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- 5A ~__Canonical Forms -

p . o In the’fottowing'mqferidl we shall be~congerné? with the
| | o e | e .
" second-order partial differential equation,

- " . = au + 2bu + cu + f(x,y,u,u ,u ). =0, : (1)
¥ - xx XYy yy Xy BRI |
' , N o - ' : _ . :
o & w
o\ 7 [ ' - ° ’ a‘ ° - ' ) 0
~ih which v = u(x,y) is a fynction of the independent varia-
o | . - | - |
bles x and 'y, - The coefficients a,b,c are continuous functions of
. ¢ | . . ) ° | o - ; | '
~x and y, having as many derivatives with respect to x and y ass
i1s necessary to the discussion. | T
. | \ . | ~ o
7.7 To facilitate our study of characteristics, we shall, i
v / “ ‘. . o o -~ |
© under certain conditions, be able to reduce the linear: second- 3
order partial differential equation,
[ ¥
& - ; ,’/ o o ' , < s
| : . au + 2bu + cu + du + eu + hu + f = 0, (2)
v n | o : - XX Xy S Yy X Yy E R .

to one of three canonical forms. This recuction will be possi-
. |

- : ble if we effect a change of variables, writing (2) in tgrms of .

UEKQ Uin;:unn, etc., where E = E(x,y) and 1 = ﬂ(x,y)r»are'

J(E)N) T
d(x,y) f‘o’ :

S0 that these equations define x and y implicitly as fynctions

updrtibutar functions of x,y@a It {s supposed th@t

b

Y 2 o . &
Of a an d n )
) Writing ux, uy tn terms of the new variables £.and " we - . R
N B » ' & . : o 3 . . . ) ) , . ¥ kg . - lx
- e - _ B R e JE T SR S SN S T . i CL . ; L Va !

>~

EAE X R

Y

‘ R u = UECX.+'unjx,~ . 'l“;'gY;: ugﬁy;* ?ﬂni,




Using these expnessibns'to'obtain uxx; étc;,in_fermg of
£ and M, we find

) : - | | o . | | :
“xx © (Uéézk +7u§ﬂnx)ék ’ uégxx ? (“nézx ’ uﬂﬂnx)n ! unﬂ- '\‘

xx

uza(ix) unn(ﬁx) f 2u§n§xﬂx +'u§;xx +Aunﬂxx,

with anatogobs éXpressiqns forwu?y and;uyy. On subsfffuting

these values in %yuation'(?)‘we,find

whefe, | | é*v’ .

. - S | 2. ‘ . ) . |
K= a(f )" + 2bE & +-c(ﬁf)2 B R e
X “xy y o | |
{aévﬂ + b(i_ﬂ + E n ) + cC n }
IX)y | x ‘ B K
‘and .equation (2) becomes

a’uéa + \’2 v,g‘uz,;q + ?@-nn | *{_ui +(un + »h_u + f = O, - (4)

~

1.2 In order to find.cahoniqal forms for equation (3) we
shqt},éonsidef the .sign of the discriminemt of ‘coefficients

a,b,c in the expréssions for X, £, 77, First we shall investi= —

| A - |
gate the case when ac - b2<f‘0° In this case the quadratic

equation,

) azz . + Z’bz + cC = O, ’ - . . ' ' | ' ' ‘ (5) T L | '\?'
has two real roots, say ‘A1 Eﬁq )Aé, so that
S B o . L _i» .
az’ + 2bz + ¢ = a(z ~-.A )(z - Ag)s . 3 o (6) -

4
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A%t this point let us choose £ and N so that they #atisfy;f‘

the following two equations:i

X

2= Al = A

Sub#tifut{h§ tHesg»values'of Ex dndfﬂx into_our expressions

for A and 7 we find:

X

o a(t )2 + 26 E 4+ c(E )°
T X o x"y | y

- - - ‘ 2:'
(a,/\., + 2b/\1 + C)(;X) ,

n-d v' \ e i
and | /

) = a(ﬂv)z £ 260 N 4 6(ﬂ.)2 =‘d(/X-H )2 +# 26( AN )N
R X'y Yy 2y 2y y

.. ®

T 2 (a )\g r26 A, + e)(M )2, ot
' - )4 -

~

‘Hence by equation (6)_C(¥ Y =0, for all x and y.

That it is possible to choose & and N in this seemingly

arbitféry manner we can justify by considering the followl
Subpose

gx, ‘ | | o i | e gxfu u ’ B i o
Ly N Gny) =0, e Aylun) =0

These equations will have uniqUe families of solutions i f

,X1 and ;KZAhaVe CbnfinudqsrffFStlpartfdl derivatives With" ';

respect to x and y. Since ,A1

+ c(ﬂ.)z
Y

ng.

A .

and ‘A2 can each be.eXprsted»as

an algebraic combination of a,b,c and a,b,c are known to possess

B

~econtinuous partial derivatives of all necessary orders in x and

vy,'We'knoW _X1xand AZ have contiﬁdoﬁs first partiaté with res-

~pect to x and y. Let the solutions of the two first order

|

3}

~

- 'Page 3
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© - equations (8) bé given respeétiVely’by 5 ’ tﬂw o L I

i
. o | S Ve |
&Oay) =8, Mxy) = o
- \\\\ ‘ o . ‘ ' , / _ . ‘
-Then
gx = ' gl =
; Zx + t;y b o,” nx + ny = = 0 o
| 1 - n o - :
A, = - 2L X A= -9 _x L 0 :
*1 dx E ! 2 dx _.n ! |
g N A

- the latter two equations\satisfyinjgequation (7). 'Note that

-~ .  this choice of Z\agg N satisfies the condition that they be | N

Y

independent since if

n | S |
= ﬁi‘; y or A, = )\, which &ontradicts ac - b
y o

°2 o.

HERREA | t

‘then

Next, we wish to show that I/’fﬁO. To do this we consider .. L

. S ,  the equdtidn
2 ! 2 2
xX7-p4° = (‘j" - b,)(éxny - &N | (9) |

¢ » -

We can justify this"equdlity by éxpressing 5(72722 in deter-

Yo e e e e e e e e P S

° : -
| Y L .
O \NJI T e : N rj

‘ . N +
. < N a1 -
' : . # . ]

. ’ ’ N s
. . o -
» . R . ) .
. & : - . . , . I -

) . f ) i ]
» J
i . / . 7 e - P . YA -

SojaE ) et ks (22 arn 4 ob(En

B ——
minent nota

%

o

+ N E )+ ek '

o faEn + b(EN s M E )+ cln am )% s 26m 0 s e(n )2
| Tx x X'y x'y yy x Xy Yy
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— » ' ¢

¢ JE  (an + bN )E + (BN 4 en )E
y 'y o o« y x o ox oy Ty

T |(aE. # BE )T+ (b, 4
y’ *x T 7x

-

A

L B S _ . '. .
(aix'+ bE )N+ (BT + e& )N (aN_ + BN )N+ (BN + en )n |

1E - Z ||aE + BE  .an + BN E E|la b[lE 0
X y . X Yy | “x gl . ‘

o In. n[|bE +eE T bn +enyl - In nlle ol lE. 1
, | x Y o x . X .

I
]
RGN

But ' .‘. \ | | _ ) . - § " - . . . \ »-- i .

weoos

;, hence

and-

3 '
>

2 z 7-4' A 2 E
A7-F° = (En <M Z )(ae -b)(EN - En )
\ xy x'y xy Gy x
P .
(En -nZg). .
x Yy X'y o |
Since « =7 =0, this shows that /? is equal to the product of o

LY

(ac - b2).

‘two non-zero factors and hence 'is different from zero. Hence

>

our transformed equation takes the form,

- F(E,h."'l, u, u&, UT]) , | | = - ~ (10) |

(g

-

which will beﬁinbwn as the canonical- form for the case when .

2 ' o o - m
ac = b < 0., We shall also refer to 1t as the hyperbolic case.

7.3 Next let us considef ac - b2 = 0, In this case
>

<equation (6) becpme§ _ ! ﬁ . B

| %X\ e e D

-~ As In the previous case let us choose £ in such a manner that

o E = ;x1§y,‘and specify N as an arbitrary function independent

:
™ W
-2 = 8
- v L e ”
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of E. This choice §f & makes = O,

and then'equdtiOn (9)

"éhows‘thgt ,3 = O,‘sinie- ac -;bz.zlo. Now"'7(#"0, since'if.it'

. "were we would have

P I T £ -
=z A, and thus = = 5=, oOor XY
n 1 oo n 4
Y : B 4 Y M.

_,\-.

U
$> \

A

P o , , N ~ .
Then § and N would not be’ independent. We arrive at

Y

. 1)

u. = F(EM,u,u

as the canonical form for ac - b2 = O; and refer to it as

the parabolic case. (

1.4 Finally, suppose aC'-‘b23>O° ~If we allow éoMplex

values of § and N, equation (6) will have two distinct solu-
tions ,A1 and ,\2,which-are complex coﬁjugate%° Again choosing

X

g and N satisfying thz #A%Zy nd ﬂxkz /\Zﬂy , we obtalﬁ-as f%
before, : B | ;,g
Q§n‘= F?io“{U,Ué,un)o’“' " :(72).

. &

Léf us change,the fndependen2fyqniqbleé}jn1(72) by;buttihg'

A
|

n1wf‘f~3?+ . k 3" | _ (13)

¢

Wé note that 51 and ﬂ7 g}e independe@f and real. The tﬁans,ormed

e —— R *

e— e

b

' —,equation is -~ , ;Mgz%. . 4 \ ’

L u + U , £ G(ir,W},u,u yus ). Co(14)
%45 - My 7 1..‘7é1;~"1 S

. - | - N : f :
We refer to this case as being elliptic.

B o | - . " . b ! ’ - el |
7.5 As an example to illustrate the elliptic case let us .

RS
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v _eonsider the equation - ) -

. i i ‘ | ‘ | | . ” " ’.,, | | 15 . | | | ‘
UX?_+ yuyy 0. (y>Q) v | e ” '_(‘ ) 3 -

: ~ - N o | | ‘ | ‘ | 2
Note that for y >0 the equation is not elliptic since ac - b >0 ‘.

implies in this case 1:y + OP’Q.

BN T e 4 w30y

_%  Sotvfng equatibn (6) we have : . | J' V;'-{

% ) o ) '

< az? + 2bz + ¢ = 22 +y=(z +iVy)(z - ivy) =0 | | | - | L

-

ing the transformation given,

I @*‘m “ _d?

byAequqtion (13) we find | | | | - , s

: N or A = Wy and A, = -iVy. Apply

7

Hence, v = u,. , U = =Uy , W = U, . , U . =.~U - — Uy . ]
x ", Yy 5 xx PP S L 2Jy3 P -

R N R R

N - | - 1 = u | | - -1 = 0
Yex T yuxy | Qn,n ’ “ELE == = t t tu '

-l)
-~
-3
-
Ql
~3
-~
-)
-)
A
Ty

where ~

R HER
R

R R e A

i
{
T

i
i
GG (W LR T WO o 5 i e
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5

. 2,1 When deattng with ‘an _ordinary thferentzat equation of

'thé.first order, %f = f(x,y) defznes an angle e =_tan- f(x,y)

v
- .‘Wl‘

&

’whzch the tangent to an 1ntegrat-curve musf make wfth the X—axis,
and the sotutton of the equation con51sts of the set of curves

havzng the given dtrectton at any potnt in the xy-p lane, -

-

Anatogously, a linear partia£ differential,équation of the first
. . : , .. . - @
order,

R, o - Pu + Qu - R =fb, (16)
| X y | - | |
, - v o ~ o . | .

may be thought of as determznzng at. any poznt of three space

a dtrectzon P,Q,R which by the dszerentzat equation is perpen-

dicular to the direction But this

ux,ux{-1;

normal to the integratAsurface u(x,y,u) = constant,

latter direction is

Thus P,Q,R

@

is tangent to the integral surface° A gufve having the direction

P,Q, R at each poznt is calted a characteristic curve of (16).

Any surface built up from characteristic curves turns out to be

3

an intégrat surface of the différentiat equation,

In a similar way we can investigateﬁthe problem of
’ ' v\r l»k . . R

determining sotutions of linear second-order parfiat differential

a /
. §
N

’equatlons by conStdertng ord:nary equations of second order.

e

- Concer?zﬁg the tatter, the initial conditions preécribe a point

in the ptane-fhrough which the integral cuﬁye is to pass and

/‘\




@;;,L, :

vy | }

P

also”ﬁkéééribe the stope'o¥ﬂtﬁé integral curve at that point. - -

. ‘@’ N

This iS}equivatéﬁtAto presckibing»theuvaIUes of the dependent»v

‘r‘i. .

'tH;,indepéndent variable x. In the case of a pqrtial.differentiat

variablegy and.fts-derivatiVé‘corresponding;to a given value of

‘equation, the analogous initial ccndition3<pre3cribe a curve C in

space which is toy.lie in the integral surface and also prescribe

N j '

the orientation of the tangent planes to the ihtegcal

‘along that curve., These conditions are equivalent to
et = ol -

J

\
AN

u along the pr'ojection‘co

y

However, the values of u,u ,u
‘ x' 'y

‘independent way (f u is to be differentiable along Co since if 7~ 1is

N L ey e e

a parameter prescribing position along C° we have

[ ] '] [ 4
Uy = ww x + U
x yy ’

’

surface

conditions

- which specifythé:vatues of u and its partial deriwdtives v and

s

of thecurve C onto the xyiptane.

cannot be speciffed in a completely

~where the dots indicate differentiation with respect to T.

A curve C in space, together with values of u and uy

specified in

such a way that equation (17) is satisfied is callezd a strip. We

~0

may also define q/strip as a curve endowed with a planar element ,

4

at each pbini, provided the planar element paéses through the

»

tangent:to the curve and the orientation of the planar element

k B

varies continqustyvas.we pfdceed*atong the curve. Should the

p lanar etemenfs be tangent tq the integral 5urfdce, the strip 1is

~;w~6d(led an integral strip df'éﬁ?“?ir;t order., \Finding;a solution

of the givéghdfffé;énffat equatfon"tthUéthFé”in%é§%dlf§%Ffp ?§W

v

known as the Cauchy prdblem, ) )

Let us adopt for convenience the convention

. { . . . !
g . E -

- -~
"\ k"
Ra
j *® : »
v ™~

i A R B T L T T T e O g

e e i o e

[t




C e~

‘ SR X sy s Xk T yy Y Txy T LT

Y

R - Then equation (2) becomes - = . _ o e D

‘ar_+;253 + ct +;8“= 0. _— o ’. - (18)
As has been previously mentioned, p and gq mu%f,satisfy equation (17).

e : : L G | | | .
| - Hence, if we consider a space curve given in terms of the para-

< . . meter T: L
X = x°(¢9,- Y, =‘y°0T),“ u, = UOCT) | | ‘j\LLQ)
then it must be true that
e . - | o 5
U = px +qy. ) : = - "(20)

e

We will now investfbate'whether it is possib[e to express

the solution of the Cduéhy problem in the form of a Taytor'suseries
eXpansioh‘about.a potint T; of the initial curve,. At T; the coor-

‘ L L) ;
dinates x#,yo and che derivatives P19, are known. We now have to , \*
. - determine the values of r,s,t. By equation (18) we have B ‘

oy

o . E . | - ~ | . - | | . M ‘

R
f . P
. "= H

ar + 2b3'+ ct = ~d, - | : (21)

: I f we différentiafe po'z po(T) and qo(T) with.respect tOmT.we havé
p = p x + p } = rx fs} | - :\ ~ L : " , 'f
| .O ‘_x. y. | ‘ I ' \ ) ’ (2'2)
& v q, = q.x * qyy= SX + ty . '
. _ The three equatlons gtven by (21) and . (22) will have a unlque =
sotutton in ryS, t if and onty zf the determznant of thezr coef—fw' o
\ . - 'flclents'ts not zero. BUt o - o T - .! .

&

725 VU314 I TR ALT y10 TSt 2 i Lot bt e ] R bepharp oAb by ik ey e e e s




]

*]*(22).-'J?fquattbhm(24) i{s satisfied ‘and

' / % A ) )
- 2 Page 11
' ] a 2b [ o4 \ a7 -
A=x y o =a2" 265y + ch2. T (23)

?encetf él,f O for the space curve given by

equation (19), then

Ed

rys,t are unzqqely determined along it..

.same condztzon guarantees untque values for att the higher par-

tial derivatives of u. We Mmay reasonably expect then, that there

exists a uniquelintegrat surface of equation (18) which includes

the strip conszstzng of equation (79) and ux,u along it satis-

fyzng equation (17).

fer s unless the

numerator determinant in the solution by Cramer's rule is also

/t turns ouf “that the"wWWTWw(,

zere, that s, - | | | - ~ "t
a -d ¢ B
N p . {0 . ey LA ;
X p Ol = 0, or apy + cqgx + dxy = O. o (25)
O gq vy .
Hence -if both equations (24) and (25) are satisfied we can find

equation (25) is not

"then no solution exists,

reE ;
O (26)
| |
. ' , /
be the prOJectzon of equatzon (19) on the xy-plane. Differen-
/




o Ve . | LT )

- . i

e T o - . Page 12\

ttatzng‘yteﬁdg'éxx + §yy.

- = 0. If we use this eﬁ&dtibn tp,glihine*m
| o 'dté } from (24) we get :
B ’ ' | | : . o H

2 2 - T e

'ag + ZbE & * Ca - O’ . . ' , - (27)
' , X : X y’f N y o S '
'g In this case we call {(x,y) ='§oﬂg characteristic curve of equa-
. tion (18), N E o S .
§ Let us analyze equation (24) for the three cases discussed
. previously, that is, hyperbolic (ac - 52 ¢ 0), parabolic
w (ac - bz = 0), and elliptic (ac - b > O). We can rewrite equa-

tionl(24) fn_the form‘a(%sz - 2b(%§) + ¢ = 0. Then
dy " 2p 2 VN , . (28)
dx 2a | a "
| . o 2 ; |
. and for a real solution we must ﬁave b - ac non-negative. ﬂ; w

s

That is, characteristic curves exist for hyperbolic and parabelic

linear equations of sec§hd order, but not for elliptic linear

eqaatiohs of second order. If our equation is hyperbgtid, that'ig,
ac - b2<< O and a # 0, we have two families of curves ih the xy-

“ . . 4 o 2 . ) |
plane;\tf 1t is parabolic, ac - b = O, there will be one s&ch

?fqmity.

2.3 In order to investigate the relation of}chgracteristié

curves to second-order discontinuities of an integral surface we

}mm S e sha[t*fffgf“Mdke'afféW”userIWHéf{BY¥YBHQ:MxLéf”f(Q:;)wéé amfunctioHmeWim%T;-

e

continuous at all points in the xy-plane with the exception of e

points on the curve.i(xiy)‘z'io, where E(x,y) has;dérivdtiveS'of'<:
:i“ - ye.'alt necéssary orders.f'LeflP1 dhd'lebe VaEiabLe points on either'
——..8ide of a point P, Lying on E(x,y) = 50. Then we define the ~ B
N o ‘ ‘,‘ o : ‘ ’ ) ‘ -
o | B oy | | - | |
S\ _ ‘ - o o . |

——a e h e £t o i e g




) - )
f /. o | T
~Mjump of f at P " = [fj, = Lim [}(P ) - f(P 2] (29) |
: (o Jd -l -p |
o 1,P f>P " |
We shall refer to the directional derivative of f at P along - ~{ o (

AN

the tangent to ﬁ(x,y) &o as the tangential derivative of f
at P (assu%zng, of course, f has first partzat derivatives).
T¢:‘ Since 5 i i's a vector normal tp E(x,y) = Co, the vector

Zy,-ik, bezng perpendicularhto this, lies along the tangent. . /  |

"Therefore, the'tangential derivative of f with respect to Pd is

ft:(P)-fz(P)/

5 (P, ) + E (P, ) o .
. 1
” ' ' ) < - . ' ' ' ':
| . If the right member of equation (30) is
N - -
| '““éﬁﬁ%fnucusq{or any value ofMP° when P°
‘ i{s on the curvetﬁ(x,y) = Eo' then we
shall say the tangential derivative of
; f, 21 is continuous on E(x,y) = E ” . — >
| : ' a7’ - AT e IR . X
It will now be possible to show that if a 50ldtion'u‘of
equation (3) has seéond,oﬁ@er discontinuities~atong a curve
E(x,y) = Eo then this curve is necessarily a characteristic
curve of equation (3). )
. Suppose u(x,y) = O is a solution of equation (18) with
B continuous derivatives of all arders excepf that at every
‘point along &(x,y) = & not all of its second derivatives are
. ‘ : o _ ) ] -, ; . -4
continuous. Further, suppose that gt att.pofnts‘of ﬁ(x,y)
u* and uy have continuous tahgentiat derivatives,; The last
v | . du . du C oy . - | L |
) assumption (  x and y continuous) implies that for all -
JaT - dT | - |
. S .
4




—t ot i

“paints on \C(x,y)”:

du . E (P
X xx_l o

- cvans

.

)

o .

L'(P) ‘i‘ix_

. \3 dT az

1

3

P . PP
0 172

._2 XYy

Thus -

‘ 0 = Y’] E(P)

/%2(P )+ 22p )

1’

2P tim [u (P,) -

[wsz = 2,(P) [uxy]p~ -8 |
S, T2 .

R

y ,"‘ N
Jd

1 .

(w,] = tim [w (P)) - w (P )] =
- | . PO P P P

2

since w_ is continuous, and hence

p
o

¥
N\.

PP !
7' 2 Po

z}'(Po) ['uxft]P B 5 (p ) [

e

{ ] P < [y,

O

‘v,
o

the following expressions are continuous:

v § (P ) - u
Xy Yy

i

Page 14

& (P,)

PR

‘But in each expression for a particular Pok;::\ngominator is
constant, hence for every Po on 5(x,y) = éo’ the numerators.are

continuous. Thus if we set w = u Z (Pf) -u £ (P)
| | S xx’y o xy°>x o

A W] = tim( [u 2, (Py) - v, B (P -

Ck(Po)‘tim [pxy(PZ)'-

__>P
PP

o
j = 0.

Setting w.=u E(P)-u E(P) , we have similarly
| Yy x O . '

]
o

) .
y 0

then




T Page 15

& We can therefore wrzte [u f] {: ] ’ }
¥ p C (P Y

and

T (P o /Ez('P )_‘
- »E"xx],, = a (P ) E“xy]
L. B ) ‘ X o

E If we set

) | N = P,

: P | 2 v
| o AN

(32)

IR Bt ] gy

S AR B I AT

we can write 4 - - . | I - (33)

| qe N 22, | | S | = - |
-[uxx]P z)\zx(Ph) ’[Px;]P =fxzx(Po)gy(Po)zs[fyyjpz‘kéi(Po)°___*' ﬂ
SR * 2R o -. . T

0

N2 U AR A R S S RS KRS MEARES YRR ¥

PR B A

Now consider ¥ defined by E(x,y) = lo and a function N

- gilven by stipulating that (f(§ ﬂ)) = Z; . We shall show that

A\ as defined by equation (32) can be written as a function of
N alone. | o - ;

Eartier,wetfoanq;fhat

2 : ,
= 2U -
exx' u&ﬁax * uiﬂgxnx * Ynn y

when we made a change of variables E = L(x,y), M = n(x,y). :
¢ ,,'By hypofhesis ux and uy are continuous. Hence the two equations

uzix + unﬂx and Uy = géiy * unﬂy‘ takenvtOQether imp{y vy L -g

)
5 > ’ ’
SR N,

and un are also continuous. [In addition we know that v and u
- . | | | X Yy

have continuous tangentialfderivdtives. ‘That is, we know i

N R R N R

r

o du
X

a7 ?_(“Eéx * “n"x)n;“”in;x*+qﬁﬂnx»'avﬁ:_'*;“““7w9"~f)““

EIRNE | B SRR S

3
%
it
=
s

and

Rl [ cial e 1 it

—L = F L -y = ‘ C R .
 ® (uéiy + unfly)n uiﬂ;y + u_ TN L o

o —

Sy s A g
3
Q
C
\,
3
®
py
e |15 e

SR | R A ST e S A e o
e =Lk ] SR
o i T v

£
% -

\

v

2

i

f

|

‘l

|

{
!
|
}
i
!

-ql_kn

\

b
5
w
B
yr

i
e
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' where the rtght member of each equat;on represents a conttnuous
.functzon. Hence the functlons uzﬂ and uﬂﬂ are'cqntznuaus. We ‘f .
'then conszder o ' | o ' ;J'ﬂ.’ ~'i | _'?
[xx_] ' “m [xx(P_ ) - (P )]
. P1,P2 P, | . .-
= {[ (P,)EZ (P ) = upp (P JE2(P )] +
Tilze ugg(PE (P ) |
—>p - |
P1’P2 Po_/ | | |
J
[ougntr 2, 0t (P,) - 2u€ ()%, (P % (7,)] +
o [‘nn(Pz)g (P,) - .nq(P,)cy(P,j] ‘ [pé(pz)axxa%;<u-
> p iy _ L . . o
g (P8, (7 g] [untepm, (Pzé, an(P M (P )]
?xmthe’contznu;fyfef Yent Ynpo u, and ug the jump of each of 
these.funcfidns»disappears.and we are left with SRR | L A
¥ | o
o | | 250y 2, * "
= P -
[?xg]P Lim {;Cn( 228, (P3) = upp(P )2 (R )]
, P P | ,
0 1" 2 o | & ,
= L.(P ) tim [uy (P) < u, ( )] e (P [ ]
YEE “rz x o L'EL |,
—>
?’P2 Po | | °
Hence, from the definition of )\ we fxnd : |
/\= ]?571, EERTE R TR (34) v
f . _ ‘ | 0o | o ' N | :

‘Jtﬁé-quantities['&;] [U ']jland [U jyfsmndt"zere. This EMb}fes

“

We originally assumed that at every point of the curve
E(x,y) = Co, at least one of the second derivatives of u was not

continuous. Thus at every point of this curve, at least one of

o

that )\# O since by equat;on (33) A\appears as a factor znueaéh

N

express;on. Hence at every poznt af C(x,y) -~§°,‘ru§é] is‘non-zeroy

v

‘6"
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In-a Sfmilar'Wayuw@ can consider the equation previously

u‘@%“

~ derived: |
‘h L L e

duz& + 2ﬂ :n *?/ | "" (P(XnYaUa E'u ) | ’ (3)

Again the contznutty of “{q' “nn’ ué,,and un wig} fedu§e the

’

jump of the left member at P, to “["EZ]P . Thus we have the

equgtioh:f'-,' e N L

d["i&]Po =0

But we have just shown [bggl to be non-zero at every point of
i(x,y) = Eo’ which implies X = 0, at every point-dn the curve,

By our previous evaluation for OX:

X = a(f )2 + 26E 0 + e(Z )% =0 | o (35)
Tx Tx y Yy '

¢

which s nothing more than the definition of a characteristic

curve,
7 , s

If we then differentiate equation (3) with respect to

p ST T

we .obtain:

uiﬁﬁ'y + uzé.O(a +'2u§gn-ﬂ + 2”5'1[)’5 + u':{ﬂﬂ.lx + u;m?/C +

' | » | | - (36)

Ugp- § + ug Sé + ug €+ u €y s ugh + uhy + fy = O,

.

The term involving X equals zero by our»prévious work\dnd the

§

terms in uy_, U ., U, Uy, U, f,. all vanish due to continuft vz
~ En? Ynne Yne Yg 4 Y

‘/V

when we evatuate the%{&mp of_the left mgmber of equation' (36).

'*wa know atso that the term znvolvzng uZnn vanishes. Hence we
cah write:
- %I ""“\m'

B L e “3;-—,\‘ SNt

E PR

.
V%~;:_;Lqur,;>;r-_--_»,m_;»_‘,;;,_,:;;.,,;.»g.m_;.;.A,_\-.;,v,» T R e LI D I N e C R W 1 NS b R 1 e Tt A N S T ML X A U SRS TTPy B ¥

¢ g e e
I" it

Rt § Gl A RS T b AN M il | i 2
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B R I B b2 By s o b et s 4

TR R R B S R N N

+ ated by a disturbence or wave.(g(&,to) # 0) propag&tedudtong

~ ~ 1 . .
¥ R , . . . : . .
. . B “ A . - .
o . . K . P -
A e o .
PR | v ‘ age
e . . et . . B
' ' "Q ' " : ' B N N \ ‘
| 5 - T T S VU . .

i [ E§]P° 4 ’ ﬂ [ i&n] Po s o
‘ Rémembering thai /\ = [uaz] p .,‘we;gknpw‘ | B

5

el - Fean] or Mg o) e 2p3 -

which can be written dA /&w(ﬂ) The general solution of this

equatzon is given by: S -

S S w(n)an- | -
A(M) = )\(n Je © . S (38)

Conseqaently, if on the curve &(x,y) = Zo the function X(ﬂo)

for some Tlo, we know )\(ﬂ)-:-: MBO‘H/\(U) O would imply that

all the second derivatives of u were continuous at all points of

the curve. Hence the discontinuity of the second derivative must

Sy

exist at all points of the curve or at none.

2.4 As an example, suppose we are given the equation of a

characteristic x g(t) where x(distance) and t(time) are the

*

 independent variables, Let a soiufion be given which is identicatiy

zero v\ihen x < g(t), XA
/If we suppose second order

discontinuity of z on g(t)

then we can assume u(x t)5¢ 0

o

for xQ} g(t) Since a second

order discontinuity at.a singié T n
poiﬁt on the cyrve'imp[ies secondibrder‘discontinuities’atdng the

~entire curve,we,¢an'ﬁh§nqufithé‘region x > g(t)ids’béing gener-

g(%)i:'x'by théiwave front\g(to)
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2.5 The preceeding work on second arder discontinuities can

R -
. * A .
8

; LI ° . : K ‘ : \ . . e ' ) ' ) o . :
be extended in an analogous manner_to higher order d!scontznutttes.

M

2.6 Let us consider as an exampte the case of -two dzmen51onal
3 .

flutd ftow, where the velocity depends on x andy but not on the
time t. Let u and v be the components.of vetoczty,atong the X and
y axes. respectzvely and f’the denszty of the ftuzd at’ pOtnt (x,yL;.
Theﬁ we can expgess the pressure P in terms of depsit},the Qelocity

| 2 ' - ‘
of sound ¢, and a constant fL by P = ¢ f’+-fz. Computing the

acceleration at point (x,y) yields as x dand y components:

[ ¢ ,;'\
U = uux-+ Uu =0 u + u v h
X y X y
/ . @ ¢ [ od
V=V X+ VYy=vVvu-+vyv,
X Yy - X y

~That (s, the acceleration at a point (x,y) is giVen‘by

*

hS

a= (Vu +uv,v u+vv),
X y X b 4

&

Differentiating the expression for pressure, we obtain

2 ‘ 2

R
I
0
;B
Q
3
Q
R
h
0
<O

G
We can express Newton's second law F = ma in terms of 1ts x and y.

¢

components., The x»component~of”adceteration is v and of force per

* | -0 2
unit mass 1s c f;; Hence, ?du + c<§ O. In the same manner we

- dt
can consider the equation

4

b

\ 9P . pr. )
) dt *F(”vay)“fo

¥

o | e N Ei o o
Taktng»the‘x-component we- have ax(Pu);-}qu‘+,§;u = O and the

| d " 2 - | ! ‘ o
-component =—(@v) =ov « @ v = 0. Combinin lelds
d P - dy gvi =¢ y * 8y | : g yreta
s

P e B e e o S A AR TR S RS M TR AT wevres T r— i S A N O T S ST VEAP D)
T - ’ . . .




Thus-we“haVaithe thnee equations: -

P‘u,ux ‘+Fvﬁuy-+ c fx,z

.."

- | 2
Puvx + vay + c_py

.P(ux +\vy)+‘qex + VP} ;

[ —

from which we wish to determine

- On changing'ihdependent vdriabtes

equations become

!

t{z(Pqu *?"Ey) *

Equation (40) will hold when either of the two factors is zero, -

If the first factor fs“zero,'ihen 'u§x1$ vl

o

0,

TU: Voo

, + v
ugft, Efzy
the,characteristic curves are those along which these equations
do not‘detekmine ué, Vé and PE uniquely. This means that the
determinent of the coefficients of UE’ VE’ P; must equal zero.
Thus | |
. ' - | ®
| Plul_ + vE ) 0 c &
- x Y | x
| - P
o P(ul + vE ) c“C =
. : X y Yy
fe. PZ wE o+ vE
x. 7 y "X
2 A 3 22,2 2 2,2, ,
CPT(uE +vE )7 - Qe & (vl + vk ) - Pc“C(uE + vE ) =
‘ X Y X X Y y x Yy
. R | - | 2 2 2 2 : e o
N N € R W [ R 3 L ¢ LI S IS (40)

thesg

- v
O or -—
U
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4c2(v2 + U - c2)13 O; and v o+

This shows that the direction of the velocity.speqif%edfbx %,

< LY

E which shows that the

------

.fdmityﬁpf-character{stiés"has the same direction as the Flow of

Y

the Liquid,

S | g | 2.
If the second faétor is zero,(uﬁx + v;y)z - 02(55 + 55) = 0,

then \

L T

e

R O R T 3 R o AL WS
k. A ST Xy Tyt Tty

. i . /
If the discriminent of this equation is less than ‘2ero, we have

what s called the elliptic. case and there wi ll be no real
families of characteristicS."On the other hand, i{f

402V2 - 4(u2 - 02)(V2‘~ c2) 3°Of then 4c2v2 + 4u2c2 - 4c4 =

2 2 2s 2 ' r
w2 ¢ .. Hence, in the hyperbolic

case the velocity ofﬁmotiqp”witl exceed the speed of sound.

e
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Problem of Cauchy for Hyperbolic Equations
3.1 We now wish to show under what conditions the general

bypérbotheQuation

nyz _f(X,y,u,p,q), ” : | o (41') .

will possess a unique solution, We shall assume that in a partic-

””“““ﬁldf»domain of the xy-plane and a domain of vatues“of‘u,p;q, the
function f is continuous with respect to x,y,u,p,q and has contin-

‘uous first partial derivatives with respect to u,p,q, even

w e

though tn our sdbéequent'catculdtiqns it will be sufficient to
assume fr fy0 f, satisfy the Lipshitz condition, It will thus

be sufficient for us to assume the difference quotient is bounded.

With this canonical form we know a = ¢ = 0. -Hence the

b defining equation for a characteristic curve,
— - ¢
W 2 Ly ¥ 2 ,
a(f )" + 268 £ + c(E )" = 0, becomes
X . Xy b o ’
. |
.. &t =0, R | (42)
| x’y S _
" ,
v But this means that the characteristics are'linés parallel to

the x and y axes, Hence 'if we consider any plane curve C which

-

) 4

r&?h

Dl i Bairr, e e T i e ey h—

o

T

N AP (b 0




N

> N | v . (&1 (]
"along C, these initial conditions are of the form,

Page 23

. .
vvl"_\

meets no characteristic in more than one point, we can write the

equation of C as y = y(x), where y(x) is monotonic. Let us assume

that y'(x) existé ahduis confinubus~for'att x in question.”

¥ A
>

«

3.2 The appropriate initial condition consists of prescribed =

L.

, , 3 ~
values of u, p and q at points of C., [If x is used as parameter

9

ulx,y) = ulx,y(x¥) #'Uo(x)'“ - - = | o %

p(x,y) = p(é,y(x)) = p (x), N ZE VIR

e

a(x,y) = qlx,y(x)) = q_(x).

; L'l

The condition that these itntitial values define a strip s

ur =p +quy's S - - (44)

If we assume that po(x) and qo(x) are continuous with continuows——-

" derivatives, then we know by equation (44) that Uo(x) {s contin-

uous and possesses continuous derivatives,

MFQrtheh, it is possible to assign the initiatmwdtues

-Uo(x) = po(f) = qo(i)_f (45)

h
o

: i L | - | f -/
on the curve C without loss of generality. To justify this | -

restriction, we shall show that by a change of'dependent variable
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we are led to an equation of thefsaéé-type diféﬁr.priginal

canoriical hyperbolic equation, but with zero initial conditions.

The change of variable is u = v + @(g,}), whe re

. 6‘*??),‘ U (x) + (y - y(x))qo(x); . e

foferenfiatingyfir;t with respect to x, we have

5

- X

U;(x) - y'(x)qo(x)'; (y~- y(f)) q;(x) \

e
-~

Po(x) + 9, (x)y!(x) = y'(x)q,(x) + (y - y(x))q}(x)

= 5 (x) + (v = y(x))al(x)..

H

Différentiation wi th respect to y yields @y = qo(x)FWMHence, on
the curve C, where y = y(x), -

§0x,y) = U, (x)y 8,(x,y) = p (x), B (xiy) = q (x).

Hence, on the curve C, v =0, v =0, v =0, Sincev = u - é
- | X v N $% Xy Xy

we have vxy = f(x{y;u,p,¢) - @*y = g(x,y,v,yx,vy)i We-knqw that®

the function g is continuous, so that the newedugﬁion is completely

.simitar'fo equation (41),“”Thu$ we may without loss of generality

make use of the above initia(mgbnqitions in thg fottowing'discussion.
3.3 We now constrdcf an fntegrat equation which we ;hatt show

is equivalent (41), but having the additional desirable feature of

lending itself more readity to an existence discussion. In the

%asefofﬁthe'generat Hyperbotic equa?ion we shall be able ‘to find
a unique sglutioh|vatid'for;dmfihite-reg{oh:abcut the curve under

consideration. Also, it will be shown that certain boundedness
conditions on the function f, necessary in the general case, may
. . . o ) ' . : ¢ - . . ’

A

~
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. be disbenséd with for the linear7hypérbolfc equation and a Unique

-solution witl-exist'throughout.a whole domain containing the

»

C\

LS

curve.

Consider a curve C in the

4

xy-plane and an arb{trdry point

P(x,y) connected to C by tines

parallel to the’ x and y axes.

" Let us integrate equation (47)‘

IWith respect to 'y atong’the line .. — s ‘ %;

BP and with respect to x atohg AP,  Reblace x and y by the A
variables of integration & and N respectively, and recall the

tnitial conditions: u ='ux = uy

O, for all points on C. Then,

h
c
-\
Ry
\/

P | . N |
%ﬂf(ﬁ,y,U,p,q)dZ = UY(P) - Uy(é}'

g ,
Jf(x’ n, u,p, Q)dn = ux(P) - UX(B) ux(p)‘.

To obtain an integral equation with unknown w, we firsf replace ﬁé
the upper limit P in the second integral above by a variable

| ¢ | -
) . FM} ) e : . ‘ . . . . .
poirntlQ(E,y) on the line AP, and replace B8 by Bx[ﬁ,f(i)J. The
resulting integral is then integrated with respect to & from
A to P, that is from § = a to §‘=»§A. This gives

| - PQ
x/}(é,ﬂ,u,p,qddnqi . JrJff(i N,u,p,q)dNdg = (/p(u ‘ )dﬁ
G A B

B | .
f[u (Q) (B )J dz /uadz‘z U(P) 5 U(A) : U(P).
A

. — s -



v b .
& : el
o s e

L - ‘J/;(i;n,u,b,a)dndz = u(P) L (48)
o R | I o _

We have shown that a necessary condition for u~t6 be a

or,

inbn

sotdtionfofcequat{on (41) satisfying uo(x) = po(X) qo(x) =0

fob.atl points on C, is that u be a solution of (48). To prdVé
the suffiéiency.qf this condition suppose u(x,y) satisfie§ (48).
,‘ : 'We note fir#f that'u(P),E O for dny point P Zying on the cUrQe C,
| singe_the regton of fnteg;ation of.the doub(g fntegbat degenerates
to a point, rEquations (47) theén show that v and v vantish at

o | | . | ) Y | |
points of C. Finally if we differentiate (48) with respect to x

we obtain,

.o - ‘ u (P) =,Jf;$§,n,u,p,q)dﬂffmﬁw(p)"-'U (8).
X B X | X .

3

]

On differentiating this equation with respeét to y we see that

£y

v must satisfy the original different?&! equation
y g | g ’

L u = f(x!Y9U9b:q); (41)

Xy

---------- and hence sufficiency (s proven,
" o ¥ - _ o o ,
- 3.4 We shall now proceed to construct a sequence of integrals

.
~

which wi cohverge uniformly to a limit which we shall prove to

[

be the desired QOLUtion u(x,y) of the initial value problem. ;%is_

e oo result will in general be applicable only in a resirictedfregion

*

of the xy-plane containing‘the curve C, since we will need to

impose certain restrictions on the values of the function f,
- - ST We shall use Picard’s method of successive approximations,

an iterative method giving successive functions which in favorable

LR Rl
.

S R T SRS A

XY
pEnm
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cases tend (bver a certain zntervat) toward the exact solutzon.

Let v = 0, p = O, ¢ = 0 be taken as the first approximation,‘

and put - :
ué(x,y) = .j:(i,ﬂ,0,0,0)dﬂdE
d -

o KPR T

pjfx,y) =-§;-1(x,y9.= Jff(x ﬂ 0,0,0)dn | ; r(49)_

/
/

| - - P ' .
Ny \ a .
o aptay) = Sou e,y - ff(a,y.o 0,0)dL .
,f- | N .
Further, for 3,4,... define

o B,
AN Y
LNt

- .
Do

4 - fr :
"‘%{ o uﬁ (X,?I)

"

‘/;(Er n, Uﬁ_1rpn_19 qn_1)d§?nr

5 |
E;un(x,y) z pr(x ﬂ.un 0P

@_ | pn(x,y) Jan, (50)

n-1'99-1

qn(X,y) = a _.u (x,y) ':".A/.f(;hv'y’un_1’Pn_7)q _1@)d5

A

First we must determine under what conditions these integrals

wili exist. We know that f Is continuous with respect to X,Y,U,

3

' ﬁ;q and further that f has continuous first partial aerivatives

with respect to u,p,q for a certain domain of these values.

]

" This implies that if we chaose u, p,q within the regzon under con-

rs

'sideration, that is descrlbed by max(lul, lpl, \ql)er,'thgn there

will etht a positive number M such that fu,fp,f exist and

/ﬁﬁx(lfl, ‘fu".‘fb" ‘fq‘)<iM;'fhis is tr%é becagse a c§nfinuous\
(unction\on‘actgsed bqunj%% set s itsetbeagnded,
S T | | |
‘“Let G be a hegion in“the Xyaptahe confaihing thé curve C and
tzmzted by the requzrement that every tengtb sucﬁ as AP ér 8P from

the curve to a pOtnt P of the regzon shall be less than a.

Let B be a reglon in xyupqnspace in'whiqh‘(g,y)~Liestin G

%
°
)
e

4/}

L
~.

3

-
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apd fu{, [P/, and Iq{ are each less than K, Then if v . 1'Pp_179,_4
tte {n 8, 'equatzons (50) show ° - o o o
- that svhce If/<_M,: [uh‘g{Ma'@?, -
]pn{<Ma, 'qnlfMa. Thus v P,
q, will also lie in B provided
T we choose a such that 'Ma2<K

N

- and Ma< K,

If we apply the law of the
mean to the differ(ence un‘”(P)J.—»_qn(P) we have
un+74(P) -‘un(P“) = Cf(i N, u: htPprd, ) - f(ﬁ,ﬂ,un__7,pn~1,qn_1)] dfdn.

-

" f{["’ = ?u ’ '[pn - pn-‘I] ?p * [qn - qn_Z,?q}dﬁdn",

, f , f denote values of the functions f
u D q |

‘where f , f , frq from the

v T
intervals [un._1 ; Aun]", Epn ;0 P T Eqn - q’j respectively,

But from the preceding discussion we know that for all P(x,y) in

the region G, max( luly Ipl, Iq] ) <k , and hence max(l?u’, ‘?p[,/;‘v [ ) <M,
Thus,

: | | | " . (51)
)!um?({:)- u_(P)]< Mé/un - _‘fn-mff . /':,.'P,.f _ pné1l+/qf;—-Aqn_7/)d5dTl.

.f~;;¥: investzgattng the dszerence P, (P) - p (P) o o

P

P, (P) - P, (P) = /[f(x,'ﬂ u P, q, ) - f“(x,_'f'l,un_1,pn_1;qn>;1)_]dn

P, ﬂf +[q- n Jf }d"l

¥ oA

-

o' [,» f_ are as above. Thus again

B
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;p (P)~- p (P)p<qyf(/u - u ”%(+/pn-

n+1

Similarly,

e ot e i ey

/ n+1(P) - q (P)/<M/(/u - 7/+/Pn‘. pn-1/+/qn 1/)d§

(52)

 '5h - sup( IU - u / + Ip 6-1] + th / ) for n=1,2,...

Then

r/un+;1 (P) - un(P)l<Mf(/un- un-=1/ ! /pn- pn-—7‘/ ’ -‘/q_;’--‘- qn-1/ )dtdn
g

4Ma25n,.

Similarly,

/ n”(P)- p (P)/<Ma$ , and

/qmw~7 (P) - qn (P)/( Ma-Sn.
Hence,

/ n+7(P) B un(P)/ * /pn 1(P) - pn(k”y+‘/qné7(P) -.qn(byf

A'Mazsn +‘2Ma$n = MaSn(a‘+ 2), o (53)

an expression which is true for all P(x,y) in the region G around C,

: ', - . "!;n -
Bq¢»5n+1 SUP(/U n+1 Y l ! /pn+1 pnl

< Let us choose‘a so small that 0 < Ma(a+2) =X < 1,

[q_

n+l1 qn/)’ hgqce‘

n+1

] -

S -a<s , - |
n+1 - . o | oo - . ) | t . | | .‘

Consider the series, e

. - . : . ‘.
< ) . - . ;
l.‘; - . | |

........
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_ whose. sum to. n terms is u

8
R

: u + (u1 uo)?f‘(qz .91)‘+ﬂ... + (un un+1) f .o |

n_;f' For all x,y in the domain considered

~this is dominated by the convergent geometric series

. > : '
..: 51(1+ o« + 0( +.¢.») S7+82+53+...

Thus we can set S o . B L ,ff .
(54)
lim u-(x,y)

u(x = u + (u - u .+’;,.'4- u - + e
»(.'x)h‘~ 0 ( ) ( n *un-7) | n-—ro N

7. o :

, ‘
§r e 4 ) ' : 4

2 /

where u(x,y) is the limit of a uniformly convergent sequence of

continuous functions and hence is continuous. Analogously, if

_we consider pg.+ (p1 - po) + ... and q, * (q1 - qo) b .. wew-

/

[ d

know S : | e

“ay

: A | | 2 |
‘ - "<‘ r ‘ o o e o o
P, * (p1 ‘po) .. = 51 + 52 + . < 81(1 + X + o5 + )

yzetdzng. p(x,y) =nihg pn(x,y),.a contzhuous function; and

simitarly, q(x,y) = lim g (x,y) also a continuous function.
) » n— oo n

RN

Hehce,
Ty | i
¥ u(x,y) =n£jg,un(x,y) = J&(ﬁ,n,u,p,q)didﬂ
3
é | | | A e e
p(x,y) = Lim Pn(xsy) =/f(x,fl,u,p,\q)dﬂ (55)
- B

o B o
a(x,y) =, Lim 4, (x,y) =/ 1(Zy,0,0,0)3

Differentiation yields . . . .~

h,.gx(X,y) =/f(x,ﬂ,u,p,q)dﬂ = P(":.Y)

o uy(xy) =/ (& y,uip,q)dE = q(x,y). -~
oyt A 795 = atx s

-~ -
e
Xt T

PR < R

e T A T e

Kot iS b o B R
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f‘ ;4 f;t'(

3 o . . -.-_'v‘j.

. Thus u(x,y) is a solutton to the Cauchy Probtem tn the regton G

A pa

I} KW

dround the curve C,
m S - | - e L
To.complete the argument, it remains to show that u(x,y)
| (1) (2)

a unique solution. Suppose there exist solutions u y U of

equation (48),.such that

Uff)(x,y) zU/C(a’n’u(T) P(1) (1))d§dﬂ and:

Py - Jrem, u(z) (2) (2) yatan.
. | G
We set w(x,y)‘= u(1) -'u(z) an&hproceed to/showﬁ}hatiw must be
identicalty zero,
By definﬁtion’we.know, a .

Anatogoug[y, /wkj < WMa aan)w [¢< WMa ,

-1t is then true that W = sup(/wl + Iw I +Iw 1) < WMa(a + 2)

.»and since c"< 1 this imptzes W :“O and u

‘wix,y) = f[f(é n, (7) (1),q(1)) - f(é,’n,u(z),p(‘?),q(”g] adfdn

wx(XQY) = J’[}(X, ,u(1), (1) {1)) '%f(xvan(Z):P(2)¢Q(2))]dn

. p | |
wy(x,Y) /[f(&,y,u(”,,p(’)’-q(’)) ) f‘(C,y“,u(‘?),p(z),q(z‘))] JE
A | - ~

e mmr ik A e = es e g s T

Applying the law of the mean and setting,

W= sup(lwl + lw | + |w /)>
x y

“we obtain | - o | ’

8

IW(X,Y)/<Jﬂ}fu(1) - u(z%-fu + [p(1) - p(z)ﬁf “+qu(1) - q(2%~fjb§dﬁ

) <Wﬁj4a2,'.'

Wx

(1) _' (2).




frores

3.5 As WQs'previau§}x‘mentibned. the ttnear'hyperbotzc
~equation yields more general results since the"restrfétions

'@1imiting the size of the‘d%@ain integrd}ed'over'may?be ¢mftted.

This is true since if we consider

v = Xu +/?uy +Ju +§ | - (56).

&«

where X, £ 7,5 are continuous functions of x and y, we may inte-

grate the right member over an entire domain containing C and

i
2

need not make the restrictions Ma < K,‘Ma%<? K which Limit the
| | | _ | § |

discussion to a small strip containing C. Foltowfng the preceding

developmeht, we set

u (P) = jdp | ‘+>",’1q6_1 + 2’%_17 dédﬂ,
N | . .M ) |
(P) /[o(p tfe, _, +Tu ] a0, : - (57)

q_(P) = f[cxp +Fa _,+7u ] dE, n= 1200

Assuming we choose u 1in such a fashion that
o

sup ma,,(,uo‘('p)/, [Py la (P))<

| #
then when n=1, and max [/0", lpl !7/_,7< M we f”’d

u,'(P) =/(0<P +Fq, +7u )dkdN and [u (P)| € 3amL fa%ﬂ
Ty o A S e _ 7 | < .

/| f we assume the domain under AHT (2

consideration about C lies in

' | ' ' b o
the‘first quadrant, as in the | :

diagram, we shall not be intro- |
ducing a new restriction since
. v . . . -_ —— - L (- F . 4) |
.
1
. S

o | I Page 32

~
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by translation of axes wé~caa always reduce the probtemyfo this
case. Then /U,(P)/ < mL ,/didﬂ:-. ?ML / "!'= IMLxy < 3MLQ:!-)-
_ S 4 2
| A I |
Similarly, p1(P) =:/ (atpo +",5’q : +7'u )dﬂ and ) Y,
- | - R | . -
o - .
'/"1(':)/ = L/ = amL / dr‘ MLy = 3ML(x + y). Also,
| B - I
- ‘ P ’ . , o ‘
. ; i |
q1(P) .—./ (o(po '+/§qo + 7’u°)_ df and . /q1(P)/: ML(x + y).
A - | S
| | o S
That is, | ’
(xey)2 B N (58)
[u,(P)] < 3m_—5§-&- » 1oy (P)[ < 3ML(x+y), |q,(F)] < ML(x+y).
Let H = sup (2 +~§§%J, K = MH, Then we wish to prove by induction
the itnequalities,
. ¥ n+1 ’ n
fu (P)] % kT Cxty) , [P, (P L _ spxn=1 (xty) . (59)
n s (n+1)l n!
" /q (P)/
» M |
| ~=. We mnote that the above estimates for /u.,i(F')/, /q7(P)/, /p1(p)/?
satisfy these inequalities for n = 1. Assume that g/wf/#
| | - o | 1
o Y e n-2 (x+x)n N 2 n;Z*(x+Z)n-
/un_1(P)j"’.. 3MLK — /p>n_7(P)/ = 3MLK (nsT)t
o . | _2 (x+\ )n-—1 - )
_.qnd»/a (P)/ 3MLK' T—:éj' hold. - Then
| | g;\

/un(P)/ éf[“/pn—7(P)/ + fla .

= M-3M1_K”‘2/ _____(g;:?)
s
e £ M-amMLKC f [ ( 5}11)
n+
£ MHe3ML K” A2 (xty)

(n+7)' |

| SiMilarly;!

B

‘(p)/. v TJuss (@) ] atam

N

(Em)” 7]d£dn -
(n 1)1 | o
(Z+ﬂ)
:"2( _7), ]didﬂ.
‘which was to be shown.

e G

B3

Ty

e i L

T
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N

i
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| Simitart}t

Hence, . U

0

o (P)| £ amx=T L2 )"

n!

¥
t

In_exactly the same manner,

=T e )

n!

nn

ﬁ/qn(P%/

[ T

We have therefore verified the inequalities given in equation (59).

Then | |
5 n+1
,,Z:o“nﬁf"” = v (x,y) ¢ IMLK 22‘_[’((;"++%f] —
= ug G MO ke )]
. ~ ’\

where the right member is an exponential series: Hence Z:u (x,y)

converges to a limit, u(x,y), which is contznuous along wzgc its

L]

first partial derivatives in the efitire domain containing C
. i ' A

\

O
) an(p) : | |

SO R me P LT[
Lo | -

- N

dnd.thus p(x,y) and q(x,y) exist and are continuous in the domain

under consideration. Uniquenggp of the solution can be’shown in

, the same manner as in the preceding development,

3.6 Instead of giVing/boundary vatues\fdh u;ux, and u

y

along the curve C, we can arrive at a unique solution to the

\
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l}near h}perboliC~§quafion by speééfyiné the values 6fﬁu(x,y)f'
along any tWo_charaéterfstics‘which interéect. All the prévioUs
'devétopment will still fotlow‘zf we reptace the regton APB by the
rectangte bounded by tﬁe two charactertstzcs &nd by two/t;nes
~through P perpendiéutar to theée.‘ This is fhe region PADB in the
_f%gdre. 8y chdébiqg véricbteéfroh

A A . A L IR
X,y to x,y, where x = x - Xp s | o —— — P

N

Ly =y - yD ,,we obtain a problem ﬂ

in which the positive x and y axes | " | / //(

~constitute the initial curve.

Finally, if we define
; S - | | (60)
@(x\,y) = U(X,O)- + u(O,:y) "‘U(O:O)v v(x,y')--*- u(x }') - Q(xay)v\

| ) | f o

then as before we can simply cons?ﬁér the case when u(x,y) =2 0

on the two posftivefgxes¢
3.7 At this point we would like to be able to express the
unique solution to the Cauchy problem in terms of its coeffictents.
This will be possible for the linear hyperbolic equation@if'we
introduce the method of Riemann operators. Consider f\
: : S Eg’ .
v o+ u +/9uy +Pu +5 =0. . (61)

A”Lét”V(k,y)“bé an arbitrahy‘function'of»x and y and set

; ' \ )
. i | g | ‘ o
L(u) = u +odu +ABu +9u= filx,y) . . (62)
T xy x y |
Define the adjoint operator M by | \\

.......

M(V) =v - (V “) - (Vﬁ) +Tv = v L = VA =V X -V g& ‘
: XYy ’ X -y 27y )

Xy X - X

Xy

<

v P+7Tw = v .- xv ' - Bv o+ v(9 -« - ) . (63)

B O L O | D R A
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= Then by using the identities |

<
R
C
]
<
=4
<
+
<
=4
C
+
<
>
Q
i
<
<
R
|
g
<
R
h
ﬁ
<
R
Q
-
|
Q
ﬂ
<
f ~ 4
\—
ﬁ
o
»
)

<
-

Q

"

y = v Ut VR s v e wp s (fu) - ulep)

we obtain ¥

o
- ]‘I"

vl (u) - ul;l(v)

(-uv. "+ uva) + (vu + uv/v U +V, (65)
Yy X ol ) 4 X Y

» . where

I

e . U= —yv o+ uvx, -V

+ uvf.. | (66.) .

9 A

5 Suppose we are given values of u,

|
'
!

;'ux, uy along Cr where P is arbi-

trary, and the straight lines PA

and P8 are characteristics. Then

ik by Gﬁeenbs Théorem ’l o |
jﬁ[[VL(u) - uM(v)]dEdﬂng/bdn - vdE . (67)
| | - |

and from eguation (66),

k!

/ / [ve(u) -;M( V)J,Ndédﬂ,.,zf-'i’;/-y.\f,, + ava]an - [vu, + uvﬁ]dé "

p £ |
f{\[uv tw?V“]dn | [VU o+ uvﬁ]dﬁ + J/[}uv o+ uv{]dﬂ - [vu:+ugﬁ7d§
8 | 3 P
% - - [U(“V + V“)dn - V(U + Uﬁ)déj ‘/Pu( -v +vd)dﬂ -Jﬁ (u +uf)d§
- | _.A | | B

However,

o fvuzdﬁ = uv | /uv dz u(A)v(A) - u(P)v(P) - fw Jt .
| P

kN O
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. L3
-

S T - wM(v) ] atan ACEE ;v - v(uy + uf)at]
-, , o ,

~

+c/Pu(-vﬂ* ya)dﬂ.-‘/Pu(-Vg *kgﬁvdﬁ + u(P)V(P)-U(A)V(A)@ |
- B ' | "' P | | : -

Y

‘ Letnus chboéefv'as a. function of {‘and n dependgng on the parqmetér;

. F , - '

x and y, expressed as v = vix,y;E,M), so that v satisfies the

following three relations:

e

°

M(v) = 0; C?V(X,];Xp“) = X(x,M) v(x,y;x,M), o
- an “ | .

dv(x,y:8,y) = P(E,y) vix,y:E,y).

(69)
{ | 14

| f we'integrate the second equation in (69) we obtain,

7

av(x,y;x,ﬂ) ) N _;
jf dan dn. = t/.\'O‘(x,n)dﬂ;

N v(x,y;x,ﬂ) n
o \

0
N «(x,N)dn

| - < n o
Hence v(x,y;x,MN) :-v(x,y;x,no) e °, : \

Similarly the third equation yields:

L ae

vix,y;8,y) = vix,7;8 ,y) e ".

S

e

Assume further that vlx,y;x,y) = 1, and substitute x = £ and

(o]
\

y = ﬂo. Then we obtain the following set inconditions necessarily

satisfied by v: | . " (70)

- o M of(';i,n)dn I B(E,y)dE
M(v) =-Or’ v(x,y;:':,‘ﬂ-) = ey; - V\(X)Y;épy) = ;ex. B

¢

Notice that (70) ¢dnsists of a second order differential equation

.
/ S

tn v with boundary conditions-which v must satisfy atong two V';%j

i
RN
. . s « P
- . M - M
. ) N T e 5 ' 4 N
o .
N
. ~ . i
« - - s N - . y
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R R LT
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i . . " .
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 Combining equations (72) ~and (73) yields

5 N
t RA
) et e e -+
-3
.

'Page‘38
characteristics AP and BP méet(ﬁghdt a point P. We have seen

that such aAproblem has a unique solution vdlidffor points in

~a domain containing C. Hence there will exist a function satis-

 frfyfﬁ§m§¢ud£;;n (70) say |

R (xyyiB M = vlxyiE, ).

We shall call RL(x,y;E,ﬂ) the Riemann Function of the operator L.

=P [ "

‘Euntionw(Sa) then becomes | P

| : 4 ; | - ,
g[vL(u? - uM(v‘)]dCdﬂ :{‘[u(—vln‘-f-'oc v)dn - (\(u5+ uvf)dﬁj +
- ul(PIv(P) - u(A)v(A).

Hence,

u(P) % u(P)v(P) = u(A)v(A) +‘<P[y(vn -cXV)dﬂ + v(uE + uﬁvdﬁ +

j/ f(i,ﬂ)yjdﬁdﬂ( , . | (72)
e 4

\ : B \ B
Note that u(B)v(B) - u(A)v(A) =‘/ﬁd(uv)=~jﬁ[3(uv) df + d{uv) dn
| A A & gE an

B |
:;éf[bv§+uég]d§ + [uvn+un%7dﬂ.
Hence equatiob (72) becomes |
8 | N : ;
u(P) = u(B)V(B) - [[(uvy - uv £)dE + (vu, + uve)dn] +
| - A - . '

J{/§f(€,n}dédn. . | (73)

Q}k&\
.y
L

| | | B | o
2u(P) = u(B)v(B) + u(A)v(A) + Jrltvug . vup - uv:”+'uyF)d§-+"‘
S A o

S g
i

(uvp = uv& = vug = uva)dn] + 2 ~/\,f(i,n)dédn._%hen

~ |
: . . <J

-

C(71)

T — T
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u(P) an)

2

S [-uR, an pdz) ‘ ;sk  Cupdl = uy

A 9“;0

o ~ku(R adl - RL d\ﬂ) _+é RL/(x,y;ff,ﬂ)f(&,'ﬂ‘)déqﬂ} - (7(*)

\\
\~
\
\

u(P) = u(x,y) can then be computed since the right member depends

on RL and khowp«functiOns, Infegratingover the drea ADBP,ﬁye“

have

fu(—vn +§tv)dﬂ - J—v(ug +Pu)dl. (75)
Av+®P DR + PR R

”H[VL(") - uM(v)]dZdﬂ

A

Takingaihtd account the identities N

A A : .
S vupdl = u(P)v(P) - u(A)v(A) f uvy

P o - P

D _ D : .
u/\ dvndﬂ-z u(D)v(D) - u(A)v(A) \/p vup dﬂ and recalling v(D) =
A . | A |

o

. A
)

o A A }ﬂ' , o .B | |
u(P) = u(D)v(D) + f v(un‘_;_-lﬁ-_ocu)dﬂ '+‘/‘ v(ué +fu)df + \
/ - A A S

ffvf(é,ﬂ)didﬂ.“‘ | . (76)
I |

Choose‘u(é,ﬂ) :wRM(xo’yo;é’n) where,_anatogou§ty, RM {S the Riemann
_function of the operator M. Hence, L(u) = 0, Yn L(xu7=40,‘

- Pu =0, u(D) = 1. Applying these conditions to equation (76)

" 'we obtaln

a(P) = Ry(x ,y ixsy) = R (xyyix_iy.) A m

showing the reciprocjty be tween RL_and‘RM;

j.3,8  Now'tet usitunn our attention to the case wheh'th%,’
- C . : .'!i\: ) . :

tinear hyperbolic equation is expressed in terms of a parameter T,




£ o ‘ .
. that ts,

(78)

| uxy ‘."“‘ fm‘%‘x,y,_u,p, Q:r)m o

Let us assume f (s continuous with respect to all variables and “ -
. | | ‘
R . ) . .

.has gontinuous first parti;l<3erivafivesAwith r;;péét to u, p,ﬁqf
ST EE R & ¢ - cer?ain,damain of fhe xy;ptane,_for a'particqlgr domain of

Qalués of u, p, q and ;ﬁrfall T within a cértain inferVat. :Supposé'

further_that f, f ; f , f are‘cqgfinuous with respect to 7 over

u' p’ g

the interval in question and that T; is a pbiht in that interval.
It is possible to show that under these conditions a solution of

equation (78) exists and is continuous with respect to'T'for‘alt

A

Y in the interval, In addition we will show that there exists a

function w defined in terms of a solution to equation (78) and

satisfying the same conditions as a solution u(x,y) to equation (41),

¥

that is, w, W wy will be identically zero on the curve C and w

will satisfy a linear secondforder'partial differedtiat equation
y written tn terms of w, w ; W o
- * X y
To jystify the statement that continuity of f implies that

there exists a solution to equation (78) continuous in T, we note
that for a sufficiently small interval confaining T;, the integrals

defining.un, pn;‘qn in equations (50) will be again well-defined

and hence the series in equation (54) will converge uniformly to
a limit which we shall calyl u(x,y,¢) the solution in question.

j; Simitarly.p(x,y,T)'dnd q(x,y,T) exist, Hence if f is\a;oonti;;ous‘

-

function of T, so ts u(x,y,T). It is also true that the existence
,’ ) / . - '
. , D | |
‘and continuity of f, implies the existence and continuity of u,. ‘?
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To show thfé;.set,

. If u(x,y,t) is a solution to équation (78), .then

 Pulxyy,r)
dxdy

= f(Xy}'vP(X,y,q')pQ(x,y,'r),lll(x,y,'r),'r) a’{d When ’r-":' "ro’

azu(xt")'9 ’ro) A .
dxdy = f(X,y,p(X,y,_To),q(x,y, T'o)pU(x‘,y, TO),TO)

r). - o o (80)

f((’f’)'opo:qoouoo °

We have provedﬁprevibustyuthat arbitrary boundary conditions may

%

be imbcsed on the values of u, p, q on the curve C, Thus let

h
H

0 on C,

P =q=u

.

Define w(x,y,T) = ulx,y,7) - u(x,y,Ts)vo | (81)

T - T
o
Differentiating,

UX(X:Y9T) = UX(X9Y9 ’ro) - P - P

|
o

G

T
Wx(x:)’9 )

A - T | T- T
o o

- - (82)
:y(x,y,’r) - U!(xo}ﬂ’ro)

.

h
Q
|
Q

A wy (x,y,7)

- o7

—and differentiating once more, we obtain,

wxy(x,y,’l"/

Y
\

'uxx(xa.)’sv?‘) - UXX(Xt Y 7;)

o

o L T q ™) - FOxyp g v T)
I I | | r - T '
e T -7

» 3 [\
O

- Adding and subtracting sq?table terms and substituting the retatfonswg

r - T . . d

T e i e ¢ A | S b

AR

Al i

1

T

Rkl el Ve

I
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'given.in'equatfon (82) y{élds;.
. - | - | T T
L W (x,y,77) = w f(x,y,p,9, u, ) - f(xv)'opoo q,u, T)
| | P -.\_,Po |
f(x'.Yont__Q!u)"r) - f(x:.hpoﬂ:‘qg.)u,"‘r)

+

+

9° 9, - (83)

w
y

FOx0y1p 000, 1) - PO 0P i q0u )

———
T
=

o u - u

o

! - - f(x}y’Pot 9, uo,'r) - f(x,y’po, qo,uo,’l'o) /}

| | T - T,
Naturally, if p = P, we define the coefficient of W to be:

f(x,y,po,q,u;T) and'simitarly.for the cases when q}é q, and

v éfuo. Hence, when 7T # To equafion (83) is a linear equation
- . f
in w with continuocus coefficiehtSOQ Notice that on C, u = P

[}

q =0

for all T and thus by definition w(x,y,7) = 0. It follows that on
'C;ﬁw* = wy = 0. We know ﬁ(x;y,qz).exists since in this case we

allow T*T, and the coefficients in equation (83) will take on

their respiptive limits. That s,
f‘vxy(xtY:T) = wx(x:)’sv To)fp(x’y’po’q-o’uo’?o) *
’/; / : ‘ ';h'.:"‘

wy(Xp)’, To)f'q(’x,y,_po_,qc‘)‘, u\o’q;) + w(x,y,?\:,)fu(x.,y,po,qo,uo,ﬂ‘;) +

>

ffp("v)’spor qo:»uor To)o

Note also that N ; 7

U(X,y;'];‘) - q(xr)’v’r'o) - (U )
' _ - T

w(x,y,*ro) = lim

3.9 Earlier we determined that in our discussion of general =

hyperbolic equati&ns}we would allow the 63?Ve C to meet any char-

&

= . acteristic curve in at most one point. To show that this is a

o . ‘ S {
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vspecify the~vatue of uy along the curve e, a_procedure we have

ul(x,0) = (P(x), ulwly),y) =V(y) qhd

note that Q(O)-z;WCD)..-Integrating

; : % L : | d g . - . Page 43
.. i . . ' . / ' ! ‘
. © T s B |

necessary cbndi%ion,'lef us consider a curQe C meeting a char-
acteristic y = a in two points P(x1,a) and Q(xz,a). et the

hyperbolic equation in.queStion'be uxy ?LO._\Then
, | 7

/u dE‘:u,":u(Q) ~u(P) =0, R

which implies uy(O) = uy(P) and thus we can not arbitrarily

L.

re(ied heavily upon in the preceding discussions. Hence the re-
quirement that C meet any characteristic in no more than one

"r-
point must fol low. <

3.10 As we mehtiohed previously, the redéiremenf that
vatees’of u,ux,uy be specifféd a!ong C may be replaced by the
condition that values of u are given along segments of tWo;chqr-
acteristics having a common endpoint, wAeré d ls cdntinuous and .
possesses continuous derivatives along each characteristic;) We
can show that the latter coﬁdi{jon'may be generalized so that

i

when values of u are given along a characteristic and a particu-

b B "

lar curve which crosses no characteristic twice, then we may

»

determine u. _ | | .

An example would be to specify |

K"A

values of u along the positive X~-axts

and the curve x = w(y) in the first

quadrant passing through théxotigin,_

S
w7

as in the,diagram. That 1is, seﬂ

g .
oA

Ty Potagy




c Then using the value v, along

curve) and the specified value u

. the x-axis and C

-

the'hyeefbolicequation‘uxy

Suggstn = [ Fograte
0 = d&dn = . 1, dEdN =
" QNPM Cﬂ’ | w(y) ‘érutn

0, we have

j [v; (z,y)
w(y)

= ulxry) - ulwly)yy) = u(x,0) + u(W(y) o)

Page 44

;(kt: o)] d¢

Taking the abbvé“initial_conditions into account this can be

?

written : | SO ‘? S

u(X,y) ‘y(y) +<P(x) "?(W(y))

—

Suppose we attémpt to extend this argument to two cUrves,

neither crossing any characteristic more than once, and lyting in

adjacenf quadr‘aﬁts° Suppose furfher-we specify the values of u,

X

RN

derivatives. By our previous work we know that a unique}sotutioh"

St
‘ A
u7(x,y) will exist everywhere in

the region between the x-axis and

1°

G

the x-axis (a characteristic

w/ ’

along C2 we obtain a unique solu- )

we give values for u. If we consider the equation u

= 0, we se

that the coefszIents of all terms are continuous with continuous

tion u,(x,y) in the region between
A

N\

Of course, we want the two values u

tives. In our previous discussion of discontinuities of the

~r

3

first partial derivative, we noted that the discontinuity of the

u(M) + u(N) - u(Q) (84)

u ,uy along one curve, say x = w*(y) and along the second x #-wz(y)

e

C.
1 hand,u2

=

R RS R e
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" first derivative must exist at all points of the curve or at none.

-

Hence, it is sufficient to have di‘{0,0) = uz.(0,0).

4

If we then let - -

‘y(}') "'""U(_Wz(y)ryz
we find by equatiqn’(84)h R

u, (0,0) = y1(0) - w, (w,
y ‘ . X ’

H

) (0,0) = V() - u;
or - . .

p,(0,0) + q,(0,0) = ¥ (0)

b

y : !
v, -

(0),0) wy(0), -~ (85)

(o,0)

_and theh since wz(O)_z 0 and wé(O) = 1 at (0,0) we have

(86)

&

In the,accoMpanying figure let us specify thi/¢auchy condi-

~ttons v,u _,u along C1 and values of u along c

x Yy

in the characteristics AD, BE,
DF;‘etc. On section | there
exists a uhiqge solution u(x,y)
by our previous work, By the

e

itmmediately preceding case, u.

wgtl be determined on sections A

//'and'///;:it wilt be deter-
mined on IV by the stipuldtioh
. p

that a sotution exists if vatué$ 

r

‘other sections V, VI, ...

B

) v

X & -

T

" Siyim
K1

N

.

/

-

and Cé, and draw

2

.Att that remains to do is“to repeat tﬁese argumenfs for at(i

P




1. .Ceddington, Earl A., An Introduction to Ordinary Differential

2. Ford, Lester R., Differential Equations, Second Edition,

. ’ w '
i : ‘
. | “ »
c . © - )
. AY .
[ . . N ‘ - : 0
v ! . v . .
{ . - " . R el
R ! . ¥ .
" ~ 3 . A N )
, p
, )
. v

N Page 46
" BIBL/OGRAPHY S

<&

]

Equations, Préntice--Hatt,'Jnc.,‘Engfew06d Cliffs, N. J.,

3/ N

1961,

<

McGraw--Hill Book Co,,'Néw York, N. Y., 171955,

e

Gillespie, R. P., Partial Differentiation, Second Edition,
University Mathematical Texts, Oliver and Boyd Ltd., Londen,

1954, \ —_— »

3

Hitdebrandngé’\/"° B., Advanced Calculus for Engineers, Prentice--

MHall, Inc., Englewood Cliffs, N. J., 1948.

Tamarkin, J. D., and Feller, Willy, Partial Differential

Equations, Unpublished notes, Summer sesstion for advanced
? y !

instruction, Brown University, June 23--September 13, 1941.

‘ : - “
/ R
p
‘ I
| | | ¢
_ , _ {
“ 1
! A
#
v' 1
A
- SOt R, it i
- é }
o ‘«* § k . 4
rﬁ‘. .. r
W
W N A
* - i msarand i !
: <}
T
o, 4
s
; \
o : ~ L
. v { g
-
A
) L .
E !
' '.'vl :
e i




ST

R R R T e e B e e

.. VITA

Karen Berry, daughter of Mr. and Mrs. Merritt L, Johnbon,

o

R Pt
I

A R SRR PR B

prrsaae
LSS

was born Karen Lee Johnson in Kansas City, Missouri, January 3,

{935; Her primary and secondary education was cdmpteted ;)

SIRENEE

numerous schools on the east coast and in the midwest., After
. |

graduating with a 8.S. degree, magna cum laude, from Moravian

LSRR

. College, Bethlehem, Pennsylvania, in June, 1957, she taught

mathematics there‘for one yeaf.' For the next two yeaks shg

pursued graduate wqu at the‘University of Marylahd; hotdfng

the position of graduate assistant:in_mathematics, In September,
. 196Q, following her ma}riage to Hafold Charles Berry, she and

'her hUSband.moved:to Béthlehem. In February, 1961, she began

graduate work at Lehigh University in pursuit of the Master of

Science degree in mathematics,

2




	Lehigh University
	Lehigh Preserve
	1962

	Theory of charcteristics of second order partial differential equations
	Karen Lee Berry
	Recommended Citation


	tmp.1528232050.pdf.cRz_F

