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ABSTRACT

The thesis deals primarlly with the study of Markov

mesh statistical dependence and the use of this mesh

assumption in pattern classiflcatlon. The patterns
classified were binary randdm variables and came from
one of two populations. The Markov meﬁm assumption wes
used to derive a discriminant functioﬂzﬂ with f.he aid of
design samples. Test samples were classified. The pop-
ulation from which the test samples came were not known
& priori. The test samples were independent of the design
samples. The number of errors of classification ‘w_e‘re noted.
The performance of the discriminant function based
on the Markov assumption was compared to the performance |
of other discriminant functions obtained under other
statistical assumptions. The Markov assumption performed
as well as but not better than the other methods.
The sample size problem is noted and discussed, This
problem is as yet unsolved, R

A four-level linear normal discriminant ﬁ.mctlon was

obtained and evaluated All evaluations were ma.de using

identical data. The four level decision process was used




®

because the restriction of small sample size

is not as severe,.

The number of errors was very much greater than iith those

"discriminant functions using other assumptions about the

~Probability,
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Chapter 1. Introduction

In the course of -eé.ch day, everyone is called upon
to make many decisifons.h Some of these decisiong are unique;

the occasion for the decision occurs only seldom, while

—

- the occasions for some other decisions occur frequently.

A man working on an assembly line, inspect{hg a product and.

Moy

deciding if it is faulty or not is an example of the latter

5

Lype of decision., Another oxdnple would be a sonar operator

deciding if he was hearing a ship or a school of fish (if he
is good enough, the type of fish could also be decided).

l Mahy of these rbutine decisions are simply classifiéétions.
In the above examples a sound is classified into Group 1
(ships), Group 2 (submarines), or Gr&up 3 (fish) and a
product is classified as a good or a bad product,

Instead of having man make these routine classifications,
it would be desirable to have a machine make this type of
classi_f.‘icatioﬁ and thus liberate mén to make the more unique
~ decisions. This has been done. Work done in the field of
Upattern rec'ognit:'non" or "pattern classification" has
accomplished this aj:;xto a limited extent, For example,

Philco~Ford Corporalt\ion has built a machine which scans an -

<
at
»
- - .
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aerial photograph and locates M-48 tanks (army military tanks)

~on the ﬁh‘otﬂograph. The discrimination between tanks and non-

~ tanks occurs with a high degree of accuracy.

~ In classifying something one must first determine the
characteristics of the object to be classified and then use
these characteristics bo decide to which group the object
belongs., In det.ermning the eharacteristics, various
measurements are made on the object., These measurements

are then variables in a "discriminant function", The value

~of the discriminant function determines in which group the

object is to be placed. The problem in classification is
to' choose the correct discriminant function and to choose
the proper measurements to meke. Choosing. the best measure-
ments o make on an object is a difficult and unsolved. problem.
in this paper we assume that the measurements made are properly
chosen and thus ignore this problem. The pajer is concerne&
with examining various discriminant functiong, |

There are tyo typed of discriminant functiona., One type
of discriminant function is baged on assumptions concerning
the statistical distributions of the populations from which

the objects come., Since each object of a given population

~

¢
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is not ;dentical the measurement of a certaih trait“hili
vary from dbject to object within the group. There will
be some statistical distribution 6f the measurements. This
1s termed a parametric approach. ,Diffefent statistical
distributions o% the‘ﬁeasurements mayiyield different forms
(i.e’. linear, quadradié, cubic, etc..) of the discriminant

/

'functions. However, sometimes the fonm stays the same but

different coefficients result, The second type of discriminant

function is one derived without assuming anything about the

| probability distribution of the variables. This'ﬁyPe is -

termed non-parametric, Thiéipaper is concerned primarily
with the parametric type of discriminant function, An
assumption of Markov meshfh;tatistical dependence is made

and the discriminant function calculated. The discriminant
function is used to classify objects. The number of misclass-
ificatibns 18 a measure of the performance of ihe discriminant

function, The‘discrimination based on the Markov mesh

assumption is compared with previous work done using a

. different assumption concerning the statistical

distribution of the variables. Some work is also done with

multilayer discrimination. The sample size problem is

~
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" Chapter 2.  Theoretical Considerations

-

Classification Theory

We consider the case where the individual (denoting

either a person or an object) to be classifiéd £8n come

frbm one o_f"two populations (groups). Population 1 will
~ be denoted as Gy and population 2 as G,. An extension
of t/lze following theory to more than ’qwo populations can
be matde.2

Let X (a vector) dénote the méasurements made on
the individual.

X=(Xy0 Xpp eeey %) |

X iﬂs a point in n-space., We divide the n-space into two
parts, Ry and R, (Fig. 1). ”

Fig. 1

‘n-space Universe Consisting of Two Populations X

4
~

g

‘g
,
i
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G4 and 4if X is in R , We say that he belongs to G, One | o

If X falls in By we say that the individual belangs to -

must accordingly determine the boundaries of the region
~R1 and RZ’ The boundaries may be dedided by using the
criterion that the total loss incurred in. the classification:

should be a minimm. We consider the followﬁng costs of
misclassification

decision | | | \
1 2 l | | |

Real 1 R0 c(2/1)
World ‘ -
2 1 ¢c0/2) ] c2/2) | |

Gamen

Here C(2/1) is the cost of“ saying that the individual
belongs to G, when in reality it belongs to Gie A similar —_— M

interpretation is given to C(1/2), ¢(2/2), and C(1/1).

Assume X is distributed as P, (X) in G, and PZ(X> in G,.

(P1 (X) and PZ(X) are called probability density functions

%

~of Xs) Let qq denote the proportion of the universe occupied

by Gy and q, the proportion occupied by G,. A measure of

the total loss is then the cost of a classification multiplied

by the probability that the classification occurred. Thus
/

~




the total loss is

L=C(1/2) [probabillty that X is in Gz and classified as G1]
46(2/1) [probabillty that X is in G, and classified as G,
+6(1/1) .[probabmty that X is in G, and classified as G1)
40(2/2) - [probability that X is in G, and classified as Gz
Where ( probability that X &s én Gi and classified as GJ]
= (probability of classifying X in Gj /X comes from Gi:)-qi
=qq P(j/1).
Theréfore the expected loss becomes:

L=C(1/2)P(1/2)q,+6(2/1)P(2/1)q+¢(1/1)P(1/1)a,46(2/2)P(2/2)q,.

' L=C(1/2)q2 jPz(x)dx +c(z/1)q1 fP (X)dx

+C(1/1)q1j P,(X)dxX +C(2/2)q2 J‘P (X)dX.
R, - R,

jpz(x) X = jpz(x) X - sz(x)dx 9
-@g-‘ ?’ | s R Q R2

| JP1 (X)dX - IP1(X)dX
) .
R, R

B

P, (X)dX

S e e e i g S T I = EEhPaE ey T
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1= 0(1/2)qz yz(x)dx - fpzmdx]/fu

y

+a16(2/1) fp1<x>dx +(2/2)q, f P,(X)dX

R
+0(1/1)a; [ f P (Oax o f P1(X)d;J
R

L= 0(1/2)q2 +C(1/1)q1
f{[c(zh )q1P1 (X) - c(1/1 )a4Py (x)] [0(1/z)quz(x)

.Rl
' g.c(z/z)quz(x)]} ax

We want to minimize L. To do this choose Rz s0 that

Py(X)ay [€(2/1)-c(1/1)] < P,(X)ap [G(1/2)-0(2/2)]

O o) -sef) g,
Py(X) c(2/1) - c(1/1)  q

R1 is chosen so that

P(X)/Pp(X) >
. 44

=>IN
—IN
o
®
]
ct

QO
V)=
i !
®] (@

P(X)/P,(X) is called the likelihood ratio. The value of

the iikelibood ratio may be used to discriminate between

~

10
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G1 and GZ' The likelihood ratio may then be used as a
- discriminant function, Any mohotonic function of the

likelihood ratio which preserves the above inequalities

may be used instead. The monotonic function is.' used if
it provides a discriminant function easier to work with
than the likelihood ratios -
| One par‘;j.cularly useful monotonic function .;LS the A
i . logarithm. Taking the log of the likelihood ratio, we
~- get the following discriminant function:
cl'loose' G, if log P,(X) :—wlog P,(X) > log t

1
choose G, if log P, (X) - log PZ(X) <logt.

| The discriminant function is a function of the measurements,

The form depends on thé nature of P1 and P2.

Discriminant Functions for Normal Popula‘c.ions3

The multivariate normal density function is

P(X)==P(x1A 1Xoy oo ’}51) 2

= L exp(AEM)' V(X))

- | (2mn/2 |y|z

Here V is the covariance matrix.

11




S~/ r | N
V1 1 V1 2 o0 V1 n
V)= o ® ®
L
S ) @
}Vm Vnz (XN ) Vnn | ) "’“’%

Viy = E[(xi - mi)(x.j - mj)] apd m, = E(xi). E(y) denotes

- the expected value of y. M = (m1,m2. voey mn) is the vector

of means. X = (X{,%, e.s, X;) i3 the vector of the random

variables x;. Let M, and M, be the mean vectors of G, and

G2 respectively and V1 and V2 be the covariance of G 1 and

G 2 respectively. Then

2 -
P x)/2y0) =['2]" . ¢ L (o)
V1'~2- exp(-3 X-Mz)'Vz“ (X=Mp

Taking the logarithm, the discriminant function is obtained

as .

-1 -1 .. - -1
-3X'(Vy = Vo )X+ XV 'M1 -V M)

and the t;'hr‘eshold is

s

H -1' 7 N
+2(Mp'Vy M, - M M ) + log t

Y;?.
Vi

log

~




If V1 =V2.=V the discriminant function becomes

o |
XV (M1 - Mz)
and the threshold is

-1
i
log t + 3(M1 + Mz)' vV (M1 - Mz)

M1 v Moy V1 s and Vz are called parameters of the distribution,
Bj.nary Variables

Instead of having continuous variables, as in the
case of ‘the normal distribution, one may obtain binary
variébles. Binary variables may be the natural result
of the measurements. The individual does or does not have
brown hair; he does or does not have blue eyes. These
are all examples of the measurements yielcii?& binary results.
Binary variables may also be the result of a preprocessing
of the measurements. For example a photograph may be
converted from a gray scale picture t8 a two-color, black

and white“picture. In any case binary variables do arise




o

Independent Binary

Lot X=(xXq, X3y eee xn) and assume each X5 1=1yeeeon -

are binary and independent. Then P(X)=P(x, JP(x2) 0 eP(x,) -

Lét P(xi =1) =, , then P(xi=0)=1-°‘i and
Pxy )= (1. )14

P(X)= f_\;xi"m-wi)""i

n | X5
PX)= TT [ X4i | ~ (1=%)
1=t | Ty i
) v,,= ao°a1X1.a22cz ....an:cﬂ

‘where 'ﬁ' : : )
- a. = e X

° 4= i
a: = X4

1-qi

Suppose P(X) is the distribution of X in (}1. Then we may

have a Q(X) which is the distribution in Gy - T

14

RS
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QSX)=~boob{x1obzxzoooobnxh‘I

The bls-are defined in a manner similar to the definition | | .

of the a's, The lbg of the likelihood ratio is

n | |

. "a

i§=1 log bi: l x, +log (ag/bo)
i

-~

This is the discriminant function for independent biriary

Avariables. The threshold is log t. v

Dependent. Binary Variables® - ) .

In general if the x;'s are not independent P(X) is a

product involving 2" exponent:a.3 |

X2 X

P(X)=:aooa1x1oazxzooooan?hoa12x1 .313 1x3....<an-1’n)xh-txh

> X, X x
coces 172
<a1’2g30000n ﬁ

There are 2" exponents because the n binary variables can
take on 2" states. One exponent corresponds to one state,

For example, if n = 3, there are 8 states the variables

000

15
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001

010 -

011

100

101
110
111,

POO= 3G a1 1 a2 83D a1 1%2 015173 2525 4y, By

" A special case of dependent binary variables is Markovian

4 dependency.

1

- Markov Chain

~

J

Y

Consider n variables x1, Xo0 eeey Xoo A Markov chain
dependency is one in which the probability of any variable,
Say X s given all preceeding variables is equal to the
probability of the variable given a predetermined, finite
number of variables immediately preceeding the variable.

Thus for a first order Markov chain

POy X eeumyq) = Bx [x5_,) y

16




The probability of xk depends only on the preceeding variable,
For the r-th order Markov chain v

P(xk/x'l.'.x ‘-P(xk/xk rooo’ﬁ(-1
The probabihty of X depends only on the preceeding r

variables. If ker is zero or negative, the probability
of X, depends only on the k1 variables.

For the first order Markov chain, a well known property
18 that P(xk/x‘lxz...xj):P(xk/xj). Th:.s. 1s shom as follows:

-

By definition

P(X§7i1oooXk_1)=?<Xk/Xk_1) \
P(x'joooxk) : P(xk/xjoooxk_-l )P(x‘joooxk_.l)

P(x5000:_1) P(xj\.. X 1)
P(xk/xj'°'xk-1) FJP(Xk/xk_1) |

P(x000%,) Z ~ P(xj...xk)
P(X1 ...xk—1) xj""l...xk-" P(xjoooxk-1)

™

P(x1 ...xj,xk) P(xj,xk)

- PZ]‘HQO.X'&%; 'O= sz,jj

J

'P(xk/xr..xj) = P(xk/xj) Qe8.de




=0 for i<1 and i>n. Then ¢ =P(x4=1), &
. .P(x1xzoo-xn) = P(ﬁ)P(JCz/q)...P()SI/an)

Also for k<n — | R

P(xk/x1x.2. X 1% ..‘.xn) =

Py JPCy /4 Do B (e Py T) oo B[ )
BRI CYER NN IEINY PR R e Ay
P(x /x5 1)P(%, 4 /%)

- P(x, IP(x /x4 )P(x .4 /x )
= W = )3{-1 B/ Bt 14\ K4 "
| P(Xk_1 >P(xk+1 ;xk-1 )

= P ("kq"k"kﬂ )
; (xk-1xk+1 )

P(xk/xk-1xk+1 )

: ¥
Thus any point is dependent only on its two nearest neighbors,
Similarly for the r-th order Markov chain,

P(Xk/lc»l xzo ° .xk_'lxk'*"l oo .xn)'-'P(xk/xk_r. . QXk_'lxk_’,-l o0 .xk'.'r_) °
X 1s dependent only on its 2r nearest neighbors,

We develop the discriminant function for the first)

order Markov chain in the following manner., Let

o =P(x,=1/x3.1=0) and B,=P(x;=1/x;_4=1). Also define

n+1 N 3n+1 =0. .

~

L L RO R X LA AT 2 S AL




- ’l | ] ‘ .. ’ ,,-
Plcqunmp)= e (1) TT [ oo 10,1 €15
X["i“"‘id )§(1_ gi)“-xi-ﬁ(‘-xi)]

Taking logarithms:

N n
log P(X»loooxn) =AO + 121 Aill + iz Bixj__“xi

where n
A= 2 log (1= 0(1)
i=1 «

1-% 1= %54
B, = log E_:_L__ - log %i
-8, Tle

Likewise for the second order Markov chain

n n
log P(Xieeex )=A, + + B
08 FAXyeeeX, /SRy iZ= s Asxy 52 1% 1%
'n ] n
where A, = 2 log (1-%) y
i=

V19.




. ‘ . g
Ai = log Xi 4 log 1-61'1'1 + log 1 142
. l-oy 1= 11 1= %542
By = log pi + log 1~ Si+1 - log i . logz 1"'6:'|.+1
-8, =¥ 1=ey 1-% 12
C; = log ¥y . log X3 ~
1= Yy 1-0<i |
Di=1og 16.1.“ - log'(i log ﬂi + log 23
1- 51 | ‘l-’ri 1-ﬁi 1-0(1
Here %y = Plgy=t/x, , =0, X, 1 =0)
g1 = Px,=1/x,_, =0, x, , =1)

¥y =Py=t/x_, =ix,_, =0)
o3 = Plg=t/xy_, =1, % _q=)

In 'li.ke manner the joint probability may be determined
for oth;r order Markov chains, There are 'Zr(-n-r+1) -1
coefficients for the r-th order chain,

The discriminant function is cbtained from the expression
i‘orﬂthe Joint probabilﬁ.ty. Use a superscript 1 to identiéy
coefficients ﬁertaining to population 1 and a superseript
2 to identify coefficients pertaining to population 2.

¢

Then the discriminant function becomes (for the first order

~

20 .




Markov chain) - | | - | | S

(1 n B ,
Ao( )_Ao(z) . 5 (Aiﬁ) i Ai(z?? x, o | |
P LM, @) x| “
s, i i 15X
Markov Mesxh1

~ Instead of having a linear or temporal sequence of
variables, as in the Markov chain, we consider a two
dimensional array of binary variables as in Fig. 2a.
Such an array could result from a gray scale picture being
processed to yield a black and white matrix. (The picture ‘
is divided into small squares. The squares are then made
éither black or white depending on the characteristics of ‘
the gray scalé picture.) By making certain assumptions
similar to the assumptions made for the Markov chain, one -

obtains the Markov mesh distribution wherein the probability’

of a given element is dependent only on certain of its

|
nearest neighbors,. The development follows. | -




= -

. We make the following definitions:

Xn

o is an m x n matrix of binary variables (Fig. 2a.)

o
| X.,b is the variable in row a and column. _b

Z::g is the non-rectangular array of all variables
. with i< a or j<b (i.e, all variables

14J
to the left of or above x, 1) (Fig. 2b.)

X

Similar to the Markov chain, the Markev mesh yields the

following defining equationyg

P(xa.b/ Zi:i) = P(xa.b/ Ua,b/

where Ua,b is some array of variables adjacent t6 but to the
) ' ,

left of or above X, pe It may be shown that
?

m n
P(Xm’n) = ﬂ; | ?jl.i P(xigj{ Uivj>

a,b
and P(xa’b/:(’-m’n) = P(xa,b/ Yy,p)e Various Uy, p and the

- a
corresponding Ya,b are shown in Fig. 3. (Xm.’n is the arcay
| 3,0
X, p With the olement x_ . deleted.)
Thus for the third order Markov mesh
m n - »' | |

AR G0 O RS T FEORR T
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xh1 x1ﬂ}&» """" "»f.A"xhb-J x1,b ....x1.n
2,1 X,2 B pg Epp eeeXp

° ) °
A% .

* ) ) ° °

.. ° ° ° .

Xam1y1 %ac1,2 ***%aci,bat ®a1,b***%asi,n

?a,.y Jf;:a..z "'Jfa,b-1 ica..b '"Jfa,n
m,1 X2 e Xp,b-t Xgb cceXpn
X ¢

Fig. 2a,

AN

11.1 11.2 "'x1,b-1 x1,b "‘x1,n
3:2'1 ?2,2 oooi(z.b_.l . :':Z,b “"fz.n |

Xaul,1 Fam1,2 ** X3, bl Xa-1,b°**X3.1.n
Xa,1 Xa,2 eeeXy p 1

m,1  *m,2  *°*¥p, bt
R a,b
Fige 2b, 2,

o1

'Fig. 2 Definitions of irrays Used With the Markov Mesh

.
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This is developed into a discrinﬁ.nant function by following

the procedure used for the Markov chain. Let

a3y = Playy =1/x 4 5.4 =00 %y q, 5 =0, %3,3-1 =) f
by = P(x.iJ -1/x_ 1,35-1=0 X g3 =0, X 51 =1) i

13 = Plxyy =t/xy 1 5.1 =00 %y_q 3 =1 % 41 =0)
d‘ij =Plxyy =Nz, 500 =00 x4 5= x5 4 =)

P(xlJ =1 /xi-1,j-1 -1, X1, =0, xi',j-‘l =0)

A R AT P ot T g e .

fia' N P<xij =1 /xi-1,j-1 =1, %y_q,5 %0 Xy .9 =) |
., = , = = = =0) - .

843 = Plxy; 1/"14,;1-1 T E T R Y

h. . = P(x. - ) = = =

1) (xlj 1/2{1-1 ) j=1 1, i-‘l 3 1, x i.j-1 1)

P(Xm,n> can be written in terms of the eight above parameters.
As in the case of the Markov chain the logarithm of this
probability is taken. The logaritim of the probability of

a second popula’bion is subtracted to give the discriminant

function. This is shown in the Appendix,
Markov Tree

The above Markov mesh and chain are special cases of -

N |
the Markov tree, = A Markov tree dependency is one in which

a variable is dependent on one or more other variables which

4
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P(xjeeex,) = 7T P(xi/x (1))' o\j(i)<i. j(1i) ié

have no special spatial or temporal re'lationship to the -

primary variable, For example. in the first order tree
n

TR ™ ~\

i=1
integer the value of which is dependent on i, If j(i)=0,

P(xi/xj’(i)) =P(x;). It is-noted that j(k) may equal 3j(1).
Likewise for tho second order tree
n
P(x1x2...?cn)=. E P(K.‘_/ (l) (i>)
Here 0 j(1)<i and O€m(i)<i. Again if j(1)=0 or if n(i)=0,
the probability of X 1s not dependent on x,j(i ) osz xm(i)

respectivély. It is obvious that the Markov chain is a

| specia<l case of the Markov tree with (for first order case)

j(i)=i=-1. Likewise the Markov mesh is a special case of the
third order Markov tree., | :
From P(x, eeeX ) the discriminant function can be
obtained as in the preceeding sectiion. Here there is a
slight difference however, Not only must the parame’bers be
known (or estimated),- but the functional relationship j(i)
must also be determined " A method of obtaining thié relation-
ship from a probabilistically known population or from samples
of the population is presentedu.

. 26




I x 3 is dependent on X then we say that there is a .

‘branch of the tree connecting x; and x 5° Consider only the

first order tree, To determine the tree consider all‘mpossible "

branches (first order dependencies) and assign a weight to

each branch. This welight is defined as

P(x ,x.)

I(x; ox4) = Z P(xs 9%:) 1 1
BT e P eriwdy

The branch welghts are ordered and numbered so that
branch bi has a higher weight than b;j ;.i‘ i< Je IThe tree
is formed by selecting branches b1 and b2. Then the next b
which does not form a loop in the tree is added. This
process of adding branches of next lower weights under the
restriction that no loops are formed (this restriction is
needed because if a loop is formed, we would no longer have
é. tree.) continues until all variables are included and the
tree is formed. If there are branches with identical weights
this method does not lead to a unique result. As an
example“ iet

I(x, +%,)=0.079

I(x1 ,x3)=0.00005-

I(x1 ,x4)=0.9951

27
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I(x2.%,)=0.0051 | S :

I(xq,%,)=040051 |
'Thu_s the first two brahches are (x2.x3) and'(x1 ,xz). The -
third and final branch ma.y be either (x1 'XL&)' (xz.xu).
or (xs.xa,). If we choose (x1.x4), the ujo:‘mt probability is
P(X1XZJC3X4)=P(X1)P(X2/X1 )P(x3/x2)P(x4/x1). The tree is shown
in Fig. 4a. The other possible trees are also shown in Fig, 4.
An arrow from x'j to X, means ,thét xjis dependent on xi.

For the case where the population is not probabilistically

known I(xi,xj) must be estimated. I(xi.:_&j) is estimated by !

r (1,3)
\'4

’ /I\( x_ ) Z £ (1,J) 1o u -
N ’ = ) 24 "
i E L ENENENED | 9

where £ (i,j)% u,v(i"j) and fu(i) =2 n (1,3)e

fu,v(i'j) denptes £(xy = u, X =v) and fu(i) depotes f(xi=u).
n, (4,3) is the number of samples such that their i-th and
’ | . .
j=th components assume the values of u and v respectively.
A method of obtaining an optimum tree has been deve»loped.5

This was done by using a computer. The program selected the

-,
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Fig. be.
Fig, 4 Examples of Markov Tree
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firs’c' link in the chain, Then in an iterative procedure

an optimum chain was arrived at Anot.her iterative procedure /
was then applied.to the optinmm chain to obtain an optimum |
tree. The criterion of optimality was a minimum error rate.

- Experimentsl" were performed with tho Markov tree and

it was .found that for those particular experiments the first - ..

order tree gives an error rate one half that of the first

~order chain,
Discrimination Without Known Probability Distributions

‘ In the case whero the probability d.istribution of the

'population is not known the undérlyj'ng form of the probability
is assumed (Markov, linear normal, quadradic normal, e’cc.) and .
the paraineters are estimat.ed. These estimates for the parameters
are obtained from measureménts made. on samples (design samples)
from known populations‘., The parameters (such as the mean znd
variance of the variables) are calcula’oed from the design

- samples. Thus ‘the parameters are functions of the samples

used, Changing'the samples may change -the estimates. Changing

- the number of design ‘samples (sample size) also may, change

.30 V




the estimates, o L —

) | In estimating a parameter éne desires an unbiased con-"
sistent estimate, That is, an estimate is desired whose
expected value is equal‘to the value of %he estimated para=

eter and, as the number of design samples becomes large, an

estimate that approaches the true value with probability
8. We then have an estimate which has a mean equal to
the true value and a spread (variance of t..hek estimate)
which is a function of the number of design samples. For a
large number of design samples the spread is small while for
a smal‘l.'number of design éamples the spread is large and the
estimate may be very far from the true value. |
. | ~ For e;xample, lgt T4y Tpy eeey Iy ben des‘ign samples
~drawn from a one-dimensional normal porulation with mean
m and variance v2, Let the estimate for m be
r = (r, " r, + eee + Tp)/n

and the estimate for v? be

82 = (ry - P2 + (z, - 3 I (r. = T)% -
— o n = 7

Ne1

Th.en6 E(r)=m and the variance of T is vé/n. Also the expected

-
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value of s° is v2 and the variance of s2 is

a(r)(n=1)/n? - b(r)(n-3)/n%. a(r) and b(r) are parameters of
the distribution of r and are finite. As may be seen as

the number of samples, n, becomes very large the spread of

s° and T becomes zero and the value of the estimate approaches

the true value with probability one. -

In many cases the number of design samples ax:.'e too
small and good es;c.imates are not obtained. This gives
rise to a major problem in classification theory - the sample
size problem. The difficulty arises when too many. parameters
are to be estimated 'v;ith too few samples. A second difficulty
is determining the optimum number of design samples to be used.
an/c'jl the relation between the number of design samples and

independent test samples, These problems are 'as yet unsolved.,
- Four Layer"Process

For reasonably good results, the number of 'design
samples should be at least as large as the number of para-
meters to be estimated. This may be seen since m.zth n varlables,

only n unique equations are possible. Thus, if there are more

32
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parameters to be ®stimated than the number of samples, the

P T 14 e L e 2 0 b T e ey ¢ i e e

estimated parameters will not be independent of each other,

Consider the case .of 240 variables in each sample and

consider 100 design samples, For the linear case (p.13)

240 ooefficients mist be estimated. If, however, a two
level process which consists of 10 subsets of 24 varlablé’es
each is used, the number of coefficients in the first layer
to be estimated is 24 for each subset§ the essumption is

of course that the subsets are independent. In the second

layer 10 coefficients must be estimated. Effectiveiy 3
coefficients must be estimated with 100 samples, (Essentially
the design samples are broken up into 10 parts. Each part
must estimate 24 coeffic}ents and the complete design sample
must estimate 10 for the second layer. Tk;is effectively

makes the 34 coefficients that must be estimated.) For a three
layer process, consider breaking it up so that the first

leifel consists of 30 dis‘criminant functions with 8 variables,
the second level consists of 5 disverimj.nant functions with

6 variables, s.nd the third consists of a discriminant
function with 5 variables, This will be denoted as (5,6,8).

Here 5 + 6 + 8 = 19 coefficients must be evé,luated; An n

~
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level dec:.s:.on process is denoted as (N1. 01 eeesly )

Here TT N. =K = number of variables in the sa.mples. The
numbei-zf coefflcn.ents to be estimated is given by Z N, =S,
It is desired to minimize S. For the case n=2, it s;;lld |

be obvious that Ny=, = [2%0 for minimm S. Likewise for
- minimum S in the general case Ni=Ith. The problem is to

" minimize Zn N, given that Ng_‘ = K. This sum is minimized

if Ny =e E ; 72 (p. 59). Thus to avoid the sample size
problem, the decision process should consist of n = 1n X
number of layers with e variables input into each diseriminant
ﬂmction.
The number of inputs must be an integer and cannot be
equal to e. If instead of e we would use N, =3, we would.
obtain the following decision process: P
(313,3,3,3).
One dummy variable would have to be added to achieve this
process. Fifteen coefficientsﬁould have to be estimated.

If the process (3,5,4,4) were used, 16 coefficients would

have to be estimated. For the data used in the experiment

conducted in order to write this péper, the (3,5,4,4) proved




easiei' to work with than the (3,3,3'.3,3) process, Since

16 is not significantly greater than 15, the four level

process was evaluated using the assumption of linear normality
to achieve the discriminant function. -

It is reasoned that the multi-leve_l process may give
more accurrate estimates of the parameters than the single
level beclause there are less parameters to estimate for
the gi\(’en design sample size. Although in each stage the
discriminant function is linear, the overall discriminant
function is not linear. It is quite complex. So in addition
to possibly providing‘ better estimates for the parameters,
the multi-level process implements a complex décision which
should give better performance than the single plane of the

-

one level linear process.,
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Chapter 3. Experimental Worlk

The Nature of the Samples

The individuals that were to be classified were aerial
photographs of tanks, These gray scale pictures Awere |
| pi*ocemgd 80 that the picture consisted of 240 black or
white areas, ~Black was made to correspond to a binary 1
~ while white corresponded to a binary O, The elements were
in the form of a 20 by 12 matrix, This lent itself quite
naturally to the Markov mesh assumption. The pictures either
contained a tank or they did not, The design samples con-
sisted of 50 tanks and 50 non-ta.hks. In addition there
were 100 test samples (50 tanks and 50 non-tanks) which
were &sed to determine how well the discriminant function
would discrinﬁ.naﬁe. It was desired to determine how well
- & third order Markov mesh assumption ﬁ;auld perform on the .

samples, The number of errors ~oi»_‘ classification of the test

samples provides g measure of the "goodness" of the 'assumpfcion. |




. Assumptions of binary independence, multivariate normal

Previous Work

Some previous work has been done with the samples.7

with equdl covariance (linear multi-norm), and maltivariate

hormal with unequal covariance matrices (quadradic normal)
were used to derive a discriminant function,

A,non-parametric~procedure was also uéed to classify ”
the pictures. This non-parametric method was one developed
by Fix and Hodges. All design samples were stored in the
computer. The unknown test sample is compared with the |
stored samples, The stored samples that are most similar
to the test sample are selected. A classification based on
the stored sample most like the test sample, the three closast
stored samples, the five closest and the seven closest, was
made, In the;eﬁfour comparisions, if any of the .selected
stored samples&was & non-tank, the test sample was classified
as a non-tank; otherwise, it was classified as a tank.

The 20 by 12 matriX'qas divided into submatrices.,

These submatrices are of five different types as shown

in Fig. 5 thru Fig. 9. A discriminant function and

. “_;g
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A,

a threshold is determined for each submatrix of a particular

* format with the use of the design samples. The output

of each submatrix (a 0 or 1) is then swmed in a second
lajer. The output of the second lyer provides another

0 or 1 which tells us to which population the sample belangs.
In our case a 1 meant that the sample came from population
1 (tanks) and a zero that it came from population 2'(non-

tanks). In the case of Format 1 (Fige, 5) a two layer

* network was:not possible,

e

Experimental Work

A third order Markov.mesh distribution was assuned
for 2ﬁ5“probébility in each populatione The sémé designv{'
and test samples as used in the previous work were used.
A computer program was written to estimate the values of the
coefficients of the discriminant function.

A Philco S-2000 computer was used to perform the
calculations. The computer programS'weré written in

Fortran IV language. The programs are available fiom

the author. |

The coefficlents were estimatedﬁby'uSLng the design

~.
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samples to estimate a,D,eee,.h (Pe25)e Tile'“ estimate for

aisa ; = (r+1)/(n+2) where r is the number of times ‘
1y

that x; 5 is 1 when X3 44=0s X3_q,5%0 Xy g 540 and nis -

the number of times that xi’j_1=0, xi_1.j=0, xi-__1,j_1=0.

For large numbers of samples this approximation approaches

"~ the true value of a.i 5° The values of b thru h were estimated
»

in a similar manner, After the program derived these

estimates, the cosfficiehts of the discriminant function
could be calculated. Once having the coefficients the value
of the discriminant function was calculated and ,‘pri'r'iﬁéd '
for both design and test samples. A flow diagram is given
in Fig. 10. A sample of the printout is given on page 61e.
A threshold was manually chosen as follows. The
- scores (values of the discriminant function) were examined
for the 100 design samples. A ﬁhres@ld was selected so
as to givé the least number of errors :m classification
| of the design samples. In practice this threshold céuld
be in a certain range. The threshold selected was in the
middle of the range. The scores of the test samples were

‘then compared with the threshold and a 1 or 0 output was

~
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assigned, - | -
In the'second levei, the test samples were examined.

A second level threshold was seélected so as to provide

for the least number of errors in classification of the

. - test samples. The total number of testwsamples classified

incorrectly is given in Table I. The results of previous

work are also given.
A FORTRAN IV program was also written to evaluate the
four level dicision process. This involved assuming a linear

&

v multivariate normal population for each decision.- The

output of the first level decisions were made a 1 if the
discriminant function is above or equal to the threshold
and a zero otherwise. The s3me procedure iélfollowed for
the 2nd and 3rd levels of decision. The program provides a print;
out of the value of ‘the discriminant function of the fourth
level, If this is positive or zero, the test sample is classified
as a tank, otherwise it is classified as a non-tank.

The same 100 designwgnd 100 test samples are used

as used in the program for the Markov assumption. A flow

-~ diagram of the program is given in Fig. 11. The formulas

-
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used in the calculations of the program are given in the

Appendix (p. 58). A sample printout is éhown on page 62 e

v -
J

Results

-As can be sgen from TableI, the Markov mesh assumption
did not produce better results than the o%t.her methods, The
number of errors, to a certain extent is comparable with
the linear nmitinom.

The number of errors occuring in the Markov mesh is
greater than anticipated. It was thought that the Markov
v mesh assumption would prove better than the others bc-:«:::mse§
the Markov mesh ié based on binary variables and takes into
account dependency 'among the variables. A possible explanation
of this poorer performance is that the number of parameters
that had' to be estimated (indicated in Table i) for the |
discriminant i‘uhction based on the Markov mesh may be too many ‘
for the number of design samples, A good estimate may not
have been obtained, Tkis is the sample size problem. In
Format 2, 3, and 4, as the number of parameters to be estimated

decreased, the number of errors also tended to decrease. The

di.fference in the number of errors between Formats 1 and 2 may

~
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Table I Performance of the Various Methods

.. Method

Independent Binary
Independent Binafy
Independent Binary
Independent Binary
Independent Binary
Multinorm Quadradic
Multinorm Quadradic

Multinorm Quadradic

‘Multinorm Quadradic

Multinorm Linear

Multinorm Linear
Multinorm Linear
MultinormiLinear
Parametric (1 neighbozr)_
Parametric (3 neighbor;)
Pé,rameti'ic (5 ne.iéhbo‘rs)

~

Format

1

49
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Number of
Errors

g

¢

16
16
14
11
13

14

11

20
12

10

Number of
Parameters

38
31




Table I cont,

-~ Method | Format
. Parametric (7 neighbors) 1
Markov Mesh 1
Markov Mesh 2
Markov Mesh 3
Markov Mesh 4
Four Level Process -
4
50

Number of
Errors
11
11
14
14

6

31

Number of
Parameters

1733
1389

179 -

85

16
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be due toAthe chapge from a one level decision process in
Format 1 to a two level decision process in Fohmet 24

'Tﬁe four level decision process provided the fewes£
number of parameters to be estimated. Thus a small number
of design samples should not affect the operation as seversly °
as in the other schemes. Thus the number of errors should be
lower, The number of errors of classification wae 31 - much
higher than expected., This shouldn't be due to the sample
size prdblem since the number of design samples exceeded
the number of parameters to/be estimated., The large nurber
of errors may be due to the change from a one or two level
process to a four level: process. As inputs into the linear
multivariate normal discriminant function, there were 4, 5, or
3 binary variables. For such a small number of binary
variables the normal distribution is probably not a good
approximation. We are assuming normality when such an
- assumption is apparently not warranted. Also with such a
few variables in each subset, it is possible that the

assumption that the subsets are independent is not warranted,

51




Chapter &4 Conclusions

A Markov mesh assumption is used in Ha. pattern
classification pi'oblem and compared with classifications
~ using other probability assumptions. The Markov mesh
assumptioﬁ worked no better than the other methods. This
may be due to the lack of su.ffichient design samples for the
Markov mesh., In this experiment one of the more elementary
methods (linear multinorm) performed just as well as the
complex Markov mesh method, .

A four level decision Process was implemented in order
to avoid the sample size problen, The number of errors
of classification were ,much larger here than expected,
This is because the assumption of linear multinorm was

not a good assﬁmption and because the assumption that the

subsets are independent may not be warranted., The problem
of sample size was probably solved but further problems were
introduced by a bad assumption aI;out. the statistical make-np
of the populations, .

Some of the results indicate that the resulﬁs de.pend

somewhat on the number of layers of the decision process.

All other things constant, as the number of layers increase,

the number of errors also tend to increase.
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‘Markov Mesh Discriminant Function
, O

o,

Using the coefficients a,b, ..., h as defined on page 25,
the probability may be written as follows: |

m n o
P(?(m.n> = i=1 ' g-_-_-‘_:l P(xijlxi-1,j-1’ xiT‘l.j’ xi.j—1)

=ay (1%, 510 =g, ) (1 5005

' (1-3,13)(1"’%.-1 0 =1 )(1-.xi_1 vj)(1-xij-1)(1"xij) .

R E I T P I L AL

.(1_bij)(1"‘id)(1"‘i-1.j-1)“"‘1-1.3')("1.:.-1) '

° cinij(“-H-" o.j"1 )(:&-1 .j)(‘l‘-xi,j-“ )

=0y 5) Qg 5 ) (g 5000y )

' (1'513

| .di.x‘i.j(“-xi"l'j'1)(:&'1'j)(}&gj'1)
J
. (1-dlj)(1-18-3)(1-x1'1 ) j=1 )(xl-1 ,J)<JL.L,J.-1)
: eijxij(xi-1j-1 A=y g, 50 (1% 5.q)

oo ) R0 a5 Ty g ) (g 5 q)
i3/ 3

~




*

@": "fijxij(xi'“’j")(1'?:1-1.3')("1.3-11) |

. (1..'fij)(1"‘ij)(xi~1 y3=100=%s g 50(x 5q)

,gijxij(xi-hjﬂ ) (x5 _1 oj_)(1"xi,j-‘l_ )

-(1-gij)(1'xij><xi-1 » J=1 (%54 ,j)(1""’-i,j..-1 ).
‘ hljx%']xi-“ ’j"‘lagl"‘l ijj-f'j'ﬂ
' (1-hij)(1-xij >}Li"'1 Oj"’1 xi-1 ’ jxiaj"1

Let

‘Ai,j = log 8y = log (1-aij)

Bi j

|

log (1-eij) - log.(1-aij)
Cj‘.j = log ﬁ-eij) - log (1-aij)

log (1"bi,j) - log (1'aij)

U .
& ,
n o

E,. = log (1“3‘1;)) - log 3, 5 + log ey = log <1"eij)

F,, = log “"a.‘ij) - loga, ;s +loge,. - log (1-cij)

J ij

G.. = log 34 + log (1-a.1j) + log bi,j - log (1-bij)

O
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fyj = log (1-ayy) - log (1-eyy) +log (1-gyy)

Ly

+ log s 5 + log Q"'eij) - log (1-gij) - log e, .

- log (1-eij)

~~~~~

l‘og (1-313-) - log\'(1-bij) - log (1-c-ij)

log

log

log

log

+ log (1-dij)

aiJ

(1'bij)(1'cij)dij

bﬂeij (1=afij)aj_j G-ai-jj)'

(1-bij)(1mcij)dij

bijcij (1 -dt{j )a:j—(1 -aj:;).

aij(1-a.'j)b c..(1=d, ;)e. .

L

13713 1J° 44

138

Taking the log of P(;Vm'n). we get

jgij(j'hij)

n n o m n

51 32; Mgt Z ji:__z Bj j%in1,3-1
n  n n  n

52 5 Ciffi,y 7 1{1 EZ Di 5%, j-1
n n  n

+ log (1,cij) -‘log (1-aij) - log cij

J

1J
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%

m n | | '
e 2' 2_ Giaxiaxl jui + z Z Hljxi-‘l..j-‘lxi-‘l oj

J= i=1 j=2
m  n | ~
* 5__:2 jZ Ks 5% 1 .J-1x.’|.,.]-1 + %2 j‘-iz Lig%1, 3=1%421, 3
m n |
+ 12;2 f__ ety 131

m n ’
+ 2 Z Nijxij’&-1.j-;1xi',j-1

i=2 j=2-
n
T2 .Ez Oijxijxi-hj"i.j-j
m n
' iZ= = Qlei-1.J-1 ie1,] 1,j..1
.m 1 ‘
" i§2 j%g %%, et R, e, 5
where (1'biJ)(1°° )(1-e )(1-h )

Qij = 108 ———

(1-a, )(1-d; 312, )(1«- j)

If we use a superscript to d:.stingulsh the coefficients

from the different pomulations, we obtain identical equations
A

for tie log of the probability in the two populat:.ons except

for the coetiicients. Subtracting the two equations, we

N,




obtain the discriminant function. It is

) ~ | A
2 X2 (1) (2)
iz=1 j§=-1 (A5777 = 457 x5  + .
mn 1 (1) (2) "
| s - R. )Xe X5 _q 5 1K 4
1{2 Z Ryt Ryy g 10 3=1%2, §-1%-1, 3

Linear Normal‘ Discriminant Function with

Estimate&:i Parameters

Th% discriminant function is X'V-'(M1-M2) and the
threshold is (M +M2)'V-’ (M4=Mp)e This assumes that t=1,
Mand V are defined on page 12,

M and V-are not known but must be estimated. Assume
That there are R design samples from population 1 and S
from population 2. Each design sample gives us the variable
X (X(” if from Gy, or X'(Z) if from Gz), X=(x1,x2. ....xn).
The k-th sample from G, denote as Xk(” =(X1k(1 ),.;.xnk“)) "
and likewise for Gp. Let My = (m1(1), covs mn(”) and

M, = (mg (2), coss mn(Z)). Approximate mi(‘l,) by

o |
Ry 2 x ()
R 2w,

-




~—

_ B S |
and %(2) by (1/8);' k2=1 xik(2>

Also approximate A 3 by s34 L where

R . | | |
wy [ = e = m e, 1 ., )

5 |
'3 @ - @), @ - mj<2>>] /(R45e2)
These are the formulas used in the computer prozram to

evaluate the four level decision process.

Derivation of Number of Inputs for Optimum

Multilevel Decision Process &

As given on page 3% for optimality we need to minimize

n

. n
2 N, given that 7Y N, =K, For optimality we expect to
i=1 i=1 |

~ have the same number of inputs to all levels. That is,

Ny=Nj=N. Then o -
n |
N =K
N N = K1 / n
We want to minimize nN _
| 1/n .
N=K / /
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In N = (1/n) In K |
2= (1nK)/n X ' o v
We then want to minimize | ‘
. | (1n K) N/(1n"N)

N/ln N = constant

Differentiating

".
o

(Uhmfm/mm-n

(1/ In §) = 1 =0 (\ i
‘

N=oe

n=1lnK (K =the number of variables |

in a sample) |
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