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- ABSTRACT

A linear programming. problem, of minimizing a linear

combination of variables subject to a linear set of inequalities,

~is presented., A closely related maximiza%ion problem is |

then given and the relationship between the two problems 1s
_investigated. Thefpairvof linear programs is re-expressed
as a palr of linear systems of equations which are jointly
represented in the form of a schema of numbers. A pivot

~ transformation which results in a re-expression of the pair
of linear systems in terms of a different set of independent
and dependent variables is deflined and the resulting change
in the schema of numbers 1s given,

" An algorithm is given for the solution of the pair of
linear programs. This is a variation of a method presented
by Balinski and Gomory. A hierarchy of levels of sub-
schemata for the schema 1s defined and with each level
subschema & corresponding goal is associated. The level 1
subschema is examined to see if goal 1 can be accomplished.
If it can, a pivot transformation is performed, accomplishing
this goal. The hierarchy of levels of subschemata is then
redeternined and the new level 1 subschema is examined to
see if-goal 1 can be accomplished, If at any point goal 1
cannot be aceomplished, the»lowest k for which goal k can

be accomplished 1s determined. When that k is determined,

a pivot transformation is performed, acéQﬁplishing goal k. |




r ' .

- Aftérthe transformation has been performed; the hiérarchy
.‘of subschemata is redetermined and the level 1 subschema is
examined as befgre to}géé°i? goal 1 can be acCOMplished;

In a finite number of steps the algorithm results in a

- schema from which the solutions to~our-pair“of linearw“wWww'
programming problems, if they exist, can be eaéily read, or

from which it can be determined that no solutions exist.
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FORMULATION OF PROBLEM

Consider the linear programming nroblem:

“ .
Minimize 2. Cj--y]. + d
B LN S R

4

331

Sumect tof: aij .y-j +bl “‘_4_‘ N ,. $ = 1 Ceee,m
| and ¥y, Z0, =1, .y n
where the 813y Cy b;, and d are known constants,
This is very closely related to the following problem:
Maximize i‘ bi'xn**'i + 4

/L=l

Y : 3 .? + ‘. Z ".~ .-.‘ = 1T, o000
subject to ;; aig Xn+i c. 20, J =1, s N

and X 0?—0, i’= 71‘, ® 00y m

where the a.; ., c., b,, and d are the same constants as above,
1J7 37 1

We shall consider these problems simultaneously and

investigate the relationship between the two.

The two problems are converientlv represented by the

following schema. ( The labels are not considered part of the

schema., ) - v :
o .1 L L 4 ¢ n
. T _
X a, e o o Q& b = =V
~. X - a . o A = -
n-+m ml " }}q Yn+m
1 C =1 _
1 ™ e o Cn G H p— V
=X — _
1 ° o o "'".z;n =11
‘where we reguire all y. and x Z 0, i = 1,...,m+n, and we e
1 i
are to minimize v and maximize u,
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PIVOT TRANSTORMATIONS
As indicated above, the schema
. .
¢ ~ oo 0 y o0 0 y oo e
@ ] _W
R oo 0 a oo o0 -h oo @ :"'“\r* )
o0 0 C oo 0 dooo = ==V
.___,__ L ‘J
ve =77 =7 vuo

conveniently exhihits two systems of linear equations, s

rowv systems

- . *

eee T2y + L., F hy + L, = =W
® ®
o X . -

eee T Cy + .., +tdy + ,,, = -w
L ®

and a colJumn systems

PY ®
* % * 5k

600+a-X + ooo»+ Cx+aoo - Z
¢ x : "

. ceee. T X A+ Li.FtAX * a0 =2

L ‘ [ ) |
® [ J

If a X 0, we can re-express each of the svstems by

%
. . (] [ *
solving the -w ecuation in the row system for y  eand the

* . . %

z equation in the column system for x , and then use these
L ' ® o * ¥ L 4

new equations to eliminate y Ifrom the other row equations

sk .
and x Tfrom the other column equations,

-1, | -1 %
000+y*+ooo+a10y+ooo=fa W

or .

o 00 + a-1 o+ o o0 +a-1b}r+ cee — '-Y*'

e e e e e e PSR VP s ham a s - ot v . K
— Bl T T Sy D i U S U U [ ————

. * .
' o Solving for y in the row system, we have
E
|
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Substituting we have

-

A LI C(ooo“'a 1"‘7 + cee =2 by _+,...) + o0 +dy + ce —=W
or o -1 |
. - X
, ) o o0 -Ca 1\!’7 + ooo(d - Ca b)y + " X = "W'o
] * o |
| wewo . If we solve for.x in the column system we have . . .
+ -1 % + o + = ok
o0 o0 a z* cee = 4 CX cse — X7,
Substitution then =ives
oo +ba 12 + eee (d - ba C)X +t cee = Zo
This resnlt can he expnressed in the followine schema:
006‘4‘-7* ' oo e Y o e
" e L4 ® e
® L ° °
Z* rv"’j qi'\a,-ll . oo — _y*
L4 L4 ° ®
L4 g 1 ° -1 °
X -Ca e 00 d-CEL b e e 0 - =W
L ® L ®
° o . .

=x* =z

¢

We call M"a" a "pivot" and the operation of interchancing

e dependent and - independent variahles ss deserihed above a-'"pivot
transformation"”, Clearly, since the only result of performing
a pivot transformation is t» re-exnress a palr of linear systems
in terms of differeﬂt sets of independenf and dependent variables,
the resulting schema is equivalent to the orisinel,
Our plan is to define a finite se&uence-pf pivot_transformatiohs
heginning with schema (I) and terrinating with a schema from
whicn the solution to our linear prosramming ﬁ}ohlem, if 1t exists,
can he eaéily read, or from which we can tell that a solution

~does not exist,

s e I e S YR N e B CRtd
N R o R A e T e e N Fe g o R R
8 ;o

pve .- — - A - Py —d -
7 w
i
-
W
i




Definition: A set iy1, ooy T ¢ which satisfies the
. m+n°

row equations in schema (I) above with all inIO is said %o

\\Fhe col'mn egquations with all x Z 0 is said to be a column
1 :

feacible set,

Theorem 1: If §y1, coss Vpin$ &nd the ascociated value

of v) is a row feasi®le set a=d if §x,, ..., ¥ 3 (and the

7 ' s 9 .77. a7 , _.; 1 (..4°. mn..

I
\ 1 m+n mM+n
- assoclated velue of u) is a column feasible set, then Z:Xiyi:v-u.
g . - . . L=y .
m¥n " MmN
Proof': Z X, V. = Z X, + 7. X.V.
L=t ld i L=y lyi =<\ l l
= Ly (L a,.x +c¢)
t=t yl ; Jl n+ i -
wm4n

H

=

+
M
k‘vi

have such a solution only if Xiyi = 0 for all 1e

Proof: For row feasivle y, and column feasible X,y by the | ~

e | . | o
previous corollary, we always have v2>u, If, in fact, we

S

. - - 7;”; . }
Corollary: If §y1, ceey ¥ -i(éﬁd ne associated value
m+n .
of v) is a row feasible set and if ix&, ¢oo ¥m+ § (and the
| 7 —
assoclated value of u) is a column feasible set, then vz u.
~Corollarv: If row feaéible ys and column feasible X5 can
be found such that v = U, then they constitute solutions To
hoth the row and column equations; i.e,, we have solved both -
theimaxbmizatioﬁéﬁd“theminimizaﬁionproblems given above, We
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~ - have v = u, then v cannot become any smaller, and we have

found the minimum,., Similarly, u is a maximum, Also,

man

0 =v - ug:ilzayﬂ, only if x,y = 0 for all 1, | | -
¢e=v 17 1 1 :

‘ We note that the converse of this second corollary 1is
- “wwwwwwwwgiggmé£ﬁééWﬁéméiy;”fhgt”if”ei%ﬁéf'fﬂé'maﬁimigaéian“5f“£hé””“”:°?ﬁﬁ“””“““i
) minimization pro%lem has a solution, then so does the other,

and v = u for the two solutions. This converse will be

stated and proved as a corollary »f the main theorem of this

paper., )

To ohtain a soslution +o our linear prosramming nrobhlem

j ‘we shall define a fin%@g sepuence of nivot transformations

beginnine with our osriginal schema and ending with a tableau = °
from which the solution, if it exists, is easily obtained,
At anv step in this senuence we would have a tableau such

~as the following:

\ t B |
" S it - mnemme i plgg = 371 ¢ o ¢ B yn 1
! : o ! Bt | = 1
n+f 2 o ¢ o 1. 1 = =¥Yn+1
11 n
° PY ® L \
o ° ° o \
{ ] ' PY ® ®
~r ' ! 1 1 —_ o
eS a, a ) — \
; n m1 ° "¢ mn o 1] Tm+n
1 cl e o o cC! a' = v
. 1 n |
! —y ! —
- ° . ] =X =u
| n

where the primed variahles are some permutation of the original

- variahles and the a b! ¢!, and d' are determined by the

s 1y ]
,{.‘ .!

preceding pivot tra ormations,

_In order to obtain a solution to our linear programming




variahles:

R R e e e e ST TR,

If*b{ £ﬁQ& ey N £ Oy we have

previous definition), and if.c{

~¢olumn feasihle solution, This

1s one in vhich a1l b! < 0 (all

value zero, Q?erehy determining values for the dependent

! -.."'b' e )
yn+1 1) ’
X, = S

independent variables have the value zero, thus determinin
the values of the dependert variahles, we then have v

- and by a previous corollary these values of the yi ad X

B e mmana e e e T T i S SN

prohlem, we shall let the independent variables have the

y . = =n
‘n+m m . ‘
= ¢!
n T

a row feasible solution (see

YV

Oy eee , ¢} Z0, we have a

prompts the followinz definition,

Definition: A row feasi®le schera (column feasible schema)

' > 0),

If in our sequence of pivot transformations we reach a

schema which is »oth row and column feasihle and we let all

2e]

1 —
d'= u,

!
i

-

constitute solutions to »ur linear nrosramming nroblem, If
o , JEo el i )

however, at some step we reach a schema in which for some i

bi >0 and a

20 for j =1, .os 4 n, then this schema ex-

1]
hibits the condition -y:{_m = ? aj.'_j--y\J! + by >0, which vio.lates
the requirement that all variables be non-negative. Thus the

row program has no solution, If this same schema is a column

feasible schema, then it is elear -that if we allow xf37 Ho o

- take on any Value, no matter how large, while letting all

3

other independent x' variables be zero, all the column

- constraints will be satisfied and u can be made as larze as

oy




we like, Similarly, if we arrive at a schema in which for
some J, c;_< N and za.:.Lj € O0fori=1, ..., my there is no -
~ e = C ) k,é . ‘ -

- solution to the column program; and if this same schema is

a row feasible schema, there is no lower bound for v,

This provides the motivation for the following définition,

Definition: A simnlex method for solving a pair o»f linear
programs is a finite sewmence »f schemata obtained from the
schema of the given pair of programs by a sequence »f successive
pivot transformations which results in a schema exhibiting
either optimal solutions to both vnrocrams or the non—éompatibility

- of the row and/br the column cénstraints.
Before stating and proving the main theorem of this
.
paper we give a definition.

Definition: Our row (column) pivot choice rule is applied

to a row (column) Teasible schema and is as follows: If the

there must exist a c§<<.o for some j (a bl >0 for some i),

We sucessively examine from left to richt (top to hottom)

“each cohlumn with cJ! < 0 (row with b]{ > 0) for a pivot choice

as follows, For each such 03 (bi) we have two possible cases:
1. Everv entry in the column »f this c3 is nonpbsitive.
. (Every entry°in the row of this b{ is nonnegative.,)

2. There exist positive (negative) entries,

" If (1) holds, we examine the next column with 03‘4.0 (rov with

b! WO) for a pivot choice., If (2) holds, choose as a pivot'
"3 | _ |

'““*aé.?>'0”(af4.;0) satisfying | - :
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' ' ' o
bk - max b ¢ . max °; :
al a' >0 35t al ' o

k3 sJ %s3 13 %<0 ajg

1f b& #0 (3{ # 0), All bé (c;) in the ratio above are less

—-than or equal to zero (greater than or equal to zero) so the =~
ratio is less than or equal to zero, If*%ny bg (with a§33>0)
(c; (with aj «<0)) is zero, then the maximum above will be
zero and we examine the next column with c5-<.0 (row with

i:>O) for a pivot choice., If there is a tie for the choice
of by (g{), we choose the top-most one (left-most one)., If
all c:'j >0 (all b < 0), i.,e., if the schema is both row
~and column feasible, or if for each c5 <0 (bi > 0) either
~all column entries are nonpositive (all row entries are non-
negative) or the maximum of the ratio in (2) is zero, there
1S no pivot choice under this rule. |

‘We no>te that with the choice of akj as a rov pivot by

- this rule row feasibility 1is retained after the pivot transfor-

mation has been performed: -

1. bﬁ' #aij‘1gbé <o0.

o2t gt aat e
2. by —-bi' 2y aij b} =0, if a“_o 1 #£ k.
30 bt =1 aéj'1'ai3 by =0, if a5, >0, 1 # k.

becanse éj was chosen to maximize the ratio.

_(The double-primed variables are the ones obtained after the

plvot transformation has been performed.) Similarly a column

(E""




1

pivot choice retains c¢olumn feasibility after the pivot trans-

formation has been performed.

We note that 4'' = 4! -bl'{.cs,al'{j<d' after the pivot

transformation has been performed with al'{ 3 as a row pivot

—— cholce under our rule. Thus a new row feasible solution has =
been obtalned which glves a value to v which is strictly less
than the previoﬁs, exhibit_ed value of v. Similarly a pivot
transformation performed with ai ) as a column pivot choice
results in a strict increase in the value of u.

If the initial schema does not exhibit either a row or
a colﬁmn feasible solution, the proof of our theorem gives
a 'cdnstructive means of producing one, The proof specifies
pivotﬁ choices for any schema, whether row or column feasible

or not, which lead to a schema exhibiting optimal solutidns
to both programs or the noncompatibility of the row and/or

column constraints, ~




12

'MAIN THEOREM:

P

Theorem 2: Given a pair_Bf linear programs as exhibited in
schema I, there exists a simplex method which begins with

the given schema and ends with one which has one of the

~ £ollowing forms (vwhere ® and 6 denote nonnegative and non-

‘positive entries respectively):

1
[o
A : (which exhibits optimal
o solutions to both programs)
116 . . @ =V
B =
1
T | (which exhibits the non-
______ _ compatibility of the row
B H_ .. & |+ constraints and the un-
boundedness from above
of u)
1 @ ° ° @ =V
=11
1
lo! 0 (which exhibits the non-
| | e compatibllity of the col-
C o . umn constraints and the
o 0 unboundedness from below
of v)
1 | =i =V
-
1
© o~ ‘
— '! -~ -1  (which exhibits the non-
D 8. 10,0 |+ compatibility of both the
TS row and column constraints).
|g| |
1 |l | - Vv
. | = .
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, Before proving this thesrem, we state and prove an

impartant corollsry:

(

- Corollarv: (Fundamentzl duality theorem of linear progsram-
! ming)  If there exint feasihle solutions to hoth row and

colwm nrorraws then there must exist optimal solutions to both,.

Proof: Renresentations B, C, znd D c-nnot occur, so A

rust. -
! i Corollarv: If either the row or column program has a
; solution, Then so does the oﬁher and v = 1 fof the two solutions,
% Proof: Bv the theorem there exists a sirnlex ~ethod
which ends with Representation A, IT in this Tirnal renresentation
| we 1et_ali indépenﬂent variables have the value zero we have

a solution to *oth the row and colunn vrosrams for which v = 4!
= u (vhere d' is *the value »f the entrv in the lower rizht-hand

corner), Since hvy a previous corsllary v > u, any »ther solution

to both the row and column nrograms wust also have v

Proof of Theorem: The ~eneral idea of the proof 1s as

U,

—
follows,  We define a hierarchv »f levels of subschemata for
our schema, each subschema contained in the previous osne, and
assoclate with each level k su%scheﬁa,a,géal k., We examine
~the level 1 subschema to see 1f ~oal 1 can he accomnlished by f
the method to “e descrihed, I it can, we performja vlvot
transforﬁatian on the entire schema (and its hierarchy of levels

7__ of subschemata)2aCC9mplishingthisg3a1,_ We then redefine -

the hierarchy of levels of subschemata and exawzne the new level

-

1 suhschena -to see if g¢o0al 1 can he accorplished, If at any

1 The following is a modification of the proof by Balinski
and Gomory appearing in ( Je o

R e B Ao 50 €l v e A N T R I U TR NI L it iy ie e 311




 the transformation has been performed, we redetermine the

14

point goal 1 cannot be accomplished, we search for the lowest
k for which goal k can be accomplished by the method to be
described., When that k is found we perform a pivot trans-

formation on the entire schema acecomplishing goal k., After

hierarchy of subschemata and_then examine the level 1 subschema
to see if goal 1 can be accomplished and continue as before.
In a finite number of steps we shall reach either Representation
A of the theorem or a schema which exhibits the non-compatibility
of the row and/or column constraints and from which we can obtain
elther Representation B, C, or D,

For any schema we choose according to certain rules a
hierarchy of numbered levels of Subschemata, there being one
subschema associated with each level, each with a distingulshed

entry (and hence row and column)., Level k subschemata for k

odd are row feasible subschemata and have the form:

e
</

| l78 R,

C

with the number of rows (including the diStinguished row)

désignated by (k) (ox(k) may be 1 - the subschema then

consists of only one row, the distinguished one) and -A (k)

~the value of the distinguished entry. (For convenience of

representation we rearrange rows and columns if necessary

[ - e e vt o ot v s e a e




,,,,,
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to h;;e the distinguished entry in the bottom right-hand

corner.) Even numbered level subschemata are column-feagible

and have the form: -

with o<{k) the number of columns (including the distinguished
column) and A(k) the value of the distinguished entry.,

We defiine the hierarchy of subschemata associated with
any schema inductively as follows. If not all bi_é 0, the
level 1 subschema consists of all columns of the schema .
(including the column of b:{s) and all rows in whieh b;__éo, .
together with the top-most row with b;>0o (The row containing

d' is not included.) This bi>0 is made the distinguished

_entry, If all b]<0, we take the whole ,schem‘a, as the level =

i
1 subschema and d' (whether positive or not) as distinguished

entry. Suppose now that the level k row feasible (coiumn
feasible) subschema has been defined with distinguished row

- R and distinguished column C, If C (R) contains zeros and R

is not all nonnegative (C is not all nonpositive), we define
the level k+1 column feasible (row feasible)subschema to

consist of those rows (columns) for which the entry in C (R) |

18 zero and those columns (rows) for which the entry in R

is nonnegative (entry in C is nonpositive) together with the

*eolumn (row) which contains the' left-most negative entry of R

(top-most positive entry of C). This left-most negative (top-




‘the pth plvot transformation in our sequence and have just

]
o
2 S
) :
i
o

B

R e e e N R R R O A B e A NI S E N SN N S
i .
T
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most positive) entry is made the distinguished entry. The
following 1s a schematic illustration of the construction
of our hierarchy in which the kth 1eve1 subschema is row

feasible and the k+ith 1evel subschema is c¢olumn feasible,

~ The distinguished entry is marked with a star. (as before,

"®" indicates a nonnegative quantity, "-" a negative quantity,

and "O" a zero quantity.)'

|OQoO:.

__‘@ ° ° @ - K “ o e -

We associate with any schema and its subschemata a hier-

~archy of goals, with goal k being to perform a pivot trans-

~ formation to obtain a new schema for which a hierarchy exists =

whose new level k subschema (if it exiéts) has «<(k) larger’
or has (k) unchanged but £(k) larger, while ox(1), A(1)
for 1<k remain unchanged.,

We initiate our sequence of pivot transformations by
determining the level 1 subschema from our original schema.

We proceed inductively as follows. Suppose we have performed

 determined the level k row (column) feasibie subschema with

~ distinguished row R, (k) and column Cp(k) and with -ABp(k)

(,Bp(k)) the value of the distinguished entry and o (k)
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the number of rows (columns). We first apply our row (eolumn)
pivot choice rule (see above) to this subschema. If there
exists a pivotjéhoice under this rule, we have (the level k

subschema is enclosed in solid lines, the level k-1 one in

_— |@ | | ) l-'
+% | o l_
|
o | 0 |
*) -k + ’
- 1) . , .
I l 0
b — S \ R R B
|_+ B :: 9_ ) e O .ﬁp("")l 0 o o @ + @ ° @]ﬁ‘,(¥) _ -:'%:’?

(Of course if k = 1 there is no k-1 level subschema.)
We perform the pivot transformation on the entire schema
‘and its intermediate level subschema. Because of the zeros
' in the distinguished row (column) of the level k-1 subschema
above, none of the entries in that row (column) are changed

after the pivot transformation has been performed and similarly

for all lower level subschemata. Thus after the transformation
the 1*B 1evel subschemata for 1 <k consist of exactly the
same selection of rows and columns of the entire schema as
; before (although the values of their entries may have changed),
;~,f-1 since it is precisely the unchanged distinguished rows and

columns which determine the selection of the rows and columns

of these subschemata. Since, as noted after the definition,

row feasibility (column feasibility) is retained after the
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pivot transformation has been performed using our pivot .\

choice under this rule, the pivot transformation produces‘:

0 | T2
. | e |
o) | | -
e e
+ - - o
I . | | 0]
+ e *0. . . 01 8.0+ 0T T

- then there is no longer a Kth level subschema,

If after this pivot transformation all elements in

Cp » (k-1) are nonpositive (in Rp + (k-1) are nonnegative),

(This of course
does not apply for k = 15 there is no o'h level subschema.) '

If there still is a kR level schema, then O+ (k) = o< (k)

because a pivot transformation performed with a plvot chosen

under our row (column) pivot choice rule preserves row (column) -

- feasibility, and if c;H (%) =o;(k), then /gp-n (k)> /QP(k) since,

as noted after the definition, the value »>f the distinguished
entry is strietly decreased (increased) after the pivet trans-

formation has been performed. As noted above << +1 (1) = x (k)

P
and ﬁp 4_1 (1) = /gp (1) for 1<k since the pivot entry has zeros

In rows and columns that could affect these values.,

v ——

e e,

T —

——

T,

Y M H T

e —— [

Thus after the pivot transformation has been performed,

——-the :lth level 'subschema%a for 1<k consist of the same selectib_n_

of rows and ecolumns of the entire schema as before (although

~ the values of their entries méy have changed). If a kth level

subschema still exists and <>§ " (k) = °<p(k), the kB level
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| subschema will also consist of the same selection of rows and
columns as before, In this case the higher level subschemata

(4f they exist) may consist of a different selection of rows

- and columns and we. redetermine them where possible. If

o< +1(K) > o< (), the level k subschema now contains additional
rows (columns). ‘We redefine it and any subsequent level sub- |
schemata if possible. We then return to the level 1 sub-
schema and repeat our process from the beginning by applying
our row pivot choice rule to that subschema,
If no pivot choice exists when our row (column) pivot .
choice rule is applied to the subschema, at least one of the
following three cases must ocecur: |
(1) Every entry in the distinguished row (eolumn) of
~ the subschema (except possibly the distinguished oné) is

nonnegative (nonpositive):

>

@...e]g; \

'(2) The distinguished row (column) excluding the
- distinguished entry contains a negative (iositive) element,
‘but every entry in the column (row) of this element is

nonpositive (nonnegative):

Y — — =\

| fe } . | / | | . \ |
R b | | L
— %, _,e -
7= e | [ T 0
l . o 12 o . 8 I"’f‘. - :
o . l 0
+ + - » -




least one entry, call it "a", in the column (row of this

_mSth.below,ucasew1-canugoeur-onlyfif~kw='1, and we stop when =~

~ 20

(3). The distinguished row (column) excluding the distin-

guished entry contains a negative (positive) element and at

element is positive (negative), but the distinguished c¢olumn

—(row) entry which is in the same row (column) as "a" is zero.w
(Remember that in the definition of osur row (column) pivot
choice rule there was no pivot choice if the maximum of the
ratio was zero,)

We first determine whether case 1 holds, If it does, we
choose as a pivot the distinguished entry (starred). However,

we do not perform the pivot transformation because, as we shall

the pivot choice 1s an element of the last row or column of

the total schema; 

If case 1 does not hold, we determine if case 2 does, If

59, piv°t1ng °n the starred entry produces:

R T — . _\
HEEE ‘
o o, e | 0
LT . .6 T :
| , 0
P LT e LT e I TS

As before, because of the zeros in the distinguished rows

and columns, the subschemata up to and including the (k~1)th

one will consist of exactly the same selection of rows and
columns of the entire schema as before (although the value'of

their entries may have changed), If all entries in G paq (k=1)

(k:>1)_are‘nonpositive (in Rp+1(k-1) are nonnegative) then

[EPUNGTR po




=% (1) and ’§+1 (1) =A,(1) for i<k, After the pivot trans-

. formation has been completed, we redetermine the rows and

" one zero, there exists a level k+1 column (row) feasible sub-

 determining If we have case 1, 2, or 3. e

“—
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there no longer is a kth 1evel subschema. Otherwise, since

the distinguished entry in the kth level subschema has become

negative (positive), we have 0<p +1 (k) > vx(k-), while < (1)

columns of the kth level subschema (if it exists) and any
subsequent ones 1if possible.’ We then return to the level 1
subschema and repeat the process by applying our row pivot
choice rule to that subschema.

If cases 1 and 2 do not occur, 3 must. Since in this case
Bi)(k) contains at least one negative entry (Cp(k) contains at

least one positive entry) and Cp(k) (Rp(k)) contains at least

schema. We then repeat our inductive step on the. (k+1)th 1evel
subschema, applying our column (row) pivot choice rule to the

subschema, and if this yieids no pivot choice sucessively

We repeat the above until at some point the choice of
pivot entry is an element of the last row or column of the
total schema (some bi, ¢}, or d'). This occurs only if we ﬂ
have either case 1 or case 2, It must occur in a finite number = . |
of steps since our hierarchy of goals of increasing odk) and/or
ﬁ(k) at each step insurés our not repeating any schema and
there eicist at most ( n;m) possible equivalent schemata.

Before we continue, it still must be shown that with our
simplex method case 1 can occur only if k¥ =1, Suppose k>1.

There then exists a level k-1 subschema and we have (we illustrate

—

g )
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| Q{th a column feasible k level subschema; the argument is

analogous if the k level subschema is row feasible):

| = T T Tay” =1
| . T
& | o -
. | an |-
| |© 0
‘ @ ' @
|é (;
> — = — A= - =
R(x) |1® « o & =| . &+
C(k)

If there exist any 8;, none of them can be greater than zero

because then a row pivot choice would have existed when 6ur

. row pivot choice rule was applied to the level k-1 subschema — --

and we would have returned to the level 1 subschema instead
of determining the kth level one.. If no aq exists (because

all of the entries in C(k-1), except possibly the distinguished

because we then would have had case 2 for the level kei subsche-
ma and again we would have returned to the level 1 one. Thus
we must have k = 1,

When our pivot choice is an element 'of the last row or

~column of the total schema we have one of the following three

cases:
'at ' - e! o
o | | fa |
,. i : )
, . e . . ® !+
K. = - N
- °_| _ _ el
@ ) ® @* d" N . J L l-r L

Bty




.

‘”mpivvt“transformationswusingwaswpivotsmthbse”a*””iﬁwthé““““““
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If 'a' occurs we have Representation A of the theorem
and hdve found solutions to both the row and column problems.

If 'b® ('e') occurs and every entry in the indicated row

(eolumn) is strictly positive (strictly negative) we perform

iJ

1<0 (bi >0) wntil all

c3 become nonnegative (all bi become nonpositive), obtaining

indicated row (ecolumn) for which ¢

Representation B (C) of the theorem. (This ocecurs in a

finite number of steps since once a ¢! becomes nonnegative

J

(bi beeomes nonpositive) it remains so.)

Otherwise, if zeros oceur in the indicated row in 'b!

(column in 'e'), we rearrange rows and columns if necessary

ke obtalmi T e

- ~—A R
O . . O]+ . . + I+ 0
| .
| 0
) - (—
| )
- - -— - + = -+

We treat the rows and ¢olumns enclosed by'brackets as

"an entire schema and choose pivots and perform pivot transforma-

f.
tions as we did for the whole schema until we obtain repre- -

sentation 'a', 'b', or 'e' above in this smaller schema.

~ (We note that because of the zeros, the positive entries in

‘the indicated row (negative entries in the indicated column)




|
.
'
‘ .

ol

Tremain unchanged during this sucessidn °f pivot trahsformations;

If we obtain representation 'a', and d' for the smallér

4

schema is strictly less than zero (strictly greater than zero),

—we have arrived at Representation D of the theorem. If we

a! in the indicated row (eolumn) of the larger schema for

1]
which cs of the larger schema is less than zero (bi is greater

than zero until all 03 become nonnegative (all bi become non-
poSitive) obtaining Representation B (C),

If we obtain representation 'c' ('b'), we have obtained
Representation D of the theorem.

If we obtaln representation 'b' ('c¢'), we have a schema

— A ~
Y /*6 i

10+ ©

1 \E Iy

If the indicated row (column) in the subschema enclosed by

brackets contains no zeros we pivot on positive (negative)

- entries as before until all e! >0 (all biéo), obtaining
dJ

‘Representation B (C), If zeros are present we determine a

still smaller subschema consisting of the ecolumns with zeros
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in the indicated row (the rows with zeros in the indicated

column) and all rows (columns) excluding the present indicated

one and the previous 1ndicated one, and apply the above rules .WMM;WW

until we arrive at representation 'a', 'b?, or 'c' and repeat

“the above. Since there are only a finite number of rows and

columns in our schema, we must obtain one of the four repre-
sentations of the theorem in a finite number of steps. This
completes the proof of the theorem,

We note that in solving an actual linear programming
problem we would ordinarily stop computations upon reaching

Representation A or representations 'b! or 'e! since the

~ last two representations cannot lead to an optimal solution. .




> = S L Sl R R LR TR S,

26

' EXAMPLE

We illustrate the thebrém with an example. Consider.

- the following problem.

~ Subject to: x, -bxy - x3 <  zZO0

X4 -5x2 -2x3 +1Ox1.L +220
-X1 +5x2 +3xﬁ + 620

1l o 2 6 1 1010

-xq +6x, -2x, +1 Z0
-lixy + xy +63, + 1020

In tableau form:

5
—apld
pa—Y
andd
'
-t
%
1
1
o
o
"
'
|
wsnll

e
N
!
o\
[
\n
N
18))
|
+
!
(S
1
|
=<g
N

(I)

Eﬁ A
(WS
{ !
£ -
-t i
o N
w O
4
N O
(@) -b
¥
F ¥
i i
4 4
F w

[
<

=X5 =X¢g =Xp =X§ =Xg =u
The level 1 subschema 1s: -
M1 1 -1 -1 o0 |
@[=6 -5 5 6 Mk
| , - - 1+
(3| -1 =2 0 0 L
, (5) (6) (7) (8) (9

(We employ the numbers in parentheses as a labeling

device to keep track of which rows and columns of the entire

schema we are working with.) No pivot choice exists for this

subschema: Our row pivot choice rule gives none (the two




.
‘eolumns with ¢;<0 do have positive entries, but the maximum
!  of the ratio is zero), and we do not have cases 1 or 2. We
| - therefore determine the 2nd level subschema:

——e LD O R - ’
im-wn.mﬂﬁﬁww _fluwmw.wwu. (7), (8)  (9) (5) e AU im wwwwmmww?

Again no pivot choice exists, so we determine the 3rd

level subschema: C
(1) [=1* -1 '1 |R

|
(7) (8) (5) o

We have.case 2 and therefore pivot on the left-most -1

(starred) in the 3rd level subschema obtaining: -
x7 -1 -1 - 1 0 0
X5 | =1 0 5 1~ =k
X3 [-1* =2 0 0 1 Iy

!
w
I
<
N

J

-YB .(II)

i
<

1|6 8 6 -5 10 ,0

’ "Xy TXg =X, =Xg =X, =u
We now return to the level 1 subschema (which consists
of éxactly the same rows.and columns aé before since a pivot
‘choice in a level 3 subschema alters the hierarchy only for
levels greater than 2): | c
()] =1 =1 1 1 O | o
@1 0o 5 1 4 o3
Dl=1* 2 0 o 1 'u|r
() (6) (1) (8) (9)

There exists no pivot choice under our row pivot choice

‘Tule, but we do have case 2. Pivoting on the -1 produces:

’ ' u
-y -
4




o Ls
N
| i
— —
[\) b
i
\J‘l O Y
- =
- *
! !
\n —
! t
g
i il
i i
< <
O

1
o
1]
I
A
~~
|
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il
<

=X =X6 =X1 :X8 :X9 =1

Iheilevel 1 subschema now consists ~f the entire schema.
Application of our row pivot choice rule to this level 1 sub-

schema yields the "9 (starred) in the fourth column as the

? """ " 7 -'WwinG%wehﬁiee,~~PivgtiﬁgwppgéueesgmwmmwmW.HWWHW. 

s —_— SRR ESRE RS S (P S AR
e ——r— rfm et sh s rmien

>
N
o
=
(@)
!
P
1
=
i
oY)
"
|
<
N

(IV)

o
N
1

N

e

AN

|

T~
u
g
N

¥
I
.}(.
I
<

1
B
|
o
o
S
|
N
o
o
i
X
S
I
&
~

Looking at the level 1 subschema a~ain we, find we have
-wwﬁw_wwwmwwc&se~1-and we Chggseh“(Starred)”asma“pivot;““Wémstgpwsincewmwm_“'WW"““MM
d' was chosen as a nivot,

Cd

The solution to our maximization problem is
x =1, x

1 2 3
with 4 the desired maximum, ]

=0, x, =1, X, = 0
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COMPARISON- WITH BALINSKI - GOMORY METHOD

The simplex method presented by Balinski and Gomory (1)
1s similar to the one presented above. It differs in that no

rule is given to uniquely determine the distinguished entry

R e o SR D e e - -
- - o e

in building the hierarchy of subschemata for the main schema.

sequence. They build the entire hierarchy and immediately
attempt to accomplish goal k (increasingo(and/orﬁg), where
the level k subschema is the highest (i.e., has the highest

number in our system of numbering subschema levels) in the

" hierarchy which is not both row and column feasible., Either

the row (column) pivot choice rule or case 1 or case 2 then

-yields a pivot choice. When the pivot transformation has —

been perfofmed the hierarchy is redefined for the levels > k
if possible. The level subschema now highest in the hierarchy

which is not both row and column feasible is examined as

- before and-a pivot choice made., This continues until termina-

tion under the same rules as presented in this paper;
It appears, heuristically at least, that working on goal

1 would be more effective toward solving the entire linear

program than working on a higher goal would be. In the simplex

method presented in this paper always returning to the level
1 subschema to look for a pivot choice is exactly the samé as
choosing the distinguished entry in the Balinski - Gomory
method so that the subschema 1s both row and ecolum feasible
whenever possible.

We illustrate by applying the simplex method of (1) to

_ In addition the authors work on the hierarchy in a different
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our ek&mple above., To avoid ambiguity we shall always choose

the left-most or top-most

- choice arbitrary.)

wInw(I)MthewpivotwchoieewwguldwbewthewsamewasMourswsincé””“mmmmmm“”

row and column feasible,

possible distinguished éntry when

there is a choice to be made. (The authors of (1) make the

“the level 3 subschema is the highest one which is not both

Again in (II) the c?oice‘would be

the same, However in (III) we would not work on the level 1

subschema, but rather determine the level 2 subschema (which

.1s the highest level subschema which is not both row and

column feasible):

(3 (1) (9) (6)
W 3 5 s S
B Biiar ettt SlE - )

Application of our column

pivot choice rule yields the -1

(starred) as a pivot choice. Pivoting produces:

W Y¢ Yy Vg T 1
x7 -1 -1k - 6 - 6 <4 | = ~¥,
X2 -1 -13 2 6 -10 -7 = -y2
Xz | -1 =13 -3 5 .6 | o= -y,
3 |1 15 -3 5 -5 0] =y,
1 | 6 86 24  -35 L6 P2k | = v
- =X, ‘=x6 =X; =Xg =xg =n

We have now performed the

same number of pivot transformations

as 1in the example, but we have not reached an optimal solution.

In fact, it will take three more pivot transformations to

reach the solution,
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Now if in (III) we had chosen the -5 instead of the =k
-as a distinguished entry, the level 2 subschema would have

been: |
- B ) 6 16

which is both row and column feasible, Under the Balinski-
Gomory simplex method one would go back one level since theﬂ
level 1 subschema is the highest on which is not both row and
column feas:lbie. The pilvot choice would then be the same as

in the example and we would reach the optimal solution imme-
diately. '
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EXTENSIONS: |
Suppose we wish to maximize ;; biti + d subject to

M

the inequalities 23 a

+
oY b

JZ 0, J = 1, ee 0y N, Where

i

the following schema:

the t are no longer required to be nommegative. We set wp

e st ooy e

"
q o

=X e e o "’XN =u

#;;;M§;M£;€ﬁire only the xj and yj to be nonnegative for

all jo It is easily verified that Theorem 1 and its corollaries

are still true for this new program.

To solve this problem we attempt to eliminate t,he,ti

as independent variables in the above column program. To do
this we make pivot transformations on the above schema and
its sucessive representationé using as a pivot choice any
non-zero entry corresponding to x-dependent and t-independent

~ceolumn program labels until no longer possible. Two possible

cases can result:

/

f

~ 1. BEvery entry which corresponds to x-dependent and t-

independent column program labels is gzero.

2. No columnprogram independent labels are t's,

e 4 et e L s A e A ¢ e ey e A e e e e e

s o = e e ot

g 11
H el I 1ttt |
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If (i) results we have a schema of the form:.
%h1 o o o y}mFO' e oo O 1
P - & : e () e » - —
. @
R f, { — el )
xh : xm
' =
tm_'.1 0
2 - &
1 = v!

‘where the primed variables are a rearrangement of the variables
in the original schema and the primed entries are the result
of the preceeding plvot steps. If any of the bi, i =m#,
...; M is not zero; then we have a row equation which states
vthat a ﬁ&nZero quanfity équals zZero, This is clearly impos-
sible, so the row constraints are incompatible, and consequently
there is no optimal solution to our maximigzation program.,
If, on the other hand, we have b',. = ... = b/

m+1 M
~ equations corresponding to dependent O-labels read "zero

= 0, the row

equals zero"” and can consequently be eliminated from the row
program, Clearly the columns corresponding to the independent
O-labels can also be-mmitfed from the fOW'program. Since |

the t; are not required to be nonnegative, the column equations

with dependent ti variables can be eliminated from the column

program since they represent no constraints. Having done this,
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E . we see that the coefficients corresponding to the 1ndependent

ti are all zeros, and hence their rows can be omitted from

~ the schema. Thus if case 1 ocecurs and we have Brgq = eee =

bﬁ.- O, we have a smaller representation for our column

~ program; in fact, it has the same form as the schema we

conslidered earlier, We apply the technique of the theorem

to obtain optimal values for x, (or show that none exist),
and then use these values to determine the-optimal values

for the ti.
If case (2) occurs, then all t-labels are dependent

and all O-labels are independent and we proceed as above. |

A simple example 1llustrates the methods . . A e

\ Maximize t1 - t2 ;
| subject to -t1 - t2 + 2t3 20
. _ -
2t1+ t2 + t3 >0
- t1 + t. - 2t3 + 120
\""\v_“

1]
4 O O O
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1
173 = -y,
3 y2
—— - 0 = -0
0 = v
=t1 =t2 =x3 =u

We have bé = 0, so we temporarily ignore the third row

and the first two columns.

* -3
X, = <7,
1 = v

The level 1 subschema consists of the first two rows with the
distinguished entry "1/3". Choosing the pivot entry as in

case 2 and verforming the pivot transformation we have:

i
<

=X, =u

which exhibits optimal solutions.

Thus we have X¢ =1, x_ = 0,,x3 = 0, Using the third schema

“aboﬁe wé have t3 = 0

| - % = 1/3%) 1/3%, + 1y

-1/3
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