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ABSTRACT OF A POLYNOMIAL APPROACH TO TOPOLOGICAL ANALYSIS

. | by

Richard M. Davitt

The paper is a report of some work of Professor Kenneth

Leland which may be found in his papers (1) A Polynomial

Approach to Topological Analysis and (2) Topological Analysis

of Analytic Functions. Section 2 of the thesis expands the

development of (1) while Section 3 amplifies a portion of (2).
In Section 2 many basic results of topological analysis
are obtained for tWice=c0ntinuously.differeniiable.funCtions
using only fundamental techniques. A form of the Maximum
Principle'and:Stharz?s Lemma are proved leading to an
extremely useful growth rate.estimate for polynomials. Then,
using the StoﬁeéWeierStrass Theorem, we obtain a polynomial
sequence approximating functions f which are twice
continuously differentiable on the unit disc; and finally we
; convert this sequence intoa¥90wer-Seriesexpansion‘fﬂr f on
the unit disc. Welalso=verify thefﬁpen;mappiﬁg thedrem and
the Fundamental ThéOrém,ofAlgebra. ‘
~In Sectiom:3:Wéﬁproveea,usefﬁl Maximum Principle for
. the.differeHCeJquotient and the_Vitali—Stieltjes Theorem.
Then we use an adaptation of a standard proof of the Riemann
Mapping Theorem to obtain a polynomial sequence approximating
functions f which are differentiable on the unit disc.
Finally, we convert this sequenée into“a power series

expansion for f on the unit disc.
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1. Introduction
- In the introduction_torwhat has become the standard
- English reference work in the field of topological analysis,

appropriately entitled Topological Analysis [15], Professor

Whyburn has described the subject in the following manner
"Topological analysis consists of those basic
theorems of analysis, especially of the
functions of a complex variable, which
are essentially topological in character,
developed and proved entirely by
topological and pseudo-topological methods."

The phrase "by topological and pseudo-topblogical
methods" was furtherVClarified,in the4same introduction in
a more or less negative fashion by Professor Whyburn; he
remarked that in topological analysis,la.minimum use is to
be made of all such machinery énd_tQOls.of analysis as |
vderivatives, integrals, and power series. Howener,:mUCh
of the more recent work done in the field has made great
use of the"derivatiﬁe and the closely relatednfunCtion, the
difference guotient. But in géneral no use of the line
integral is made, and it has evolved today that the funda-—
mental differentiating aspect of tOpnlogical analysis as
opposed to classical analysis is that it makes no use of
any form of integration. | '

In classical complex analysis the uSual-@evelmeént
for deriving the fundamental propertiés.of analytic functions'
revolves around the integral and, the Cauchy Integral Formula.
Having establishedtneCauchy Integral.Fofmula}one:can
then obtain the infinite differéntinbility of“analYtic
functions,.Morera*s~Theorem, Liouville's Theorem, and -
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the Fundamental Theorem of Algebra as veritable corollaries.

ARouche S Theorem, the open mapping theorem, the Maximum

Principle, the power series expansion for analytic functions

Professor Whyburn has proven this'theorem in the above
mentioned text using the topological analogue of the
winding number, . the topo logi.c.afl_ or circulation index. In
the journals over'theipast;feW'years,'mathematicians,
active in research in the field of topological analysis,
have used the open mapplng theorem as a startlng point for
thelr developments For example Porcelli and Connell
([31,([51) have derived the infinite dlfferentlablllty and
anti- dlfferentlablllty of analytic functlons, the eXistence
of a power series expansion for such functioﬁs in certain
regions of the COHmlex,plane, Eiduville'S‘Theorem, and the
removable 51ngular1ty theorem u51ng only the open. mapplng

theorem and the difference dquotient.
J

Most recently Connell [2] has demonstrated how one o,
fundamental broperty of analytic functions can be proved
quite succlnctlyuus;ng only the technlques;of'algebraio
topology.. U51ng homology theory and an analogue of the
winding number, he has produced a very simple proof that

the existence of one derlvatlve for a function of a complex
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Variable implies the existence of the second derivative.

In a polynomial approach to topological analysis the
baSic tools are, of course, the complex polynomials and
the central result(Sbught is the existence of a power series
expansion_er functions analytic in some bounded region R,
In this paper two:developments leading to such a power
series expansion will be elucidated. Both of these
developments have~£heir origins in the work of K.O. Leland
(f9],[lO]). In the first development (Section 2) the family

of complex valued func¢tions A ={?:f8C2 on U, f&€C° on T}

1

will be the focal point where U is the open unit disc in

the complex plane and T is its Closure. Using this attack

many basic results of'topblogical analysis will be obtained

for tWice continuously differentiable functions without the
use of the_intéégal, measure theory, topological indexes or
-algebréiCitOpology; The entireldeveiqpmént‘is self-
contained and uses only elementary methods and the Stone-
Weierstrass Theorem. The second de'vélopm'ent (Section 3)

is more complicated and not self-contained. Certain basic
results will be taken as independently proved by the methods
of topological analysis. Poiynoﬁials will again be central
to the deveicpménthqwever; At the beginning of each of

the sections a brief outline of the development will be

given. The theorems used without proof in Section 3

are listed in the appendix with references. These theorems

will bé referred to by letter, e:g., Theorem B.




In the paper the following notatlon will be used. Let

K denote the complex plane and @ the p051t1ve 1ntegefs.
For r > 0, let U(r) denote the interior of the circle C(zx)
with center at the origin and radius r. As noted above
U(1) is denoted simply by U; further C(1) will be denoted |
by C. For real numbers a and b, R(a+bi)=a and I(a+bi)=b.

- If M and N are subsets of K,vwe let $§(M,N) denote the" real
number inf {lx-yl':st,yeN}. If R is a subset of K then we
. shall denote the set R-R by B(R), the boundary of R. If V
is é simple closed curve, let E (V) denote the exterior

" (unbounded component of the complement) of V and I(V) the
interior (bounded component of the complement) 6f V.

Let £ and g be functions.on;subsets of K sﬁththat the
range of g lies in the domain of f. Then fag shall denote
the function H such that h(z)=£[g(z)] for all z in the
domain of g. For zgK, let I,(z) be the identity‘mapping.
Let f be a function defined on a set S in K, into K. 1If f
is CQntihuous, we shall call f a map of S into K; f is

]

called an open map, if f(V) is open in K for all open sets
VES.
2. The;StOné4WeierStrass Aﬁprdach

In“IQEOrem 2.1,’wepproveﬁihe;Maximum Modulus Theorem
for the elemehts of the family A described in the ihtro-
duction. 1In Theorem 2.2,_app1ying Theorem 2.1, Wemadaptﬁa

theorem of Porcelli and Connell [5] to show that all

tunctions which are uniform limits on U of sequerces of
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polynomials lie in»A*andgare infinitely differentiable on

U. Theorem 2.3 is a particular case of Schwarz's Lemma and
is used to prove Theorem 2.4, the key to the Section. It~
_makes use of a simple auxiliary function to obtain growth
rate extimates'¥ér polynomials'which depend only on the
magnitude of their real parts.

Employing the Stone-Weierstrass Theorem we show that
every continuous functionoﬁ'the boundary C of U may be
extended to a function on:ﬁ'which is the uniform limit. on
U of the real parts of a sequence of p@lynomiais; Applyiﬁg”ﬁ
Theorem 2.4, we show that these sequengesumust converge on
U'ﬁo-complex differentiable functions.

7Given‘a twice continuously aifférentiabie‘fUQCtiOnwf
on U, we then readi ly obtain a polynomial sequence approxi-
mating f on U. Simple arguments of Leland ([9],[10]) and of
Porcelli and Connell [4] are then used to convert this
sequence into a power series'expaﬁsidn,fot‘f'On U.

In the last part of the development we obtain as a
by-product the theory of'harmonic.functions in the two-
dimensional case, including the existence of conjugate
harmonic functions and the resolution of the Dirichlet
problem for the CifClEsi‘Thé Fundamental Theorem of
Algebra and the open mapping theorem are also verified.

Finally it should be noted that the restriction of our
attention to twice continuously differentiable functions is
not as narrow as might appear. For the results may be readily

extended to complex differentiable functions in general by

-G




'making use of Whyburn's Maximum Modulus Theorem [15].

Theorem 2.1: Let f€A and set uy = Rf, v = If. Then for zeU:

(1) lu(z)| € sup {lu(t)l :tec},
(2) Jv(z)] ¢ sup {|v(t)] :tec),
(3) 1£(2)] ¢sup {J£(t)1 :tec}

Proof: For the functions u and v, thezcauchyﬁRiemath

equations hold, i.e., ux'= vy and uy = —VX .

5.

On U, since u,v£C20n U; we have

uxx + uyy' = VYX - ny = ny - ny = 0.

Similarly, v__ +wv.__ = 0 on U.

Given €2>0, let r{z) = (€/4%lzl2 for zeU. Let w = u + r..
The function w is a real valued one of two variables
defined on {(x,y):x%+y? ¢ 1} . Further,
Weey T W =u +u +r. . +1r ..
| XX Yy XX Yy XX yy °
But r = (2/4%]4? = (8/4)(x2+y2),’Where'z = x+iy.

Then rx = (&/4) (2x) = | (€/2)x and .i:jr.xx = &/2.

Similarly, r = 2. @
Arly, - vy €/

Finally, W +’WYY'= 0 + €/2 + €/2 = e‘for z€U.

Assume that for some z€U, w(z) 2 sup {w(t :teC) .

Slnce W is a real valued continuous function defined on the

closed set U, it assumes its maximum_atasomé innt of U.

Hence, there exists z,€U such that wfzq)~=fsup fw(t):teﬁ}.
’Thus'wx(zo) = wy(zo) = 0 which is a necessary condition for

a real valued function of two variables to have a maximum

R




at an, interior point of its domain. If w(z,) is a maximum
Valué of the functionusz), then w réstricted tQ the real
axis and w restricted to the imaginary axis must also have
a maximum at z,. However, for ali z€&U, wxx + wyy = €.
Thus either W > 0 or Wyy > 0 and w restricted to the real
axis or w restricted to the imaginary axis must have a
minimum at z,. Since w is not a constant function, we
have a contradiction:. Thus w(z) < sup {w(t):tec} for zeU.
Letting €+0, we ﬁave u(z) € sup {u(t) :té€c} for zeu.:

In a similar manner by using the function W] = -u + r,
we can show thatgw1(z) < sup {wy(t):t€c} for zeU and that.

-u(z) £ sup {-u(t):t€c} for zeU.
But u(z) € sup {u(t):tec} < sup {lu(t)]:tec} and
-u(z) € sup {-u(t):t€C} £ sup {lu(t)] :tec} .
3_3+Hence, lu(z)] £ sup {lu(t)|:tec} for zeu.

The argument for (2) is analogous since v is also a
real valued harmonic function. Simply@réplace u by v
wherever it dppears and (2) foilowS immediately.

To prove (3), assume there exiéﬁs z,&EU such that
[£(z0)] > M = sup {|£(t)]:tec) .

Consider the function g(z) = f(z)/M for z€U.

la(zo)| = |£(zo)[/M > 1,and for tec,

There exists n €w such that [g(z.)"] > 2. Clearly the

function [g(z)]naA. By the triangle inequality,

(9(zo)" | £ IRI9(2z)"1) + |Tlg(zo) 1] .




Then by parts (1) and (2),

l9(zo) " < sup {IR[g(t)™1):tect + sup flilg(t)™1]:tect,

and |g(z,)?| £ 2 sup {]g(t)nl:tscf.
Finally, [g(zo)nl € 2 since |g(t)l ¢ 1 for teC. This

contradiction proves (3).

_Theorem 2.2: Let Pl,PZ,@.. 95 § sequence of .polynomials,

which converges uniformly on U t

a limit function f. Then,

f&A and all derivatives of f on U exist.

Proof: Without loss of generality, we may take .;Pf:.L(jO*)f'*'=‘i 0
for i &w. For zeU and iew set

- Pi(z)/z for z # 0
5Qi(2) = :
N Pi(O) for z = 0 .
Let z€U, z # 0. Then |z| # 0 and there is N&« such
l

that for n2N, new,

[P (z)-£(2)] < €12,

where € is an arbitrary positive number. Hence,
|

o0

IPn(z)/z-f(z)/zI < € for n2N and we have shown that SQi i=1

is a sequence of polynomials which converges péintwise to
£(z)/z for all zeU, z # 0.
Furthermore, if z&€C, then there is Mféw such that
for n2 M, new, and €20, IPn(z)—f(z)l < €,
Hence, an(z)/z - f(2)/z] < EV];[ for n 2M. But for zeC,
lzl = 1 and we have B
lQn(z) -. f(z)/z| < € for n>M and zeC.

Thus {Qif£:1 is a sequence of polynomials which converges

uniformly on C to f(z)/z. —
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Since Qi”, 1gW is a polynomial, Qie A. Also (..,Qm-Q‘n)
1s 7an element, of A for all m,n Ew. By'Theorem 2.1,
12y, (2) -0, (2)] < |Q, (ta)-Q_ (to)]
for all zeU and some t gC.
We note here that the complex plane K and all closed
subsets of K afe;gomplete. Hence, a sequence is convergent
(in K or in the ciosed subset 6f”K) if and only if the
seqpehée is a Cauchy sequence. Thus there exists Né€®w such
that for m,n2 N and all th,
o, (t)-0_(t)] <E€.
Then, ,}Qm(z)—Qn(z)I<e for all m,n2 N and zgU.
By the remark above, there exists a limit»functionlgb

such that the sequence {Qi {:& converges uniformly to Q.

on U. Thus £f'(0) exists and in faCtlis,equaI to Q,(0) =

lim Q _(0) = 1im P'(0). Finally, f is differentiable on U.
nN=>ee I N~ oo I

Let O<"o <1l, mneew, ZCU(f)' Then,

P (t)-P_(2) P (8)-P_(z)

t-2z n B t-z FteC

Pﬁ(z)-PA(z)‘ £ sup
< (l-f)-lsup{an(t)-Pn(z)-Pm(t)+Pm(Z)l :tec)
< (l—P)-lsup(an(t)-Pn(z)l +[p_ (£)-P_ (2)] :tec}

_l
$£2(1-p) sup {| P (£)-P (t)] :tec} .
Let €20. There exists NE€w such that for m,n 2N, m,nwW,

2, (0)-p, (0] < ©1-p)/2 . )

-10-




- Finally, ‘
IPn (2)-BL(2)] < 12/ (1-p)11(1-p) /2178 = €,
and the sequence of polynomials fPi?{Z& converges uniformly

on compact subsets of U to f'.

An application of the above process to the polynomials

{Pi}{jl will show that f" exists and that the sequence
{PE};:H converges uniformly on compact subsets of U to f".
Furthermore, continued applitation of the same technique

leads to the conclusion that f possesses derivatives of all

orders on U. Trivially, we also have that f€A.

Theorem 2.3: Let f€A such that f(0) = 0 and such that there

exXists a sequence of polynomials zpifi=l which converges

uniformly on U(§) to f for some 0< §< 1. Then for zEU,

lf(z)l £ Mzl where M = sup ﬂf(t)l :t£C§.

Proof: _ f(z)/z for z # 0
For zgU, set g(z) =

£'(0) for z =0

If z # 0, g'(2z) = [2f'(2)-£(2)]/22 and

9" (2) = [2°£"(z)-22f' (2)+2£(z)]/2z3 .
Thus for z€U, z # 0, g'(z) and g"(z) exist and are con-
tinuous since fé€A.

Let us now consider the case of z = 0. For zgU(§),
- P.(z)/z for z # 0
define Q. (2) =

| P' (0) for z =0 .
i
Following the proof QfVTheorem_Z.Z,‘We.conclude that

0 . —
{Qi j=1 converges uniformly on U(§) to g. Hence, gé&A on

U(8) and both g'(0) éna.g“(0) exist and are continuous in

-11-




particutar. Thus we have shown that g€A.

Applying Theorem 2.1, for z€U, z#0, we have
|£(z) /2] = |g(2)] € sup (|a(t)]:tec)

< sup { |E(t)/t]:tec} = M.

Finall&, |£(z)| € Mz . |

If z=0, [£(0)] = 0 and 0 = M-z[= 0.

Corollagz (Fundamental Theorem of Algebra): Let P be a

Polynomial and suppose that P has no roots. Then P is

a constant.

Proof: Let P be a polynomial and assume P has no roots.

Then 1/P is a bounded, twice differentiable function in K.
From Theorem 2.3, for z€K and [z]| €< r,
IP(z) - P(0)l ¢ sup {IP(t)|:tec(r)}-Izl/x
£ sup {IP(t)l:tEK} - |zl /r.
If éup {IP(t)l:teK} = M, we have

[P(z) - P(0)| £ Mlzl /r.
Letting r-so, we see that |P(z) - P(0)| = 0. Hence,

|P(z) - P(0)] = 0 and P(z) = P(0) as was to be shown.

Lemma 2.1: Let f€A and set M = sup {|IRf(t)|:tec} . Then,

lf(z)l2 < |2M + f(z)| 2 for z€U.

Proof: Let u = Rf. From Theorem 2.1, -u £lul €M for z&U.

Hence, 0 € M + u

< AM2 + 4Mu

and |£(z)12 ¢ 4M2 + 4aMu + |£(z2)] 2 .

Consider the product T = [2M + f(z)][2M + f(z)] .
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T = 4M2 + 2Mf(z) + 2MF(zZ) + |f(z)]2

M2 + AM(£ (2)+E(2)1/2 + |£(2)]2

= 4M2 + 4Mu + | £(z2)] 2

Hence, |£(z)]2 § [2M+£(z)] [2M+F (2] = [2M+£ (2) ] [ZMFE(2) ]
JosI2M + £(2)) 2. .

‘Theorem 2.4: Let 0 €« r € 1, and let P be a polynomial such

that P(0) = 0. Then for z€U(r) ,|P(z)] € 2M:Iz1/(1-r) where

M = sup {IRP (t) [ :t€C}

Proof: For zgU,: set g(z) = P(z)/[2M + P(z)]. Unless P = 0,
géA. By Lemma 2.1, lE:(z)Izﬁ |2M + P(z)l2 . Thus,

P(z)/[2M + P(2)]|2 € 1 and

g(z)| £1.
h [
For z€K, new, set Qp(z) = Z [-P(z) /2M] &
(=1
P€A and the sequence P; = P for i€wconverges uniformly to

P on U. Also P(O) # 0. Thus we may apply Theorem 2.3 to
P and we have ;
P(z)] £ NIz] for z€U where N = sup {|P(t)]|:tec} .
Hence, [-P(z)/2M| = IP(z2)l/2mM £(N/2M)|z] for zev.
Since N/2M is a flxed constant, we can find $>0 such that
(N/2M).§ ¢ 1/2 . Consequently, for zeU(§),
=P (2) /2M] & (N/2MMz) € (w/2m)-8 € 12

The sequence of polynomials {Q }°° converges uniformly

¢=]
on U(§) to -[-P(z)/2M][1 + P(z)/2M]-1 since |-P(z)/2M] < 1
for zeU(s§). Thus, {Qi};:1 converges uniformly on U(§) to

[P(2)/2M] [2M + P (2)/2M17L = B(2)/[2M + P(2)] = g(2).

Further, sirnice g(0) = 0, we may apply Theogem 2.3 to g(z).
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Let zE€U(r). We already know that |g(z)| € 1 for zeT.

‘Hence, sup {|g(t)l:t£C} €1 and |g(z)| ¢ lzl”for zeU(r) by

Theorem 2.3. We now have
lg(z)] = |P(z)/12M + P(2)]] < |z| .
Therefore,. e
IP(z)] € |2M + P(2)] « |zl € 2M:zl +|P(z)}|z] .- , and
I/P(Z)l-(l-lzl) = |P(2)l - IP(2)]:]z]
£ 2Miz) + |P(2)lz] - lé(z)l-lzl
- £ 2Mjzl . |
Since Izl £§ r <1, 1 - 1z{ > 0 . Thus,

[P(z)] & (2M:jzl)/(1-12]) < (2Mlzl)/(1l-x).

Let X be a compact Hausdorff space. Let C*(X) be the
set of all continuous complex valued functions on X. The

set C*(X) is a linear space since any constant multiple

-of a continuous function is continuous and the sum of two

continuous functions is continuous. The space C*KX)
becomes a normed linear space if we define [Jfl| =

sup {If(x)l:xeX} , and a metric space if we set f(f,g)~=
llf - g)]l. As a metric space C*(X) is cOmplete.

Definition 2.1: A linear space A of functions in C*(X) is

)

called an algébra if the product of any two elements in A ~
is again in A. A family T of functions in C*XX) is called

a subalgebra if for any two functions £ and:g in T and any

complex numbers a and b, we have af + bg ¢ T and fg € T.

Definition 2.2: An algebra A in c¥*x) is called a Banach

algebra if A has a norm such that A is a complete normed




linear space and ‘multiplication satisfies the condition:
llesll < Nell-fafy -

The boundary of the unit disc, C, is a compact
Hausdorff space. C*(C) becomes a Banach algebra if we

define |[I£fll = sup flf(z)l :2€C§ .

Lemma 2.2: Let z&C. Then

(1) zn.z.m = Zn-m if n>nm,

NIl ~M-n .
z Z Z if n¢m,

(2)

Q(:é) 20 = ,Z,Zn which is a real number.
Proof If zgC, then z = eio, zZ = e_ie where 0 £ @ < 2T.
Thus, z' = eine and 0 = ”1m® .
(1) | If n>m, then,
Zn’é.m _ (eine) (e-ime) = l(n-me _ LA
(2) If n¢m, then,
L0l _ (eino) (e—im@) = o~i(m-n)é _ .Em—\n .
(3) If n=m, then,
LM _ LD (zZ)n _ (‘Z,Z)n _ lZ,Zn .

Lemma 2.3: Let,é%C) be the Banach algebra of cqnﬁinuous

complex valued functions on C.. Then the familz T generated

by functioné" of the form P{z) and P (z) where zEC and P is

a complex polynomial is a subalgebra of c¥(c).

Proof: Let S(C) be the set of complex polynomials over C.

Let a,bé&K, and P,QE S(C). Then we have
(1) aP + bQ = R where R €S (C),

R where R €S (C),

(2) aP + bQ

-15-




(3) aP + bQ = R + N where R,N& S(C),

(4) aP + bQ = R + N where R,NgS(C).

Thus fef a,bdk, f,g€T, we can conclude that
(af+bg)&@T. Furthermore, P-Q = R where RE& S (C) and §6= R
\where RES(C). If we now consider the remaining product
‘possibility P-@, by Lemma 2.2 terms involving ztgm reduce

| | n-m M-n
to terms of the form z , Z r Or to real numbers.

Hence, P-Q = R + Q where R,Q&€S(C). We now have that

~1f f,g€T, then (fg)€T. Thus T is a subalgebra of C*(C) .

Lemma 2.4: Let c¥*c) be the Banach algebra of continuous

complex valued functions on C. If T is the subalgebra of

)

C*(C)- generated by funct»ic,)f:_fns‘ of the form P(z) and P

(z
: s s : = ¢
where z€C and P is a complex polynomial, then T = C (C).

Proof: By Lemma 2.3, T is a subalgebra of C*(C) . If feT,

then Rf and If are elements of T since Rf = (f+f)/2 and
If = (£-%)/2i = (£-F)i/2 .~

Let'a,bGC, a # b. Th6¢identity:function I,(z) is an
element of T. Hence, Rz and Iz are real valued elements
of T. Since a # b, either Ra # Rb or Ta £ Ib.

| Define the function g(z) as follows for zéC:
L Rz if Ra # Rb
g(z) =
Iz if Ra = Rb .

We observe that geT and g(a) # g(b). Thus we have

found an element of T which separates points. Since the

complex valued and real valued constant functions on C are

- elements of T, we may apply the Stone-Weierstrass Theorem

~16-
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to T and conclude that T must contain all continuous real
valued “fimctions on C. Finally, if fEC*(C), f = utiv,
where u and'v are real valued continuous functions on C.

Thus, T = C’(C) .

Theorem 2.5 (Lelandﬁtg]); Let ¢ be a continuous real valued

function on C. Then:

(1) There exists a continuous real valued function h

on U such that h(z) = ¢(z) for all z&C.

o
(2) There exists a complex valued function w on U

such that all derivatives of w on U exist and

such that h(z) = Rw(z) for all zgU.

(3) If fe€A, there exists a sequence of polynomials

o0 : : = L e
{Piii=l which converge uniformly on U to f.

Proof: (1) Let é(z) be a continuous real valued function on

C. By Lemmas 2.3 and 2.4, there ekist sequences of

: c0 o |
polynomials {Pi§i=l and iQi§i=l such that the sequence

iPi+6i§£:1 converges uniformly on C to ¢ . Without loss

of generality, we may take Pi(O)'= Qi(O) = 0 for iew.

For 1 &w, R(P,+0;) = [(P;+Q;) + (P,+0.)]1/2

= [P+ Q) + (P;+0,)1/2

[(Py+0;) +(F¥0,)1/2
| = R(Pi+Qi) .

Let hi = R(Pi+Qi-)- for igw. Since iPi+Qi.§ i=] converges

uniformly on C to the real valued function ¢, the seqﬁence

— “ ' »
iR(Pi+QiﬂE=1 converges uniformly to f on C.

1o
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But hj = R(Pj+Q,) = R(Pi+§i) for i ew ., Hence, {hi}i.:l

converges unifv'ormly'to ¢ on C.
Let € 20. There exists Né&w such that for m,n2 N, teC,
IR[Pp (£)+0m (£)] - R[Pp(t)+Qn(t) ][ < € .
But the function Pm+ Qm-Pn-Qn €A for all m,new, 'Thus; from
| Theorem 2.1, for m,n 2 N, z&€U, we have |
Ihm (2) =hy, (2)] = IR [Py (2) +Qp (2) 1-R [Py (2) +Qp, (2) 1]
¢ sup {IR[Pp (t)+Qn (t) 1-R[Py (t) 1-Q, (t) 1] : tec).
Hence, |hp(z) - hn(z)|4<£ for m,n 2 N, zeU, and the
sequence {hi}i.jz con_vergés uniformly on U to a limit

function h such that h(z) = $(z) for zeC.

(2) Let us now consider the ”s.equenc&é {Pi+Qi};:1
formed in part (1) of this theorem. Since Pj(0) = Q;(0)= 0,
P;(0)+Q;(0) = 0 for i ew . Thus we may apply Theorem 2.4
to the polynomials P; (z)+Q; (z), i Ew.

Let 0 < r <1 and € »0. There exists Ne€w such that
for tEC, m,n 2N, m,new,

|hm (€) =By (2)] = [RIBy (£)+Qn ()] = RIP_ (t)+0p (t)]]
< (&2) [(1-r)/r]
Let M = sup {lR[Pm(t)fl-Qm(t)-Pn(t)'—Qn(t)l :ttC} . By ;}Therorem
2.4 we have for m,new and zegU(r),
[P (2)+0n(2)] = [P, (2)+Q,(2)1] € (2Mlz) )/ (1-1).
We note that M = sup {|R[P (t)+Qn (t)]-R[P,(t)+Qp (t)] :tEC) .

Thus, M < (&/2) (l-r)/r since the supremum is assumed for

some t, €C.




Hence, for z€U(r), m,n 2 N,

| (P (2) +0m (2) 1= [Py (2) 40, (2) 1] < [2r€(l-r)1/[2r (1-1)]

| | < E,

3Thué, we see that the sequence {Pj_+Qi};:1 converges uniformiy
on compact subsets of U to a limit function w. By Theorem
2.2, all derivatives of w on U exist. Further, h(z) =
Rw(z) for z€U as desired.

(3) Let feA. set ﬁ(z) = Rf(z) for zé&C.
From Theorem 2.1 we have 0

IR (z) ~h(z)] < 05U, {IR[f(t_);--h-(t)]l :teC(r)} = 0.

Thus Rf (z) = h(z) for zeU.

. Set u R(f-w) and v = I(f-w). -
A-RJ(.f_.-'-'w:)' = Rf - Rw = Rf - h = 0 for zgU. Thus u = 0 on U.

X Yy 4 X

Let zeU, z = ,;x+i"y. Since v, = v,=0onU, v=con U,
where c is a real constant. Thus, v = I(f-w) = If - Iy =
If(0) - I£(0) = ¢. Since Iw(0) = 0 from part (2), v = c
on U where If(0) = c. Finally, f-w = u+iv = ic and f = w+d
where d is a complex constant.

If {P ;+0Q i} :1 is the Ségi'~t?1e"ﬁ;ce considered in part (2)

which converges uniformiy:on compacta of U to w, set

Ri(z) = Pj(z) + Qi(z) + d for iew, ze—ﬁ.. Clearly the
sequence {Ri}¢:1 converges Auniformly tQ f = w+d on compacta
of U.

Let €>0. Then there exists 0< §<1 such that for all

z,teU with [z-t| € 1- &, [£(z)-f(t)] < €/2. This follows

-~
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from the fact that, since f is continuous‘dn the compact
set U, it is uniformly continuous there. .
Further; there exists Néw such that If(z)-Rn(z)[<£/2
| Vfor n N, néew and for alixzs:ﬁ;(S) . v
Let Ai(z) = Ri(8z) foflall z€K, iew . If 285} then
§28U(8). Also [z-8§z|= [(1-8)lz] € 1-§ for zeD. |
Thus for n2 N, zeU,
|f(Z)-An(Z)l = |f(2)-£(§2)+E(§2) -Ry (§2)|
$ 1£(z2)-£(§2)] + [£(52)-R (§2)]
< &2 + €2 = €.

o0

._, converges uniformly to £ on ]
L=

Hence, the sequence {Ai}

as desired.

Remark: Since -hxx +h =0on U, h(z) = ¢(z) for zeC, we

YY
have solved the Dirichlet problem for the circle. [6]-
Iw.is-Called'the.cthUgatefharmonic function of h.

Theorem 2.6 (Porcelli and Connell [4, P.232]1): If P(z) =

/

" ‘ | u
Z apzp for z€K, and |[P(z)| € 1 for ze&U, then laj] €1
Pso - T | - -

for i =0,1,2,...,n.

Proof: Trivially, the theorem holds for polynomials of

degree zero. Suppose for n gw, it holds for polynomials

| n+d :
of degree n or less. Let P(z) =§fdapzp be a polynomial

of degree n+l with [P(z)l € 1 for zeT.
Let 6¢C, i.e., IOl = 1.

 Set Q(z) = 1/2[P(z)-P(8z)]. Then Q(0) = 0.




Q(z)/z for z ¢ 0
Set Q(z) =

Q'(0) for z =0 .

- Qo is a polynomial of degree n,and from Theorem 2.1,

Q2 ()] ¢ sup {1, (£)]:tec} = sup {[Q(t)] :tec .

IN

sup {1/2 ) p(t)-P(8¢t)]:tec}
£1/2 sup{|P(t)] :tec} + 1/2 sup {|P (6t)[ :tec}
$1/2 (1+1) =1 .

By the induction hypothesis,~for>p =0,1,2,...,n

e pil;y
| +1.
|(ap+1/2) (1-6775) ] ¢ 1.
Choose 8€&C such that.9p+ll= ~-1.

Then we have for p = 0,1,2,...,n ,

[(3p41/2) 1-6P"1) | = |(ap+1/2) (1+1)] = [apsp| ¢ 1
Finally, la.l = |P(0)] € 1 by hypothesis. Hence,

|ap| £ 1 for p = 0,1,2,...,n+1 and the proof is complete.

"
Corollagz 1z 1f P(z) = Z apzp for zgK, and [P(z)] € 1
- P=0

:for zsﬁll- 1/n) whefe ne w, then |ap] < (1- l/n)-'p forﬁ

p = O’lIZ'QOO’mA .

m
Proof: Let P(z) = z a

pZ for zeK, and [P(z)] € 1 for
P=0 |

-

zgU(1l- 1/n).

™ |
For z€K set Q(z) = 3} a,[(n-1)z/n]P = P[(n-1)z/n]
= 0

Let z€U. Since Izl € 1, [(n-1)/n]-lz] £ (n-1)/n

Hence,
| [(n-1)/n}z| € (n-1)/n and [(n-1) /n]zeU(1- l/n)-@ Thus,
IQ(z)] € 1 for ze&U.

Further, Q(z) = ﬁ ap[(n-l)/n]p P =
: . P=0 24
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From Theorem 2.6 we have, for p=0,1,2,.. .,m o,

,ap[(n-l)/n]p' <1 .

Finally,

la ) < [(n-1/n1"P = (1- 1/n)"P for p=0,1,2,... ,m.

| T
Corollary 2. If P(z) = PZ apzp for zgK and |P(z)] €8
=0 — -

for some 6>0 and all z¢U, then lap[ < @ for p=0,1,...n.

) 4]
Proof: Let P(z) = ;apzp for z€K, and suppose that [P(z)|£€0
=0

for some @>0 and all zgU. Let Q(z) = P(z)/@ . Q(z) is a
polynomial of degree n and JQ(z)l € 1 for zgU. Hence,
from Theorem 2.6, we have

\\\

|ap/9| ¢ 1 and Iapl < 9 for p=0,1,2,...,n.

Theorem 2.7 (Leland [10,p.171]): Let fgA. Then there

oo
exists a power series T(z) = Zapzp, which converges
a DX - =3

uniformly on compact subsets of U to f.

Proof: Let n g¢w. By Theorem 2 5 there exists a sequence
of poljno‘mials {Pi} j:l which converges uni-._form-l_-y on
U(l- 1/n) to f. Hence, there is péw such that

[P (2)-£(2) < (1/2)™* for 26T (1- 1/n).

Further, [P, (z)-P,(2)] ¢ (1/2)" for i, 2 p, i,jew, and

z&ff(l— 1/n). Let Qn =P , Q . = j'Pp+l"'° . Then for new,

P’ “n+l

i,j 2 n, and zeU(1l- 1/n),

n
lQi(Z)-Qj(z)l ¢ (1/2)" .

i

By the Corollaries to Theorem 2.6,

lajag,l € (/27 - 1/m) 7K,

for all kew where (aik—ajk) denotes the kth coefficient of

— 2 2=

/




the polynomial (Qi-Qj) when that coefficient is defined,
and (aik-ajk) = 0 when k is strictly greater than the

- o N oo A
degree of the polynomial. {aij}'zg is a..sequence in K

o0 N |
such- that Qj(z) = 'z ajkzk for jew. But for a fixed
— =0

k ew, this sequence is a Cauchy sequence in K and hence
a convergent sequence. Thus there exists aﬁtK such that -

for new, i8w, i>n,

lag-aix] € 2(1/2% - 1/m ™% = /2" as m*
Let n&w and léth° denote the degree of Q,. For
k n,, kew, ahk = 0 and hence, | »
lak| | ay - ankl € l/2)n-l(l4~l/nf‘k°
Thus %imosup lak] /kﬁ (1- l/n)_l. And since n is
arbitrary, we' have lenLﬂlp ’akll/k N .
If we consider the power series T (z) 2E§kz5 we see

that its radius of convergence is 1. Hence, T(z) converges
on compact subsets of U in a uniform manner.
Let zgU. There exists hew such that|]z| < 1- 2/n}
Thus,
I z}-(1- l/n)'» < [(1- 2/n)]1[(n-1)/n]
¢ [(n-2)/n][n/(n-1)]
< (n¥2)/§n-l) <1 .

Consider now IT(z) - Q (z)] = 'S: (ak-ank)zk, .

ITiZi-Qn(Z)I s Z]ak-anklld
K

g

-k k

i .
Y (1/2)%" - 1/n) "zt .

Ks

tA
o
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Since lzb(l-l/n)—l“t l, we have | ’
~

IT(z)-0_(2)] ¢ (/2" {i-(n/(n-1) 11123 L .
But |z} € (n-2)/n. Hence, |
' IT(2)-0, () ¢ (1/2)" 1 {1-[n/(n-1)1- [(n-2) /nF?
g (1/2)""1{'1-[(n-z)/(n-l)1"l
< (1/2)" [ (n-1-n+2)/(n-1) ]
(1/2)" 1/ (-1 17t = (-1 (/2)™7E

Thus lim Q (z) ‘T(z). Since lim Q_(z) = f£(z) for all zeU,
n=yoeo n=>oco 1N o

-1

iIN

we have T(z) = f(z) for all ze€U. Also, T(z) converges

uniformly on compact subsets of U to f.

Theorem 2.8 (Open Mégping_Theorem):}Lgt‘f“gg_gﬁnpnfconsgsnt

element of A. Then F(U) is an open Set.

Proof: Given z EU, we wish‘to.shOW=that‘fTZ@) is an

element of the interior of f£(U). Without loss of generality,
we may take z, to be 0. Let f€A. From Theorem 2.7, £ can
| o0

be expanded in a power series .§:apzp . Since f is
p=o0

non—-constant, there exists new such that an # 0 and

[‘18

f(z) = for zeU.

P"’ poo
' = P
Set g(z) = Zam_pz for zeU.
P=o
- Thus, a,+z A?g(Z) = a,+z" Zan+ zP = aopt Zan+ Z P
=0 p P=0 p
= apt a ZP = f(z) for =zgU.

We note that g(0) = a_ # 0. The function g is
continuous. Hence, there exists 0<&<1 such that g(z) # 0

for all zsﬁ(S). To see this, suppose the contrary. Since
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a. # 0, then ]anl 2 0. From the continuity of g, there is

- 0< § <1 such that lg(0)-g(z)] < ]anl for |[z] <A:
Let & = §/2. Then |g(z)-g(0)] < la | for ;zls_S. If
g(t) = 0 for some teU(S), then |9(0)-g(t)] = g (0l < Jal.
This is a contradiction and we have thus veriried that
there exists 0< &< 1 such that g(z) # 0 for all zeG($).

Thus, f(z)-a, = zng(z) # 0 for all zéﬁ(f), z # 0.
Also, £(z) # a, for all z€U(§), z # 0. Since £(0) = a,,
£(0) ¢ £[C(5)].

Let M = £[U(§)]. Then B(M) denotes the set of boundary
points of ‘the set M. Suppose now, by way of contradiction,
that £(0) £B(M). ‘

The set M is compact since T(§) is compact and f is
a continuous function. Therefore, M is closed and bounded
in K; For the same feason f[C(§)] is a compact, closed
and bounded subset of K. |

Let r) = §({£(0)} ,£[C(£)1). Since £(0) #£1C(s)]

and since f[C(§)] is a closed set, r. > 0.

1
Let w) €K - M such that I'wl-f(O)I < r-l,_‘/2. We are
assured of the existence of such a poing since the set
{w:’f(O)-wJ.( rl/Z} is a neigthrhood of £(0) in the
w-plane and, since f£(0) & B(M), it contains at least one
point w; which does not lie in M.
Let r, = S(iwli » M). Since f(0)gM, r, < rl/2; since

M is closed, 0 < r,. Furthermore, since M is closed, there

exists w2€M such that [wl-wzl =r, .
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lf(t)-wll >‘r

|£(z)-w | 2 r, for all zeT(§). Let t,eC(§) and

suppose that lf(to)-wll = r, ¢ rl/2.. Then,

2
I£(£6)=£(0) = I£(t,)-w +w,~£(0))

¢ [£(to)-wyl + I£(0)-w,|
< T, + rl/2 < ry .

But this is a contradiction.since [f(t,)-£f(0)] 2 r Thus

1
, >0, for tec(s).
Let h(z) = r,-[f(z)-w;] ~ for zeU(§). Since w ¢ M,

£(z)-w, # 0 for all zeU(§). Hence, heC’ on U(§) and hec®

on C(§). We note that

sup {In(t)l :tec (8} = sup {Jryl£(t)-w;1 Hrtec (o)}

<1

since lf(t)-wll > r., for all té&C(§).

2

But there exists z,eU(§) such that f{zz) = w.. Thus

2
| [h(zz)l = lrj[f(t)—wl]-l’ = 'rj[wz-wl] l, = r2/;2‘=gl--

This contradicts Theorem 2.1; hence f (0) f B(M). Since

f(0)EM, this implies that f(0) is an element of the interior

of M and consequently an element of the interior of f(U).

3. A Riemann Mapping Theorem Approach

In this section alsomewhat more complicated attack
is followed to derive a power series expansion for fﬁnctions
differentiable on the unit disc. The open mapping theorem
and the difference quotient are basic tools in the
developmeht; the key intermediate theorem is an adaptation
of a standard proof of the Riemann Mapping Theorem [13] in

Theorem 3.3. Most of the work done previous to the proving




-of this theorem is simply auxiliary in function although
some.of it has independent import. For example, a
useful Maximum Modulus Principle for the difference
quotient is obtéined in Theorem 3.1 and a basic théorema
concerning families of uniformly bounded differentiable
functions is verified in Theorem 3.2.

Following Theorem 3.3, the }nverse,function of the
function Obtained in that theorem, which maps U in a
one-to-one manner onto i bounded region S, 1is shownthQbe
unigue. Cbnsequently,ji; iS'pereﬂ.that given an arbitrary
differentiable function £ on U, there exists a sequence of
polynomials {P i} :1Which converges uniformly on compact
subsets of U to f. Finally, a power seriles expansion 18
obtained in Theorem 3.6 in exactl&-the“same fashion as in

Theorem 2¢7ucgmpleting the development of the section.

Lemma 3.1l: Let T'gg{g_bpundedigggn-set,and ﬁ a function

which is continuous on T”andiggen-on T, Then if W 1s

a complementary domain (§h¢ogggnentggf the complement)

of £[B(T)],
FE(T)NW #+¢=> WEE(T).

Proof: Suppose £(T)N W # $. Since T is an open set, £(T)

« —

is open in K and f(T)N W 1is open 1in W. since T is closed
and bounded in K, T is compact. Thus £(T) is compact and
hence closed and bounded in K. But f(mMyNw-=1=£ (TR W.

Hence, f£(T)AW 1is closed in W. Finally, since W 1s

connected, £(T)NW = W and WEE(T).
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Lemma 3.2: Let V be an open set and peV. If f is

continuous on V and open on V-{p}, then f iswggén'on V.

Proof: Let D be an open set of V COntaining p. We wish to
show that f(p) is an element of the interior of f(D). Let
S be a circle with center p such that SlII(S)siD.

Suppose f(p)Ef(S). S €D-{p}. Hence, f(S)SF[D—{p}].
Since D-{p}is an open set of v-{p} , f[D-{p}] is an open
set in K and an open subset of f(D). Thus f(p) is in the
interior of f(D). |

Now suppose f(p)ff(S). Let Tn:.I(S)—{R}; thisyis’an
open set of V and V—{p}. Let I(C) be the interior of a
circle containing f (p) With<I(C)flf(S) = ¢. .The existence

of such a circle is always assured since f(p)eI[£(9)].

We note that I(C)-{f(p)} N £(T) # $. Let W be the comple-

mentary domain of f[B(T)] containing I1(C)-{f(p)} . By
Lemma 3.k, WES£f(T)." Hence, I(C)-{f(p))Sf(T). Thus,

I(C)€£(T) and f(p) is an element of the interior of £(T).

Finally, f(p) is in the interior of f(D).

Lemma 3.3 (Connell[3]): Let R be a bounded‘region and pgR.

If h is a function which is continuous on R and differen-

tiable_on R-{p}, then for all zeR,.

lh(z)] < sup{lh(t)lzteB(R)} .

Proof: Suppose h is constant on R-{p}. Then h is constant

~on R and equality holds above.

Suppose that h is non-constant on R-{p}. By Theorem B,

h is open on R-{p}. By Lemma 3.2, h is open on R. The
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function |h(z)] is continuous on R and,héHCe attains its
maximum at some point z,€R. Suppose that z,€R. Then

|h(z,)] would be a maximum of [h(z)| in a neighborhood

|z-z,] < § S R. But this is impossible unless h{z) is
constant ih this neighborhood. ,Hence, h is constant in R,
-contradicting the assumption, and lh(z)l £ sup {lh(t)l ':tEB(R)} ,

for all zeR.

Theorem 3:1: Let T be a simple closed curve, R = I(T), and

'S a set cgntaining'ﬁ. Let f be a continuous function on S

such that f is differentiable on R. For péR, z€S let

, [£(z)-£(p)]1/(Z-p) if z # p
g (2) =

£' (p) . dif z =p .

Finally, if Q(z) = Qf p(z), then for all z€R,
= ,

|(z)] ¢ sup{lo(t)] :teT} .

Proof: From the definition of the derivative, Q is

continuous on R. Furthermore, Q is differentiable on R-{p} .

iHenCe,'by%Lemma 3.3, for all zE€R,
jo(z)] ¢ supﬂQ(t)l:taTi :

Corollary: If Qf b 1s a non-constant functioni-then'far
= , , .

»

all zgR,

§ |Qf,p(z)ls< supﬂQf,p(tﬂ :teI} :

Lemma 3.4: Let F be a uniformly bounded collection of

differentiable _functions on an open set S. Then F is

an equicontinuous family of functions.
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Proof: Let pe¢S and T be a circle with radius r and center p E

such that f{": TUI(T)<SS.. There exists M >0 such that

|£(z)I ¢ M for all z&S and ali feF. If fe€F and z€R, then

P S Pl ey PR s st S Ee T :
e O T R e S S R R T e iR e s e e LY .

e s A 3

from Theorem 3.1,

1Q¢ ,(2)] ¢ sup {lo; (o)l :tet}

< sup {I£(t)-£(p)l /r:teT} € 2M/r .
Thus, |f(z)-£f(p)] £ |z-pl*(2M/r) . Hence, if ‘é
fz-pl < (r/3M)¢ for z¢ER, . ]
I£(z)-£(p)l £ (r/3M) (2M/r)E < &
Thus F is an equicontinuous family.
Theorem 3.2: Let F be a uniformly bounded collection of

| o0
differentiable functions on a region R. Then if {fn} n=1

is a sequence of functions from-F, there exists a subsequence

{fp } r P <P, <&iie which converges uniformly on compact
y St S

subsets of R. -

Proof: By Lemma 3.4, F is an equicontinuous family of

functions. A constructive proof of the theorem now follows

using the equicontinuity of F and the "rational points" of
R. The prototype of such a proof may be found in Nehari[11],

pp.141 ff.

Lemma 3.5: Let f and g be polynomials such that for each

B | z€U g(z) # 0. Let S be an open set in U and h(z) = £(z)/g(z)

- for z€U. Then if{Pi} 5= is a sequence of polynomials

converging uniformly on cempact subsets of h(S) to a limit
‘ co

function F, there exists a sequence of polynomials {Qi]i=l

converging uniformly on compact subsets of S to Feh.
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Proof: Since Pnyh = Pno(f/g) where f and g are polynomials

with g(z) # 0 for each zgU, new, clearly there exist
polynomials f and g  such that g (z) # 0 for each zeU,
and Pnoh(z) = fn(z)/gn(z) for zeU.

By Theorem A, there exists a finite collection of
numbgrs ao,zl,...,zp such;thatzqn(ZJ = a9(zl-z)(zz-z)---
(zp-z) for all ze&K. Further, since:qn(z)‘# 0 for each zgU,
we have |z | >1 for k = 1,2,...,p. Thus if zgU,

’z/zk’ = lzl/,;k|< 1.

Hence, for k = 1,2,...,p the sequence of polynomials

{Tkm}m=l converges unlfOrle on U to

{Qnm}m;l is a sequence of polynomials converging uniformly
on U to ﬁh/gn o

Suppose that p; < p, < ... is an increasing sequence
in @ such that for new, zeU,

10, (2) - Ppoh(z)] < 1/n .

npn

Let M be a compact subset of § and let €20 be given.

Since h is continuous, h(M) is compact. Also, there exists

N >0 such that n >N, new implies that 1/n € &2 and

'F(Z)_Pn(z)' < E/2 for all zgh(M). Thus for zeM and n >N,




n €Ew, we have

n(Z)'.ﬁ IFoh(z)-Pnoh(z)l + lPHOh(Z)-QnPn(le

ngh(z)-an
€ 1/n + &/2 < €.
Hence, thesequence{ﬁnp:}nzl converges uniformly to Foh
n

‘on compact subsets of S.

i

Lemma 3.6 (Connell and Porcelli,[3] and [5]): Suppose that

{fn ;:i is a sequence of differentiable_functions defined

on an open set S, converging uniformly on compact subsets

of S to a limit function F. Then F is differentiable and

{fn'(zi}nzl converges t¢ F'(z) for all zeS.

Proof: Let p€S and let T be a circle with center p and

radius r such that D =TUI(T)ES.

|

Set Qké).= [F(z)-F(p)1/(z-p) for z€K - fp} . For néfw,

e e ©
let-Qn = thfn .  $}nce the sequence {fn}nﬁl converges
oo

converges
n=1 g

‘uniformly on compact subsets of S to F, {Qn}
uniformly on the compact subset D - {p} to Q.
By Theorem 3.1 for z€D, m,nhew,

lQn(?)*meZ)l £ sup {IQn(t)—Qm(t)l:teT}

£ sup {lfn(t)-fm(t)l/r -:tCT} .

But since {fn}n=

| converges uniformly on T, there exists
'Neéw such that lfn(t)-fm(t)l & r¢ for m,n 2 N, m,néw and

all teT.




i
‘Hence, for m,n 2 N, m,néw and zé&D, ‘ ‘ |
| :\
|Qn(Z)-Qm(Z)| < r-€/r = €, and we see that g
co ' .
{an=l converges uniformly on D to a limit function Q,. %
Clearly Q,(z) = Q(z) for all zeD -“{p}. Hence, F is" . ﬁ
] ] ! (o - = ”. = 11 ! ]
dlfferenplable at p and F'(p) Q. (p) %iﬂan(p) %ﬁﬂbfn(p)’ ]
‘]
g Lemma 3.7: Let S be a simply connected open set in U, such
; that 0€S and S # U. Then there exist polynomials f and g,
;i such that for each zegU g(z) # 0, and a one-to-one
g differentiable function h on S into U such that h'(0) > 1,
; h(0) = 0, and [f/gleh(z) = z for all zE€S.
ﬂ Proof: Let tgU - S. If zEU, |
l1-tz| 2 1-1tzl 2 1-Jtl >o.
é We can thus define the function g
i A(z) = (t’Z)(l-EZ)—lfor 26Uy We have that = %
| | t-z t- 1t -22-t+z , "u‘
' t - l-j'E 1-F :
| e -tz | . |
AoA(z) = 7 t-2z = = 2.7 i |
1 - 'E( - ) l1-tz-l1Y¢+tz |
| 1-tz - N
1-tz 1
2 (1= |t1 %) o |
= 1-1el? - 4|
Thus, A is one-to-one and A(G) = U. Trivially, A(0) =t |
and A(t) = 0, and hence OfA(S). A is differentiable on S. [
"By Theorem B, A is an open map on S. Hence, A(S) is a -
.simply connected, open set in.U not containing 0.
From Theorem D, there exists a one-to-one
differentiable function H on A(S) inthK such that




-

®

[H(2)]1% = z for all zea(s).. Then I[H(t)12] = || €1 and

lH(t)I € 1. Further, for zeﬁ, [1-H(t)]z # 0. Hence, for zeﬁ-
welcan define B(z) = [H(t)-z][l—H(t)z]-l . Performing the

same computation as we did for A(z), we find that

BeB(z) = z and hence B is also one-to-one. We note too

-

that BOH(t) = 0.

For z€S, set P(z) = BeHeA(z).

Since B, H, and A are one-to-one differentiable functions
in'their respective domains, we have that P(Z) 1s one-to-

one and differentiable. Further, P(S)SU and

P(0) = BoHoA(0) = BeH(t) = 0.

For z€U, let K(z) = zz. - Then for zeU, let'Q(z) = E

AoKeB(z). Since A, K, and B are differentiable functions

in their respective domains, Q is differentiable. Also,

Q(U)E U since |z|2 € 1 if and only if |z| ¢1. . Noting
that BeB(z) = z for each zgU and that KeH(z) = 1H(z)}23= z
for each z€A(S), we have for zgU,

QoP(Z) = [AeKeB]e¢[BoHoA] (z) = AoKo[BijOHoA(z)

= Ao[KoH]oA(z) AoA(z) = z . &
Thus, [QeP(z)]' = z' = 1 for zeU.

But [QeP(8)]' = Q"[P(0)]-P'(0) = Q'(0)-P'(0). Hence,

Q'(0):P'(0) = 1.
For zgU, set
 lo(z)/z for z # 0
Qo (2) = : |
Q'(z) for z =90 .
Q, is continuous on U and differentiable on U - {0} . S
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A

| K(z) =_22 is not one-to-one and hence Q is not a one-to-one

function on U. _Thus, Q, cannot be constant on U. From the

Corollary towThebrem 3.1 for all zgU,
|Qc(2)} ¢ sup §]Q,(t)] :tec}.
But, sup §]JQ, (t)] :tecf = sup {Jo(t)/t]:tect
| = swp flot)f stect ¢ 1
Hence, |Q,(z)] ¢ 1 for zgU and in particular ]QO(ON =

’Q' (O)' £ llo Since Q' (0)‘P' (0) = l.' we havethat 'Pl (0)')1.

Now let s = P‘(O)/IP'(O)I and'setﬂhlé) = sP(z) for =ze&S.

Since P is orne-to-one and differentiable,"h = sP is also
one-to-one and differentiable. We note that

Is| = 'P'(Q_)/I,P'(O)H = |p' (0) /JP' (0)] = 1.

Hence., ih(z)l = |IsP(z)] = |[sHP(z)} = IP(z)] ; since P(S)e U,

h(S) € U.

~[sP(0)]1' = sP'(0) =

Furthermore, t

"BT(0)P' (0) /1P (0)

[P'(0) %/1P* (0 = IP'(0) > 1.

Also, h(0) = sP(Q3'= s-0 = 0. Finally, consider the function
QoF, where F is defined to be F(z) = 2z/s for z€K. QoF = f/qg
where f and g are polynomials and g(z) # 0 for each zeU.
But QoFoh(z) = [AoKeB]oFo[s§BoHoA}] (z)

= [A_OKoBoBoHOA] (z) = z
by an earlier computation.

b

Thus we have verified that h(z) is.the desired function.




proof of the Riemann Mapping Theorem given by Saks and

Zygmund [11], pp.225-230.

L

Theorem 3.3(Leland [7, p.169]): Let S be a bounded simply

connected open set and z,8S. Then there exists a one-to-

one differentiable;qulF of S onto U such that F(z,) =0,

o
i=1

F'(z,) > 0, and a sequence of Eglynomials {Pi}

converging uniformly on compact subsets of U to L,

Proof: Let E be the set of all one-to-one differentiable

maps £ of S into U such that f(z,) = 0, £'(z,) » 0 and

(-~ <

such that there exists a sequence of polynomials {Qi}i=l

Ccnvefging-uniformly-on compact subsets of £f(S) to f-l.
~Sihce S isboundéd, there exists M > 0 such that
lz| € M for all zeS. Let A(z) = z;zo for zeSfm A(z,) =46
and |A(z)] = |Jz-z, < |z| + [zl € 2M < 3M for zes.
Let B(z) = kA(z) where 0 < k < 1/3M.
B(0) = kA(0) = 0 and B'(z,) = [k(z-2,]" = k > 0.
IB(2)] = |ka(2)] = klA(z)] < k3M < (1/3M) (3m) < 1 \
Hence, B maps S into U. ‘Clearly both A and B are one-to-
one differentiable maps and.trivially there exists a
Sequence of polynomials converging uniformly on conpact
subsets of B(S) to-Bfl s?nce Bfl(z) =A(l/k)z for ng(S).‘
Thus BEE and E is not empty.
If s = sup {f'(zo):fSE}, then s isdfinite since the

functions in E are uniformly bounded by 1. Also, s>0
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- since B'(z,) > 0 for the function B constructed above.

o0
Further, there exists a sequence {fn n=1 in E such that
lim f'(z,) = s. The family E is uniformly bounded and

hence by Theorem 3.2, there exist Pi<Py&=- in @ such

that {fp} n=1 converges uniformly on compact subsets of S

to a limit function F. From Lemma 3.6, F is differentiable;

ﬁF“(zo) = s > 0 and hence F is non=constant. From Theorem C,

F is one-to-one and from Theorem F, F(S)€ U.

For new let C_ = {zeF(S):§[{z}, K - F(S)] 2 1/n}.

\o‘e”" . .
Cn is closed and *bounded and hence compact for new.
oo

Further, F(S) = nlé’l C, - Given the sequence P{<P,< -+ inw

determined above ’ then by Theorem F, there exists ngw such

that if m2p., m ¢ w, then Cns fm(S) . Also, for new, there
. » - o0 J
exists a sequence of polynomials {Pni}i=l converging on

compact subsets of £ (S) to f -1 since £ € E for each n.
Pp Ph - Py
Finally, there exists d;<9,< ++- in @ such that for new,

'ann(z) - fp-l(z)| € 1/n for zECn.
| “n

If D is a compact subset of F(S), then there exists

an integer n,, such that DSCn . Let €0 be given. Then
0 >

by Theorem F, there exists M>»n, such that m> M, mew

implies that f _l(z) - F-l(z)' < € for all z&C . Hence,
P I |

o

for zEDS_:_Cn and m>M, mgw, we have
o]

-1 -1 -1, -1
'F (z) qum(Z)‘ < lF (z)..fpm (z)l + ’fpm (z) qun(\Z)

< &2 + 1/m .
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Thus, lF'l(z)-‘pm‘

q (z)] <& form sﬁf’ficiehtly large, and we
m

have found a sequence of polynomials cohverging uniformly
on compact subsets of U to FL Finally, F(z,) = 0 and
we have shown that FEE.

Suppose now that F(S) # U. :By=ﬁhe continuity and
differentiability of F, F(S) is a simply connected open
set of U containing 0. From Lemm$.3.7, there exist
polynomials f and g such that for each zgU g(z) # 0 and

a one-to-one differentiable function h on F(S) into U

such that [f/g]leh(z)

z for all z€F(S) and such that
h' (0) > 1. We note that h_le) = [£(z)]/[g(z)] for
zeh[F(S)] = W.
Consider thF(zo)]“ ;We;ﬁaVéf ‘
[hoF(z,)]"' = h'[Fbi)]-F'(zo) = h'(0).s > s
Now W = h[F (S)] is:an.0pen set in U since h is a
differentiable functién%on F(S) and F(S) is an open set.
Aléo F(S) =,hfl(W§.sincé h is one-to-one. Since FEE,

there exists a sequence of polynomials {Pi} converging

i=1

uniformly on compact subsets of h—l(W) to F—l. From

0
Lemma 3.5, there exists a sequence of polynomials {Qi}i=l

converging uniformly on compact subsets of W to F-th-l.

But (Fhloh-l) = (hoF)—l. Thus hoF€E,which is a contra-

diction. Hence F(S) = U.
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Theorem 3.4: Let S be a bounded simply connected open set

in K, z.,€S, and xge'U - {03. Then there exists a uniqpe

differentiablevonefto-one function f on U onto S such that

1

(1) £ © is differentiable, £(0) = z,, £'(0) > 0, and there

: ” : co :
€X1lsts a sequence of polynomials {Pi}i=l converging

uniformly on compact subsets of U to f, and such that (2)

if_g‘igfg one-to-one map.of U onto S; such that g is

differentiable on U - {x&}, g(0) = z,, and g'(O) > 0, then

g = f.

Proof: The existence of at least one function f satisfying

(1) is assured by Theorem 3.3.

Let g be a function satisfying (2) and set

.Q&z):= f log(z) for all zgU. Then Q is a one-to-one map of

U onto U such that Q is differentiable on U - £x.f . Also,

0(0) = £7%g(0) = £ (z,) = 0,.and
Q' (0) = [£log(0)]" = £1 [g(0)1-g'(0) = £71 (z,).g'(0).

I
But £'(0) > 0 and £ "(z,) = 0. Hence, £1 (z,) > 0. Also,

g'(0) > 0 and thus Q' (0) > 0.

For zgU let T = QQ 0° Thus,
floa(2)-£7%q0) _ £ logz) if z £
T(z) = v Z

Q'(0) if z = 0 .
From Theorem 3.1, we have
su T(z)l :2zeU3 € sup su T(t)| :teC(r)f € sup 1l/r = 1.
p {IT(2)l } o YR, SUP {lT (o)l } < oS
Thus [T (z)] € 1 for all zgU.

Since Q is one-to-one and Q(0) = 0, Q(z) £ 0 for

z€U - £0}. But Q'(0) > 0. Hence, T(z) £ 0 for all zeU.
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Applying Theorem 3.1 to 1/T, we have that |T(z)| 2 1 for all
- z8U. Consequently, |T(z)] = 1 for all 2€U.

If z # 0, T(z) = [f Tog(z)]/z. Since |T(z)] = 1, we
have that [f Tog(z)]/z = e'™, where « is fixed. From the
continuity of T(z) at 0, T(0) = el" .

But [T(0) = [o'(0)l = 1. Also, Q'(0) > 0. Hence,

T(0) = Q' (0) = el“= 1. Thus for z & U-§0%,

£ Y0g(2)1/2z =1 or £ %g(z) = z. Also, £ Yg(0) = 0.

'T'herefore, for all zgU, f-log(z) z and £ = g.

Theorem 3.5: Let xer, Xo # 0, and f be a cont}nuous

function on U such that f is differentiable on U- x5 .

Then f is differentiable on U, and there exists a sequence
' <

which converges uniformly on compact

. Ca co
of polynomials fPiz i=1

subsets of U to f.

Proof: Let 0 €< 1 and r = 1-& . Then from Theorem E,

there exists p > 0 such that the fhnctionmg(2)'= f(z) + pz
for z€U, is one-to-one on U(r). Choose r su¢h-that X, EU(xr).
Let S = g[U(r)]. Since f is differentiable on U-fx.§ , it |
is aifferentiabie on U(r)-{x.§. Hence, g is differentiable
on U(r)-f§x} , and by Theorem B, g is open on U(r)-§x.f .

From Lemma 3.2, gzis open on ﬁ}r), fHence, S 1s an open

set in K. From the:. continuity of g, we see that S is

also simply connected. Furthermore, U(r) is a bounded
region; thus by Lemma 3.3, for all ze€U(r),

lg(z)] ¢ sup {Jg(t)l:teC(rﬁ}. However, a cantinuous

function assumes its maximum M on a compact set such as C(r).




Hence, |g(z)] ¢ M for all z€U(r) and the set S'=fg[U(r)J is
bounded in K.

Since g is o‘ne-to;one on U(r), g'(z) # 0 for z&'U"(ﬂr)-fxo}.
In particular g'(0) # 0. Hence, |g'(¢0)| » 0 and,without

loss of generality, we may take g'(0) > 0. Simply consider

the function h(z) = sg(z) where s = g'(0)/|lg'(0)] and note
that h'(0) = sg'(0) =1{g' (0] 2/|g" (O) = 1g' (0) > o.

| Thus, from Theorem 3.4, g is-differentiable and there
QXiSFS a sequence of polynomials {Pi}£:1 which converges
unifo;mly on compact subsets of U(r) to g. Hence,
{Pi—pIQ}£:1 converges unifOrmly on compact subsets of U(r),
and in particular, ﬁ1-2€’ to f. By a diagonal process we

obtain a sequence of polynomials {Qi} such that

i=1"

|, (z)-£(2)] < (1/2)" for zgu This is the desired

1- 1/n°

sequence.

Theorem 3.6: If f is a differentiable function on U, then
oo K
there exists a power series :E:anzn which converges uniformly
| - = n=0 — = =

on compact subsets of U to f.

Proof: Let né&w. From Theorem 3.5, there exists a sequence

of polynomials {Pi}i=l which converges uniformly on
U(l- 1/n) to £. The constructive proof is now identical to

that of Theorem 2.7.




APPENDIX

We list below the theorems used without proof in

Section 3 with references. | ; -

Theorem A. (Fundamental Theorem of Algebra) (Whyburn[l1l5,p.77]): -

. Evéry'non-constant polynomial has at least one zero in
the complex plane.

Theorem B. (Open Mapping Theorem) (Whyburn[15,p.76]): If f is

a non-constant differentiable function defined on a region
R, then f is an open map.

Theorem C. (Hurwitz Theorem)(Whyburn[lsfp,llnq); Let the

sequence of functions‘fn,eéch continuous and differentiable
in ahregion R,'converge‘unifqrmly in R tova“funCtion'anot
hidentically zero. Then if z,6R is an m-fold zero of f,
every sufficiently small neighborhood D of z, contains

. exactly m zeros of_fn_for nN (D) .

Corollary: Let the Sequénce of functions fn,each
differentiable and univalent in a region R, converge
uniformly in R to a non-constant function f. Then f is
also univalent in R.

Theorem D.(Leland{lO,p.lﬁZ]):,Let Zz.,€£K and let S be a

simply connected open ‘set excluding z,. Then there exists
a‘map k of S into K, such that [k(z)]? = z-z, for all zeS.

Theorem E. (Leland[10;p.165]): Let A be a finite subset of U

and 0¢r<1l. If £ is a map of U such that f is differentia-

ble on U - A, then there exists P > 0 such that the function

—-42= |




g(z) = pf(z) + z for 28U is one-to-one on U(r).

Corollary: Let A be a finite subset of U and 0 < r ¢ 1.

If £ is a map of U such that f is differentiable on U - A,
then there exists p »0 such that the function g(z) =

f(z) + pz for z8U is one-to-one on U(r).

Theorem F.(Lelaﬁd [10,pp.167-168]): Suppose that {f{};:l
is a sequence of one-to-one differentiable functions on a
simply connected bounded open set S into U, converging
uniformly on compact subsets of 8§ to a limit function F
non-constant on each component 6f S. Then F is a
one-to-one differentiable function such that F(S)€ U.
Moreover if‘M is a compact subset of F(S), there exists

N>0 such that n2N, ngw, implies ME fn(S) . Furthermore,

-19 €0 . 1
{?n }n=N conve;ges uniformly to F on M.
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