRoot , bool rampUp) {
32 AlpsNodeStatus s t a tu s = getStatus () ;
33 BcpsModel ∗ model = dynamic cast<BcpsModel∗>(broker −>getModel ()) ;
34 CoinMessageHandler ∗ message handler = model−>bcpsMessageHandler ;
35
36 bool keepBounding = true ;
37 bool fathomed = f a l s e ;
38 bool do branch = f a l s e ;
39 bool genConstra ints = f a l s e ;
40 bool genVar iab le s = f a l s e ;
41 BcpsConstraintPool ∗ cons t r a in tPoo l = new BcpsConstraintPool () ;
42 BcpsVariablePool ∗ var i ab l ePoo l = new BcpsVariablePool () ;
43 // i n s t a l l s problem to the under ly ing r e l a x a t i o n s o l v e r
44 insta l lSubProb lem () ;
45 whi l e (keepBounding) {
46 keepBounding = f a l s e ;
47 // s o l v e subproblem corresponds to t h i s node
48 BcpsSubproblemStatus subprob lem status = bound () ;
49 // c a l l h e u r i s t i c s to search f o r a s o l u t i o n
50 c a l l H e u r i s t i c s () ;
51 // dec ide what to do next , branch , c on s t r a i n or p r i c e ?
52 branchConstrainOrPrice (subproblem status , keepBounding , do branch ,
53 genConstra ints ,
54 genVar iab le s) ;
55 // branchConstrainOrPrice might dec ide fathoming t h i s node
56 i f (ge tStatus ()==AlpsNodeStatusFathomed) {
57 // node i s fathomed , nothing to do .
58 break ;
59 }
60 e l s e i f (keepBounding and genConstra ints) {
61 gene ra t eCons t ra in t s (con s t r a in tPoo l) ;

128

4.4. DISCO, A DISTRIBUTED-MEMORY-PARALLEL MISOCP SOLVER

62 // add c on s t r a i n t s to the model
63 app lyConst ra int s (con s t r a in tPoo l) ;
64 // c l e a r c on s t r a i n t pool
65 cons t ra in tPoo l−>f r eeGuts () ;
66 // s e t s t a tu s to eva luated
67 s e tS ta tu s (AlpsNodeStatusEvaluated) ;
68 }
69 e l s e i f (keepBounding and genVar iab le s) {
70 gene ra t eVar i ab l e s (va r i ab l ePoo l) ;
71 // add va r i a b l e s to the model , s e t s t a tu s o f t h i s node to eva luated
72 s e tS ta tu s (AlpsNodeStatusEvaluated) ;
73 }
74 e l s e i f (keepBounding==f a l s e and do branch==f a l s e) {
75 // put node back in to the l i s t .
76 // t h i s means update node s t a tu s as eva luated and end pro c e s s i ng
77 // the node .
78 s e tS ta tu s (AlpsNodeStatusEvaluated) ;
79 }
80 e l s e i f (keepBounding==f a l s e and do branch) {
81 // prepare f o r branch () c a l l
82 BcpsBranchStrategy ∗ branchStrategy = model−>branchStrategy () ;
83 branchStrategy−>createCandBranchObjects (t h i s) ;
84 // prepare t h i s node f o r branching and s e t s t a tu s as pregnant
85 processSetPregnant () ;
86 }
87 e l s e {
88 message handler−>message (9998 , ”Bcps” ,
89 ”This should not happen . ”
90 ” branchConstrainOrPrice () i s buggy . ” ,
91 ’E ’ , 0)
92 << CoinMessageEol ;
93 }
94 }
95 d e l e t e con s t r a in tPoo l ;
96 d e l e t e va r i ab l ePoo l ;
97 re turn AlpsReturnStatusOk ;
98 }

In Listing 4.5, the boundingLoop function calls pure virtual functions installSub-

problem, callHeuristics, branchConstrainOrPrice, generateConstraints and gen-

erateVariables. These pure virtual functions are expected to be implemented by solver

developers in their applications.

This might be reminiscent of the callback mechanism of various commercial solvers

(CPLEX, Mosek etc.) to the experienced solver developers. Note that BCPS provides

much more than mere callback mechanism. It provides a very flexible framework that

enables users to implement any kind of tree-based optimization algorithm, not only specific

kind (usually MILP in case of commercial solvers). The price developers pay is they need

129

4.4. DISCO, A DISTRIBUTED-MEMORY-PARALLEL MISOCP SOLVER

to input more development than in the case of callback mechanisms. This is necessary

since they need to specify details of their optimization problem. BCPS offers much more

than the callback mechanisms but also asks for more development effort from the user

side. Moreover, BCPS works in parallel since it is built on top of ALPS.

BCPS uses a differencing scheme to store the data that corresponding to a branch-

and-bound node (subproblem). BCPS does not store the whole data corresponding to the

subproblem. It just stores the difference (cuts and variables added, warm start information

etc.) from the parent node. This is by design to use memory efficiently.

BCPS Linear Integer Solver (BLIS)

BLIS [XRV] is a distributed-memory parallel MILP solver built on top of BCPS. BLIS is

used as a guide in implementing DisCO.

4.4.2 Discrete Conic Optimization (DisCO) Solver Library

DisCO (Discrete Conic Optimization) is a solver for MISOCP. It is built on top of BCPS.

DisCO implements branch-and-cut type of algorithms to solve MISOCP. DisCO depends

on many other projects. It depends OsiConic on communicating with its relaxation solvers.

It depends on CglConic to cut infeasible solutions. DisCO can use different solvers to

solve relaxation subproblems. DisCO uses solvers through their OSI (OsiClp) and Osi-

Conic (OsiIpopt, OsiCplex, OsiMosek) interfaces. DisCO acts as a MILP solver when the

problem does not have conic constraints.

This section explains the design and implementation of DisCO in details. We start by

explaining the classes that constitute the DisCO.

130

4.4. DISCO, A DISTRIBUTED-MEMORY-PARALLEL MISOCP SOLVER

Main classes of DisCO

DisCO is implemented following object oriented programming and this section introduces

the main classes of DisCO.

DcoModel represents the problem being solved. Stores problem data and other problem

related information generated during the solution process. It inherits and implements

BcpsModel.

DcoTreeNode represents a node of the branch-and-bound tree. Stores a pointer to

a DcoNodeDesc instance, inherits and implements BcpsTreeNode. DcoNodeDesc stores

information corresponding to the subproblem represented by the node. DcoNodeDesc

inherits and implements BcpsNodeDesc.

DcoHeuristic is an abstract base class for heuristic methods. DcoHeuristic declares

pure virtual functions to find solutions from the current subproblem solution. DcoHeur-

Rounding implements DcoHeuristic for a simple rounding heuristic. This implementation

is based on the rounding heuristic of BLIS.

DcoParams defines parameters of DisCO solver library. Provides default values for the

defined parameters.

DcoVariable represents a variable. Inherits and implements BcpsVariable.

DcoConstraint is an abstract base class for a constraint. Inherits BcpsConstraint.

DcoConstraint inherits pure virtual functions for checking feasibility from BcpsCon-

straint. DcoLinearConstraint is a class to represent linear constraints. It implements

DcoConstraint interface. DcoConicConstraint is a class to represent second-order cone

constraints. It implements DcoConstraint abstract base class.

DcoBranchStrategyMaxInf, DcoBranchStrategyPseudo and DcoBranchStrategyS-

trong implement maximum infeasibility, pseudo and strong branching strategies respec-

tively. These classes inherit and implement BcpsBranchStrategy.

DcoBranchObject stores information to perform a branching operation. Each tree

131

4.4. DISCO, A DISTRIBUTED-MEMORY-PARALLEL MISOCP SOLVER

node has a member pointer to a DcoBranchObject. This object is created after the node

is decided to be branched.

DisCO main function

All that DisCO main function does is to create an instance of a subproblem solver, a

DisCO model, an ALPS broker, and call the search function of the broker. The search call

looks for solutions and collect them in a pool. Search results and a report of feasibility of

the best solution is printed before the main function returns. A simplified version of the

main function is given in Listing 4.6.

Listing 4.6: DisCO main function

1 i n t main (i n t argc , char ∗argv []) {
2#i f de f ined (OA)
3 Os i S o l v e r I n t e r f a c e ∗ s o l v e r = new Os iC lpSo l v e r In t e r f a c e () ;
4#e l i f de f i ned (OSI MOSEK)
5 Os iCon i cSo l v e r In t e r f a c e ∗ s o l v e r = new Os iMosekSo lver Inte r face () ;
6#e l i f de f i ned (OSI CPLEX)
7 Os iCon i cSo l v e r In t e r f a c e ∗ s o l v e r = new Os iCp l exSo lv e r In t e r f a c e () ;
8#e l i f de f i ned (COLA)
9 Os iCon i cSo l v e r In t e r f a c e ∗ s o l v e r = new ColaModel () ;

10#end i f
11 // Create DisCO model
12 DcoModel model ;
13 model . s e t S o l v e r (s o l v e r) ;
14#i f d e f COIN HAS MPI
15 AlpsKnowledgeBrokerMPI broker (argc , argv , model) ;
16#e l s e
17 AlpsKnowledgeBrokerSer ia l broker (argc , argv , model) ;
18#end i f
19 // Search f o r bes t s o l u t i o n
20 broker . s earch (&model) ;
21 broker . p r i n tBe s tSo lu t i on () ;
22 model . r e p o r t F e a s i b i l i t y () ;
23 d e l e t e s o l v e r ;
24 re turn 0 ;
25 }

The relaxation solver instance is created depending on the algorithm/solver of choice.

The algorithm of choice is indicated in the build time and macros indicating the choices

are created. DisCO uses the macros created during the build.

132

4.4. DISCO, A DISTRIBUTED-MEMORY-PARALLEL MISOCP SOLVER

Algorithms implemented in DisCO

DisCO implements two main algorithms, bb-lp, which is an LP-based branch-and-bound

algorithm, given in Algorithm 5; and bb-socp, which is a branch-and-bound algorithm

with socp relaxations. Users are required to specify the algorithm choice during the build.

bb-lp is the default algorithm and will be used if no algorithm is specified by the user.

Disco parameters

DisCO provides many parameters to control the algorithms implemented. The most rele-

vant and important parameters are explained in this section. Interested readers can check

the DisCO library for an exhaustive list of parameters, including parameters of features

that are work in progress.

Users can change the default behavior of DisCO solver library by using the available

parameters. Parameters for DisCO solver can be specified in command line when calling

the solver or through a file. In command line first parameter name should be specified,

then the value for the parameter.

Listing 4.7 demonstrates a use where DisCO reads problem from an MPS input file

and solves it using branching strategy 3, i.e., strong branching.

Listing 4.7: Running DisCO with parameters

1 d i s co A lp s in s tance input problem .mps Dco branchStrategy 3

Following is the list of parameters that are available when DisCO is used in parallel

mode.

cutRampUp: Determines whether cuts should be generated during ramp up phase in

parallel mode. Default value is true.

branchStrategyRampUp: Determines the branching strategy to be used during ramp

up phase in parallel mode.

133

4.4. DISCO, A DISTRIBUTED-MEMORY-PARALLEL MISOCP SOLVER

shareConstraints: In parallel mode, constraints will be sent/received through net-

work if this is false. Constraint sharing is not implemented yet.

shareVariables: In parallel mode, variables will be sent/received through network

if this is false. Variable sharing is not implemented yet.

Presolve methods are heuristics to improve the problem formulation. Their main

purpose is to modify the problem such that it will be easier and numerically more stable

to solve. They achieve this by (1) elimination of variables and constraints, (2) scaling

the problem, (3) tightening the variable bounds and constraints. Presolve procedures

might yield solutions on easy problem instances. Presolve procedures for DisCO is work

in progress and disabled by default. Following are the presolve parameters,

presolve: Whether the problem should be presolved first. The default value is

false.

presolveNumPass: Presolve procedure can be applied multiple times by calling the

procedure to the new problem obtained from the previous call. presolveNumPass

parameter determines the number of presolve calls. The presolve procedure will be

called multiple times until this number is hit, or the procedure fails to improve the

problem.

DisCO implements max infeasibility, pseudocost and strong branching. The branching

strategy is controlled with the following parameters.

branchStrategy: Determines the branching strategy to be used.

pseudoWeight: Weight used to calculate pseudocosts in case of pseudocost branch-

ing.

DisCO has two different classes of cut generation parameters, cut strategy and cut gen-

eration frequency. Cut strategy parameter can take one of the following four values, 1

134

4.4. DISCO, A DISTRIBUTED-MEMORY-PARALLEL MISOCP SOLVER

to generate cuts in the root node only, 2 to generate cuts periodically on every specific

number of nodes, 3 not to generate cuts and 4 is to let DisCO decide automatically. The

specific number of nodes for strategy 2 is determined by parameter cutGenerationFreq.

It determines the frequency of the cut generation. In strategy 4, DisCO decides whether

to generate cuts automatically by judging the previous performance of the generator.

Following is the list of cut generation parameters.

These parameters are global parameters for all cut generation strategies. Users can

override these for a specific cut procedure (like MIR, Gomory, etc.) by specifying the

parameters specific to the procedure. Parameters specific to cut procedures are categorized

into two classes, linear and conic. Linear generators can be applied only when the outer-

approximation algorithm is used.

Linear cut generation parameters are cutCliqueStrategy, cutGomoryStrategy, cut-

FlowCoverStrategy, cutKnapsackStrategy, cutMirStrategy, cutOddHoleStrategy, cutK-

napsackStrategy, cutMirStrategy, cutOddHoleStrategy, cutProbingStrategy, cut-

CliqueFreq, cutGomoryFreq, cutFlowCoverFreq, cutKnapsackFreq, cutMirFreq, cut-

ProbingFreq.

Conic cut generation parameters are cutIpmStrategy, cutIpmIntStrategy, cutOaStrat-

egy, cutIpmFreq, cutIpmIntFreq, cutOaFreq.

DisCO implements a simple rounding heuristic that is effective in case of outer-

approximation algorithm. Heuristic strategies are controlled similar to cut generation

strategies. There are 4 different strategies, heurStrategy is set to 1 to call heuristic

routines in the root node only, 2 to call heuristics periodically on every specific number

of nodes, 3 to do not call heuristics and 4 to let DisCO decide when to call heuristics.

Following is the list of heuristic related parameters of DisCO.

heurStrategy: Global heuristic strategy.

heurCallFrequency: Global heuristic call frequency.

135

4.4. DISCO, A DISTRIBUTED-MEMORY-PARALLEL MISOCP SOLVER

heurRoundStrategy: Rounding heuristic strategy.

heurRoundFreq: Rounding heuristic call frequency.

A parameter that is used in outer-approximation algorithm is the number of approx-

imation passes. DisCO generates OA cuts to improve the outer approximation of the

problem being solved. Parameter approxNumPass controls the number of times OA cut

generation procedures are called. DisCO might stop this procedure in fewer iterations if

no cuts are generated. Default value for approxNumPass is 400.

Another important parameter is logLevel, that controls the information printed to

standard output. There are 5 log levels from 0 to 4. 0 is the least verbose and 4 is the

maximum. logLevel parameter can also be used for debugging purposes. DisCO log

messages are implemented using messaging framework provided in CoinUtils. DisCO uses

bit masking for debugging. logLevel 8 prints information related to branching process,

16 for cut procedures, 32 for node processing and 64 for presolving. 32 is also used for

MPI, GrUMPy and heuristics debugging. A user that want to enable all debug output

should use level 255.

Following is the list of DisCO parameters related to optimality.

objTol: This parameter is used in fathoming the unpromising nodes. Subproblems

with bounding value less than incumbent solution value plus objTol are fathomed.

Default value of it is 1.0e-6.

optimalRelGap: The search stops when the relative gap between lower and upper

bounds fall below this value. Default value of this parameter is 1.0e-6.

optimalAbsGap: The search stops when the absolute gap between lower and upper

bounds fall below this value. Default value of this parameter is 1.0e-4.

Following are the DisCO parameters on measuring feasibility.

136

4.4. DISCO, A DISTRIBUTED-MEMORY-PARALLEL MISOCP SOLVER

integerTol: Tolerance to accept a number as an integer. If its distance to the closest

integer is less than integerTol the number is accepted as an integer. Default value

of integerTol is 1.0e-5.

coneTol: Tolerance to accept a given point as feasible to a given conic constraint.

Default value of coneTol is 1.0e-5.

DisCO accepts MPS files as input. MPS files do not indicate the direction of opti-

mization. objSense parameter of DisCO can be used to specify this. Value 1 indicate

minimization and -1 indicates maximization. DisCO assumes minimization if the param-

eter is not specified by the user.

In addition to DisCO parameters introduced in this section, ALPS parameters can

also be used for changing the behavior of the tree search.

Visualizing DisCO Algorithms with GrUMPy

GrUMPy (Graphics for Understanding Mathematical Programming in Python) given

by Bulut and Ralphs [BR] and Ozaltin, Hunsaker, and Ralphs [OHR07] is a Python

(Python Software Foundation, https://www.python.org/) package for visualizing prob-

lems and algorithms of mathematical optimization. GrUMPy can be used to visualize the

solution process of DisCO. For specific debug levels that can be set using logLevel param-

eter DisCO writes branch-and-bound tree information to the standard output. Grumpy

can be used to read this output and generate visualizations of the branch and bound

tree as DisCO prints them during the execution. The visualizations are generated and

displayed in real time during the execution of the DisCO solver.

Figure 4.5 to 4.11 display branch-and-cut tree images generated by GrUMPy for prob-

lem instance estein5 A. The figures are generated at every 500 DisCO’s GrUMPy specific

log lines. These figures are generated with bb-lp algorithm for instance estein5 A. Each

node in the branch and cut tree is represented as a dot in the figures. Horizontal place-

137

4.5. CONCLUSION

ment of each node is decided based on the optimal objective value of the subproblem

corresponding to the node. estein5 A is a minimization problem, hence, the deeper the

nodes in the tree, the larger the optimal objective values. The nodes are colored depending

on their statuses. Yellow indicates that the node is branched. Green indicates that the

node is promising, i.e., candidate subproblem to be solved. Infeasible nodes are colored as

brown. Nodes that resulted feasible solutions are colored as light blue. A red line indicates

the upper bound of the problem at the time of snapshot. Fathomed nodes are indicated

by red color. Branch-and-cut algorithm stops when there is no candidate problem with

a promising objective value, i.e., no green dots above red line. These figures are drawn

in a guided user interface window while DisCO is working on the problem. Note that

GrUMPy and DisCO should not necessarily run in the same machine to generate these

figures. DisCO might run on a remote high processing power server where the output is

piped through network into a laptop where GrUMPy is running and animating the tree.

4.5 Conclusion

We introduced mathematical optimization software used to implement the algorithms

proposed in Chapter 2 and Chapter 3 in this chapter. These software libraries are open

source and fit with the current line of work developed under the COIN-OR organization for

the last decade. The libraries are designed to be modular, flexible and easy to maintain.

The resulting discrete conic optimization solver is obtained by combining solver interfaces,

implementations of these interfaces, libraries for generating valid inequalities and the

source code of the solver itself. DisCO is flexible to work with various commercial and

open source solvers to solve relaxation subproblems. Moreover it is flexible enough to

work with either SOCP or LP based subproblems.

The DisCO tree search is built on top of COIN-OR’s CHiPPS framework. CHiPPS is a

138

4.5. CONCLUSION

Figure 4.5: estein5 A branch-and-bound tree of DisCO generated by GrUMPy – 1

Figure 4.6: estein5 A branch-and-bound tree of DisCO generated by GrUMPy – 2

139

4.5. CONCLUSION

Figure 4.7: estein5 A branch-and-bound tree of DisCO generated by GrUMPy – 3

Figure 4.8: estein5 A branch-and-bound tree of DisCO generated by GrUMPy – 4

140

4.5. CONCLUSION

Figure 4.9: estein5 A branch-and-bound tree of DisCO generated by GrUMPy – 5

Figure 4.10: estein5 A branch-and-bound tree of DisCO generated by GrUMPy – 6

141

4.5. CONCLUSION

Figure 4.11: estein5 A branch-and-bound tree of DisCO generated GrUMPy – 7

collection of libraries to build parallel optimization solvers. With CHiPPS’s parallelization

capability DisCO works distributed memory parallel. Chapter 6 contains computational

experiments that test the performance of DisCO with various parameters and solvers both

in serial and parallel.

DisCO comes with extensive debugging capabilities. The user can obtain debugging

information related to branching, cutting, bounding etc. processes by using special pa-

rameters. Moreover DisCO works with GrUMPy, a python package for mathematical

optimization, to visualize the information related to the branch and cut trees.

142

Chapter 5

Inverse MILP

5.1 Introduction

Optimization problems arise in many fields and the literature abounds with techniques for

solving various classes of such problems. In general the goal of optimization is to determine

a member of a given feasible set (an optimal solution) that minimizes the value of a given

objective function. The feasible set is typically described as the points in a vector space

satisfying a given set of equations, inequalities, and disjunctions (the latter are usually in

the form of a requirement that the value of a certain element of the solution take on an

integral value).

An inverse optimization problem, in contrast, is a related problem in which the de-

scription of the original optimization problem, which we refer to as the forward problem,

is not complete (some parameters are missing or cannot be observed), but a full or partial

solution can be observed. The goal is to determine values for the missing parameters with

respect to which the given solution would be optimal for the resulting problem. Estimates

for the missing parameters may be given, in which case the goal is to produce a set of

parameters that is as “close” to the given estimates as possible.

143

5.1. INTRODUCTION

5.1.1 Formal Definitions

The optimization problem of interest in this paper is the mixed integer linear optimization

problem

min
x∈S

d>x (MILP)

where d ∈ Qn and

S = {x ∈ Rn | Ax = b, x ≥ 0} ∩ (Zr × Rn−r).

for A ∈ Qm×n, b ∈ Qm.

One can define a number of different inverse problems associated with (MILP), de-

pending on what parts of the description (A, b, d) are unknown. Here, we study the case

in which the objective function d is unknown, but we are given A and b, as well as an

estimate c ∈ Qn of the true objective d and a solution x0 ∈ Qn. Formalizing the statement

of this problem requires a careful attention to details that we now highlight by discussing

several candidate formulations for this inverse problem.

We first consider the following formulation of the inverse problem as a semi-infinite

optimization problem:

min ‖c− d‖

s.t. d>x0 ≤ d>x ∀x ∈ S, (INVMILP)

where ‖ · ‖ can be any norm. In (INVMILP), d is the unspecified vector to be determined

(and is thus a vector of variables here rather than being fixed), while c ∈ Qn is the estimate

or target value. Note that in (INVMILP), if we instead x0 vary, replacing it with a variable

x, and interpret d as a fixed objective function, replacing ‖c− d‖ with the objective d>x

of the forward problem, we get a reformulation of the forward problem (MILP) itself.

144

5.1. INTRODUCTION

Problem (INVMILP) can also be re-formulated as a conic problem. In terms of the

conic sets

K(y) = {αd ∈ Rn : ‖c− d‖ ≤ y, α > 0, α ∈ R} and

D = {d ∈ Rn : d>(x0 − x) ≤ 0 ∀x ∈ S},

(INVMILP) can be reformulated as

min
d∈K(y)∩D

y. (INVMILP-C)

The set D can be interpreted either as the set of objective function vectors for which x0 is

preferred over all points in S or, alternatively, as the set of all hyperplanes containing x0

that define inequalities valid for S. The latter interpretation leads to a third formulation

in terms of the so-called 1-polar. For a given polyhedron P, e.g., conv(S), the 1-polar is

defined as

P1 = {π ∈ Rn | π>x ≥ 1, ∀x ∈ P},

assuming that P is a polytope. When P is full-dimensional and 0 ∈ P (this latter require-

ment is without loss of generality by translating P), the 1-polar is the normalized set of

all inequalities valid for P (see [Sch86] for formal definitions). Under these assumptions,

(INVMILP) can also be reformulated as

min ‖c− d‖

s.t. π ∈ P1

π>x0 ≤ 1 (INVMILP-1P)

d = απ

α ∈ R+.

145

5.1. INTRODUCTION

In formulation (INVMILP-1P), the constraint d = απ allows d to be scaled in order to

improve the objective function value. We might also require ‖c‖ = 1 or normalize in

some other way to avoid this scaling. The constraint π>x0 ≤ 1 ensures that d is feasible

to (INVMILP). Observe also that relaxing the constraint π>x0 ≤ 1 yields a problem

something like the classical separation problem, but with a different objective function.

We revisit this idea in Section 5.2.

We have so far avoided an important point and that is what assumptions we make

about the point x0. On the one hand, the problem, as informally stated, can only have a

solution if x0 ∈ S, since otherwise, x0 cannot be optimal for any objective function. On

the other hand, the formulations above can be interpreted whether or not x0 ∈ S. As a

practical matter, this subtle point is not very important, since membership in S can be

verified in a pre-processing step if necessary. However, in the context of formal complexity

analysis, this point is important and we will return to it. For now, we do not assume

x0 ∈ S, in which case d can be more accurately interpreted as specifying a valid inequality

which is satisfied at equality by x0.

In order to paint a complete picture, there is one other pathological case to be consid-

ered and that is when x0 is in the (relative) interior of conv(S). In this case any objective

vector in the subspace orthogonal to the affine space containing conv(S) is feasible for the

inverse problem, i.e., optimizes x0. Define cS as the projection of c onto affine space that

contains S. Define c⊥S as the projection of c onto orthogonal subspace. Then c = cS + c⊥S

and cS ⊥ c⊥S . When conv(S) is full dimensional, then c = cS, d∗ = c⊥S = 0 and optimal

value to inverse problem is ‖cS‖ = ‖c‖. When c is in the orthogonal subspace, then c = c⊥S ,

d∗ = c⊥S and optimal value to inverse problem is 0.

When x0 is in the (relative) interior of conv(S), inverse problem reduces to finding the

closest point to c in orthogonal subspace. Optimal value for d in this case is the projection

of c onto orthogonal subspace, i.e., d∗ = c⊥S . Optimal objective value of inverse problem

146

5.1. INTRODUCTION

Figure 5.1: Two dimensional inverse MILP

is ‖cS‖.

In general (no assumption about position of x0), optimal value of inverse problem is

bounded by 0 from below and ‖cS| from above.

Figure 5.1 demonstrates the inverse MILP geometrically. S is a discrete set indicated

by the black dots. The vector c = (0,−2) and x0 = (3, 1). The convex hull of S and the

cone D (translated to x0) are shaded. The ellipsoids show the sets of points with a fixed

distance to x0 + c for some given norm. The optimal objective function in this example is

vector d∗, and the point indicated in the figure is x0 + d∗.

5.1.2 Previous Work

There are a range of different flavors of inverse optimization problem. The inverse problem

we investigate is to determine objective function coefficients that make a given solution

optimal, but other flavors of inverse optimization include constructing a missing part of

either the coefficient matrix or the right-hand side that makes a given solution optimal.

The work presented here is based on Bulut and Ralphs [BR15].

Heuberger [Heu04] provides a detailed survey of inverse combinatorial optimization

147

5.1. INTRODUCTION

problems. In this paper, different types of inverse problems, including types for which the

inverse problem seeks parameters other than objective function coefficients, are examined.

A survey of solution procedures for specific combinatorial problems is provided, as well as

a classification of the inverse problems that are common in the literature. According to

this classification, the inverse problem we study in this paper is an unconstrained, single

feasible object, and unit weight norm inverse problem. Our results can be straightforwardly

extended to some related cases, such as multiple given solutions.

Cai, Yang, and Zhang [CYZ99] examine an inverse center location problem in which

the aim is to construct part of the coefficient matrix, in this case the distances between

nodes from a given optimal solution. It is shows that even though the center location

problem is polynomially solvable, this particular inverse inverse problem is NP–hard. This

is done by way of a polynomial transformation of the satisfiability problem to the decision

version of the inverse center location problem. This analysis indicates that the problem

of constructing part of the coefficient matrix is harder than the forward version of the

problem.

Huang [Hua05] examines the inverse knapsack problem and inverse integer optimiza-

tion problems. In this paper, a pseudo–polynomial algorithm for the inverse knapsack

problem is presented. It is also shown that inverse integer optimization with a fixed num-

ber of constraints is pseudo–polynomial by transforming the inverse problem to a shortest

path problem on a directed graph. When the number of constraints are fixed, this results

a pseudo–polynomial algorithm for inverse integer optimization.

Schaefer [Sch09] studies general inverse integer optimization problems. Using super-

additive duality, a polyhedral description of the set of all feasible objective functions

is derived. This description has only continuous variables but an exponential number

of constraints. A solution method using this polyhedral description is proposed. Fi-

nally, Wang [Wan09] suggests a cutting-plane algorithm similar to the one suggested herein

148

5.2. ALGORITHMIC APPROACH TO INVERSE MILP

and presents computational results on several test problem with an implementation of this

algorithm.

The case when the feasible set is an explicitly described polyhedron is well–studied

by Ahuja and Orlin [AO01]. In their study, they analyze the shortest path, assignment,

minimum cut, and minimum cost flow problems under the l1 and l∞ norms in detail. They

also conclude that inverse optimization problem is polynomially solvable when the forward

problem is polynomially solvable. The present study aims to generalize the result of Ahuja

and Orlin [AO01] to the case when the forward problem is not necessarily polynomially

solvable, as well as to make connections to other well-known problems.

In the remainder of the paper, we first introduce address the computational complexity

of (INVMILP). As written, this is a semi-infinite program, but it is easy to see that we can

replace the infinite set of constraints with a finite set corresponding to the extreme points

of conv(S). This still leaves us with what is ostensibly a nonlinear objective function.

We show in Section 5.2 that for the `∞ and `1 norms, this problem can be expressed as

a standard linear optimization problem (LP), albeit one with an exponential number of

constraints. The reformulation can be readily solved in practice using a standard cutting-

plane approach. On the other hand, we show in Section 5.3 that the formal complexity

does not depend on the norm.

5.2 Algorithmic Approach to Inverse MILP

We now show how to formulate (INVMILP) explicitly for two common norms using stan-

dard techniques for linearization. The objective function of an inverse MILP under the l1

norm can be linearized by the introduction of variable vector θ, and associated constraints

149

5.2. ALGORITHMIC APPROACH TO INVERSE MILP

as

z−1
1 = min y

s.t. y =
n∑
i=1

θi

ci − di ≤ θi ∀i ∈ {1, 2, . . . , n} (INVMILP-1)

di − ci ≤ θi ∀i ∈ {1, 2, . . . , n}

d>x0 ≤ d>x ∀x ∈ S.

The objective function of inverse MILP under l∞ norm can be linearized by the introduc-

tion of variable y and two sets of constraint sets as

z−1
∞ = min y

s.t. ci − di ≤ y ∀i ∈ {1, 2, . . . , n} (INVMILP-∞)

di − ci ≤ y ∀i ∈ {1, 2, . . . , n}

d>x0 ≤ d>x ∀x ∈ S.

This formulation is a continuous problem, but is a semi-infinite program when written in

the form above, as mentioned earlier.

To obtain a finite problem, we can limit the set of constraints to only those involving the

finite set of extreme points and rays of conv(S). Although this yields a finite formulation,

the number of extreme points and rays may still be very large and it is not practical to

write this formulation explicitly via a priori enumeration.

A better approach is to use a separation–optimization procedure and generate these

inequalities dynamically, as suggested by Wang [Wan09]. This is a natural application of

the separation–optimization procedure described in, e.g., Grötschel, Lovász, and Schrijver

150

5.2. ALGORITHMIC APPROACH TO INVERSE MILP

[GLS93]. Although this approach has already been described in the literature, our purpose

in describing it again here is is to make the connection to a similar existing algorithm

for solving the standard separation problem, which provides the intuition behind the

complexity results to be presented in Section 5.3.

The form of (INVMILP-1) and (INVMILP-∞) makes it clear that these two for-

mulations, although of exponential size, can be solved by a standard cutting-plane ap-

proach. We describe such a cutting-plane algorithm for the case of the l∞ norm (for-

mulation (INVMILP-∞)) and note that a similar algorithm can be applied to the model

(INVMILP-1) for the case of the l1 norm.

First, let us define two parametric problems, Pk and InvPk, as follows:

min
x∈S

dk>x (Pk)

min y

s.t. ci − di ≤ y ∀i ∈ {1, 2, . . . , n}

di − ci ≤ y ∀i ∈ {1, 2, . . . , n} (InvPk)

d>x0 ≤ d>x ∀x ∈ Ek.

where Ek is the set of solutions found by solving P1, . . . , Pk−1. Note that (Pk) is an

MILP with the same feasible region as the original forward problem (MILP), but with

objective function dk. This is precisely the problem of separating dk from the feasible

region of (INVMILP). (InvPk) is the relaxation of MILP (INVMILP-∞) considering only

valid inequalities that correspond to solutions to the forward problem contained in Ek.

The overall procedure is given in Algorithm 9. In this algorithm, we solve an instance

of the forward problem in each iteration in order to generate a cut. The algorithm stops

151

5.2. ALGORITHMIC APPROACH TO INVERSE MILP

when the current dk is feasible. When (Pk) is unbounded, then d = 0 is an optimal

Algorithm 9 Cutting-plane method for inverse MILP under l∞ norm

k ← 0, E1 ← ∅.
do

k ← k + 1.
Solve (InvPk), d

k ← d∗.
Solve (Pk).
if (Pk) unbounded then

y∗ ← ‖c‖∞, d∗ ← 0, STOP.
else

xk ← x∗.
end if
Ek+1 ← Ek ∪ {xk}.

while dk>(x0 − xk) > 0
y∗ ←

∥∥c− dk∥∥∞, d∗ ← dk, STOP.

solution, since this shows that only d = 0 satisfies d>(x0 − x) ≤ 0 for all x in S.

Before illustrating with a small example, we would like to again point out the close

relationship of the inverse problem and the separation problem. First, note that another

way of interpreting (InvPk) is as the problem of generating an inequality valid for conv Ek

and for which the associated hyperplane, {x ∈ Rn | dk>x = dk
>
x0}, contains x0. In

this case, (Pk) can then be interpreted as the problem of determining whether there is

an xk ∈ S, such that dk
>
xk < dk

>
x0, i.e., is violated by the associated valid inequality.

This shows both that the inequality is not valid for conv(S) and that dk is not feasible

for (INVMILP). Figure 5.2 illustrates how the algorithm might proceed for an example

where the set S is the integer points inside the blue polyhedron.

Algorithm 9 can be easily modified to solve the generic separation problem for conv(S)

by interpreting x0 as the point to be separated and replacing the objective function (and

associated auxiliary constraints) of (InvPk) with one measuring the degree of violation of

x0. In this case, (InvPk) can be interpreted as the problem of separating x0 from conv Ek.

Roughly, the dual of (InvPk) is to determine whether x0 can be expressed as a convex

152

5.2. ALGORITHMIC APPROACH TO INVERSE MILP

0 1 2 3 4 5 6 7 8

0

1

2

3

4

Inverse Objective

Original Objective

Convex Hull of Generated Points

(a) Iteration 1

0 1 2 3 4 5 6 7 8

0

1

2

3

4

Inverse Objective

Original Objective

Convex Hull of Generated Points

(b) Iteration 2

0 1 2 3 4 5 6 7 8

0

1

2

3

4

Inverse Objective

Original Objective

Convex Hull of Generated Points

(c) Iteration 3

Figure 5.2: Pictorial illustration of Algorithm 9

combination of the members of Ek. If not, then the proof is a separating hyperplane,

which is an inequality valid for conv Ek. As in the inverse case, (Pk) is interpreted as the

problem of determining whether there is an xk ∈ S that is violated by the associated valid

inequality. The generated valid inequalities are sometimes called Fenchel cuts [Boy94].

Figure 5.3 illustrates how the algorithm for generating Fenchel cuts might proceed for for

the same polyhedron as in Figure 5.2.

A Small Example: Let c = (−2, 1), x0 = (0, 3) and S given as in Figure 5.4 where

both x1 and x2 are integer and convex hull of S is given. k, dk and xk values through

iterations are given in Table 5.1.

153

5.2. ALGORITHMIC APPROACH TO INVERSE MILP

0 1 2 3 4 5 6 7 8

0

1

2

3

4

Separating Hyperplane

Polyhedron

(a) Iteration 1

0 1 2 3 4 5 6 7 8

0

1

2

3

4

Separating Hyperplane

Convex Hull of Generated Points

(b) Iteration 2

0 1 2 3 4 5 6 7 8

0

1

2

3

4

Separating Hyperplane

Convex Hull of Generated Points

(c) Iteration 3

0 1 2 3 4 5 6 7 8

0

1

2

3

4

Separating Hyperplane

Convex Hull of Generated Points

(d) Iteration 4

0 1 2 3 4 5 6 7 8

0

1

2

3

4

Separating Hyperplane

Convex Hull of Generated Points

(e) Iteration 5

Figure 5.3: Pictorial illustration of algorithm for generating Fenchel cut

Figure 5.4: Feasible region and iterations of example problem

154

5.3. COMPLEXITY OF INVERSE MILP

Table 5.1: k, dk, xk and Ek values through iterations

k Ek dk xk ‖dk − c‖∞

initialization 1 ∅ (−2, 1) (3, 0) 0

iteration 1 2 {(3, 0)} (−0.5,−0.5) (3, 1) 1.5

iteration 2 3 {(3, 0), (3, 1)} (−0.4,−0.6) (3, 1) 1.6

Inverse MILP optimal value is y∗ = ‖c − d3‖∞ = 1.6. Inverse MILP optimal solution

is d3 = (0.4, 0.6).

5.3 Complexity of Inverse MILP

In what follows, we discuss inverse MILP in the traditional framework of computational

complexity theory. See Section 1.3.2 for a brief review of computational complexity theory.

5.3.1 Complexity of MILP

It will be convenient to refer in what follows to several decision problems associated

with forward problem (MILP) and inverse problem (INVMILP). The most commonly

associated decision version of forward problem (MILP) is a feasibility problem involving

an extra scalar parameter γ, as follows.

Definition 5.3.1. MILP decision problem (MILPD): Given γ ∈ Q, d ∈ Rn, and an

MILP with feasible region S, does there exist x ∈ P such that d>x ≤ γ?

It is well-known that this problem is in the complexity class NP–complete and that

the optimal solution of problem (MILP) can be determined with a polynomial number of

calls to an NP oracle (MILPD) using bisection search. The formal input to this decision

problem is the quintuplet (A, b, d, r, γ) and the set of such inputs that yields the answer

155

5.3. COMPLEXITY OF INVERSE MILP

YES is the language recognized by an algorithm for solving this problem (formally specified

as a Turing machine).

It is useful to recall that a well-known characterization of the class NP is as the class

of problems for which the is a short certificate for the YES answer. Roughly speaking,

a certificate is a proof that the answer is correct. A short certificate is one that can be

verified in polynomial time. In the case of MILPD, the short certificate is any feasible

solution.

The complement of NP is the class coNP of problems for which there is a short certifi-

cate for the NO answer. The problem of determining whether a given γ is a lower bound

on the value of an optimal solution is an example of a decision problem that is in the class

coNP.

Definition 5.3.2. MILP lower-bounding problem (MILPL): Given γ ∈ Q, d ∈ Rn,

and an MILP with feasible region S, is minx∈P d
>x ≥ γ?

When the answer is NO, a feasible solution in S with an objective value strictly less

than γ is a short certificate. The question of whether a given point is in conv(S) (mem-

bership problem) is equivalent to MILPD. Similarly, asking whether a given inequality is

valid (validity problem) for conv(S) is equivalent to MILPL. The validity problem is itself

a membership problem over the 1-polar.

Finally, we consider a third decision problem mentioned earlier, which is that of de-

termining whether the optimal solution value is exactly γ.

Definition 5.3.3. MILP optimal value verification problem (MILPV): Given γ ∈

Q, d ∈ Rn, and an MILP with feasible region S, is minx∈P d
>x = γ?

This problem is in the class DP of problems defined by Papadimitriou and Yannakakis

[PY82]. Complexity class DP is the class of problems for which the language to be rec-

ognized is the intersection of two languages one in class NP and the other in class coNP.

156

5.3. COMPLEXITY OF INVERSE MILP

Papadimitriou and Yannakakis [PY82] showed that MILPV is complete (and (MILP) is

hard) for the class DP.

A related problem is deciding whether a given point is on the boundary of conv(S). It

is also in DP since it is equivalent to verifying optimal value.

5.3.2 Complexity of Inverse MILP

Ahuja and Orlin [AO01] show that the inverse problem can be solved in polynomial time

when the forward problem is polynomially solvable.

Theorem 5.3.4. ([AO01]) If a forward problem is polynomially solvable for each lin-

ear cost function, then the corresponding inverse problems under l1 and l∞ norms are

polynomially solvable.

They use the well-known result of Grötschel, Lovász, and Schrijver [GLS93] to conclude

that inverse LP, in particular, is polynomially solvable. Note that this result already indi-

cates that if a given MILP is polynomially solvable, then the associated inverse problem is

also polynomially solvable. On the other hand, for general MILPs, the result of Grötschel,

Lovász, and Schrijver [GLS93] cannot tell us precisely what complexity class the inverse

problem is in for general MILPs, since the result is about polynomial equivalence, not

complexity class equivalence, as we describe in more detail below. The main contribution

of this study is to provide the theory that places the inverse problem in the tightest possi-

ble class without resolving P versus NP problem. To obtain a formal complexity result, we

first consider the decision version of the inverse problem. The decision version is derived

in a fashion similar to that of MILPD. It asks whether a solution with an objective value

less then some given threshold exists.

Definition 5.3.5. Inverse MILP decision problem (INVD): Given γ ∈ Q, c ∈ Rn,

x0 ∈ Rn, and polyhedron S ⊆ Rn, is the set K(γ) ∩ D non-empty?

157

5.3. COMPLEXITY OF INVERSE MILP

The result of Grötschel, Lovász, and Schrijver [GLS93] bounds the running time for

optimizing a linear objective function over an implicitly defined polyhedron in terms of

calls to a separation oracle. Their result can be stated as follows.

Theorem 5.3.6. ([GLS93]) Given an oracle for the separation problem, the optimization

problem over a given polyhedron with linear objective can be solved in time polynomial in

ϕ, n and the encoding length of objective coefficient vector, where ϕ is the facet complexity

of the given polyhedron.

A polyhedron has facet-complexity at most ϕ if there exists a rational system of in-

equalities describing the polyhedron in which the encoding length of each inequality is at

most ϕ. The facet complexity thus measures the complexity of a polyhedron independent

of its representation. Theorem 5.3.6 indicates that, given an oracle for inverse MILP sep-

aration, the inverse MILP optimization problem can be solved in time polynomial in ϕ

and n, where the feasible set of (INVMILP-∞) has facet-complexity at most ϕ, since the

objective function of (INVMILP-∞) has an encoding length polynomial in n.

To find a bound on ϕ, consider the third set of constraints of the

formulation (INVMILP-∞). The encoding length of the first two sets of constraints de-

pends on the maximum encoding length of ci, i ∈ 1, . . . , n. The encoding length of the

third set of constraints depends on the encoding length of x0 and the largest encoding

length of any extreme point of the convex hull of S. This latter quantity is known as

the vertex complexity of S and is a related measure of the complexity of a polyhedron

that is bounded by a polynomial function of the facet complexity. Thus, we can say that

the running time of the separation–optimization algorithm is polynomial in the encoding

length of ci for i = 1, . . . , n, x0 and the vertex complexity of the convex hull of S. Note

that in the case of binary integer optimization problems, the vertex complexity of conv(S)

is always polynomial in n.

These conclusions can be interpreted as stating that the inverse MILP separation

158

5.3. COMPLEXITY OF INVERSE MILP

problem is equivalent to the MILP optimization problem, but it is important to note

that this equivalence is only a polynomial equivalence, not a complexity-wise equivalence.

The MILP optimization problem can be solved in polynomial time, given an oracle for

the MILP decision problem. Similarly, we conclude that the inverse MILP optimization

problem can be solved in polynomial time, given an oracle for the MILP decision problem,

which we know to be NP–complete. The following theorem summarizes this result.

Theorem 5.3.7. The inverse MILP optimization problem under the l∞/l1 norms is solv-

able in time polynomial in ϕ and n, given an oracle for the MILP decision problem.

This theorem hints at the complexity of inverse optimization problem. We now know

that Algorithm 9 solves inverse MILP in polynomial time, given an NP oracle. This

algorithm can be used to solve the decision version. In complexity terms. this shows

that the inverse problem is in ∆P
2 . The following is the restatement of Theorem 5.3.7 in

complexity terms.

Theorem 5.3.8. INVD under l1 and l∞ norms is in ∆P
2 .

The next natural question that comes to mind is whether INVD is complete for this

class. Somewhat surprisingly (though not in hindsight), the answer is no. This indicates

that GLS result does not yield the tightest complexity class.

The first main result of this paper is the following theorem that shows INVD with an

arbitrary norm (l1, l∞, or any other p-norm) is in coNP.

Theorem 5.3.9. INVD is in coNP.

Proof We show existence of a short certificate when the answer to INVD problem

is NO. Note that when answer is NO then γ < ‖c‖ (in fact γ < ‖cS‖, but this is OK

for the proof), since d = 0 is a valid solution otherwise. Furthermore, when γ = 0 the

problem reduces to MILPL (is c>x0 a lower bound for minimization along c over S),

159

5.3. COMPLEXITY OF INVERSE MILP

which is already known to be in coNP. Therefore it is enough to consider the case where

0 < γ < ‖c‖.

When the answer to INVD is NO, then, for each d in K(γ), there exists an x in S such

that d>(x − x0) < 0. Hence, the NO answer can be validated by enumeration over S in

principle. What we will show is that we do not need to check the inequality for all x in

S, but only for a subset of polynomial size. For this we define the following set first,

X (γ) = {x ∈ S | ∃d ∈ K(γ) s.t. d>(x− x0) < 0}.

X (γ) is the set of points in S that are better than x0 for at least one direction d in K(γ).

Note that set X (γ) is not empty since answer to problem is NO. Moreover since X (γ) is

a subset of S, it is a discrete set. We define another set, K∗(γ) as

K∗(γ) = {x ∈ Rn | d>(x− x0) ≤ 0 ∀d ∈ K(γ)}.

K∗(γ) is the set of points that are better than x0 for all the directions in K(γ). Note that

K∗(γ) is nothing but the dual cone of K(γ) moved along x0. Both K(γ) and K∗(γ) are

full dimensional pointed cones, since 0 < γ < ‖c‖.

Cone K∗(γ), set X (γ) and set S can be considered to be in the primal space, i.e., space

of primal solution values. Cones D and K(γ) can be considered in the dual space, i.e.,

space of directions.

We claim the following holds when the answer is negative and continue to construct

our short certificate. We prove our claim after the short certificate is constructed.

Claim 1. conv(X (γ)) ∩ int(K∗(γ)) 6= ∅.

Let x ∈ conv(X (γ)) ∩ int(K∗(γ)), then a subset of X (γ) that can give x as a convex

combination is a certificate. Moreover, it is a short certificate since we need n+1 elements

from X (γ) at most. Let {x1, x2, . . . , xk} ⊆ X (γ) be such a subset and {λ1, . . . , λk} be the

160

5.3. COMPLEXITY OF INVERSE MILP

corresponding values such that x =
∑k

i=1 λix
i,
∑k

i=1 λi = 1 and λi ≥ 0 for i = 1, . . . , k

and k ≤ n + 1. Next we show how sets {x1, x2, . . . , xk} and {λ1, . . . , λk} can be used to

validate the NO answer.

For any given d ∈ D, x being an element of int(K∗(γ)) gives us the following,

d>
(
x− x0

)
< 0.

We can write x as a convex combination of xi values. When we replace x using this

we get the following inequality,

d>

(
k∑
i=1

λix
i − x0

)
< 0.

We can manipulate this inequality to get the following inequalities,

d>

(
k∑
i=1

λix
i −

k∑
i=1

λix
0

)
< 0,

k∑
i=1

λid
> (xi − x0

)
< 0.

Then, there exists at least one index j in {1, . . . , k} such that d>(xj − x0) < 0. Then

xj being in S, and being a better solution for direction d means x0 can not be opti-

mal. Direction d is arbitrary, meaning this result holds for all d in set K(γ). Using sets

{x1, . . . , xk} and {λ1, . . . , λk} we validated the NO answer for an arbitrary d in set K(γ).

This shows that sets {x1, . . . , xk} and {λ1, . . . , λk} together is a short certificate for the

inverse problem defined. �

Proof of Claim 1 Assume conv(X (γ))∩ int(K∗(γ)) = ∅ for a contradiction. conv(X (γ))

and K∗(γ) are both convex sets. Then there exists a hyperplane that separates these two

sets. Let {x ∈ Rn : a>x = α, a ∈ Rn, α ∈ R} be such a hyperplane that separates

161

5.3. COMPLEXITY OF INVERSE MILP

conv(X (γ)) and K∗(γ) as

a>x ≥ α ∀x ∈ conv(X (γ)),

a>x ≤ α ∀x ∈ K∗(γ).

Then we can write the following inequality,

min
x∈conv(X (γ))

a>x ≥ max
x∈K∗(γ)

a>x. (SEP)

Note that problem on the right-hand side is unbounded when a is not in K(γ). Then

we can conclude that a ∈ K(γ) for a valid separating hyperplane. This indicates that x0

maximizes a>x over cone K∗(γ). Then we have the following inequality,

min
x∈conv(X (γ))

a>x ≥ a>x0.

Since direction a is in K(γ) and answer to our problem is NO, there exists an x in

X (γ) such that a>(x − x0) < 0. Point x being a feasible solution for the optimization

problem over conv(X (γ)) we have the following inequality,

a>x ≥ min
x∈conv(X (γ))

a>x ≥ a>x0.

Using a>(x− x0) < 0, we can rewrite the inequality as

a>x0 > a>x ≥ min
x∈conv(X)(γ)

a>x ≥ a>x0.

which is a contradiction. This indicates that the contradiction assumption, existence of a

separating hyperplane, is wrong. This proves that conv(X) ∩ int(K∗) 6= ∅. �

Figure 5.5 shows sets conv(S), K(γ), K∗(γ) and conv(X (γ)) for the example introduced

162

5.3. COMPLEXITY OF INVERSE MILP

Figure 5.5: A small example demonstrates conv(S), K(γ), K∗(γ), conv(X (γ))

in Section 5.2, where c and x0 are redefined. In this case c = (−1,−2), x0 = (2, 1) and

γ = 1.

All this theory indicates that complexity of INVD is same as MILPL. The difference is

the certificate for MILPL is just a feasible point where the certificate for INVD problem is

at most n+ 1 points with corresponding weights. Certificate for INVD problem is a little

more complicated than certificate of MILPL.

Theorem 5.3.10. INVD is coNP–complete.

Proof MILPL can be reduced to INVD. Let inputs of MILPL be (c, γ, S) then MILPL

can be decided by deciding INVD with inputs (c2 ← c, γ2 ← 0, S2 ← S, x0 ← γc
‖c‖2). INVD

asks whether some d in cone {d ∈ Rn|d>
(

γc
‖c‖2 − x

)
≤ 0 ∀x ∈ S} satisfies ‖c − d‖ ≤ 0.

Only d that satisfies ‖c − d‖ ≤ 0 is d = c. For answer to be positive c must be in this

163

5.3. COMPLEXITY OF INVERSE MILP

NO YES YES

Figure 5.6: Reduction Example

cone. c is in this cone if and only if

c>
(
γc

‖c‖2
− x
)

≤ 0 ∀x ∈ S,

γ − c>x ≤ 0 ∀x ∈ S,

γ ≤ c>x ∀x ∈ S,

which means answer to MILPL is positive. This indicates answer to INVD is positive if

and only if answer to MILPL is positive. �

Figure 5.6 shows x0 for various γ values. Answer for γ1 is negative and for γ2 and γ3 is

positive. Position of x0 is just for presentation. For γ1 case x0 is displayed to be outside

of conv(S). This is just for display and the result is independent of x0 being in conv(S)

or not. The answer is negative for both of the cases.

Lower bound problem for inverse MILP can be defined as follows.

Definition 5.3.11. Inverse MILP lower-bounding problem (INVL): Given γ ∈ R,

c ∈ Rn, x0 ∈ Rn and an MILP with feasible set S, is mind∈K(y)∩D y ≥ γ?

Theorem 5.3.12. INVL problem is in NP.

Proof We need to show existence of a short certificate that can validate YES answer.

164

5.3. COMPLEXITY OF INVERSE MILP

When answer is YES, optimal value of the inverse problem is greater than equal to γ. We

show existence of a short certificate that validates optimal value can not be less than γ,

i.e. no feasible direction d that optimizes x0 and its distance to c is less than γ. This

is same as validating NO answer for INVD. The only difference is now the directions are

strictly less than γ-distance to c. Remember the claim we proved,

conv(X (γ)) ∩ int(K∗(γ)) 6= ∅.

Note that K∗(γ) is the set of points that are at least as good as x0 for all directions d at

most γ-distant to c. int(K∗(γ)) is the set of points that are strictly better than x0 for all

directions d that are strictly less than γ-distant to c.

After this point the proof goes on same as proof of INVD being in coNP. The short

certificate is the same and it can be used to show that the optimal value of inverse problem

can not be less than γ.

Theorem 5.3.13. INVL is NP–complete.

Claim 2. There exists a positive ε, such that if c>x > γ holds for all x in S then c>x >

γ + ε holds for all x in S.

Proof of Claim 2 Such an ε can be found using vertex complexity of S. Its encoding

will be a polynomial of c and vertex complexity of S.

Claim 3. If there exists an x in S such that γ ≥ c>x holds, then one can find a positive

δ such that ‖c − d‖ ≥ δ holds for all feasible d for the inverse problem with the following

input (c2 ← c, S2 ← S, x0 ← (γ+ε)c
‖c‖2).

Proof of Claim 3 To prove the claim we will manipulate the inverse problem constraint.

Inverse problem constraint is given below.

d>(x0 − x)≤ 0 ∀x ∈ S

165

5.3. COMPLEXITY OF INVERSE MILP

Let c optimizes x over S. Inverse problem constraint will hold for x. We can write it using

x as

d>(x0 − x) ≤ 0

d>(x0 − x)− c>(x0 − x) + c>(x0 − x) ≤ 0

(d− c)>(x0 − x) ≤ −c>x0 + c>x

(d− c)>(x0 − x) ≤ −γ − ε+ c>x

γ + ε− c>x ≤ (c− d)>(x0 − x)

ε ≤ (c− d)>(x0 − x)

ε ≤ ‖c− d‖‖x0 − x‖
ε

‖x0 − x‖
≤ ‖c− d‖.

Using γ, c and vertex complexity of S, such a positive δ can be computed.

Proof of Theorem 5.3.13 MILPD can be reduced to INVL. Let inputs of MILPD be

(c, γ, S) then MILPD can be resolved by deciding INVL with inputs (c2 ← c, γ2 ← δ,

S2 ← S, x0 ← (γ+ε)c
‖c‖2). ε and δ are small positive rationals computed from inputs of

MILPD as explained in Claim 2 and Claim 3.

INVL asks whether ‖c−d‖ ≥ δ holds for all d in {d ∈ Rn|d>
(

(γ+ε)c
‖c‖2 − x

)
≤ 0 ∀x ∈ S}.

Deciding INVL with described inputs resolves MILPD. If answer to INVL is positive,

then d = c is not feasible for inverse problem. This indicates that c does not optimize x0

over S, there exists x in S such that,

c>x < c>x0 = γ + ε.

Using Claim 2 we can deduct c>x ≤ γ. This means answer to MILPD is positive.

When answer to INVL is negative, optimal value of inverse problem is 0 by our design

166

5.3. COMPLEXITY OF INVERSE MILP

Figure 5.7: Claim 2 on a Simple Example

of δ, Claim 3. This indicates c optimizes x0,

γ < c>x0 = γ + ε < c>x ∀x ∈ S.

This means answer to MILPD is negative. �

Note that the reduction presented in Theorem 5.3.13 can also be used in Theo-

rem 5.3.10. The one presented in Theorem 5.3.10 is just simpler and does not require

introduction of ε and δ.

Figure 5.7 illustrates the case described in Claim 2, inequality c>x > γ holds for all

x in S. Figure displays the cone of feasible d directions and optimal d as d∗. Answer to

both MILPD and INVL problems is negative.

Figure 5.8 illustrates a case where optimal value of MILP is exactly γ. It can also be

considered as an illustration of the case described in Claim 3, forward problem optimal

value is exactly gamma. Inverse optimal value is denoted by d∗. Positive δ as described

in Claim 3 is a lower bound for the inverse problem. Answer to both MILPD and INVL

167

5.3. COMPLEXITY OF INVERSE MILP

Figure 5.8: Claim 3 on a Simple Example

problems for the displayed inputs is positive. From the figure it is easy to see that result

in Claim 3 holds when the forward problem optimal value is not exactly γ but strictly

less.

Definition 5.3.14. Inverse MILP optimal value verification problem (INVO):

Given γ ∈ Q, x0 ∈ Rn, c ∈ Rn, and an MILP with feasible region S, is mind∈K(y)∩D y = γ?

Theorem 5.3.15. INVO problem is in class DP–complete.

Proof As noted before, reduction presented in Theorem 5.3.13 can be used to reduce

both MILPL and MILPD to INVD and INVL problems respectively. Using this reduction,

language of INVO can be written as an intersection of languages of INVD and INVL that

are in coNP and NP respectively. This proves that INVO is in class DP. INVO problem is

complete for DP since MILPV can be reduced to INVO using the same reduction. �

Note that verifying exact optimal value of both inverse and forward problems are

DP–complete.

168

5.4. CONCLUSION AND FUTURE DIRECTIONS

5.4 Conclusion and Future Directions

In this paper, we formally defined various problems related to the inverse MILP in which

we try to derive an objective function d closest to a given estimate c that make a given

solution x0 optimal over the feasible region S to an MILP. This problem can be seen as an

optimization problem over the set of all inequalities valid for S and satisfied at equality

by x0. Alternatively, it can also be seen as optimization over the 1-polar with some

additional constraints. Both these characterization make the connection the separation

problem associated with S evident.

After defining the problem formally, we gave a cutting-plane algorithm for solving it

under the l1 and l∞ norms and observed that the separation problem for the feasible

region is equivalent to the original forward problem, enabling us to conclude by the frame-

work of Grötschel, Lovász, and Schrijver [GLS93] that the problem can be solved with a

polynomial number of calls to an oracle for solving the forward problem.

This algorithm places the decision version of inverse MILP in the complexity class

∆P
2 , but it is possible to prove a stronger result. The main contribution of this study is

to show that this decision problem is complete for the class coNP, which is on the same

level of the polynomial-time hierarchy of that of the forward problem. We proved the

problem is in coNP by giving a short certificate for the negative answer and then show

it is complete for coNP by reducing the MILP lower bound (MILPL) problem to inverse

MILP decision (INVD) problem. We also provide a reduction for the inverse lower bound

problem. Finally, we show that the inverse optimal value verification problem is complete

to the class DP, which is precisely the same class containing the MILP optimal value

verification problem.

Theorem 5.3.6 states that an optimization problem (over a convex set) can be solved

in polynomial time given an oracle for the separation problem. Technically, this does not

allow us to place the optimization and separation problems on precisely the same level of

169

5.4. CONCLUSION AND FUTURE DIRECTIONS

the polynomial hierarchy. It is likely that the GLS result can be modified slightly in order

to show that optimization and separation are indeed on the same level of the hierarchy.

There are also some interesting open questions remaining to be explored with respect to

complexity.

Finally, we have implemented the algorithm and a computationally oriented study is

left as future work. Such a study would reveal the practical performance of the separation-

optimization procedure and investigate the possible relationship between the number of

iterations (oracle calls) and the polyhedral complexity (vertex/facet complexity), among

other things. This may provide practical estimates for the number of iterations required

to solve certain classes of problems.

170

Chapter 6

Computational Experiments

This chapter presents computational experiments designed, and their results, to answer to

the questions raised throughout the dissertation. These experiments explore the practical

performance of the algorithms and their implementations introduced in Chapter 2, 3 and 4.

Software libraries introduced in Chapter 4 are used to conduct the experiments. This

chapter can also be considered as a demonstration of the capability of the software intro-

duced.

Problem sets used in the experiments are introduced first. Parameters and experimen-

tal setting of the software libraries is explained afterwards. Performance profiles, given

by Dolan and Moré [DM02], are used to compare the performance of different algorithms,

solvers and parameter settings. For MISOCP, two different performance measures are

used, CPU time and number of nodes processed to find the optimal solution.

6.1 Problem Set

Experiments are conducted using three different problem sets, conic benchmark library

2014 (CBLIB) problems given by Friberg [Fri16], random problems given by Góez [Góe13]

and Euclidean Steiner tree problems given by Beasley [Bea].

171

6.1. PROBLEM SET

There are already 6 Euclidean Steiner tree problems modeled as MISOCP instances

in CBLIB. These problem instances in CBLIB are provided by Drewes [Dre09] and based

on the model given by Fampa and Maculan [FM04] using data provided by Beasley [Bea].

The model provided by Fampa and Maculan [FM04] involves a parameter called M which

denotes the maximum distance between any two terminals. Steiner tree problem instances

provided in CBLIB compute M within the optimization model. The problem instances

in CBLIB can be improved by pre-computing M and embedding the computed value into

the problem instances as a number. Pre-computing M reduces the size of the instances.

For example, estein5 A.mps in CBLIB has 132 variables, 211 linear constraints, and 258

nonzero values in the coefficient matrix of linear constraints. When M is pre-computed,

the problem reduces to 96 variables, 61 linear constraints and 150 nonzero values in the

coefficient matrix. Pre-computing M does not change the number of conic constraints in

the problem. As a side note, in preliminary experiments, we observed that this improves

the performance of the DisCO solver, as well as CPLEX and Mosek solvers on solving

these instances.

The Euclidean Steiner tree problem instances in CBLIB are with 4 and 5 terminals

(estein4 and estein5 instances) and each terminal has 2 coordinates. We created problem

instances with 6 and 7 terminals using the model provided by Fampa and Maculan [FM04]

and data provided by Beasley [Bea]. Parameter M is pre-computed and embedded into the

instances. The smallest problem instance provided by Beasley [Bea] contains 10 terminals.

There are 15 different problems with 10 terminals. We used the first 6/7 terminals from the

first three problems to obtain our instances. The problem instances created are denoted

as estein6 0, estein6 1, estein6 2, estein7 0, estein7 1 and estein7 2. This is the

same procedure used in generating instances in CBLIB (estein4 A, estein4 B, estein5 A

etc.). The difference is we used the improved formulation as described.

In addition to CBLIB problems, randomly generated problems are also used in the

172

6.2. ALGORITHMS AND PARAMETER SETTINGS

experiments. Feasible regions of the random problems are high dimensional ellipsoids

when integrality constraints are relaxed. Current implementation of disjunctive conic cut

procedure described in Section 3.2 generates conic disjunctive cuts for simple variable dis-

junctions of ellipsoids. These problem instances are generated and used by Góez [Góe13].

Another reason is obtaining instances that are hard in terms of combinatorial difficulty.

Most of the current CBLIB instances are relatively low in terms of number of integer

variables and branch bound trees are relatively smaller. We would like to obtain problems

that are harder to solve combinatorially and lead larger branch-and-bound trees. These

type of instances are required to have a balanced set of problems for experiments that

reveal the gains and losses of the algorithms proposed.

6.2 Algorithms and Parameter Settings

This section presents the details of the tested algorithm–parameter combinations with

various solvers. The questions raised throughout the dissertation are answered through

testing computational performance of these algorithm, parameter and solver combinations.

DisCO solver framework, together with its dependencies, is used to implement the tested

algorithms.

Algorithms tested can be categorized into two classes based on the type of subprob-

lems. The first category is SOCP based relaxations and the second category is LP based

relaxations. Table 6.1 and 6.2 present the algorithms based on SOCP and LP relaxations

respectively.

Algorithms presented in Table 6.1 are variations and different implementations of

SOCP relaxation based branch-and-bound algorithm. In these implementations, branch-

and-bound algorithm solves SOCP at each node. We test different flavors of this al-

gorithm, these are disco-cplex, disco-cplex-strong, disco-ipopt, disco-mosek, disco-cplex-

dc-all, disco-cplex-dc-best and disco-cplex-mpi. disco-cplex, disco-cola, disco-ipopt and

173

6.2. ALGORITHMS AND PARAMETER SETTINGS

Table 6.1: Algorithms based on SOCP relaxations and Solvers That Implement Them

Algorithm Parameters Solver referred as
bb-socp DisCO with CPLEX disco-cplex
bb-socp strong branching DisCO with CPLEX disco-cplex-strong
bb-socp DisCO with COLA disco-cola
bb-socp DisCO with Ipopt disco-ipopt
bb-socp DisCO with Mosek disco-mosek
bb-socp with add all cuts DisCO with CPLEX disco-cplex-dc-all
disjunctive cuts
bb-socp with add only best DisCO with CPLEX disco-cplex-dc-best
disjunctive cuts
parallel bb-socp DisCO with CPLEX and OpenMPI disco-cplex-mpi

Table 6.2: Algorithms based on LP relaxations and Solvers That Implement Them

Algorithm Parameters Solver referred as
Algorithm 5, bb-lp DisCO with OA method, disco-oa

CLP as solver
Algorithm 5, bb-lp strong branching DisCO with OA method, disco-oa-strong

CLP as solver
Algorithm 5, bb-lp α← 2 DisCO with OA method, disco-oa-2

CLP as solver
Algorithm 5, bb-lp α← 4 DisCO with OA method, disco-oa-3

CLP as solver
Algorithm 5, bb-lp β ← 0.01 DisCO with OA method, disco-oa-4

CLP as solver
Algorithm 5, bb-lp β ← 0.0001 DisCO with OA method, disco-oa-5

CLP as solver
Algorithm 5, bb-lp γ ← 20 DisCO with OA method, disco-oa-6

CLP as solver
Algorithm 5, bb-lp γ ← 100 DisCO with OA method, disco-oa-7

CLP as solver
Algorithm 5 with add all cuts DisCO with OA method, disco-oa-dc-all
disjunctive cuts CLP as solver
Algorithm 5 with add only best DisCO with OA method, disco-oa-dc-best
disjunctive cuts CLP as solver
Algorithm 5 DisCO with OA method, disco-oa-nomilpcuts
without MILP cuts CLP as solver
parallel Algorithm 5 DisCO with OA disco-oa-mpi

CLP and OpenMPI

174

6.2. ALGORITHMS AND PARAMETER SETTINGS

disco-mosek are implementations where CPLEX, COLA, Ipopt and Mosek are used to

solve continuous relaxations in each node. disco-cplex-strong refers to CPLEX imple-

mentation where strong branching is used as branching strategy (default for DisCO is

pseudocost). disco-cplex-dc refer to disjunctive conic cut implementations. disco-cplex-dc

experiments use Belotti et al. [Bel+13] disjunctive conic cut procedure to improve the

SOCP relaxation at the root node. Two strategies are tested, disco-cplex-dc-best and

disco-cplex-dc-all. In disco-cplex-dc-best, conic cuts are generated for all possible disjunc-

tions and added to SOCP relaxation one by one. The cut that improves the relaxation

bound most is selected and added to the SOCP relaxation to improve it. In disco-cplex-

dc-all, all possible disjunctive cuts are generated and added to SOCP relaxation. In both

disco-cplex-dc-best and disco-cplex-dc-all, generated cut(s) are kept in the subsequent

nodes of the branch-and-bound tree. disco-cplex-mpi is the implementation where ALPS

is compiled with an MPI library and the branch-and-bound search is conducted in parallel.

We use OpenMPI implementation of the MPI standard [Gab+04].

Table 6.2 presents LP based branch-and-bound algorithms with different parameter

variations. In these experiments, branch-and-bound algorithm solves LPs at each node.

disco-oa-1, disco-oa-2, disco-oa-3 and disco-oa-strong are tests of bb-lp algorithm with

different parameters. disco-oa-dc-best and disco-oa-dc-all test effectiveness of disjunctive

cuts for bb-lp algorithm. The strategies tested are same as the cases in Table 6.1 as

explained before. disco-oa-nomilpcuts refers to experiments where MILP cuts are disabled.

When bb-lp algorithm is used, cuts from MILP literature can be used to improve the

LP relaxation during branch-and-bound algorithm. MILP cuts are enabled by default.

Effectiveness of MILP cuts is measured by comparing the default behavior to disco-oa-

nomilpcuts results. disco-oa-mpi refers to the experiments where parallel search capability

of ALPS is used, similar to disco-cplex-mpi case explained above. In all of the tests

introduced in Table 6.2 CLP is used to solve the LP subproblems.

175

6.3. HARDWARE

DisCO solver is used to implement all the variations given in Table 6.1 and 6.2. Exper-

iments with different parameters are conducted by passing DisCO binary the right values

for corresponding parameters. Different algorithm and solver combinations are specified

at building DisCO. Parallel versions are obtained by linking ALPS to OpenMPI library

when building DisCO.

In addition to the algorithms introduced in Table 6.1 and Table 6.2, performance of

Algorithm 3, i.e., cutting-plane algorithm to solve SOCP, is tested. In these experiments,

COLA solver implementation of Algorithm 3 is used and this experiment is referred as

cola.

6.3 Hardware

Experiments are conducted on polyps cluster of COR@L Lab. Polyps cluster contains

15 nodes. Each node has 16 AMD processors clocked at 2 GHz and 32 Gb of memory.

In disco-cplex and disco-mosek, CPLEX and Mosek solvers are used with 1 thread only.

Memory allowed for a single run is limited to 2 Gb. Run is terminated when DisCO hits

the 2 Gb memory limit. 7100 seconds of CPU time limit is imposed on each run.

For parallel runs memory is increased with the increasing number of processors. Mem-

ory per processors is kept constant at 2 Gb, i.e., a parallel run with 15 processors is limited

to 30 Gb of memory. Parallel runs are limited to 7100 seconds of wall clock time.

6.4 COLA Experiments

This section presents COLA solver’s performance on test problem set. Abbreviations of

the performance measures used are as follows.

NC Number of conic constraints in the problem.

LC Size of largest conic constraint in the problem.

176

6.4. COLA EXPERIMENTS

US Number of unboundedness supports generated. When conic constraints relaxed

problem might become unbounded. Unboundedness supports are OA cuts generated

to restrict unboundedness directions that are infeasible for the conic constraints.

MUS Maximum number of unboundedness support generated for a cone.

SS Number separation supports, i.e., OA cuts generated to cut conic infeasible

points.

MSS Maximum number of separation supports generated for a cone.

NUMLP Number of linear optimization problems solved.

CPU Total CPU time spent on solving the problem in seconds.

Table 6.3 presents the performance of Cola on random problems. Table 6.4 and 6.5

presents the results on CBLIB problems.

All CBLIB problems are still bounded when conic constraints are relaxed. Same is not

true for random problems. US and MUS columns are dropped in CBLIB results. Total

number of OA cuts generated for a problem is US plus SS. It is SS for CBLIB problems

since US is 0.

There are two problem characteristics that are crucial for the performance statistics,

number of conic constraints (NC) and size of conic constraints. We measure size of conic

constraints with the largest cone (LC) of the problem. For the problems tested here, conic

constraints in a problem are of same size.

At each iteration of the cutting-plane algorithm, one cut is added for each conic con-

straints that is violated. Thus, number of cuts added (US+SS) in a single iteration is

expected to increase with the number of conic constraints (NC) in the problem. Since

only one cut is added for each cone at each iteration and approximation of larger cones

177

6.4. COLA EXPERIMENTS

requires more cuts, one can expect that number of iterations (NUMLP) will increase with

the cone size (LC).

In the following two paragraphs two different problems are examined, chainsing-1000-1

and classical 200 1. chainsing-1000-1 has smaller cones but many of them. classical 200 1

has a single large cone.

From Table 6.4, problem chainsing-1000-1 has 2994 number of conic constraints. Total

number of cuts generated for this problem is 14479. Problem is solved in 11 iterations

(1 initial LP solve call, 10 solve calls after cuts). Iteration number is low but number of

cuts added in each iteration is high. For a specific conic constraint at most 10 cuts are

generated.

From Table 6.4, problem classical 200 1 has 1 conic constraint. Total number of cuts

generated for this problem is 1055. Problem is solved in 1055 iterations (1 initial LP solve

call, 1055 solve calls after cuts). Iteration number is high but number of cuts added in

each iteration is only 1.

COLA uses simplex algorithm to solve linear optimization problems. It exploits warm

starting benefits of simplex algorithm. When many cuts/constraints are added in a single

iteration simplex warm starting benefits deteriorate. It takes more simplex iterations

to solve. On the other hand when problem has a single cone, only one cut is added

to the problem. Simplex algorithm is expected to solve problem faster. There are 2

other complications arise in this case, (1) cuts are denser since cone is large, and (2)

cuts might become almost parallel. (2) means rows of the linear problem are almost

linearly dependent. This might cause numerical difficulties and other measures in simplex

algorithm level should be taken to prevent these.

178

6.5. DISCO EXPERIMENTS

Table 6.3: COLA statistics on Góez’s random instances

instance NC LC US MUS SS MSS NUMLP CPU

r12c15k5i10 5 3 0 0 15 4 5 0.01

r14c18k3i9 3 6 4 2 28 13 16 0.01

r17c30k3i12 3 10 12 4 192 66 74 0.07

r17c20k5i15 5 4 0 0 8 3 4 0.0

r22c30k10i20 10 3 5 1 26 5 8 0.02

r22c40k10i20 10 4 16 2 83 13 22 0.03

r23c45k3i21 3 15 13 5 397 140 148 0.25

r27c50k5i25 5 10 16 4 315 69 77 0.11

r32c45k15i30 15 3 8 1 36 4 6 0.0

r32c60k15i30 15 4 29 3 169 15 32 0.02

r52c75k5i35 5 15 7 2 293 71 74 0.15

6.5 DisCO Experiments

This section presents experiments with algorithms introduced in Chapter 2 and 3. Descrip-

tions and details of these experimental settings are given in Table 6.1 and 6.2. Details

of the tested algorithms are explained in the corresponding chapters. This section has

further explanations on the implementational details of the algorithms where necessary.

Experiments include both serial and parallel runs with various number of processors.

Parallel experiments investigate the scalibility of DisCO. DisCO can be used to solve

MILPs. Testing of DisCO on MILPs is left out of scope of this dissertation.

Two different branching strategies are tested, namely pseudocost and strong branch-

ing. Details and explanations of these branching strategies on the algorithms tested are

discussed in Section 3.3.3. Both bb-socp and bb-lp algorithm categories are tested with

these two strategies, to determine the best branching strategy for each category. Note

that strong branching is costly and performance depends highly on the warm starting ca-

pability of the relaxation solver. We expect this cost to be higher for the tests in bb-socp

category where IPM is used to solve the SOCP subproblems.

179

6.5. DISCO EXPERIMENTS

Table 6.4: COLA statistics on CBLIB 2014 Part 1

instance NC LC SS MSS NUMLP CPU

chainsing-1000-1 2994 3 14479 10 11 13.01

classical 200 1 1 201 1055 1055 1056 114.11

classical 50 1 1 51 328 328 329 1.89

estein4 A 9 3 36 6 7 0.01

estein4 B 9 3 44 6 9 0.02

estein4 C 9 3 60 10 11 0.02

estein4 nr22 9 3 41 6 7 0.0

estein5 A 18 3 109 11 14 0.02

estein5 nr21 18 3 99 9 11 0.03

pp-n1000-d10000 1000 3 16107 18 19 7.19

pp-n100-d10000 100 3 1613 18 19 0.12

pp-n10-d10000 10 3 161 17 18 0.02

robust 50 1 2 52 260 134 135 0.78

robust 100 1 2 102 577 297 298 7.64

robust 200 1 2 202 960 499 500 64.86

shortfall 100 1 2 101 533 502 503 11.44

shortfall 100 2 2 101 674 630 631 19.28

shortfall 100 3 2 101 573 527 528 12.55

shortfall 200 1 2 201 719 690 691 53.67

shortfall 200 2 2 201 876 841 842 77.74

shortfall 50 1 2 51 307 284 285 1.73

shortfall 50 2 2 51 344 320 321 2.13

shortfall 50 3 2 51 451 408 409 3.58

180

6.5. DISCO EXPERIMENTS

Table 6.5: COLA statistics on CBLIB 2014 Part 2

instance NC LC SS MSS NUMLP CPU

sssd-strong-25-8 24 3 243 13 15 0.07

sssd-strong-30-8 24 3 260 13 14 0.07

sssd-weak-20-8 24 3 171 8 9 0.03

sssd-weak-25-8 24 3 171 8 9 0.04

sssd-weak-30-8 24 3 165 8 9 0.03

turbine07 aniso 25 3 53 9 11 0.01

turbine07GF 25 3 10 4 5 0.0

turbine07 lowb aniso 25 3 64 10 12 0.03

turbine07 lowb 27 9 81 8 9 0.02

turbine07 26 9 67 12 14 0.02

turbine54GF 119 3 25 10 11 0.05

turbine54 120 9 220 11 13 0.05

uflquad-nopsc-10-150 1500 3 14281 16 20 14.68

uflquad-nopsc-20-150 3000 3 29063 17 30 74.84

uflquad-nopsc-30-100 3000 3 29108 23 39 66.91

uflquad-nopsc-30-150 4500 3 42809 19 39 156.26

uflquad-nopsc-30-200 6000 3 55650 19 40 332.71

uflquad-nopsc-30-300 9000 3 83624 16 41 819.0

uflquad-psc-10-150 1500 3 10837 13 23 14.08

uflquad-psc-20-150 3000 3 18164 15 37 70.09

uflquad-psc-30-100 3000 3 16595 22 49 69.07

uflquad-psc-30-150 4500 3 23675 19 50 128.58

uflquad-psc-30-200 6000 3 33972 19 50 291.65

uflquad-psc-30-300 9000 3 54083 19 50 978.33

181

6.5. DISCO EXPERIMENTS

DisCO implements maximum infeasibility, pseudocost and strong branching strategies.

The default branching strategy of DisCO is pseudocost branching. If the branching algo-

rithm is not specified for a test then default branching strategy of DisCO is used. DisCO

branching strategy parameter is set to strong for strong branching tests. In pseudocost

branching, cost of all variables are set to 0 initially. Among variables with same cost,

variable with the smallest index is picked.

DisCO depends on COIN-OR’s ALPS for tree search. ALPS implements best-first,

best-estimate-first, breadth-first, depth-first and hybrid search strategies. ALPS’s default

search strategy is hybrid search.

Hybrid search strategy carries depth-first search until the objective value of the sub-

problems get worse than the current upper bound, i.e., node is fathomed. In this case,

ALPS picks the sibling of the fathomed node as the next. Hybrid strategy stops diving if

all the siblings are fathomed or their quality is worse than the best available by a certain

threshold. Default search strategy of ALPS with its default parameter values are used in

all the experiments conducted.

In the preliminary experiments we observed that different search strategies might per-

form slightly better (together with specific branching strategies) for some specific problem

families with bb-lp algorithm. But when all the benchmark problems are considered,

hybrid strategy performs the best and variance in the solution time is less.

Linear cuts generated can be categorized into two classes, OA cuts and MILP cuts. OA

cuts are used to improve the LP approximations. These cuts are given in Theorem 2.2.1

and 2.2.2. For a given point these cuts can be computed using a closed form formula as

explained in Section 3.3.2. OA cuts are used in bb-lp algorithm only. They are controlled

by parameters of α, β and γ of bb-lp algorithm (Algorithm 5). Default values for these

parameters are 1, 0.001 and 50. We test other sets of values for these parameters. These

experiments are referred as disco-oa-2 to disco-oa-7, and OA cut parameter values used

182

6.5. DISCO EXPERIMENTS

are given in Table 6.2.

MILP cuts are used to cut integer infeasible points from LP relaxations. Note that

MILP cuts are available only in case of bb-lp algorithm. Experiments where MILP cuts

are disabled are referred as disco-oa-nomilpcuts. By default OA cuts and MILP cuts are

used together to cut conic infeasible and integer infeasible points respectively. Six type

of cuts from MILP literature are used, clique, flow cover, Gomory, knapsack, MIR and

odd hole cuts. Generation of MILP cuts are controlled by κ and δ parameters of the

bb-lp algorithm. COIN-OR’s CGL is used to generate cuts. DisCO asks the relevant CGL

generator to generate cuts. CGL may or may not return cuts. DisCO adds a cut to the

relaxation if it cuts the current solution more than tail-off parameter specified (default

1e− 8).

As described in Chapter 3, bb-lp algorithm cleans the cuts that are not potentially

helping at the current relaxation. The helping cuts are determined by checking their slack.

The ones that have slacks above a threshold are removed from relaxation. Cut cleaning is

carried after warm start procedure that approximates the cones in the root node, and at

each iteration of the bounding loop. In bounding loop, cuts with slacks above a threshold

are not removed immediately. They are removed if their slack is above threshold for 3

consecutive iterations.

6.5.1 bb-socp with Various Solvers

bb-socp algorithm is tested with various solvers. Different solvers are used to solve relaxed

problems in each node. Tested solvers are COLA (disco-cola), CPLEX (disco-cplex), Ipopt

(disco-ipopt) and Mosek (disco-mosek). All SOCP solvers are limited to single thread.

In Ipopt, in the root node value 1 is used as starting point value for all variables,

except leading variables of conic constraints. Leading variables are set to
√
n and

√
n
2 for

Lorentz and rotated Lorentz cones, where n is the size of the cone. In lower level nodes,

183

6.5. DISCO EXPERIMENTS

solution of the parent node is used as starting point.

To obtain results in this subsection, DisCO is built to work with the corresponding

solvers. Solvers disco-cola, disco-cplex, disco-mosek and disco-ipopt implement bb-socp

algorithm. All solvers share the same DisCO parameters. Changes in the performance

measures (number of nodes and CPU time) occur due to different solvers used. Number of

nodes differs due to different solutions (result from alternative optimal solutions) reported

by solvers.

Tables A.1, A.2 and A.3 present CPU time spent in seconds and number of nodes

processed of bb-socp algorithm for the solvers discussed. TL, ML and SF denote time

limit, memory limit and solver failure respectively. Solver failure occurs when the solver

being used fails to solve a relaxation subproblem in a node.

Like any computer program solvers might fail. CPLEX fails (reports that problem is

abandoned) to solve subproblems (in a node) for some of the problems. It fails on all

estein4 problems, estein6 1, on some random problems and most of sssd problem family.

Mosek solver also fails on some instances. It fails some instance of sssd, turbine and

uflquad-psc families. Note that CPLEX and Mosek solvers do not fail when used to solve

the same problems directly, rather than in DisCO framework. This might be due to their

internal recover of the relaxation solver failure or other numerical operations to prevent

failures. There are no such measures in DisCO yet. Whenever a solver fails for any of the

subproblems, DisCO fail.

Note that Ipopt is a general solver and is unaware of the second-order conic structure of

the underlying problems. Moreover the formulation used in Ipopt is not smooth. Smooth

formulations are possible but result dense Hessian matrices. Ipopt fails frequently and

this is expected.

Cola solver, hence CLP, does not fail in any of the instances, but hits time limit more

often. disco-cola solves as many instances as disco-mosek but it is slower than disco-mosek

184

6.5. DISCO EXPERIMENTS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 4 8 16 32 64 128 256

CPU Time in seconds

disco-cola
disco-ipopt
disco-cplex

disco-mosek

Figure 6.1: bb-socp Algorithm, Performance Profile of CPU Time with Various Solvers

in almost all instances.

Performance of bb-socp algorithm highly depends on the performance and robustness

of the underlying solver. Figure 6.1 gives performance profile of CPU time of DisCO

with discussed solvers. In terms of CPU time disco-cplex performs the best. It solves

around 50% of the problems within the time and memory limits. Next best performing

are disco-mosek and disco-cola. disco-cola is slower than disco-mosek but solves more

problems within the limits. disco-cola solves around 40% of the test problems and disco-

mosek solves close to 40%. disco-ipopt is the slowest and solves the least portion of the

problems.

Figure 6.2 gives performance profile of number of nodes processed by different solvers.

disco-cplex processes the least number of nodes. disco-cola is the second best in terms of

number of nodes processed. disco-mosek comes the next, than disco-ipopt. As discussed

before DisCO is run exactly with the same parameters for each solver. Difference in the

185

6.5. DISCO EXPERIMENTS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 4 8 16 32

Number of nodes

disco-cola
disco-ipopt
disco-cplex

disco-mosek

Figure 6.2: bb-socp Algorithm, Performance Profile of Number of Nodes Processed with
Various Solvers

number of nodes are due to solutions reported by the solvers at each node.

Note that even though disco-cola solves problems in less number of nodes compared

to disco-mosek, it is slower than disco-mosek for most of the problems. This means

COLA spends more time at solving less number of nodes than Mosek. This is due to low

performance of COLA solving subproblems. Results obtained here confirm the conclusions

reached in Section 6.4. Similarly disco-cola is close to disco-cplex in terms of number of

nodes processed but the gap is large for CPU time.

6.5.2 Branching Strategy for bb-socp

In this section we experiment with different branching strategies to determine the best

performing for bb-socp algorithm. Two different branching strategies are tested, pseudo-

cost and strong branching. CPLEX solver is used to solve SOCP problems at each node.

Strong branching experiments are denoted as disco-cplex-strong. Pseudocost branching

186

6.5. DISCO EXPERIMENTS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 4 8 16

CPU Time in seconds

disco-cplex-pseudo
disco-cplex-strong

Figure 6.3: bb-socp Algorithm, Performance Profile of CPU Time with Different Branching
Strategies

strategy experiments are denoted as disco-cplex, same as disco-cplex given in Section 6.5.1,

since pseudocost branching strategy is the default one.

Table A.4, A.5 and A.6 give CPU time and number of nodes processed for pseudocost

and strong branching strategies using disco-cplex. For problems solved by both branching

strategies, pseudocost branching is consistently faster than strong branching. This is

expected since strong branching is costly.

Figure 6.3 gives performance profile for the CPU time. Figure 6.4 gives performance

profile of number of nodes processed by two different branching strategies. Strong branch-

ing processes less number of nodes for all problems as expected. In strong branching,

branching process itself (determining the branching variable) is expensive and results in

higher CPU time.

187

6.5. DISCO EXPERIMENTS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 4 8

Number of nodes

disco-cplex-pseudo
disco-cplex-strong

Figure 6.4: bb-socp Algorithm, Performance Profile of Number of Nodes Processed with
Different Branching Strategies

6.5.3 Choosing OA Cut Parameters for bb-lp Algorithm

This section includes experiments to determine a good set of values for the parameters of

bb-lp Algorithm. Note that bb-lp Algorithm has α, β and γ parameters that control the

decision of cutting vs branching.

Default values for α, β and γ parameters are 1, 0.001 and 50. Different values are tried

for these parameters. Different experiments and corresponding updates to the parameters

are given in Table 6.2. In these experiments only one parameter value is changed at a

time. disco-oa gives the results with the default parameters.

disco-oa-2 and disco-oa-3 increase α parameter and perform more cut iterations iter-

ation (in bounding loop) before branching in case the current relaxation is both integer

and conic infeasible.

In case of both integer and conic feasible subproblem solutions, β and γ parameters

188

6.5. DISCO EXPERIMENTS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 4 8 16

CPU Time in seconds

disco-oa
disco-oa-2
disco-oa-3
disco-oa-4
disco-oa-5
disco-oa-6
disco-oa-7

Figure 6.5: bb-lp Algorithm, Performance Profile of CPU Time with Different OA Cut
Parameter Values

decide to cut if the current optimality gap seems achievable. Decreasing beta relaxes

achievable criteria of the algorithm and leads more cuts. γ is the upper limit on cut

rounds in this case. Increasing γ means adding more cuts. disco-oa-4 increases parameter

β and leads less cuts. disco-oa-5 decreases parameter β and favors more cuts. disco-oa-6

reduces parameter γ, means less cut iterations. disco-oa-6 increases it and favors more

cut iterations.

Figure 6.5 gives performance profile of the CPU time spent for the discussed settings.

Figure 6.6 gives the performance profile of the number of nodes processed. Table A.7, A.8,

A.9, A.10, A.11 and A.12 presents the results of the OA parameter experiments.

We observe that the default strategy is fastest for majority of the problems but disco-

oa-3 solves the most number of instances. disco-oa-3 performs best in terms of number

of nodes. This makes sense since it favors cutting more compared to the default strategy.

disco-oa-4 and disco-oa-6 are the worst performers in terms of both CPU time and number

189

6.5. DISCO EXPERIMENTS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 4 8 16

Number of nodes

disco-oa
disco-oa-2
disco-oa-3
disco-oa-4
disco-oa-5
disco-oa-6
disco-oa-7

Figure 6.6: bb-lp Algorithm, Performance Profile of Number of Nodes Processed with
Different OA Cut Parameter Values

of nodes. These are the strategies that favor the OA cuts least.

Default values of the parameters can be considered as a compromise between cutting

and branching. Performance profiles show that run with the default parameter values is

the best performer among all parameter settings tested for the majority of the problems.

6.5.4 Branching Strategy for bb-lp Algorithm

Experiments of this section aims to determine the best performing branching strategy for

bb-lp algorithm. Two different branching strategies are tested for this purpose, pseudocost

and strong branching. CLP solver is used to solve LP problems in each node. Default

parameters are used for OA cut management. MILP cuts are enabled by default.

Performance profile for the CPU time spent is given in Figure 6.7. Figure 6.8 gives the

performance profile for the number of nodes processed by the two branching strategies.

Table A.13, A.14 and A.15 gives the values used for generating the performance profiles.

190

6.5. DISCO EXPERIMENTS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 4 8

CPU Time in seconds

disco-oa
disco-oa-strong

Figure 6.7: bb-lp Algorithm, Performance Profile of CPU Time with Different Branching
Strategies

There is a clear gap between the two branching strategies in terms of both CPU time

and number of nodes. Strong branching processes less number of nodes as expected.

Pseudocost branching performs better in terms of CPU time. Strong branching solves a

few more problems than pseudocost branching in the time permitted.

6.5.5 MILP Cuts for bb-lp

MILP cuts are enabled by default in DisCO. All bb-lp experiments conducted in this thesis

have MILP cuts enabled. It is explicitly stated when they are disabled. MILP cuts are

generated as explained in Section 3.3.8. This section compares default MILP strategy of

DisCO to disabling MILP cuts.

Table A.16, A.17 and A.18 presents the results of the experiment. Figure 6.9 displays

the performance profile of the two strategies for the CPU time. Figure 6.10 gives the

performance profile of the number of nodes processed.

191

6.5. DISCO EXPERIMENTS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 4 8

Number of nodes

disco-oa
disco-oa-strong

Figure 6.8: bb-lp Algorithm, Performance Profile of Number of Nodes Processed with
Different Branching Strategies

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 4

CPU Time in seconds

disco-oa
disco-oa-nomilpcuts

Figure 6.9: bb-lp Algorithm, Performance Profile of CPU Time with and without MILP
Cuts

192

6.5. DISCO EXPERIMENTS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 4

Number of nodes

disco-oa
disco-oa-nomilpcuts

Figure 6.10: bb-lp Algorithm, Performance Profile of Number of Nodes Processed with
and without MILP Cuts

Adding MILP cuts does not improve the performance of the bb-lp algorithm in terms of

CPU time much. A small improvement is observed in terms of number of nodes processed.

bb-lp Algorithm processes less number of nodes when MILP cuts are enabled. Performance

improvement on number of nodes is not reflected to CPU time. The results we obtained

in this section are similar to the results reported in Abhishek, Leyffer, and Linderoth

[ALL10] using FilMINT.

6.5.6 bb-socp with Disjunctive Cuts

This section presents experiments that test the effectiveness of disjunctive cuts for MIS-

OCP using bb-socp algorithm. In this experiment, we compare 3 different bb-socp runs,

disco-cplex and disco-cplex-dc-all and disco-cplex-dc-best.

We use disjunctive cut procedure of Belotti et al. [Bel+13] described in Section 3.2.4.

Conic cut library is used to generate cuts. In these experiments we generate cuts in the

193

6.5. DISCO EXPERIMENTS

root node to improve the continuous relaxation. Then we use DisCO with CPLEX to

solve the problem.

We test two different strategies, (1) generate all cuts and add the best one (disco-cplex-

dc-best), (2) generate and add all possible cuts (disco-cplex-dc-all). In strategy (1), we

use the bound improvement measure to decide the best. We generate all cuts, add them

to the problem (one at a time) and solve the problem to measure the bound improvement.

After detecting the most bound improving, we just add that one to the problem and start

branch and bound process.

Randomly generated problem instances are used for disjunctive cut experiments pre-

sented in this section and in Section 6.5.7. Input sets to disjunctive cut procedure are

ellipsoids for these problem instances. Conic cuts are computed for disjunctions over

ellipsoids.

Note that cuts generated are valid for the whole branch-and-bound tree. They are

kept in the subproblems in all the lower level nodes of the tree.

CPLEX barrier method suffers from numerics and fails to converge on some instances.

We mark these instances as unsolved. disco-cplex fails on some of the random problems

after adding cuts due to this. Check Table A.19 for details. Performance profiles are

generated for the problems solved successfully.

6.5.7 bb-lp with Disjunctive Cuts

This section presents experiments that test the effectiveness of disjunctive cuts for MIS-

OCP using bb-lp algorithm. In this experiment, we compare 3 different bb-lp runs, disco-

oa-nomilpcuts and disco-oa-dc-all and disco-oa-dc-best.

We use disjunctive cut procedure of Belotti et al. [Bel+13] described in Section 3.2.4.

Conic cut library is used to generate cuts. In these experiments cuts are generated in

the root node to improve the continuous relaxation. Afterwards, DisCO with outer-

194

6.5. DISCO EXPERIMENTS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 1 2 4 8 16 32

CPU Time in seconds

disco-cplex-dc-all
disco-cplex-dc-best

disco-cplex

Figure 6.11: Performance Profile of CPU Time using disco-cplex with disjunctive cuts

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 1 2 4 8 16

Number of nodes

disco-cplex-dc-all
disco-cplex-dc-best

disco-cplex

Figure 6.12: Performance Profile of Number of Nodes Processed using disco-cplex with
disjunctive cuts

195

6.5. DISCO EXPERIMENTS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 4 8 16 32

CPU Time in seconds

disco-oa-dc-all
disco-oa-dc-best

disco-oa-nomilpcuts

Figure 6.13: Performance Profile of CPU Time using bb-lp with disjunctive cuts

approximation algorithm is used to solve the problem. The experimental setting and

the problem instances are same as in Section 6.5.6, except that bb-lp algorithm is used,

instead of bb-socp.

Two different cut generation strategies are tested, same as in Section 6.5.6, (1) generate

all cuts and add the best one (disco-oa-dc-best), (2) generate and add all possible cuts

(disco-oa-dc-all). In strategy (1), bound improvement measure is used to decide the best.

Cuts are generated for all possible disjunctions and added to the problem one at a time

and bound improvement of the the modified problems is measured. Only the most bound

improving cut is kept and branch-and-bound process is started.

Note that cuts generated are valid for the whole branch-and-bound tree. They are

kept in the subproblems in all the nodes of the branch-and-bound tree.

CLP solver fails to find optimal solutions in some of the subproblems encountered

during bb-lp algorithm. These instances are marked as unsolved and excluded from the

196

6.5. DISCO EXPERIMENTS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 4 8 16 32

Number of nodes

disco-oa-dc-all
disco-oa-dc-best

disco-oa-nomilpcuts

Figure 6.14: Performance Profile of Number of Nodes Processed using bb-lp with disjunc-
tive cuts

performance profiles. Check Table A.20 for details.

6.5.8 Parallelization and Scalibility of bb-socp

In this section we present results of experiments with parallel bb-socp. For these experi-

ments we use ALPS built with OpenMPI. For these experiments we use polyps cluster for

COR@L Lab. Each node in polyps cluster has 16 processors. In our experiments we use

up to 4 nodes and 15 processor at each node, meaning up to 60 processors. Each node has

32 GB of memory. We limit memory of parallel experiments to 2GB per processor, i.e. for

experiments with 15 processors memory limit is 30 GB in total. For parallel experiments

in this section CPLEX is used as solver.

Figure 6.15 gives performance profile of CPU time for various number of processors.

Figure 6.16 presents performance profile of number of nodes processed. Table A.21, A.22

and A.23 given in appendix presents the results performance profiles are based on.

197

6.5. DISCO EXPERIMENTS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16 32

CPU Time in seconds

serial
15_proc
30_proc

Figure 6.15: Performance Profile of CPU Time for disco-cplex-mpi for various number of
processors

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8

Number of nodes

serial
15_proc
30_proc

Figure 6.16: Performance Profile of Number of Nodes Processed for disco-cplex-mpi for
various number of processors

198

6.5. DISCO EXPERIMENTS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16 32 64

CPU Time in seconds

serial
15_proc
30_proc

Figure 6.17: Performance Profile of CPU Time for disco-oa-mpi for various number of
processors

6.5.9 Parallelization and Scalibility of bb-lp

In this section we test scalibility of parallel bb-lp algorithm. For this, we use DisCO

build with OA option and ALPS build with OpenMPI. Memory is limited to 2 GB per

process. Experimental setting is same as the one described in Section 6.5.8, except that

bb-lp algorithm is used.

Figure 6.17 and 6.18 presents performance profile of parallel experiments with disco-

oa-parallel run.

Table A.24, A.25 and A.26 given in appendix presents the results performance profiles

are based on.

199

6.5. DISCO EXPERIMENTS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16 32

Number of nodes

serial
15_proc
30_proc

Figure 6.18: Performance Profile of Number of Nodes Processed for disco-oa-mpi for
various number of processors

6.5.10 bb-lp versus bb-socp

Performance of bb-lp is compared to bb-socp in terms of CPU time and number of nodes

processed. This section answers the question of whether speedup from using simplex in

bb-lp can beat the tighter relaxations of bb-socp algorithm. Answering this question is

one of the motivations of this study.

Figure 6.19 and 6.20 give performance profiles of CPU time and number of nodes

processed for bb-lp and bb-socp algorithms respectively. The results show that bb-lp

performs worse than bb-socp in terms of CPU time. bb-socp processes less number of

nodes as expected since the subproblems are tighter than bb-lp.

bb-lp performs poorly compared to bb-socp for problems with large cones, i.e. size 50

or larger. Around half of the problems in CBLIB has cones of size 3. Figure 6.21 give

performance profile of CPU time generated from the randomly generated instances and

200

6.5. DISCO EXPERIMENTS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 4 8 16 32 64 128 256

CPU Time in seconds

disco-oa
disco-cplex

Figure 6.19: Performance Profile of CPU Time, bb-lp versus bb-socp

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 4 8 16 32 64 128 256

Number of nodes

disco-oa
disco-cplex

Figure 6.20: Performance Profile of Number of Nodes Processed, bb-lp versus bb-socp

201

6.5. DISCO EXPERIMENTS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 4 8 16 32 64

CPU Time in seconds

disco-oa
disco-cplex

Figure 6.21: Performance Profile of CPU Time, bb-lp versus bb-socp, Problems with Low
Dimensional Cones

instances of cone size 3 of CBLIB.

We observe that performance of bb-lp is close to bb-socp for the problems with smaller

cones. CPLEX solver fails to find optimal solution of relaxations in some of the Steiner

problems and due to this bb-lp ends up solving more problems. As a general remark we

can also claim that combinatorially challenging problems are more suitable for the bb-lp

algorithm. Stochastic service system design (SSSD) problem instances are combinatorially

challenging. We observe that bb-lp with strong branching can solve instances from this

family. We can conclude that bb-socp is winner for problems with large cones and combi-

natorially easier (less number of nodes are needed to prove optimality). bb-lp performance

is comparable to bb-socp for problems with small cones. It has advantage for problems

that are harder combinatorially, i.e. many nodes should be processed to prove optimality.

Figure 6.22 gives performance profile of both serial and parallel runs of disco-oa and

disco-cplex for all the problem instances in the test set.

202

6.6. CONCLUSION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16 32 64 128 256

CPU Time in seconds

disco-oa
disco-cplex

15_proc_disco-oa-mpi
15_proc_disco-cplex-mpi

30_proc_disco-oa-mpi
30_proc_disco-cplex-mpi

Figure 6.22: Performance Profile of CPU Time, bb-lp (disco-oa) versus bb-socp (disco-
cplex)

Figure 6.23 gives performance profile of both serial and parallel runs for the randomly

generated instances and instances of cone size 3 of CBLIB. Figure 6.23 shows that disco-

oa-mpi with 30 processors solves the highest number of problems with low dimensional

cones.

6.6 Conclusion

Pseudocost branching strategy performs better than strong branching for majority of the

problems for both bb-lp and bb-socp algorithms. This result is somehow expected for the

bb-socp case due to lack of warm start in the IPM implementation used. The difference

in CPU time is large for bb-socp. Pseudocost branching strategy performs better than

strong branching for bb-lp but the difference is not as dramatic as bb-socp case. Strong

branching implementation in case of bb-lp use warm start capability of the CLP solver.

203

6.6. CONCLUSION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16 32 64

CPU Time in seconds

disco-oa
disco-cplex

15_proc_disco-oa-mpi
15_proc_disco-cplex-mpi

30_proc_disco-oa-mpi
30_proc_disco-cplex-mpi

Figure 6.23: Performance Profile of CPU Time, bb-lp (disco-oa) versus bb-socp (disco-
cplex), Problems with Low Dimensional Cones

Even though strong branching performs worse than pseudocost for majority, it is the only

setting that solves instances from stochastic service system design (SSSD) problem family.

This problem family is hard combinatorially. Branch-and-bound trees are large and many

nodes are processed to prove optimality. Pseudocost branching of bb-lp can solve some

instances from this family only in parallel case when 30 processors are used.

Experiments that validate the default OA cut parameter values are conducted. We

showed that a balance between cut generation and branching should be achieved when

setting OA cut generation parameters. Aggressive cutting lead less number of nodes and

aggressive branching lead more nodes. Both, in both of the extremes CPU time required

increases.

MILP cuts does not have much effect on the performance of the bb-lp solver. The

performance of the bb-lp algorithm does not change much when they are deactivated. This

conclusion is parallel to outcome reported in Abhishek, Leyffer, and Linderoth [ALL10]

204

6.6. CONCLUSION

using FilMINT. MILP cuts are slightly more effective for the randomly generated problem

instances. We believe this is due to fact that these instances have integer variables as

Lorentz cone members. CBLIB instances do not have integral variables as Lorentz cone

members.

Disjunctive cuts of Belotti et al. [Bel+15] help reducing the number of nodes. We

tested two extreme strategies, adding only the best cut in terms of bound reduction and

adding all possible cuts. Adding all cuts perform the best in terms of number of nodes.

These results are obtained using randomly generated problem instances by Góez [Góe13].

We observed that problem instances in this set are either very easy or very hard. Better

results on disjunctive cuts might be obtained from a more refined problem set.

bb-lp algorithm performs better in case of disjunctive cuts. This is due to fact that

the cones are not in the formulation of the subproblems. They are used at cut generation.

The difficulty of the subproblems increase less compared to the bb-socp case. Effect of

disjunctive cuts on number of nodes is similar for both bb-lp and bb-socp.

Experiments in this chapter shows that DisCO scales well for both bb-lp and bb-socp

algorithms. We conducted experiments with up to 2 nodes and 30 processors. DisCO

scalibility does not vary depending on the underlying algorithm. Its scalibility performance

is same for both bb-lp and bb-socp algorithms. Scalibility of branch-and-bound algorithm

is not easy to achieve. DisCO can be considered as a pioneer in the field of scalable

MISOCP solvers.

During branch-and-bound algorithm, CPLEX, Ipopt and Mosek, when used as a SOCP

solver encounters numerical problems on some subproblems. Preconditioning of the sub-

problem, or starting with a different starting point (in case of Ipopt) might be necessary

for those cases which we do not apply.

205

Chapter 7

Conclusion and Future Work

In this chapter, we summarize the work and its conclusions, as well as discuss future

research directions. In Chapter 2, we describe a procedure that separates points from

Lorentz cones. This procedure generates hyperplanes that support the conic constraint

and define the strongest possible valid inequalities. Chapter 2 also introduces a cutting-

plane algorithm for solving SOCP based on this procedure.

In Chapter 3, we first survey some of the literature on valid inequalities for MISOCP

feasible set. Studies suggest various methods to remove continuous relaxation solutions

from MISOCP feasible set. Two lines of work very relevant to this study are Belotti et al.

[Bel+13] and Kılınç-Karzan and Yıldız [KY14]. Belotti et al. [Bel+13] give disjunctive

conic cuts for general MISOCP and Kılınç-Karzan and Yıldız [KY14] give valid inequalities

for the two-term disjunctions on a Lorentz cone. Even though both Kılınç-Karzan and

Yıldız [KY14] and Belotti et al. [Bel+13] solve very similar problems, their derivation and

the theory behind them are very different. A compelling future research direction is to

investigate the relationship of the valid inequalities given by these two different line of

work.

Chapter 3 proposes a flexible branch-and-cut framework that supports a variety of

206

relaxation-based algorithms. It can employ either SOCP relaxations or use the approxi-

mating valid inequalities given in Chapter 2. In this algorithm, both integrality and conic

constraints may be relaxed. For relaxation solutions, both integer feasibility and conic

feasibility are checked and both valid inequalities, as well as branching are used to address

infeasibilities. When conic constraints are relaxed, the outer approximation approach pro-

posed for enforcing conic feasibility is different than the existing ones in the literature.

The existing methods approximate the problem a priori, whereas the proposed algorithm

builds a polyhedral approximation dynamically. Contrary to the methods in literature,

approximation procedure is applied to the cones directly without decomposing the cones

first. An intriguing research direction is to use cone decomposition before applying the

proposed algorithm.

Chapter 4 introduces an extensive framework for solving MISOCP. This framework

includes a solver interface, solver implementations, a cut library and a MISOCP solver

called DisCO. All software projects presented are open source and will be distributed

under COIN-OR Initiative. The software framework implements the disjunctive procedure

of Belotti et al. [Bel+13]. Possible future directions include implementing more of the cut

procedures reviewed in Chapter 3 and testing their practical performance.

In Chapter 5 we prove the complexity of the inverse MILP problem. The main con-

tribution of this study is to show that a certain decision version of the inverse problem is

co-NP-complete. This broad-ranging implications and some of this work may be general-

ized in order to provide a different view of the equivalence of optimization and separation

given by the well-known result of Grötschel–Lovász–Schrijver.

Chapter 6 present the computational experiments conducted. We compare the algo-

rithms introduced and answer the questions raised around these algorithms. We observe

that SOCP relaxations perform better that LP based relaxations in case of problems with

large dimensional cones. The performance of the two different approach is close to each

207

other in case of problems with low dimensional cones. We observe that both of the al-

gorithms scale well with the increasing number of processors. A future work in terms of

the experiments is trying DisCO with more processors. The framework DisCO depends

has been tried with up to 2000 cores. Experimenting DisCO in such a scale might crack

the combinatorially challenging problems of CBLIB. DisCO does not implement reliability

branching yet. Implementing and testing it is another future research direction.

208

Bibliography

[ALL10] Kumar Abhishek, Sven Leyffer, and Jeff Linderoth. “FilMINT: an outer approximation-

based solver for convex mixed-integer nonlinear programs”. In: INFORMS

Journal on Computing 22.4 (2010), pp. 555–567 (cit. on pp. 70, 71, 193, 204).

[Ach07] Tobias Achterberg. “Constraint Integer Programming”. PhD thesis. Technis-

che Universität Berlin, 2007 (cit. on pp. 33, 34, 96).

[AA95] Ilan Adler and Farid Alizadeh. Primal-dual interior point algorithms for con-

vex quadratically constrained and semidefinite optimization problems. Tech.

rep. 1995 (cit. on p. 48).

[AO01] Ravindra K. Ahuja and James B. Orlin. “Inverse optimization”. In: Operations

Research 49.5 (2001), pp. 771–783 (cit. on pp. 21, 22, 149, 157).

[AAG09] Mehmet Selim Aktürk, Alper Atamtürk, and Sinan Gürel. “A strong conic

quadratic reformulation for machine-job assignment with controllable process-

ing times”. In: Operations Research Letters 37.3 (2009), pp. 187–191 (cit. on

p. 9).

[AG03] Farid Alizadeh and Donald Goldfarb. “Second-order cone programming”. In:

Mathematical Programming 95.1 (2003), pp. 3–51 (cit. on p. 9).

209

BIBLIOGRAPHY

[ART03] Erling D. Andersen, Kees Roos, and Tamás Terlaky. “On implementing a

primal-dual interior-point method for conic quadratic optimization”. English.

In: Mathematical Programming 95.2 (2003), pp. 249–277 (cit. on pp. 47, 49).

[AJ13] Kent Andersen and Anders Nedergaard Jensen. “Intersection cuts for mixed

integer conic quadratic sets”. In: International Conference on Integer Pro-

gramming and Combinatorial Optimization. Springer. 2013, pp. 37–48 (cit. on

p. 86).

[App+95] David Applegate, Robert Bixby, Vasek Chvatal, and William J. Cook. Finding

cuts in the TSP (a preliminary report). Tech. rep. 1995 (cit. on pp. 33, 95).

[ABS12] Alper Atamtürk, Gemma Berenguer, and Zuo-Jun Shen. “A conic integer pro-

gramming approach to stochastic joint location-inventory problems”. In: Op-

erations Research 60.2 (2012), pp. 366–381 (cit. on pp. 9, 65).

[AN10] Alper Atamtürk and Vishnu Narayanan. “Conic mixed-integer rounding cuts”.

English. In: Mathematical Programming 122.1 (2010), pp. 1–20 (cit. on pp. 72,

73, 76, 118).

[Bal75] Egon Balas. “Facets of the knapsack polytope”. In: Mathematical Program-

ming 8.1 (1975), pp. 146–164 (cit. on p. 37).

[Bal79] Egon Balas. “Disjunctive programming”. In: Annals of Discrete Mathematics

5 (1979), pp. 3–51 (cit. on pp. 29, 93).

[Bal85] Egon Balas. “Disjunctive programming and a hierarchy of relaxations for dis-

crete optimization problems”. In: SIAM Journal on Algebraic Discrete Meth-

ods 6.3 (1985), pp. 466–486 (cit. on p. 29).

[BCC96] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. “Mixed 0-1 programming

by lift-and-project in a branch-and-cut framework”. In: Management Science

42.9 (1996), pp. 1229–1246 (cit. on p. 38).

210

BIBLIOGRAPHY

[Bal+96] Egon Balas, Sebastian Ceria, Gérard Cornuéjols, and N. Natraj. “Gomory cuts

revisited”. In: Operations Research Letters 19.1 (1996), pp. 1–9 (cit. on pp. 38,

93).

[Bea] John E. Beasley. OR library: Euclidean Steiner tree problems. http://people.

brunel.ac.uk/mastjjb/jeb/orlib/esteininfo.html (cit. on pp. 171, 172).

[Bel+13] Pietro Belotti, Julio C. Góez, Imre Pólik, Ted K. Ralphs, and Tamás Terlaky.

“On families of quadratic surfaces having fixed intersections with two hyper-

planes”. In: Discrete Applied Mathematics 161.16–17 (2013), pp. 2778–2793

(cit. on pp. 19, 73, 82, 84–86, 94, 99, 117, 118, 175, 193, 194, 206, 207).

[Bel+15] Pietro Belotti, Julio C. Góez, Imre Pólik, Ted K. Ralphs, and Tamás Ter-

laky. “A conic representation of the convex hull of disjunctive sets and conic

cuts for integer second order cone optimization”. In: Numerical Analysis and

Optimization. 2015, pp. 1–35 (cit. on pp. 89, 93, 94, 99, 205).

[Bel+09] Pietro Belotti, Jon Lee, Leo Liberti, François Margot, and Andreas Wächter.

“Branching and bounds tightening techniques for non-convex MINLP”. In:

Optimization Methods and Software 24.4-5 (2009), pp. 597–634 (cit. on p. 72).

[Bén+71] Michel Bénichou, Jean-Michel Gauthier, Paul Girodet, Gerard Hentges, Ger-

ard Ribière, and O. Vincent. “Experiments in mixed-integer linear program-

ming”. In: Mathematical Programming 1.1 (1971), pp. 76–94 (cit. on pp. 33,

95, 124).

[Ben98] Harold P. Benson. “An outer approximation algorithm for generating all ef-

ficient extreme points in the outcome set of a multiple objective linear pro-

gramming problem”. In: Journal of Global Optimization 13.1 (1998), pp. 1–24

(cit. on p. 40).

211

http://people.brunel.ac.uk/mastjjb/jeb/orlib/esteininfo.html
http://people.brunel.ac.uk/mastjjb/jeb/orlib/esteininfo.html

BIBLIOGRAPHY

[BN98] Aharon Ben-Tal and Arkadi Nemirovski. “Robust convex optimization”. In:

Mathematics of Operations Research 23.4 (1998), pp. 769–805 (cit. on p. 9).

[BN01a] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on Modern Convex Opti-

mization. Society for Industrial and Applied Mathematics, 2001 (cit. on pp. 13,

48).

[BN01b] Aharon Ben-Tal and Arkadi Nemirovski. “On polyhedral approximations of

the second-order cone”. In: Mathematics of Operations Research 26.2 (2001),

pp. 193–205 (cit. on pp. 40, 48, 51, 61, 67).

[BV97] Ethan Bernstein and Umesh Vazirani. “Quantum complexity theory”. In:

SIAM Journal on Computing 26.5 (1997), pp. 1411–1473 (cit. on p. 23).

[BFL07] Livio Bertacco, Matteo Fischetti, and Andrea Lodi. “A feasibility pump heuris-

tic for general mixed-integer problems”. In: Discrete Optimization 4.1 (2007),

pp. 63–76 (cit. on p. 35).

[BS09] Dimitris Bertsimas and Romy Shioda. “Algorithm for cardinality-constrained

quadratic optimization”. In: Computational Optimization and Applications

43.1 (2009), pp. 1–22 (cit. on pp. 9, 65).

[Bix+00] Robert Bixby, Mary Fenelon, Zonghao Gu, Edward Rothberg, and Roland

Wunderling. “MIP: theory and practice–closing the gap”. In: System Modelling

and Optimization. 2000, pp. 19–49 (cit. on pp. 38, 93).

[Bon+08] Pierre Bonami, Lorenz T. Biegler, Andrew R. Conn, Gérard Cornuéjols, Ig-

nacio E. Grossmann, Carl D. Laird, Jon Lee, Andrea Lodi, François Margot,

Nicolas Sawaya, et al. “An algorithmic framework for convex mixed integer

nonlinear programs”. In: Discrete Optimization 5.2 (2008), pp. 186–204 (cit.

on pp. 70, 71).

212

BIBLIOGRAPHY

[Boy94] Andrew Boyd. “Fenchel cutting planes for integer programs”. In: Operations

Research 42.1 (1994), pp. 53–64 (cit. on p. 153).

[BR15] Aykut Bulut and Ted K. Ralphs. On the complexity of inverse mixed inte-

ger linear optimization. Tech. rep. COR@L Laboratory Report 15T-001-R3,

Lehigh University, 2015 (cit. on p. 147).

[BR16a] Aykut Bulut and Ted K. Ralphs. Conic optimization using linear approxima-

tion. https://github.com/aykutbulut/COLA. 2016 (cit. on p. 113).

[BR16b] Aykut Bulut and Ted K. Ralphs. Conic solver interface for CPLEX. https:

//github.com/aykutbulut/OsiCplex. 2016 (cit. on p. 112).

[BR16c] Aykut Bulut and Ted K. Ralphs. Conic solver interface for Ipopt. https:

//github.com/aykutbulut/OsiIpopt. 2016 (cit. on p. 112).

[BR16d] Aykut Bulut and Ted K. Ralphs. Conic solver interface for Mosek. https:

//github.com/aykutbulut/OSI-MOSEK. 2016 (cit. on p. 112).

[BR16e] Aykut Bulut and Ted K. Ralphs. Cut generation library for conic problems.

https://github.com/aykutbulut/CGL-CONIC. 2016 (cit. on p. 117).

[BR16f] Aykut Bulut and Ted K. Ralphs. Discrete conic optimization solver library.

https://github.com/aykutbulut/DisCO. 2016 (cit. on p. 123).

[BR16g] Aykut Bulut and Ted K. Ralphs. Solver interface for conic problems. https:

//github.com/aykutbulut/OSI-CONIC. 2016 (cit. on p. 110).

[BR] Aykut Bulut and Ted K. Ralphs. Graphics for understanding mathematical

programming in Python. https://github.com/aykutbulut/CHiPPS-BiCePS

(cit. on p. 137).

[CYZ99] M. C. Cai, X. G. Yang, and J. Z. Zhang. “The complexity analysis of the in-

verse center location problem”. In: Journal of Global Optimization 15.2 (1999),

pp. 213–218 (cit. on p. 148).

213

https://github.com/aykutbulut/COLA
https://github.com/aykutbulut/OsiCplex
https://github.com/aykutbulut/OsiCplex
https://github.com/aykutbulut/OsiIpopt
https://github.com/aykutbulut/OsiIpopt
https://github.com/aykutbulut/OSI-MOSEK
https://github.com/aykutbulut/OSI-MOSEK
https://github.com/aykutbulut/CGL-CONIC
https://github.com/aykutbulut/DisCO
https://github.com/aykutbulut/OSI-CONIC
https://github.com/aykutbulut/OSI-CONIC
https://github.com/aykutbulut/CHiPPS-BiCePS

BIBLIOGRAPHY

[CG96] Alberto Caprara and Juan J. Salazar González. “A branch-and-cut algorithm

for a generalization of the uncapacitated facility location problem”. In: Top

4.1 (1996), pp. 135–163 (cit. on p. 37).

[ÇPT17] Sertalp Çay, Imre Pólik, and Tamás Terlaky. Warm-start of interior point

methods for second order cone optimization via rounding over optimal Jordan

frames. Tech. rep. COR@L Laboratory Report 17T-006, Lehigh University,

2017 (cit. on p. 63).

[ÇI05] Mehmet T. Çezik and Garud Iyengar. “Cuts for mixed 0-1 conic program-

ming”. English. In: Mathematical Programming 104.1 (2005), pp. 179–202 (cit.

on pp. 72, 73, 77, 93, 118).

[CGH94] Lyndon Clarke, Ian Glendinning, and Rolf Hempel. “The MPI message pass-

ing interface standard”. In: Programming Environments for Massively Parallel

Distributed Systems: Working Conference of the IFIP WG 10.3, April 25–29,

1994. 1994, pp. 213–218 (cit. on p. 127).

[Cor07] Gérard Cornuéjols. “Revival of the Gomory cuts in the 1990’s”. In: Annals of

Operations Research 149.1 (2007), pp. 63–66 (cit. on p. 38).

[Cor08] Gérard Cornuéjols. “Valid inequalities for mixed integer linear programs”. In:

Mathematical Programming 112.1 (2008), pp. 3–44 (cit. on p. 20).

[Cut80] Nigel Cutland. Computability: An Introduction to Recursive Function Theory.

Cambridge University Press, 1980 (cit. on p. 23).

[DRP05] Emilie Danna, Edward Rothberg, and Claude Le Pape. “Exploring relaxation

induced neighborhoods to improve MIP solutions”. In: Mathematical Program-

ming 102.1 (2005), pp. 71–90 (cit. on p. 35).

214

BIBLIOGRAPHY

[DM02] Elizabeth D. Dolan and Jorge J. Moré. “Benchmarking optimization soft-

ware with performance profiles”. In: Mathematical Programming 91.2 (2002),

pp. 201–213 (cit. on p. 171).

[Dre09] Sarah Drewes. “Mixed Integer Second Order Cone Programming”. PhD thesis.

Technische Universitat Darmstadt, 2009 (cit. on pp. 9, 77–79, 172).

[DG86] Marco A. Duran and Ignacio E. Grossmann. “An outer-approximation al-

gorithm for a class of mixed-integer nonlinear programs”. In: Mathematical

Programming 36.3 (1986), pp. 307–339 (cit. on pp. 40, 70, 71).

[FM04] Marcia Fampa and Nelson Maculan. “Using a conic formulation for finding

Steiner minimal trees”. In: Numerical Algorithms 35.2-4 (2004), pp. 315–330

(cit. on pp. 9, 65, 172).

[Fis94] Matteo Fischetti. Odd cut-sets, odd cycles, and 0-1/2 Chvatal-Gomory cuts.

Tech. rep. Univ. of Michigan, Ann Arbor, MI (United States), 1994 (cit. on

p. 37).

[FL94] Roger Fletcher and Sven Leyffer. “Solving mixed integer nonlinear programs

by outer approximation”. English. In: Mathematical Programming 66.1-3 (1994),

pp. 327–349 (cit. on pp. 40, 70).

[FLT02] Roger Fletcher, Sven Leyffer, and Philippe L. Toint. “On the global conver-

gence of a filter–SQP algorithm”. In: SIAM Journal on Optimization 13.1

(2002), pp. 44–59 (cit. on p. 71).

[For+a] John Forrest, Stefan Vigerske, Ted K. Ralphs, Pierre Bonami, John P. Fasano,

and Yan Xu. COIN-OR cut generation library. https://projects.coin-

or.org/Cgl (cit. on p. 108).

215

https://projects.coin-or.org/Cgl
https://projects.coin-or.org/Cgl

BIBLIOGRAPHY

[For+b] John Forrest, Stefan Vigerske, Ted K. Ralphs, John P. Fasano, and Matthew

Saltzman. COIN-OR build tools. https://projects.coin-or.org/BuildTools

(cit. on p. 108).

[For+c] John Forrest, Stefan Vigerske, Ted K. Ralphs, John P. Fasano, and Matthew

Saltzman. COIN-OR linear programming solver. https://projects.coin-

or.org/Clp (cit. on p. 108).

[For+d] John Forrest, Stefan Vigerske, Ted K. Ralphs, John P. Fasano, and Matthew

Saltzman. COIN-OR utilities. https://projects.coin-or.org/CoinUtils

(cit. on p. 108).

[For+e] John Forrest, Stefan Vigerske, Ted K. Ralphs, John P. Fasano, Matthew

Saltzman, and Brady Hunsaker. COIN-OR open solver interface. https://

projects.coin-or.org/Osi (cit. on p. 108).

[Fri16] Henrik A. Friberg. “CBLIB 2014: a benchmark library for conic mixed-integer

and continuous optimization”. In: Mathematical Programming Computation

8.2 (2016), pp. 191–214 (cit. on pp. 45, 171).

[FM05a] Armin Fügenschuh and Alexander Martin. “Computational integer program-

ming and cutting planes”. In: Discrete Optimization. Vol. 12. Supplement C.

2005, pp. 69–121 (cit. on p. 38).

[FM05b] Armin Fügenschuh and Alexander Martin. “Computational integer program-

ming and cutting planes”. In: Handbooks in Operations Research and Man-

agement Science 12 (2005), pp. 69–121 (cit. on p. 124).

[Gab+04] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J.

Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian

Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L.

Graham, and Timothy S. Woodall. “Open MPI: goals, concept, and design

216

https://projects.coin-or.org/BuildTools
https://projects.coin-or.org/Clp
https://projects.coin-or.org/Clp
https://projects.coin-or.org/CoinUtils
https://projects.coin-or.org/Osi
https://projects.coin-or.org/Osi

BIBLIOGRAPHY

of a next generation MPI implementation”. In: Proceedings, 11th European

PVM/MPI Users’ Group Meeting. 2004, pp. 97–104 (cit. on pp. 127, 175).

[GL97] Laurent El Ghaoui and Hervé Lebret. “Robust solutions to least-squares prob-

lems with uncertain data”. In: SIAM Journal on Matrix Analysis and Appli-

cations 18.4 (1997), pp. 1035–1064 (cit. on p. 9).

[Gli00] François Glineur. Computational experiments with a linear approximation of

second-order cone optimization. 2000 (cit. on pp. 53, 62, 63, 67).

[Góe13] Julio C. Góez. “Mixed Integer Second Order Cone Optimization Disjunctive

Conic Cuts: Theory and Experiments”. PhD thesis. Lehigh University, 2013

(cit. on pp. 45, 171, 173, 205).

[Gom58] Ralph E. Gomory. “Outline of an algorithm for integer solutions to linear

programs”. In: Bull. Amer. Math. Soc. 64.5 (1958), pp. 275–278 (cit. on pp. 37,

93).

[Gom60] Ralph E. Gomory. “Solving linear programming problems in integers”. In:

Combinatorial Analysis 10 (1960), pp. 211–215 (cit. on p. 20).

[Gro02] William Gropp. “MPICH2: A new start for MPI implementations”. In: Pro-

ceedings of the 9th European PVM/MPI Users’ Group Meeting on Recent

Advances in Parallel Virtual Machine and Message Passing Interface. 2002,

pp. 7– (cit. on p. 127).

[GLS93] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Al-

gorithms and Combinatorial Optimization. Second corrected edition. Vol. 2.

Springer, 1993 (cit. on pp. 21, 22, 36, 150, 157, 158, 169).

[HJP75] Peter L. Hammer, Ellis L. Johnson, and Uri N. Peled. “Facet of regular 0–1

polytopes”. In: Mathematical Programming 8.1 (1975), pp. 179–206 (cit. on

p. 37).

217

BIBLIOGRAPHY

[Heu04] Clemens Heuberger. “Inverse combinatorial optimization: a survey on prob-

lems, methods, and results”. In: Journal of Combinatorial Optimization 8.3

(2004), pp. 329–361 (cit. on p. 147).

[Hua05] Siming Huang. “Inverse problems of some NP-complete problems”. In: Algo-

rithmic Applications in Management: First International Conference, AAIM

2005, Xian, China, June 22-25, 2005. Proceedings. 2005, pp. 422–426 (cit. on

p. 148).

[KB79] Ravindran Kannan and Achim Bachem. “Polynomial algorithms for comput-

ing the Smith and Hermite normal forms of an integer matrix”. In: SIAM

Journal on Computing 8.4 (1979), pp. 499–507 (cit. on p. 19).

[Kea03] Ralph Baker Kearfott. “GlobSol: history, composition, and advice on use”. In:

Global Optimization and Constraint Satisfaction: First International Work-

shop on Global Constraint Optimization and Constraint Satisfaction, COCOS

2002, Valbonne-Sophia Antipolis, France, October 2002. Revised Selected Pa-

pers. 2003, pp. 17–31 (cit. on p. 72).

[KY14] Fatma Kılınç-Karzan and Sercan Yıldız. “Two-term disjunctions on the second-

order cone”. In: Integer Programming and Combinatorial Optimization. Vol. 8494.

2014, pp. 345–356 (cit. on pp. 73, 86, 88, 89, 93, 118, 206).

[KTD56] Harold William Kuhn, Albert William Tucker, and George Bernard Dantzig.

Linear Inequalities and Related Systems. 38. Princeton University Press, 1956

(cit. on p. 49).

[LD60] Ailsa H. Land and Alison G. Doig. “An automatic method of solving discrete

programming problems”. In: Econometrica 28.3 (1960), pp. 497–520 (cit. on

p. 28).

218

BIBLIOGRAPHY

[Leb09] Yahia Lebbah. “ICOS: a branch and bound based solver for rigorous global

optimization”. In: Optimization Methods and Software 24.4-5 (2009), pp. 709–

726 (cit. on p. 72).

[LS99] Jeff T. Linderoth and Martin W. P. Savelsbergh. “A computational study of

search strategies for mixed integer programming”. In: INFORMS Journal on

Computing 11.2 (1999), pp. 173–187 (cit. on pp. 95, 124).

[LR05] Jeffrey T. Linderoth and Ted K. Ralphs. “Noncommercial software for mixed-

integer linear programming”. In: Integer Programming: Theory and Practice.

2005, pp. 253–303 (cit. on p. 20).

[Lob+98] Miguel Sousa Lobo, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret.

“Applications of second-order cone programming”. In: Linear Algebra and its

Applications 284.1 (1998), pp. 193–228 (cit. on pp. 9, 11).

[LAL99] Andrea Lodi, Kim Allemand, and Thomas M. Liebling. “An evolutionary

heuristic for quadratic 0–1 programming”. In: European Journal of Opera-

tional Research 119.3 (1999), pp. 662–670 (cit. on p. 35).

[Lou03] Robin Lougee-Heimer. “The Common Optimization INterface for Operations

Research: Promoting open-source software in the operations research commu-

nity”. In: IBM Journal of Research and Development 47.1 (2003), pp. 57–66

(cit. on pp. 10, 108).

[Mar+02] Hugues Marchand, Alexander Martin, Robert Weismantel, and Laurence Wolsey.

“Cutting planes in integer and mixed integer programming”. In: Discrete Ap-

plied Mathematics 123.1 (2002), pp. 397–446 (cit. on p. 38).

[MF14] Ruth Misener and Christodoulos A. Floudas. “ANTIGONE: Algorithms for

coNTinuous/Integer Global Optimization of Nonlinear Equations”. In: Jour-

219

BIBLIOGRAPHY

nal of Global Optimization (2014). DOI: 10.1007/s10898-014-0166-2 (cit. on

p. 72).

[Mit73] Gautam Mitra. “Investigation of some branch and bound strategies for the

solution of mixed integer linear programs”. In: Mathematical Programming

4.1 (1973), pp. 155–170 (cit. on p. 124).

[MKV15] Sina Modaresi, Mustafa R. Kılınç, and Juan Pablo Vielma. “Split cuts and

extended formulations for mixed integer conic quadratic programming”. In:

Operations Research Letters 43.1 (2015), pp. 10–15 (cit. on p. 93).

[MOS15] MOSEK ApS. The MOSEK release notes, version 7.1. 2015 (cit. on p. 66).

[MS83] Bruce A. Murtagh and Michael A. Saunders. MINOS 5.51 user’s guide. Tech.

rep. Systems Optimization Laboratory, Stanford University, 1983 (cit. on p. 72).

[NSS94] George L. Nemhauser, Martin W. P. Savelsbergh, and Gabriele C. Sigismondi.

“MINTO, a mixed integer optimizer”. In: Operations Research Letters 15.1

(1994), pp. 47–58 (cit. on p. 71).

[NW88] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial

Optimization. Wiley-Interscience, 1988 (cit. on pp. 20, 98).

[NW90] George L. Nemhauser and Laurence A. Wolsey. “A recursive procedure to gen-

erate all cuts for 0–1 mixed integer programs”. In: Mathematical Programming

46.1 (1990), pp. 379–390 (cit. on pp. 37, 73).

[NS96] Arkadii Nemirovskii and Katya Scheinberg. “Extension of Karmarkar’s algo-

rithm onto convex quadratically constrained quadratic problems”. In: Mathe-

matical Programming 72.3 (1996), pp. 273–289 (cit. on p. 48).

[NN94] Yurii Nesterov and Arkadii Nemirovskii. Interior-Point Polynomial Algorithms

in Convex Programming. Society for Industrial and Applied Mathematics,

1994 (cit. on p. 11).

220

BIBLIOGRAPHY

[Neu+05] Arnold Neumaier, Oleg Shcherbina, Waltraud Huyer, and Tamás Vinkó. “A

comparison of complete global optimization solvers”. In: Mathematical Pro-

gramming 103.2 (2005), pp. 335–356 (cit. on p. 72).

[OHR07] Osman Y. Ozaltin, Brady Hunsaker, and Ted K. Ralphs. Visualizing branch-

and-bound algorithms. Tech. rep. COR@L Laboratory, Lehigh Univesity, 2007

(cit. on p. 137).

[Pad75] Manfred W. Padberg. “A note on zero-one programming”. In: Operations Re-

search 23.4 (1975), pp. 833–837 (cit. on p. 37).

[PRW85] Manfred W. Padberg, Tony J. Van Roy, and Laurence A. Wolsey. “Valid linear

inequalities for fixed charge problems”. In: Operations Research 33.4 (1985),

pp. 842–861 (cit. on p. 37).

[Pap84] Christos H. Papadimitriou. “On the complexity of unique solutions”. In: Jour-

nal of the ACM 31.2 (1984), pp. 392–400 (cit. on p. 27).

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994

(cit. on p. 26).

[PY82] Christos H. Papadimitriou and Mihalis Yannakakis. “The complexity of facets

(and some facets of complexity)”. In: Proceedings of the Fourteenth Annual

ACM Symposium on Theory of Computing. 1982, pp. 255–260 (cit. on pp. 25,

27, 156, 157).

[Pin98] János D. Pintér. “A model development system for global optimization”. In:

High Performance Algorithms and Software in Nonlinear Optimization. 1998,

pp. 301–314 (cit. on p. 72).

[Pin13] János D. Pintér. Global Optimization in Action: Continuous and Lipschitz

Optimization: Algorithms, Implementations and Applications. Vol. 6. Springer

Science & Business Media, 2013 (cit. on p. 39).

221

BIBLIOGRAPHY

[QG92] Ignacio Quesada and Ignacio E. Grossmann. “An LP/NLP based branch and

bound algorithm for convex MINLP optimization problems”. In: Computers

& Chemical Engineering 16.10 (1992), pp. 937–947 (cit. on p. 70).

[Qui+98] Arie J. Quist, Etienne de Klerk, Cornelis Roos, and Tamás Terlaky. “Coposi-

tive realxation for general quadratic programming”. In: Optimization Methods

and Software 9.1-3 (1998), pp. 185–208 (cit. on p. 11).

[RLS04] Ted K. Ralphs, Laszlo Ladanyi, and Matthew J. Saltzman. “A library hierar-

chy for implementing scalable parallel search algorithms”. In: The Journal of

Supercomputing 28.2 (2004), pp. 215–234 (cit. on pp. 30, 109, 125).

[RW86] Tony J. Van Roy and Laurence A. Wolsey. “Valid inequalities for mixed 0–1

programs”. In: Discrete Applied Mathematics 14.2 (1986), pp. 199–213 (cit. on

p. 37).

[Sah17] Nikolaos V. Sahinidis. BARON 17.8.9: global optimization of mixed-integer

nonlinear programs, user’s manual. 2017 (cit. on p. 72).

[Sav94] Martin W. P. Savelsbergh. “Preprocessing and probing techniques for mixed

integer programming problems”. In: ORSA Journal on Computing 6.4 (1994),

pp. 445–454 (cit. on p. 37).

[Sch09] Andrew J. Schaefer. “Inverse integer programming”. In: Optimization Letters

3.4 (2009), pp. 483–489 (cit. on p. 148).

[Sch86] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley

& Sons, Inc., 1986 (cit. on p. 145).

[SS63] John C. Shepherdson and Howard E. Sturgis. “Computability of recursive

functions”. In: Journal of the ACM 10.2 (1963), pp. 217–255 (cit. on p. 23).

222

BIBLIOGRAPHY

[SAY13] Anders Skajaa, Erling D. Andersen, and Yinyu Ye. “Warmstarting the ho-

mogeneous and self-dual interior point method for linear and conic quadratic

problems”. In: Mathematical Programming Computation 5.1 (2013), pp. 1–25

(cit. on pp. 63, 92).

[SM99] Robert A. Stubbs and Sanjay Mehrotra. “A branch-and-cut method for 0-1

mixed convex programming”. English. In: Mathematical Programming 86.3

(1999), pp. 515–532 (cit. on pp. 72, 73, 79, 93, 118).

[TS05] Mohit Tawarmalani and Nikolaos V. Sahinidis. “A polyhedral branch-and-

cut approach to global optimization”. In: Mathematical Programming 103 (2

2005), pp. 225–249 (cit. on p. 72).

[Tur37] Alan M. Turing. “On computable numbers, with an application to the entschei-

dungsproblem”. In: Proceedings of the London Mathematical Society s2-42.1

(1937), pp. 230–265 (cit. on p. 23).

[VAN08] Juan Pablo Vielma, Shabbir Ahmed, and George L. Nemhauser. “A lifted lin-

ear programming branch-and-bound algorithm for mixed-integer conic quadratic

programs”. In: INFORMS Journal on Computing 20.3 (2008), pp. 438–450

(cit. on pp. 63, 66–69, 105, 106).

[VG16] Stefan Vigerske and Ambros Gleixner. SCIP: global optimization of mixed-

integer nonlinear programs in a branch-and-cut framework. eng. Tech. rep.

16-24. ZIB, 2016 (cit. on p. 72).

[WB06] Andreas Wächter and Lorenz T. Biegler. “On the implementation of an interior-

point filter line-search algorithm for large-scale nonlinear programming”. In:

Mathematical Programming 106.1 (2006), pp. 25–57 (cit. on p. 108).

223

BIBLIOGRAPHY

[Wan09] Lizhi Wang. “Cutting plane algorithms for the inverse mixed integer linear

programming problem”. In: Operations Research Letters 37.2 (2009), pp. 114–

116 (cit. on pp. 148, 150).

[Xu07] Yan Xu. “Scalable Algorithms for Parallel Tree Search”. PhD thesis. Lehigh

University, 2007 (cit. on pp. 35, 97).

[Xu+05] Yan Xu, Ted K. Ralphs, Laszlo Ladanyi, and Matthew J. Saltzman. “ALPS:

a framework for implementing parallel tree search algorithms”. In: The Next

Wave in Computing, Optimization, and Decision Technologies. 2005, pp. 319–

334 (cit. on pp. 30, 97, 109, 126).

[Xu+09] Yan Xu, Ted K. Ralphs, Laszlo Ladanyi, and Matthew J. Saltzman. “Com-

putational experience with a software framework for parallel integer program-

ming”. In: INFORMS Journal on Computing 21.3 (2009), pp. 383–397 (cit. on

p. 109).

[XRV] Yan Xu, Ted K. Ralphs, and Stefan Vigerske. COIN-OR the BiCePS linear

integer solver. https://projects.coin-or.org/CHiPPS (cit. on p. 130).

[Xu+a] Yan Xu, Ted K. Ralphs, Stefan Vigerske, and Aykut Bulut. COIN-OR abstract

library for parallel search. https://github.com/aykutbulut/CHiPPS-ALPS

(cit. on p. 109).

[Xu+b] Yan Xu, Ted K. Ralphs, Stefan Vigerske, and Aykut Bulut. COIN-OR branch,

constrain and price software library. https://github.com/aykutbulut/

CHiPPS-BiCePS (cit. on pp. 109, 127).

224

https://projects.coin-or.org/CHiPPS
https://github.com/aykutbulut/CHiPPS-ALPS
https://github.com/aykutbulut/CHiPPS-BiCePS
https://github.com/aykutbulut/CHiPPS-BiCePS

Appendix A

Details of Computational Results

225

Table A.1: bb-socp CPU Time and Number of Nodes with Various Solvers Part 1

disco-cola disco-cplex disco-ipopt disco-mosek
problem CPU time node CPU time node CPU time node CPU time node
classical 200 1 TL TL TL TL TL TL SF SF
classical 200 2 TL TL TL TL TL TL SF SF
classical 200 3 TL TL SF SF TL TL SF SF
classical 50 1 TL TL 24.04 1713 439.97 2635 49.48 5899
classical 50 2 TL TL 60.35 3945 1025.18 6693 83.33 10897
classical 50 3 TL TL 149.14 10259 2973.74 18085 SF SF
estein4 A 0.14 31 SF SF 1.35 31 0.07 31
estein4 B 0.12 31 SF SF 1.52 31 0.07 31
estein4 C 0.1 31 SF SF 1.87 31 0.07 31
estein4 nr22 0.05 31 SF SF 1.7 31 0.06 31
estein5 A 35.33 785 1.96 785 SF SF 2.25 785
estein5 B 14.64 445 1.18 445 44.36 445 1.2 445
estein5 C 14.96 635 1.54 635 SF SF 1.85 635
estein5 nr1 36.0 653 1.67 649 SF SF 1.82 649
estein5 nr21 43.77 785 1.96 785 65.44 785 1.98 785
estein6 0 5204.34 27647 91.61 27789 SF SF 84.58 27891
estein6 1 3070.1 14503 SF SF SF SF SF SF
estein6 2 2952.9 19043 66.18 19531 SF SF SF SF
estein7 0 TL TL 5313.37 990533 SF SF SF SF
estein7 1 TL TL 1824.74 340935 SF SF SF SF
estein7 2 TL TL 3098.51 598215 SF SF SF SF
pp-n10-d10 1.16 213 0.63 295 37.61 73 0.39 307
pp-n10-d10000 SF SF 1.99 2049 SF SF SF SF
pp-n100-d10 TL TL TL TL SF SF TL TL
pp-n100-d10000 ML ML TL TL SF SF SF SF
pp-n1000-d10 TL TL TL TL SF SF TL TL
pp-n1000-d10000 TL TL TL TL SF SF ML ML
pp-n100000-d10 TL TL SF SF SF SF TL TL
pp-n100000-d10000 TL TL SF SF ML ML TL TL
robust 100 1 TL TL 1168.5 6109 ML ML 1411.27 17939
robust 100 2 TL TL 398.04 2141 3210.36 6077 SF SF
robust 100 3 TL TL 167.43 801 3068.68 5387 578.94 7379
robust 200 1 TL TL TL TL TL TL TL TL
robust 200 2 TL TL 6795.73 4883 TL TL TL TL
robust 200 3 TL TL TL TL TL TL TL TL
robust 50 1 TL TL 2.34 59 402.17 1611 48.75 2723
robust 50 2 TL TL 2.64 67 639.48 2573 46.48 2451
robust 50 3 934.93 153 5.45 143 330.34 1355 25.55 1315

226

Table A.2: bb-socp CPU Time and Number of Nodes with Various Solvers Part 2

disco-cola disco-cplex disco-ipopt disco-mosek
problem CPU time node CPU time node CPU time node CPU time node
r12c15k5i10 0.01 63 0.03 63 SF SF 0.08 63
r12c15k5i15 0.01 29 0.02 29 SF SF 0.04 29
r14c18k3i12 0.3 489 0.45 501 SF SF SF SF
r14c18k3i15 0.17 247 0.19 183 SF SF SF SF
r14c18k3i18 0.06 149 0.16 149 SF SF SF SF
r14c18k3i9 3.07 3013 2.22 3133 SF SF SF SF
r17c20k5i15 0.02 33 0.05 33 SF SF 0.05 33
r17c20k5i20 0.01 33 0.03 33 SF SF 0.06 33
r17c30k3i12 2.8 51 0.1 79 SF SF 0.13 73
r17c30k3i15 91.05 617 1.6 1145 SF SF 1.16 747
r17c30k3i18 TL TL SF SF SF SF SF SF
r17c30k3i21 TL TL SF SF SF SF SF SF
r17c30k3i24 TL TL SF SF SF SF SF SF
r17c30k3i27 TL TL SF SF SF SF SF SF
r22c30k10i20 0.88 3295 2.31 3295 SF SF SF SF
r22c40k10i20 0.07 19 0.03 23 SF SF 0.06 23
r22c40k10i30 3.47 1341 1.8 1333 SF SF SF SF
r22c40k10i40 11.18 12141 20.14 16037 SF SF SF SF
r23c45k3i21 416.1 447 1.08 529 SF SF 1.15 567
r23c45k3i24 882.8 673 2.13 1003 SF SF SF SF
r23c45k3i27 TL TL SF SF SF SF SF SF
r23c45k3i30 TL TL SF SF SF SF SF SF
r23c45k3i33 TL TL SF SF SF SF SF SF
r23c45k3i36 TL TL SF SF SF SF SF SF
r27c50k5i25 84.78 459 1.48 691 SF SF SF SF
r27c50k5i30 TL TL TL TL SF SF SF SF
r27c50k5i35 TL TL SF SF SF SF SF SF
r27c50k5i40 TL TL SF SF SF SF SF SF
r27c50k5i45 TL TL SF SF SF SF SF SF
r27c50k5i50 TL TL SF SF SF SF SF SF
r32c45k15i30 0.06 173 0.24 173 SF SF 0.29 173
r32c45k15i45 0.23 635 0.67 635 SF SF 0.74 631
r32c60k15i30 0.68 125 0.24 127 SF SF 0.39 193
r32c60k15i45 3951.94 428731 1186.22 576477 SF SF SF SF
r32c60k15i60 TL TL SF SF SF SF SF SF
r52c75k5i35 TL TL SF SF SF SF SF SF
r52c75k5i40 TL TL SF SF SF SF SF SF
r52c75k5i45 TL TL SF SF SF SF SF SF
r52c75k5i50 TL TL SF SF SF SF SF SF
r52c75k5i60 TL TL SF SF SF SF SF SF
r52c75k5i65 TL TL SF SF SF SF SF SF

227

Table A.3: bb-socp CPU Time and Number of Nodes with Various Solvers Part 3

disco-cola disco-cplex disco-ipopt disco-mosek
problem CPU time node CPU time node CPU time node CPU time node
shortfall 100 1 TL TL 1717.76 9221 ML ML TL TL
shortfall 100 2 TL TL TL TL ML ML TL TL
shortfall 100 3 TL TL 5440.13 22915 ML ML 2869.3 36959
shortfall 200 1 TL TL TL TL TL TL TL TL
shortfall 200 2 TL TL TL TL TL TL TL TL
shortfall 200 3 TL TL TL TL TL TL TL TL
shortfall 50 1 TL TL 24.55 685 531.18 2199 70.66 3579
shortfall 50 2 TL TL 77.44 2245 1530.77 6381 154.82 8093
shortfall 50 3 TL TL SF SF 3150.97 11075 186.0 10687
sssd-strong-15-4 TL TL SF SF SF SF SF SF
sssd-strong-15-8 TL TL TL TL SF SF TL TL
sssd-strong-20-4 TL TL SF SF SF SF SF SF
sssd-strong-20-8 TL TL TL TL SF SF SF SF
sssd-strong-25-4 TL TL SF SF SF SF SF SF
sssd-strong-25-8 TL TL TL TL SF SF SF SF
sssd-strong-30-4 TL TL SF SF SF SF SF SF
sssd-strong-30-8 TL TL TL TL SF SF TL TL
sssd-weak-15-4 TL TL SF SF SF SF SF SF
sssd-weak-15-8 TL TL TL TL SF SF SF SF
sssd-weak-20-4 TL TL SF SF SF SF SF SF
sssd-weak-20-8 TL TL TL TL SF SF SF SF
sssd-weak-25-4 TL TL SF SF SF SF SF SF
sssd-weak-25-8 TL TL SF SF SF SF SF SF
sssd-weak-30-4 TL TL SF SF SF SF SF SF
sssd-weak-30-8 TL TL TL TL SF SF SF SF
turbine07GF 0.02 17 0.1 45 SF SF 0.13 39
turbine07 aniso 0.01 1 0.01 1 0.18 1 0.02 1
turbine07 lowb 2.99 241 SF SF SF SF SF SF
turbine07 lowb aniso 2.98 569 SF SF SF SF SF SF
turbine54GF 0.07 13 0.52 29 SF SF TL TL
uflquad-nopsc-10-100 1801.52 209 35.86 209 SF SF 23.25 209
uflquad-nopsc-10-150 2409.0 185 53.83 185 ML ML 38.65 185
uflquad-nopsc-20-100 TL TL SF SF SF SF 1696.46 10609
uflquad-nopsc-20-150 TL TL TL TL SF SF 4229.4 14825
uflquad-nopsc-30-100 TL TL SF SF ML ML 1971.31 8603
uflquad-nopsc-30-150 TL TL TL TL SF SF ML ML
uflquad-nopsc-30-200 TL TL TL TL ML ML ML ML
uflquad-nopsc-30-300 TL TL TL TL ML ML ML ML
uflquad-psc-10-100 15.72 9 1.63 7 304.52 1 2.07 13
uflquad-psc-10-150 35.28 7 2.98 7 SF SF SF SF
uflquad-psc-20-100 49.83 15 8.05 15 SF SF SF SF
uflquad-psc-20-150 109.48 11 10.4 11 SF SF 11.3 25
uflquad-psc-30-100 138.7 23 17.28 21 SF SF 22.25 35
uflquad-psc-30-150 100.82 3 1.55 1 SF SF 26.35 29
uflquad-psc-30-200 319.62 7 15.73 7 SF SF SF SF
uflquad-psc-30-300 1667.77 19 53.31 17 SF SF SF SF

228

Table A.4: bb-socp CPU Time and Number of Nodes with Different Branching Strategies
Part 1

disco-cplex disco-cplex-strong
problem CPU time node CPU time node
classical 200 1 TL TL TL TL
classical 200 2 TL TL TL TL
classical 200 3 SF SF TL TL
classical 50 1 24.04 1713 117.42 741
classical 50 2 60.35 3945 123.67 807
classical 50 3 149.14 10259 578.5 3391
estein4 A SF SF SF SF
estein4 B SF SF SF SF
estein4 C SF SF SF SF
estein4 nr22 SF SF SF SF
estein5 A 1.96 785 10.4 785
estein5 B 1.18 445 7.41 373
estein5 C 1.54 635 8.28 387
estein5 nr1 1.67 649 8.67 407
estein5 nr21 1.96 785 10.14 785
estein6 0 91.61 27789 419.63 17399
estein6 1 SF SF SF SF
estein6 2 66.18 19531 300.85 8621
estein7 0 5313.37 990533 TL TL
estein7 1 1824.74 340935 TL TL
estein7 2 3098.51 598215 SF SF
pp-n10-d10 0.63 295 0.76 47
pp-n10-d10000 1.99 2049 21.06 2789
pp-n100-d10 TL TL TL TL
pp-n100-d10000 TL TL TL TL
pp-n1000-d10 TL TL TL TL
pp-n1000-d10000 TL TL TL TL
pp-n100000-d10 SF SF TL TL
pp-n100000-d10000 SF SF TL TL
robust 100 1 1168.5 6109 2232.6 1239
robust 100 2 398.04 2141 690.42 307
robust 100 3 167.43 801 488.73 239
robust 200 1 TL TL TL TL
robust 200 2 6795.73 4883 TL TL
robust 200 3 TL TL TL TL
robust 50 1 2.34 59 17.03 25
robust 50 2 2.64 67 17.51 25
robust 50 3 5.45 143 23.97 41

229

Table A.5: bb-socp CPU Time and Number of Nodes with Different Branching Strategies
Part 2

disco-cplex disco-cplex-strong
problem CPU time node CPU time node
r12c15k5i10 0.03 63 0.07 57
r12c15k5i15 0.02 29 0.08 19
r14c18k3i12 0.45 501 0.54 139
r14c18k3i15 0.19 183 0.89 119
r14c18k3i18 0.16 149 1.02 109
r14c18k3i9 2.22 3133 TL TL
r17c20k5i15 0.05 33 0.2 39
r17c20k5i20 0.03 33 0.36 39
r17c30k3i12 0.1 79 0.5 41
r17c30k3i15 1.6 1145 2.11 121
r17c30k3i18 SF SF SF SF
r17c30k3i21 SF SF TL TL
r17c30k3i24 SF SF TL TL
r17c30k3i27 SF SF TL TL
r22c30k10i20 2.31 3295 4.4 3153
r22c40k10i20 0.03 23 0.14 17
r22c40k10i30 1.8 1333 4.5 385
r22c40k10i40 20.14 16037 100.14 7151
r23c45k3i21 1.08 529 TL TL
r23c45k3i24 2.13 1003 SF SF
r23c45k3i27 SF SF SF SF
r23c45k3i30 SF SF TL TL
r23c45k3i33 SF SF SF SF
r23c45k3i36 SF SF TL TL
r27c50k5i25 1.48 691 4.93 133
r27c50k5i30 TL TL TL TL
r27c50k5i35 SF SF TL TL
r27c50k5i40 SF SF TL TL
r27c50k5i45 SF SF TL TL
r27c50k5i50 SF SF TL TL
r32c45k15i30 0.24 173 0.2 29
r32c45k15i45 0.67 635 1.48 141
r32c60k15i30 0.24 127 1.76 73
r32c60k15i45 1186.22 576477 1404.82 209167
r32c60k15i60 SF SF 4318.31 206719
r52c75k5i35 SF SF TL TL
r52c75k5i40 SF SF TL TL
r52c75k5i45 SF SF TL TL
r52c75k5i50 SF SF TL TL
r52c75k5i60 SF SF TL TL
r52c75k5i65 SF SF TL TL

230

Table A.6: bb-socp CPU Time and Number of Nodes with Different Branching Strategies
Part 3

disco-cplex disco-cplex-strong
problem CPU time node CPU time node
shortfall 100 1 1717.76 9221 TL TL
shortfall 100 2 TL TL TL TL
shortfall 100 3 5440.13 22915 TL TL
shortfall 200 1 TL TL TL TL
shortfall 200 2 TL TL TL TL
shortfall 200 3 TL TL TL TL
shortfall 50 1 24.55 685 90.35 207
shortfall 50 2 77.44 2245 144.6 457
shortfall 50 3 SF SF 853.94 2291
sssd-strong-15-4 SF SF TL TL
sssd-strong-15-8 TL TL TL TL
sssd-strong-20-4 SF SF 1249.84 10441
sssd-strong-20-8 TL TL TL TL
sssd-strong-25-4 SF SF 282.6 1109
sssd-strong-25-8 TL TL TL TL
sssd-strong-30-4 SF SF TL TL
sssd-strong-30-8 TL TL TL TL
sssd-weak-15-4 SF SF TL TL
sssd-weak-15-8 TL TL TL TL
sssd-weak-20-4 SF SF 1253.12 8415
sssd-weak-20-8 TL TL TL TL
sssd-weak-25-4 SF SF 304.27 511
sssd-weak-25-8 SF SF TL TL
sssd-weak-30-4 SF SF 3739.48 26955
sssd-weak-30-8 TL TL TL TL
turbine07GF 0.1 45 0.22 17
turbine07 aniso 0.01 1 0.0 1
turbine07 lowb SF SF 88.0 91
turbine07 lowb aniso SF SF SF SF
turbine54GF 0.52 29 1.24 15
uflquad-nopsc-10-100 35.86 209 266.02 215
uflquad-nopsc-10-150 53.83 185 365.15 191
uflquad-nopsc-20-100 SF SF TL TL
uflquad-nopsc-20-150 TL TL TL TL
uflquad-nopsc-30-100 SF SF TL TL
uflquad-nopsc-30-150 TL TL TL TL
uflquad-nopsc-30-200 TL TL TL TL
uflquad-nopsc-30-300 TL TL TL TL
uflquad-psc-10-100 1.63 7 3.96 7
uflquad-psc-10-150 2.98 7 9.88 5
uflquad-psc-20-100 8.05 15 68.17 13
uflquad-psc-20-150 10.4 11 46.82 11
uflquad-psc-30-100 17.28 21 68.65 21
uflquad-psc-30-150 1.55 1 1.63 1
uflquad-psc-30-200 15.73 7 105.65 7
uflquad-psc-30-300 53.31 17 262.13 15

231

Table A.7: bb-lp CPU Time and Number of Nodes with Different bb-lp OA Cut Parameter
Values, Part 1

disco-oa disco-oa-2 disco-oa-3 disco-oa-4
exper 0 exper 2 exper 3 exper 4

problem CPU t node CPU t node CPU t node CPU t node
classical 200 1 TL TL TL TL TL TL TL TL
classical 200 2 TL TL TL TL TL TL TL TL
classical 200 3 TL TL TL TL TL TL TL TL
classical 50 1 6778.7 288767 TL TL TL TL TL TL
classical 50 2 1622.01 25469 1705.56 24605 1670.31 24319 TL TL
classical 50 3 TL TL TL TL TL TL TL TL
estein4 A 0.07 31 0.06 31 0.11 31 0.07 31
estein4 B 0.05 31 0.08 31 0.09 31 0.05 31
estein4 C 0.06 31 0.08 31 0.08 31 0.06 31
estein4 nr22 0.07 31 0.1 31 0.09 31 0.07 31
estein5 A 3.97 801 3.86 785 3.51 785 3.6 801
estein5 B 2.29 457 2.41 499 2.24 443 2.29 513
estein5 C 2.7 485 2.62 481 2.83 635 2.33 477
estein5 nr1 3.34 617 2.95 661 3.07 669 3.21 655
estein5 nr21 4.6 803 3.71 791 3.76 785 4.03 799
estein6 0 179.76 29307 199.16 27945 163.66 28557 167.79 30373
estein6 1 89.24 16101 106.97 18253 89.3 15821 87.86 17941
estein6 2 90.9 16621 95.13 16173 103.76 19093 75.2 14321
estein7 0 ML ML TL TL TL TL TL TL
estein7 1 3867.0 481167 3982.39 389783 3415.1 347427 2954.29 427631
estein7 2 4753.69 701587 TL TL TL TL 4981.7 784365
pp-n10-d10 0.67 307 0.51 241 0.6 223 0.62 305
pp-n10-d10000 2.01 2047 1.96 2047 1.97 2047 1.98 2047
pp-n100-d10 ML ML ML ML ML ML ML ML
pp-n100-d10000 ML ML ML ML ML ML TL TL
pp-n1000-d10 TL TL TL TL TL TL TL TL
pp-n1000-d10000 ML ML TL TL TL TL TL TL
pp-n100000-d10 TL TL TL TL TL TL TL TL
pp-n100000-d10000 TL TL SF SF SF SF TL TL
robust 100 1 TL TL TL TL TL TL TL TL
robust 100 2 1471.85 7391 1914.4 8097 2927.49 15985 6169.13 38287
robust 100 3 TL TL 3187.08 8603 TL TL TL TL
robust 200 1 TL TL TL TL TL TL TL TL
robust 200 2 TL TL TL TL TL TL TL TL
robust 200 3 TL TL TL TL TL TL TL TL
robust 50 1 50.05 1929 14.8 487 158.1 4893 50.6 1929
robust 50 2 21.1 705 68.43 2401 TL TL 825.31 19335
robust 50 3 415.24 16251 111.92 3427 14.24 267 415.69 15739

232

Table A.8: bb-lp CPU Time and Number of Nodes with Different bb-lp OA Cut Parameter
Values, Part 2

disco-oa disco-oa-2 disco-oa-3 disco-oa-4
problem CPU time node CPU time node CPU time node CPU time node
r12c15k5i10 0.01 51 0.01 51 0.01 51 0.02 51
r12c15k5i15 0.0 1 0.0 1 0.0 1 0.0 1
r14c18k3i12 SF SF 0.14 375 0.16 379 SF SF
r14c18k3i15 SF SF 0.1 237 0.16 339 SF SF
r14c18k3i18 0.06 155 0.04 121 0.05 151 0.06 155
r14c18k3i9 1.02 2969 SF SF 1.17 2999 0.98 2969
r17c20k5i15 0.0 25 0.0 25 0.01 25 0.01 25
r17c20k5i20 0.01 27 0.01 27 SF SF 0.01 27
r17c30k3i12 0.24 191 0.08 71 0.18 75 0.22 191
r17c30k3i15 1967.06 1605185 70.14 44933 3.55 1653 2063.04 1605185
r17c30k3i18 ML ML ML ML 635.2 343397 ML ML
r17c30k3i21 ML ML ML ML ML ML ML ML
r17c30k3i24 ML ML ML ML ML ML ML ML
r17c30k3i27 ML ML 1045.97 892249 860.47 554505 ML ML
r22c30k10i20 0.94 3407 0.93 3239 0.97 3367 0.94 3407
r22c40k10i20 0.61 595 0.3 229 0.04 21 0.63 595
r22c40k10i30 1.43 2143 1.34 1585 1.54 1441 1.53 2143
r22c40k10i40 6.38 13765 7.82 16393 4.92 10219 6.31 13765
r23c45k3i21 84.99 43457 4103.34 1470823 54.67 14457 88.25 43457
r23c45k3i24 ML ML ML ML 560.62 143871 ML ML
r23c45k3i27 ML ML ML ML TL TL ML ML
r23c45k3i30 ML ML ML ML ML ML ML ML
r23c45k3i33 ML ML ML ML ML ML ML ML
r23c45k3i36 ML ML ML ML ML ML ML ML
r27c50k5i25 ML ML 560.05 255093 16.19 4663 ML ML
r27c50k5i30 ML ML ML ML ML ML ML ML
r27c50k5i35 ML ML ML ML ML ML ML ML
r27c50k5i40 ML ML TL TL ML ML TL TL
r27c50k5i45 ML ML ML ML ML ML ML ML
r27c50k5i50 ML ML ML ML ML ML TL TL
r32c45k15i30 0.04 105 0.05 105 0.04 105 0.06 105
r32c45k15i45 0.15 269 0.48 905 0.4 733 0.14 269
r32c60k15i30 0.32 233 0.37 201 0.44 153 0.32 233
r32c60k15i45 413.76 490851 386.19 450013 420.7 350665 423.81 490851
r32c60k15i60 ML ML ML ML ML ML SF SF
r52c75k5i35 TL TL TL TL TL TL TL TL
r52c75k5i40 ML ML TL TL TL TL TL TL
r52c75k5i45 SF SF TL TL TL TL TL TL
r52c75k5i50 ML ML TL TL TL TL ML ML
r52c75k5i60 ML ML TL TL ML ML ML ML
r52c75k5i65 TL TL TL TL TL TL TL TL

233

Table A.9: bb-lp CPU Time and Number of Nodes with Different bb-lp OA Cut Parameter
Values, Part 3

disco-oa disco-oa-2 disco-oa-3 disco-oa-4
problem CPU time node CPU time node CPU time node CPU time node
shortfall 100 1 TL TL TL TL TL TL TL TL
shortfall 100 2 TL TL TL TL TL TL TL TL
shortfall 100 3 TL TL TL TL TL TL TL TL
shortfall 200 1 TL TL TL TL TL TL TL TL
shortfall 200 2 TL TL TL TL TL TL TL TL
shortfall 200 3 TL TL TL TL TL TL TL TL
shortfall 50 1 356.38 2653 331.7 2277 332.57 2519 1457.88 27015
shortfall 50 2 547.0 5651 526.12 4143 415.21 3091 1286.0 24745
shortfall 50 3 5658.02 28637 6204.34 33979 5109.38 25475 TL TL
sssd-strong-15-4 ML ML ML ML ML ML ML ML
sssd-strong-15-8 TL TL TL TL TL TL TL TL
sssd-strong-20-4 ML ML TL TL ML ML ML ML
sssd-strong-20-8 TL TL TL TL TL TL TL TL
sssd-strong-25-4 ML ML ML ML ML ML TL TL
sssd-strong-25-8 TL TL TL TL TL TL TL TL
sssd-strong-30-4 ML ML TL TL ML ML ML ML
sssd-strong-30-8 TL TL TL TL TL TL TL TL
sssd-weak-15-4 ML ML ML ML TL TL ML ML
sssd-weak-15-8 ML ML ML ML TL TL ML ML
sssd-weak-20-4 ML ML ML ML ML ML ML ML
sssd-weak-20-8 ML ML TL TL ML ML TL TL
sssd-weak-25-4 ML ML ML ML ML ML ML ML
sssd-weak-25-8 ML ML ML ML TL TL ML ML
sssd-weak-30-4 ML ML ML ML ML ML ML ML
sssd-weak-30-8 ML ML TL TL TL TL ML ML
turbine07GF 0.02 17 0.02 17 0.03 17 0.02 17
turbine07 aniso 0.0 1 0.0 1 0.0 1 0.0 1
turbine07 lowb 1.5 329 1.74 295 1.87 211 1.48 329
turbine07 lowb aniso 2.24 657 1.92 433 2.74 433 2.26 657
turbine54GF 0.02 5 0.02 5 0.03 5 0.02 5
uflquad-nopsc-10-100 189.49 251 200.79 263 176.7 257 193.36 251
uflquad-nopsc-10-150 251.69 407 287.7 355 278.96 255 262.94 407
uflquad-nopsc-20-100 TL TL TL TL TL TL TL TL
uflquad-nopsc-20-150 TL TL TL TL TL TL TL TL
uflquad-nopsc-30-100 TL TL TL TL TL TL TL TL
uflquad-nopsc-30-150 TL TL TL TL TL TL TL TL
uflquad-nopsc-30-200 TL TL TL TL TL TL TL TL
uflquad-nopsc-30-300 TL TL TL TL TL TL TL TL
uflquad-psc-10-100 4.05 9 4.56 9 6.11 9 3.98 9
uflquad-psc-10-150 9.41 9 9.63 7 10.76 7 9.62 9
uflquad-psc-20-100 37.32 25 46.47 25 45.97 23 37.34 25
uflquad-psc-20-150 30.13 11 36.4 11 47.01 11 32.87 11
uflquad-psc-30-100 63.96 29 91.48 33 157.56 39 66.18 29
uflquad-psc-30-150 43.15 3 49.39 3 54.24 3 47.58 3
uflquad-psc-30-200 156.0 7 206.59 7 165.39 7 166.36 7
uflquad-psc-30-300 853.88 29 1089.7 29 1335.16 29 813.86 29

234

Table A.10: bb-lp CPU Time and Number of Nodes with Different bb-lp OA Cut Param-
eter Values, Part 4

disco-oa-5 disco-oa-6 disco-oa-7
problem CPU time node CPU time node CPU time node
classical 200 1 TL TL TL TL TL TL
classical 200 2 TL TL TL TL TL TL
classical 200 3 TL TL TL TL TL TL
classical 50 1 5849.27 232547 TL TL 6587.66 288879
classical 50 2 897.27 6927 2975.46 42449 1624.42 25469
classical 50 3 3641.37 35863 TL TL TL TL
estein4 A 0.07 31 0.07 31 0.07 31
estein4 B 0.05 31 0.04 31 0.04 31
estein4 C 0.06 31 0.07 31 0.06 31
estein4 nr22 0.07 31 0.07 31 0.07 31
estein5 A 4.41 801 4.06 801 3.98 801
estein5 B 2.66 471 2.34 457 2.33 457
estein5 C 3.01 495 2.74 485 2.71 485
estein5 nr1 4.12 677 3.33 617 3.28 617
estein5 nr21 4.92 801 4.63 803 4.69 803
estein6 0 198.09 28639 181.55 29287 180.48 29307
estein6 1 105.11 17579 91.75 16091 90.8 16101
estein6 2 99.39 15665 93.77 16621 95.71 16621
estein7 0 ML ML TL TL ML ML
estein7 1 TL TL 3224.52 404169 3933.17 481167
estein7 2 TL TL 3958.62 607279 4801.18 701587
pp-n10-d10 0.71 307 0.69 307 0.66 307
pp-n10-d10000 2.03 2047 2.03 2047 2.01 2047
pp-n100-d10 ML ML ML ML ML ML
pp-n100-d10000 ML ML ML ML ML ML
pp-n1000-d10 TL TL TL TL TL TL
pp-n1000-d10000 TL TL ML ML TL TL
pp-n100000-d10 TL TL TL TL TL TL
pp-n100000-d10000 TL TL SF SF SF SF
robust 100 1 TL TL TL TL TL TL
robust 100 2 1485.09 5613 2969.23 12519 1513.98 7381
robust 100 3 TL TL TL TL TL TL
robust 200 1 TL TL TL TL TL TL
robust 200 2 TL TL TL TL TL TL
robust 200 3 TL TL TL TL TL TL
robust 50 1 16.7 447 51.41 1929 49.12 1929
robust 50 2 19.92 673 21.86 711 20.66 705
robust 50 3 263.8 9469 423.59 16251 419.18 16251

235

Table A.11: bb-lp CPU Time and Number of Nodes with Different bb-lp OA Cut Param-
eter Values, Part 5

disco-oa-5 disco-oa-6 disco-oa-7
problem CPU time node CPU time node CPU time node
r12c15k5i10 0.01 51 0.01 51 0.02 51
r12c15k5i15 0.0 1 0.0 1 0.0 1
r14c18k3i12 SF SF SF SF SF SF
r14c18k3i15 SF SF SF SF SF SF
r14c18k3i18 0.05 155 0.05 155 0.06 155
r14c18k3i9 0.99 2969 0.98 2969 0.94 2969
r17c20k5i15 0.01 25 0.01 25 0.01 25
r17c20k5i20 0.02 27 0.01 27 0.01 27
r17c30k3i12 0.22 191 0.23 191 0.22 191
r17c30k3i15 1994.86 1605185 2016.69 1605187 1981.56 1605185
r17c30k3i18 ML ML ML ML ML ML
r17c30k3i21 ML ML SF SF ML ML
r17c30k3i24 ML ML ML ML ML ML
r17c30k3i27 ML ML ML ML ML ML
r22c30k10i20 0.94 3407 0.96 3407 0.97 3407
r22c40k10i20 0.62 595 0.59 595 0.61 595
r22c40k10i30 1.43 2143 1.44 2143 1.42 2143
r22c40k10i40 6.33 13765 6.34 13765 6.22 13765
r23c45k3i21 85.77 43457 83.98 43457 84.44 43457
r23c45k3i24 ML ML ML ML ML ML
r23c45k3i27 ML ML ML ML ML ML
r23c45k3i30 TL TL TL TL ML ML
r23c45k3i33 ML ML ML ML ML ML
r23c45k3i36 ML ML ML ML ML ML
r27c50k5i25 ML ML ML ML ML ML
r27c50k5i30 ML ML ML ML ML ML
r27c50k5i35 ML ML ML ML ML ML
r27c50k5i40 ML ML ML ML ML ML
r27c50k5i45 ML ML ML ML ML ML
r27c50k5i50 ML ML TL TL ML ML
r32c45k15i30 0.04 105 0.05 105 0.05 105
r32c45k15i45 0.16 269 0.17 269 0.14 269
r32c60k15i30 0.32 233 0.32 233 0.3 233
r32c60k15i45 423.8 490851 412.4 490851 423.12 490851
r32c60k15i60 ML ML SF SF ML ML
r52c75k5i35 TL TL TL TL TL TL
r52c75k5i40 ML ML TL TL ML ML
r52c75k5i45 TL TL TL TL TL TL
r52c75k5i50 TL TL ML ML ML ML
r52c75k5i60 ML ML TL TL ML ML
r52c75k5i65 TL TL TL TL TL TL

236

Table A.12: bb-lp CPU Time and Number of Nodes with Different bb-lp OA Cut Param-
eter Values, Part 6

disco-oa-5 disco-oa-6 disco-oa-7
problem CPU time node CPU time node CPU time node
shortfall 100 1 TL TL TL TL TL TL
shortfall 100 2 TL TL TL TL TL TL
shortfall 100 3 TL TL TL TL TL TL
shortfall 200 1 TL TL TL TL TL TL
shortfall 200 2 TL TL TL TL TL TL
shortfall 200 3 TL TL TL TL TL TL
shortfall 50 1 321.76 1633 602.64 6361 265.46 2109
shortfall 50 2 821.7 6485 1866.77 24425 563.48 5167
shortfall 50 3 TL TL TL TL 5056.01 20899
sssd-strong-15-4 ML ML ML ML ML ML
sssd-strong-15-8 TL TL TL TL TL TL
sssd-strong-20-4 TL TL ML ML ML ML
sssd-strong-20-8 TL TL TL TL TL TL
sssd-strong-25-4 ML ML ML ML ML ML
sssd-strong-25-8 TL TL TL TL TL TL
sssd-strong-30-4 TL TL TL TL ML ML
sssd-strong-30-8 TL TL TL TL TL TL
sssd-weak-15-4 ML ML ML ML ML ML
sssd-weak-15-8 ML ML TL TL ML ML
sssd-weak-20-4 ML ML ML ML ML ML
sssd-weak-20-8 TL TL ML ML TL TL
sssd-weak-25-4 ML ML ML ML ML ML
sssd-weak-25-8 ML ML TL TL TL TL
sssd-weak-30-4 TL TL ML ML ML ML
sssd-weak-30-8 ML ML TL TL ML ML
turbine07GF 0.02 17 0.02 17 0.02 17
turbine07 aniso 0.0 1 0.0 1 0.0 1
turbine07 lowb 1.54 329 1.52 329 1.48 329
turbine07 lowb aniso 2.29 657 2.2 657 2.25 657
turbine54GF 0.02 5 0.02 5 0.03 5
uflquad-nopsc-10-100 191.64 251 189.74 251 200.86 251
uflquad-nopsc-10-150 255.22 407 248.96 407 244.4 407
uflquad-nopsc-20-100 TL TL TL TL TL TL
uflquad-nopsc-20-150 TL TL TL TL TL TL
uflquad-nopsc-30-100 TL TL TL TL TL TL
uflquad-nopsc-30-150 TL TL TL TL TL TL
uflquad-nopsc-30-200 TL TL TL TL TL TL
uflquad-nopsc-30-300 TL TL TL TL TL TL
uflquad-psc-10-100 4.16 9 4.03 9 3.93 9
uflquad-psc-10-150 8.94 9 8.89 9 8.99 9
uflquad-psc-20-100 37.82 25 37.95 25 36.67 25
uflquad-psc-20-150 30.25 11 31.59 11 32.47 11
uflquad-psc-30-100 65.12 29 63.97 29 62.16 29
uflquad-psc-30-150 51.68 3 48.75 3 53.84 3
uflquad-psc-30-200 165.91 7 142.2 7 161.36 7
uflquad-psc-30-300 967.69 29 985.68 29 918.44 29

237

Table A.13: bb-lp CPU Time and Number of Nodes with Different Branching Strategies
Part 1

disco-oa disco-oa-strong
problem CPU time node CPU time node
classical 200 1 TL TL TL TL
classical 200 2 TL TL TL TL
classical 200 3 TL TL TL TL
classical 50 1 6778.7 288767 TL TL
classical 50 2 1622.01 25469 3832.99 63363
classical 50 3 TL TL TL TL
estein4 A 0.07 31 0.11 31
estein4 B 0.05 31 0.08 31
estein4 C 0.06 31 0.09 31
estein4 nr22 0.07 31 0.08 21
estein5 A 3.97 801 5.48 799
estein5 B 2.29 457 2.96 457
estein5 C 2.7 485 2.86 445
estein5 nr1 3.34 617 3.81 531
estein5 nr21 4.6 803 5.84 783
estein6 0 179.76 29307 193.45 23471
estein6 1 89.24 16101 113.21 13017
estein6 2 90.9 16621 105.1 13521
estein7 0 ML ML TL TL
estein7 1 3867.0 481167 3644.47 281201
estein7 2 4753.69 701587 TL TL
pp-n10-d10 0.67 307 2.21 1359
pp-n10-d10000 2.01 2047 2.36 1043
pp-n100-d10 ML ML TL TL
pp-n100-d10000 ML ML TL TL
pp-n1000-d10 TL TL TL TL
pp-n1000-d10000 ML ML TL TL
pp-n100000-d10 TL TL TL TL
pp-n100000-d10000 TL TL TL TL
robust 100 1 TL TL TL TL
robust 100 2 1471.85 7391 3218.65 12299
robust 100 3 TL TL TL TL
robust 200 1 TL TL TL TL
robust 200 2 TL TL TL TL
robust 200 3 TL TL TL TL
robust 50 1 50.05 1929 17.0 175
robust 50 2 21.1 705 22.08 351
robust 50 3 415.24 16251 486.88 11549

238

Table A.14: bb-lp CPU Time and Number of Nodes with Different Branching Strategies
Part 2

disco-oa disco-oa-strong
problem CPU time node CPU time node
r12c15k5i10 0.01 51 0.02 51
r12c15k5i15 0.0 1 0.0 1
r14c18k3i12 SF SF SF SF
r14c18k3i15 SF SF SF SF
r14c18k3i18 0.06 155 0.09 73
r14c18k3i9 1.02 2969 1.28 3271
r17c20k5i15 0.0 25 0.02 17
r17c20k5i20 0.01 27 0.04 23
r17c30k3i12 0.24 191 0.74 399
r17c30k3i15 1967.06 1605185 1928.39 1211199
r17c30k3i18 ML ML TL TL
r17c30k3i21 ML ML 414.13 233757
r17c30k3i24 ML ML 382.74 142451
r17c30k3i27 ML ML 130.1 46233
r22c30k10i20 0.94 3407 1.48 3275
r22c40k10i20 0.61 595 0.46 351
r22c40k10i30 1.43 2143 3.32 2681
r22c40k10i40 6.38 13765 15.7 11737
r23c45k3i21 84.99 43457 114.31 29139
r23c45k3i24 ML ML ML ML
r23c45k3i27 ML ML TL TL
r23c45k3i30 ML ML TL TL
r23c45k3i33 ML ML SF SF
r23c45k3i36 ML ML TL TL
r27c50k5i25 ML ML ML ML
r27c50k5i30 ML ML TL TL
r27c50k5i35 ML ML TL TL
r27c50k5i40 ML ML TL TL
r27c50k5i45 ML ML TL TL
r27c50k5i50 ML ML TL TL
r32c45k15i30 0.04 105 0.01 11
r32c45k15i45 0.15 269 0.66 631
r32c60k15i30 0.32 233 0.34 137
r32c60k15i45 413.76 490851 SF SF
r32c60k15i60 ML ML ML ML
r52c75k5i35 TL TL TL TL
r52c75k5i40 ML ML TL TL
r52c75k5i45 SF SF TL TL
r52c75k5i50 ML ML TL TL
r52c75k5i60 ML ML 565.23 55621
r52c75k5i65 TL TL 552.44 41281

239

Table A.15: bb-lp CPU Time and Number of Nodes with Different Branching Strategies
Part 3

disco-oa disco-oa-strong
problem CPU time node CPU time node
shortfall 100 1 TL TL TL TL
shortfall 100 2 TL TL TL TL
shortfall 100 3 TL TL TL TL
shortfall 200 1 TL TL TL TL
shortfall 200 2 TL TL TL TL
shortfall 200 3 TL TL TL TL
shortfall 50 1 356.38 2653 258.92 2367
shortfall 50 2 547.0 5651 1041.34 12335
shortfall 50 3 5658.02 28637 TL TL
sssd-strong-15-4 ML ML 1572.73 205523
sssd-strong-15-8 TL TL TL TL
sssd-strong-20-4 ML ML 1382.6 186161
sssd-strong-20-8 TL TL TL TL
sssd-strong-25-4 ML ML TL TL
sssd-strong-25-8 TL TL TL TL
sssd-strong-30-4 ML ML TL TL
sssd-strong-30-8 TL TL TL TL
sssd-weak-15-4 ML ML SF SF
sssd-weak-15-8 ML ML TL TL
sssd-weak-20-4 ML ML ML ML
sssd-weak-20-8 ML ML TL TL
sssd-weak-25-4 ML ML TL TL
sssd-weak-25-8 ML ML TL TL
sssd-weak-30-4 ML ML TL TL
sssd-weak-30-8 ML ML TL TL
turbine07GF 0.02 17 0.03 21
turbine07 aniso 0.0 1 0.0 1
turbine07 lowb 1.5 329 0.71 59
turbine07 lowb aniso 2.24 657 1.25 121
turbine54GF 0.02 5 0.03 5
uflquad-nopsc-10-100 189.49 251 288.08 295
uflquad-nopsc-10-150 251.69 407 535.94 475
uflquad-nopsc-20-100 TL TL TL TL
uflquad-nopsc-20-150 TL TL TL TL
uflquad-nopsc-30-100 TL TL TL TL
uflquad-nopsc-30-150 TL TL TL TL
uflquad-nopsc-30-200 TL TL TL TL
uflquad-nopsc-30-300 TL TL TL TL
uflquad-psc-10-100 4.05 9 3.68 7
uflquad-psc-10-150 9.41 9 9.53 7
uflquad-psc-20-100 37.32 25 23.1 15
uflquad-psc-20-150 30.13 11 36.41 13
uflquad-psc-30-100 63.96 29 56.92 23
uflquad-psc-30-150 43.15 3 48.45 3
uflquad-psc-30-200 156.0 7 157.62 7
uflquad-psc-30-300 853.88 29 938.56 27

240

Table A.16: bb-lp CPU Time and Number of Nodes with Different MILP Cutting Strate-
gies Part 1

disco-oa disco-oanomilpcuts
problem CPU time node CPU time node
classical 200 1 TL TL TL TL
classical 200 2 TL TL TL TL
classical 200 3 TL TL TL TL
classical 50 1 6778.7 288767 TL TL
classical 50 2 1622.01 25469 1610.43 25509
classical 50 3 TL TL TL TL
estein4 A 0.07 31 0.07 31
estein4 B 0.05 31 0.04 31
estein4 C 0.06 31 0.05 31
estein4 nr22 0.07 31 0.06 31
estein5 A 3.97 801 4.06 843
estein5 B 2.29 457 2.84 511
estein5 C 2.7 485 2.66 521
estein5 nr1 3.34 617 3.45 641
estein5 nr21 4.6 803 5.28 841
estein6 0 179.76 29307 171.36 27981
estein6 1 89.24 16101 90.81 16189
estein6 2 90.9 16621 81.32 14875
estein7 0 ML ML ML ML
estein7 1 3867.0 481167 4150.41 512219
estein7 2 4753.69 701587 5489.78 817289
pp-n10-d10 0.67 307 0.53 227
pp-n10-d10000 2.01 2047 2.0 2047
pp-n100-d10 ML ML ML ML
pp-n100-d10000 ML ML ML ML
pp-n1000-d10 TL TL TL TL
pp-n1000-d10000 ML ML ML ML
pp-n100000-d10 TL TL TL TL
pp-n100000-d10000 TL TL TL TL
robust 100 1 TL TL TL TL
robust 100 2 1471.85 7391 1511.56 7391
robust 100 3 TL TL TL TL
robust 200 1 TL TL TL TL
robust 200 2 TL TL TL TL
robust 200 3 TL TL TL TL
robust 50 1 50.05 1929 49.55 1929
robust 50 2 21.1 705 20.8 705
robust 50 3 415.24 16251 410.72 16251

241

Table A.17: bb-lp CPU Time and Number of Nodes with Different MILP Cutting Strate-
gies Part 2

disco-oa disco-oanomilpcuts
problem CPU time node CPU time node
r12c15k5i10 0.01 51 0.01 69
r12c15k5i15 0.0 1 0.01 29
r14c18k3i12 SF SF 0.12 333
r14c18k3i15 SF SF 0.07 191
r14c18k3i18 0.06 155 0.05 149
r14c18k3i9 1.02 2969 0.97 3149
r17c20k5i15 0.0 25 0.01 33
r17c20k5i20 0.01 27 0.01 33
r17c30k3i12 0.24 191 0.25 239
r17c30k3i15 1967.06 1605185 640.05 584635
r17c30k3i18 ML ML ML ML
r17c30k3i21 ML ML ML ML
r17c30k3i24 ML ML ML ML
r17c30k3i27 ML ML ML ML
r22c30k10i20 0.94 3407 0.74 3309
r22c40k10i20 0.61 595 0.67 645
r22c40k10i30 1.43 2143 1.17 1789
r22c40k10i40 6.38 13765 9.17 21595
r23c45k3i21 84.99 43457 43.65 24371
r23c45k3i24 ML ML ML ML
r23c45k3i27 ML ML ML ML
r23c45k3i30 ML ML ML ML
r23c45k3i33 ML ML ML ML
r23c45k3i36 ML ML ML ML
r27c50k5i25 ML ML ML ML
r27c50k5i30 ML ML ML ML
r27c50k5i35 ML ML ML ML
r27c50k5i40 ML ML ML ML
r27c50k5i45 ML ML ML ML
r27c50k5i50 ML ML TL TL
r32c45k15i30 0.04 105 0.06 173
r32c45k15i45 0.15 269 0.22 575
r32c60k15i30 0.32 233 0.34 269
r32c60k15i45 413.76 490851 711.14 781131
r32c60k15i60 ML ML ML ML
r52c75k5i35 TL TL TL TL
r52c75k5i40 ML ML TL TL
r52c75k5i45 SF SF TL TL
r52c75k5i50 ML ML ML ML
r52c75k5i60 ML ML ML ML
r52c75k5i65 TL TL TL TL

242

Table A.18: bb-lp CPU Time and Number of Nodes with Different MILP Cutting Strate-
gies Part 3

disco-oa disco-oanomilpcuts
problem CPU time node CPU time node
shortfall 100 1 TL TL TL TL
shortfall 100 2 TL TL TL TL
shortfall 100 3 TL TL TL TL
shortfall 200 1 TL TL TL TL
shortfall 200 2 TL TL TL TL
shortfall 200 3 TL TL TL TL
shortfall 50 1 356.38 2653 360.52 2655
shortfall 50 2 547.0 5651 532.54 5649
shortfall 50 3 5658.02 28637 5694.26 29085
sssd-strong-15-4 ML ML ML ML
sssd-strong-15-8 TL TL TL TL
sssd-strong-20-4 ML ML ML ML
sssd-strong-20-8 TL TL TL TL
sssd-strong-25-4 ML ML ML ML
sssd-strong-25-8 TL TL TL TL
sssd-strong-30-4 ML ML ML ML
sssd-strong-30-8 TL TL TL TL
sssd-weak-15-4 ML ML ML ML
sssd-weak-15-8 ML ML ML ML
sssd-weak-20-4 ML ML ML ML
sssd-weak-20-8 ML ML ML ML
sssd-weak-25-4 ML ML ML ML
sssd-weak-25-8 ML ML TL TL
sssd-weak-30-4 ML ML ML ML
sssd-weak-30-8 ML ML ML ML
turbine07GF 0.02 17 0.02 17
turbine07 aniso 0.0 1 0.0 1
turbine07 lowb 1.5 329 1.5 329
turbine07 lowb aniso 2.24 657 1.91 597
turbine54GF 0.02 5 0.02 5
uflquad-nopsc-10-100 189.49 251 190.8 251
uflquad-nopsc-10-150 251.69 407 250.91 407
uflquad-nopsc-20-100 TL TL TL TL
uflquad-nopsc-20-150 TL TL TL TL
uflquad-nopsc-30-100 TL TL TL TL
uflquad-nopsc-30-150 TL TL TL TL
uflquad-nopsc-30-200 TL TL TL TL
uflquad-nopsc-30-300 TL TL TL TL
uflquad-psc-10-100 4.05 9 3.88 9
uflquad-psc-10-150 9.41 9 8.86 9
uflquad-psc-20-100 37.32 25 37.36 25
uflquad-psc-20-150 30.13 11 29.51 11
uflquad-psc-30-100 63.96 29 64.45 29
uflquad-psc-30-150 43.15 3 43.82 3
uflquad-psc-30-200 156.0 7 167.04 7
uflquad-psc-30-300 853.88 29 798.82 29

243

Table A.19: bb-socp with Disjunctive Conic Cuts

disco-cplex disco-cplex-dc-all disco-cplex-dc-best
problem CPU t node CPU t node CPU t node
r12c15k5i10 0.03 63 0.04 49 0.04 49
r12c15k5i15 0.02 29 0.0 5 0.0 5
r14c18k3i12 0.45 501 0.65 387 0.65 387
r14c18k3i15 0.19 183 0.58 303 0.57 303
r14c18k3i18 0.16 149 0.37 157 0.34 157
r14c18k3i9 2.22 3133 4.0 2981 2.9 2935
r17c20k5i15 0.05 33 0.06 39 0.05 39
r17c20k5i20 0.03 33 0.04 23 0.04 23
r17c30k3i12 0.1 79 0.12 29 0.12 29
r17c30k3i15 1.6 1145 3.2 591 2.48 797
r17c30k3i18 SF SF TL TL TL TL
r17c30k3i21 SF SF SF SF SF SF
r17c30k3i24 SF SF SF SF SF SF
r17c30k3i27 SF SF SF SF SF SF
r22c30k10i20 2.31 3295 3.75 3379 3.52 3379
r22c40k10i20 0.03 23 0.03 9 0.03 9
r22c40k10i30 1.8 1333 3.64 1053 3.1 1285
r22c40k10i40 20.14 16037 24.94 8027 25.04 8027
r23c45k3i21 1.08 529 5.13 485 5.14 485
r23c45k3i24 2.13 1003 8.25 715 8.59 715
r23c45k3i27 SF SF SF SF SF SF
r23c45k3i30 SF SF SF SF SF SF
r23c45k3i33 SF SF SF SF SF SF
r23c45k3i36 SF SF SF SF SF SF
r27c50k5i25 1.48 691 4.54 601 4.45 601
r27c50k5i30 TL TL TL TL SF SF
r27c50k5i35 SF SF SF SF SF SF
r27c50k5i40 SF SF TL TL TL TL
r27c50k5i45 SF SF SF SF SF SF
r27c50k5i50 SF SF SF SF TL TL
r32c45k15i30 0.24 173 0.02 7 0.36 167
r32c45k15i45 0.67 635 1.04 497 1.02 497
r32c60k15i30 0.24 127 0.14 31 0.46 121
r32c60k15i45 1186.22 576477 2076.15 389185 2299.53 389185
r32c60k15i60 SF SF SF SF SF SF
r52c75k5i35 SF SF SF SF SF SF
r52c75k5i40 SF SF SF SF TL TL
r52c75k5i45 SF SF SF SF SF SF
r52c75k5i50 SF SF TL TL TL TL
r52c75k5i60 SF SF SF SF SF SF
r52c75k5i65 SF SF SF SF SF SF

244

Table A.20: bb-lp with Disjunctive Conic Cuts

disco-oa-dc-all disco-oa-dc-best disco-oanomilpcuts
problem CPU t node CPU t node CPU t node
r12c15k5i10 0.01 63 0.01 63 0.01 69
r12c15k5i15 0.0 25 0.0 25 0.01 29
r14c18k3i12 0.11 297 0.09 295 0.12 333
r14c18k3i15 0.09 287 0.07 287 0.07 191
r14c18k3i18 0.03 153 0.03 153 0.05 149
r14c18k3i9 0.98 2931 0.85 3029 0.97 3149
r17c20k5i15 0.02 41 0.01 41 0.01 33
r17c20k5i20 0.01 25 0.01 41 0.01 33
r17c30k3i12 TL TL SF SF 0.25 239
r17c30k3i15 TL TL SF SF 640.05 584635
r17c30k3i18 TL TL ML ML ML ML
r17c30k3i21 ML ML ML ML ML ML
r17c30k3i24 ML ML ML ML ML ML
r17c30k3i27 ML ML ML ML ML ML
r22c30k10i20 0.77 3387 SF SF 0.74 3309
r22c40k10i20 0.16 71 0.02 21 0.67 645
r22c40k10i30 0.72 1043 0.73 1249 1.17 1789
r22c40k10i40 4.0 6301 7.9 17897 9.17 21595
r23c45k3i21 SF SF SF SF 43.65 24371
r23c45k3i24 TL TL TL TL ML ML
r23c45k3i27 TL TL ML ML ML ML
r23c45k3i30 SF SF SF SF ML ML
r23c45k3i33 ML ML SF SF ML ML
r23c45k3i36 ML ML ML ML ML ML
r27c50k5i25 SF SF SF SF ML ML
r27c50k5i30 SF SF ML ML ML ML
r27c50k5i35 TL TL ML ML ML ML
r27c50k5i40 ML ML ML ML ML ML
r27c50k5i45 ML ML ML ML ML ML
r27c50k5i50 ML ML ML ML TL TL
r32c45k15i30 0.0 7 0.05 171 0.06 173
r32c45k15i45 0.17 497 0.22 573 0.22 575
r32c60k15i30 0.99 529 0.3 79 0.34 269
r32c60k15i45 378.78 326433 869.92 964223 711.14 781131
r32c60k15i60 SF SF SF SF ML ML
r52c75k5i35 SF SF SF SF TL TL
r52c75k5i40 TL TL TL TL TL TL
r52c75k5i45 TL TL TL TL TL TL
r52c75k5i50 ML ML ML ML ML ML
r52c75k5i60 TL TL ML ML ML ML
r52c75k5i65 TL TL TL TL TL TL

245

Table A.21: Parallel bb-socp with various number of processors Part 1

serial 15 proc 30 proc
problem CPU t node CPU t node CPU t node
classical 200 1 TL TL TL TL TL TL
classical 200 2 TL TL TL TL TL TL
classical 200 3 SF SF TL TL TL TL
classical 50 1 24.04 1713 8.36406 7369 5.9678 10597
classical 50 2 60.35 3945 17.5662 15397 11.8537 21171
classical 50 3 149.14 10259 30.8728 29699 17.562 34483
estein4 A SF SF SF SF SF SF
estein4 B SF SF SF SF SF SF
estein4 C SF SF SF SF SF SF
estein4 nr22 SF SF SF SF SF SF
estein5 A 1.96 785 0.254984 793 0.323918 807
estein5 B 1.18 445 0.228411 465 0.140266 509
estein5 C 1.54 635 0.262343 669 0.258142 693
estein5 nr1 1.67 649 0.279194 653 0.258386 671
estein5 nr21 1.96 785 0.258395 785 0.236696 789
estein6 0 91.61 27789 7.74397 28279 4.04088 28997
estein6 1 SF SF SF SF SF SF
estein6 2 66.18 19531 5.3745 19695 3.01614 20835
estein7 0 5313.37 990533 362.464 985099 172.722 979473
estein7 1 1824.74 340935 147.481 381689 68.8174 366165
estein7 2 3098.51 598215 192.929 514005 96.0458 537205
pp-n10-d10 0.63 295 0.312297 373 0.317596 585
pp-n10-d10000 1.99 2049 1.11679 13627 1.09452 27491
pp-n100-d10 TL TL TL TL TL TL
pp-n100-d10000 TL TL TL TL TL TL
pp-n1000-d10 TL TL TL TL TL TL
pp-n1000-d10000 TL TL TL TL TL TL
pp-n100000-d10 SF SF ML ML ML ML
pp-n100000-d10000 SF SF ML ML ML ML
robust 100 1 1168.5 6109 414.192 29829 232.021 34039
robust 100 2 398.04 2141 98.8693 6445 77.2885 10247
robust 100 3 167.43 801 48.6272 2879 42.0858 4717
robust 200 1 TL TL TL TL TL TL
robust 200 2 6795.73 4883 1579.93 15389 812.302 14261
robust 200 3 TL TL TL TL TL TL
robust 50 1 2.34 59 2.0758 411 1.76622 779
robust 50 2 2.64 67 1.9843 575 1.70583 875
robust 50 3 5.45 143 3.50122 953 2.61012 1363

246

Table A.22: Parallel bb-socp with various number of processors Part 2

serial 15 proc 30 proc
problem CPU t node CPU t node CPU t node
r12c15k5i10 0.03 63 0.115183 87 0.121856 91
r12c15k5i15 0.02 29 0.045979 27 0.048228 27
r14c18k3i12 0.45 501 0.217421 583 0.150607 501
r14c18k3i15 0.19 183 0.239508 227 0.163703 265
r14c18k3i18 0.16 149 0.18724 159 SF SF
r14c18k3i9 2.22 3133 SF SF SF SF
r17c20k5i15 0.05 33 0.0727952 39 0.0605199 39
r17c20k5i20 0.03 33 0.078202 39 0.060199 39
r17c30k3i12 0.1 79 0.102213 349 0.0960951 631
r17c30k3i15 1.6 1145 0.248185 1551 0.248617 3173
r17c30k3i18 SF SF SF SF SF SF
r17c30k3i21 SF SF SF SF SF SF
r17c30k3i24 SF SF SF SF SF SF
r17c30k3i27 SF SF SF SF SF SF
r22c30k10i20 2.31 3295 1.63873 15267 1.18816 18645
r22c40k10i20 0.03 23 0.091264 99 0.099143 183
r22c40k10i30 1.8 1333 0.586128 4565 0.659862 7397
r22c40k10i40 20.14 16037 1.81618 14165 1.5489 23957
r23c45k3i21 1.08 529 0.366664 1559 0.342166 3375
r23c45k3i24 2.13 1003 0.704857 3355 0.478512 4473
r23c45k3i27 SF SF SF SF TL TL
r23c45k3i30 SF SF SF SF SF SF
r23c45k3i33 SF SF SF SF SF SF
r23c45k3i36 SF SF SF SF SF SF
r27c50k5i25 1.48 691 0.646688 1935 0.51002 3787
r27c50k5i30 TL TL TL TL TL TL
r27c50k5i35 SF SF SF SF SF SF
r27c50k5i40 SF SF SF SF SF SF
r27c50k5i45 SF SF SF SF SF SF
r27c50k5i50 SF SF SF SF SF SF
r32c45k15i30 0.24 173 0.207459 453 0.169828 719
r32c45k15i45 0.67 635 0.631845 1315 0.525229 1085
r32c60k15i30 0.24 127 0.227306 963 0.242274 1755
r32c60k15i45 1186.22 576477 299.439 1680193 157.991 2495093
r32c60k15i60 SF SF SF SF SF SF
r52c75k5i35 SF SF SF SF SF SF
r52c75k5i40 SF SF SF SF SF SF
r52c75k5i45 SF SF TL TL SF SF
r52c75k5i50 SF SF SF SF TL TL
r52c75k5i60 SF SF SF SF SF SF
r52c75k5i65 SF SF SF SF SF SF

247

Table A.23: Parallel bb-socp with various number of processors Part 3

serial 15 proc 30 proc
problem CPU t node CPU t node CPU t node
shortfall 100 1 1717.76 9221 702.593 54501 482.779 77703
shortfall 100 2 TL TL TL TL 6000.39 968993
shortfall 100 3 5440.13 22915 935.643 57877 558.6 70385
shortfall 200 1 TL TL SF SF SF SF
shortfall 200 2 TL TL SF SF SF SF
shortfall 200 3 TL TL SF SF SF SF
shortfall 50 1 24.55 685 11.8795 3863 11.731 6397
shortfall 50 2 77.44 2245 23.9174 9541 20.3286 15819
shortfall 50 3 SF SF 34.4716 14057 19.5376 16287
sssd-strong-15-4 SF SF SF SF SF SF
sssd-strong-15-8 TL TL TL TL SF SF
sssd-strong-20-4 SF SF SF SF SF SF
sssd-strong-20-8 TL TL SF SF SF SF
sssd-strong-25-4 SF SF SF SF SF SF
sssd-strong-25-8 TL TL SF SF SF SF
sssd-strong-30-4 SF SF SF SF SF SF
sssd-strong-30-8 TL TL TL TL TL TL
sssd-weak-15-4 SF SF SF SF SF SF
sssd-weak-15-8 TL TL SF SF SF SF
sssd-weak-20-4 SF SF SF SF SF SF
sssd-weak-20-8 TL TL SF SF SF SF
sssd-weak-25-4 SF SF SF SF SF SF
sssd-weak-25-8 SF SF TL TL SF SF
sssd-weak-30-4 SF SF SF SF SF SF
sssd-weak-30-8 TL TL TL TL TL TL
turbine07GF 0.1 45 0.088629 49 0.0902851 49
turbine07 aniso 0.01 1 0.037539 1 0.0407889 1
turbine07 lowb SF SF SF SF SF SF
turbine07 lowb aniso SF SF 4.57462 3591 3.99859 4681
turbine54GF 0.52 29 0.32437 31 0.298755 31
uflquad-nopsc-10-100 35.86 209 11.4417 347 7.25559 373
uflquad-nopsc-10-150 53.83 185 16.8124 213 10.3699 251
uflquad-nopsc-20-100 SF SF 691.442 13695 404.462 15019
uflquad-nopsc-20-150 TL TL 2253.59 21221 1071.17 22153
uflquad-nopsc-30-100 SF SF 1770.16 16981 1142.1 21777
uflquad-nopsc-30-150 TL TL 4244.77 22499 2853.88 29907
uflquad-nopsc-30-200 TL TL TL TL TL TL
uflquad-nopsc-30-300 TL TL ML ML ML ML
uflquad-psc-10-100 1.63 7 2.33068 25 2.31981 25
uflquad-psc-10-150 2.98 7 2.97705 15 3.02352 15
uflquad-psc-20-100 8.05 15 9.383 43 8.70948 55
uflquad-psc-20-150 10.4 11 17.7316 47 22.0583 75
uflquad-psc-30-100 17.28 21 23.4968 53 24.3925 75
uflquad-psc-30-150 1.55 1 5.14526 1 5.13061 1
uflquad-psc-30-200 15.73 7 26.5933 7 25.3736 7
uflquad-psc-30-300 53.31 17 111.439 71 106.714 117

248

Table A.24: Parallel bb-lp with various number of processors Part 1

serial 15 proc 30 proc
problem CPU t node CPU t node CPU t node
classical 200 1 TL TL TL TL TL TL
classical 200 2 TL TL TL TL TL TL
classical 200 3 TL TL TL TL TL TL
classical 50 1 6778.7 288767 696.049 445175 383.035 569193
classical 50 2 1622.01 25469 128.259 28537 92.8773 48237
classical 50 3 TL TL 577.746 172461 289.023 179763
estein4 A 0.07 31 0.0838239 31 0.051486 31
estein4 B 0.05 31 0.078388 31 0.0550032 31
estein4 C 0.06 31 0.0832169 31 0.0574532 31
estein4 nr22 0.07 31 0.07481 31 0.665677 31
estein5 A 3.97 801 0.688404 849 0.256333 849
estein5 B 2.29 457 0.459796 573 0.357334 657
estein5 C 2.7 485 0.351837 777 0.481023 795
estein5 nr1 3.34 617 0.498583 789 0.464987 771
estein5 nr21 4.6 803 0.64483 913 0.408265 887
estein6 0 179.76 29307 13.8427 36655 7.17565 33517
estein6 1 89.24 16101 8.1024 23403 3.93412 19119
estein6 2 90.9 16621 8.10321 26491 5.06061 29691
estein7 0 ML ML 957.714 1993875 392.73 2088976
estein7 1 3867.0 481167 141.35 396251 212.217 1320543
estein7 2 4753.69 701587 447.287 1035369 242.193 1276824
pp-n10-d10 0.67 307 0.784296 7593 0.760043 10981
pp-n10-d10000 2.01 2047 0.292129 2047 0.17641 2047
pp-n100-d10 ML ML ML ML ML ML
pp-n100-d10000 ML ML ML ML ML ML
pp-n1000-d10 TL TL TL TL TL TL
pp-n1000-d10000 ML ML ML ML ML ML
robust 100 1 TL TL 1383.8 92355 584.413 83609
robust 100 2 1471.85 7391 362.816 34277 233.36 45063
robust 100 3 TL TL 379.859 21553 230.537 22967
robust 200 1 TL TL SF SF SF SF
robust 200 2 TL TL SF SF SF SF
robust 200 3 TL TL SF SF SF SF
robust 50 1 50.05 1929 3.32524 687 6.82417 2175
robust 50 2 21.1 705 9.37669 2725 7.72007 2147
robust 50 3 415.24 16251 26.6433 10653 25.6924 12087

249

Table A.25: Parallel bb-lp with various number of processors Part 2

serial 15 proc 30 proc
problem CPU t node CPU t node CPU t node
r12c15k5i10 0.01 51 0.081964 95 0.163528 95
r12c15k5i15 0.0 1 0.03563 1 0.038234 1
r14c18k3i12 SF SF 0.073209 465 0.0745451 561
r14c18k3i15 SF SF 0.137293 163 0.133723 245
r14c18k3i18 0.06 155 0.084986 267 0.0881279 305
r14c18k3i9 1.02 2969 0.298147 4939 0.185035 4987
r17c20k5i15 0.0 25 0.067816 33 0.0487061 41
r17c20k5i20 0.01 27 0.101983 41 0.0466778 41
r17c30k3i12 0.24 191 0.0708351 659 0.37801 1217
r17c30k3i15 1967.06 1605185 84.8209 1238853 232.898 5815389
r17c30k3i18 ML ML ML ML 2353.27 71957303
r17c30k3i21 ML ML 195.615 3621779 114.587 4128099
r17c30k3i24 ML ML 96.7615 1647945 62.5374 2255757
r17c30k3i27 ML ML 56.257 991395 83.3365 2927977
r22c30k10i20 0.94 3407 0.32995 5945 0.29279 8695
r22c40k10i20 0.61 595 0.065192 385 0.127106 697
r22c40k10i30 1.43 2143 0.351644 5005 0.49624 10167
r22c40k10i40 6.38 13765 1.10094 17087 0.787226 20411
r23c45k3i21 84.99 43457 2.32555 18341 ML ML
r23c45k3i24 ML ML ML ML ML ML
r23c45k3i27 ML ML ML ML ML ML
r23c45k3i30 ML ML ML ML ML ML
r23c45k3i33 ML ML ML ML ML ML
r23c45k3i36 ML ML ML ML ML ML
r27c50k5i25 ML ML 2209.75 21109205 2049.39 40622287
r27c50k5i30 ML ML TL TL 1859.72 38122021
r27c50k5i35 ML ML 2119.29 21133587 ML ML
r27c50k5i40 ML ML ML ML ML ML
r27c50k5i45 ML ML ML ML TL TL
r27c50k5i50 ML ML ML ML ML ML
r32c45k15i30 0.04 105 0.0904739 445 0.079901 927
r32c45k15i45 0.15 269 0.351967 1947 0.306642 1299
r32c60k15i30 0.32 233 0.232655 1289 0.213347 1181
r32c60k15i45 413.76 490851 105.999 1785177 72.0858 2849527
r32c60k15i60 ML ML ML ML ML ML
r52c75k5i35 TL TL TL TL TL TL
r52c75k5i40 ML ML TL TL TL TL
r52c75k5i45 SF SF TL TL TL TL
r52c75k5i50 ML ML TL TL TL TL
r52c75k5i60 ML ML ML ML TL TL
r52c75k5i65 TL TL TL TL TL TL

250

Table A.26: Parallel bb-lp with various number of processors Part 3

serial 15 proc 30 proc
problem CPU t node CPU t node CPU t node
shortfall 100 1 TL TL 5538.58 241837 4119.09 421221
shortfall 100 2 TL TL TL TL TL TL
shortfall 100 3 TL TL TL TL 6985.63 1632095
shortfall 200 1 TL TL SF SF SF SF
shortfall 200 2 TL TL SF SF TL TL
shortfall 200 3 TL TL SF SF SF SF
shortfall 50 1 356.38 2653 37.2202 3795 30.1006 5329
shortfall 50 2 547.0 5651 68.9334 10341 52.7635 16875
shortfall 50 3 5658.02 28637 517.159 49009 253.867 42125
sssd-strong-15-4 ML ML TL TL TL TL
sssd-strong-15-8 TL TL TL TL TL TL
sssd-strong-20-4 ML ML ML ML ML ML
sssd-strong-20-8 TL TL TL TL TL TL
sssd-strong-25-4 ML ML ML ML ML ML
sssd-strong-25-8 TL TL TL TL ML ML
sssd-strong-30-4 ML ML ML ML ML ML
sssd-strong-30-8 TL TL TL TL TL TL
sssd-weak-15-4 ML ML ML ML 987.71 10520307
sssd-weak-15-8 ML ML ML ML ML ML
sssd-weak-20-4 ML ML ML ML 1943.54 19938422
sssd-weak-20-8 ML ML ML ML ML ML
sssd-weak-25-4 ML ML ML ML ML ML
sssd-weak-25-8 ML ML ML ML ML ML
sssd-weak-30-4 ML ML ML ML ML ML
sssd-weak-30-8 ML ML ML ML ML ML
turbine07GF 0.02 17 0.0457449 25 0.0489621 25
turbine07 lowb 1.5 329 1.08244 2003 0.761915 3291
turbine07 lowb aniso 2.24 657 0.784265 1439 0.803671 2913
turbine54GF 0.02 5 0.0661461 17 0.069093 17
uflquad-nopsc-10-100 189.49 251 37.2164 809 28.1307 725
uflquad-nopsc-10-150 251.69 407 61.4617 791 39.1307 941
uflquad-nopsc-20-100 TL TL 3417.26 40073 1808.69 67343
uflquad-nopsc-20-150 TL TL TL TL 6967.33 105039
uflquad-nopsc-30-100 TL TL TL TL 6635.91 96475
uflquad-nopsc-30-150 TL TL TL TL TL TL
uflquad-nopsc-30-200 TL TL TL TL TL TL
uflquad-nopsc-30-300 TL TL TL TL TL TL
uflquad-psc-10-100 4.05 9 8.23333 37 6.88482 45
uflquad-psc-10-150 9.41 9 16.2988 41 19.4288 59
uflquad-psc-20-100 37.32 25 22.2936 73 22.6454 101
uflquad-psc-20-150 30.13 11 52.6627 67 64.8137 119
uflquad-psc-30-100 63.96 29 54.2788 99 51.6089 131
uflquad-psc-30-150 43.15 3 130.57 27 131.095 27
uflquad-psc-30-200 156.0 7 272.556 53 270.346 89
uflquad-psc-30-300 853.88 29 874.409 97 1039.55 149

251

Biography

Aykut Bulut was born in Adiyaman, Turkey on July 4, 1986. His father’s name is Mustafa

and his mother’s name is Fatime. He received Bachelor and Master of Science degrees in

Industrial Engineering from the Industrial Engineering Department of Middle East Tech-

nical University, Ankara, Turkey on May 2009 and July 2011 respectively. He joined the

Industrial and Systems Engineering Department of Lehigh University to pursue a doc-

toral degree in 2011. He served as system administrator in Computational Optimization

Research At Lehigh (CORAL) laboratory between 2012 and 2016. He was awarded with

Rossin Doctoral Fellowship in 2011 Fall and Spring semesters, Gotshall Fellowship in 2013

Fall and Spring semesters, SAS Institute OR Fellowship in 2013 summer and ISE Depart-

ment Ph.D. student of the year in 2014. He joined MathWorks as a software engineer on

January 2017.

252

	Lehigh University
	Lehigh Preserve
	2018

	Computational Methods for Discrete Conic Optimization Problems
	Aykut Bulut
	Recommended Citation

	List of Tables
	List of Tables
	List of Figures
	List of Figures
	Abstract
	Notation
	Introduction
	Motivation
	Problem Classes
	Conic Optimization
	Second-Order Conic Optimization
	Mixed Integer Linear Optimization
	Mixed Integer Second-Order Cone Optimization
	Inverse Optimization

	Computability and Computational Complexity
	Overview
	Computational Complexity
	Complexity of Optimization Problems

	Basic Algorithms
	Branch-and-Bound Algorithm
	Cutting-Plane Algorithm
	Branch-and-Cut Algorithm
	Global Optimization Algorithms
	Related Methodologies

	Contribution
	Outline

	Second-Order Cone Optimization Problems
	Background
	Duality Theory
	Existing Algorithms

	A Cutting-Plane Algorithm
	The Separation Problem
	Overall Algorithm

	Comparison to Ben-Tal and Nemirovski Method
	Comparison to IPM
	Conclusion

	Mixed Integer Second-Order Cone Optimization Problems
	Existing Algorithms
	SOCP-based Branch and Bound
	Branch and Bound with Linear Relaxation
	Other Outer-Approximation Schemes
	Global Optimization Approaches

	Valid Inequalities
	Conic MIR Cuts
	Conic Gomory Cuts
	Lift-and-Project Cuts for Mixed 0–1 Convex Sets
	DCC and DCyC
	Two-Term Disjunctions on Lorentz Cone

	A Branch-and-Cut Algorithm
	Relaxation and Bounding
	Generation of Valid Constraints
	Branching
	Search Strategy
	Cut Strategies
	Heuristics
	Control Mechanism
	Overall Algorithm

	Conclusion

	Software for MISOCP
	OsiConic, A Solver Interface for SOCP
	Classes in OsiConic
	Interfacing to CPLEX, Mosek, and Ipopt

	COLA: A solver library for SOCP
	CglConic, A Cut Library for MISCOP
	Implementing Disjunctive Cuts
	Conic Outer-Approximation (OA) Inequalities
	IPM Approximation Cuts

	DisCO, A Distributed-Memory-Parallel MISOCP Solver
	COIN-OR High-Performance Parallel Search (CHiPPS)
	Discrete Conic Optimization (DisCO) Solver Library

	Conclusion

	Inverse MILP
	Introduction
	Formal Definitions
	Previous Work

	Algorithmic Approach to Inverse MILP
	Complexity of Inverse MILP
	Complexity of MILP
	Complexity of Inverse MILP

	Conclusion and Future Directions

	Computational Experiments
	Problem Set
	Algorithms and Parameter Settings
	Hardware
	COLA Experiments
	DisCO Experiments
	bb-socp with Various Solvers
	Branching Strategy for bb-socp
	Choosing OA Cut Parameters for bb-lp Algorithm
	Branching Strategy for bb-lp Algorithm
	MILP Cuts for bb-lp
	bb-socp with Disjunctive Cuts
	bb-lp with Disjunctive Cuts
	Parallelization and Scalibility of bb-socp
	Parallelization and Scalibility of bb-lp
	bb-lp versus bb-socp

	Conclusion

	Conclusion and Future Work
	Details of Computational Results
	Biography

