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Remarks on Notation
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i We borrow the following symbols.

-> is to be read as "implies" thus P(x) —> Q(x) reads as

"P(x) implies Q(x)."

<> is to be reed as "if and only if."

‘ is to be read as "divides.”"

{x l¢(x)] is to be read as "the set of x such that §(x)."

.*. 1is to be read as "therefore."

€ is to be read as "belongs to."

i.e., is to be read as "that is.”

" " is to be read as "cardinality of" thus “ S“ reads as
"ecardinality of the set S.”"
is the function defined on the integers whose value is + 1

at even integers and — 1 at odd integers.
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The theory of numbers, is concerned with the properties of
the naturel numbers 1,2,3, ... . These numbers have exercised
human curiosity from a very early period, The Greeks, Indians
and Chinese made significant contributions prior to 1000 AD,
But as a systematic and independent science, theory of nunbers
is entirely a creation of modern times and can be said to date
from the discoveries of Fermat,.

As regards the present paper, it deals with "The Law of
Quadratic Reciprocity" which is considered to be the major

b4

theorem of the theory of numbers,

The first section is devoted to the material which leads
to the Caussian Law of Quadratic Reciprocity, second section
deals with the proofs of the law, while the third section deals
with the General"i?zed Iaw of Quadratic Reciprocity. The range

of the peper is indicated by the table of contents,
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Section 1,

Theorem 1: (Gaussian Law of Quadratic Reciprocity)

If p and q are distinct odd primes then

(.I.).) (9.) = (-l)p : where
q J\P

' -1
P - ’
q-1
cupns——

2

.i

Q! = , and the (-) symbol is defined below (in
Definition 7).

Since p!q! is even when either p or q is of the form kn4l and is
odd when both p and g are of the form 4n43; we can, therefore, also state

the law as follows:

If p and q are distinct odd primes then

& €)

unless both p and q are of the form Un43 in which case

Before we come to the law we deal with the following:

Definition 1: We say a is congruent to b (mod m) if m ‘a—-b or if a and

b leave the same remainder when divided b& m and we write
a =b (mod m). |
Definition 2: Residue and Residue Class (mod m)(Griffin pages 53-54)
If x = a (mod m) ‘we say that a is residue of x modulo m,

- The totality of integers congruent to a given integer for the

modulus m constitute a residue class modulo m,
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Definition 3: Complete Residue System (mod m)

e

L A Y R e

Any set of m integers selected so that no two of them belong to
the same residue class modulo m forms a complete residue system modulo m,

Definition 4: Reduced Residue System (mod m)

e ST T

L Any set-of integers prime to m and selected so that one and only one

of them belongs to each of the residue classes of integers prime to m for
7 the modulus m constitutes a reduced residue system modulo m,
; Definition 5: Euler's Function @#(m) (Hardy and Wright page 52)
By ¢(m) we mean the number of positive integers not greater than
and prime to m, that is to say the number of integers n such that

o<n<m (pm=1
Lemms 1: (Hardy and Wright page 51)

If (k;,m)z d then
ka = ka! (mod m) => a = at (mod -%) .

Proof: Since (k,m) = 4 we have

k kld.
m = myd vwhere (k;,m;) =1
Since ka = ka! (méd m)
mlk(a—a') |
or mld" k,d(a—a)
or m,d l k,(a—a?)

Since (ky,m) = 1

L ml‘a—a’

.*. a=a! (mod %).




lemme, 2: (LeVeque Vol. 1 page 27)

If {a),85,...,8;) is a complete residue system (mod m) and (k,m) =1
then also (ka,,ka,,...,ka } is a complete residue system (mod m).
Proof: We need only show that the members kay 1 <1i <m é.re ‘incongruent
to each other (mod m). Suppose ka; are not incongruent then

kaj = kaj (mod m)
since (k,m) = 1 by lemma 1 we have
ay = aj (mod m)

which contradicts the hypothesis; hence ka; 1 <1 <m is a complete residue
system (mod m) .
Lemma 3: (LeVeque Vol 1, page 28)

If (al,...,a¢(m)] is a reduced residue system (mod m) and (k,m) =1
then also (kal,...,ka¢(m)} is a reduced residue system (mod m).
Proof: Similar to that of lemma 2.
Definition 6: Quadratic residue and non residue (Hardy and Wright page 67)

Iet p be an odd prime and (a,p) = 1 then if the congruence x2 = g
(mod p) is solveble for x we say a is quadratic residue of p written aRp;
whereas if the congruence x2 = a (mod p) is not solvable for x then a is
quadratic non residue of p, written alp.
Definition T: Legendre's Symbol (LeVeque Vol.l page 66)

Iet p be an 0odd prime and (a,p) = 1. We define

(a) 1 if a is quadratic residue of p.
— 1 if a is quadratic non residue of D,

For completeness we define

_f..=01fp‘a..
P
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Lemme 4: (Niven, Zuckerman page 64)

Let p be an odd prime and let & and b denote integers prime to p.

(a) &a=Db (mod p) —>(—§—)=(—E—).

1 .
(b) (.9.)5 ;BE- (mod p).

then

Proof: (a) If a =D (mod p) then the congruence  =a=b (mod p) is

either solvable or non solvable; hence (-%) =<—%) .

P—L
(b) (—%)5 F— (mod p) (Hardy and Wright pages 67—69).

By hypothesis p is an odd prime and (a,p) = 1; let x be one of the
members of the set |

(a) (1,2,...,p1].
Noticé that the set (A) forms a reduced residue system (mod p); since

(x,p) = 1 by lemma 3 it follows that

(B) (1l.x,2-x,...,(p-1)x) is also a reduced residue system (mod p).

Hence one of the members of the set (B) is congruent to a mod p; "we may
write “

xx!' = a (mod p) where 1 < x' <p-1, and is called the associate
of x.

There arise two possibilities: : | )

5 1 g R A R SR i, g o] et . i . A A R P o 7B iy o Dy A = ‘ i Eo i
UL et e L i L i P e e e e e L P AR A (A e it P e e kel S b B L e e side

A B o VIR O B4 1, - 17
g i e R ks 1
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case (i) x is associated with itself, i.e. x = x'. In this case the

congrﬁence £ =a (mod p) has a solution; therefore aRp.
Observe that if one solution is X, then the other solution is p—x, ;
for if x; is solution
x?_ = a (mod p) is true we check whether (_'p--x]_)2 = a (mod p)

is true
and (p._xl)2 = a (mod p) is true <>

o — 2px, + x:2L = a (mod p) is true <>

X2

1

hence p—xX; is other solution, since quadratic equations have at most 2

a (mod p) is true

solutions in a field there cannot be any other solution,
Thus when aRp there exist two solutions x; and p—x;, and the numbers
1,2,...,0—1 may be grouped as x3, P—x; and 1(p—3) pairs of unequal

assoclated pairs,

2 _
. % (pxy) = = = -a (mod p).

xx! = a (mod p) for 5(p—3) peirs

P—3
hence —‘Tx = (p-1) ' = — ag 2 (mod p)
l1<x<pl )

'
(C) (P-l)!‘-—-‘—;r(mod p).

9]

case (ii) when x is not associated with itself in this case the congruence

x¥2 = a (mod p) has no solution therefore aNp; and the numbers

1,2,...,p~1 can be grouped into 1(p-1) unequal associated pairs,
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@ Tx=@ul=s” (man
% - I<x<pl -

by definition 7 we have

\

a

: — )= <41 1if aRp
{} P

&Y= -1 if aNp

i hence (C) and (D) can be combined into

1
(E) <p_1>]s_(__§.);'@"<md p).

T T Py

1
Since x° = 1 (mod p) has solutions x = %1 therefore (5 )z +1.

Let us put a = 1 in (E) to obtain

~ 1 (mod p)

N

=

N

L
aunuygd
0

and thus incidently we have proved Wilson's Theorem:
i

If p is prime then

(>-1) | = -1 (mod p)

? .

Now we combine (E) and (F) to obtain

1 E(%)a..-pii(mod p)

Since (%) is just a sign k1, it can be placed on either side of the

congruence, Thus we obtain

1
(%) = ;?_ (mod p).




o

=
< T R,

o (3)- ()6

I
Since (?‘%)z fab) 2 Fmod P)

1

but (ab)T = a ( )( ) (mod p)

- () )C
[} ©)-6E)

(a ) 1 is obvious from the definition of "quadratic residue" and

) f (P;) follows from part (b)

Definition 8: Least non negative residue (Hardy and Wright page 49)

If x=a (mod m) and 0 < a <m1 then'a is called the least non
negative residﬁe of x modulo m, |
Definition 9: Minimal residue (absolutely least residue) [Hardy and Wright
pege 731, A

By the minimal residue of x (mod p) we mean that residue of x which
lies between -%p and %—p. ‘It is pésitive or negative according as the
least non negative residue of x lies between O and ip or between ip and p.
Lemma 5: -

Let p = 25 and let

8.l = 8]_1']_ (mOd P)

a2 = €orp (mod p

8-p) = 8Pl rpimgd p)

T N TR T W PR T XN CRG ) Ao WA e iy 33 S 7 = m o com o e .




Ny SR
e R L

ST T
Bdda

el S s

AR R

% AR
SRS

e et
AR TR

R (T

;}‘.f,-;?.-.{?{—?:

......

D s E % P
e S D

R IR

R R

Lme)
PR RN

s R e

.L:B;E}?_" b:. 7% 3

BEORE "':r:_s.a B

SE T

R WA BN i ol £ 2k
T A e S .

e I 2 T M T i e
L. 2 AN - M

be the set of congruences, where €xr, 1s the minimal residue of ax (mod p)

and r, is i1ts magnitude so that Bx = %1 ; then
(-g-)z 81 c ... 61)1 wvhere (a,p) = 1,

Proof: (Vinogradov page 83)

Observe that

s +++ P=1} is a reduced residue system

pl p¢l
2 ’ 2

(mod p). Therefore

[—Pl, ceey =2, =1, 1,2, ..,pl] 1s also a reduced residue system

(mod p). Since (a,p) = 1 hence by lemma 3 it follows that

(A) {-apl, ce.y—28,~8,a,2a,,.. ,P18}:
1s also a reduced residue system (mod P) . Therefore minimal residues of

the members of the set (A) are just

— &pll‘pl,-.o,_ 821'2, - 811‘1, Elrl, 621'2,..., £pr R

Hence these which are positive i.e. ryyTo, ...,rpl must be the numbers
1,2, o o0 ,Plg
Multiplying the set of congruences we get

=2
2 -
8 le2e¢ o0 Pl = 81 82 eo e eplrlr2 se e rpl (mOd p)

Since each of 1,2, ,,,, P; is prime to p, hence their product 1:2¢ ... P,

1s also prime to p, therefore dividing the congruence by

1.2, ...pl =TI Th... rpl and applying lema 1l we get:

_p;-}.
a 2 581 82 ... € (mod p)

Py




But by part (b) of lemma 4 we have

Ko

Thus from the last two congrﬁences we obtain

At S R B e

P—1
2
a

(mod p)

T T R R T T T S IR RS R L R

o

. ooy
T S A A R

(G)- & & - &, .

o Rt o R By 7
TR A Ry A

Definition 10:

Let x be a real number; then [x] and (x} denote respectively

R ORI Y

REENTTRY

the integral and fractional parts of x,.

oA LT T TR
BT R T g S S

Some of the properties of [x] are the following:

AR RS2

(1) [x4m] = [x]+m, where m is an integer.

(11) [x] 4 [=x] = 0 or —1 according as x is an integer or not.

(111) [x4y] > [x]+[yl.
(iv) [.-L’E.l] = [i—l , if n is a positive integer,

n

e D e e T e A3 T P o T A r e it 3 * 4
b R e A e e R R SR R o B

Lemma, 6

I LY forrg e O iy, Mg b
S e

Given ex and(%) as in lemma 5 we have

e = & q:'—lg] omd, thud
.

() #(ZH]

Proof: (Vinogradov page 8i4)

TG A Y pieg s TN B St pared
VoA e AT O A b

S R

We have




10

| cax | _ ax 22
P}"[g[l’]"'e{l’}
and since 2 {%} is an integer we have by property (i)

: ....?‘..}E = P .a'_x. <+ 2 &X_
P P p

! Thus [?E—XI-)-] is even if the least positive residue of ax is less

than 4p and is odd if the least positive residue is greater than

é—p i.e, according as 8x =1 or ex = =]

e () {21

Lemma 7T:

B DL e

B T e R e TR ot S Ry S vty
b e AT A RS R

i e by e s TS
R R I R R St e,

g

.
i
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e,
2
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R
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Iet D and a be both odd and such that (a,p) = 1 where p is prime,

e ()-PlEB
o ¢)- 66

Proof: (Vinogradov page 84)

Since a and p are both odd, therefore a+p is even., Since

2a = 2a4+2p (mod p).
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Therefore we have by part (a) of lemma (k)

Y, 8P
2a | _ (.2_9;.%_2_2 2 and by part (c) of lemma (k)
p .

Now by lemma 6 we have

arp
2=
P

x=1 x=1

! adi

Ii

|

1 and

putting a = 1 in (A) and using the fact that ( =

for 1 <x <Py we get:

[
0o 1 mn m

n

N
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" then /*‘l'ﬂ,-: Bg_i .
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and then putting (b) in (A) we obtain:

Lemma 8: (Gauss's Lemma) (Hardy and Wright page )

Iet m be an integer and p an odd prime such that (p,m) = 1 then

(%) = & ( ,U.) where /bis the number of members of the set

(m,zm,.&n, LI I I ,%(P“l)m}
whose least positive residues (mod p) are greater than :4p,
Proof: (Mathews part I page 39)

Observe that 1,2,3,...., 22:-1- are incongruent (mod P) and

since (m,p) = 1 hence

(A) lem,2°m,3°m,....0s.., -22:]; m are also incongruent (mod p).
Hence’their least positive residues (mod p) will be all incbngruent 5
of these least positive residues a ccjartain number, /bsay, will be

greater than p' = Ezi . Denote them by 0¥, &%, . . . ol«,w ; and

the others will be less than p!. Let the residues less than P! be

denoted by

Poobey o By




Now the numbers

o, p-do, ..., p—d"_ are all less than p'4l. (< p?)

We observe that firstly:
the numbers p—ef; 1< 1 <M are all incongruent (mod p) for

if they are not incongruent then

p-dii = P—d'J (mod p) 1 <1, JS/‘-
..ol =l (mod p) 1#J.

buteby 1l <ig M are all incongruent (mod. p)

and secondly:

IA

J

i

IA

no p—el,y is congruent to p 3 1

1

IA
IA

for if some p—ob; 1s congruent to some P j We have

—ol; = B i (mod p)
S 78 ﬂj = 0 (mod p)
but o‘i and ﬂ j are the lea.st posititve residues of the set (A)
hence there must be two numbers from the set (A) say Sm and tm
such that Sm=06; and
tm = ﬁ j
so that Sm+tm = 0 (mod p)
i.e. p‘ (S+t)m but (p,m) = 1

hence p ‘ S¢t

But S and t are both less than 3p hence p‘ Set is impossible,

Consequently it follows that

13
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(p— d‘l):(P‘ ¢2): oo (P %&J: Pl) ﬁg: 0",;»

must be a permutation of
1,2, e e o0 P’ .
Hence it follows that

1:2:3 ... p' = (p-04) (r~%) ... (p— % Pi B .« By, (mod p)
but since p—O¢i = — d/i (mod p) | ’

we therefore have:

12:3 ... P s&»(/u) dy & ..oy By Bo - fp (w2 D)

But d’l “2 d}‘, 1 oo Px5m°2m°3m coo P'm (mOd- P)

therefore 1.2+3 ... p' :—T& (,U.) m-2m3m ,.. p'm (mod p)
Now since each of the numbers 1,2, ..., P! is prime to p
hence is the product 12 ... p!

dividing the congruence by 1.2 ... p' it follows by lemma 1 that

1 g&(ﬂ) ' (mod p)
' z&(/») (mod. )

but by part (b) of lemma 4 we have
, ol

2
b ,

We have from the last two congruences

&) -G

Definition 11: ILattice point.

By a lattice point we mean the point both of whose coordinates

are integers,
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Lemma 9: (Theorem of Eisenstein) (Hardy and Wright pages T6~TT)

| Le p and q be distinct odd primes; if

- - o amm——————

S‘q,p) = %[ﬁ%] then

s=1

S(a,p) + S(p,a) = p'q’ where

VY

p!

$ -l
q 5 .
We shall present two proofs,

(i) Geometric proof,

B C
” T i A
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Let in the figure equations of AQ and BE be
x=p and y=g and those of KM and LM be
x=p' and y=q',

If.as appears in the figure p >q then p*¥ > ¢

. 8
p! P
\

. .,
Since q' <q§ < q'¢l and the equation of the

diagonal €€ is L4,
x P

]
Therefore when x = p* then y = q % ; hence there is no integer

]

between KM = q' and KN = q

dellLie)

We now count up the number of lattice points in the rectangle OKML,
where we do not count lattice point}s on thew axes but we do count
lattice points on KM and IM, In the first place this number is
plainly p'q'; since lattice points (x,y) satisfy the conditions
1 <x <P 1<y<aql.

The equation of the diagonal being y = % x , and since (p,q) =1
hence theré cannot occur any lattice points on OC, Further we have
already seen that there can exist no integer between M and N,

Thus there are no lattice points in the triangle FPMN except
possibly on PM, Hence the number of lattice points in OKML is the

sum of the lattice points in the triangles OKN and OLP.

- 16




17

Consider now the line ST given by the equation x = s the

ordinate T is given by y = s 5 hence the number of lattice points
p

on ST are[% s] . Thus the number of lattice points in the triangle

OKN j.s~

Consider now the line UQ given by the equation y=u, then

X = g u is the abscissa of Q. Thus the number of lattice points

on UQ is [ﬁ- u] . Hence the number of lattice points in the

triangle OPL is
ql

2[2 u] = S—(p,q).

u=14Lkg

Therefore S(q,p) + S(p,q) = p'q’.
(11) Analyt;ic proof; (Landau page 61)
| Consider the p!q! xzxumbers defined by
» up—sq where s = 1,2, ,.., p' and
u=12, .,., q

We observe that none of these numbers is zero because

up—~sq = 0 -> up=sq
- p]sq but (p,q) = 1

q' p‘ s which is impossible,
Exactly {[P-g] among the p'q! numbers are positive

for let s < E‘Z— where 1l <s < -I-)-;-l;

-] ’
for every u= 1,2, ..., _%é__ since ‘-‘lﬁ- is not an integer. It follows




that 1 < s < gg_ has exactly [Eg-] solutions so that

ip - &
s<2q 5.

or s < 22:-1: is automatically true,

p!
By symmetry exactly & [_s_%] of the p'q' numbers are negative,
x=1

P‘l qt
Therefore z [ﬂ] + g [E:B] = p'q' .
s=1 &P u=1 = 9

Lemma 10:

Iet p and q be distinct odd primes, p'! = tg]-' , ' = %-l- and

s, = {(x,5) | (x,7) is lattice point, 1<x <p', 1<y < (a/p)x)

s, = {(x,y) l (x,y) is lattice point, 1<y <q', 1<x < (p/q)y}

then |]5¢ " = é:l[%}i) , "82 “= y§1 [Ey-] and

oo & -

Proof: (Niven, Zuckerman page 68)

- — 1
Iet (u,v) be any lattice point such that 1 <u < PE-

—

and 1< v < E?— ; and consider the three alternatives:

l.

(1) v < (a/p)u: if v < (q/p)_u then by definition of Sy (u;,v) ¢ S




(11) v > (a/p)u: then u <(-§-)v are by definition-of

S, (u,v) € S5.

(111) v = (o/p)u: this alternative is impossible since this

implies p,u which cannot be because 1 <u<p,

Thus either (u,v) € S; or (u,v) € Sp but in no case (u,v) can belong
to both S; and S, at the same time. Note that there are P-;—l 9—-;1

lattice points (u,v).

Now if (x,y) € 5; then 1 <x< 2_"2_{

lgy((q/p)XS(Q/P) 2-2':1‘ =EE=L§<§ . Since q is odd and y is

an integer this implies that

1<y < 9—'5'1 Hence (x,y) € 51 1s a (u,v).

And if (x,y) € 8y then 1<y < L&t

1 <x < (p/a)y < (p/q) L2 =9';—l £ <£ . Since p is odd and

X 1s integer we have

1<x< %i . Hence (x,y) € 5, is a (u,v).

This shows that

1 -]
s s - B

We now count the number of lattice points in S, and S, separately, For

each LI <X < 2231 the pair (x,y) e S1 just for y = 1,2,.‘_....,t2§] .

The number of these y is [1;—-] .




)| - 2

qt
smises a| - % [2]

y=1

We can now give a new proof of part (a) of lemma T, which
we reword as follows: (Niven,Zuckerman pages 65-66)

If p is an odd prime and (a,2p) = 1 then

Proof: Observe that

1,2,..., P' are incongruent (mod p) and since (a,2p) = 1

we have (a,p) = 1, Therefore

\
(A) 1l.a,2.a, ..., p'-a are also incongruent (mod p).

Hence their least positive residues will be all “incongruent. Of

these a certain number /J'say will be greater than p! denote them by

o
than p' be denoted by

P, ....Ps

we heve then ,u.+ A - P!,

5 see ,06//. and let the rest of them which are less

Division of the set (A) by p may be written

(B) Ja=0p ['l%] + W,

-
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where 1< j<p' and 1 guj <p-l. Note that uj are the least
positive residues of ja (mod p).

Suming the equations (B) from j=1 to j=p' we get:

J=1 Jfl J=1
p! p! Y,
@ o F -3 p[.s.g]+§acJ tZA

p-ob, l<jgp end ﬁj 1< 3 <@ are the numbers

1,2, ..., p' in same order.

X
Hence 1f R = 2 ,Bj
J=1

/Jv
and R' = -0, = ~ y
e Koy n pro £y

J=1
M v

then R 4 R!' = —2 : 2 )8
pr-2 %+ 2P
Pl

but R + R! J='2]'-'Eg']; R'éi:-—%(pz—-l).
j= -

s A

Subtracting (D) from (C) we get:

”~
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(E) %(Pz-l)(a—l) =P p [’J—%] o ad LY % cCJ

=1 J=1

..

Since a and p are both distinet odd numbers
.*. &=l is even and p2-l = 0 (mod 8)

.*. LH.S. of (E) is even and the last term on the right is

even hence we must have

22




Section 2.

We are now in a position to prove the famous theorem 1
"The Gauss Law of Reciprocity”,

This theorem was discovered at different times by Euler,
Legendre and Gauss, but Gauss was the first one to prove it in 1796,
when he was just eighteen years old,

Carl Friedrich Gauss (1777-1855) whom his contemporaries used
to call "Princeps Mathematicorum" (Prince of Mathematicians) was
perhaps the greatest mathematical éenius of all time, only Archimedes
and Newton being comparable to him, Though Gauss contributed to
almost all branches of Mathematics, number theory, or "higher
arithmetic" as he called it was his favorite science; as is evident
fram the phrase attributed to him "Mathematics is the Queen of
Sciences, but Arithmetic is the Queen of Mathematics", His interest
and appraisal of the reciprocity law is manifested by the fact that
he developed not less than eight different demonstrations of it and
valued it so high as to call it "gem of higher arithmetic",

Among the leading mathematicians who have also proved the
theorem are Cauchy, Eisentein, Jacobi,Kronecker, Kummer, Liouville
and Zﬁller.

Indeed, the interest that it continued to arouse is evidenced
by the fact that it was proved in about fifty ways during the
nineteenth century, but of course the proofs are essentially not

all different.




We will present a few different demonstrations of the law.

If p and q are distinct odd primes then

(ﬁ-)(%) = &{p'q') where

'_q—l
T = 7

(1) By lemma 7 we have

e e e e e B o Mt oo s o e v 27 da e 2V YT, -

and a be both odd and (a,p) = 1 then

H
by
(o]

(A) and (B) give

@ E)E) 1 % 2]+ £ E

U= S=1

But by lemma 9 we have
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=[=]+2[4)- v,

hence from (C)we obtain:

()@ -fo

(ii) We have by lemma T

-

Now by lemma 10 we have

z[x]- Z[5]-»

s=1

Therefore (‘5—)(%) =& (p*q?)

(1ii) (LeVeque pages TO-T1)

s

Consider the numbers

1
(&) a2, ..., =4

-

gq—l
(B) Py2P, ceuy 7 D

-
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then by lemma 8 we have
G)-pw @)

Wwhere /&- is the number of least positive residues (mod p) of the
set (A) which are greater than 3P a.nd)) is the mmber of least
posi’;ive residues (mod q) of the set (B) which are greater than 3q,
Since the min::Lmal residue of a résidue greater than half the
modulus is negative, we can say that /&4» and ) are the mmber of
minimal residues of the sets (A) and (B) with respect to mod p and

mod q respectively which are negative,

We will show that /H-D-—_-- E—;i -(g—]-'- (mod 2).

Choose y such that

~ 2 - 2

then gx — py is the minimal residue of qx (mod P).

We have from the above inequality

x _ 1L x 41

Thus it follows that y is unique and positive,
If y = O then gx — py = gx > 0. In this case, since minimal
residue is positive, there is no contribution to /u’.

Moreover we see that for x < Pl

> 72
ot
qQ = —
gx _ 1 —2 i _pra_ 1l _g_1 _ gl
P 2 = P 2 ~ p 2 2 2 2 2 *
and since y < 9-%4-%— we have .
i, 1,1 _ g
Y< T3 *z*; = %

26
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80 that we have y < 22- .

The number M- denoctes therefore the number of combinations of x and y

from the sets
P—1
(p) 1,2, e T
(*
(q.) 1,2, e o0 2

respectively for which

- g <gx —py <O

Likewise ) is the number of combinatiors of x and y from the sets

(p) and (q) respectively for which
- g' <py-ax <0,

Observe that for any other pair x and y from (p) and (q) respectively

either
» "

Y- x> %

or py — qx < -%

Iet there be Qs of the former and € of the latter.

Then clearly
1 g—-1
22'2' .‘12 = Mt V4 Ao e

Now as x and y run through (p) and (q) respectively the numbers

- -

x'-Rﬂ.—x y.zieﬂ -y

run through the same sequences (p) and (q) but in the opposite

-~ ~

order,
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Since py? - ox! =

-
\“‘1/
|
RN
|

i
3
I
E)
|
g

therefore if py — gqx > P

then py* —aox* < &2 - 2 __ 4

_ 2 2 2 °
Thus %:?

32:; 9-5-]: = At V2 & = M+ ) (mod 2)

@) 6 =)

(iv) (Uspensky and Heaslet pages 289-292)
let (A) and (B) be the same sets and ,U-and)) have the
same meanings as in proof (iii). To prove the law {t, therefore

suffices to show that M)) = P_'2:3_- Q:é'i (mod 2) which we now present

in the following different manner:

Observe that least positive residue (mod p) of any number belongs

to one of the series:

(i) 1, 2, “.’P'_E‘_l

-

| D+l  De3
(&) T T e, P

while least positive residue (mod q) of any number belongs to one

of the series:

-1
| (F) 1,2, oeey 22—

-

a4+l 4
(F') I~ B "E@': coey q-l

-

28
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Consider now the numbers

(c) 1,2 Pgl

} J j J ® e 0 )H 2

-

We notice that the numbers (C) form least Positive residues (mod Pa)
- -1 -

which are less than or equal to P-g--—g . Hence none of these is

divisible by p and g simultaneously. We can, therefore, divide the

numbers (C) into the following eight classes:
Class 1 contains those numbers whose least positive residues (mod P)

belong to (4 ) and (mod q) belong to (F). Let the cardinality

of 'thLSclaés be o
Class 2 contains th@se numbers whose least positive residues (mod p)
belong to (&) and(mod q) belong to (F'). Let the ca;'dinality
of this cl;.ss be ﬁ . F
Class 3 contains those mumbers whose least positive residues (mod p)

belong to (gf') and (mod q) belong to (F). ILet the cardinality

of this class be ¥ .

Class 4 contains those numbers whose least positive residues (mod p)

belong to (') and (mod q) belong to (F'), Let the cardinality - D)

P

of this clé.ss‘be 6 .,
Class 5 contains multiples of q whose least positive residues (mod p)
belong to (&‘) Since all the multiples of g in the ;eries
(C) are q, 2q, cees Be:J;QWthh form the set (A)
R Hence the cardinality of this class is M

Class 6 conta.ins multiples of q whose least positive residues (mod p)

belong to (d*). The cardinality of this class is E—g-:-L- - M.

-~
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Class T contains multiples of p whose least positive residues (mod a)

belong to (I'() Since all the multiples of P in series (C)

-~

are 4
P,2D, vae, 9~é— p which forms the set (B).

-

Hence the cardinality of this class is ) .
Class 8 contains multiples of p whose least positive residues (mod q)

belong to (F)., The cardinality of this class is -‘Iéi -) .

Observe that classes 2,4 and 7 contain all the numbers of series (C)

-

whose least positive residues (mod q) belong to (F!). For a given

residue e which belongs to (F'), such numbers are

0, q+@ ,2040 , ..., E2q4@ .

To ascertain whether there can be more' numbers consider

- 1 -]
’CQ+Q_<_ 29"2"=tg'q+9‘§- .

or tq < 5’-;-3-q+Q1+9~'2i—e)

thus the inequality can hold for t = E;& and not for t = %l :

Hence with a given value ofeﬂ? have P-éi nunbers and since number of

residues in (F!) is 9-'2:-]-'- 3 Q therefore can have Q.'é'_l; values, Hence

—~

it follows that classes 2,4 and T comprise Be-l &gl numbers .

Fl) Brésv = == .

Now consider the classes 3,k and 5 which contain all the numbers of

series (C) whose least positive residues (mod p) belong to (ﬁ') .
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For a given residue ? which belongs to (f*'), such numbers are

L2+ 2P+, ... ,%ﬁpﬂb

Thus with a given value of ?z we have 9-;—' numbers and since n

can have I%-l- values., It follows that the classes 3,4 and 5 contain

Egl %::L numbers ,

(@) Vebtpe Lol

o~

Now consider the series

(D) 21 ’ 2 9 eee Pq""l

-

Notice that none of these numbers is divisible by p and g
simultaneously and to each number & in the series (C) which belongs
to the class 3, there corresponds the number pg—e in the series (D)

-

such that the least positive residues of the numbers pg—e with
respect to moduli p and g belong to (@) and (F!) respectively and

vice versa, Therefore we notice that in the class 3, there are

exactly as many numbers as there are numbers in series (D) whose

least positive residues (mod p) belong to () and (mod q) belong to

(F!).

Union of series (C) and (D) is the series

-~

-~

() 1,2, ..., pg-l.
Thus it follows that the cardinality of classes 2 and 3 is the same
as the number of terms in series (E) whose least positive residues

(mod p) belong to (gf) and (mod q) belong to (F*). Notice that the




' N
\.. ﬂ' ‘
number of such pairs of residues is 22:}. 9-;-:]-'- , and to any such pair
thepe corresponds a unique number in series (E). It follows there—
fore, that the classes 2 and 3 contain P—; L 9:2- L numbers, :
1 g-1
c3) A= S '
adding (1) and (2) we get
B+ 26 +p¥d=2 2 2
2 2
subtracting (3) we get:
‘f;
poidied = BL Ll
/‘-"‘»E Lol (poq 2).
2 2 .‘
Applications: !
By pombining the law of quadratic reciprocity with the properties
of Iegendre's symbol mentioned in lemma 4, it is easy to evaluate (%)
Example: 2819 observe that 2819 and 4177 are both primes and
|
4177 = 1 (mod 4)
2819 177 358 2.7 .97)
I 2819 2819
2819 l 2019

(%—)() - %(—%—>=—l

Sy L i Ea R




S Lo et vt R A S e T st

ST e SIS P

DL T L GE

33

Thus 2819 is not a quadratic residue of 4177. Moreover, the

quadratic reciprocity law can be used to determine the primes P

of which & given prime g is a quadratic residue.
Example: 5 is a quadratic residue of primes of the form 10nk1l
and a quadratic non residue of primes of the form 10nt 3.
let p = 10n#+k where k = 1,3,7 or 9.
Since 5 = 1 (mod 4) we have

(2)-(5)- C=)-(2)

N

The residues of 5 are 1 and I, Hence 5 is a residue of primes Sn+l

and Smb4, that is of primes 1On+l and 10n49; and it is a non residue

of all other odd primes,

. pakeion met o U PN
O B O = e Ty 1ty i o o o L
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Section 3

We now come to Jacobi Law of Quadratic Reciprocity, also
known as the Generalized Quadratic Reciprocity Law, The law will
be dealt with as Theorem 2,

We first deal with the following:

Note that if P is an integer, positive and odd then either P = 1 or

P=p P where Pl’ p2, ceo Pr are odd primes not necessarily

1P2 **t Tr
distinct,

Definition 12: (Jacobi Symbol) (Dickson pages 42-45)

If n is an integer prime to P we define

(2)- 1 om
(#)-(8)-()

without loss of generality from now on we will take P > 1 i.e,

P=p.Py... P = TTPi
172 r 1<i<r

Lemma 11: If n is quadratic residue of P then (%)=

Proof: If n is quadratic residue of P then the congruence £ =n

? (mod P = Pl eee Pr) is solvable so that ¥ = n (mod py) is solveble

for each 1 < i <r, Hence by definition T

B \=1 for :L_gigrsothat(-‘l).—.l.
1< P
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Iemma 12:

If P is positive and odd and if both m and n are prime to P

(2)(2) - (=)

Proof: By definition 12

G)-G) -G
G)-G) ()
(5)- (&)~ ()

but by part C of lemma Uk

- G) GR)

= (3)-G) ~E)E) )
G)G)

then

Lemmsa 13:

If n is prime to odd integer P > O then

(_%): (‘-1‘;-) if n=m ’(mod. P)




Proof: n=m (mod P = Py oo Pr)

hence n = m (mod py) 1<i<r,

By pert (a) of lemma 4 we have
(3)- (%)
=TG- TG
= (3)-G):

Lemma 1k

<.

If P is positive and odd then

¥

5~ = 2,%(1’1"1) (.mOd 2)

1

W
O
O
H

DN AT e Koo K I - Y AT TR T W, 3 o — e .

and since the product of two even integers p;—l and p J-l is divisible

T R

by 4; we have

-

| P= l+? (ps—1) (mod L)
. Pl E % (py-1) (mod k),

o _11-2_]; = ié%(pi—l) (mod 2). |
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Iemma 15:

If P is positive and odd then

&)-#E

2 ~ 8
()- =7

Proof: We have by lemma 1k

%—]-'- = 2%(1)1-—1) Smod 2)

By definition 12

(:'—];) = “(:L) put by part (d) of lemma k4
P Pi ,
P4 e
pi~l
a Py- 2
‘ .*. Wwe have L) - '" & (‘i—") = (-1) >

. ra
(—% = (-2)

P = '\T{l + fpi-l)}

and since p?—l is divisible by 8 we have

D T R PS4 P A AR A e N ) B e e e b

we have
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= 14 So-1) (uod 64)

fgl = 3(08-1) (moa 8)

By definition 12

2 2
<-1-5) = “(5-;) but by part gb) of lemma 7 we have

We now came to theorem 2:
Theorem 2: Let P and Q be integers, positive, odd and relatively

prime, Then

SORSS

. Proof: (ILandau page 68)
Without loss of generality let P> 1, Q > 1 and let their

decompositions into prime factors be denoted by

P-=Trp
Q= [a

Rt L




39

then (-I-’) AN By lemma 12 we have
Q Ta |
p

(-Q-) = %) = 11.(-1-"%) . Now by definition 12
=(8) - 1) - TT():
N Likewise (%) = -!1;[(%).

PyRY) _ P\/a ;
Thas (Q )(P) = P',I:!. ( q)(p ) . Applying Theorem 1 we obtain
p—l g-1

G- @ =F

2 (B =t 4
- (6)6)- F‘”P’Qé - s

By lemma 1% we have

L 5= 5 mao.
P )

2 %'-J: E%—Ji (mod 2).
q )

Pl -l

Thus (g—)(%) = (-1) 2
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