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Abstract 

Martensitic precipitation strengthened stainless steels 17-4 and 13-8+Mo are candidate 

alloys for high strength military applications. These applications will require joining by 

fusion welding processes thus, it is necessary to develop an understanding of 

microstructural and mechanical property changes that occur during welding. Previous 

investigations on these materials have demonstrated that significant softening occurs in the 

heat affected zone (HAZ) during welding, due to dissolution of the strengthen precipitates. 

It was also observed that post weld heat treatments (PWHT’s) were required to restore the 

properties. However, PWHT’s are expensive and cannot be applied when welding on a 

large scale or making a repair in the field. Thus, the purpose of the current work is to gain 

a fundamental understanding of the precipitation kinetics in these systems so that optimized 

welding procedures can be developed that do not require a PWHT. 

 

Multi-pass welding provides an opportunity to restore the strengthening precipitates that 

dissolve during primary weld passes using the heat from secondary weld passes. Thus, a 

preliminary investigation was performed to determine whether the times and temperatures 

associated with welding thermal cycles were sufficient to restore the strength in these 

systems. A Gleeble thermo-mechanical simulator was used to perform multi-pass welding 

simulations on samples of each material using a 1000 J/mm and 2000 J/mm heat input. 

Additionally, base metal and weld metal samples were used as starting conditions to 

evaluate the difference in precipitation response between each. Hardness measurements 

were used to estimate the extent of precipitate dissolution and growth. Microstructures 
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were characterized using light optical microscopy (LOM), scanning electron microscopy 

(SEM), and energy dispersive spectrometry (EDS). It was determined that precipitate 

dissolution occurred during primary welding thermal cycles and that significant hardening 

could be achieved using secondary welding thermal cycles for both heat inputs. 

Additionally, it was observed that the weld metal and base metal had similar precipitation 

responses. The preliminary multi-pass welding simulations demonstrated that the times and 

temperatures associated with welding thermal cycles were sufficient to promote 

precipitation in each system. Furthermore, these findings indicate that controlled weld 

metal deposition may be a viable method for optimizing welding procedures and 

eliminating the need for a PWHT. 

 

Next, an in-depth Gleeble study was performed to develop a fundamental understanding of 

the reactions that occur in 17-4 and 13-8+Mo during exposure to times and temperatures 

representative of multi-pass welding. Samples of each material were subjected to a series 

of short isothermal holds at high temperatures and hardness measurements were recorded 

to investigate the dissolution behavior of each alloy. Additional secondary isothermal 

experiments were performed on samples that had been subjected to a high temperature 

primary thermal cycle and hardness measurements were recorded. Matrix microstructures 

were characterized by LOM and reverted austenite measurements were recorded using X-

ray diffraction techniques. The hardness data from the secondary heating tests was used in 

combination with Avrami kinetics equations to develop a relationship between the hardness 

and fraction transformed of the strengthening precipitates. It was determined that the 
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Avrami relationships provide a useful approximation of the precipitation behavior at times 

and temperatures representative of welding thermal cycles.  

 

Finally, an autogenous gas tungsten arc (GTA) welding study was performed to 

demonstrate the utility of multi-pass welding for strength restoration in these alloys. Dual-

pass welds were made on samples of each material using a range of heat inputs and 

secondary weld pass overlap percentages. Hardness mapping was then performed to 

estimate the extent of precipitate growth and dissolution. It was determined that significant 

softening occurs after primary weld passes and that secondary weld passes, using a high 

heat input, restored much of the strength. Furthermore, optimal weld overlap percentages 

were approximated.  It was concluded that controlled weld metal deposition can 

significantly improve the properties of 17-4 and 13-8+Mo and potentially eliminate the 

need for costly PWHT’s. 
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CHAPTER 1: Introduction 

1.1 Industrial Relevance 

Martensitic precipitation hardened (PH) stainless steels 17-4 and 13-8+Mo have been used 

for a number of applications in the aerospace, nuclear and military industries due to their 

high strength, corrosion resistance and relatively good ductility1,2. Recent developments in 

the heat treating of these materials has significantly improved their strengths making them 

viable replacements for titanium alloys used in high strength military applications. One 

such application is the armor plating on the M88 Hercules that is currently made from Ti-

6Al-4V, an image of which can be seen in Figure 13. The specific strength and price of 

each alloy can be seen in Table 1. The improved strength of the PH alloys has increased 

the specific strength to the point that it is comparable to that of Ti-6Al-4V. 17-4 and 13-

8+Mo will provide comparable mechanical properties with a significant decrease in cost 

and the added benefit of improved weldability4,5.  

 

1.2 Compositions, Phase Constitution, and Strengthening Mechanisms 

Typical compositions of 17-4 and 13-8+Mo can be seen in Table 2. The Cr content in these 

alloys is important for corrosion resistance, Ni is an austenite stabilizer and helps prevent 

the retention of excess δ-ferrite during heat treating, and the Cu and Al contents are 

important for precipitation strengthening in 17-4 and 13-8+Mo, respectively. Upon 

solidification, these materials form δ-ferrite, initially transform to austenite on cooling and 

then to martensite with further cooling. The final as-cast microstructure consists of 

martensite with approximately 10-20% remnant δ-ferrite and less than a few percent 
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retained austenite. Typical heat treatments for these alloys consists of a homogenization 

step to reverse microsegregation from casting, followed by a solution treatment and quench 

to produce supersaturated martensite, and a final aging step. The aging step is typically 

conducted at temperatures between 450ºC and 620ºC for one to five hours to promote the 

formation of nanometer scale precipitates that greatly strengthen these alloys6–8,1. The cast 

and heat treated microstructures for 17-4 and 13-8+Mo can be seen in Figure 2. 

 

The low carbon content of the martensitic PH stainless steels results in a relatively ductile 

martensite, low austenite content and minimal carbide formation9,10. Thus, the mechanical 

properties of these alloys are largely derived from the precipitates that form during aging. 

These precipitates hinder the movement of dislocations during plastic deformation, thereby 

increasing the strength of the material. 17-4 and 13-8+Mo are strengthened by Cu rich BCC 

and β-NiAl precipitates, respectively. These particles have the greatest strengthening effect 

when they are roughly 2-5nm in size and coherent with the matrix thereby forcing 

dislocation lines to shear through the particles to continue motion11–13. If the particles grow 

too large and become incoherent it is energetically favorable for the dislocation lines to 

loop around the particles subsequently decreasing the strength of the material14. A high-

resolution transmission electron microscope (TEM) image of coherent β-NiAl particles 

embedded in a martensite matrix, taken from works performed by Ping et al., can be seen 

in Figure 312. The image demonstrates that even with high resolution TEM, these particles 

are difficult to distinguish from the matrix due to the small size and high coherency. 

However, because these particles are the major strengthening mechanism in these alloys, 

measuring mechanical properties can be a useful method for establishing their presence. 
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Relationships between precipitate morphology and hardness measurements have been 

established in works performed by Robino et al.15 and Mirzadeh and Najafizadeh16 using 

isothermal aging data and Avrami17–19 analysis. Similar methods will be applied in the 

current investigation and will be discussed further in Chapter 3.  

 

The applications involving these alloys will require them to be welded. Thus, it was 

necessary to develop an understanding of the changes in microstructures and mechanical 

properties that occur in the heat affected zone (HAZ) of these alloys. The temperatures 

experienced during welding thermal cycles could result in some combination of martensite 

tempering, austenite and δ-ferrite reversion, precipitate coarsening and dissolution, or 

secondary carbide formation. Therefore, Gleeble simulated welding study was performed 

for each alloy to determine the effect of welding thermal cycles on the microstructures and 

mechanical properties. 

 

1.3 Single Pass Heat Affected Zone Study 

A single pass HAZ study was performed using a Gleeble thermomechanical simulator. 

Fully age hardened samples of each material were subjected to HAZ thermal cycles 

representative of a gas tungsten arc (GTA) or gas metal arc (GMA) fusion weld. The tensile 

properties were measured, microstructural characterization was performed by light optical 

microscopy (LOM) and scanning electron microscopy (SEM), and modeling of the 

precipitation was performed using MatCalc. The tensile properties of the simulated Gleeble 

HAZ samples can be seen in Figure 4A20. It was observed that the strength decreased 
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significantly through the HAZ for both materials. The trends in mechanical properties 

could not be explained solely by the LOM and SEM microstructural characterization, thus, 

modeling was performed using MatCalc to predict the evolution of the strengthening 

precipitates throughout the HAZ13,21,22. The predicted phase fraction of the strengthening 

precipitates for 17-4 and 13-8+Mo as a function of HAZ region can be seen in Figure 4B20. 

The decrease in phase fraction through the HAZ indicates precipitate dissolution and 

correlates well with the decrease in strength observed in both alloys. Models were then 

adjusted to test optimized welding procedures. Models for welding material in the solution 

treated condition with a post weld age were created and results indicated the phase fraction 

should be uniform from the base metal through the HAZ for both materials, as shown in 

Figure 5A20. Samples of each material were tested using these conditions and the tensile 

properties were measured. The tensile properties for the samples that were welded in the 

solution treated condition and then given a post weld age can be seen in Figure 5B20. It was 

observed that the strength was relatively uniform through all regions of the HAZ for both 

materials which correlated well with the precipitate evolution predicted using MatCalc. 

These findings indicate the mechanical properties in these alloys were primarily governed 

by the dissolution and growth of the strengthening precipitates and that welding thermal 

cycles are sufficient to result in precipitate dissolution in both materials. 

 

Full-scale welds were made on samples of each material in both conditions and cross-weld 

tensile samples were extracted. The tensile test results for the welds can be seen in Table 

320. The observed trends in mechanical properties matched well with the mechanical 

properties from the simulated samples. It was found that only 72-76% of the base metal 
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yield strength was retained in the samples welded in the aged condition, whereas over 93% 

of the base metal yield strength was retained in the samples that were welded in the solution 

treated condition and then given a post weld age. These findings indicate that relatively 

uniform mechanical properties can be achieved by welding in the solution treated condition 

and applying a post weld age. However, post weld heat treatments (PWHT’s) are expensive 

and impractical when welding on a large scale or making a repair in the field. Welding 

solution treated material will always require a PWHT to strengthen the base metal, 

therefore is it necessary to investigate alternative methods for welding aged material to 

potentially eliminate the need for a PWHT. Multi-pass welding provides an opportunity to 

restore the strength lost during primary thermal cycles using secondary thermal cycles from 

subsequent weld passes. Studies were performed by Yu et al.23 to investigate the effect of 

multiple welding thermal cycles on Cu precipitation in a low carbon martensitic steel. It 

was determined by atom probe tomography and hardness measurements, that the 

precipitates dissolved during primary high temperature thermal cycles and formed again 

after secondary thermal cycles representative of multi-pass welding. Therefore, the effect 

of multi-pass welding on precipitation in 17-4 and 13-8+Mo was studied to determine if 

the welding thermal cycles could result in re-precipitation. 

 

In the current thesis, Chapter 1 discusses the industrial relevance of alloys 17-4 and 13-

8+Mo, describes why optimized procedures are required for welding them and presents the 

general purpose and approach of the current investigation. Chapter 2 is concerned with 

establishing a preliminary description of the precipitation behavior based on hardness 

measurements recorded during multi-pass welding Gleeble simulations. Furthermore, it 
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provides a comparison of the precipitation response in 17-4 and 13-8+Mo as well as the 

precipitation response of the aged base metal relative to weld metal for each alloy. 

Chapter 3 builds on the results from Chapter 2 and is focused on characterizing the matrix 

microstructures (ie: δ-ferrite and martensite contents) by LOM and developing a model for 

the precipitate evolution during times and temperatures representative of welding thermal 

cycles using Avrami relationships17–19. Chapter 4 describes a dual-pass gas tungsten arc 

(GTA) welding investigation. This study was performed to determine the influence of 

secondary weld passes on the hardness of primary weld passes using a range of heat inputs 

and secondary weld pass overlaps. Finally, a discussion of future work and implications of 

all these studies is provided in Chapter 5. 
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CHAPTER 2: Influence of Multi-Pass Weld Thermal Cycles on 

the Microstructure and Hardness of Maraging Steels 17-4 and 

13-8+Mo 
 

Abstract 

Martensitic precipitation strengthened stainless steels 17-4 and 13-8+Mo are potential 

candidates for high strength military applications. These applications will require joining 

with fusion welding processes, necessitating an investigation into the evolution of the 

microstructures and mechanical properties during welding. Previous studies on these alloys 

have demonstrated that softening associated with precipitate coarsening or dissolution 

occurs in the HAZ during welding and that a post weld heat treatment (PWHT) is required 

to restore the strength. However, PWHT’s are expensive and impractical when welding on 

a large scale or making a repair in the field, thus, it is necessary to develop optimized 

welding procedures that do not require PWHT’s. Multi-pass welding provides an 

opportunity to restore the strengthening precipitates that dissolve during primary welding 

thermal cycles using heat from subsequent weld passes. In the current investigation, a 

Gleeble thermo-mechanical simulator was used to subject samples of 17-4 and 13-8+Mo 

to primary and secondary welding thermal cycles representative of a 1000 J/mm and 2000 

J/mm heat input multi-pass weld. Age hardened base metal and as-welded weld metal were 

used as starting conditions to investigate the precipitation response of each condition. 

Hardness measurements were recorded after each thermal cycle to estimate the extent of 

precipitate dissolution or growth. It was determined that secondary welding thermal cycles 

were sufficient to promote hardening in both the base metal and weld metal for each heat 

input, indicating precipitate growth was occurring. Alloy 17-4 demonstrated a higher 

precipitation response when compared to 13-8+Mo that was attributed to an increased level 
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of supersaturation and larger temperature range in which precipitation could occur. It was 

also observed that the weld metal and base metal possessed similar precipitation responses 

for each material. Microchemical measurements in the weld metal, thermodynamic 

modeling and back diffusion calculations demonstrated minimal segregation of the 

precipitating elements occurs during solidification and that additional back diffusion 

relieves the composition profiles further. This explains the similarities in precipitation 

response between the base metal and weld metal. The implications of these findings are 

that controlled weld metal deposition may be used to eliminate the need for a PWHT.  

 

2.1 Introduction 

Martensitic precipitation strengthened stainless steels 17-4 and 13-8+Mo possess a 

combination of high strength and relatively good ductility, making them ideal for 

applications in the military, aerospace and nuclear industry6,24. These alloys solidify as δ-

ferrite and transform to austenite on cooling and martensite upon further cooling. Thus, the 

microstructure consists of a martensitic matrix with around 10-20% remnant δ-ferrite and 

less than a few percent retained austenite. The low percentage of retained austenite is due 

to the low carbon content in these systems (typically < 0.03 wt%), which also results in a 

relatively ductile martensite and low carbide content. Therefore, changes in the mechanical 

properties of these alloys are largely controlled by the evolution of fine nanometer scale 

precipitates that form during heat treatment1,2. Alloys 17-4 and 13-8+Mo are strengthened 

by BCC Cu precipitates and β-NiAl precipitates, respectively. Following casting these 

alloys are homogenized to reverse microsegregation, solution treated and quenched to 

produce a supersaturated martensite, and then aged at temperatures between 450ºC and 
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620ºC for times ranging from 1 to 5 hours to promote the formation of the strengthening 

precipitates1,2. During the early stages of aging the precipitates are on the order of 2-3 nm 

in size and highly coherent with the matrix, resulting in a drastic increase in strength by 

forcing dislocation lines to shear through the particles. After prolonged aging particle 

coarsening occurs, resulting in loss of coherency, and causing dislocation lines to loop 

around the particles concurrently decreasing the strength. If temperature is increased 

further dissolution can occur, also decreasing the strength25,26. 

 

Large scale applications involving these materials require joining with welding processes, 

which has provoked several studies on the effects of the welding thermal cycles on the 

properties of these alloys. The high temperatures experienced during welding are sufficient 

to result in microstructural changes such as martensite to austenite transformation, 

austenite to δ-ferrite transformation and precipitate growth, coarsening and 

dissolution7,20,27. Previous investigations on 17-4 and 13-8+Mo have demonstrated that the 

temperatures experienced in the heat affected zone (HAZ) of fusion welds result in a 

significant decrease in strength that has been associated with precipitate dissolution20. 

Furthermore, it was determined that the evolution of the major microstructural features 

such as martensite and δ-ferrite had minimal effect on the changes in properties and that 

the changes were the result of precipitate dissolution or growth20. Bhaduri et. al28 observed 

similar softening in the HAZ of 17-4 using hardness measurements and attributed the 

softening to the dissolution of precipitates, though coarsening was also thought to be 

occurring as well. However, in both experiments it was observed that optimal properties 

could be achieved if a post weld heat treatment (PWHT) is applied. However, PWHT’s are 
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expensive and cannot be applied when welding on a large scale or making a repair in the 

field, necessitating development of optimized welding procedures that do not require a 

PWHT. 

 

Multi-pass welding provides an opportunity to reheat the region that softens during primary 

weld passes by the heat from secondary weld passes. Studies were performed by Yu et al.23 

to investigate the effect of multiple welding thermal cycles on Cu precipitation in a low 

carbon martensitic steel, BlastAlloy 160. Atom probe tomography and hardness 

measurements demonstrated that the precipitates dissolved during primary high 

temperature thermal cycles and formed again after secondary thermal cycles representative 

of multi-pass welding23. If the times and temperatures associated with welding thermal 

cycles are sufficient to promote reprecipitation in 17-4 and 13-8+Mo, it may be possible to 

eliminate the need for a PWHT by controlled weld metal deposition. The purpose of the 

current investigation is to determine the hardening response of these materials after 

exposure to primary and secondary thermal cycles representative of multi-pass welding. 

Two heat inputs were investigated as well as both age hardened material and weld metal 

starting conditions. If sufficient hardening can be achieved using multi-pass welding it may 

be possible to eliminate the need for a PWHT, decreasing the cost associated with welding 

these materials. 

 

In the current investigation, peak aged material and weld metal were subjected to primary 

and secondary welding thermal cycles representative of multi-pass welding using a Gleeble 
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3500 thermomechanical simulator. Hardness measurements were then used to estimate the 

extent of precipitate dissolution and growth. The precipitation response of the weld metal 

was investigated, in addition to the peak aged material, because the as-solidified 

microstructure differs significantly from the base metal. This difference in microstructure 

combined with the residual segregation from solidification may influence the precipitation 

response of the weld metal as compared to the heat treated base metal. Brooks and 

Garrison24 determined by transmission electron microscopy (TEM) and mechanical testing 

that the weld metal of various precipitation strengthened stainless steels, including 13-

8+Mo, aged more intensely at lower temperatures when compared to their respective base 

metals and were more resistant to over aging (coarsening)24. It was also observed in works 

by Bhaduri et. al28 that the hardening response of 17-4 weld metal was either faster or 

slower than the base metal depending on the base metal starting condition. Thus, it is 

important to consider the hardening response of the base metal and weld metal during 

exposure to multiple thermal cycles.  

 

Another consideration when welding precipitation strengthened alloys is the effect of heat 

input. Higher heat inputs will increase the temperature at greater distances into the base 

metal, thereby decreasing the thermal gradient and concurrently the cooling rate. Slower 

cooling rates will allow for more time at temperatures where growth can occur and may 

therefore provide additional strengthening during secondary thermal cycles.  In the same 

work on 17-4 performed by Bhaduri et. al28 it was observed that the welding heat input had 

significant effects on both the hardness and tensile properties of weldments. However, it 

was also observed that a PWHT was still required to optimize properties28. Two heat inputs 
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of 1000 and 2000 J/mm were used in the current investigation to simulate a relatively low 

and high heat input for the gas tungsten arc (GTA) and gas metal arc (GMA) welding 

process.  

 

2.3 Experimental Procedure 

The chemical compositions of 17-4 and 13-8+Mo used during this investigation can be 

seen in Table 4. Cast 17-4 and 13-8+Mo plates were hot isostatic pressed (HIPed) at 1162ºC 

and 103 MPa to eliminate porosity and minimize residual segregation from casting, and 

then air cooled to room temperature. The 17-4 and 13-8+Mo samples were solution treated 

at 1052ºC and 926ºC, respectively. Following solution treatment, 17-4 samples were air 

cooled to room temperature and 13-8+Mo samples were argon gas cooled followed by a 

water quench to 15ºC. Samples were then aged for 1.5 hours at 579ºC and four hours at 

593ºC for 17-4 and 13-8+Mo, respectively. Autogenous gas tungsten arc (GTA) welds 

were made on a half inch thick plate of each material using a current of 200 A, voltage of 

10 V, travel speed of 1 mm/s, and 99.98% argon shielding gas.  

 

The aged plates were machined into 70 mm long, 6 mm diameter pins. Additional cross-

weld samples of matching dimensions were machined from the GTA weld plates, with the 

weld metal centered in each pin. A Gleeble 3500 Thermo-mechanical simulator was used 

to subject samples to various combinations of welding thermal cycles representative of 

multi-pass welding for a 1000 J/mm and a 2000 J/mm heat input. It should be noted that 

during Gleeble experimentation, the cooling rates required for the 1000 J/mm thermal cycle 
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could not be fully achieved and therefore the data may not be entirely representative of a 

1000 J/mm heat input. However, the heating rates were achievable and the thermal cycles 

are still representative of a lower heat input than 2000 J/mm. Welding thermal cycles were 

calculated for four peak temperatures for each alloy using Sandia’s SmartWeld 

program29,30. Peak temperatures of 650ºC, 875ºC, 1150ºC and 1300ºC were used for 17-4 

and 650ºC, 850ºC, 1150ºC and 1300ºC were used for 13-8+Mo. These four peak 

temperatures were chosen to represent the four major HAZ regions for each alloy based on 

recent work performed by Hamlin and DuPont20. Thermal cycle combinations were chosen 

to simulate multi-pass welding, the combinations used in these experiments can be seen in 

Table 5. The region of a weld that is subjected to a high peak temperature primary thermal 

cycle may experience two additional thermal cycles during multi-pass welding depending 

on weld bead placement31. Thus, the 1300ºC peak temperature has a tertiary thermal cycle 

as well. Hardness testing was performed after primary and secondary thermal cycles using 

a Leco LM 248AT vicker’s microhardness indenter with a 500g load and 13 second dwell 

time. 

 

Select samples of each material were prepared using standard metallographic procedures 

with a final polishing step of 0.05μm colloidal silica. Samples were then etched using 

Vilella’s reagent. Microstructures were characterized using a Reichert Jung MeF3 light 

optical microscope (LOM) and a Hitachi 4300 SE/N scanning electron microscope with an 

X-ray detector for energy dispersive spectrometry (EDS). ThermoCalc thermodynamic 

modeling software was used to model the extent of segregation that occurs upon 

solidification and the solubility limits for precipitating elements in 17-4 and 13-8+Mo32.  
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2.4 Results and Discussion 

Hardening Behavior and Evaluation of Matrix Microstructures 

Hardness data for the 17-4 and 13-8+Mo samples that were tested using a 2000 J/mm heat 

input can be seen in Figure 6. After primary thermal cycles, the hardness decreases from 

373 HV in the base metal to as low as 347 HV in the HAZ for 17-4 and from 384 HV in 

the base metal to as low as 347 HV in the HAZ for 13-8+Mo. Light optical 

photomicrographs of the base metal and the samples subjected to primary thermal cycles 

can be seen in Figure 7 and Figure 8 for 17-4 and 13-8+Mo, respectively. As recently 

discussed in more detail, the microstructures consist of varying amounts of tempered 

martensite, as-quenched martensite and δ-ferrite20. The austenite start and finish 

temperatures (Ac1 and Ac3) were recently measured via dilatometry to be 800ºC and 925ºC 

for 17-4 and 730ºC and 900ºC for 13-8+Mo20. The 650ºC peak temperature thermal cycle 

does not reach Ac1 and therefore the microstructure resembles the base metal for both 

alloys, with the exception of the martensite tempering that occurs. At 850ºC for 13-8+Mo 

and 875ºC for 17-4, the Ac1 temperature has been surpassed and partial transformation to 

austenite occurs on heating, resulting in the formation of as-quenched martensite on 

cooling. Thus, the microstructures are composed of both as-quenched and tempered 

martensite. The 1150ºC and 1300ºC peak temperatures are above Ac3 and result in a near 

complete as-quenched martensite structure with remnant δ-ferrite. Additionally, the δ-

ferrite start temperature was measured in the same study20 to be 1075ºC and 1175ºC for 

17-4 and 13-8+Mo, respectively. This is evident from the microstructures for the 17-4 

samples heated to 1150ºC and 1300ºC peak temperatures in which an increase in δ-ferrite 
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is evident along inter-lath locations. The same feature can be seen in the 13-8+Mo 

microstructure that was heated to 1300ºC.  

 

The variations in the matrix microstructure observed here do not account for the changes 

observed in hardness. The 1150ºC and 1300ºC peak temperature HAZ regions consist 

primarily of as-quenched martensite which is expected to be harder than the tempered 

martensite observed in the base metal and after a 650ºC peak temperature thermal cycle2,33. 

However, the hardness is higher in the tempered martensite regions when compared to the 

as-quenched martensite regions. Therefore, the variations in hardness are attributed to 

either coarsening or dissolution of the strengthening precipitates, rather than the changes 

to the matrix microstructures. Studies performed by Robino et al.7 on the heat treatment of 

investment cast 13-8+Mo observed, using TEM, that even after prolonged aging of 13-

8+Mo the β-NiAl precipitates remained coherent with the matrix, indicating coarsening 

was not occurring7. Other research performed by Ping et al.12 on β-NiAl and Bono et al.34 

on Cu precipitation in similar systems found that segregation of elements such as Mo, Ni 

and Mn to the precipitate/matrix boundary created a diffusion barrier that prevented 

precipitate coarsening. These findings, coupled with the decrease in hardness observed in 

the current investigation, suggest that precipitate dissolution is the primary mechanism 

active in these systems that causes reduced hardness. This is further supported by the 

hardness increase to near base metal levels or higher after exposure to secondary thermal 

cycles (Figure 6). Such a large increase in hardness can only be due to precipitate growth. 

If the particles had coarsened after the primary thermal cycles, then reheating from 

secondary thermal cycles would only coarsen the particles further and a decrease in 



19 

 

hardness would be expected25,26. Therefore, it was concluded that the precipitates dissolve 

during primary thermal cycles and that significant hardening can be achieved using 

secondary thermal cycles for a 2000 J/mm heat input. It should be noted that no secondary 

thermal cycles were used for the primary thermal cycle of 650ºC. This thermal cycle 

represents a subcritical temperature and is unlikely to experience significant reheating due 

to secondary weld passes31. 

 

The hardness data for the 17-4 and 13-8+Mo samples that were subjected to thermal cycles 

representative of 1000 J/mm heat input can be seen in Figure 9. A similar decrease in 

hardness was observed after primary thermal cycles and a similar rise in hardness after 

secondary thermal cycles for each alloy. However, it was noted that a smaller increase in 

hardness was observed for the subcritical secondary thermal cycles when compared to the 

results for the 2000 J/mm heat input. This trend was attributed to the decreased time at 

elevated temperature associated with the lower heat input thermal cycles which allow less 

time for precipitate growth during reheating. 

 

Discussion of Apparent Precipitation Response 

For both heat inputs, it was observed that the hardening response was slower in 13-8+Mo 

when compared to 17-4. These findings indicate 17-4 has a faster precipitation response 

than 13-8+Mo.  Precipitate growth rates are controlled by two major factors, the diffusion 

rate of the precipitate solute element in the matrix and the supersaturation of these 

elements, which is the driving force for precipitate growth35,36. Activation energies for 
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diffusion of Cu, Al and Ni in Ferrite are 284 kJ/mol, 235 kJ/mol, and 245 kJ/mol, 

respectively, which would imply that precipitation may occur more rapidly in 13-

8+Mo,which relies on the formation of β-NiAl precipitates37. However, the driving force 

for precipitate growth depends on the amount of supersaturation35,36. Thus, ThermoCalc 

was used to calculate the solubility limit of Cu in 17-4 and Al in 13-8+Mo.  

 

Calculated solubility plots of Cu in 17-4 and Al in 13-8+Mo can be seen in Figure 10. 

Martensite cannot be predicted using equilibrium calculations as it is a metastable phase. 

Thus, ferrite was modeled instead. The changes in Ferrite stability and solubility are 

expected to be like those of martensite due the similarity between the two phases2.  The 

plots include temperatures up to 750ºC and 800ºC for 13-8+Mo and 17-4, respectively, 

since ferrite is not stable about these temperatures. The nominal composition of Cu and Al 

in their respective alloys are labeled on the plots and show that the range of temperatures 

over which the Cu concentration in 17-4 exceeds the solubility limit is much larger than 

that of Al in 13-8+Mo. Therefore, even though the diffusion rate of Al in 13-8+Mo is higher 

than Cu in 17-4, the temperature range for precipitation and extent of supersaturation are 

significantly smaller in 13-8+Mo. Thus, there is decreased driving force for precipitate 

growth in 13-8+Mo when compared to 17-4 and a slower hardening response would be 

expected. Even though the precipitation response is not as significant in 13-8+Mo, both 

alloys show an increase in hardness which indicates the times and temperatures associated 

with welding thermal cycles are sufficient to promote hardening in the softened region of 

the HAZ. This suggests that controlled multi-pass welding procedures may be used to 
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restore the strength lost in the HAZ during primary weld passes and potentially eliminate 

the need for a PWHT. 

 

Comparison of Base Metal and Weld Metal Hardening Response 

The as-solidified weld metal microstructure for 17-4 and 13-8+Mo can be seen in Figure 

12. These alloys both solidify as δ-ferrite, transform to austenite on cooling and eventually 

to martensite on further cooling1,24,38. The weld metal exhibits a martensitic structure with 

a significant presence of δ-ferrite. It should also be noted that some extent of residual 

segregation is expected from solidification and that the composition should not be 

completely homogeneous throughout the structure. The 17-4 and 13-8+Mo weld metal 

samples were also subjected to the welding thermal cycle combinations listed in Table 5 

for a 2000 J/mm and 1000 J/mm heat input, respectively. Hardness measurements were 

recorded before and after primary thermal cycles and the results can be seen in Figure 11. 

The as-welded material was significantly lower in hardness relative to the age hardened 

base metal. This is expected because after solidification these alloys cool as austenite, 

which has a higher solubility limit for the precipitating elements than martensite, meaning 

there is no supersaturation or driving force for precipitation. The transformation to 

martensite occurs below 200ºC where diffusion is slow and precipitation is unlikely to 

occur1,15. After primary and secondary thermal cycles the weld metal demonstrated a 

similar increase in hardness as its respective base metal for each material. The hardness in 

17-4 returned to near base metal levels or greater and the hardness in 13-8+Mo approached 

that of the base metal. The apparent similarity in precipitation response between the base 

metal and weld metal is surprising, as the base metal has been homogenized and the weld 
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metal should contain residual segregation. The presence of segregation can result in local 

depletion of solute creating regions of the weld metal that are no longer supersaturated and 

where precipitation cannot occur.  

 

Light optical photomicrographs of the dendritic structures accompanied by composition 

plots for 17-4 and 13-8+Mo can be seen in Figure 13 and Figure 14, respectively. In 

general, the results indicate the Cr and Al concentrations are higher and the Ni and Cu 

concentrations are lower in ferrite regions when compared to the martensite. These results 

are expected since Cr and Al are ferrite stabilizers while Ni and Cu are known to stabilize 

austenite (and the austenite will subsequently transform to martensite on cooling)2. It was 

also evident that the Cu in 17-4 and Al in 13-8+Mo showed minimal variation within the 

martensitic regions. This is significant because the martensitic regions are where the 

strengthening precipitates will form. The relatively uniform compositional profile for the 

major precipitating elements in each system explains why a similar precipitation response 

is seen in both the weld metal and base metal. These results are in good agreement with the 

findings of Brooks and Garrison24 who measured the extent of segregation in the weld 

metal of three maraging stainless steel including 13-8+Mo. In their work, it was found that 

the dendrite core and boundary composition of Al only varied by 0.2 wt% after 

solidification.  

 

The lack of compositional variation in the weld metal martensite indicates that limited 

segregation occurs between the solid and liquid during solidification, and/or that back 
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diffusion was active and relieved any concentration gradients that may have formed. To 

assess this in more detail, Scheil non-equilibrium solidification calculations were 

performed using ThermoCalc to simulate the amount of segregation that would be expected 

for each alloy. These calculations assume complete diffusion in the liquid, no diffusion in 

the solid and equilibrium at the solid/liquid interface and, thus, give an estimation of the 

maximum amount of segregation that could be expected for a given composition. A plot of 

calculated composition as a function of fraction solid can be seen in Figure 15 and Figure 

16 for 17-4 and 13-8+Mo, respectively. These materials have been observed to solidify 

completely as δ-Ferrite after which the solid state transformation to austenite and 

martensite occurs8,24,38. Thus, the concentration of elements in ferrite upon solidification 

will be representative of the eventual martensite composition at room temperature. The Al 

and Cu concentrations were predicted to vary from 0.9 wt% to 0.25 wt% and 1.7 wt% to 

5.2 wt%, respectively. The highest value of Cu solubility per Figure 10 is 0.5 wt% Cu 

which indicates supersaturation is expected over the range of compositions within the 

dendritic substructure in 17-4. However, the lowest solubility limit in 13-8+Mo is 0.6 wt% 

Al, which indicates there will be regions within the dendritic substructure that are not 

supersaturated and where precipitation cannot occur. As mentioned previously, Scheil 

solidification calculations estimate the maximum amount of segregation that will occur and 

assumes no back diffusion. Thus, back diffusion calculations were performed to determine 

whether the segregation profile predicted for 13-8+Mo and 17-4 would be relieved during 

cooling.  
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Back diffusion during solidification can be calculated using the following equations 

developed by Brody and Flemings39 and Clyne and Kurz40 

𝐶𝑠
∗ = 𝑘𝐶0[1 − (1 − 2𝛼′𝑘)𝑓𝑠]
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 𝛼 =
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𝐿2        [1d] 

Where 𝐶𝑠
∗ is the solute concentration at a given fraction solid after back diffusion, 𝑘 is the 

partitioning coefficient, 𝐶0 is the nominal solute concentration, 𝑓𝑠 is the fraction solid, 𝑇𝑚 

is the melting point of the pure solvent, 𝑇𝑙 is the liquidus temperature of the alloy, 𝐷𝑠 is the 

diffusivity of the solute in body center cubic (BCC) Fe, 𝑡𝑓 is the solidification time and 𝐿 

is half the dendrite arm spacing. The partition coefficient is the ratio of the solute 

concentration in the solid and liquid at a given temperature. An average k was calculated 

using compositions from the ThermoCalc Scheil simulation as 0.56 for Cu in 17-4 and 1.15 

for Al in 13-8+Mo. The solidification time was then calculated using the solidification 

temperature range from ThermoCalc in combination with SmartWeld29,30. SmartWeld was 

used to predict a fusion zone thermal cycle for each alloy for a 2000 J/mm heat input. The 

solidification time was then taken from each thermal cycle by looking at the time spent 

between the solidification start and finish temperatures predicted in ThermoCalc. Times of 

0.44 seconds and 0.31 seconds were determined for 17-4 and 13-8+Mo, respectively. Half 

of the dendrite arm spacing was measured on average to be approximately 9 μm for both 



25 

 

alloys. The diffusion rates will vary significantly as temperature changes during 

solidification, thus, diffusion rates of Cu and Al in BCC Fe were taken from literature for 

temperatures just below the liquidus and just above the solidus for each alloy41. The 

redistributed solute concentration was calculated for 0 to 1 fraction solid and can be seen 

in Figure 17 accompanied by the Scheil and equilibrium concentration profiles for each 

alloy. The calculations demonstrate that significant back diffusion is expected within the 

solidification temperature range for both 17-4 and 13-8+Mo. The Al concentration is 

predicted to increase in the interdendritic regions to as high as 0.66 wt% in 13-8+Mo. 

Furthermore, the Cu concentration was predicted to decrease to as low as 3.1 wt%. The 

implications of these predictions are that the composition profile of the Al in the weld metal 

is predicted to be comparable to the base metal which would explain the similarity in 

apparent precipitation response. Additionally, the decrease in Cu concentration in 17-4 

results in a decrease in supersaturation, but as the lowest region is still above the predicted 

solubility limit, precipitation can still occur.  

 

2.5 Conclusions 

Samples of 17-4 and 13-8+Mo were subjected to primary and secondary thermal cycles 

representative of multi-pass welding. Thermal cycles for a 1000 J/mm and 2000 J/mm heat 

input were used on aged hardened material as well as weld metal. Hardness testing was 

performed to estimate the extent of precipitate growth and dissolution. The following 

conclusions can be drawn from this work. 

1. The temperatures experienced during primary welding thermal cycles result in 

precipitate dissolution and a concurrent decrease in hardness in 17-4 and 13-8+Mo 
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2. Secondary thermal cycles resulted in an increase in hardness for each alloy 

indicating reprecipitation was occurring. The longer times associated with the 2000 

J/mm heat input resulted in a greater increase in hardness than the lower heat input 

by allowing more time for precipitation to occur. 

3. The hardening response of the weld metal is similar to the base metal for each alloy, 

which was attributed to minimal segregation and additional backdiffusion of the 

precipitating elements in each system. 

4. Cu precipitation in 17-4 occurs more rapidly than β-NiAl in 13-8+Mo and was 

attributed to more supersaturation and a wider temperature range over which 

supersaturation is present and precipitation can occur. 
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CHAPTER 3: Simulation of the Precipitation Kinetics of 

Maraging Stainless Steels 17-4 and 13-8+Mo during Multi-pass 

Welding  
 

Abstract 

Maraging stainless steels 17-4 and 13-8+Mo are candidate alloys for high strength military 

applications. Current welding procedures for these materials require the use of a post weld 

heat treatment (PWHT). However, these treatments are expensive and cannot be applied in 

the field. Thus, it is necessary to develop welding procedures that do not require the use of 

a PWHT. A concurrent investigation has demonstrated that the times and temperatures 

associated with welding thermal cycles were sufficient to promote precipitation in these 

systems. The purpose of the current investigation is to develop a more detailed 

understanding of the precipitation kinetics of these materials during times and temperatures 

representative of welding thermal cycles. Peak aged samples of each alloy were subjected 

to a series of short isothermal holds at high temperatures using a Gleeble thermomechanical 

simulator. Hardness measurements were then recorded to estimate the dissolution behavior 

of each alloy. Additional secondary heating experiments were then performed and hardness 

measurements were recorded to estimate the extent of precipitate growth. The hardness 

data was then used in combination with the Avrami equation and strengthening 

considerations to develop a relationship between hardness and the fraction transformed of 

the strengthening precipitates. Light optical microscopy was performed on all samples to 

determine the evolution of the matrix microstructures, and x-ray diffraction as performed 

on select samples to detect the presence of reverted austenite. It was observed that the 

matrix microstructures undergo martensite tempering, δ-ferrite formation, grain growth, 

and austenite transformation on heating that subsequently forms as-quenched martensite 
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on cooling. However, the matrix microstructure had minimal effect on the hardness while 

the strengthening precipitates were the primary factor affecting the hardness. Average 

apparent activation energies for precipitation and growth were calculated as 175 kJ/mol 

and 132 kJ/mol for 17-4 and 13-8+Mo, respectively, and were in good agreement with 

values from literature. However, comparison of the measured and calculated hardness 

values with these activation energies showed appreciable scatter. Thus, data optimization 

was performed after which is was determined that activation energies of 29 kJ/mol and 71 

kJ/mol for 17-4 and 13-8+Mo, respectively, were required to best fit the data. These 

activation energies were significantly lower than previously reported values for these alloys 

and were attributed, at least in part, to the starting condition of the material. Simple 

diffusion calculations indicate the primary thermal cycles in the current investigation result 

in significantly less solute homogenization as compared to solution treated material in 

previous investigations. The decreased homogenization may lead to increased local 

supersaturation, thereby lowering the activation energy. It was concluded that the Avrami 

relationships provide a reasonable approximation of the precipitation and hardening 

behavior in 17-4 and 13-8+Mo during times and temperatures representative of welding 

thermal cycles. 

 

3.1 Introduction 

Maraging stainless steels 17-4 and 13-8+Mo are candidate alloys for high strength military 

applications24,28. The low carbon content in these alloys results in a relatively ductile 

martensite, low retained austenite content, and minimal secondary carbide formation. Thus, 

their high strength is largely derived from the growth of fine nanometer scale precipitates 
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that form during heat treatment. The applications involving these materials will require 

welding, necessitating an investigation of the microstructural and mechanical property 

changes that occur during welding processes. Previous studies on 17-4 and 13-8+Mo have 

demonstrated significant softening occurs in the heat affected zone (HAZ) during welding, 

due to the dissolution of the strengthening precipitates, and that a post weld heat treatment 

(PWHT) was required to restore the properties6,20. However, PWHT’s are expensive and 

impractical when welding on a large scale or making a repair in the field. Thus, improved 

welding procedures for these alloys are required. Multi-pass welding provides an 

opportunity to reform the strengthening precipitates that dissolve during primary welding 

thermal cycles using secondary thermal cycles from subsequent weld passes. A concurrent 

study on 17-4 and 13-8+Mo has demonstrated that the times and temperatures associated 

with secondary welding thermal cycles are sufficient to restore the hardness lost during 

primary thermal cycles, indicating precipitate growth is occurring. In the current 

investigation, an estimate of the precipitate kinetics during primary and secondary thermal 

cycles was developed using isothermal aging data and Avrami kinetics equations. 

 

Evaluation of precipitation hardening can be performed using the impinged volume Avrami 

equation15,17–19,42 

                            𝑥 = 1 − 𝑒𝑥𝑝(−𝑘𝑡)𝑛         [1] 

For which x is the fraction transformed, t is time and k and n are constants. The impinged 

volume equation is used to represent the interference of growing particles due to removal 

of solute from the matrix by neighboring particles. Thus, it is useful for estimating growth 
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in precipitation strengthened systems such as maraging stainless steels15,43. Robino et al.15 

developed a relationship between hardness and fraction transformed which was used in 

combination with impinged volume equation to evaluate the precipitation kinetics during 

various aging treatments of 13-8+Mo.  

     
𝐻𝑡

1.5−𝐻0
1.5

𝐻𝐹
1.5−𝐻0

1.5 ∝ 𝑥 = 1 − 𝑒𝑥𝑝(−𝑘𝑡)𝑛      [2] 

Ht being the hardness after some time at a given temperature, H0 being the solution treated 

hardness and HF being the peak aged hardness. Similarly, this relationship was applied to 

17-4 in works performed by Mirzadeh and Najafizadeh16. In both studies, it was determined 

that the Avrami equations were useful for estimating the hardening behavior of these 

materials and give insight to the precipitation kinetics. However, it was noted that, strictly 

speaking, there are limitations of this method for these alloys since other transformations 

are occurring simultaneously, including austenite reversion, martensite recovery and 

formation of other phases after long term aging that can affect the hardness. Thus, in the 

current study, light optical microscopy (LOM) was performed to evaluate the changes in 

major matrix microstructure, i.e. changes to the martensite and ferrite morphologies. 

Additionally, reverted austenite typically forms in low quantities and is typically not 

detectable using LOM and will therefore be investigated using x-ray diffraction (XRD). 

 

The primary purpose of this investigation is to gain a fundamental understanding of the 

precipitation kinetics that occur in these systems during times and temperatures 

representative of primary and secondary welding thermal cycles. The results of this study 
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can form the basis for optimizing thermal cycles in multi-pass welds  to restore the strength 

of 17-4 and 13-8+Mo without the need for a PWHT.   

 

3.2 Experimental Procedure 

The chemical compositions of 17-4 and 13-8+Mo used in this study can be seen in Table 

6. 17-4 rods were cold drawn to an 8 mm diameter, solution treated for one hour and twenty 

minutes at 1038ºC, water quenched, and then aged at 482ºC for one hour. 13-8+Mo rods 

were hot rolled to an 8 mm diameter with a cold finish, solution treated for one hour at 

927ºC, water quenched, and aged at 510ºC for four hours. Rods were then sectioned into 

70 mm lengths for use in Gleeble simulations. 

 

Preliminary experiments were performed to determine the temperature range and time 

dependency for precipitate dissolution. A Gleeble thermo-mechanical simulator was used 

to heat age hardened samples of 17-4 and 13-8+Mo at 1000ºC/s to peak temperatures of 

600ºC to 1300ºC in 100ºC increments. An additional peak temperature of 500ºC was used 

for 13-8+Mo samples. At each peak temperature samples were held for either 0, 5, or 10 

seconds and then rapidly cooled. A quartz rod piezometric dilatometer was also used to 

detect the presence of the austenite and martensite transformations on heating and cooling 

for each alloy. Hardness measurements were then recorded using a Leco LM 248AT 

vicker’s microhardness indenter with a 500g load and 13 second dwell time for each 

sample. The hardness measurements were used to indicate the extent of dissolution in each 

sample. Following these experiments an average dissolution peak temperature of 1100ºC 
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with no hold was chosen as the primary heat treatment for use in secondary heating 

experiments.  

 

Samples that were heated at 1000ºC/s to 1100ºC and rapidly cooled were then reheated at 

1000ºC/s to peak temperatures of 400ºC, 500ºC, 550ºC, 600ºC, and 650ºC with an 

additional 700ºC peak temperature being used specifically for 17-4. The purpose of these 

secondary heating experiments was to determine the hardening response of each alloy at 

times and temperatures representative of secondary welding thermal cycles. The 17-4 

samples were held at each temperature for either 0, 5, or 60 seconds and then rapidly 

cooled. The 13-8+Mo samples showed a slower precipitation response and therefore were 

held for either 0, 5, 60, or 120 seconds. Additional secondary heating experiments were 

performed using primary peak temperatures of 900ºC and 1200ºC and a secondary peak 

temperature of 550ºC for 0, 5, 60, and 120 second holds for each alloy. Hardness 

measurements were then recorded on each sample to estimate the extent of precipitate 

growth. 

 

Each sample was prepared using standard metallographic procedures with a final polish 

step of 0.05 μm colloidal silica. Samples were then etched using Vilella’s reagent and 

imaged using a Reichert Jung MeF3 light optical microscope. Select samples were also 

prepared for semi-quantitative X-ray diffraction (XRD) using a Panalytical Empyrean X-

ray diffractometer. 
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3.3 Results and Discussion 

Precipitate Dissolution Experiments and Evolution of Matrix Microstructure 

The mechanical properties in these alloys are known to be controlled primarily by the 

evolution of the strengthening precipitates, which are too small to observe by light optical 

and scanning electron microscopy7,20,27. Changes to the matrix microstructures also occur 

at elevated temperatures such as martensite tempering, austenite formation, grain growth 

and δ-ferrite formation. Although these microstructural changes do not affect the 

mechanical properties as much as precipitation, they can affect the precipitate evolution. 

Thus, LOM was performed on all samples during this investigation to understand the 

evolution of the matrix microstructures and aid in the interpretation of the precipitate 

kinetics.  

 

Light optical photomicrographs of 17-4 samples heated at 1000ºC/s to temperatures 

between 600ºC and 1300ºC with no hold time can be seen in Figure 18. The peak aged 

starting material (base metal) consisted of tempered martensite and small amounts of δ-

ferrite in the form of stringers. The matrix microstructures remained relatively unchanged 

on heating until the 800ºC and 900ºC peak temperatures, at which point austenite formation 

began on heating and transformed to as-quenched martensite on cooling. This was 

demonstrated by the microstructures in Figure 18, in which a combination of as-quenched 

martensite and tempered martensite was observed. Furthermore, the austenite 

transformation temperatures, Ac1 and Ac3, were measured as 790ºC and 930ºC, 

respectively, using dilatometry at a heating rate of 1000ºC/s. Thus, at peak temperatures of 

1000ºC and higher, complete austenite transformation occurs on heating resulting in a 
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complete as-quenched martensite microstructure on cooling. Finally, at 1300ºC the onset 

of δ-Ferrite formation was observed. It was also noted that as temperature increased above 

Ac3 there was an increase in the prior austenite grain size demonstrating that austenite grain 

growth increased with peak temperature, as would be expected2. Photomicrographs of 

samples exposed to each peak temperature for a five and ten second hold can be seen in 

Figure 19 and Figure 20, respectively. It was observed that as hold time increased at 800ºC 

and 900ºC the austenite transformation progresses, giving rise to increased amounts of as-

quenched martensite. It was also noted that the Ac1 and Ac3 temperatures for a 1ºC/s 

heating rate were 700ºC and 880ºC, respectively, therefore, it is likely complete austenite 

transformation occurred in the 900ºC hold samples. As time increased at 1000ºC, 1100ºC, 

and 1200ºC a significant increase in prior austenite grain size occurred with respect to the 

no hold samples. Finally, longer hold times at 1300ºC gave rise to an increase in δ-Ferrite 

content.  

 

Photomicrographs of 13-8+Mo samples that were heated at 1000ºC/s to temperatures 

between 500ºC and 1300ºC with no hold time, a five second hold and a ten second hold 

can be seen in Figure 21 through Figure 23. The microstructural trends were very similar 

to those observed in 17-4. However, the Ac1 and Ac3 temperatures were measured to be 

773ºC and 926ºC, respectively, for a 1000ºC/s heating rate and 600ºC and 850ºC, 

respectively, for a 1ºC/s heating rate.  Therefore, austenite transformation began in the 

samples that were held at 700ºC for five and ten seconds and was complete in the samples 

heated to 900ºC. Furthermore, no δ-ferrite was observed in the any of the samples until the 

five second hold at 1300ºC. Thus, the observed changes to the matrix microstructures on 
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heating of these alloys included: austenite transformation (and transformation to martensite 

on cooling), grain growth and δ-ferrite transformation. These findings are consistent with 

the microstructural observations made during previous simulated HAZ experiments 

performed on cast 17-4 and 13-8+Mo20. 

 

Hardness measurements were recorded on each sample and the results can be seen in Figure 

24 for both alloys. A rapid drop in hardness was observed when heating above 600ºC in 

17-4 and 500ºC in 13-8+Mo. Above 700ºC for 17-4 and 600ºC for 13-8+Mo the softening 

was relatively independent of time. The observed hardness trends could not be explained 

by the changes in matrix microstructure, such as the relative phase fraction of as-quenched 

martensite, tempered martensite and δ-ferrite shown in Figure 18 through Figure 23. For 

example, a relatively uniform hardness was measured in the samples that were heated to 

temperatures ranging from 800ºC to 1300ºC in 17-4 and 700ºC to 1300ºC in 13-8+Mo even 

though very significant microstructural changes occur within these ranges. This 

demonstrates that the change in hardness must be the result of changes to the precipitate 

morphology rather than the matrix microstructures. These results are consistent with other 

studies conducted on these alloys20,28. Softening in maraging systems is typically 

associated with precipitate coarsening or dissolution25,26. The precipitates in maraging 

steels provide the largest strength increase when they are on the order of 2-3 nm in size and 

coherent with the matrix so that dislocation lines must shear through the particles during 

deformation. At prolonged aging or high temperature exposure the particles coarsen, lose 

coherency with the matrix, and dislocation lines must then loop around the particles rather 

than shear. This change in dislocation-particle interaction is marked by a decrease in 
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strength which progresses as coarsening continues11,25,26. TEM investigations performed 

by Robino et al.7 on 13-8+Mo have demonstrated that even after prolonged aging of 13-

8+Mo the β-NiAl precipitates remain coherent with the matrix, indicating that dislocation 

cutting is still active and coarsening has not occurred. Furthermore, studies performed by 

Ping et al.12 on β-NiAl and Bono et al.34 on Cu precipitation in similar systems found that 

segregation of elements such as Mo, Ni and Mn to the precipitate/matrix boundary created 

diffusion barriers that inhibited precipitate coarsening. Thus, the decrease in hardness 

observed in Figure 24 was attributed primarily to precipitate dissolution. However, it is 

recognized that some coarsening may be occurring and either TEM or atom probe 

tomography (APT) would be necessary to confirm this. The preliminary heating 

experiments indicate the temperature ranges for dissolution in 17-4 and 13-8+Mo were 

~700ºC to 1300ºC and ~600ºC to 1300ºC, respectively. An 1100ºC peak temperature with 

no hold time was chosen as a primary thermal cycle for secondary heating experiments. 

This temperature was chosen as it is near the middle of the complete dissolution region and 

results in a uniform as-quenched martensite structure, while not having undergone 

excessive grain growth. 

 

Precipitate Growth Experiments 

Samples were heated to 1100ºC at 1000ºC/s, rapidly cooled and then subjected to 

temperatures ranging from 400ºC to 700ºC for various times. The hardness results from 

these secondary heating experiments for both materials can be seen in Figure 25. The 

hardness increased in the 17-4 samples heated above 400ºC and reached near base metal 

levels in samples that were heated between 550ºC and 650ºC. In the 13-8+Mo samples a 
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slower precipitation response was observed and significant hardening was not achieved 

until 60 and 120 second hold times. It was also noted that the maximum achieved hardness 

was approximately 50 HV below the peak aged hardness. Furthermore, the temperature 

range over which hardening occurred in the 13-8+Mo samples was only between 500ºC 

and 600ºC. Light optical photomicrographs of select reheated 17-4 and 13-8+Mo samples 

can be seen in Figure 26 and Figure 27, respectively. No significant change in matrix 

microstructures was observed during the secondary heating tests, other than martensite 

tempering, as the peak temperatures were below Ac1 for each alloy at the given heating 

rate. However, it was noted that some as-quenched martensite did form in the 13-8+Mo 

sample that was held at 650ºC for 120 seconds, which can be seen in Figure 27. As 

mentioned previously, the measured Ac1 temperature for 13-8+Mo using dilatometry and 

a heating rate of 1ºC/s was 600ºC, indicating austenite transformation can occur at 650ºC 

if given sufficient time. Thus, the matrix microstructures demonstrated little to no change 

during the secondary heating experiments, but showed a significant increase in hardness. 

These results further demonstrate that precipitation is the major factor affecting the 

hardness in these systems and that dissolution was the primary cause for the hardness drop 

after primary thermal cycles. If the initial drop in hardness was primarily the result of 

precipitate coarsening, then upon reheating particles would continue to coarsen and the 

hardness would not increase. 

 

Additional secondary heating experiments were performed using primary thermal cycle 

peak temperatures of 900ºC and 1200ºC and a secondary peak temperature of 550ºC. The 

purpose of these tests was to determine whether the primary peak temperature will have 
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significant effects on the precipitation response in these systems. After primary treatment, 

the 900ºC samples will have a structure that consists of both tempered and as-quenched 

martensite. The 1100ºC and 1200ºC samples will consist of as-quenched martensite, with 

the 1200ºC sample having a significantly larger prior austenite grain size. The hardness 

results for samples subjected to each of the primary peak temperatures followed by a 550ºC 

secondary peak temperature can be seen in Figure 28. In general, the results demonstrate 

there is a similar precipitation response regardless of starting condition, though a slightly 

higher initial hardening response was generally observed in the 900ºC samples. Each of 

the primary thermal cycles dissolves the precipitates as indicated by the decrease in 

hardness seen in Figure 24. However, they may not result in the same extent of solute 

homogenization away from the precipitate region once dissolution occurs. If the lower 

temperature primary thermal cycle does not homogenize the solute as much as the 1100ºC 

and 1200ºC peak temperature thermal cycles, then formation of the precipitates may occur 

more rapidly upon reheating. The effect of primary thermal cycle peak temperature on 

precipitation response is discussed in more detail below.  

 

The results from the precipitate growth experiments demonstrate that the temperature 

ranges for secondary hardening in 17-4 and 13-8+Mo are 500ºC to 700ºC and 500ºC to 

600ºC, respectively (for the temperatures investigated here). This data was then used in 

combination with Avrami analysis to develop a relationship between the observed changes 

in hardness and the precipitate kinetics within these temperature ranges. 
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Avrami Analysis 

Similar to the approach used for these alloys in previous work, the hardness data in Figure 

28 was used in combination with Eq. [2] to create plots of ln (ln ((𝐻𝐹
1.5 − 𝐻0

1.5)/(𝐻𝐹
1.5 −

𝐻0
1.5)))  vs ln t, which can be seen in Figure 29 for each alloy15,16. The peak aged hardness 

of 446 HV for 17-4 and 499 HV for 13-8+Mo were used as HF and the hardness after the 

primary thermal cycles was used as H0. These values were 349 HV for 17-4 and 356 HV 

for 13-8+Mo. Due to the rapidity of the hardening in these systems, sufficient data could 

only be obtained at 500ºC and 550ºC for 17-4 and 500ºC, 550ºC and 600ºC for 13-8+Mo. 

The slope of each line in Figure 29 represents the time exponent (n) from Eq. [1]. The 

average time exponents for 17-4 and 13-8+Mo were 0.37 and 0.34, respectively. These 

values are slightly lower than the value of 0.47 obtained by Mirzadeh and Najafizadeh16 in 

17-4 and 0.49 by Robino et al.15 in 13-8+Mo, using data obtained during conventional 

aging heat treatments that consist of times from 1 to 4 hours at temperatures from 510ºC to 

621ºC. However, they are still within the range of 0.2 – 0.5 which have been reported using 

similar methods in a number of other maraging systems44,45.  

 

In addition to the growth constants, the apparent activation energy for precipitation in these 

systems can be calculated using the Arrhenius rate equation15,46:  

     𝑘 =
1

𝑡
= 𝑘0 exp (−

𝑄

𝑅𝑇
)         [3] 

Where 1/t is the rate at a given fraction transformed, 𝑘0 is a constant, Q is the apparent 

activation energy, R is the ideal gas constant and T is the absolute temperature15,46. A plot 

of 1/t as a function of 1/T was created at 0.25, 0.5 and 0.75 fraction transformed for 17-4 
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and 13-8+Mo. Due to the high rate of transformation in 17-4, limited data was available 

for the lower fraction transformed values. The apparent activation energy plots for both 

materials can be seen in Figure 30. The slope of the lines in each plot represent Q/R, which 

can be used to calculate the activation energy ranges of 95 kJ/mol to 255 kJ/mol for 17-4 

and 113 kJ/mol to 152 kJ/mol for 13-8+Mo. The activation energy increases with 

increasing fraction transformed. These findings are consistent with results for maraging 

systems obtained in other studies45,47,48. Floreen and Decker47 calculated ranges of 105 

kJ/mol to 210 kJ/mol while Squires and Wilson45 found ranges of 128 kJ/mol to 197 

kJ/mol. Derivation of Eq. [2] assumes site saturation for precipitation, thus, a constant 

activation energy is expected. Therefore, it is likely competing reactions that affect the 

hardening are occurring simultaneously and contributing to the changes in the apparent 

activation energy15. 

 

In addition to the variation in activation energies reported within specific studies on 

maraging systems, a wide range of values has been reported in literature for 17-4 and 13-

8+Mo using various measuring techniques, as can be seen in Table 7. Limited data was 

available for 13-8+Mo, however, the activation energies in 17-4 range from 112-

262 kJ/mol. The range in observed activation energies could be the result of competing 

solid state reactions such as austenite formation and martensite recovery, or due to the 

differences in measuring techniques. For instance, austenite formation results in softening, 

thermal contraction, and an increase in resistivity relative to the martensitic matrix15,16,46,49. 

Thus, austenite formation will influence the hardness, dilatometry and resistivity 

measurements, which were used to calculate the apparent activation energies listed in Table 
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7. As the relative effect of austenite formation and martensite recovery on each measuring 

technique is not identical, this may explain the differences in reported values. 

 

The activation energies reported in literature as well as the current investigation are 

relatively low compared to the activation energies for diffusion of Cu, Ni, and Al in Ferrite. 

These findings have been interpreted in other maraging systems to indicate precipitate 

nucleation at dislocations and enhanced precipitate growth due to rapid dislocation pipe 

diffusion. This assumption is considered reasonable because of the highly dislocated 

martensitic matrix in these systems15,16,44–46. Average activation energies of 175 kJ/mol and 

132 kJ/mol for 17-4 and 13-8+Mo, respectively, were used in combination with average n 

values for the initial calculations of fraction transformed.   

 

To apply Eq. [1] over the range of temperatures that demonstrated precipitate growth, it 

was first necessary to calculate a k at each of the target temperatures. To do this, Eq. [3] 

was employed using 𝑘0 values that were measured from the intercepts of the apparent 

activation energy plots in Figure 30. Average 𝑘0 values of 3.33e14 1/s and 3.67e6 1/s were 

determined for 17-4 and 13-8+Mo, respectively. The average 𝑘0 values and activation 

energies were used in combination with Eq. [3] to calculate k at each temperature. The 

calculated k was then input to Eq. [1] to determine the fraction transformed for each time 

and temperature. This method was applied to each of the time and temperature 

combinations in Figure 28, after which hardness values were back calculated using Eq. [2]. 

A plot of measured hardness values vs calculated hardness values can be seen in Figure 31. 
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Appreciable scatter was observed in the plots, indicating the relationships for each alloy do 

not provide a highly accurate description of the experimental data. As discussed previously, 

calculation of the activation energy and n values may be suspect due to competing 

transformations that affect the apparent rate of precipitation. Therefore, the activation 

energy and n values used for this initial calculation may not be completely accurate. Thus, 

to develop a relationship that more accurately describes data in the current investigation, 

data optimization was performed by allowing the activation energy and n values to vary 

using an iterative approach.  

 

The sum of residuals was calculated between the measured and calculated hardness values. 

The Q, n and 𝑘0 values were then simultaneously and iteratively varied. What-If analysis 

was performed on the sum of the residuals after each iteration to minimize the value, thus, 

providing the best fit. A comparison of the measured and calculated hardness using the 

optimized Q, n and 𝑘0 values can be seen in Figure 32. The best fit was achieved with n 

values of 0.31 for 17-4, 0.28 for 13-8+Mo, and significantly lower activation energies and 

𝑘0 values for both alloys. The activation energies determined were 71 kJ/mol and 29 kJ/mol 

for 17-4 and 13-8+Mo, respectively. The n values were within the range reported for 

precipitation in maraging systems. However, the activation energies were significantly 

lower and raise the question of whether these results are purely a mathematical best fit or 

if they are representative of the precipitate kinetics in these systems15,16,46,49,50. Previous 

experiments that have reported values of activation energies were performed on solution 

treated material at heat treatment temperatures and using significantly longer hold times. 
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The difference in starting material condition, as well as testing conditions may explain the 

discrepancy in calculated activation energies and is discussed in more detail below.  

 

Effect of Material Start Condition on Analysis 

The primary thermal cycles used in the current investigation result in precipitate dissolution 

as indicated by the significant decrease in hardness. However, significantly less time is 

available for diffusion when compared to the typical solution treatment times. The solution 

treatment times and temperatures used in the current investigation were 80 minutes at 

1038ºC for 17-4 and 60 minutes at 927ºC for 13-8+Mo. A simple estimation of the 

diffusion distance of Cu and Ni during the primary thermal cycles and solution treatments 

was performed using the following diffusion relationship51: 

     𝑥 = √𝐷𝑡        [4] 

Where x, D and t are the diffusion distance, diffusion rate, and time, respectively. The 

diffusion rate of Cu and Ni in FCC Fe were calculated using diffusion data taken from 

literature at temperatures at temperatures of 900ºC, 1100ºC and 1200ºC41. Ni was used to 

represent β-NiAl precipitation as data for Al in FCC Fe could not be found. Plots showing 

the calculated diffusion distance can be seen in Figure 33 for the primary thermal cycle 

peak temperatures. The predicted diffusion distances for times ranging from 1 to 5 seconds 

at 900ºC were between 3 nm and 7 nm for both Cu and Ni. However, the calculated 

distances at 1100ºC and 1200ºC ranges from 21 nm to 72 nm and 47 nm to 178 nm, 

respectively. Thus, the calculated diffusion distances are an order of magnitude less at 

900ºC when compared to 1100ºC and 1200ºC. These findings indicate that the initial 
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increased hardening response demonstrated by the samples subjected to a 900ºC primary 

thermal cycle peak temperature, shown in Figure 24, may be the result of the slower 

diffusion rates and less homogenization of the solute. 

 

The calculated diffusion distance of Cu in Fe after the 17-4 solution treatment was 1.2 μm 

and the calculated distance of Ni in Fe was 225 nm after the 13-8+Mo solution treatment. 

Thus, the precipitating elements in these systems may diffuse two or three orders of 

magnitude further during solution treatment as compared to the rapid primary thermal 

cycles used in the current investigation. TEM and APT investigations on these alloys have 

demonstrated the precipitates are approximately 2-5 nm in size with interparticle spacing 

on the order of tens of nanometers 7,11–13,27. These distances are comparable to the 

calculated diffusion lengths for the primary thermal cycles used in this investigation and 

orders of magnitude smaller than the distance calculated for the solution treatments. Thus, 

after the primary thermal cycles less solute homogenization is expected, which may result 

in localized enrichment of the precipitating elements, thereby, increasing the local 

supersaturation.  As supersaturation is the driving force for precipitation this may explain 

why the optimized activation energy in this study is lower than previously reported 

values35,36. 

 

Effect of Competing Reactions on Analysis 

In addition to the difference in starting condition, several studies have shown that austenite 

reversion occurs during aging heat treatments that can cause error in activation energy 
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measurements7,13,15,27,52,53. Previous investigations have demonstrated that austenite 

formation in both 17-4 and 13-8+Mo is related to the diffusion of Cu or Ni to lath and prior 

austenite grain boundaries. These elements are both austenite stabilizers and decrease the 

austenite transformation temperature, thus allowing austenite to form at lower temperatures 

and subsequently suppressing the martensite transformation to below room 

temperature7,13,27,52. Austenite formation results in a decrease in strength and would thus 

lower the apparent fraction transformed that is estimated by hardness measurements. As 

shown in Figure 30, a decrease in the fraction transformed results in a decrease in the 

apparent activation energy. This suggests that austenite reversion in these systems would 

lower the apparent activation energy. To investigate the presence of reverted austenite, 

semi-quantitative XRD was performed on select samples of each material from the 

secondary heating experiments. 

 

Austenite measurements for select 17-4 and 13-8+Mo samples can be seen in Table 8. No 

austenite was observed in the peak aged 13-8+Mo and 17-4 sample or the 17-4 sample 

subjected to a primary 1100ºC peak temperature with no hold time. However, 3% austenite 

was observed in the 13-8+Mo sample after a primary 1100ºC peak temperature with no 

hold time. Additionally, 3% and 4% austenite was detected in the 13-8+Mo samples 

subjected to a secondary peak temperature of 650ºC for 60 seconds and 120 seconds, 

respectively. Therefore, a small amount of austenite formed during the primary thermal 

cycle and little to no additional austenite was detected after secondary heat treatment. 

These results suggest that austenite formation does not occur during the secondary heat 

treatments used in the current investigation for 13-8+Mo. For the 17-4 samples, up to 5% 
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austenite formed during secondary thermal cycles. However, the sample heated to 650ºC 

with no hold and the sample heated to 650ºC that was held for 60 seconds, demonstrated 

approximately the same amount of reverted austenite. The hardness in these two samples 

was 420 HV for no hold and 361 HV for the 60 second hold. These results suggest the 

austenite formation was not directly responsible for the decrease in hardness observed in 

these samples. The low reverted austenite content observed in this investigation can be 

understood by looking at reported activation energies for austenite reversion in maraging 

systems, which have been measured around 250 kJ/mol13,53,54. In general, this value is 

higher than the values for precipitation reported in literature in most maraging systems. 

The higher activation energies indicate austenite transformation takes place at a slower rate 

compared to precipitation. Thus, the heating rates and hold times used in the current study 

may be sufficient for precipitate growth, but limit the amount of time available for austenite 

transformation to occur.  The lack of austenite formation observed during secondary 

thermal cycles in 13-8+Mo and the fact that it appears to have minimal effect on the 

hardness in 17-4, indicate it was not the primary reason for the low apparent activation 

energy required for the optimized fit in this investigation though it may have contributed.  

 

Recovery of the martensitic matrix can also cause error in the activation energy 

measurements. In studies performed by Hochanadel et al.7 a significant reduction in 

dislocation density occurred after aging heat treatments in 13-8+Mo. In their study, aging 

temperatures of 510ºC, 538ºC, 566ºC, 593ºC, 621ºC and 760ºC were used with aging times 

ranging from 1 to 4 hours. However, an observable decrease in dislocation density did not 

occur until one or more hours at temperatures greater than 566ºC. This suggests the times 
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and temperatures used in the current study may not have resulted in significant reduction 

to the dislocation density. Additionally, in studies performed by Miner et al.55 and Speich 

et al.56 it has been concluded that precipitation processes can halt dislocation glide and 

limit martensite recovery when they occur on dislocations. As the precipitates in 17-4 and 

13-8+Mo systems form rapidly and are believed to form on dislocations it is possible the 

recovery process is inhibited by precipitation. Therefore, the effect of recovery is thought 

to be minimal in the current investigation. 

 

It was determined in this investigation that the Avrami relationships provide a practical 

estimation of the precipitation and hardening behavior in both 17-4 and 13-8+Mo during 

times and temperatures representative of secondary welding thermal cycles. Activation 

energies and time constants comparable to those observed in the literature were obtained. 

However, the activation energies after optimization were significantly lower than values 

reported in previous studies on maraging systems. The low values may just be the result of 

a mathematical best fit. However, analysis of the testing conditions and competing 

transformations during this investigation suggest the lower values may have fundamental 

significance. Austenite formation and martensite recovery may have contributed to the 

lower activation energies. However, minimal reverted austenite was detected via XRD and 

significant martensite recovery is unlikely, based on testing conditions and precipitate 

locations. Thus, the low activation energies were attributed, at least in part, to the calculated 

diffusion distances of the precipitating solute. The calculations suggest rapid high 

temperature thermal cycles are sufficient to dissolve the strengthening precipitates, but do 

not homogenize the solute as much as solution heat treatments. Therefore, there is an 
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increase in local supersaturation and the activation energy required for precipitation upon 

reheating is lowered.  

  

3.4 Conclusions 

Samples of 17-4 and 13-8+Mo were subjected to a series of short isothermal holds at 

various temperatures representative of welding thermal cycles, hardness measurements 

were recorded and the matrix microstructures were characterized using LOM and XRD. 

The hardness data was then used in combination with Avrami equations to develop a 

relationship between the hardening behavior and precipitation kinetics. The following 

conclusions can be drawn from this work. 

1. During exposure to temperatures representative of welding thermal cycles in 17-4 

and 13-8+Mo it was found that matrix microstructures undergo the following 

changes: martensite tempering, δ-ferrite formation, grain growth and austenite 

transformation on heating that subsequently forms as-quenched martensite on 

cooling 

2. Precipitate dissolution was the primary softening mechanism in these alloys, during 

high temperature exposure, and occurs relatively independent of time at 

temperatures above 700ºC for 17-4 and 600ºC for 13-8+Mo. 

3. Precipitate growth was observed at temperatures between 500 and 700ºC for 17-4 

and 500 and 600ºC for 13-8+Mo. 

4. Average n values were calculated as 0.34 for 13-8+Mo and 0.37 for 17-4. It was 

also determined that the average activation energies were 175 kJ/mol and 

132 kJ/mol for 17-4 and 13-8+Mo, respectively 
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5. Data optimization yielded lower n values of 0.31 for 17-4 and 0.28 for 13-8+Mo 

and very low activation energies of 29 kJ/mol and 71 kJ/mol for 17-4 and 13-8+Mo, 

respectively 

6. The low activation energies were attributed, at least in part, to the decreased time 

available for homogenization of the solute during the primary thermal cycles in 

these experiments, relative to typical solution heat treatments. It was also noted that 

austenite reversion and martensite recovery may have contributed. 

7. Avrami relationships provide a practical representation of the precipitation and 

hardening response during exposure to times and temperatures representative of 

welding thermal cycles in these materials. 
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CHAPTER 4: Controlled Weld Metal Deposition for Strength 

Restoration of Maraging Steels 17-4 and 13-8+Mo 
 

Abstract 

Martensitic precipitation strengthened stainless steels 17-4 and 13-8+Mo are candidate 

alloys for use as armor plating in military combat vehicles and will require joining using 

fusion welding processes. It has been observed in previous works that welding of these 

materials results in a softened region in the heat affected zone (HAZ), due to the dissolution 

of strengthening precipitates. Thus, current optimized welding procedures for these alloys 

require the use of post weld heat treatments (PWHT’s), which are expensive and 

impractical when welding on a large scale or making a repair in the field. Therefore, it is 

necessary to develop welding procedures for these materials that do not require the use of 

a PWHT. A concurrent study has demonstrated that the times and temperatures associated 

with secondary welding thermal cycles, representative of multi-pass welding, are sufficient 

to promote precipitation and restore the hardness that is lost due to primary weld passes. 

Thus, in the current investigation dual pass autogenous gas tungsten arc (GTA) welds were 

fabricated on samples of each material using 1000 J/mm, 2000 J/mm and 3000 J/mm heat 

inputs and various secondary weld pass overlaps. Hardness mapping was performed across 

the fusion zone (FZ), HAZ and base metal of each weld pair to estimate the extent of 

precipitate growth and dissolution. The purpose of the current investigation was to 

demonstrate the utility of multi-pass welding for strength restoration in these systems. It 

was found that secondary weld passes using a 2000 J/mm and 3000 J/mm heat input were 

sufficient to increase the hardness in the softened primary weld passes to near base metal 

levels in 17-4. Additionally, secondary weld passes with a 3000 J/mm heat restored 50% 
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of the hardness lost during primary weld passes in 13-8+Mo. It was also determined that 

secondary weld overlap percentages of 60-70% for 17-4 and greater than 75% for 13-8+Mo 

were required to minimize the softened region from primary weld passes. The implications 

of these findings are that controlled weld metal deposition could be used to significantly 

improve the properties of multi-pass welds on these alloys and may eliminate the need for 

a PWHT. 

 

4.1 Introduction 

Martensitic precipitation strengthened stainless steels 17-4 and 13-8+Mo are candidate 

alloys for use as armor plating in military combat vehicles due to their high strength, 

moderate ductility and relatively low cost1,2. These applications will require joining using 

fusion welding processes, which has spurred several investigations into the microstructure 

and mechanical property changes that occur during welding of these alloys. The matrix 

microstructure of these materials consists of a martensitic matrix with anywhere from 10-

20% remnant δ-ferrite. They also have a low carbon content resulting in minimal austenite 

and carbide formation, thus, the mechanical properties are largely controlled by the 

formation of fine nanometer scale precipitates that form during aging heat treatment. 17-4 

and 13-8+Mo are strengthened by BCC Cu rich precipitates and β-NiAl precipitates, 

respectively1,2.  Previous studies concerned with the welding of these alloys have 

demonstrated that significant softening occurs in the heat affected zone (HAZ) during 

welding due to the dissolution of these strengthening precipitates, and that the use of a post 

weld heat treatment (PWHT) was required to restore the properties1,20,28. However, 

PWHT’s are expensive and cannot be applied when welding on a large scale or making a 
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repair in the field, thus necessitating an investigation into optimized welding procedures 

that do not require a PWHT. Multi-pass welding provides an opportunity to restore the 

strengthening precipitates that dissolve during primary weld passes using the heat from 

secondary weld passes23.  

 

A concurrent study performed on 17-4 and 13-8+Mo has demonstrated that the times and 

temperatures associated with secondary welding thermal cycles were sufficient to increase 

the hardness in the softened HAZ and weld metal of these materials, indicating 

precipitation was occurring. Additional isothermal Gleeble simulations were performed on 

samples of each material to estimate the precipitate kinetics at times and temperatures 

representative of welding thermal cycles. It was determined that precipitate dissolution 

occurs rapidly at temperatures above 700ºC in 17-4 and above 600ºC in 13-8+Mo. It was 

also observed that significant hardening could be achieved using relatively short hold times 

between 500ºC and 700ºC for 17-4 and 500ºC and 600ºC for 13-8+Mo. During welding, 

the amount of base plate that will be exposed to each of these temperature ranges will 

depend on the welding heat input. Heat input is an important welding parameter given by: 

𝑄𝑛𝑜𝑚𝑖𝑛𝑎𝑙

𝑉
=

𝐸𝐼

𝑉
        [1] 

Where Q is the power, E is the voltage, I is the current and V the heat source travel speed. 

A constant voltage and travel speed were used in the current investigation and current was 

varied to change the heat input. Higher heat inputs will increase the temperature at greater 

distances into the weld plate, thereby increasing the size of both the fusion zone (FZ) and 

HAZ. Additionally, by increasing the temperature further into the base plate the higher heat 
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inputs result in a decrease in the thermal gradient and subsequently decrease the cooling 

rate. Therefore, with a higher heat input, it is expected that more time will be available at 

elevated temperature where precipitation can occur31,33.  

 

In the current investigation, dual pass welds were made using gas tungsten arc (GTA) 

welding on samples of each material with a range of heat inputs and weld overlaps. 

Hardness mapping was then performed to estimate the extent of precipitation that could be 

achieved using secondary weld passes. These results were then compared to the results 

from the simulated Gleeble studies to estimate the precipitate kinetics. The purpose of this 

work is to determine the utility of multi-pass welding as a means for restoring the strength 

in 17-4 and 13-8+Mo weldments and potentially eliminate the need for a PWHT. 

 

4.2 Experimental Procedure 

The chemical compositions of 17-4 and 13-8+Mo used in the current investigation can be 

seen in Table 9. 17-4 bar was hot rolled to a one inch thickness, straightened and pickled. 

It was then solution treated for six hours at 1038ºC, water quenched, and aged at 482ºC for 

one hour followed by an air cool. 13-8+Mo bar was rolled to a one inch thickness diameter 

with a hot finish, solution treated for one and a half hours at 927ºC, fan cooled, and then 

aged at 510ºC for four hours followed by an air cool. The one inch bar of each material 

was sectioned into three inch by three inch square sections for use in welding experiments. 
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Preliminary modeling was performed using Sandia’s SmartWeld program29,30. Weld 

isotherms were calculated for a 1000 J/mm, 2000 J/mm and 3000 J/mm heat input for 17-

4 and 13-8+Mo. It should be noted that 13-8+Mo was not available in the SmartWeld 

database, thus, 15-5PH was used for simulations to represent 13-8+Mo as it matched 

closest in composition and thermal conductivity for the materials available. 

 

Dual pass autogenous GTA welds were made on sections of 17-4 using a 1 mm/s travel 

speed, voltage of 10V, and three currents of 100A, 200A, and 300A to represent heat inputs 

of 1000 J/mm, 2000 J/mm, and 3000 J/mm, respectively. Welds were fabricated using three 

secondary weld pass target overlaps of 25%, 50% and 75% for each heat input. 

Additionally, welds pairs for each overlap percentage were fabricated using a 3000 J/mm 

heat input on plates of 13-8+Mo. ImageJ image analysis software was then used to measure 

the actual percentage of overlap for each weld.  

 

Welds were cross-sectioned and hardness mapping was performed using a Leco LM 

248AT vicker’s microhardness indenter with a 100g load and 13 second dwell time. Select 

samples were prepared using standard metallographic procedures with a final polish step 

of 0.05 μm colloidal silica. Samples were then etched using Vilella’s reagent and imaged 

using a Reichert Jung MeF3 light optical microscope (LOM). 
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4.3 Results and Discussion 

Weld Isotherm Simulations 

Sandia’s SmartWeld program is based on the Rosenthal heat flow equations and can be 

used to model temperature profiles as a function of distance from the heat source for 

various welding conditions29,30,57. The temperature ranges over which precipitate growth 

and dissolution occur in 17-4 and 13-8+Mo can be used in combination with Smartweld 

isotherms to estimate the approximate size of these regions, in terms of distance. Simulated 

weld isotherms for a 1000 J/mm, 2000 J/mm, and 3000 J/mm heat input for 17-4 and 13-

8+Mo can be seen in Figure 34 and Figure 35, respectively. The figures demonstrate that 

as heat input is increased, the size of both the fusion zone (FZ) and heat affected zone 

(HAZ) increases. As mentioned previously, significant precipitate dissolution occurs at 

temperatures above 700ºC for 17-4 and above 600ºC for 13-8+Mo. While growth of 

precipitates was observed at temperature ranges of 500ºC to 700ºC for 17-4 and 500ºC to 

600ºC for 13-8+Mo. Looking at these temperature ranges for the 17-4 isotherms it was 

observed that the dissolution region and growth region are similar in size for any given 

heat input. For example, the distance between the fusion line and 700ºC for the 3000 J/mm 

heat input was approximately 2.5 mm while the distance between 700ºC and 500ºC was 

approximately 2 mm. Therefore, if the growth region can be directly overlapped on top of 

the dissolution region during welding, much of the softened region could be eliminated. 

Looking at the isotherms for 13-8+Mo it was observed that the dissolution region was on 

the order of 4 mm while the growth region was approximately 1.5 mm indicating less of 

the weld will be composed of regions where precipitate growth can occur. These results 
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were then used in combination with hardness data measured across dual-pass GTA welds 

to relate the temperature profiles to relative amounts of precipitate dissolution and growth. 

 

Evaluation of Hardening Response 

Hardness maps measured across dual pass 17-4 GTA welds at three overlap percentages 

for a 1000 J/mm heat input can be seen in Figure 36. It was observed that no hardening 

occurred due to secondary weld passes and that the FZ and softened region of the HAZ 

possessed a relatively uniform hardness of 350 HV. In the FZ the weld metal solidifies as 

δ-ferrite and then transforms to austenite on cooling and eventually martensite once cooled 

below ~150ºC. Austenite has a higher solubility for Cu than martensite, thus, there is no 

supersaturation on cooling and no driving force for precipitation until cooled below 150ºC, 

at which point there is minimal thermal energy available for precipitation to occur1,24. 

Therefore, the FZ hardness of 350 HV should be representative of precipitate free material. 

A hardness of 350 HV was also observed in the HAZ of both the primary and secondary 

passes.  

 

The hardness maps for each overlap percentages of dual pass 17-4 welds fabricated with a 

2000 J/mm and 3000 J/mm heat input can be seen in Figure 37 and Figure 38, respectively. 

It was observed that significant hardening was achieved in both the FZ and HAZ of the 

primary passes after exposure to heat from the secondary weld passes. These observations 

indicate the time at elevated temperatures associated with higher heat inputs is sufficient 

to promote precipitation in this system. The observed similarity in hardening response in 
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the FZ and base metal was surprising. The FZ should contain segregation that can lead to 

local depletion of Cu in the weld metal resulting in regions of the material where 

supersaturation does not exist and precipitation cannot occur33. However, the similarity in 

precipitation response between base metal and weld metal in these alloys was investigated 

in a concurrent paper. The similarity was attributed to minimal segregation in the FZ and 

additional backdiffusion which resulted in a relatively homogeneous distribution of Cu in 

the weld metal. A band of increased hardness on the order of 3 mm was observed in each 

of the welds except for the 78% overlap with a 2000 J/mm heat input. This exception was 

attributed to the secondary pass overlapping too far into the base metal and thus providing 

additional softening to the primary weld pass. In the remainder of the samples, a hardness 

increase from 350 HV to as high as 475 HV was observed in both the weld metal and base 

metal after secondary passes. It was also observed that and overlap percentage around 60-

70% could eliminate most of the softened region from the primary weld pass.  

 

Hardness maps measured across 13-8+Mo dual-pass welds for a 3000 J/mm heat input can 

be seen in Figure 40. A band of increased hardness, as in 17-4, can be seen in the primary 

pass after exposure to the heat from the secondary pass. The hardness ranges of the softened 

region, secondary hardness band and base metal were approximately 350-400 HV, 450-

500 HV and 500-550 HV, respectively. These findings are consistent with the findings 

from the simulated multi-pass welding study performed on these alloys which 

demonstrated that only a maximum of 50% of the hardness that was lost during primary 

thermal cycles could be restored using secondary thermal cycles. Additionally, the apparent 

width of the growth regions and dissolution regions were 2-3 mm, and 5-6 mm, 



58 

 

respectively. The lower percentage of secondary hardening and the decreased size of the 

growth region relative to the dissolution region, indicate that strength restoration using 

multi-pass welding will be more difficult in comparison to 17-4. Additionally, it was 

determined that an overlap greater than 75% would be required to eliminate the softened 

region from the primary weld pass. However, it should be noted that controlled weld metal 

deposition can still significantly improve the strength in this system and should be 

considered if welding in the aged condition. 

 

Correlation between Simulated Isotherms and Experimental Results 

The 2000 J/mm heat input maps demonstrate that the width of the growth and dissolution 

region for each weld was approximately 3 mm and 3.5mm, respectively. While for the 

3000 J/mm samples the dissolution and growth regions were approximately 4 mm and 

4.5 mm, respectively. The predicted isotherm widths per SmartWeld were significantly 

smaller than the apparent widths seen in the hardness maps. This discrepancy could be the 

result of differences in the predicted weld pool shape as compared to the actual weld pool. 

SmartWeld models the FZ and isotherms as semi-circular while the shape of the weld pool 

demonstrated by the 17-4 welds was more oblong, as can be seen in the light optical image 

in Figure 39. The oblong nature of the weld pool may be the result of surface tension or 

arc shear stresses that act on the liquid during welding and push the weld metal outward, 

thus, creating a wider weld pool33. SmartWeld calculations do not account for fluid flow 

in the weld pool which may explain the differences between predicted and measured 

isotherm sizes. However, even though the exact size of the isotherms cannot be predicted, 

the ratio between growth and dissolution region are similar. The ratio of the growth region 
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size to the dissolution region size in the 2000 J/mm and 3000 J/mm heat inputs were 0.85 

and 0.89, respectively, while the ratios from the predicted isotherms were approximately 

0.76. Making this comparison for the 13-8+Mo weld it was observed that the measured and 

calculated ratios were 0.41 and 0.33, respectively. The difference between the measured 

and calculated ratios was approximately 12-20% for each material. Thus, even though the 

isotherm widths were not accurately modeled using SmartWeld, the relative size and 

location of the regions for a given heat input may be estimated. Therefore, SmartWeld 

could still be employed as a useful predictive tool for weld bead overlap.  

 

The dual-pass welding results demonstrate that secondary weld passes may be used to 

restore much of the strength that is lost in the FZ and HAZ during primary weld passes. 

This information may be used to plan weld bead placement during multi-pass welding to 

minimize the amount of softened material in the FZ and HAZ. It should be noted that 

complete elimination of the softened regions during welding is unlikely, however, 

controlled weld metal deposition may be able to significantly improve the properties in 

applications when PWHT’s cannot be applied. This work is a first step towards 

development of multi-pass welding procedures. 

 

4.4 Conclusions 

Dual-pass GTA welds were fabricated on maraging stainless steel 17-4 using a 1000 J/mm, 

2000 J/mm and 3000 J/mm heat input with various overlap percentages. Additionally, dual-

pass welds were made on maraging stainless steel 13-8+Mo using a 3000 J/mm heat input. 
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Hardness mapping was then performed on all samples to estimate the extent of precipitate 

growth and dissolution. The following conclusions can be drawn from this work. 

1. Secondary welding thermal cycles for a 1000 J/mm heat input do not increase the 

temperature for long enough times to allow for precipitation in 17-4 

2. Increased hardness to near base metal levels can be achieved using secondary 

welding thermal cycles for a 2000 J/mm and 3000 J/mm heat input for 17-4 

3. Secondary weld thermal cycles for a 3000 J/mm heat input increase the hardness in 

the softened primary regions, though not to the same extent as in 17-4 

4. SmartWeld does not accurately predict the isotherms distances for the welding 

conditions used in this investigation but, can predict the isotherm size ratios within 

12-20% 

5. Controlled weld metal deposition may significantly improve the properties of both 

17-4 and 13-8+Mo weldments and should be considered in further detail  
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CHAPTER 5: Future Work and Implications 
 

5.1 Future Work 

The purpose of this investigation was to optimize welding procedures for maraging 

stainless steels 17-4 and 13-8+Mo. Current welding procedures for these materials require 

the use of a post weld heat treatment (PWHT), which is impractical for the applications in 

which these alloys will be used. Thus, controlled weld metal deposition through multi-pass 

welding was investigated to eliminate the need for a PWHT. Multi-pass welding provides 

an opportunity to regrow precipitates that dissolve during primary weld passes using the 

heat from secondary weld passes. Preliminary multi-pass welding Gleeble simulations 

indicated that the times and temperatures associated with secondary welding thermal cycles 

were sufficient to promote precipitation. Thus, an in-depth Gleeble study was performed 

to determine the extent of precipitate growth and dissolution that would be expected at 

various temperatures representative of welding thermal cycles. The data from these 

experiments was used in combination with Avrami kinetics equations to develop a 

relationship for calculating the amount of precipitate growth that can occur during welding 

thermal cycles in each system. Additionally, dual-pass autogenous GTA welds were 

fabricated on samples of each material and hardness mapping was performed to relate the 

simulated results to actual welding processes. This work is a first step towards developing 

welding procedures that do not require the use of a PWHT for these systems. During this 

investigation, it has become evident that additional experiments could be performed to 

improve upon the work presented in this study  
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A simple calculation of the diffusion distance for the precipitating solutes in each alloy was 

performed during this work. These calculations provided an order of magnitude estimate 

based on the diffusion rates of the solute in pure Fe. The purpose of these calculations was 

to compare the amount of solute homogenization that would occur during primary thermal 

cycles, representative of welding, to the homogenization that would occur during a solution 

heat treatment. Thermodynamic and kinetics software packages Thermocalc and Dictra 

could be employed in the future to better estimate the solute homogenization rates at the 

various temperatures investigated in this study. Additionally, the isothermal Gleeble 

experiments performed in these works could be used on solution treated material to aid in 

interpreting the effect of solute homogenization on the precipitation response. 

 

It was concluded that the Avrami kinetics equations provide a reasonable approximation 

of the precipitation and hardening response in the growth region of a welding thermal cycle. 

Furthermore, complete dissolution occurs at temperatures over 800ºC and 700ºC for 17-4 

and 13-8+Mo, respectively. Thus, much of the hardening and softening that occurs during 

welding thermal cycles can be modeled using the results from this study. However, more 

information is needed to predict the behavior in the partially softened region. At 

temperatures between 650ºC and 800ºC in 17-4 and 600ºC and 700ºC in 13-8+Mo, partial 

softening was observed. This softening could be the result of precipitate coarsening, 

precipitate dissolution, martensite recovery, austenite reversion or a combination of these 

factors7,13,27,46,58. Advanced characterization of the samples that have been subjected to 

temperatures within these ranges would be required to determine which of these factors are 

responsible for the observed softening in each system. Techniques such as atom probe 
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tomography (APT) and transmission electron microscopy (TEM) could be employed to 

investigate the significance of austenite formation and changes to the dislocation density. 

Furthermore, if precipitate coarsening is occurring and the particles have increased in size 

and lost coherency with the matrix they may be observable using TEM. 

 

Finally, controlled weld metal deposition can be performed using the optimal heat inputs 

and weld bead overlaps determined in this work. Filler metal was not used in the current 

investigation thus, future work should include pad welding experiments using different 

filler metal overlap and heat inputs. Hardness mapping could then be performed to estimate 

the extent of precipitate growth and dissolution. Furthermore, other software packages such 

as Sysweld could be investigated and compared to the hardness mapping results and 

predicted SmartWeld isotherms from this study. 

 

5.2 Implications 

The testing conditions used in the current investigation were chosen to represent welding 

processes. It was observed that the precipitation response in these alloys is dependent on 

the testing conditions and the starting condition of the material. Thus, comparing the results 

obtained here with previous works can aid in developing a better understanding how 

precipitation occurs in these alloys and maraging systems in general.  

 

Furthermore, the results obtained in this work are the first step towards the development of 

a controlled weld metal deposition model for these materials. The benefit of developing a 
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model for controlled weld metal deposition is the possibility of eliminating the need for 

costly PWHT’s. It should also be noted that even if the base metal strength cannot be fully 

retained throughout the heat affected zone (HAZ) and (FZ), this model would still provide 

a method for maximizing the strength with respect to welds that are made without 

consideration for precipitation and bead placement. Successful development of this model 

will have significant implications for additive manufacturing (AM) of these materials. AM 

and multi-pass welding both result in the formation of a FZ and HAZ, though on different 

scales. The high energy density associated with the AM processes results in a smaller FZ 

and HAZ than fusion welding processes, but the temperatures associated with each will be 

the same33. Therefore, with some refinement the model could be applied to AM processing 

as well.    
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Tables  
 

Table 1: Properties of Ti-6Al-4V and PH alloys. All Values taken from CES EduPak 

20164. 

Material 13-8+Mo 17-4 Ti-6Al-4V 

Yield Strength (MPa) 1090 1085 855 

Density (kg/m3) 7695 7805 4428 

Specific Strength 

(N*m/kg) 
0.14 0.14 0.19 

Price (USD/lb) 3.24-3.5 2.85-2.96 9.21-10.2 
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Table 3: Cross-weld tensile test results for 17-4 and 13-8+Mo GMA welds, welded in 

both conditions20. 

Sample Yield Strength 

(MPa) 

Tensile Strength 

(MPa) 

% of Base Metal 

Yield Strength 

Retained 

17-4 Base Metal 1076 1141 N/A 

17-4 S-A-W 770 841 72% 

17-4 S-W-A 1004 1098 94% 

13-8+Mo Base 

Metal 
1092 1181 N/A 

13-8+Mo S-A-W 828 1002 76% 

13-8+Mo S-W-A 1016 1165 93% 
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Table 5: Weld thermal cycle peak temperature combinations used in this study. 

Material Primary Thermal 

Cycle Peak 

Temperature (ºC) 

Secondary Thermal 

Cycle Peak 

Temperature (ºC) 

Tertiary Thermal 

Cycle Peak 

Temperature (ºC) 

17-4 650 X X 

17-4 875 650 X 

17-4 1150 650 X 

17-4 1150 875 X 

17-4 1300 1150 650 

17-4 1300 1150 875 

13-8+Mo 650 X X 

13-8+Mo 875 650 X 

13-8+Mo 1150 650 X 

13-8+Mo 1150 850 X 

13-8+Mo 1300 1150 650 

13-8+Mo 1300 1150 850 
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Table 7: Calculated apparent activation energies taken from literature on 17-4 and 13-

8+Mo. 

Alloy Q 

(kJ/mol) 

Measuring 

Method 

Conditions Authors 

13-8+Mo 139 
Hardness and 

Avrami 

Solution Treated 

Material and Aging 

Heat Treatments 

Robino et al.15 

17-4 262 
Hardness and 

Avrami 

Solution Treated 

Material and Aging 

Heat Treatments 

Mirzadeh and 

Najafizadeh16 

17-4 190-215 Dilatometry 

Solution Treated 

Material and Aging 

Heat Treatments 

Rivolta and 

Gerosa49 

17-4 112 
Resistivity 

Analysis 

Solution Treated 

Material and Aging 

Heat Treatments 

Viswanathan et 

al.46 
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Figures 
 

 

Figure 1: M88 military combat vehicle currently plated with Ti-6Al-4V. 

 

  

Figure 2: LOM image of the cast and heat treated microstructure of (A) 17-4 and (B) 13-8+Mo. 

A B 
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Figure 3: High resolution TEM image of coherent β-NiAl precipitates in a martensite 

matrix12. 
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Figure 4: (A) Tensile results for Gleeble HAZ samples welded in the aged condition (B) 

MatCalc predicted phase fraction of strengthening precipitates20. 
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Figure 5: (A) MatCalc predicted phase fraction of strengthening precipitates (B) Tensile 

results for Gleeble HAZ samples with optimized welding procedures20. 
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Figure 6: Hardness data for 2000 J/mm heat input Gleeble multi-pass welding simulations 

blue bars indicate primary welding thermal cycles, orange and gray correlate to 

secondary welding thermal cycles. (A) 17-4 (B) 13-8+Mo. 

A 

B 
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Figure 7: Light optical photomicrographs of 17-4 (A) base metal and after a (B) 650ºC, 

(C) 875ºC, (D) 1150ºC and (E) 1300ºC thermal cycle. TM=Tempered Martensite, δ = 

Delta Ferrite, AQM = As-Quenched Martensite. 
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Figure 8: Light optical photomicrographs of 13-8+Mo (A) base metal and after a (B) 

650ºC, (C) 850ºC, (D) 1150ºC and (E) 1300ºC thermal cycle TM=Tempered Martensite, 

δ = Delta Ferrite, AQM = As-Quenched Martensite. 
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Figure 9: Hardness data for 1000 J/mm heat input Gleeble multi-pass welding simulations 

blue bars indicate primary welding thermal cycles, orange and gray correlate to 

secondary welding thermal cycles. (A) 17-4 (B) 13-8+Mo. 

A 

B 
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Figure 10: ThermoCalc equilibrium diagrams showing calculated solubility for (A) Cu in 

17-4 and (B) Al in 13-8+Mo. 

A 

B 



83 

 

 

Figure 11: Hardness data for Gleeble multi-pass welding simulations. Red bars represent 

the as-welded fusion zone and fusion zone after primary welding thermal cycles. Orange 

and gray correlate to secondary welding thermal cycles. Blue is the age hardened base 

metal. (A) 17-4 (B) 13-8+Mo. 

A 

B 
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Figure 12: Weld metal microstructure of (A) 17-4 and (B) 13-8+Mo prior to Gleeble 

simulation AQM = As-Quenched Martensite, δ = δ-Ferrite. 
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Figure 13: (A) Light optical micrograph of 17-4 weld metal showing the location of an 

EDS line scan. (B) High magnification image and plot of composition as a function of 

distance along the line in the micrograph measured using EDS. 

A 

B 
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Figure 14: (A) Light optical photomicrographs of 13-8+Mo weld metal showing the 

location of an EDS line scan (B) High magnification image and plot of composition as a 

function of distance along the line in the micrograph measured using EDS. 

A 

B 
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Figure 15: ThermoCalc solidification simulation for 17-4 demonstrating composition as a 

function of fraction solid in Ferrite for (A) All elements and (B) Minor elements. 

A 

B 



88 

 

 

Figure 16: ThermoCalc solidification simulation for 13-8+Mo demonstrating 

composition as a function of fraction solid in Ferrite for (A) All elements and (B) Minor 

elements. 
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Figure 17: Estimated back diffusion per Eq. [1a] for (A) Cu in 17-4 and (B) Al in 13-

8+Mo. 
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Figure 18: Light optical photomicrographs of 17-4 dissolution Gleeble samples heated to 

various temperatures with no hold time. (A) Base Metal (B) 600ºC (C) 700ºC (D) 800ºC 

(E) 900ºC (F) 1000ºC (G) 1100ºC (H) 1200ºC (I) 1300ºC. TM=Tempered Martensite, δ = 

Delta Ferrite, AQM = As-Quenched Martensite. 
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Figure 19: Light optical photomicrographs of 17-4 dissolution Gleeble samples heated to 

various temperatures with 5 second hold time. (A) Base Metal (B) 600ºC (C) 700ºC (D) 

800ºC (E) 900ºC (F) 1000ºC (G) 1100ºC (H) 1200ºC (I) 1300ºC TM=Tempered 

Martensite, δ = Delta Ferrite, AQM = As-Quenched Martensite. 
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Figure 20: Light optical photomicrographs of 17-4 dissolution Gleeble samples heated to 

various temperatures with 10 second hold time. (A) Base Metal (B) 600ºC (C) 700ºC (D) 

800ºC (E) 900ºC (F) 1000ºC (G) 1100ºC (H) 1200ºC (I) 1300ºC. TM=Tempered 

Martensite, δ = Delta Ferrite, AQM = As-Quenched Martensite. 
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Figure 21: Light optical photomicrographs of 13-8+Mo dissolution Gleeble samples 

heated to various temperatures with no hold. (A) Base Metal (B) 500ºC (C) 600ºC (D) 

700ºC (E) 800ºC (F) 900ºC (G) 1000ºC (H) 1100ºC (I) 1200ºC (J) 1300ºC. 

TM=Tempered Martensite, AQM = As-Quenched Martensite. 
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Figure 22: Light optical photomicrographs of 13-8+Mo dissolution Gleeble samples 

heated to various temperatures with 5 second hold time. (A) Base Metal (B) 500ºC (C) 

600ºC (D) 700ºC (E) 800ºC (F) 900ºC (G) 1000ºC (H) 1100ºC (I) 1200ºC (J) 1300ºC. 

TM=Tempered Martensite, δ = Delta Ferrite, AQM = As-Quenched Martensite. 
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Figure 23: Light optical photomicrographs of 13-8+Mo dissolution Gleeble samples 

heated to various temperatures with 10 second hold time. (A) Base Metal (B) 500ºC (C) 

600ºC (D) 700ºC (E) 800ºC (F) 900ºC (G) 1000ºC (H) 1100ºC (I) 1200ºC (J) 1300ºC. 

TM=Tempered Martensite, δ = Delta Ferrite, AQM = As-Quenched Martensite. 
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Figure 24: Plot of hardness as a function of peak temperature for 0, 5, and 10, seconds for 

(A) 17-4 and (B) 13-8+Mo. 
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Figure 25: Plot of hardness as a function of peak temperature for (A) 17-4 with a 0, 5, and 

60 second hold and (B) 13-8+Mo with a 0, 5, 60, and 120 second hold. 
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Figure 26: Light optical photomicrographs of 17-4 Gleeble samples subjected to a 

primary peak temperature of 1100ºC and then heated to various temperatures with 0 

second hold time. (A) 1100ºC primary (B) 400ºC (C) 500ºC (D) 550ºC (E) 600ºC (F) 

650ºC and (G) 700ºC (H) 700ºC with a 5 second hold. TM=Tempered Martensite, δ = 

Delta Ferrite, AQM = As-Quenched Martensite. 
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Figure 27: Light optical photomicrographs of 13-8+Mo Gleeble samples subjected to a 

primary peak temperature of 1100ºC and then heated to various temperatures with 0 

second hold time. (A) 1100ºC Primary (B) 400ºC (C) 500ºC (D) 550ºC (E) 600ºC (F) 

650ºC (F) 650ºC with a 120 second hold TM=Tempered Martensite, AQM = As-

Quenched Martensite. 
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Figure 28: Secondary heating experiments performed with a primary peak temperature 

treatment of 900ºC, 1100ºC and 1200ºC with no hold and secondary heat treatments at 

550ºC for 17-4 and 13-8+Mo for (A) 17-4 and (B) 13-8+Mo. 
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Figure 29: Plot of ln (ln ((HF
1.5 − H0

1.5)/(HF
1.5 − H0

1.5))) vs ln (t) for (A) 17-4 and (B) 13-

8+Mo. 
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Figure 30: Plot of apparent activation energy for (A) 17-4 and (B) 13-8+Mo. 
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Figure 31: Plot of measured vs calculated hardness for 17-4 and 13-8+Mo. 
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Figure 32: Plot of measured vs calculated hardness for 17-4 and 13-8+Mo using data 

optimization to achieve best fit. 
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Figure 33: Calculated diffusion distances for (A) Cu in Fe and (B) Ni in Fe. 
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Figure 34: SmartWeld isotherms predicted for 17-4 with an (A) 1000 J/mm (B) 2000 

J/mm and (C) 3000 J/mm heat input. 
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Figure 35: SmartWeld isotherms predicted for 13-8+Mo with an (A) 1000 J/mm (B) 2000 

J/mm and (C) 3000 J/mm heat input. 
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Figure 36: Hardness maps measured across a dual-pass 17-4 GTA weld made with a 1000 

J/mm heat input with 25%, 50% and 75% target overlaps. 

 

 

Figure 37: Hardness maps measured across a dual-pass 17-4 GTA weld made with a 2000 

J/mm heat input with 25%, 50% and 75% target overlaps. 
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Figure 38: Hardness maps measured across a dual-pass 17-4 GTA weld made with a 3000 

J/mm heat input with 25%, 50% and 75% target overlaps. 

 

 

Figure 39: Light optical mircograph of the cross-section of the 17-4 2000 J/mm primary 

weld pass. Demonstrating the oblong nature of the weld pool. 

  

 

Figure 40: Hardness maps measured across a dual-pass 13-8+Mo GTA weld made with a 

3000 J/mm heat input with 25%, 50% and 75% target overlaps. 
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