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ABSTRACT -

A function f, analytic in the unit disk'is‘called
schlicht if and only if%§f is one-to-one. The class -8
of all schlicht functions has been the object of much
research. Most of this research has involved classical
complex function theory methods. Functional analytic and
linear topological space methods have not been of great
value in this research primarily because S is not e
linear space.

Hans Hornich considered the linear space H of all

7 functions £ analytic in the unit disk and normalized by
£(0) = 0. Hornich defined a metric for H and was then
able toduse non-classical methods to deduce certain prop-

erties of the class S by considering it as a subset of
\

\\

H., More recently Cima and Pfaltzgraff have continued the
.study of H and have initiated the study of. certain
similar metric spaces of meromorphic functlons

In thlS work the results of Hornich and some cf the

/"._results of Cima and.Pfaltzgraffwaré”ﬁfesented, These

";;results are prlmarlly concerned w1th the characterlzatlon

@;,_,.uof the 1nter10r of the closed set S w1th connect v1ty

7of sch11Cht and of non SChllCht functlons, and with’ the




I NTRODUCTION

\ o A function f£, analytic in the unit disk, is called
schlicht, or univalent, if and only if £ is one-to-one.

The class S of all schlicht. functions £ .which are
normalized by £(0) = 0, £'(0) =1 has been the object
of much research [2], [5], [8]. Most of this research
has involyed classical complex function theory methods.
Functional analytic and linear topological space methods
have not been of great value in this research primarily
because S 1is not a linear space.

Hans Hornich [7] considered the linear space H of
all functions f analytic in the unlt disk and normallzed

by £(0) =.0.. Hornich defined the functiopal - H on

H by |£| = sup _]an'l 1/n, where f(z) = z anzn; , and
- — n=1

COTeRTy

and showed that this functional 1s a metrlc for H He
~ was then able to use non- cla331cal methods to dedudgw/fw
_}_: | certaln pr0pert1es of the class S by considering it as

~a subset of H. 'More'recently"Cima"and Pﬁaltzgraff-~[1]-»-ww§w~ww

have contlnued the study of H and, w1th a 51m11ar metrlc,~f_@_,:.

1n1t1ated the study of certaln sPaces of meromorphlc'W$Lmjmwwmwwwmfwmw

. In thlS work ‘the results of Hornlch and some of the S

(~-;T£e5qltsmgf;C1mawand@Pfaltzgraffmarempresentedtgmm“'”




H 1is at no p01nt 1oca11y connected

In Section 2, for each f in H there is developed
an associated function of two variables; the non-vanishing
of which is equivalent to the property that f is schlicht.

In Section 3, it is shown that in the metric space H
the set S of schlicht functions is closed. A schlicht
function f will be in the interior of § and called, |
therefore, stable-schlicht if and only if its derivative
f' 1is bounded away from zero in the unit dlsk Furthermorei.
the space H cannot be normed is not 1oca11y compact, is
not locally convex, but is complete,

In Section 4, several resulte concerning connectivity
in the space H are given. Any two functions of a con-
nected set must differ by an entlre functlon, the set of
all entire functions is connected. Each component of

H is convex; no component of H is open, Every two

components of H are a p031t1ve distance apart° the

number of components of H 1is the card1na1 number of the

Acontinuum The space H has no countable ba51s, the space

In Sectlon 5 connect1V1ty results whlch are related

to the schllcht functlons are glven ~ The set of all schllcht

—————

polynomlals in the un1t dlsk is connected in H. vtheeet "

5

all stable schllcht entlre functlons 1s connected ThereA m;_

L*T"are components of H whlch contaln ‘no schllcht functlons

R

and every component of H contains non-schllcht functions.

~~~~~




)

In every component of H the set of non-schlicht functions

is connected.

In Section 6, examples of non-schlicht, of schlicht,
and of stable-schlicht functions are given. A schlicht
function which maps the unit disk onto a convex domain is
stable-schlicht. However, as other examples show,. -other
restrictions as to the type of curve which bounds the

'+ 1image of the unit disk do not, in geheral, assure that a
schlicht function will be also stable-schlicht.

An appendix is provided in which some of the pertinent
definitions and results for schlicht functions are given.

Reference to the appendix is indicated by (¥).
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2. THE ASSOCIATED FUNCTION

Let H be the set of functions £ which are ana1Ytic

in |z| < 1, and let f be not constant and given by

\

f(z) = a;z + azz2 + ...

If £ is schlicht on a circle |[z] =r ¢ 1, then f 1is

schlicht in |z| ¢ r(*). Therefore, if f 1is not schlict

in the unit disk, then there are two points, Zq and Z s
in the unit disk such that f(zl) = f(zz), z, f=zz, but

191 19,
lzll_= [zz|. So for two complex numbers -re and re °,

0< r<1l, we form the difference

Z a_r (elcpl ) élq)z ).

i i
£(re Ly - f(re %)

+. .. +e

'. . . 00 7 . : -1 ' -1 ! -.- . . | -
(T T SO e B ¥ g (17
1

[ 4 ]-
~.81n 7 (CP]_"CP.z).

sin —— (94 cpz) sin -2- (q>1-c;>2)_F - o

Lo e | - i(eq- - i(n-1 -
9 1@2) Zrna elcpz(n-l) [+ el(cpl Py) | i(n-1) (v cpz)]
1

| - osin g (ml-tp 2) .
lmlﬁfié; g{;ﬁ§ (¥1:¢2) iw;: Tﬁ?ﬁiﬁ - i
= (e -e ) Y an. 1 e 5 (al'fméz)
sin 7 (9;-9,) o

= e



i (¢1+¢2) | ?1799
We set re = 2z and —5— = 9; then

o0

ig ig ip, ig . ‘
fre D-f(re 2) = (e l-e ) r) a"! Sinme
A | _

We, therefore, designate the function

(0.0]

£(p,2) =) a2t sinne
1

‘ as,the "agsociated function'" of f.

. sin no - sin no .
Since : —~n as — 0 e set — = n
1 sin o ? > W sin ¢ if

¢ = 0. Thus,

00

f-(o,z) =Znanzn'1 — f'(Z).' .
. -1

So that f£(0,z) # 0 in |z| < 1 is gecessary for f to
be Schlicht in the unit disk (*). The non-vanlshlng of
£(0,z) for a z in the disk then means that there do not
exist distinct»points z1 and ZZ_ which are'arbitrarily':

“near z with f(z ) "'f(Zz)(*)

Clearly; from the development and def1n1t10n of f(@,z),

‘.MfEleS SChllCht 1nf:T£[ < 1 h f &ﬂd only lf the assoc1ated ﬂwfwwﬁwwmww

fwﬁiﬁeﬁ{eﬁingeqf‘_ﬁ(@,z) 1n the unlt dlsk and~w1th Ko} ffnﬁ '“f$¥fiighafﬁ?

" indicates that there do not exist ‘two points z, = rel(a+¢)

~ %ﬁﬁ_ 22f= rei(afm)‘.éuch thet f(zl) = f(zz).




3. THE METRIC SPACE H

We define a functional |-l on H by

Il = supVTa_ T ,

00

where £(z) = Z anzn. Since the power series for £
1

has radius of convergence not less than one, lim Iy Ian] < 1;

sp that the functional is finite for all f'e H. Clearly
|£]l > 0; and |[£f| = 0 if and only if £ = 0. For_any

two functions f and g in H given by - £(2) =Z anzn
00" | 1

and g(z) = Z bnzn , we have for all n,

;?Tan +b_T gfﬂan} + 1 T < v [a_] +79 lbnl :

The triangular ineqUality; \£ + gl < £l + llgll> is there-
fore satisfied. H is then a metric space (¥*) where we

'define the distance between f -and ‘g ~as  Hf -'gl.

m The functlonal is not a norm (*) SiﬁCe"Hlfl

. 75 17\] Hfll for all complex numbers_ N and all f e H.

Observe two 1nequa11t1es 1nvolv1ng the functlonal

: ﬁ~ }@fﬂ{?ﬂ%ﬂf? IE Ifl<e and if 0C e <1, then alges 7

1f (z)] g €] l £ €2__1z/.(.l.,2_ » = = e[zl <__g__ ’




— = e s et et A e W e i

and

|£'(2) | g,e'¥ 2e2]z] + 3e3]z]2 + ... <€+ 262'+

L I

+ ... = €

(1 - €)2

Let the complement of the set S of all schlicht

functions be designated as T. That is, H =S U T. Since

have the identically vanishing function as their limit
(for example, fn(z) = %- gives an-OH —+~0 as n - x),
we must, in order to have the next result, take f = 0

to be in S.

THEOREM. The set S 1is closed; T is open.

Proof. We show that T is open. Let £ be an

arbitrary function in T; we show that an open nbd of

f- is contained in T. Let £(p_,z_) = O where lz l < 1

since f 1is not schliCht.‘ We assume 'f(@o,z) is not

identically zero. For, if“itwis, aq éMQQHFhEQ, f(@,o)

'for allp_¢”;and’we change the'choices of @‘ and Z

. there are convergent sequences of schlicht functions which

"Letf C ,bg_the clrc}e

&

"pick‘any"“¢4" ***** and p1ck Z o= 0 Them— Elplyz) igmﬁﬁfwwwwm$Qam

4:1dent1cally zero, for, otherw1se ﬁfPSZ) '1s~1dent16511YW§:#?wr%@w7~““

. C = {g: | € - z,| = B} ; B > 0 ,

T S T T T T e S e X R e e R e e S e .




inside the unit disk such that Z, 1s the only zero of

f(@o,z) inside and on C€¥). For all & on C we take

Min |£(9,,€)] =6 > 0,

where & exists because f(@o,&) is continuous and the

circle is compact. Further, for all ¢ on C we let

X {lf(q)(yg)] ) lf'(cpoag)l} =M< ®,
We choose an ¢ in (0,1) such that

¢
(1-¢

<5, N
)2 |

‘and such~§hat

5(L-¢) [6(1-¢)?- €]

Now let g be an arbltrary function in H such that
lgl < e. Then £ + g is an‘arbltrary function in the
e-nbd or e-ball of £ since ||f + g - f| <« @;' We have

'18(@0,2)1 é.]ali + 21321 ?Zi +~3{§3P ]z}—yfw.:.K '
< e+ 26% + 36 5

(1‘6)3




‘10

On C, f(@o,€)<+ g(oo,ﬁ)_f 0, by the choice of ¢ and

] N (0 8)  £'(9,€) + 8'(9,E)
flo,:8)  £(o,,8) + glo,,E)

|E' (0, 8)ee, €) - £(o,,E)e" (9,,¢)
f(wo,e>Tf?$5,a) T80T
€ 262 |
g'Mgl-eYZ T MNI3 __Me (1-e) + 2 M %
5 - 1152) ©(1-€) [6 (1-€) ~¢]
Me +M €2 | | 2 M e

- 5 < — < 1
6(1-¢)[6(1-¢)"-e] = 6(Ll-e)[6(1l-€)"~¢] P

/

Therefore, y

e [f’(cpo,e) £'(p,,¢) + g'(cpo,e)] L

arig LECoD g, E) + (e, 6| €

) ' s
- < 77 () 5= L

Thus, where 1' is the number of zeros of f(o ,&) 1n31de

—”"C and N is the number of zeros of ff@ &) +‘8(¢ ,&)
]_nSlde C we have ll'N] < O or N""" «1—@") | SO f ‘F—g

"Therefore,“ T is the union of 0pen nbds and is open,ﬁ?mw

Do g v e

'!9

is non- schlrcht 31nce 1ts assoc1ated functlon has a zero.

hence S is. closed




The interior of the closed set S 1is not empty as
examples will later show. We designate the interior of -
S or the bpen kernel of S as the set of functions G,

"~ and define a term to indicate that a function is in G,

DEFINITION, A schlicht function f 1is called stable-

schlicht if there is an e > O such for all g with

lgll < €, the function f + g is schlicht. (Thus, all

‘the functions £ in the e-nbd of f are schlicht since,

if Hfl-fu { e, then f + fl'- £ =f£, 1is schlicht.) If

there exists no such e > 0 for a schlicht function f, ig

is called not stable-schlicht. (f = O is not stable-
2 | -
schlicht since H(%- 2% - 0| € €.)

THEOREM. A function f is-stableéschlicht if and only |

| if for the associated function £f(¢,z)

inf |£(s,2)] > O,

where the infimum is taken over all ¢ and all z in

the unit disk;

e

w__,___‘____choose anvfe (O 1) such that

~ Proof. _(a) Suppose 1nf lf(m,Z)l"‘ b > 0 Wé -

(1- e)?- < 5. Then,

- for every g 'Wlth Hg“ < €' We have:MJQWM@MWWMWWWWWWWQLMWWQW;WMWWM;;L




Therefore,

inf [£(9,2) + g(p,2)| 2 |6 - |g(e,2)]|] > 5 - (1€ YR 0;
' : ] -€

thus f + g 1is schlicht since its associated function has
no zeros,

(b) We prove equi%alently that if f is schlicht

and inf [f(p,z)| = 0 then f 4is not stable-schlicht,

Let inf [f(p,2)| = 0, € > O be given, and let f be
schlicht and not identically zero since the null function
is already not stable-schlicht. Then therefis, since

£(9p,z) 1is continuous, a 9, and a z_ with ]zol < 1

such that O ¢ lf(@o,zo)l < € .

- Take g(z) =.-zf(¢0,zo); then we have lgll =1 - f(mo’z)l
<e . Then, however, f + g 1is not schlicht since its 3

associated function, which is f(9,z) - f(@o,zo), vanishes

for o = Pq and z zo.‘“Thus,‘since € was arbitrary,

~ no neighborhood of f contains cnly §€hlicht functions,

- So f is not stable-schlicht. . o

' THEOREM. A function f is stable-schlicht if and only if

_there is an h > 0 such that

- B
R . ke
——— . [ERSREIOER AP S i B b ' Fadin : NIRRT R supatd AJE o SRR T -
LT [NV - e .
e . . . l
‘ e i et ez s e ——— e s e e - s -
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Proof. (a) Suppose ]f(zl)-f(zz)l z.hlzl-zzl for
all 24 ‘and Z, in the unit disk, zl‘f Z Choose an

€ in (0,1) such that

€

(1-¢)

) <

Then for any g with |z < ¢ we have
G 8C) 1 = 1) o 2D

E | = ]zl-zzl ]E:an(z?-l+z?-zzz+...+zg-1)]
} | 4

< lzl-zzl(e + 262 + 3¢ +...) <3 h ]z1 2]

- Therefore, |
EDED - @] 2 Ity - fap]
| .-l - sy :

# > hlzl'zzl 3 121 2l "%'ll-zil>'o;’

This (f+g)(zl)'f (£48) (z;) so that fag is schlicht and
S i Stable SChllCitfwf"“f Wwwmwwwwfmmwwfffor', s

Twiw_:(b)l Suppose'ﬂfwwls stable schllcht, S0 thatw S 7

T 1nf]f(m,z)] =5> 0. Now, for any r in n (0,1) °°n;ider

— - rthe 1nf1mum of the quotlent




ﬁfor all Zq ¥ Zgs lzll < r, and 12;] <r. Since f 1is

h \Minimum Modulus Principle, (*). Allowing only z; to

very, that is, fixing z, anywhere in [z]| < r, we see

 for some z such that |z| = r." Hence

for all distinct“z1 and z, in the unit d}&k, sincd

o rh'was arbitrary in. (O 1)

"

f(zl)~f(zz)
21 7 2

schlicht, the quotient is never zero and we apply the

!

A

|
. 1
that for variation of Zq the minimum of the quotient | | %
cannot 6&gurr unless - lzll = r. Noﬁ fixing 'zl on lz] = r E
and'allowihg z2 to vérypgives that the infimum of the @
quotient for 21 and z, in |z| g_r will equal the

infimum of the quot{gnt when both zq and - Zy vary on

|z| = r. Then

.\\‘
Lf(zl) "f(z

5)
21 T %2

\,\‘ .

. e
My L) - |

THEOREM A SChllCht functlon_fw is stable SChllCht 1f

't;wand onlv if there is a d > 0 ,sﬁch that for_;g_,in”

T ~ T A b e S e ) A K10 RIS A TR WA AARARET A 965 430 AT e A P ks ored
J, e o By
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. _ l f ‘I (z) ] 2 5 7 e B N J_t, e e —
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(1.e, if and only if the derivative of f is bounded away

from zero in the unit disk).

Proof. (a) If £ is stable-schlicht then, where

f(p,2z) 1is the associated function,
inf |f(9,z)] =8 > O.
But f'(z) = £(0,z) so that
.!f'(z)l > inf lf(O,z)} > inf }f(m,z)} > 0.

(b) Suppose |f'(z)| >86 > 0. Since £'(z) #0
in the unit disk and since £ 1is schlicht, there is a

-1

unique analytic inverse £ of f which maps the image

by f ofi the unit disk one-to-one onto. the unit disk (*).
Where f(z) = w, we have f-l(w) =g(w) =z and g'(w)
=1/f'(z). Then, for any z; and z, 1in the unit disk
and Zl;f Zg We have f(zl)‘f f(zz). Let C b% a simple
rectifiable curve in the domain of £l from 'f(zz) to

f(l)' The length of C equals 'klf(zl) - f(zz)l where | t .
0< k< o . Then | R

e wintard

SRR e S
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AN
B T

since [g'(w)] =1/f'(z)| < 1/6. So that

f(zl)-f(zz)
1 T %

> 0

N\
x|on

{

and f 1is stable-schlicht,.

The topology on H cannot be induced by a norm.

_THEOREM, The space H cannot be normed, °

Proof. It suffices to show tha no open set in H

can be broughtinto (contained.by) any neighborhood of the
origin, f = 0, under multiplication by a scalar [3]. It
is clear, by a consideration 8f the nEh' root of the
absoluté/zjjne of the nEh- power series coefficient as
. n ~x, that every nelghborhood of every function contains
non- entlre functions. Further,»no scalar multlpllcaticn
of a non-entire function can bring it closer to\theorigin .;h
than the reciprocal of 1ts radius of convergence In
“'partlcular we need only show that the e-nbd of the
f~or1g1n cannot be broughtwithin the e/4 nbd of the

origin;' Let a be any scalar, then f(z) = (e/%?zm

wwhete  m is chosen S0 that 2™ > l/L . Then ~f- i§finf—

7 80 af is mot - el

”:theiht-nbd of the orIgln but

in the e/4-nbd*cf the orlgln ’;- -,Wh;mdeg“'“‘ T
AQ@QWMWMIHEQREM;'_H _iswnetw¥eea}£VGCanact;




Wit T
e T R L S —_— — — == =

= 5 ST gy Y N el I — b= o

fi7: — e SErel s Sert | DR U Se st e LB TR T . O -~ * i

! L dmee A 3 T =

Proof. No e-nbd of the origin is relatively compact,
’d*or, the £  given by £ (z) = (e/2)"2" are all in the
(closure of the) e-nbd of the origin, but the £ do
1 - = £
not -.converge since an me 5 .

| . ® .
THEOREM. The space H is not locally convex £31, [4].

THEOREM. The space H is complete [3], [4].
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4. GENERAL RESULTS CONCERNING CONNECTIVITY
IN THE SPACE H |

We investigate the structure of the metric space H

and the sets S and T in reference to connectivity,

-

THEOREM. A set M of H is connected only if for each

(0]

two functions f and g in M given by f(z) = z anzrl
| 1

and g(z) = z bnzn
1 .

lim ?Vlan-bn] = 0.

That is, each two functions of a connected set differ by an

-entire function.,

4

Proof. The two functions will differ by an entire

function since the limit superior is the reciprocal of a
radius -of convergence, |

For each two such ﬁﬁnétibns'wf  and g in M and
-each' € > O there must be, sincéUﬂM- is'connected, a

finite chain of functions fK ‘in M,

k3% e i it S b
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, where £ =£ g =f and such that

- . | i fK(z) - Z kan Z K 9’ ];3 c e r . | |




ufK-fK-llI < € ) K = 1,2,...,r.

For, suppose on the contrary that there is no such chain
between f and g for some € > 0. Then consider the

two sets, which will clearly be disjoint and non-empty, of

functions for which there is an e-chain to £ and of all .
other functions in M. Then the union of the e/4-nbds of
each function in one of the sets and the union of the € /4-nbds
of functions in the other Set are disjoint.’ Sb M 1is the !

union of two disjoint open sets. This is impossible.

Now for each 'n_z_l
la_-b_| S.]aéo)‘aél)l + laél)-aéz)l FoL. +'l§§r-l)-aér)l :

so that for each n > 1 there is at least one £ such

that
N - o8 _, (4+1) |
lan b1 g.rlan a 1 ,
-~ BRI TR ST
- . 1an an.lz“r}an bﬂ%’
n 1
+1) - ——
—— /la (ﬁj ar(rﬂ )'-)-nﬁ = r‘l/f:ia“ﬁ e 18 E—
Thus : e T = SR S—— .
Sup sup \/la%(l -ag )1 > 1 1mr\Zf I’\1/]an-bn | = lim I\‘/[an_-bn1.
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Also e > s1zp ufz £.}_1“ 2 sup sup f}' i+l
, n £

Hence, since € was arbitrary,

1im I\‘/Tan-bni =

THEOREM. The set of all entire functions in the space H

is connected. The set all polynomials of degree < N is

connected; the set of all polynomials is connected.

Proof. There are several ways to show that the set of

‘all polynomials of degree <« N is connected. We do so
either (1) by induction, since any az and bz of degree

I_are path-connected, and since there is a path, p, given
by | p(t) =t an+lzn+1+z akzk, O t <1, connecting any

’pOlynomial of degree n + 1. to a'polynomiai of degree n;

or (2), where two polynomlals are glven by P (z) =
A n2 . : B . N Y
| Z k and P, (z) = z b’kzk , by considering the two .
o B I T

pathé }Pl(tz) _ahd PZ(ti), 0 < t <1, which have the

, nul ':unctiﬁﬁ”iﬁWCOmmdﬁ;“ﬁf”(37“53T@bﬁsidﬁxiggtghgjﬁﬁth"

\\\’

= ‘“wmﬁﬁﬁ and o R S s R e e e S R S
1 2 e
-Thereforef the set of all polynomials is connected.
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Finally, the set of all entire functions is connected

gsince it is contained in the cloéure of the set of all

polynomials. For, let g be any entire function given

o0

by g(z) =Zanzn. Then the partial sums PN of g,
N1 |

PN(z) = Zanzn , converge to g ,
1

- llg-pyl = l\}: az'| ~0 as N-w
| N1

since lim f}[an[ =0 .

THEOREM, Each component K of H consists of functions

£ + g, where f may be arbitrarily chosen from K but

then held fixed, and g varies over the set of all entire

functions.
s

" Proof. Cléarly a component can contain no more
functions than this or some two functions in the component

will differ by more than an entire function. ° | i

' The function F from H x H to H given by

F(hl,hz) = h1“+'h2‘ is continuoué since H is a linear

mv—-l—-——«?-»-“lw~tepeleglca3£spaé‘é‘”(’*}.““:Jﬂre“set“ﬁf“a{bk'functronsof*themww~ m. .

 form f 4+ g where f is fixed and g 1is .an entire

- function is then the“continuous image of a connécted set

and, therefore, connected since £ 1is connected and since

—="""""the entire functions are commected:




if .l.tl-t"z‘] < (—g-)N. |

Alternately, we may show that the f + g are path-

connected by segment paths. That is, we have the

THEOREM. Each.component K of ' H is convex.

ped

Proof. Let £ + g1 and f + g9 be any two functions

in K whe?@ f is in K and g9 and g, are entire,

i

Clearly the functions

f+g +t(f+g,-f-g), 08t

of the segment joining £ + g and f + g, ~are in K,
Furthermore, this path of functions is (uniformly)\con-‘

tinuous since g1 and g, are entire. For, let € > O

(o)

b,,,e given- Then. ' gz - gl’ given byw (gZ'gl) (Z) =Z Cﬁzn )
N y “ | e &

\ ' ' .
is entire so that there exists an N such that for each

n > N’,lvlcnl < e . Also supfylcnl =0 < © . Therefore,

wherg fj;1 = f-f_gl + thgz-gl) and ftz = fW*‘gl +'t2(g2fgl)

are two functionsofthesegment,,weﬁaveHff"ftu< €M,T”

&

- nf e Fe,l - n<t1 t2><g2 5 | -

SUP ‘/ltl ZTc [

] < b it LL.._.\:J. o S R  KPO resial 5 A S Tl N b i ) b b Vv L
- 3




~different choices of g, and g,. -

: N/ |
< max {e, /(® (%-)}m .

THEOREM. Every two components K and K' of H are a

positive distance apart.

o0

Proof. Let fl and fZ’ given by fl(z) = Z anzn
and fé’(z) = an'z“ , be two functions in K and K', |
1

respectively. Then any function f1 + g, in K given by

£,(z) + g,(2) = z (a, + or,n)zrl with lim%an] = 0, and
T | |
any function £, + g, in K' given by fz(z) + gZ(z)

= ) (b_+_)z" with Tim EVIB [ =0 have a distance
n n : 'Yn
1 " |

T 0/T
> lim f]an +a_

since ‘fI -‘fz is not entire. Therefore, the distance

~ between K amd K' 1is positive since & is fixed er ._

- THEOREM.  The~numbermof cogppnents of H””isfthe'ggggigﬁl.ugffw@mamw@

-~ . -number of the continuum. T
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Proof. Let f, given by £(z) = z.anzn:»ﬂ:’bé ‘a function |
| — > B S L
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i

in H such that TIm JTa_] =€ > 0. So that if s ft
are two numbers, then thé functions sf and tf belong
to different components of H because (s-t)f 1is not an
entiré function. This proves the theorem.

Furthermore, every two components in the proof have

a distance greater than or equal to (by the previous proof)

4

1im fs-t] lan] = 1im Q/Tan] % ¢ > 0. Consequently, the
e-nbds of functions from different components are disjoint

and we have the

THEOREM. The space H has no countable basis.

Every component of any space is closed in that space;

a component may also be open. For the space H we have the

THEOREM. No component of H is open. Each function in

a component K '9§  H is the limit of functions in H

none of which are in K and no two of which are in the -

same component.; .

. will'hOt be close&;

. . Proof. . No.component,willnbeMQﬁengsingg_i;s_complementQ_.__;;MMWM

  ~-For each functlon_ f glven by. f(z Zdé;z~ ,'whlch
N o

e TN e e

-functlon f , | o - - . .
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fe(z) = Z(an + cn)zn , 0<e <1,
1

where [lfe - f| = ¢. The functions f, are not in K

oo

since the (fe - £)(2) =Z e"z"" are not entire. Also,

1

for ¢, €, , f and £ are, similarly, in different

€1 2

components.

Since an ¢ -mhbd of any £ in H contains

above, no neighborhood of f 1is connected. So that we
— | \
have the
THEOREM. H is at no point locally connected, |
| ~ -
f
- | . <
CoONY .
s
o - . N - NN - A
Mj“ - N
e SO — - ;/,j-‘

S
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5. CONNECTIVITY RESULTS FOR SCHLICHT FUNCTIONS

THEOREM. The set P

N of all schlicht polynomials in the

unit disk of degree < N 1is connected in H.

N
Proof. If f£f(z) = E: ah;n is schlicht for |z] ¢ 1,
o 1 N o
then so are the functions given by £(tz) = Zantnzn for

1
O0< t £ 1(*). Finally, the functions given by

2 N-1 -
%-f(tz) = a,z + a,tz .. Foagt z" 0Lt<1l,

will be schlicht. These last functions provide a path of

schlicht polynomials from f to &uz. Any other schlicht

. M | |
polynomial g(z) =‘2 | bnzn , M ¢ N, will similarly be path- |

connected to blz: ‘The segment alz +t(b1-a1)z , O SUt <1,

connects a,2 to b,z

[ -

i 1=
& -

i "o 4

g

y K - . - .o ' .

i Al . :

THEOREM., The set of all stable-schlicht polynomials in the =

g . \\\ |
?'A_u;wf#“,_._, Proof The proof is 31m1far to the prev1ous proof

N lS clear that the funct]_ons '1 f(tz) Wlll be stabl e_

‘partlcular, where' f(w,z) ‘is the a55001ated function of g %L;fiwfmwfw

f the assoq;ated function of - —»f(tz) will be (by observ1ng

its expansion coefflclents) f(¢,tz), and w111 therefore,-
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be boun?ed away from zero for each t 1if f(9,z) 1is so
bounded.

The connected set of this last theorem may be enlarged

. by the following

THEOREM. The set of all entire functions which are stable-

schlicht in the unit disk is connected.

Proof. Let f be any entire function which is stable-

schlicht in |z| < 1. Where f£(z) = Z anzn we have
1

inf | Zan Sg?_nn;% zn-ll =05 > 0.
T )

"For a fixed n in this infimum put t-a_ in. place of

a  and let t vary from 1 to O in O ('t <1l. In

this variation of t the infimum will experience at most

| . sin np n-1
a change of n]an} since  |=5in o 2 | £ n.

10 ¢

Since f 1is entire, £'(2) =.Z n a zn-l is entire
| 1
1

e r“andmabsblutelchonvergentfor.~z =

x,

. ~ 1
://;nd the sequence of partial sums converges. So that

-pww@;;%ww4.m@mnlﬂnl.*’9 as nl_fmgw;wmuémchoosewan;,N;Wsuchmtha;; —

. — 75N S - ‘ . =
s T o - -
0o L /
o —— S s .,“,v.ﬂ,‘,%:“w-;x_.. e :M e — s DR
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Now, if f we successively let all the a  for

.

n >N go to zero by the described variation of t-a_

and obtain a sequence of functions
f=f , f =f Mk |k =1,2,...

for which

1];im fk(z) = Zanzn = PN(z).
=¥ 00 1

This sequence also converges in H to PN’

e - ryl =0 ) al
- m=N+k+1

- “fk - PN” -0 as k —»ow
sinee Tim ?/lanl = 0.

PN as“well as each fk-isstable-scﬁlichtbecause . Y

as all t-an for m > N gOito'zero, the total change
in inf |f(g;z)]| is léfssw.tha‘n or equal to Z n ]aﬁj_ -
. which is less than & = inf |£(p,2)| , that is

- T et “inf fPy(e,2) [ >0 ‘ B
mmwﬁ;f__*;'7'fff*“*Tﬁéreforé?“WE“h&Ve“a*Path“of stable-schlicht entire —

‘functions from each- fk‘ to fk+1 for all k; the fkf,m:. m_qH 

-% - - are connected_and in the -set of stable-schlicht entire -

@

o e e e e Tl T S S el

T et
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functions. Finaliy, since the closure of this path includes
the stable-schlicht polynomial Py and since the stable-
schlicht polynomials form a comnected set, any two stable-
schlicht entire functions may be connected. The theorem is
proved.

Alternately, in this proof we may let the t.a_ 8o
to zero simultaneously to obtain a (continuous) path from
f to PN; That is, where N 1is ehosen as above, it can
be shown as in the proof of the theorem thate eyery

component of K 1is convex, that

= n
ft(z) —Z a_z +t2 az , Ogtgl
1 N
prov1des a path from from f to Z a_ z" PN(z)

| THEOREM. There are components of H which contain no

~no schlicht functioms.

Proof. Consider £(z) = ( 2 )n- for n > 3. Then;
' 1-z) "

—~  each of the functlons is in H but each is non schllcht -

AT elementary grewth the@rem {*) fonmsehllcht functlonsmMMw

is: if—f '1s schllcht in the unlt dlsk then for ;lZT;f;f;:;:i;“;-

£1(0 f f 0| —E~ o R
e )1 o7 s l (z)l < l ( )}_ .
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We see that £(z) =( 2 )3 , for instance, does not satisfy
1-2z

the inequality and hence f cannot be schlicht. Further-
more, for no entire function g will f + g satisfy the
inequality as =z approaches 1 in (0,1) because the
entire function g must be bounded in |z]| ¢ 1. Therefore,

the component containing £ contains only non-schlicht

functions.

LEMMA. Every component of H contains non-schlicht

functions.

Proof. If a component contains a function f,*wé can
choose an entire function g such that g'(0) = -f'(0).
That is, f' + g' will vanish when 2z = 0. Then f+g

is non-schlicht since the derivative of a schlicht function

can have no zeros (*).

Observe that, for any two fixed functions f in H

and g entire, there exists a complex t such that

£1(0) + £ g'(0) = 0; that is, the set of functfoms £+ tg

~ for variable t contains non-schlicht functions.

| _ | | N .
fun'ctions is connected, | S <

_THEOREM. In every component of H the set of non-schlicht

N

AN
.

S e v e R e 7Y R G v e T THE TG e W i DT LT T T T T T e
N b bt St s,

component K vwhere_'g.'is'éhtiré, ~Wéﬂ\form_with arbitrary




} complex numbers t all functions £ + tg, each of which
will be in K. An £ + tg will be non-schlicht if and
only if there are 2z, # Zos lz l < 1, lzzl ¢ 1, such that
f(z)) + te(z)) = f(z,) + tg(zy)
. f(zl) - f(zz) k
T gz - 8(zy)
To find all values of t which give a non-schlicht f + tg
we have only to vary 24 and Z, in the above calculation.
The totality of such values for t, withh fixed ¢ and g
and the variation of * 24 and z,, forms. in the t-plane
a non-empty, open, and connected set R. This is so because
the mapping defined by f and g in the calculation: of
t 1is open and is continuous for all but a finite number
jh off pairs (zl,zz), and because the set of p0351b1e (zl,zz)
;1 is open and connected in the product topology. For all tc
Nlﬁ in R and only for each of these is f + tg. non-schlicht.
. For all ttin -R the correSpondlng functlons are connected
iiﬂ in K srnce each two points of R may be connected by a
i; (polygon) path and therefore, 81nce g 1s entlre,'theA“‘*A‘
?i? _corre5pond1ng two functlons are path connected ‘ o
13;“' B In order to”obtaln in the form £ g -atl- ﬁﬁn*SChllCh-
A“gvf - ;:—m_ functions in the component 'K l:trls suff1c1ent to con51der'_rvm‘
Lo - ; fixed £ in K and for ‘gvvea* t'ake all entire funcions -
}_; } kk- Thus, let f.*-togo and f + tlg1 be any two non-fi |
%;Z - schlicht functionshin K, where for mno two constants
4 < '




a, B, not both zero, does ag, = Bgl. Otherwise, at least
one of 81 and g, can be expressed linearly in terms

of the other and the connectivity of the two non-schlict
functions is reduced to the case previously considered.

(where only the t values are different). We form the

linear function-set

L = {gkigk = 8, + )\(g1 - gd) s 0 <A g_l} .

For each function gy Wwe form the set .R% of all t-values

for which f + tg, 1is non-schlicht. X
We choose two fixed points Z4 and z, , zy 4 z, , in

the unit disk such that gk(zl) - gx(zz)‘f 0 for any
0 A< 1. That is, the line segment between go(al)
-'go(zz) and gl(zl) gl(zz) does not touch the origin,

This choice is possible because

g,(z)) - 8,(2,)
8,(29) - g,(2,)

is neither constant nor always 1nf1n1te by our assumptlon ;
ag f Bgl (If ‘the quotlent is constant, a, then let

 iz2jj OE gl(z)/gz(z) =aqa . If the quotlent o] -were

'
.
-
. - ’ . ~ - - 32: S
TR it - - - s e e .- L et P - " o - i -
.

-~ always zero or always 1nf1n1te ‘one of g or gl would

RS PETEIRR IS, SIS

;;_egualwzero_whlch:is lmpOSSLble Sane then,massumlngs g_~-*0Qf;ﬁ;i;in

ag~w* Ogl,e g.) So then ‘as prev1ously, the values of

gl(zl) . g]_(zz)_ o B

21

g (Z ) — g— (z ) -must fOI’ﬂl ah 'Open SEt. SOI that any
o 1 202 | - o
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and Zo9 such that the argument of the Quotient is then not

an odd multiple of 7 will suffice. Now

- = t = p
©8\(27) - g,(2,) Py CA

is ﬁniformly'continuoﬁs in A, since [0,1] is Qdmpact, and
the Py form a compact set. Each Py corresponds to a
non-schlipht function, and each Py is in Rx.

For each P\ there is a circle in Rx " with center
px‘ and radius r,. We choose the rx S0 that r, >2r >0, L
This is possible because the distance pE Py to the frontier
of R, is a continuous function of Py of.of A.  So
_that S}nce»the px-'or the A are compact and each distance
1s positive (Rx is open), the infimum of the distances
is positive.

We now choose, as Py is uniformly contiﬁuous'in' A,

'a 5> 0 such that, for all A' and A" in [0,1], if

"ywolk'-kﬁl.< 6, then [Py-PY| < r. , | -

 For each A\ in [0,1] the intersection

IH{RE’:z in (a6, x5) N [0,1]}

-~ 1s then non-empty; the intersection contains p.. .~

- Let the sequence

v

0 = 2 <A <M < s <y =

be choseﬁ so'that,forfégchv k with .Ojgfkr<ANﬁf

—
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Ml <M H B Mgy ~ B <o |

The union of the intervals (lk-ﬁ, kk+6) covers the intetvel
[0,1].

The points ka we designate ag Ty Each Tk lies

" in the intersection - !

ﬂ{RE : 4 in (M -5, Xk+6)} , \\

Furthermore, le contains Ty , Ty4q > Tp.p Since the \
| o
circle in R% around Ty has a radius greater than or

equal to r and 17k+1-1k] < r, etc,

Finally we have a path of non-schlicht functions in K

from f+ t g, to f + t,81- From .f +tg, = f + t. 2y

to £ + 7 g, there is a path of non-schlicht functions
corresponding to a path in R0 connecting to.'end Ty

For each k, 0 < k < N, the path from f + 7,8, to
| | g h‘ ‘ e ,
£ + T8y > through the lihear'subset'qf' L indicated,

k+1 |
will contain only non-schlicht functions sipce Ti is in

each R, from A =% to A=D},,. For pach Kk, T

- - 0 g,k < N, there is a path of non- schllc functiohe from

e i i

£+ t~gi' wf“+ Ty aqE ~since there is a path from o
BT, k-;---?;\1*&1-1~.._._..f..“ k+l xk+1_tummmwm

R ety

| figjtewsfk+1 1n31de Rmk+1 At last, theree*S%a SUitable ‘fg“””””“

path from f +'1NgAN to -f + tlgkN %'f-+ t18, since RmN-

contains both Ty and .tl.f This proves the theotem.

B e
M ]




6. EXAMPLES

We give examples of schlicht and of nbn-schlicht

functions.

EXAMPLE 1. THEOREM. Let f in H be given by

o0

f(z) =y anzn. Then:
1

N

(1). If nla_|, then f is stable-schlicht,

o)
=
V

n|an|, then f 1is schlicht, and -

7~
W
e’
-
QD
'—-I
A\

F[anl’ then f may be non-schlicht

~
(Y&
~’
-
Fh
ry
.—-l

2&
two z and zy, z) # z,, in the unit disk

~f(le.- f(Zz)

00 .




so that f  is stable-schlicht,

(2). Similarly, if Iall > Zn]anl , we have
St 5

o0

. f(zl) -f(zz) = (zl-zz) (a1 +Z an(z?_1+ zlil"zz2 + ... + 2121-1)) ¥ 0
2

for any z; # 2z, since

00

l Zan(ztll-l + zrllmzz2 +...+ zg-l)l < Z nlanl < Iall ,

so that £ is schlicht.

0 ¢ 00

3). 1If ]éll < anan] and if f£(2) =z anzn
) 2 o 1

converges in lz[ <1, then f£f'(z) = Z na zn"l and
) T |

'cdnverges absolutely for each 'z in ]zl < 1. That is,

lall +z n ]an]pn-l converges and is continuous for all

p such that 0 ¢ p <'.1; K1) Z nlanl‘pn-l -0 as p -»o |

. since lagl <) nlal, lin Y nla [ > |ay] . Therefore

eyt o T et i e ey e e

there is a po in (0,1) such that N

e e L e e e ey

S,

_NoW,' the a;:gumetits of the ah in £ may be such that £...

by

G VWS - 8 o o e oy e e e s ma— el
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is non-schlicht; in particular _v

£z) = laylz - layl” - layl2® - ...

is non-schlicht since f'(po) = 0.,

EXAMPLE 2, The functions £ in H given by f (z) =
- F I-pz
|pl € 1, are stable-schlicht since

| ) S ey
.lfp(zl) fp(zz)] - 1 (-pz1) (T-pz,) 2 lzl-zz.l (1+]p)? -

In the following examples of schlicht functions, whether
each function is also stable-schlicht is considered in
relation to the boundary of the image, under the function,

of the unit disk. We call the image by f of the unit
disk f£(D).

EXAMPLE 3. The convex schlicht functions, schlicht
functions which map the unit disk onto a covex domain, are

stahIefschlicht. This folloﬁs fromthe_kBOanresglthgﬁ)w,

that for any convex schlicht functlon f

. - .- . Ce . - F P - R [ VU PR
- _"-F-Q

WEBQLZi“K@J>°’VV<L

— — e

”““only'elementary characterlzatlon of the boundary of the

1mage of the disk whlch assures. that ‘the functlon 1s‘f“‘“‘“—w

<

%

stable schllcht
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EXAMPLE 4, The function £(2) =<£l'§) - %- is in H
and is schlicht. Furthermore, £(D) is bounded by a recti-
fiable Jordan curve which is analytic except at =z = 1,

where the curve has a cusp. The boundary of £(D) is

also a C' curve. However f 1is not stable-schlicht

since f' is not bounded away from zero.

EXAMPLE 5. The functions

— -1
fa(z)_ f( ) a

z- , 0<ac<c2,
__"TﬁETV_——_ | | ’
/1( )+l |

'_Wshow that even if the image of the disk is bounded by a

rectifiable Jordan curve without a cusp, the schlicht

function may not be stable—séhlicht. Where fa(z) -
fa(D) = {W . IW1_<,1 » 0 arg w < a} .

Since \f' is bounded away from zero in the unit disk if

~ and only if O < a g_l £ (z) - f (O) will be schlicht
| ;but not stable SChllCht 1f 1 < a < 2.,

 Piranian [9] has.glven—an example Of;a'échliCEt'”'
b
fun ction whose_dlstance _____ tc every other schlicht functlen »»»»»»
- ‘IS““at“‘.’LEIHS‘t“‘Oﬁe _ D - : -




APPENDIX

DEFINITION. A linear topological space is a vector space

equipped with a Hausdorff topology such that the operations

of addition and of scalar multiplication are continuous,

DEFINITION. A linear space L 1is normed if there exists

1

a function p: L - E~ such that

(1). p(a) >0 for all a e L

(2). p(a) =0 if and only if a =0

(3). p(atb) < p(a) + p(b) for all a, bel

(4). p(na) = ll]p(a) for all a ¢ L and all A e E',

We write (a) llall ‘and call |a| the norm of
ae L. We then have the distance |g-b| as a metric for

the space L.

DEFINITION A function £ which is analytic in a domain

D is sald to be schlicht (univalent, simple) in D if

z, f z, implies f(zl) f'f(zz). This holds if,andfohly

“fifthemappin%/%;flned by £ 1is one- to one

THEOREM, A schlicht function of a schlicht function is

'_s¢hIicht‘“ij*?fkﬂis:schiicht“from~a*domaiﬁv B‘*ﬁﬁﬁ)&* SR

is schlicht in D. j R
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Proof. F(f(zl)) = f(f(,az) 1@131135 f(zl) '_f(zz)a

’ and this implies zq

= ZZ‘

e e

THEOREM, If £ 1is schlicht in D, then the derivative f'

is never zero in D,

Proof. Suppose that £'(z)) = 0. Then the poﬁer :§
series expansion of f about Z shows that £ - f(zo)
has a zero of order two or greater at =z . Since f - f(zo)<
is not constant, the zeros of f - f(zo) as well as the
zeros of f' must be isolated points. Hence we can find
a circle C on which f - f(zo) does not vanishvand
inside of which f£' has no zeros except at z_. Therefore,
let m > O be the minimum of |f - f(z )[ on this circle,
where m exists because ]f - f(z )f' ‘is continuous and

the circle is compact. Then, by Rouche s theorem, if

o0< lal] < m £ - f£(z ) - a has two or more zeros in the

\\""v

circle. It does not have a double zero since if it did,
cdnsideration of the power series expansion of f\ about
” th1s new p01n£ in the circle would show that f!' -would be
zZero there, wglch has'already been’excluded Therefére, 

f _takes the_value f(z_ ) + g more than once in D. This

B P, e T ol R R R I T G eI R S i et R ] S
P P PR AT T T g 5T TS R B s L e o .l
o D H
. 1y i !

varylng the ch01ce of “a*, f'-would take on”allgval'es."'

'”suff1c1ent1y near f(Z )E_at least twice.
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THEOREM. Let f be analytic at some point 2 =2z ‘and

let f'(z ) ¥ 0. Then £ is schlicht in the immediate

neighborhood of 2z = Z

Proof. We may assume w.l.o.g. that 2z = 0, Let

0

f be given by £(2) =Z anzn where a; ¥ 0. We show
0 |

that if Zq and z, are close enough to 2z = 0O then
f(zl) = f(zz) ‘implies z; = z,. If f(zl) = f(zz) then

00

n N\ _ A
.E: an(z1 - zz) = 0_ ,

(zl-zz) [a1 + i an(zr]j“1 + z'tll"z' Z, +. ... T zrzl-'l)] = 0.

Now if ]zll < 1T and lzzl < r, then the modulus of the

second factor is.greater than lell }: n]a.lrn 1 Thus,
00 2

since f' ngivjen by f'(z) = Z n anz'n_'1 is absolutely

':convergent in some nbd of zero, the modulus of the second

factor is p051t1ve 1f r,ylsvsmall enough, Hence |

zy =
if f is small enough T v,'b-° -

_THEOREM...

Zn
. 2 . T em e e PR ‘. ’ A

boundary is a“51mpIe closed curve- C and‘let f be

-_msohlloht i.e. onerto-one, on 'C | Then_ f is sch11cht -
in D. See T1tchmarsh The Theory of Functlons, p. 201, -
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THEOREM. Let f be schlicht in the unit disk and £(0) = O.

o
Then we have for |z| =r, O0<r<¢ 1, 3

£1(0)] —= £ £'(0) | L
|£'(0) ] (Hr)zgl (z)| < [£7(0) | Ry

See [6,p. 4].

THEOREM. Let £ be schlicht in the unit disk and £(0) = 0.

Then if £ maps the unit disk onto a convex domain, we

have for |z| =r, 0< r ¢ 1,

,b

1£'0)] _1 _< [£'()] < [£'(0)] _1 :
| (1+r)2 ) ) | E (1-r)2
See [6, p. 13]. These classical results and others appear

in [6] and elsewhere in standard literature of complex

functions: >
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