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CHAPTER I - MODULES AND SUBMODULES

A set M is éalleda left module over a ring R if:
1) (M,+) is an abelian group
2) thefé‘exists a scalar multiplication between elements
of M’and R such that for each m in M and r in R there
is a unique element rm in M
»3) fhisscalar multiplication satisfies the conditions
r(m + m') = rm + rm’
‘(r + r')m = rm + r'm
(rr')m = r(r'm)
for all r,r' in R and m,m' in M.

- If, in addition, R has an identity 1 and

~1m - m

for all m in M, then M is called a\uhita;z module. Whén

conditioh 2) aboVe is fulfilled, we simply say M has a
/ ring R as a set of left operators. One may similarly define
a right module over a ring R. : . | |
In a left R-module as defined above the product mr has | j
no meaning, since R operates only on the left. Hence, de-
fining | -
mr = rm
for all r in R and m in M, we claim

Theorem 1l: If mr is defined by the préceding equation,

then any left module M over a commutative ring R is a

right R-module.

s TR R S




Proof: By definition of left R-module M, (M,+) is an
. abelian group. IfuR is a set of left operétors and
- mr = rm, ’
then it is also a set of right operators. Lastly,
(m + ‘m')r = ﬁ(m + m') = rm + rrﬁ' =mr + m'r

mr +r') =(r+r')dn=rm+1r'm=mr + mr'

m(ff') = (rr')m = (r'r)m = r'(rm) = (rm)r" = (mr)r’'.

~NdE“émEﬁat.thé¢ommutativity of R was uséd in the last step

only.

Some exémples of modules:

1) Any vector space over a field or skew-field is a
unitar? module over'a ring, where the ring is that
field (or, as the case may be, skew-field)

2) Given any ring R, we may consider the additive abelian
-group (R,+) as a left R-module where R acts as a set
of left operators, and as a right R-module whén‘R oper-
ates on.the right

- 3) Any abélian group (G,+) may be considered as a unitary
module over the ring of integers Z if we define
ng =g+ .. .+ g (n times) for n positive
- Og = zero of the group
ng = -g -. . . -g (-n times) for n negative.

The last two examples imply that any subsequent stateﬁents

pertaining to modules also apply to abelian groups and

general rings when interpreted in this light.
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- A submodule N of a module M over ring R is a subset

of M which is itself a module over R. For example,'every
left ideal in a ring, when the ring is considered as a left

module over itself, is a submodule. Thus, any assertions | |

about the submodules of a given module may be translated . I

into ones about the ideals of a ring.

Theorem 2: If Nl,'. ., Nm ;}e submodules of a module M

zz: Ni - {~\§:j n, l n, in Ni } ', - /
| =1

m
i=1

which we shall denote by N*, is also a submodule of M.

Proof: In proving a subset of a module to be a submodule

all we need show is that it is a subgroup of the additive

group of the module, and closed with respect to the scalar

multiplication.

A) For any a,b in N¥*
m

a -b = EZ: n, -
i=1

which belongs in N* since each (n; - nj) is in N;.

ngE
el

| ,
i

7~
e

]
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e’

Therefore, N* is a subgroup of M.

B) Let r belong to R. For any a in N*

m m
ra = r E n, = E : rn, . This is an element
i=1 i=1 | |

of N* since each rn, belongs to N; .
In the case of this theorem, we say that N* is the

smallest submodule of M containing Nl’ c e, Nﬁ in the
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sense that N* contains Each'Ni, and any other submodule

containing each N, must also contain N¥*.

Theorem 3: If'Nl, . . , N are submodules of%;ﬂmodulé M
\ m

over a ring R, then

‘(El Ni ‘= { n I~n in Ni; 1 ; 1, . . ,m-}

Proof:

A) 1If n, n' belong to N**, then both are elements of each

==> n -n' bélongs to each N;
==> n -n' belongs to N**

B) For any r in R and n in N**, n is an element of each

==> rn belongs to each Ni

==> rn belongs to N%*%

Theorem 4: (Dedekind Modular Law) If K, L, N are submodules

Proof: Let x belong to KN (L + N). Then x

of an R-module M such that L C K , then
KN@L+N = L+ NN .

1l + n for

some 1 in L and n in N. Now x in Kand 1 in L CK
==> n=2x-~-1 is in K

==> ¢/ n_ is in KANN

==> X=1+4+n isin L+ (KNN) .

Hence, KN((L+N) C L+ NN .




Convetsely, let x belong to L + (KN N). Then

X =1+%k for some 1 in L and k in KA N. But L C K and
k in K p

==> x=1+%k is inK, and k in N

==> x=1+k isin L + N '

> x isin KAI(L+N) .

That is, L+ (KN N C KN (L +N)

Theorem 5: Let R be a commutative ring. If either N is a

submodule of an R-module M and S is an arbitrary subset of

R, or N is an arbitrary subset of M and S is a left ideal

in R, then

SN = { zz: s;n; l s; in 8, n; in N, m in Z arbitrary }
i '

is a submodule of M.

-

‘Proof:

A) 1If a, b belong to SN, then

m k | m+k
= N 1At _ o .
a+ b= Sini + Sini = E Sini 1s in SN.
i=1 i=1 i=1

For an arbitrary a = Zs ;0; in SN, either
i=1

m m
a' = Z('Si)ni or a" = Zsi(-ni)
i=1 | i=1

belongs to SN, depending on whether S is an ideal or N

a submodule respectively. 1In either case,

0 .

a+ a'

‘. ——--—-1-.I|-|' S ——

__| —/nAn
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B) For any r in R and a in:SN,

g | Com  m . S
| ra = r szsiqi = z::(rsi)ni - belongs to SN if
| | i=1 i=1 | S is an ideal

g - | - | Z:: s; (rn,;) belongs to SN if
| i=1 N is a submodule

The commutativity of R was used only.in the'last line of

: the proof.
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" CHAPTER II - HOMOMORPHISMS .

A function f: M—> M* , where both M and M* are

R-modules, is called an R-homomorphism of M into M* if for S

all m, m' in M and r, r' in R

f(m + m") f(m) + £(m')

|
~and | . f(rm) = rf(m) . o ?'a - j j

Theorem 1: If M and M* are R-modules and f: ‘M——-aM* is - |

an R-homomorphism, then | - ~ - ?

A) £(0) = 0% (the zero of M*) and £(-m) = -f(m)

B) if ACR and L CM, then f(AL) C Af(L)

C)' ker f = { m | m in M and f(m) = O* } is an R-submodule
of M |

D) £ is one-to-one if and only if ker f = (0)

E) if L C¢ M and L* C M* are submodules, then f(L) and

f-l(L*) are submodules of M* and M respectively .

Proof:

A) f£(0) = £(0 + 0) = £(0) + £(0)
==> £(0) = £(0) - £(0) = O%
f(m - m) = £f(m) + £(-m) = 0%

==>  f(-m) = 0% - f(m) = -f(m)

B) Since any element of AL can be written aS“Z::aibi for

some set of a; in A and some set of b, in L, then

f(Zaibi) = Zf(aibi) = Z;if(bi) is in Af(L)
==)> f(AL) C Af(L) - S

u *':-II_‘




C) For any k, k' in ker f and r in R,
f(k - k') = £(k) - £(k') = O% - O% = O*

==> k - k' is in ker £

£(rk) = rf(k) = rO* = 0% ==> vk 1is in ker f

D) If f is one-to-one, then f(m) # £(m') for-all m # m'
in M. But £(0) = 0%

\\}

==> me) £ 0%  for éll m# 0 in M
\==> ker £ = (0).
Conversg%y, let ker f = (0) and suppose theré exist
" m# m' in M such that f(m) = f(ﬁ'). Then
0% = f(m) - f(m') = £(m) + £(-m') = f(m-m")
where m-m'"#0 since m# m' |
== 'ker f # (0), a contrgdiction.
Thus, £ is one-to-one.
E) Let m,m' belong to f-l(L*). Then f(m), f(m') in L*
== f(m)”- f(m') =/f(m -m') is in L*
==> m~-m' is inJ f-l(L*) :
For any r in R, rf(m) = f(rm) is in L* since f(m) is
an element of L*
==> rm belongs to f-l(L* :

A similar argument holds fzﬁ submodule f(L) of M*.

Theorem 2: Given an R-module M, then L CM 1is an R-sub-

module if and only if there exists an R-homomorphism

f: M— M*

such that B L = ker £ .




Proof: The "if" case has been proved in part C) of the

precedihg theorem.

Now, let L CM be an R-submodule. Then L is a subgroup

of the abelian group (M,+), and M/L is an abelian groupi .

We assert:
A) For any r inR and m + L in M/L (where m + L denotes

the coset of m in'M/‘I;), if we define |

r(m+ L) = rm + L
then M/L is an R-module. For, |
i, M/L is an abelian 'grou:p'
ii. r(m+ L) = rm + L isf in M/L since rm belongs to M.
- To exhibit the uniqueness of this product, let
m+L=nm'"+L Then m - m' in L

=> r(m-m')=rm-rm'" inlL

==> (rm-rm') +L =L, or rm+ L = rm' + L

iii. r[(m+ L) + (m" + L)] = r[(m+ m') + L]

=r(m+m') +L = (rm+rm') + L ‘
= (rm + L) + (rm' + L) = r(m+ L) + r(m' + L) L

(r+r")(m+ 1) = [(r+r"Im+L] = (rm + r'm) + L if:
=(m+ L) + (r'm+L}=r(m+ L) + r'(m + L) ‘

(rr')(m + L) = (rr")m + L = r(r'm) + L l
= r(r'm +L] = r[r'(m+1)] .

B) If we define f: M—M/L 1in a natural way by
f(m) = m+ L
then f is an R-homomorphism. For, given any r in R and

m, m' in M
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f(m+ m') = (m%vm') +L = (m+ L) + (m" + L)
- f(m) + £(n')
f(rm) = (rm) + L = r(m'+'L).= rf(m). !
Clearly, ker f = L.
Theorem 3: (Fundamental Theorem of Homomorphisms of Modules)
If f: M—M* is an R-homomorphism of R-modules M and M%*,
then “ —
M/ker f = £(M)
§ (where "éR" is to bé read "is R-isomorphic to") .
% Proof: Define g: M/ker f — f(M) by
% g(m + ker f) = f(m).
é Note that if ¢ 1is tbe.natural homomorphism from M to M/ker £,
% | then g = f@'l. We claim that g as defined is an R-isomorphism.
g A) g is well-defined
é Let m + K = m' + K, where K =.ker f. Then, m - m' ‘is
% in K and |
| g(m +K) - g(m' + K) = £(m) - £(m') M
§ = f(m -m') = 0%
==> g(m + K) = g(m' + K)
B) g is an R-homomorphism |
gl(m +K) + (m' +K)] = g[(m + m') +K] = f(m + m')

= f(n) + f(m') = g(m + K) + g(m' + K)
rf(m) = r{g(m +-K)J

glr(m +K)] = g(rm + K) = £(rm)
C) g is one-to-one '

"Let g(m + K) = g(m' + K) be in £(M). Then

"

, ‘

i
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==> m -m" belongsi in K

11

0% = g(m + K) - g(m' +K) = g[(m - m") + K] |
f(m - m')

™S

==> (m-m')+K=K, or m+K=m'+K

g is onto

Let f(m) be in £(M). Then certainly m is in M and

'm+ K is in M/, and by definition

g(m + K) f(m)

j

The following two results are the Dedekind-Noether

Isomorphism Theorems.

Theorem 4: If f: M—>M¥* - is an R-homomorphism of an

R-module M onto an R-module M*, then

A)

iii. LK
/L

there exists a one-to-one correspondence between the

submodules of M containing K = ker f and the’ submodules

 of M* .oy

if L (M corresponds to L* C M*, then

i. £(L) =L* and - £ 1(L¥) =

ii. f induces an R-homomorphism of L onto L*
L* .

M* /L%

iv. M

pJR HII

Proof:

A)

If L CM is a submodule containing K, then f(L) = L* is
a submodule of M* by Theorem 1 (II) To show that two

distinct submodules of M cannot glve rise to the same

'submodule of M*, assume there ex1st an L and an L' both

A SR DR A :«.’mﬁaas.ugeum'wmmwﬁiﬂmwww" (it b
i RPN T
] Lo et T . e N
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containing K such that £(L) = f(L'). Then 1 in L
==> \“there exists an 1' in L' such'that f(1) £(1')

—=> f(L-1')=0

=> 1-1" belongs to K C L’
:==> (1 - 1') + ].' - 1 .iS in L'
Hence, L. C L'. Similarly, L' CL, so that L = L"'.

‘Also, every submodule L* ( M* arises from a sub-
-1 -
(

module of M containing the kernel: for, f “(L*) is ai
submodule of M by Theorem 1 (II), K C f'l(L*) by defini-
tion of the inverée function, .and f(f-l(L*)) = L* since
f is onto.

B) i. Verified above
'ii.Follows from i. and theAfact that f is an R-homomdr- i

phism from L CM onto M¥DL¥% - /3 !

iii. Since f: L— L*¥ 1is an R-homomorphism with kernel a

W |

pc}ll

K, then by Theoren 3 (II) L/K

is onto, then o¢f: M— M*/L* 1is an R-homomorphism

iv. Since the natural R-homomorphism -q).:' M* — M* /L%

onto. We wish to show that ker of = L. i
k belongs to-ker of <==> ¢f(k) = 0% |

<==> f(k) 1is in L* ‘

1

<==> k is in f “(L*) = L. - |

Thus, by the Fundamental Theorem, M/L = M* /L*.

Theorem 5: If N and L. are submodules of an R-module M, then u

(L+N/N = L/LNN) } ' | |
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Proof:. From previous work we know that (L + N) and (L N N)

are submodules of M such that N C (L + N) and (L N N) C L.
Therefore, we may consider the‘factor modules ,(L‘+ N) /N and
L/(LNN). |

Let f: (L +N)— (L + N)/N be the natural homomorphism,

which is onto. Then f induces an R-homomorphism
g: L-——*(L‘+ N)/N which we(ciaim is also onto. For, 1gt
x + N .be1ong to (L + N) /N, where k‘is'in L + N. ThenC/
X =1+n for some 1 in L and n in N

==> x+N=1+N. But, g(l) =1+ N ‘

==> g is an R-homomorphism of L onto (L + N)/N. Since
ker g = LN N, by Theorem 3 (II) we have

L/(LAN) = (L +DN/N.

PJI
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E : | CHAPTER III - FINITENESS CONDITIONS

An R-module M is called Noetherian if it satisfies the
ascending chain condition; that 1s, if every strictly as-
cending chain of submodules

N1 CN, C | .
is finite. On the other hand, if the. descending chain
% condition is fulfilled so that every strictly descending
. ‘ &
chain of submodules
Ny D Ny D

is finite, then M is called Artinian. For example, considered o

as a Z-module, the additive group of integers is Noetherian
but not Artinian.

M is said to satisfy the maximum condition if every

non-empty set of submodules contains an element not contained
in any other submodule of that particular set. It satisfies

the minimum condition if every non-empty set of submodules

contains an elemeﬂt which does not properly econtain any
other submodule of the set.

To indicate the relationships between these definitions, W

we shall state the following purely set:éheoretic result |

whose proof will be omitted. | \

| Theorem 1: An R-module M is Noetheriam if and only if it “

satisfies the maximum condition; M is Artinian if and only

if it satisfies the minimum condition.
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Theorem 2: If N is a submodule of R-module M, then M is

either Noetherian or Artinian if and only if both M/N and

N are likewise.

Proof: We shall consider only the Noetherian case.

I1f the A.C.C. holés'for M, certainly if'does also for

' N. The correspondence between.submodules of M/N and those

of M containing N assures that M/N satisfies the A.C.C.

Now suppose the converse and let Ll C Lz,C .
be an ascending chain of submodules of M. Then

NN L,NN . '
is, a chain of submddules of N, so by hypotheses there exists
an integer n > 1 such that

~(Lnf'\\N) = ‘(Ln+ln N) = . .
Likewise, (Ll + N) C (L, + N) C
is an ascending chain of submodules of M containing N, hence
in one-to-one correspogdence with the submodules of M/N,
which satisfies the A.C.C. Therefore, for some integer m > 1,
L, +N) = (L, +N =.

Let h be the greater of the integers m and n. Then we

and (Lh + N) = (Lh'l'l + N) =
where Lh C Lh+1 C

However, for any integer k > h .  we have

Lp1 N Qg ™ O = Ly N (I + N
N N) by the Modular Law

L

k+1

L + (L
Lk + (Lkﬂ N) = Lk " QED
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- R-module M is said to be a basis of M if for every element

~and it suffices that

for some r, in R. If, in addition, the r_ are uniquely |

16

Theorem 3: If Ny, . . , N are Noetheriaﬁ‘submodules of

an R-module M such that M= N; + . . + N, then M is also
Noetherian. |
Proof: Let k = 2. By theorem 5 (II)

By the preceding theorem Nz/(le\NZ) satisfies the A.C.C.,

hence M/N; is Noetherian. Since the A.C.C. holds for N4

4

also, the conclusion follows, again from the preceding
theorem. The proof may be completed by induction.
(Remark: An analogoué theorem is true for Artinian

- submodules)

A set of elements { m_ ’ a in an index set A } of an

m in M there exist elements r, in R and.ingegers ka such
)

a in A

that Z -
m = (rama T kamM’

where all but finitely many terms of this sum are zero.

If M is unitary, the integral coefficients become unnecessary

a in A

‘m = ;2 : T m._ 5
. I

determined by m, then M is called R-free.

Theorem 4: R-module M is Noetherian if.and only if every

submodule of M has a finite basis.

Proof: First, assume M Noetherian. Let N be an arbitrary
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submodule of M, and &£ the set of all submodules of N having

finite bases. Note that & 1is not empty since (0) is al-

ways such a submodule. Let L' in X be maximal; we already

know that L' C N. For any n in N, (n) = { rn | r in R }

is a submodule of N having { n } as a basis, so that the

submodule L' + (n) of N is in &2 since both L' and (n) have

finite bases. But Lf C L' + (n) gand L' mékimalh' |

==> L' =L"+ (n)

==> n belongs in L', since/n is in L' + (n)

=> N CL' .A

Thus, N = L', the latter having a finite basis by hypothesis.
| Conversely, suppose each submodule of M has a finite

basis, and let Nl CNy Coov be an ascending chain

of submodules. Then N = lv){ N } is a submodule of M,

hence has a finite basis, say { Ny, -« - - 5 D }’. For each

basis element ng there exists an integer ki such that n,;

'belongs to Ny .- Let k be maximum of these m integérs. For

such a k eachlbasis element of N is contained in Nk

== N C Nk . ==> Nh= Nk'

That is, the given sequence terminates atQNk,~WhiCh is the

desired conclusion.

Theorem 5: If M is a unitary R-module having a finite basis,

and the ring R is left Noetherian (or Artinian), then M is

also Noetherian (or Artinian).

Remark: Since the submodules of R, when R is considered as '
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a left R-mbdule, are its left ideals, then the chain con-
ditions when referred to R pertain to sequences of left
ideals in R.)

Proof: Let R satisfy the A.C.C. If { my, . . m_ } is a

finite basis for M, then

M = le'+ . . .+ Rmn

By Theorem 3 (III) it suffices to show that each submodule

Rm, of M satisfies the A.C.C.

So, let m be an arbitrary basis element, and N, CN, C...

an ascending chain of submodules of Rm. Form the sequence
i, Ips o o where

1. = { r | r in R and rm in N, }
i | i

For any r in R and r', r'" in I.
y i

(r' - rr")m = r'm-r'"m 1is in N

==> r' - " is in Ii

(rf')m = r(r'm) 1is iniNi ==> rr' is in Iif

Hence, I; C I, C . . . 1is an ascending chain of left

ideals in R such that for each i, N, = Iim . By hypothesis

the chain of left ideals terminates. That is, there exists

an integer k such that I = Iy

=> N, = L;m for all i > k

for all h > k

==>  the given chain of submodules of Rm also terminates.

A similar procedure is valid when R is Artinian.
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CHAPTER{ IV - COMPOSITION SERIES

Given an R-Module M, then M is 51mple or 1rreduc1b1e

if it has exactly two submodules — namely, 1tse1f and (0).

A normal series in M is a descending finite chain of sub-

modules

M o= Ny N;D L. SN, = (0)

0
where the inclusions need not be proper. If all inclusions

~are proper, then the normal series is said to be without

- repetitions. A proper refinement of a given normal series

is a normal series resulting from the insertion of addition-

al terms in the given series. A composition series of M

is a normal series without repetitions, every proper refine-

ment of which has repetitions. The length of a normal

series is the integer r as above.

Note that the ring of integers, when considered as a
module over itself, has no composition series, while it

does have normal series.

Theorem 1: (Jordan) If aniR;mOdule'Mﬁhas'0newc0mposition
series of 1\ ngth r, then

A) every composition series of M has length r

B) every normal series of M withoﬁt repetitions can be

refined to a composition series

Proof: To demonstrate the first part, we proceed by in-

duction on r. Ihézcaseuqf;r = 0 is trivial, since M = (0).
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- Any module M with r ='1 is irreducible, having
~.as its only composition series. o N
Now suppose that, in evVery module having one composi-

tion series of length < r, each such series has the same
length. Let M be a module having composition series

i. M =M03~M13"’?Mr = (0) .
Then M can have no composition series of length < r, for,
by the induction hypotheses, all composition series of M
would have the same length, contrary to our assumption.
Thus, we must show that M can have no composition series of
length > r. If

_ 1 . _
M = MgOM{OM; . . .0M = (O)

normal series without repetitions, it will suffice to

prove that s < r. Three cases need be considered.

e
Case 1I: Ml —le . Then

series i. == M; has a composition series of length (r - 1)
series ii:. == M{ has a normal series without repetitions

of length (s - 1), and
the inductive hypothesis ==> (s-1) < (r-1), or s ¢ r.
Case II: 'Mi'CﬁMl . Then
Mlei)Mé.‘). : .JMS = (0)
is a normal series of M1 without repetitions of length s.
Again, the induction hynothesis implies s < r-1, or s < r.

Case III: M; { M; . First note once again the implications

in Case I. NOwiMiﬁiMf , for i. is a composition series, so

there are no submodules between M andﬁMl. But, since
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W

-M' ﬁiMl , then (M + M) is a submodule of M contalnlng

&

properly both M1 and Ml

—_— ! =

Consider M/M;, which is a simple module. By the second '

Isomorphism Theorem ﬁe have
MAL = O+ MDA % M/ M)
==> Mi/ (Mln My) is simple |
— there exist no submedules ef M between Mi and Mi(\Mi
Now form the.e.",e]:':i.es,~ o
iii. M =\‘ M)+ M) D M) D M OM
iv. M o= My + M DM D MlﬂMi
Since M1 has a_cOmposition series of length (r-1) and, from
iii. leiMi C‘Mi, then Mif\Mi has a composition series of;
length at most (r-2). However,‘from ivu.'er)Mi C Mi, and
we knoﬁ that there exist no submodules of M between these two
==>.Mi hasha‘compoeition‘series of length at most (r-1).
Hence, by the induction hypothesis, every composition

series of M; has length at most (r-1)

N (s-1) < (r-1), or s<r .

;Thls completes the proof of part A) of the theorem.

In the course of the above proof we have shown that each
normal series of M'Wlthoutmrepetltlons has length at most
eqdal to the length of a composition series of M, all of
which have the same length. This suffices to demonstrate

part B).

muEE 0 oy Juuwu be oo

T
i
]
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In 1ight'of the preceding theorem'wesay‘that an

R-module M has length r, denoted 1(M) = r, if the common

length of its composition series is r. If M has no compo-

sition series, we say 1(M) is infinite.

Theorem 2: If N 1s a submodule of R-module M, then
1 (M) 1(N) + 1(M/N) .
Proof: Assume 1(N) and 1(M/N) to be finite, and let

i. N = NyONjD . .. DN, = (0)
be a’'composition series of N. It follows from the first
Isomorphism Theorem that every submodule of M/N has the form

L/N, where L is a submodule of M containing N. Hence, let

ii. M/N = Ly/NIJL;NIJ. . .J2L /N = (0)
be a composition series of M/N, so that

is ‘a series that cannot be properly refined.

Combining i. and iii. yields
iv. M = LOD. : .‘)LS=N=NODN1). .JNr = (0)
~which is a composition series of M of length (r+s). Thus

I1M) = r+ s L(N) + 1(M/N)

'Reﬂgrk: In case either 1(N) or 1(M/N) is infinite, a slight
modification of the proof yields the same result. Namely,
take series i. and ii. to be finite normal series without

.répetitions of N and M/N respectively. Then either r or s

can be made arbitrarily large, so that iv. becomes a normal

series of M without repetitions of arbitrarily large length.
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Theorem 3: An R-module M has a composition series if and
only if M is both Noetherian and Artinian.

Proof: The implication to the right is clear; for if M has

a composition séries of length r, then every strictly ascend-
ing or descending chain of submodules of M has at most (r+l)
~elements. -

Conversely, let quafisfy both chéin conditions. If

M = (0), the conclusion is trivial. If M ¥ (0), form the

set '
270 = { N ' N CM a proper submodule of M }

Choose M; in 270 to be maximal; that is, such that there
exists no element oflbb which contains Ml' The existence
of such an element M1 1s guaranteed by the ascending chain
condition. IfM1 = (0), then Zﬁb = (O)’ and

is a composition series of M of lenght one. If:M1f¥ (0),

. M = M

repeat the process, choosing M, to be maximal of the set
P & My

QZE = { N l N C M1 a'proper submodule ofM1 }
Continuing this procedure yields a strictly descending chain
which, by choice of Mi’ cannot be properly refined. However,
since the descending chain condition holds in M, then this
chain must terminate. Hence, for some integer k, we have
M, = (0) and .

M = MOZJ. .. :)Mk = (O}

is the desired composition series.

i
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In order to state more simply the concluding theorem
of this section, which gives a relationship between the
composition series of a given module, we introduce addition-
terminology and definitions. !
If M = MjoMo .. LIM. = (0)
is a normal series of M, then the quotient modules
Moﬂﬁl"" "0 Mr-l/Mr

are normal differences of the series. 1In case the given

series is a composition series, these modules are called

cdmgosition.differences. If N is an R-submodule of M, then

M - MODM]_D . . . JMk =~N

is a composition series between M and N if there are no

repetitions and every proper refinement has repetitions.
(Here, a proper refimement of such a series is defined as

before.) Finally, we say two composition series are equiva-

lent if there exists a pairing of composition differences

such that each pairing is an R-isomorphism.

Theorem 4: If an R-module M has a composition series, then

any two composition series are equivalent.

Proof: Again, we proceed by induction on the length of M.

The r = o case is trivial. If r = 1, then M is simple, and
any two composition series are identical, hence equivalent.
Assume the induction hypothesis for all modules of

length < r. Let

i.

MyOM;D . . LOM. = (0) and
1 ‘
MgOM{D . . .OMp = (0)

ii.
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- be any two composition series of M. Two cases need be
gdnsidered.
Case\i} Mi ='Mi . Then i. and ii. afford two composition
series of M; of length (r-1)

==> by hypothesis that these two composition series are

equivalent; that is,
~ ' ' ~ ' '
MMy R MMy MM M M
: o e . e _ ]
But, 1n_add1t10n, | 'MO/Ml = M.O/Ml
==> the series i. and ii. are equivalent.

Case II: M, %“Mi . From before, M; +M; 1is a submodule

of M containing properly both'Mland Mi

==> Moo= M+ M.
Now ZM/M1 and'M/Mi ~are simple, and
_ ) ~
M/M1 = (M + Ml)/Ml = M]'_/(Mln M;)
! _ ' ! o~ '
MMy = (M + M) M F M /(0 M)

N | . ! !
==> modules M;/(MjnMj) and  M;/MGNM] Lo both simple

—_——e > 2 0 _ : ! ' '
==> | 111, M = M1 +-M1‘) Ml p) Ml('\M1 and
iv. M = M1 +-Ml d Mi J.erle

are both composition series between M and erlMi

==> from the isomorphisms above that iii. and iv. are
equivalent.
However, i. and iii. each afford composition series qfiMi

of length (r-1)

==> by the induction hypothesis that these two are equivalent.

o« 0 _ _ '
In addltlon, 'MO/Ml = M/Ml = (M +:Ml)/M1&
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== thé composition series of M afforded by i. and iii;
are equivalent. |
Similarly, the compositién series of M afforded by
ii. and iv. are equivalent. But, iii. and iv. have been

F /

shown to be equivalent, hence i. and ii. are likewise.




CHAPTER V - DIRECT SUMS

Submodules { Nd , @ in index set A } of R-module M

are independent if the intersection of any one submodule

with the sum of the others contains only the zero element.

Or, equivalently, these submodules are independent if and

only if Z n = 0 , wheren_ is in N_,
, . Q Q Q
a in A

implies that n, =0 for all'a in A. If, in addition to

being independent, the submodules are such that-

M = 2: NQL

a in A

then we say M is the direct sum of the given submodules, and

is denoted by -
M = & N

) Q
a 1in A

Wefshall be primarily concerned with finite direct sums.

- Y
Theorem 1: M = 18 N, if @and only if each m in M can
be written uniquely as mo= n+.. + n. , where
n, is in Ni fori=1, . . . , r.
Proof: M a direct sum as given
==> m = ny + f'. . + n_ for some n, in Ni .
Suppose there exist ni in Ni such that m = ni+ ..+ né .
- _ _. ' ‘_ ! — - ! . :
Then m-m = (n1 nl? + ..+ (0 nr) = 0 where (ni ni) in N,
L - 1y _ . _ 1 _ o
==> (ni ni) = 0, or n; = nj by the independence of the N; .
Conversely, for each m in M m = n, +. . + n., n; in Ni

==> M = N]_ + . « + Nr .




Also, since O is in M, and this representation is unique,

then 0 = n+...+n
| A r

==> I'li =0 for each 1

==> the Ni»are indeﬁendent,

The following theorem, the Modular Law for Direct Sums,
has a proof similar to that of the Dedekind Modular Law,
and hence only its statement will be given here.

Theorem 2: If K, L, N are submodules of an R-module M

such that L (C K, then
KNAL®N) = L& (KNN)

whenever eitheé%ﬁf these direct sums make sense.

!

Theorem 3: If M = N; & N, , then

A) Nl gk 'M/N2 and NZ ?k M/Nl
B) 1(M) = 1(Nl) + l(NZ)
Proof:

A) Since M is the direct sum of vaandiNQ» then M = N1 + N,

and le'\N2 Q'(O). By the second Isomorphism Theorem
(Nl + NZ)/Nl %‘R N2/(N1ﬂ N2)

==> M/N; = N
| and similarly 'M/NZ Qk | Nl :
B) By Theorem 2 (IV)
10 = 1(N) + LM/N) = L1(N)) + L(N,) .
Remark: In the case M = Ni ® . .. ®N_, this theorem

may be generalized by induction to read

A) N, '.—:-'R M/(Nl+ co N N g+ L N
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B) 1(M) = 1(N)) +. . .+ 1(N,)
, . o ! | ' - |
Theorem 4: If Nl’ .. ’,Nt and Nl’ , Nt are submod “”
ules of R-modules M and M' respectively such that |
— | v ' '
M = N&. .8&N M = N;® . . &N,
] o~ ' ¢ g
and Ni =R Ni for 1= 1, . . , t, o
~ ' ]
then M =R .M P k
Proof: Let f.,: N—N; be the given isomorphisms, and a
define f: M—sM' by f(m) = fl(nl) + . . +'ft(nt), é
where m = ng + . .+ n, and n, is in Ni' That £ is an ;
R-isomorphism follows from each fi being such. E
A) £ is well-defined }
If m=m* is in M, then | l
| % . :
N = iy = * . | . :
S m=ny + . . + n, and m nf + . . + n. ; nl,ni in N1 i
’“:€> n, = n? for i=1, ¢« . , t by the uniqueness %
of representation of elements of M
==>  £(m) = £(m¥)
B) f is an R-homomorphism

For any m and m* in M, and r in R

f(m + m¥%) = f[(n1+ :

: +nt) + (nf+-.

: +n§)]

fﬁ:{f[(n1+ nf) + .

= fl(n1 + nf) + .

[fl(n1)+ .
f(n1+ .

£(m) + £(m*)

‘fl(nl) + fl(nf) + . ﬂ
: +ft(nt)] + [fl(nf)+'.
. 4n.) + £(of+ .

. + (nt+ n%)]

.+ ft(nt + n%)

: +n§)

.+ ft(nt) +'ft(n§)

L () )

W e - s —— i i S e

o
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f(rm) = f[r(n1+.§:z +nt)],= f(rﬁ1+ .. +rnt)
£(rn)) + . . +£ (rn) = rfy(n))+ . . }A..-l-rft(nt')

- r"[f(n1+ . . +n.)] = f(m) 3
C) f is one-to-one |
Let m be in M such that f(m) = 0. Then £, (n;)+..+£,(n_)=0
==> fi(ni) = 0 for each i by the independence of the Ni

==> n. = 0 since each fi is one-to-one

D) f-is onto
For any m' in M' there exist ni in’N; such that
!
t
and sine€ each fi is onto, then for each ni in Ni there
exi ' 1 = b,
’ex1sts an n, in N, such that fi(ni) ng Hence, by
definition of f Q

m' = fl(nl) + . .+ ft(nt) = f(m)

where m=mn; +. .+n _ in M.
t
Theorem 5: If M is an R-module such that M = 121 Ni and
Ll’ C e, Lt are submodules of Nl’ .., Nt respectively,
then L o= Ly +. .+ L, is a direct sum, and

M/L is a direct sum of submodules R-isomorphic to

Ny /Lys - . - s N/L,

Proof: Since the N; are independent and each L;C Ny, then

the Li are independent and L = L1-® .. . 9 Lt .

Let ¢: M—>M/L. be the natural homomorphism. Then

M/L = o (M) = @(Nlar\, 4N or ML = o(Np) + . . + p(N).
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o

We claim that this sum is difeét, and that @(Ni) QR'Ni/Li .

For, suppose m(n1)+ . . +¢(nt) = 0 where n, is in N, .
Then, lm(nl + . . + nt) = 0 where m+ . . 4o, is in M
==> ny +. . +n_ belongs to L . But 1 in L
==> l=1 +. .+ 1 where 1, is in L, '
==> n, belongs to L;CL for each i
==> o(n;) =0 for each 1i.

Thus, the @(Ni) are independent and
ML = o(Np) & . . & o(N))
Also, by the Fundamental Theorem, @(Ni) == Ni/ker P .
But kero when restricted to N, is exactly L., since

Nifﬁ L = L.. Hence, the desired conclusion

1
o(Ny) F N/ -

An R-module M is said to be completely reducible if

for every submodule N C M there exists a submodule N'C M
such that M = N ® N'. It is well known that every vector
space over a field F is completely reducible F-module,
whereas the ring of integers considered as a Z-module is

not completely reducible.

Theorem 6: If N; and N, are both complements of a submodule

N of an R-module M (that is, M =N & Ny=N#® NZ) such

.

that N1C N2, then N1 = N2.

Proof: NZ = N2(1 (Nl + N)
| = N; + (N, N N) by the Modular Law
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Theorem 7: If M is a completely reducible R-module, then -
A) every submodule of M is completely reducible |
| B) Mﬁis Noetherian if and only if M is Artinian .

.Probf:

A) Let N be an arbitrary Submodﬁle of M, L ¢ N an arbitrary

submodule of N, and L'C M such that L ® L' = M. Then

N=NAM=NN(L&®L') =L & (NAL')
so that (NN L') is the complement of L in N.
B) Assume that the A.C.C. holds in M, and let
MONJIN,ID . .. 7//
be a descending chain of submodules. We claim that if L. C K
are submodules of M, then every complement of K is contained
in a complement of L, and every complement of L contains
a complement of K.
For the former, let K' be a complement of K in M and L'
a complement of L in K. Then |
M =K®K' and K=L@&L'
== M=Lé&L'®K
==> K'CL' ® XK', where L' # K' is a complement of L in M.
For the latter, let L' and K' be arbitrary chplemeﬁts of
L in M and KNAL' 1in L' respectively. Then
M=L®&L' and L' = (KNL') & K'
Noting that K'C L' we have

M = Le&L"

L& (KNL') 8K' = L#&#K'® (L'NK)

| LOL'N(K'8K) = M N (K' &K)
=> M =K' 6K

==> K'CL' , where K' is a complement of K in M.
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Returning to the givén descending chain, let Ni be an
arbitrary complement of N; in M. Choose complement Né of N
such that Ni C Né , and complement Né of N; such that
Né C Né , etc. Then we haye an ascending chain
(0) C Ni C Né C
which by hypotheses terminates
==> for some t, Né = M . = | Nt = (0)
==> ; the given‘descending chain terminates .
A similar proof is applicable when M satisfies the
D.C.C.

Remark: It should be noted here that, in light of Theorem

-3 (IV), any completely reducible R-module which satisfies

either chain condition has a composition series and hence

finite length.

- Theorem 8: An R-module M is completely reducible and of

finite length 1(M) if and only if M is the direct sum of

1(M) simple submodules of M, each unique to R-isomorphism.

Proof: Let M be completely'reducible and 1(M) = t, so that

both chain conditions hold in M. Let N be an arbitrary
submodule of M and N'M such that N ® N' = M. We claim
that every submodule of M is the direct sum of a finite
number of simple submodules. For, suppose the contrary,

letting X be the set of all submodules of M such that each

2

element of this set is not a direct sum of simple submodules

of M. Since the D.C.C. holds for.j(, choose a minimal K* in

XA . That is, K* contains no other element of X . Since
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K* ¥'(O)' and is notﬂsimple, there exists an L C K* such
that (0) CL CK*. Now M completely reducible
==> K¥* completely reducible

==§ there exists an L' C K* such that L & L' = K*,.

But L,L' C K*¥ and K* minimal in X == L, L' not in %
== both L and L' are direct sums of*simple submodulés
of M, and K¥ = L &L
== K% is likewise. Contradiction; hence, M = N & N'

'1s the direct sum of a finite number of simple submodules of

M, say M=N1<B...€BNS.

In this case, the normal series
‘ M=N1<B . .QNS:) N2<B. . (BNS). . . '3"Ns-l® NS.‘) Ns 2 (0)
3 - is a composition series, so 1(M) =t implies s = t.
<: Also, in this series

(Nk$ . QNt)/(Nk+l® .. QNt) gk Ny
for k=1, . . , t ; where these composition differences are
uniquely determined up to(R-isomorphism by Theorem 4 (IV).
Conversely, suppose M is the direct sum of t simple
submodules Nis o - s Nt‘ Then 1(N;) =1 fori=1, .. , t
and, by Theorem 3 (V), .
., l(M)=l(N1)-l'-..+1(Nt)=t.l
To exhibit the complete reducibility of M, let N be an

arbitrary proper submodule of M. . Then choose Ni to be the

1
first element of the set

G . Nis Ny, oo o, N

t |
which is not contained in N. Clearly, since N # M, there
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¥

must exist such an N; . Now, N, being simple
| 1 1
=> NN N, = (0) -~ ==> N + N, is a direct sum.
11 ‘ l]_ | _

If M=N® N; then we have exhibited a complement
1
of N. If not, let N, be the first element of the same
| 2 |
set which is not contained in N ® Ni . Then, as before,
| 1 :
(N ® N,

) + Ni is a direct sum.

1 2
'ﬁRepeating this procedure, which must terminate in at most

t steps, we finally arrive at
M = N® Nilﬁ N Nis‘ﬁ where 1< s < t.

An R-module M is indecomposable if it is not the direct

sum of two proper'submodules. For example, thé ring of
intégers is indecomposable when considered as a module over
itself. Any non-trivial module which is both completely

/

reducible and indecomposable is necessarily simple.

Theorem 9: Every Artinian R-module M is the direct sum of

a finitevnumber of indecomposable submodules.

Proof: It sufficed to prove that every submodqle of M, of
which M is one, is the direct sum of a finite number of
ihdecomposable submodules of M. |

So, proceeding as in the foregoing proof, suppose the
contrary, letting X be the set of all those submodules of M
which are not the direct sum of a finite number of indecom-
posable submodules of M. Choosing K* minimal in X , then

K* # (0) since (0) 1is not in*X. (Note that, as defined,
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(O),is'indecomposable.) Also, K* not being the direct sum'
of indecomposable submodules, and K* = K*¥ + (0)

==> K% 1is not indecomposable |

==> K¥ =L ® L' for some L, L' C K*. | |

But the minimality.of K* ==> 'L, L' are not in X

¥=> L, L' are direct sums of indecomposable submodules

==> K* is likewise. - | Q.E.D.

Theorem 10: 1If Ml’ M are R-modules, then there

w0 Mg

exists an R-module M, uniquely determined to R-isomorphism,

such that o
M=M]'_$...®Ml':
, o : C . . |
where Mi =R 1Mi ~for i=1, . ., t.
Proof: Define an R-module (M, +) by
M = { (ml, .o ,.mt) '* m, in M. }
(ml,..,mt) + (mf,..,m?) = (m1+ mf, Coe mt+'m§)
r(ml, Coe mt) = (rml, Coe rmt),.

Let submodules M; be given by

” M = {‘(O,.., S , m, inMib} .
| Then, certainly |

M = 'Mi'ﬁ . .. QﬁMé
and . f. M,—> Mi | defined by

f(mi) = (0,.., mi,..,O)

is an R-isomorphism.

That M is unique to R-isomorphism follows from Theorem

L (V).

o
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CHAPTER VI - TENSOR PRODUCTS

For the sake of generality we shall now consider
left and right R-modules, denoted gN and MR respectively.

Two definitions precede the first theorem.

;é%‘ If P is aﬁZ-mddule (that is, an additive abelian group)

and Mp, N are R-modules, then a map o: Mp x pN —— P

N,

is called R-bilinear if for all m, m' in M, n, n' in

R
and r in R

o(m, n) + ¢(m', n)

n

o(m + m', n)
o(m, n +n') = o(m, n) + o(m, n')

o(mr, n) = o(m, rn) ,

“where MR X RN is the familiar Cartesian product of sets.

If P, T are Z-modules and =: MR.X RN-———a’I is an

R-bilinear map, then an R-bilinear map o: MR X RN-———q-P

can be factored through v (or, if no confusion can occur,

through T) if there exists a homomorphism f: T—— P such

that“ f(t(m, n)) = @(m,'n) for all m in Mo and n in ,N.

R
That is, if there exists an f such that

commutes.

T

T Th '.'."4‘\‘,;”!4,«,;_33':-,!;:41: KRR > Y 27

o
"
j
3
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Theorem 1: Given My, N as before, then there exists a

unique Z-mq@ule T and a corresponding R-bilinear map
’ T;'M X N—om—m 5T

such that '

A) any element of T can be written in the form

Z::T(mi, ni) where m; is 1n_MR, and n; in RN

B) every R-bilinear map ¢: M x N——P  into any Z-module
P can be factored through T.

Proof: If X is a set, by the free abelian group F on X we

mean the set of all integral-valued functions on X which
are zero except at a finite number of elements of X. That

is, |
F = { f:X—7Z ' f(x) # O for only finitely many x in X}.

- Defining the operation
(fl + fz)(x)u’= fl(x) + fz(x) B

for all fl’ f2 in F, then (F, +) becomes an abelian group. N
In light of this definition it is natural to represent each
element of F by a finite formal sum

2 f(xi) Xs

Xs in X

where only finitely many of the integral coefficients f(xi)
are non-zero. Hence, we may alternately represent F by

F = .{ Z:: k, x /

X in X

kX in Z, x in X, sum finite }'.
Now, let F be the free abelian group on M x. N (that is,

F =

{(m,n)in.MxN km’n(m’n)l “m,

n:’Ln Z; m in M, n in N; sum } )

finite
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and let H be the subgroup of F generated by all elements of

the forms
(m+ m', n) - (m, n) - (m', n)

i. . (m, n+n') - (m, n) - (m, n')
(mr, n) - (m, rn) .

Define T = F/H and map Tt MXN——- T by

T(m, n) = (m, n) +H .
Then certainly T is a Z-module, and it is easily verified
that 7 is R-bilinear. Note that by construction the elements
of T are equivalence claéses, and for any m and m', n and n',
r in M, N, R respectively, the elements given in i. all
belong to the same equivalence class, namely H.

Since a general element of T is a finite sum of the

form |
2 : kg(m, n) + H

it follows that every element can be written as

Z T(mi,‘ ni)

where the m, are in M and n, in N. As for the uniqueness of
T, suppose there exist a Z-module T' and an R-bilinear map
'

T' such that any element of T' can be written in the corres-

ponding form. Then, defining Z-homomorphisms

f: T'"—s T and g: T—>T!' |

by f(t'(m, n)) = v(m, n) and o
g(t(m, n)) = 7'(m, n) we see that
gf = L.y,  the identity on T'

and fg = L. , the identity on T .
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Thus, T is uniquély determined up to Z-isomorphism.
Given an R-bilinear mép ¢: MX N——>P we may

o

define a Z-homomorphism f: T——sP by

f((my n) + H) = o(m, n) .
Then f(t(m, n)) = ¢(m, n) for all min M, n in N and
® can be factofed through T. Moreover, for a given ¢ the

Z-homomorphism f as defined is unique since, for an arbitrary

element of T, .

f( Z:'r(m, n) ) = Z:f'r(m, n) = Zcp(m, n). Q.E.D.

The Z-module T constructed above is called the tensor

product of the R-modules M, and gN and is usually written
as T =M ER . The element T(m, n) in T is denoted by
m B n. As’ nsequence of this theorem we state the Univer-
sal Mapping Property of tensor products:

A unique Z-homomorphism f: M QRN———ec} is completely
determined if ®: M x N —G is prescribed for all
m in M and n in Nein stich a way that ¢ is R-bilinear in M
and N. '
This formulation illuminates the correspondence between
bilinear and linear maps which is of importance in the study
of homological algebra. Before proceeding with the next

theorem, several observations will be made.

) 1 ' - 0
Given R-modqles MR, MR’ RN, RN’ and R-homomorphisms
f: M—»M' and g: N——N'
then it is easily verified that the map ¢: M x N—> M'® N'

L .

v

‘, :.




defined by q)z:,/:)

Moreover, there exists a unique Z-homomorphism

f(m) m g(n) is R-bilinear.

fmRg: MEN—— M'E N'

such that

fxg
Mx N 4 » M'x N
T J’ U T!
frg ¢
MBN , > M'® N'
commutes: namely, the Z<-homomorphism

(f = g)(Z m; B ni) = Z: f(mi) B g(ni) :
If, in addition, we are given R-homomorphisms
f'+ M'——> M" and g': N'— N"
then again there exists a unique Z-homomorphism
(f'm g') (£ n g): MBN —— M'"E N" | i

such that

_ (£4¢) (fxg) |
| Mx N — > M'"'x N" zll
T 1 T'

(fag) (frg) |

MEN 5> M"E N" ;

commutes. This map is defined by

(f'sg')(f B g)(m mn) = (£'f(m) = g'g(n) )

RN ‘and a PR-bimodule PM'R’ where

p(mr) = (pm)r for all p in P, m in M and r in R; then

Given an R-module

M ERN becomes a left P-module. Also, if we consider R to i

be a bimodule RRR’ then

R &RN' = N

N

(The proof lies in demonstrating that the map £: R B N—> N
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given by f(r mn) = rn"'-is-an[R-isomorphiSm.)\
Similarly, for Mk - _.: ‘ '

M QRR

as right R-modules. = - o : '? 7 | ”

?ﬂ?,

/
8 We now pose a question. 'GiveniMRandjRN,,doeSfSubmodule- |
| Mﬁ C M, imply that M'ERN CIM‘ERN ? Or, equivalently, |
| g . o -
|

does exact sequence

a2

0 — M > M

==> 0 | - M'EhN 2 MiﬂkN also exact?

(Recall that a sequence of module R-homomorphisms
Q. 1 o ~
i-1 |

o> Mc 1

i-1 ’Mﬁ, ) ‘Mi+I > -

is exact if kernel P, = 'image‘@i-l for all i.)

The answer is no. By cbunterexample, let

M' =2 CQ =M
where Q is the additive'group of rationals, and N = Zz; {
By a preceding remgrk - Z KZZZ gZ ‘22 , Whereas »

Q8 Z, = (0);

since, for any q in Qand'kin“z2
(@B k) = 2(1/2q) = k = (1/2 q) = (2k)
(1/29) =0 = (1/2 q) = (0°0)
= (1/"2 )00 = 0= 0 o

However, the analogous statement about right exact sequencés

is valid.

Theorem 2: If
E,: M'—— M ——5 M- > 0 ‘ o

i

| o . o i
is an exact sequence of right R-modules, then for any left

Bt b e - il

°
-
" N
i B oun B o D o D o B = B e e e e e B
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R-module N
f'ml f'"ml

% M RN 3 MURLN 5 0

M'EhN
is also exact.

Proof: The fact that image f'" = M"

==> for any m"R n in M"BE N there exists at least one m in M
such that f£"(m) = m", so that
(f"nlN)(m B n) = f'"(m) = lN(n) -m"m n

==> image f'm 1N' = M'B N .

It remains to show that image f'm Ly kernel f''m Ly
By the exactness of El,'for any (m'® n) in M'® N
| (£'mly) (f'sly) (m = n) = (£'£'(m)) = (Iylg(n) = 0= n
= 0-0mBn = 0 On =0RmrO
==> image f'm 1N C kernel f'"m Ly -
Denoting the left and right sides of this inclusion by I
and K respectively, then f'm ly induces a Z-homomorphism
u: MEN/I ——— M"B N ‘
defined by u(men + I) = f£"(m)  n. We already know
that MBN /K :--:R M'"B N
and I C K, so the equality of I and K follows if we demon-
straté u to be an isomorphism. This shall be done by
constructing an inverse.
Define ¢: M"x N——MBN/I by o(m", n) = men + I,
the coset of mmn ih,MEN/T, where m is in M and £"(m) = m".

There is at least one such m by the exactness of El' Suppose

. m, m* are in M such that m # m% and £'"(m) = £f"(m*). Then

~
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f'"(mM - m*) = 0 == m - m* belongs Eo ker f"»# im £'

== %there exists an m' in M' such that f£%"(m') =m - m*,
Hence, m=m* + f'(m') and '
men+1I = [m+ £f'(m')] mn + I

= (m* ® n) + [f'(n') 8 n] + I

. F (m* m n) + [(f'm lN)(m'n n)] + I
= (m* m n) + I since I = image (f'm L)
==> ¢ is independent of the choice of f"'l(m") in M, and

hence is well-defined.

Again the R-bilinearity of ¢ is easily checked. Thus, by

the Universal Mapping Property there exists a’Z-homomorphism
vi M'"B N —— MBN/I

such that vim'a n) = o(m'", n) =mmen + I

for all m" in M" and n in N.

We have, then, Z-homqmorphisms u and v such that

uv(m''ea n) = u(men+I) = f"(m) Bn = m'=En, and
vumen+ I) =v(f"(m) 8n) = v(n"rn) = men+ I.
That is, uv = identity on M'"®B N , and

vu identity on MEN/I .

Theorem 3: The tensor product is distributive over a direct

sum. That is, given right R-modules { M, ' a in index set A}

and left R-moduleRN,‘then
( ¢ M ) QR N 52 ® ('Ma ﬂR N) .

a in A © a in A

Q

Proof: Let
{5

- @ M" ainA}
a in A
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be the projections associated with the given direct sum.

That is, for any mﬁ in MB
\iB(mB) = (NOJVO o ) kﬂb, . o 9 0, . ',)
where my is the pth coordinate and zeroes elsewhere. The

 ] proof rests in verlfylng that the map u defined by

Wl @) anl = ). (a1 @a ]

a 1n A a in A

- 1s a Z-isomorphism.

Theorem 4: If M, N are K-free modules over a commutative
ring K with respective bases { ma/r a in index set A } and

{ ng , B in index set B }, then M EKN~ is K-free with basis

{ na m,

Proof: When K is commutative, then M and N are both K-bimod-

a in A, B in B }

ules, and for any k in K
mBe nk = mB kn = mk®en = km=mn,
which we shall write as k(m B n) or (m B n)k.
To say?M and N are K- free with bases as given means

both M and N are direct sums of copies of the ring. Thatis,

M $K ) 1ﬁ A'Km where Kma Ek K for all a, and
N = Big - KnB where KnB * K for all B.
Hence, M &8 N = (a ig A_Kma') B, N = ) lg‘A(Km B N)
L a ig A[Kmo‘ x (B 1? BKnB
= 9 (Km_ B KnB)

a,B
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But each . Kma EKKnB =% K EK KnB =% KnB EK K,
so that M-EKN is a direct sum of copies of K. Moreover,

we have that every element of M BN has the form

mRBN = g;é kaman anB = Z:: kamaan nB

1l
s
QB
=
'U)::
|
2
JUY)
Q?\"
e
E)
Q
2
3

4

where kd"kﬁ"kaﬁ are in K. Thus, the desired conclusion

J MBN = aﬁ \K(man nB)

In addition, we conclude that the dimension (or length)
of the tensor product of K-free modules over a commutative

ring equals the product of the dimensions of the factors.

Theorem 5: Associativity of the tensor product: Given

P, then

rings R, S and modules MR, RNS’ and gP.

M Bp(N BP) =, (M EN) B P

Proof: We first establish a Z-homomorphism

u:MB (NEP) —> (MEN) B P
Let m in M be fixed. Define ¢9: NxP——> (M EN) B P
by o(n, p) = (m_n n).n p for all n in N and p in P.
Then ¢(n+n', p) = [mrm (n+n')] &p
= (mBEn+mern') B p

= (mrn)ep + (m=r f)a p

=  ¢(n, p) + o(n', p) ;
similarly  o(n, p+ p') = o(n, p) + o(n, p'), and

for any s in S

. E_ T 1:“
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¢‘(ns, P) = (mEns) mp = (m B Nn)sS B p
= (m nmn) B sp = o(n, sp).
Therefore, ¢ is é-bilinear. By definition of the tensor
product ¢ determines a Z-Qomomorphism |

Vpt N BP —— (M B.N) B P

such that wm(n Bp) =0o(n, p) = (mmn) g p .

Also, for any r in R

Wm[r(n B P)“] = Wm(rn R p)=(nm rn) n\) = (‘mr‘ B n) B P
| so that | wm[r(n R p)]

(mr ®m n) = p.
“Now, define

"\\ £: MXx (NBEP)——> (MEN) B P

by ((m, x) = wm(x) where x is in N ® P. Then
for any m, m' in M; x, x' in N & P; and r in R
C(m, x + x') = wm(x + x'") = wm(x) + wm(x')
- = C(m: X) + C(m: X')

Voot (®) = [(m+ n') 8n] =p
(n®n) sp + (men') = p

= V(X)) + ¥ (%) = C(m, x) + &(n', x)
V(%) = (mr mn) mp = v lr(n = p)]

{(mr, x)
=¥ (rx) = {(m, rx)
where x=n®mp in N B P. Therefore, { is R-bilinear, and
there exists a Z-homomorphism |
u: MBE(NEP) —> MEBN) RP |
such that | | » .
ulm® (n@p)] = Yy (nmp) = (m=mn)=ap

for all m in M, n in N, and p in P.




48

~In a similar manner one .can construct a Z-homomorphism
v: MBN) BP——M B (N B P)

which is the inverse of u,

To conclude this section we shall consider free mod-
ules of finite basis over a field F (that is, finite
dimensional vector spaces) and develop the notion of a
ténsor as used in differential geometry.

If M is a free module of length n over a field F, then

the dual space M* of M is the set of all linear maps

»: M——>F ;

or, for all m, in M and fi in F

M* = { 9: M—F | m(flm1+ fzmz) = flm(ml) + fzw(mz) } .

It follows rather directly that M*, with defined operation
(CP]_ + sz) (m) = cP]_(m) + sz(m)

becomes a vector space over F. 1In fact, since any element
of M* is completely determined by its action on the basis
elements of M, then there exists a one-to-one operation-
Preserving correspondence between M* and the set of all
n-tuples of F (the operations of addition and scalar multji-
Plication on the n-tuples being component-wise). Hence,

the dual space of any n-dimensional vector space 1is also

n-dimensional.

N

Given M and M* as above, the tensor product over F

T = MB. .. BMBEM:B ... RBM*
o (r times) - (s times)
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is called a tensor spaée on M contravariant of rank r and

covariant of rank s. Any element of T is called a tensor.

/

Now, if My, « « . , M is a fixed basis of M, we may

select a basis mi, Coe e mﬁ of linear functions in M¥*
such that
m{(m.) = 0.,. = 1 for i = j
L 1] {\O for i # j

| Having chosen the bases as such, from Theorem 4 (VI) it

follows that T is a K-free moduie\3£ length or dimension
n**®  and with basis
B

{ m. 8 ... 8m. ®8m! ® ... ®BRm!

i,, 3. =1, .. , n }_.
iq L. Jp Jg k’ “k ,

Therefore, any tensor t in T may be uniquely'expressed in

the form
n . ) |
ii,.., 1
t = Z(é.l .r)min..mninm!n..nm!
" i 3x J1s005 Jg 1 r J1 Js
r+s

coordinates ¢ of t are elements of F.

- where the n—
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