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CHAPTER I - MODULES AND SUBMODULES 

A set M i·s called ,a left module over a ring R if: 
. 

1) {M,+) is .an abelian group 

2) there .exists a scalar multiplication· between elements 

of Mand R such that for each m·in Mand r in R there 

is a unique element rm·in M 

3) this scalar multiplication satisfies the conditions 

r(m + m') =rm+ rm' 

(r + r')m - rm+ r'm 

(rr I )m = r(r 1m) 

for all r,r' in Rand m,m' in M. 

If, in addition, R has an identity 1 and 

· lm = m 
,. 

for all min M, then M. is called a, unitary module. When 

condition 2) above is fulfilled, we simply say M has a 

1 

1 ring Ras a set of left operators. One may similarly define 

a right module over a ring R. 

:l 

In a left R-module as defined above the product mr has 

no meaning, since R operates only on the left. Hence, de-
.. . 

fining 

mr = rm 

for all r in Rand min M, we claim 

Theorem 1: If mr is defined by the preceding equation, 

then any left module Mover a commutative ring Risa 

right R-module. 

~-

~ - . . .. 
-~ 

.. ·: ~·-.,__._·'.·./.'·/\:'--"{ 
,·. ·,,,: 

. .. ~,- .. ~·~.-~._.,._;~ .. : 
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Proof: By definition of left R-module M, (M,.+) is an 

abelian group. If Risa set of left operators and 

mr = rm, 

then it is also a set of r.ight operators. Lastly, 

(~ + m')r = r(m + m') =rm+ rm'= mr + m'r 

m(r + r') = (r + r' )m = rm + r 'm = mr + mr' 

2 

.,._ in(rr') = (rr')m = (r'r)m = r'(rm) = (rm)r'· = (mr)r'. 
·--··· ·------------ --- ---- -·····---- --· -_____________________________ , ________ -Note that. the commutativity of R was us~d in the last step 

O.• •. 

only. 

Some examples of modules: 

1) Any vector space over a field or skew-field is a 

unitart module over a ring, where the ring is that 

field (or, as -the case may be, skew-field) 

2) Given any ring R, we may consider the additive abelian 

group (R,+) as a left R-module where R acts as a set 

of left operators, and as a right R-module when Roper

ates on the right 

, 3) Any ab~lian group· (G,+) may be considered as a unitary 

module over the ring of integers·z if we define 

ng = g + • • . + g (n times) for. n positive 

:O_g = zero of the group 

ng = -g - ... -g (-n times) for n negative. 

The last two examples imply that any subsequent statements 

pertaining to modules also apply to abelian groups and 

general rings when interpreted in this light. 

! ' 

- . . .. _ · .. ·. ·-·.·' .·:,· .. , 

r 

- - '• ................. , -~~--,---.... - --~-.................. ,.. -----~--- ·• - ..... :, . ·. ,' .;,-;:.µ;;}.-· :c..·,:-;.,.:; ~:·.·,: ..... _-: ............ ,,,.. •... ,.,.. . . . . 
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A submodule N of a module Mover ring Risa subset 

of M which is itself a module over R. For example, every 

left ideal in a ring, when the ring is considered as·a left 

module over itself, is a submodule. Thus, any assertiop.s 

about the submodules of a given module may be translated 

into ones about the ideals of a ring. 

Theorem 2: If N1, .. , Nm a\e submodules of a module M 

- ---- -----···- ·-·-----··- ·-··-··-- ---·- -···---·-- ---------·····---·-~~-------------·--------------- ·--·--·-------·--------~ , __ 
_, 

m f'. m } L N. ,·'\~ I 
• N. - n. n. in - ,, 

1 1 l. 1 
i=l l\=l 

which we shall denote by N*, is also a submodule of M. 

Proof: In proving a subset of a module to be a submodule 

all we need show is that it is a subgroup of the additive 

group of the module, and closed with respect to the scalar 

multiplication. 

A) For a,b • N* any in 
m m m 

a - b - L n. - L n! 
1 ]_ 

-- L (n. - n!) 
1. 1. 

i=l i=l i=l 

which belongs • N* • each (n. n!) • • N .. 1n since - 18 1n 
1 ]_ l. 

Therefore, N* • subgroup of M. 1.S a 

B) Let belong to R. For any • N-1'" r a in 
m m 

L L This • element ra r n. - rn. 1S an - • - . 1 l. 
i=l i=l 

o:f N* • each belongs ·to N~ . since rn. 
1 1 

In the case of this theorem, we say that_ N* is the 

smallest submodule of M containing N1, .. , Nm in the 

'1( 

J 

::,.. 

:t'"' 

. i 
i 
I 

i 
r 
i 
I 

-·---------------- I 

ii' 
I( 

'I 

I 
I 

1 
I 
i 
'I 

I 
I 

I 

, ..... ,. ,.•,~,.'.•-·•;• .•• 1,~-~ .. -,:~-··.,_ .• _.,.,,,,•~-,- ·-··-•,'•, •• , .. ,--, ·,c·•,•.,•-·•--,...,,.,_._ ... .,~.-.. , .... ~ .. - ..... ,..,.,,, •• .,,._~,~······--~--,- " ....... , .•. _. ..•... 
•- - _,_ , .... .,. _____ ,.,_,~_.,,,, ""+-•H ,...-,,_,al'.c-'••J..·• ... ,-t..1,-r,..-•M' ,.., ... ,r,·•·•••-·· • • · · "' ,._ .• • ... ~~··,-··,• "·--, ., .. , ; 
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---·------- -------~~ 

I 

.~ 

·'\ 

sense that N* contains each N., and any other submodule 
1 

-

containing each Ni must also contain N*. 

l 

4 

Theorem· 3: . ' N m 
are submodules of J'1module M 

over a ring R, then 
. . 

m 

n 
i=l 

N. 
L 

-- i = 1, . . , m } 

· which we shall denote b_y N**, 1·s -!i-lso a submodule of M. 
-~----- - --~---------------- -- -------------- ---~ --- -----~------------ -------- ---- ----·---------~-

':}' 

Proof: 

A) If n, ·n• belong to N**, then both are elements of each 

B) 

N. 
1 

--> --

--> --
For 

N. 
1 

--> --

n - n' belongs to each 

n - n' belongs to N** 

in R and • N**, any r n 1n 

rn belongs to each N. 
1 

rn belongs to N**' • 

n 

N. 
1. 

• element of each 1-S an 

Theorem-4: (Dedekind Modular Law) If K, L, N are submodules 

of an R-module M such that L C K , then 

K It . (L + N) = L + (K () N) . 

Proof: Let x belong to K() (L + N). _Then x = 1 + n for 

some 1 in Land n in N. Now x in Kand 1 in LC K 

1 • • K --> n - X - 1S 1n -- -

==>· :n ... .. K () N g ·is -1.n ,: 

--> l + • • L + (K (\ N) X - n l.S in -- - • 

Hence, K n (L + N) C L + {K () N) • : .. 

'-

\ 
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5· 

Conversely, let x belong to L + (K (\ N). Then 

x = 1 + k for some 1 in L and k in K () N. But L C K and 

kin K 

. ··--> --
\ 

x = 1 + k is in K, and k in '._N· 

1 +k • • L +N --> X - 1S 1n ~~ -
• • K () (L + N) --> X l.S 1n -- • 

That • ·L + (K ft N) C K A (L + N) l.S' • 

Theorem 5: Let R be a commutative ring. If either N is a 

submodule of an R-module Mand Sis an arbitrary subset of 

~' or N is an arbitrary subset of Mand Sis a left ideal 

.in R·, then 

SN -- s.n. 
1. 1 si in S, ni in N, min Z arbitrary} 

is a submodule of M. 

Proof: 
-,, .. ,:. ' 

A) If a, b belong to S.N, then 
m k 

a+ b ' : ' + z=s!n! L s.n. -
1 1. 1. 1 

i=l i=l 

..... ~. ' .. . m 
For an arbitrary a= ~ s.n. L 1 1 

a I = 
m 

P(-s.)n. L 1 1 
i=l 

i=l 

or 

--
m+k 

L s .,n. 
1. 1 

• l.S 

i=l 

in SN, either 

m 
} s. (-n.) L 1 1 
i=l 

• SN. in 

belongs to SN, depending on whether Sis an ideal or N 

a submodule respectively. In either case, 

a+a'= O. 

~--------- -

. ' 

"J 
1··, 

r:'_j 
I., 

ii 



-~·-----=-- --~--- , 

' 

·~ 

t • 
i,' 

'~ 

B) For any r in Rand a in SN, 
m 

ra -- r ~s.n. L i i 
i=l 

--
m 

>'(rs. )n. L. ]_ ]_ 
i=l 
.ffi 

)' s. (rn.) L i i 
i=l 

·-·, . 6 

belongs to SN if 
Sis an ideal 

belongs to SN if 
N is a submodule 

The commutativity of R was used o~ly in the last line of 

the proof. 

·1 

L 
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CHAPTER II - HOMOMORPHISMS 

A function f: M , M* , wher-e both M and M* are 

R-modules, is called an R-homomorphism of Minto M* if for I . 

all m, m' in Mand r, r' in R 

f{m + m') = f(m) + f(m'} 

. and f(rm) = rf(m) • 

Theorem 1: If M and M* are-R-modules and f: M > M* • 1S 

an R-homomorphism, then 

A) f{O) = O* (the zero of M*) and f(-m) = -f(m} 

B) if A C R and L C M, then f (AL) C Af (L) 

C) ker f = { m Im in Mand f(m) = O*} is an R-submodule 

of M 

D) f is one-to-one if and only if ker f = (0) 

·E) if L C M and L* C M* are submodules, then f (L) and 
$ 

f- 1 (L*) are submodules of M* and M respectively. 

Proof: 

A) f(O) = f(O + 0) = f(O) + f(O) 

==> f(O) = f(O) - f(O) = O* 

f(m - m) = f(m) + f(-m) = O* 

==> f(-m) = O* - f(m) = -f(m) 

B) Since any element of AL can be written as· ~ a.b. for L 1 1 

some set of a. in A and some set of b. in L, then 1 1 

f(>'a.b.) = L 11 

==> .f(AL) 

) f(a.b.) L 11 

C Af(L) 

_,.5)-

= ~ a.f(b.) L 1 1 

• 

is in Af(L) 

·:5·· .. 
..... ' 

" 

. ,,c -• ~--,-.,-,-· ·.--.- .. ·~·,· - ...... c,, ., ..... "' -·-···· -.,.-•• _-_,., •.•• ,. --- ,. ' ' .•• ···.·-,· ••• ·-- ~- , ... "" .......... ,__ .... --~-- .•• • . 

I 

I 
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• 

C) For any k, k' inker f and r in R, 

f(k - k') -= f(k) - f(k') = O* - O* = O* 

==> k - k' is inker f 

f(rk) = rf(k) = rO* = O* ==> rk is in ker f 

D) If f is one-to-one, then f(m) / f(m') for-all m / m' 

in M. But f(O) = O* 

==> f (m) :/ O*, for all m :/ o: .it) 'M; 
' ==> ker f = (O). 

Converse\y, let ker f = (0) and suppose there exist 

m :/ m' in M such that 
J/ f(m) = f(m'). Then 

O* = f(m) - f(m') = f(m) + f(-m') = f(m-mt) 

where m - m' / 0 since m / m' 

==> ker f :/ (0), a contradiction. 

Thus, f is one-to-one. 

E) Let m,m' belong to f- 1(L*). Then f(m), f(m') in L* 

--> -- f(m) - f(m') = f(m - m') 
./ 

--> -- m - rn' is in f-1(L*) . 

8 

For any r in R, rf(m) = f(rm) is in L* since f(m) is 

an element of L* 

==> rm belongs to f-1(L*). 

A similar argument holds f~ submodule f(L) of M*. 

Theorem 2: Given an R-module M, then LCM is an R-sub

module if and only if ther·e exists an R-homomorphism 

such that 

f: M , M1< 

L = ker f . 

\ 



. .._ 

- :0. 

9 

Proof: The "if'' case has been proved in part C) of the 

preceding theorem. 

Now, let L C M be an R-submodule. Then L is a subgroup 
of the abelian group (M,+), and M;t 

We assert: 

is an .abelian group. 
4 

A) For any r in R and m + L in M/L (where m+L denotes 
"-

.., 

the coset of m in M;t), if we define 

r(m + L) = rm+ L 

then M;t is an R-module. For, 

i. M;t is an abelian group 
F 

ii. r(m + L) =rm+ L is in M;t since rm belongs to M. 

To exhibit the uniqueness of this product, let 

m: + L = m' + L. Then m - m' in L 

.==> 

==> 

r(m - m') = rm - rm' in L 

( rm - rm' ) + L = L, or rm + L = rm:' ·+.- L 

iii. r[(m + L) + (m' + L)] = r[(~ + m') + L] 

- r ( rn + m 1 
) + L = ( rm + rm ' ) + L 

- (rm+ L) +(rm'+ L) = r(m + L) + r(m' + L) 

(r + r')(m + L) = [(r + r')m + L] =(rm+ r'm) + L 

= ( rm + L) + ( r 'm + -k}· == r ( m, + L) + r ' ( m + L) 
' (rr')(m + L) = (rr')m + L = r(r'm) + L 

= r[r'm + L] = r[r'(m + L)] . 

B) If we define f: M , M;t in a natural way by 

f(m) = m + L 

then f is an R-homomorphism. For, given any r in Rand 

m, m- 1 in M 
. " , ., .. 

.,:. 

) 



-----... -...---~•.-.•-•P•-•• "''•"•' + "-•·-•••••-~,•••" ,••~•-~·••••• '·•"'"-•·--·-~-n---

f(m + m') = (m + "in') + L = (m + L) + (m'·· + L) 

= f(m) + f(m') 

f(rm) =(rm)-+ L = r(m +'L) = rf(m). 

Clearly, ker f = L. 

10 

Theorem 3: (Fundamental Theorem of Homomorphisms of Modules) 

If f: M ,M* is an R-homomorphism of R-modules Mand M*, 

then i 

M/ker f ~ f (M) 

{where '';t" is to be read "is R-isomorphic to") . 

Proof: Define g: M/ker f , f (M) by 

g(m + ker f) = f(m). 

Note that if~ is the natural homomorphism from M to M/ker f, 
.; 

-1 then g = fcp . We claim that g a,s defined is an R-isomorphism. 

A) g is well-defined 

B) 

C) 

Let m + K = m' + K, where K = ker f. Then, m ..:,m' ·is 

in Kand 

g(m + K) - g(m' + K) - f(m) - - f (m') 

- f (m -m') = O* -

--> g(m + K) - g(m' + K) -- -
• an R-homomorphism g 1S 

g_[;(m + K) + (m' + K)] = g[(m + m') + K] = f(m + m') 

~ f(m) + f(m') = g(m + K) + g(m' + K) 

g[r(m + K)] = g(rm + K) = f(rm) = rf(m) = r[g(m + K)J 

g is one-to-one 

· Let g(m + K) = g(m' + K) be in f(M). Then 
( 

r 
i . I 

., 
' 



I 

1 
1 
! 

• .. 

:.!:. 

D) 

---.. ·>···.· --

O*·= g(m + K) - g(m' + K) = g[(m - m1 )·+ K] 

= f(m -·- m') 

m - m•· belongs· in K 

== > ( m - m ' ) + K = K, or m + K = m ' + :t<.. 

• g 1~ onto 

Let f (m) be in f (M} ·. Then certainly m is in M and 

-m + K is in M/K, and by defini·tion 

g(m + K) = f{m) . · 
' t 

The following two results are the Dedekind-Noethei 
.. 

Isomorphism Theorems. 

Theorem 4: If f: M ,M* • an R-homomorphism 0£:·-.an· l.S 

R-module M·onto an R-module M*, then 

il 

A) there exists a one-to-one correspondence between the 

submodules of M containing K = ker f and the submodules 

of M* . i .. 
I 

B). if L C M corresponds. to L* C M*, then 

L f (L) = L* and · f-l(L*) = L 

ii. f induces an R-homomorphism of L onto L* 

-iii. L/K 

iv. M/L ~ M*/L* 
Proof: 

A) If L C M is a submodule containing K, then f (L) = L* is 

a submodule of M* by Theorem 1 (II). To show that two 

distinct· submodules of M cannot give rise to the same 

submodule of M*, assume there exist an Land an L' both 

• 

.. 

. i 

i 
I 

I 

' 
/ ·' 

', 
' 

I 
i 

.. 
l ., 



' --·- ·- ' 

.. 

' . ~ .'.' : .- . 

. ! 

12 

containing K such that f(L) = f(L'). Then 1 in L 

==> ,there exists an 1 1 in L' such that f(l) = f{l') 

::;=) _ f ( 1 . - . 1 I ) . = Q 

=·=> 1 - 1' belongs to K C ·L' 

==> (1 - 1') + 1' = 1 is in L' . 

Hence, L CL'. Similarly, L' CL., so that L = L' . 

Also., every submodule L* CM* arises from a sub

module of M containing the kernel: for, f-1 (L*) is a 

.. ~ .. · 

) -1 submodule of M by Theorem 1 (II, KC f (L*) by defini-

tion of the inverse function, ,and f(f- 1(L*)) = L* since 

f is onto. 

B) i~ Verified above 

ii.Follows from i. and the fact that f is an R-homomor-

phism from L C M onto M7() L* ~I 

ii.i. S:ince f: L .___.. L* is an R-homomorphism wi.th ·ke:r·n·el 

K, then by Theoren 3 (II) L/K IV L* ~ 

i.v.. Since the natural R-homomorphism rp: M* • M* /t* 

is onto, then cpf: M ,,. >Mi</t* is an R-homomorphism 

onto. We wish to show that ker cpf = L. 

k belongs to·., ·ker cpf <=-> cpf (k) - O* 

·<=..:.> f (k) is in L">'C' 

<=~ k is in f- 1(L*) = L. 

Thus, by th.e F:Ctr1d·atnental Theorem, M;t ~R M* /t*. 

Theorem 5: If N and L are s-u:b_ntodules of an R-module M·, ;t·h.en 

(L + N)/N L/(L n N) . 



:; .1 

·: 

" 

13 

Proof:~ _From previous work we know that (L + N) and (L () N) 

are submodules of M such that NC (L + N) and (L n N) CL. 

Therefore, we may consider the factor modules (L + N)/N and 

L/(L () N). 
r 

Let f: (L + N)---..~ (L + N)/N be the natural homomorphism, 

which ·is onto. Then f induces an R~homomorphism 

g: L---,(L + N)/N which we claim is a·lso onto. 

~ + N belong to (L + N)/N, where xis in L + N. 
• 

~ 

:x = 1 + n for some 1 in Land n iri N 

:;:::=) ·~ + N = 1 + N • But, g(l) = 1 + N 

For, let 
V 

Then 

·==> g is an R-homomorphism of L onto (L + N) /N. s.ince 

ker g = L n N, .by Theorem 3 (II) we have 

L/(L () N) --a (L + N) /N . 

_,. 



I 

~~ 
f; 
~~ 
i ~ 
i{., 

~ 
:]. 
~ 

i 

1 
' .. 
I 
~ 

14 
··~ 

CHAPTER III - FINITENESS CONDITIONS 

An R-rnodule M is called Noetherian if it satisfi-es the 
. . 

ascending chain condition; that is, if every strictly as-

cending chain of submodules 

N1 C N2 C . • . 

is finite. On the other hand, if the.descending chain 

condition is fulfilled so that every strictly descending 

chain of submodules 

Nl ) Nz _) . . . 
is finite, then Mis called Artinian . 

... . 

For exampl~, considered 

. as a Z-module, the additive group of integers is Noetherian 

bu:t: not Art.inian. 

Mis said to satisfy the maximum condition if every 

non-empty set of: $Ubmodules contains an element not contained 

in any other submodule of that particular set. It satisfi~s 

the minimum condition if every non-empty set of submodules 
~ 

contains an element which does not properly contain any ..., 

other submodule of the set.~ 

To indica~e the relatiohships between these definitions, 

we shall state the following purely set-kheoretic result 

whose proof will be omitted . 
... 

Theorem 1: An R-module Mis Noetheria if and only if it 
-~ 

satisfies the maximum condition; Mis Artinian if and only 

if it satisfies the minimum condi·tion . 

... 



Theorem 2: If N is a submodule of R-module M, then Mis 

either Noetherian or Artinian if and only if both M/N and 

N are likewise. " 

Proof: We shall consider only the Noetherian case. 

If the A.C.C. holds for M, certainly if does also for 
,,...--4 

N. The correspondence between submodules of· M/N and those 

of M containing N assures that M/N satisties the A. C. C. 

Now suppose the converse and let 1 1 C 1 2 _ C . . . 
,, 

be an ascending chain of submodules of M. Then 

(11 n N) C (Lz () N) C . . . 

is. a chain of submodules of N, so by hypotheses there exists 

an integer n > 1 such that -

Likewise, 

. (~nn, N) = 

(11 + N) C 

. (Ln+ 1 (\ N) - . . . 

(Lz + N) C . . . 

./ 

. ,.,,.--, 

is an ascending chain of submodul~s of M containing N, hence 

in· one-to-one correspondence with the submodules of M/N, 

which satisfies the A.C.C. Therefore, for some integer m > 1, -
(Lm + N) - (Lm+ l + N) = . . . 

Let h be the greater of the integers m and n. Then we 

have 

and 

where 

(Lh n N) = 

(1n + N) -

(Lh+l() N) = . . . 

(Lii+l + N) - ... 

However, for ~ny integer k ~ h. we have 

= 1k+l () (Lk+l + N) 

:::. Lk + (Lk+ 1 () N) 

Lk + (Lk () N) = --

= Lk+l () (Lk + N) 

by the Modular Law 

·.~ 

'-, '• 

,, 

,· 

- ..... ,, ~-: •-;;-i._.,:·~'-•_ 
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Theorem 3: If N N are Noeth·er1.· ari submo. dules of 1' · · ' k 
an R~module M such that 

_::, 
M-·=--N1 + .. + Nk, then M is also 

Noetherian. 

Proof: Let k = 2. By theorem 5 (II) 

M/N1 = · (Nl + Nz) /N1 ~ Nz/(1'l1 () Nz) · · 

By the preceding theorem N2/{N1() N2) satisfies the A.C.C., 

hence M/N1 is Noetherian. Since the A.C.C. holds for N1 
also, the conclusion follows, again from the preceding t, 

theorem. The proof may be completed by induction. 

(Remark: An analogous theorem is true for Artinian 

subµiodules) 

A set of elements { ma a in an index set A} of an 

R-moduleiM is said to be a basis of M if for every element 

m in M the.re exist elements ra in R and infegers ka such 
) 

'ffi -- L that 

a in A 

where a11. but finitely ma!)y terms of this sum are zero. 

If Mis unitary, the integral coefficients become unnecessary 

an:.d ··i't suffices that 

:ffi .L 
a in A 

··r:or ,s·o_ine ra in R. If, in addition, the ro. are uniquely 

d--et-·ermined by m, then M is c;alled R-free. 

Theorem 4.: R-module ·M is Noetherian i.f. and only if every 

submodule of M has a finite basis. 

Proof: First, assume M Noeth·erian. Let N be an arbitrary 

.:. 

·.1 
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submodule of M, and~ the set of all submodules of N having 

finite bases. Note that ~ is not empty since {O) is al

ways such a submodule. Let L' in~ be maximal; we already 

know that L' C N. For any n in N, (n) = { rn Ir in R} 
is a submodule of N having { n} as a basis, so that the 

submodule L' + (n) of N is in~ since both L' and (n) have 

finite bases. But L' CL'+ (n) and L' maxi~al~ 

==> L' = 1 1 + (n) 

n belongs in L', sine inL' + (n) 

==> N/ C LI . 

Thus, N = L', the latter having a finite basis by hypothesis. 

Conversely, suppose each submodule of M has a finite 

basis, and let Nl C N2 C ... be an ascending chain 

of submodules. Then N = U { Ni } 

hence has a finite ba~is, say { n1, 

is a submodule of M, 

• • For each 

basis element rt
1
. there exists an integer k. such that n. 

1 1 

belongs to Nk .. " Let k be maximum of these m integers. Fqr 
1 

such a k each basis element of N is contained in Nk 

--> ~--·. --.). --

That is, the given sequertc·e· terminates at ·Nk,. whi_.c:h is the 

desired conclusion. 

Theorem 5: If Mis a unitary R-module having a finite basis, 

and the ring R is left Noetherian (or Artinian), then Mis 

also Noetherian (or Artinian). 

Remark: Since the submodules of R, when R is considered as ';_ 

._•._ 

,,, • ·., '·.; ·h·"'; --~ 
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''' 

a left R-module, are its left ideals, then the chain con-
Jo,, 

ditions when referred to R pertain to sequences of left 

ideals in R.) 

Proof: Let R satisfy the A.C.C, tf { m1, .. , m
0

}. is a 

finite basis for M, then 

M -- • 

By Theorem 3 (III) it suffices to show that· each submodule 

Rm. of M satisfies the A.C.C. 
1 

So,· let m be an arbi~rary basis element, and N1 C N2 C ··~ 

an ascending chain of submodules of Rm. Form the sequence 

Il., Iz, • • • where 

I. { I in R and • N. } - r r rm in - • i 1 

-For • R and r' r" • I. any r 1n in 
' 1 

(r, r")m r'm r''m • • N. - - - 18 in 1 

==> r' - r" is in I. 
1 

(rr ')m r(r'm) .·. ' ' • :N,. rr' - ·1.:s· in --> - --1 
is in I. • 

:I. } 

Hence, 11 C Iz C ... is an ascending chain of left 

ideals in R such that for each i, N. = I.m . 
1 1 

By hypothesis 

there exists the chain of left ideals terminates. That • 1S, 

for all h > k 
~ -

for all i > k -==> 

==> the given chain of submodules of Rm also terminates. 

A similar procedure is valid when R is Artinian. 

""t,·. 

-:· .. 
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CHAPTER IV - COMPOSITION SERIES 

Given an R-Module M~ then Mis simple or irreducible 

if it has exactly two submodules - namely, its,elf and {O). 

A normal series in Mis a descending finite chain of sub

modules 
M = . Na J Nl) . . . J Nr = (0) , 

where the inclus-ions need not be proper. If all inclusions 

are proper, then the normal series is- said to be without 

. repetitions. A proper refinement of a given normal series 

is a normal series resulting from che insertion ·of addition

al terms in the given series. A composition series of M 

is a normal series without repetitions, every proper refine

ment of which has repetitions.. The length of a normal 

series is the integer r as above. 

Note that- the ring of integers, when considered as a 

module over itself, has no composition :S~ries, while it 

does have normal series. 

Theorem 1, (Jordan) If an :R,-modu.1-e ·M ha:.-s· ·on:,e. :compo:_s:i··t·i.on, 

series of ~Yngth r, then 

A) every composition series ·of· M h·as length r 

B) every normal series of M without repetitions can be 

refined to a composition series. 

Proof: To demonstrate the first part, we proceed by in-

duction on r. The case -of r = .0 is trivial, since M = (0). 



·"'"' , ft • 

/ 

. 

. , A.r:1y ::tito·dule M with r = 1 is · irreducible, havtn.g, 

M -- -- (0) 

,as its only composition series. \ 
Now suppose that, in every module having one composi

tion serie.s of length < r·, each such series has the same 

length. Let M be a module having composition series 

i . M = Mo J . Ml :) . . . ) Mr = ( 0) .. 

Then M can have no composition series of length < r, for, 

by the indttction hypotheses, all composition series of M 

would have t··he same length, contrary to our assumption. 

Thus, we mu:s::t: show. that M can have no composition series of 

len r-. If -

• • 11. M - M0 J Mi J Mz . •
1 

••• ) M
8 

-- (0) 

is a ormal series without repetitions, it will suffice to 

prove th~t s < r. Three cases need be considered. 

Case I: Mi ~.: M1_ . Then 

series ~i. :;:::~> .M1 has a composition series of length (r - 1) 

series ii.~ -==> Mi has a normal series without repetitions 

of length (s - 1), and 

the indttc.ti ve. hypothesis 

Case II-: Mi C Ml . Then 

--)·. -- (s-1) ( (r-1), or - .s < ·r: .. -

Ml .) Mi ) M2 ) . . . J Ms (0) 

·is a normal series of M1 without repetitions of lengths. 

Again, the induction hy~othesis implies s < r-1, ors< r. -
Case III: Mi ( M1 . First note once again the implications 

in Case I. Now M1¢ Mi, for i. is a composition series, so 

there are no submodules between Mand M1 . But, since 

/. 

II 

l 

J 
1 
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Mi ( M1 , then (M1 + Mi) is a submodule of M containing 
.. 

pro~erly both Ml and Mi 

~=> Ml + Mi = M . 

Consider M/M1,. whi_ch is a simple modu:le·!'· By the second " 

Isomorphism Theorem we have 

--

--> :.~~-- is simple 

-.·. --'.··'. --y· 

.. . 
there exist no submodules of M between Mi and M1rtMi . 

Now form the series: 
. ' ••• 

111.:. M = . Ml + M1· :> M1 ) M1 n Mi 

• 1V. M -- M + M' :, M' ) M nM' 1.1 1 1 1. \ 

Since. M1 has a composition series of length (r-1) a·nd, ~rom 

iii. M1 n Mi (. M1 , then M1f\ Mi has a composition ser·ies of 

length at most (r-2). Howeve~, from iv .. M1nMi C Mi, and 
'h 

we know that there exist no submodules of M between.these two 

==> Mi has a composition series of length at most (r-1). 

Hence, by the induction .hypothesis, ever_y p.omposition 

series of Mi has length at most (r-1) 

--> -- (s-1) ~ (r-1), or s < r. 

Thi.s completes the proof of part A) of the theorem. 

In the cours·e of the above proof we have shown that each 

normal series of M without repetitions has length at most 

equal to the length of a composition series of M, all of 

which have the same length. This suffices to demonstrate 

part B) .· 

• 
•· ~. 

' . 

; •' 

I 
1[ 

1' 

I 
'I 

I 

1: I 
l(ll 

I I 

l11 

I 

ii I 

ll' 

.;., 

-~ I 
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In light of the preceding theorem we say that an 

R-module M·has length r, denoted l(M) = r, if the common 

length of its composition series is r. If M has no compo

sition series, we say l(M) is infinite. 

t,t. 

Theorem 2: If N is a submodule of R-module M, then 

l(M) = l(N) + l(M/N) . 

Proof: Assume l(N) and l(M/N) to be finite, and let 
• 1. 

be a'composition series of N. It follows from the first 

Isomorphism Theorem that every submodule of M/N has the form 

L/N, where Lis a submodule of M containing N. Hence, let 

ii. M/N = La/N J L1/N J . . . J Ls/N - (0) 

be a composition series of M/N, so that 

is.- -a series th~t! cannot be properly refined. 

Combining i. and iii. yields 

iv. M - Lo J . . J L 
8 = N = No j N.i J. . ) Nr - ( 0) 

which is a composition series of M of length (r+s). Thus 

l(M) - r + s l(N) + l(M/N) . 

Remark: In case either l(N) or l(M/N) is infinite, a slight 'i 

modification of the proof yields the same result. Namely, 

take series i. and ii. to be finite normal series without 

repetitions of N and M/N respectively. Then either r ors 
,. 

can be made arbitrarily large, so that iv. becomes a normal 

series _of M without repetitions of arbitrarily la.rge length. 

I. 

•· 
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Theorem 3: An R-module M has a composition series if and 

only if Mis both Noetherian and Artinian. 
" 

23 

Proof: The implication to the right is clear; for if M has 

a composition series of length r, then every s·trictly _ascenEl

irig or descending chain of submodules of- M has at most (r+l) 

· elements. 

Conversely, let M Batisfy both chain conditions. If 

M = (0), the conclusion is trivial. If M / (0), form the 

set 
'nfo -- N C M a proper submodule of M } . 

Choose M1 in ~O to be maximal; that is; such that there 

exists no element of ~ which contains M1 . The existence 

of such an element M1 is guaranteed by the ascending chain 

condition. If M1 = (0), then 77?
0 - (0) and 

M = M0 J M1 - {O) 

is a composition series of M of lenght one. If M1 ,I (0), 

repeat the process, choosing M2 to be maximal of ·the set 

NC M1 a proper submodule of M1 } . 

Continuing this procedure yields a strictly descending chain 

M --

which,. by choice of Mi' cannot be properly refined. However, 

since the descending chain condition holds in M, then this 

chain must terminate. Hence, for some integer k, we have 

and· ' . 

M -- -- (0.) 

is the desired composition series. 

':<. ·\ 

II 

i 
', 
:I 

I 
:I 

I 

u 
i:1 

:, 
':I 

'I 

:1 

I~ 

I 

I 1 

·1 

I 
I 

,_ 
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In order- to state more simply the concluding theorem 

of this section, which gives a relationship between the 

composition series of a given module, we introduce addition

terminology and ~definitions. 

If M -- -- (0) 

is a normal series of M, then the quotient modules 

Mo/M1, · · · 'Mr-1/Mr 

are normal differences of the series. In case the given_ 

series is a composition series, these modules are called 

composition .differences. If N is·an R-submodule of M, then 

M -- . . . J Mk = - N 

is a composition series between Mand N if there are no 

repetitions and every proper refinement has repetitions. 

{Here, a proper refinement of such a series is defined as 

before.) Finally, we say t,o composition series are equiva

lent if there exists a pairing of composition differences 

such that each pairing is an R-isomorphism. 

Theorem 4: If an R-module M has a composition series, then 

any two composition series are equivalent. 

Proof: Again, we proceed by induction on the length of M. 

The r = o case is trivial. If r = 1, then Mis simple, and 

any two composition series are identical, hence equivalent. 

Assume the induction hypothesis for all modules of 

length < r. Let 

• M M '·)M ) .. JMr 1. -- • • 0 1 = {O) and 

• • M MoJMi J JM' 1.1. -- • • • r = {O) 

,, 
.. 

·" 
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be any two composition series of M. Two cases need be 

considered. 
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Case 1:: M1 =Mi. Then i. and ii. afford two composition 

series of M1 of length (r-1) 

==> by hypothesis that these two composition series are 

equivalent; that is, 

M1/M2 ~ Mi/Mz 
ButJ in additionJ 

' · · · ' Mr-1/Mr 

Mo/M1 = Mo/Mi 

==> the series i. and i.i. are eq ui val en t . 

Case II: M1 /Mi. From before, M1 + Mi is a submodule 

of M 

·> ~--·. -·-·-': 

containing properly both M1and Mi 

M = Ml + Mi .. 

Now M/M1 and M/Mi are simple, ·and 

.;.;.;......;·>·· ---· -·. ,- . .. . 

_·.....;>. 
-~'~·:··· 

M/Ml = 

M/Mi -

• • • M 111 • 

• M 1V. .. 

(Ml+ Mi)/Ml ~ Mi/(M1/\Mi) 

(Ml + Mi)/Mi ~ M1/(M1/\ Mi} 

and M1/(M1nMi) are both simple 

+ M1 ) M1 J Ml('\ Mi ancl Ml --

Ml ---

are both composition series between Mand M1nMi 
from the isomorphisms above that iii. and iv. are 

equivalent. 

However, i. and iii. each afford composition series of M1 
of length (r-1) 

" 

==> by the induction hypothesis that these two are equivalent._. 

In addition, --

~ ----- . --~-

, ....... -"·:-· 
_··::: .. ::: - -



\ 

:~. 

,.,.----·==> the composition series of M afforded by i. and iii. 

are equi val en t. 

Similarly, the composition series of M afforded by 

ii. and iv. are equivalent. But, iii. and iv. have been 

shown to be equivalent, hence i. and ii. are likewise. 

J 

, '· 

··/ . - .;,. - ... -,.~.- ... - . -·•-- " 
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CHAPTER V - DIRECT SUMS 

Submodules { Na • index set A } of R-module M a in 

are independent if the intersection of any one submodule 

with the sum of the others contains only the zero element. 

Or, equivalently, these submodules are independent if and 

only if L 0 where • in N n - na l.S - ' ' in A 
a a a 

0 for all 1 a • A . If, • addition to na - 1n in implies that 

being independent, the submodules are such that· 

M -- L 
a in A 

t.hen we say M is the direct sum of th,e .g,i,,ten. sttbmodu.l.es, and 

is denoted by 

\,t 

·, 

M = $ Na . 
a in A 

We shall be primarily concerned with finit·e direct sums .• 

r 
Theorem 1: M .$1 N. 1= 1 

i.';f tan9 o_nly if each m :in M can 

be written uniquely as 

n. is in N. for i = l, 

-r:n: :;: n 1 + . . . ·: +. _ht- , 
' 

1. 1 :• . . ' r. 

Proof: Ma direct sum as given 

==> - m· · = n1 + . · . . + nr for s·ome n. in N. . 
1 1 

where 

Suppose there exist n! in N. such that m 
1 1 

Then m-m = (n1-ni) + .. + (nr-n;) = 0 

- ni+ . . + n; . 
where (n.-n!) in N.· 

1 1 1 

--. > -- (n.-n!)· = 0, or n. = n! by the independence of the N .. 1 1 1 1. 1 

Conversely, for each min M m = n1 + . . + nr, n. in N. 
1 1 

·-.--> . :-a--- M ,= . N1 + . . -~ + Nr • 

\. 
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Also, since O is in M, and this representation is unique., 

then 

--> --
,.;_.;_> ~.-· 

n. = 0 
l. 

0 = nl + . . . 

for each i 
' 

the N. are independent. 
]_ 

+ n r 

The following theorem, the Modular Law for Direct Sums, 

has a proof similar to that of the Dedekind Modular Law, 

and hence only its statement will be given here. 
, 

Theorem 2: If K, L, N are submodules of an R-module M 

such that L C K, then 

K n (L $ N) = L $ (K n N) 

whenever eithet-=if these direct sums make senS:e. 
j 
I 
~ 

Theorem 3: If ¥ = N1 $ N2 , thep. 

A) 

B) 

N1 ~ M/N2 and 

l(M) - l(N1) + l{N2) 

Proof: 

A) Since M is the direct sunt ·of N1 and ':N2 , .. then M = N1 + N2 
' ' 

and N1rl_N2 = {O). By the second Isomorphism Theorem 

~· (Nl + Nz)/N1 ~ Nz/(N1flN2) 

····> M/N1 
~ Nz -- -~--· 
~ 

and similarly M/N2 
~ Nl ~ • 

B) By Theorem 2 (IV) 

l(M) - l(N1) + l{M/N1) - l(N1) + l(N2) - - • 

Remark: In the case M = N1 $ ... $ Nt , this theorem 

may be generalized by induction to read 

A) N. 
1 

,,,.., -
R 
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B) l(M) --

Theorem 4: If N1, . ·. , Nt and Ni, .. , Nf are submod

ules of R-modules Mand M' respectively s~ch that 

M - Nl $ $ Nt M' - N' $ $ N' - • • ' - • • 1 t 
and N. ,.,., N! for • 1, t, - 1 -1l - • • ' l. 1 

then M 
,...., M' ~ • ., 

_v/ 

Proof: Let f. : N. , N! be the • isomorphisms, and given 
1 1 ]_ 

define f: M >M' by f(m) - fl (nl) + + ft(nt)' - • • 

where m = n1 + + nt and n. • in Ni. That f • 
• • 1S 1S an 

1 

R-isomorphism follows from each f. being such. 
1 

A) f is well-defined 

If m = m* is in M, then 

and m* nt * n. , nt(" • ffi1= nl + + nt - + + nt • in • • - • • ' 1 1 
... • • n* for 1, t by the ---->· n. - 1 - C uniqueness ---·-' - - . ' • ' 1 1 

of representation of elements of M 

==> f (m) = f (m'\-) 

B) f is an R-homomorphism 

For any m and m* in M, and r in R 

f (m + m*) = f [ (n1+ . . +nt) + (nt+ . . +nt) ] 
r·'·'fl/ 

l= f[(n1+ ny) + .. + (nt+ nt)] 

= fl(nl + nt) + .. + ft(nt + nt) 

= f1(n1) + f1(nt) + .. + ft(nt) + ft<nr) 

= [f1(n1)+ .. +ft(nt)] + [f1(nf)+ .. +ft(nr)] 

= f (n1+ .. +nt) + f (nt+ .. +nf) 

= f(m) ~ f(m*) 
r 

,· 

~. ·; 

N. 
1 

I 

I 
I 

n 

I 

J 

I 
i' 
li 

1
1
1 

. I 

. I 

" 

.I 

.1 

}j 
I 
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f(rm) = f[r(n1+ ~ +nt)] = f (rn1+ . . +rnt) 
" - f 1 (rn·1) + +ft(rnt) = rf1 (n1)+ +rft(nt) - • • • • 

- r[f(n1+ +nt)] = rf(m) - • • 

C) f is one-to-one 

Let m be in M such that f (m) = 0. Then £1 (n1)+ ... +ft(nt)=0 

::;;::) f. (n.) = 0 for each i by the independence· of the_ N
1
. 

1. 1 

-.· .;...> --

--.> --
--> --

"' 

n. = 0 
. 1. 

since each f. is one-to-one 
1. 

m = n1 + . . + nt 

ker f = (O) 

0 

D) f--- is onto 

For any m' ·in M' there exist n! in N! such that 
1. l. 

m' = n' + 1 • • + n' t 

t:tnd sinee' each f. is onto, then for each n ! in N ! there 
1. 1. 1 

,exists an n. in N. such that f. (n.) = n! .. Hence, by . . .. 1. 1. 1. 1 1 

definition off 

:·m· = n1 . + . . + nt· __ in M. 

t 
Theorem 5: If Mis an R-module such that M - .e1 N. and 

1= 1 

1 1 , .. , Lt ar·e submodules of N1, .. , Nt respectively, 

; 

then is a direct sum, and 

M;'L is a direct sum of submodules R-isomorphic to 

• • 

Proof: Since the N. are independent and each L.C N., then 
1 1.- 1 

the Li are independent and L = 1 1 $ . . . $ Lt . 

Let cp: M , M/L be the natural homomorphism. Then 

' .. 
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We claim that this sum is direct, and.that 

For, suppose cp(n1)+ .. +cp(nt) = 0 where ni ;l.s in Ni. 

Then,~ . ~(n1 + .. + nt) = 0 where n1+ .. +nt is in M ( 

--> -- n1 +_ .. +. nt. belongs to L. But 1 in L 

--) .. ·. -- 1 = 11 + . . + lt where li is in Li 

--)>·· ~-:-·.: .. .. 

--> --

n. belongs to L. C L 
1 1 

for each i 

cp(n.) = 0 
1 

for each i. 

Thus, the ~(Ni) are independent and 

M;t = ~(N1) $ .. $ ~(Nt) . 

Also, by the Fundamental Theorem, 

But kercp when r.estricted to N. is exactly L., 
1 1 

N. n L = L.. Henc.e, the desired conclusion 
1 1 

N. /L. . 
1. 1 

• since 

An R-rnodule Mis said_ to be completely reducible if 

for every submodule NC M there exists a submodule N1 C M 

such that M = N $ N'. It is well known that every vector 

space over a field Fis completely reducible F~module, 

whereas the ring of integers considered as a. Z-module is 

not completely reducible. 

Theorem 6: If N1 and N2 are both ·complements of a submodule 

N of an R-module M (that is, ·M = N $ N1 = N $ N2) such 

that N1 c N2, then Nl = Nz. 

Nz () (N1 + N) Proof: --

Nl + (N2 n N) by the Modular Law 

---· N'·:1 + (0) - Nl - • 

.. 
t 

. "'··--'· .:;,:.~,..,.,~,, :,, .. 

. i 

I 
I 

! 

n 
JJ 
I 
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Theorem 7: If Mis a completely reducible R-module, then 

A) every submodule of Mis completely reducible 

B) Mis Noetherian if and only if Mis Artinian. 

Proof: 
' 
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A) Let N be an arbitrary submodule of M, LC N an arbitrary 

submodule -of N, arid t'c M such that L ~ L' = M. Then 

N = N n M = N (l (L $ L') = L $ (N (l L' ). 

so that (N n L') is t~e complement of Lin N. 

B) Assume that the A.C.C. holds in M, and let 

M J N1 J N2 J . . . / 

be a descending chain of submodules. We claim that if L (.K 

are submodules of M, then every complement of K is contained 

in a complement of L, and every complement of L contains 

a complement of K. 

For the former, let K' be a complement o.f .. K i.n· M and L.' 

4 complement of Lin K. Then 

M = K $ K' and K = L $ L' 

:-::....;)._'. --· . . . M-L$L' $K' 

:;::.-:.)· I<:' C L' e K', where L' $ K' is a complement of L in M. 

For the latter, let L' and K' be arbitrary complements of 

L in M and K (l L' in L' re spec ti vely. Then 

M = L $ L' and 1 ' = (K n L ' ) $ K ' . 

Noting that K ~ C L' we have 

.M - L $ L' - - L $ (K fl LI) $ K' - L $ K~$ (L 'nK) - - -
- L $ LI() (KI $ K) - M n (K' $ K) -

·M K' $K . ") ---~-~-· -
KI C L' where K' • complement of K • M . .. > _l.S a. 1n --~~-:,. 

' 
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Returning t~ the given descending chain, l~t Ni be an 

arbitrary complement of N1 in M. Choose complement N2 of N2 
such that Ni C N2, and complement NJ of N3 such that 

Ni C NJ, etc. Then we have an ascending chain 

(0) C Ni C N2 C ••• 

which-by hypotheses terminates 

--> -- for some t, N' = M t --> ' ---' ·- ~t 

--> ·--. the given descending chain terminates. 

-- {O) 

A sj_milar proof is applicable when M satis·f:ies· :t.he,· 

D.C.C. 

Remark: It ,should be noted here that, in light of Theorem 

3 (IV), any completely reducible R-module which satisfies 

either chain condition has a composition series and hence 

finite length. -

Theorem 8: An R-module Mis completely reducible and of 

finite length l{M) if and only if Mis the direct sum of 

l(M) simple submodules of M, each unique to R-isomorphis~. 

Proof: Let M be completely reducible and l(M) = t, so that 

both chain conditions hold in M. Let N be an arbitrary 

submodule of Mand N'CM such that N $ N' = M. We claim 

that every submodule of Mis the direct sum of a finite 

number of simple submodules. For, suppose the contrary, 

letting Y( be the set of all submodules of M such that each 

element of this set is not a direct sum of simple submodules 
I 

ofM. SincetheD.C.C. holds for-'(, chooseaminimalK* in 

:)( . That is, K* contains. no other element of j( • Since 

•l> ; 

I 
I 



K* I (O) and is not simple., there exists an L C K* such 

that (0) C L C K*. Now M completely reducible 

==> K* completely redu~ible 

==> there exists an L' CK* such that L ~ L' = K*. 

But L,1·1 C K* and K* minimal in){ ==> L, L' not in~ 

==> both Land L' are direct sums of·simple submodules 

of M, and K* -- L $ L' 

34 

I 

\ ·'--.>· . ·:-·- K* is likewise. Contradiction; hence, M = N $ N' 

is the direct sum of a finite number of simple submodules of 

M, say M --
In this case, the normal series 

M = N1e ... $Ns .) N2$ .. $Ns) •... ). Ns_1e Ns ) Ns :., (O) 

-is a composition series, so l(M) = t implies s = t. 

Also, in this series 

for k = 1, .. , t, where these composition differences are 

uniquely determined up to R-isomorphism by Theorem 4 (IV). 

Conversely, suppose Mis the direct sum oft simple 

submodules N1 , .. , Nt. Then l(Ni) = 1 for i = 1, .. , t 

and, by Theorem 3 (V), 

l(M) = l(N1) + .. + l(Nt) = t .. 

To exhibit the complete reducibility of M, let N be an 
., 

arbitrary prqper submodule of M .. Then choose N. to be the 
]_1 

first element ·of the set 

which is. not contained in. N. Clearly, since N :/ M, there 
., 

\ 

it. 



} 

:,. 

.41 

' ' 

.. 
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~ust exist such an N .. Now; 
11 

J"""· I '-

N. l?eing simple 
11 

--> -- N n N. = (0) 
11 ==> N + N. . 11 

is a direct sum .• 
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If M = N $ N. , 
11 

then we have exhibited a complement_ 

of N. If not, let N. 
12 

be .the first element of the same 

set which is not contained in N $ Then, as before, 

(N-$ Ni)+ N. is a direct sum. 
1 1 2 

. Repeating this procedure, which must terminate in at most 

t steps, we finally arrive at 

M = ·N $ N
1
. $ . • . 

. 1 
where 

L. 
1 < .s < 't. __.-,.. . ...... 

An R-module Mis indecomposable if it is not the direct 

sum of two proper· submodules. For example, the ring of 

integers is indecomposable when considered as a module over 

itself. Any non-trivial module which is both completely 

reducible and indecomposable is necessarily simple . 

Theorem 9: Every Artinian R-module M is the direct s:um o::r· 

a finite number of indecomposable submodules. 

Proof: It sufficed to prove that every submodule of M, df 

which Mis one, is the direct sum of a finite number of 

indecomposable submodules of M. 

!' 

So, proceeding as in the foregoing proof, suppose the 

contrary, letting-'( be the set of all those submodules of M 

which are not the ,direct sum of a finite number of indecom

posable submodules of M. Choosing K* minimal in .,C , then 

K* :/ (O) since (0) is not in~~. (Note that, as defined, 

-1-

, ' 
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(O) is indecomposable.) Also, K* not being the direct sum 

of indecomposable submodules, and ·K* = K* + (0) 

==> K* is not indecomposable 

==> K* = L $ L' for some L, L' CK*. 

But the minimality :,of K* --> -- L, L' are not in J( 

==> L.,.L' are direct sums of indecomposable submodules 

--> -- K* is likewise. Q.E.D. 

Theorem 10: If M1 , ~ . , Mt are R-modules, then there 

exists an R-module M, uniquely determined to R-isornorphism, 

such that 
M = Mi $ . • . $ M~ 

where M. ""' M! -
~ 1 1 

Proof: Define an R-module (M, +) by 

M { (ml., mt) I - • • ., 
~· 

--
;,_ Let submodules M! be given by 

1 

M! 
]_ 

-- { ( 0' .. ' 

Then., certainly 

M -- M' $ 1 • • • $ M' t 

for • ]_ 

• M. m. in 
1 ]_ 

and f: M. >M! 
1 1 

defined by 

f(mi) = (0, .. ., mi, .. ,0) 

is an R-isomorphism. 

:i,. t. --· -. :e: .... 

' 
' 

} 

That Mis unique to R-isomorphism follows from Theorem 

4 (V). 

./71 
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CHAPTER VI - TENSOR PRODUCTS 

For the sake of generality we shall now consider 
\ . 

-_r). . left and right R-modules, denoted RN and~ respectively. 

\ 

,, 

.,.,f: 
,:-

Two definitions precede the first theorem. 
-~· 

If Pis a z-module (that is, an additive abelian group) 
" 

and~' RN are R-modules, then a map cp: ~ x RN ---, p 

is called R-bilinear if for all m, m' in~, n, n' in RN, 
r 

and r in R 

\ 

where 

If P, T 

~(m + m1
, n) = ~(m, n) + ~(m', n) 

~(m, n + n') = ~(m, n) + ~(m, n') 

~(mr, n) - cp{m, rn) - ' 
~ X RN • the familiar Cartesian product 18 

Z-modules arid T: ~ X RN • T 
• are 18 

of sets. 

an 

R-bilinear map, then an R-bilinear map ~= ~ x RN------•P 

can be factored through T (or, if no confusion can occur, 

through T) if there exists a homomorphism f: T----~ P such 

that f(rr(m,._.n)) = rp(m, n) for all min~ and n in RN. 

That is, if there exists an f such that 

f 
i) 

commutes. 

...... -~ 

it' 

: .. • ' 

[, 

'i 
I 

1:1 

Q ,I 
:, 
I 
I 

ii 
1,1 

:1 
I 

,I 
I., ·, ,, 
:1 

'i 
i 

I 

I 

• I 

·.,:: 



(' 

Theorem 1: Given MR, RN as before., then there exists a 

unique Z-m~ule T and a correspond·ing R-bilinear map 

't':MxN •T 

such that 

A) any element of T can be written in the form 

38 

B) every R-bilinear map q, : M · x N .... , , P into any Z-module 

P can be factored through T. 

Proof: If Xis a set, by the free abelian group Fon X we 

mean the set of all integral-valueQ functions on X which 

are zero except at a finite number of elements of X. That 

• l.S ,. 
F = · { f:X , Z j f(x) =/ O for only finitely many x in x}. 

· Defining the pperation 

(£1 + £2) (x). = £1 (x) + £2 (x) 

for all f 1 , f 2 in F, then (F, +) becomes an abelian group. "'-

In light of this definition it is natural to represent each 

element of F by a finite formal sum 

L 
x. in X 

1 

f(x.) x. 
1. 1. 

where only finitely many of the integral coefficients f(xi) 

are non-zero. Hence, we may alternately represent F by 

F = { L k x f kx in Z, x in X, sum finite } ·. 
x in X x 

Now, let F be the free abelian group on M x __ N (that is, 

F = { L k (m,n) j k in Z; m in M, n in N; sum } 
(m,n)in MxN m,n m,n finite ) 

,, I 

.... ' ··"""!,~ ~~· ·.,,-.e:.-, .... ,. ::. ] ,. '' .• ,- ' . 
'•·: C - 0 
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and let H be the subgroup of F generated by all elements of 
the forms 

(m + m', n) -
.. (m, n+ n,) '1·· -. -· .. 

(mr,.n) - {m, 

Define T = f/H and map 

T (m, n) --

{m, n) - (m'' n) 

{m, n) - {m, Il I) 

rn) • 

't" : M xN --..... T 

(m, n) + H. 

by 

Then certainly Tis a Z-module, ~nd it is easily verified 
., 

that Tis R-bilinear. Note that by construction the elements 
of Tare equivalence classes, and for any m and m', n and n', 
r· in M, N, R respectively, the elem~nts given in i. all 
belong to the same equivalence class, namely H. 

Since a general element of Tis a finite sum of the 
form 

.+ H 

' it follows that every element can ·be written as 

)""' -r(m., n.) L 1 1 

where the m1 are in Mand ni in N. As for the uniqueness of 
T, suppose there exist a Z-module T' and an R-bilinear map 
't" I 

I 

of T' such that any element can be written in the corres-
• 

ponding form. Then, defining Z-homomorphisms 

f: T' ~r and g: T ,T' :.,.-" 

by f(T 1 {m, n)) - T{m, n) and I . 

g(T{m, n)) - 't' I (m, n) we see that -

gf - lT' the identity on T' - ~·· 

and fg - lT the identity on T - ' • 
,; 

r ~ 

.. •' : 
:/ 

:, .;, 
,-:---a 

> . ,. 

•. 

.. 
" 
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Thus, Tis uniquely determined up to Z-isomorphism. 

Given an R-bilinear map cp: Mx N ~p we may 
~ 

define a Z-homomorphism f: T ~p by 

f((m, n) + H) - cp(m, n) - • 

Then f(T(m, n)) cp(m, n) for all m in M, • N and - n in -
cp can be factored through T. Moreover, for a given cp the 

Z-homomorphism fas defined is unique since, for an arbitrary 

element of T, !. 

f ( L ,:(m, n) ) = L f-r(m, n) = [: cp(m, n). Q.E.]). 

The Z-module T constructed above is called the tensor 

product of the R-modules
1

~ and RN and is usual]_y written 
.. ' 

as T = M ~. The element T(m, n) in Tis denoted by 

AS J m :an. nsequence of this theorem we state the Univer-

sal Mapping Property of tensor products: 

A unique Z-homomorphism f: M ~N-----• G is completely 

determined if cp : M X N ------~ G is prescribed for all 

min Mand n in N~in such a way that cp"is R-bilinear in M 

and N. 

This formulation illumi~ates the correspondence between 

bilinear and linear maps which is of importance in the study 

of homological algebra. Before proceeding with the next 

theorem, several observations will be made. 

Giv~E R-modules ~' Mi, RN, RN' and R-homomorphisms 

· f: M-__.,. M' and · g: N ' ' >N 

then it is easi .. ly verified that the map .cp: M x N _ _., M'H N' 

\ 

--

,! • 

I 
:·I ,, 

,,I 

I 

·, . r 

. ' 

. I 

l• 11 

' 
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defined by ~ m, n) = f(m). B g(n) is R-bilinear. 

More·over, there exists a unique Z-homomorphism 

f II g: M ~- N-_,.•M'II N' 

such that 
fxg 

M'x N' MxN 

fag 
M'S N' MHN 

commutes: namely, the Z(homomorphism 
.,,,,o, 

(f B g)(~ m.B n.) = ~ f(m.) B g(n1.) . 1 1 '---'. 1 

If, in addition, we are given R-homomorphisms 

f I : M' ____ ,, M" and g': N'--....• N'' 
then again t·here exists a unique Z-homomorphism 

(f'B g')(f B g): MEN ------~ M"R N" 

such that 
(fxg) (fxg) 

M x N M"x N" 

't' 't' '· 

(hg' (fag) 
MHN M"H N" 

conunutes. This map • defined by 1S 

(f'mg')(f B g)(m an) = (f'f(m) B g'g(n)) • 
. I. 

Given an R-module RN .and a PR-bimodule P~' where 

p(mr) (pm)r for all • P, in M and in R; then - p 1n m r -
• 

M ~N becomes a left P-module. Also, if we consider R 

be a bimodule R~' then 

R ~N N • 

41 

to 

(The proof lies in demonstrating that the map f: R 8&.N--.... , N 

•. 

\ ~ .· 

I I 

.L. 

I I 
I I 
,1 

II 
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·given by f(r B Ii)= rn -i~· an·R-isomorphism.), 

Similarly, for Ma 
' 

M~R f.,. ·, 
/"· 

as right R-modules. 

We now pose a question~ Given Ma and RN,/ does .·submodule. 
;. ~- . . 

~ C Ma imply that M'I\N C M'~N ? Or, -equivalently, 

does exact sequence 

M' ___ _.., M 
.. 

--> --

0 

0 also exact? 
' ' 

(Recall that a sequence of modul~ R-homomorphisms . 
~i-1. cpi . 

• . • , M. 1 ) · M. • M. + 1 • . . .. 
1- 1 . 1 _ 

is exact if kernel cp. 
1 

• = 1.mage . cp • . 1 . ' 1-
for all i-.) 

The answer is no. By counterexample, let 

M' = Z C Q = M 

where Q is the additive group of rationals, and N = z2 . ; 

By a preceding remark Z NzZ2 ~Z z2 , whereas 

. Q Nz Zz - - (0) ; 
• for in Q and .k ·in"Zz since, any q 

. I 

(q B k) - 2(1/2 q) B k - .(1/2 q) a (2k) -
. • 

" 

(1/2 (i/2 - q) B o· - q) B (o·o). - - . .. . . ' 

' 
- (1/2 q) 0 · B~,l) 0 B 0 - - • • ' <""· .. 

However, the analogous. statement about right ~xact sequences 

is valid. 

Theorem 2: . If 
f' f" 

M' . . !, M ----__.~ M"----------.~ 0 
--~ ' .. 

0 f 

is an exact sequence ,of right R-modules, then for any left 

.r 

·-. ~ •. . . . . . 
• 

":, 

.. ·,; ;," 

.... ' ,. " 
-~-·--·.:· ., . 

' -~- ". ,,,- ··<>•.c.;, ... ,- •• ,:_ .I ::. - -·. 
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R-module N 

----..• 0 

is also exact. 

Proof: The fact that image f" = M" 

==> for any m"m n in M"R N there exists at least one min M 

such that f"(m) = m", so that 

(f":mlN)(m II n) = f"(m) a lN(n) - m"a n 

-==> image 
I 

f"m 1 = M"B N. N 
It remains to show that image f'm lN - kernel f"a lN. 

By the exactness of E1, for any (m'a n) in M'N N 

(f"alN)(f'mlN)(m B n) = (f"f'{m)) a (lNlN{n)) - 0 B n 

= O·O an - 0 :m O·n = 0 B 0 

==> image f'B lN C kernel f"m lN. 

Denoting the left and right sides of this inclusion by I 

ahd K respectively, then f'B 1 N induces a Z-homomorphism 

defined by 

that 

u: MEN' /I --... ~ M"N N 

u(lllBn + I) 

MHN/K 

f"(m) B n. 

M''B N 

We already know 

fand IC K., so the equality of I and K follows if we demon

strate u to be an isomorphism. This shall be done by 

. constructing an inverse. 

Define cp: M''x N -__..~ 11BN/I by cp(m", n) = nmn + I,1 

the coset of mBn in_'MEN/I, where mis in Mand f"(m) = m". 

There is at least one such m by the exactness of E1. Suppose 

m,.· m* are in M such that m /"m* and f"(m) = f"(m*). Then . 
' 

. .,, 

··---· 

...... 

t ' 
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f''(m - m*) = 0 - m* belongs to ker f" • f' -~> m = im --

--> there exists an m' in M' such that f;t:(m') - m - m*. -- -
Hence, m = m* + f I (m 1 ) and 

mB n+ I - [m* + f'(m')] B n + I -

- (m* B n) + [f' (m') B n] + I -
- (m* B n) + [(f's lN)(m'e n)] + I -

(m* B n) + I • I • (f':m lN) - since - image - -
• independent of the choice of f 11 -

1(m") in M, and . ..;~> cp l.S ·-.~:.•I 

hence is well-defined. 

Again the R-bilinearity of cp is easily checked. Thus, by 

the Universal Mapping Property there exists a· Z-homomorphism 

v: M''B N , Milli/I 

such that v(m''a n) = cp(m", n) = m B n + I 

for all m" in M'' and n in N . 

We have, then, Z-hornQJllorphisms u and v such that 

uv(m":a n) - u(m E n + I) f" (m) B n - m"B n, and - - -
vu(m B n+ I) = v(f'' (m) En) - v(m":m n) - mB n + I. - -

That is, UV - identity on M''S N and - ' 
vu - identity on Milli/I· . -

Theorem 3: The tensor product is distributive over a direct 

sum. That is~ given right R-modules { Ma fa in index set A} 

and left R-modul~N, .then 

( ~ M ) ~ N 
,,., 

$ ( Ma ~ N) --z • 
in A a - in A a a 

Proof: Let 
{ Ma· 1 } • 

~ 
' $ f3 • A l.t3: • in 

a in A 

. ' 
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i'-be the projections associated with the given direct sum. 

That is, for any~ in~ 

h3(~) = (O, • • , ~' •• ' O, .. ) 

where ~ is, the t3th coordinate and· zeroes elsewhere. The 

proo.f rests in verifying that the map u defined by 

L [(iaB lN)(m B n)] • A a a in 

is a Z-isomorphism. 

'Theorem 4: 

ring K with 

{ ~ I ~ in 

If M, N are K-free modules over a cormnutative 

respective bases { ma f a in index set A } and 

index set B }, then M ~N is K-free with basis 

_ { mam °t3 I a in A, t3 in B } •. 

Proof: When K is corrnnutative, then Mand N are both K-bimod-
' ules, and for any kin K 

m B nk = m B kn mk B n km B n , 

which we ·shall write as k(m B n) or (m B n)k. 

To say Mand N are K-free with bases as given means 

both Mand N are direct sums of copies of the ring. Thatis, 

M ~ $ Kma 
a in A 

where Kma ~ K for all a, and 

N ~ $ Knt3 
f3 in B 

where K°t:, ~ K for all t3. 

Hence, $ (Km II N) 
• A a a in 

-ti [ Km R_ ( $ Kni )c ] 
a in A at<. t3 in B P 

"'! ·'. .• 

/ 
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But each ~ K, 

so that M 8i(N • a direct sum of copies of K . Moreover, l.S 
. 

we have that eyery element of M 8i(N has the form 
? 

m B n - L kamaa ~~ - L kama~R ~ - -
a,t3 a' t3 

- L _ka~ma• n~ - L ka~(maR ~) 
• - -

a, t3 a ,f3 

where k . a' 

J· 

l~:' 

·( 

·kaf3 a.re in K.· . Thus, the desired conclusion 

-- $ K(ma11 ~) . 
a,tf 

In addition, we conclude-that the dimension (or length) 

of the tensor product of K-free modules over a commutative 

ring equals the product of the dimensions of the factors. 

Theorem 5: Associativity of the tensor product: Given 

rings R, Sand modules~' RN8, and 8P, then 

(M ~N) E8 P • 

Proof: We first establish a Z-homomorphism 

u: MN (N RP) ~ (M N N) E p • 

Let m in M be fixed. Define cp : N X p , {M N N) E p 

by cp(n, p) (m B n) ·for all n in N and • - B p p 1n -" 

Then q>(n + n'' p) - [m B (n+n')] B p 

- (m B n+man') B p -

- (m B n)B p + (m B dJm p -

cp(n, p) + cp (n'' p) • -
' 

similarly cp(n, p + p') - cp{n, p) + cp (n, p')' and -
for any s • s 1n 

P. 

·.··• 

) 

I 

II 
I 
I 

I 
I 

I 
.I 

I 
. 
. 

,,;I 

~ 

·i,_ 
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' 

~(ns, .P) = (ma -ns) B p = (ma n)s B p 

= (man) B sp = ~{n, sp). 

Therefore, cp is S-bilinear. By defini·tion of the tensor 
product~ det~r~ines a Z-pomomorphism 

(';_ 

~ (M ~N) ~S P 
,:, . 

such that im(n B p) = ~(n, p) =(man) a p. 

Also, for any r in R 
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-., 

Wm[r(n B p)] = Wm(rn B p) = 
so that tm[r(n B p)] --

(ma rn) a\= (mr B n) a·l 
(mr a n) B p. 

Now, define 

(: M x (N B P) _ _,.> {M B N) B P 

by ( (m, x) = VJ (x) m where xis in N NP. Then 
fdr any m, m' in M; x, x' in NH P; and r in R 

C{m, X + x') - t m (x + x') - t (x) + 1/1 (x') - m m - ~{m, x) + ((m, XI) -

,::(fit + ·m'· ~) - -Wm+m, (x) [ (m + m•·) B n] B p - -- ... , 

- (m B n) B p + (m B ll I) B p -

= tm(x) + 1/lm,(x) = ({m, x) +,cm', x) 

~(mr, x) = 1/lmr(x) - (mr B n) B p = tm[r(n B p)] 

= 1/lm(rx) = s(m, rx) 
where x =nap in NB P. Therefore, , is R-bilinear, and 
there exists a Z-homomorphism 

u: ME (NE P) > (M B N) E p 
• 

such that • 

u[m- :m (n a. p) ] tm(n B p) (man) . - - B p - -
for all min M, n in N, and pin P. 
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" In a similar manner one~can construct a Z-homomorphism 

v: {M N N) H P - .... •M E (N E P) 

which is the inverse of u. 

To conclude this section we shall consider free mod

ules of finite basis over a field F (that is, finite 

dimensional vector spaces) and d~velop the notion of a 

tensor as used in differential geometry. r 
If Mis a free module of length n ov~ a field F, then 

the dual space M* of Mis the set of all linear maps 

cp: M----·,F • 
' 

or, for all m. in M and f. in F 
I. l. 1 

M* = { cp: M--...,F I cp(f1m1+ f 2m2) 

It follows rather directly that M*, with defined operation 

becomes a vector space over F. In fact, since any element 

of M* is completely determined by its action on the basis 

elements of M, then there exists a one-to-one operation

preserving correspondence between M* and the set of all 

n-tuples of F (the operations of addition and scalar multi

plication on· then-tuples being component-wise). Hence, 

the dual space of any n-dimensional vector space is also 

n-dimensional. 

Given Mand M* as above, the tensor product over F 

• ·1,-~ 

= M H • . • R M a M* a . . . H M* 
' 

(r times) ( s times) 
T 

··~~ . 



.. 
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is called a tensor space on M contravAriant of rank rand 
,, ."i. •.• , I 

covariant of ranks. Any element of Tis called a tensor. 

Now, if m1, ... , mn is a fixed basis of M, we may 

select a basis 

such that 

m! (m.) 
1 J 

--

. ' 

6 •• 
1J 

m' n of linear functions in M* 

\ 

for i = j 
for i / j . 

--

Having chosen the bases as such, from Theorem 4 (VI) it 
' \ ·-....11 

follows that Tis a K-free module df length or dimension 
\ 

nr+s and with basis 

• • • ik, j k = 1, . . , n } .. 

Therefore, any tensor tin T may be uniquely expressed in 

the form 

t 

where the r+s n 

• • • • 

coordinates -~ of t· -:are elements: Q:f -F:. 

\ 
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