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ABSTRACT 

Ammonium bisulfate (ABS) is an acidic deposit that can form on the metal elements of air 

preheaters in power boilers, leading to unit operational issues. As a byproduct of the 

Selective Catalytic Reduction (SCR) systems for nitrogen oxide (NOx) emissions control, 

ABS could result in unit efficiency deterioration, even unit outage. ABS formation 

temperature is an important factor in controlling the issues associated with ABS fouling 

problems. If the ABS formation temperature could be monitored, the ABS deposition 

location could be identified. Subsequently, preventative actions could be taken to avoid 

ABS fouling to develop into a serious operational problem, such as air preheater plugging. 

This study deals with indirect predictive models of ABS formation temperature. Five 

models were developed based on data mining technologies, using actual power plant data. 

Data composed of 14,230 samples, from 49 variables were used in the study. In the 

modeling, Principal Component Analysis (PCA) and Sensitivity Analysis (SA) were used 

to reduce the number of variables in the data set. K-Means Clustering (KMC) was also 

employed to compress training samples. Neural Networks (NN) and Support Vector 

Machine (SVM) were used for data modeling. Model results were validated with ABS 

formation temperatures measured with an ABS dew-point probe. A SA was performed to 

determine the impact of individual variables on the ABS formation process. It was found 

that four unit variables: SO2 stack concentration, SCR gas outlet temperature, SCR inlet 

NOx concentration and dilution skid ammonia flow, can provide a good representation of 
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the data set for ABS formation temperature prediction. The most accurate predictive model 

consists of a sequence of KMC and SVM. This approach can predict ABS formation 

temperature within a 9% error from the physical measurement. 
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1 INTRODUCTION 

Coal-fired power generation is the most important source of global electricity production, 

capturing 41% of the electricity market in 2013 [1]. However, despite coal-fired power 

generation being an efficient and reliable electricity producing technology, it faces strict 

environmental regulation. Carbon dioxide (CO2), sulfur oxides (SOx), NOx, and particulate 

matter (PM) are the main pollutants from coal-fired power plants. There is a variety of 

emissions control technologies for NOx abatement. SCR is one of these technologies. 

However, there are issues associated to the installation of SCR systems. ABS fouling of 

boiler back-end equipment is one of these issues. ABS fouling leads to pressure drop and 

thermal efficiency impact, resulting in loss of unit availability and power generation. It has 

been reported that SCR systems in Germany, Japan, and the United States suffer from ABS 

fouling issues [2]. 

 

In this study, a review of ABS formation and its impact on related power plant equipment 

is first introduced. Given that measurement of ABS formation temperature is a key point 

to help mitigation of the ABS fouling issue, this study deals with indirect predictive models 

of ABS formation temperature. Models were developed based on data mining technologies 

and Artificial Intelligence (AI) tools. Finally, this study reports results of five models, 

which were developed using actual power plant data. These models were validated with 

ABS formation temperatures measured with an ABS dew-point probe. It was found that 



4 
 

the combination of data mining and AI can produce ABS predicted temperatures within 10% 

of the measured temperatures. 

 

1.1  Selective Catalytic Reduction 

1.1.1 Background 

NOx is a primary pollutant produced during the combustion process. Nitric oxide (NO) and 

nitrogen dioxide (NO2) are the two main components in NOx. In high temperature 

combustion, NOx can be generated by the reaction of oxygen and nitrogen from both air 

and fuel. It is well documented that NOx is a precursor of acid rain which is detrimental to 

human health, buildings and crops. Furthermore, NOx contributes to ozone formation at the 

tropospheric level. For this reason, NOx emissions from combustion sources are regulated, 

monitored, and require a strict level of control [3]. 

 

Pre-combustion fuel switching, combustion control and post-combustion reduction have 

been applied to reduce NOx emissions from coal-fired power plants. SCR technology is 

currently the most effective way of post-combustion NOx reduction. SCR can reduce more 

than 90% of NOx present in coal-fired power plants flue gas [3]. The first SCR was 

developed in Japan in 1963. SCR is currently used in a variety of power plants such as 

those fired by coal, natural gas, fuel oil, biomass and refuse. 
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1.1.2 SCR Process 

The SCR process is a mean of converting NOx, with the aid of a catalyst, into diatomic 

nitrogen (N2), and water (H2O) [4]. Ammonia (NH3) and urea (CON2H4) are normally used 

as reagents in the SCR process to react with NOx. As shown in Figure 1, a reagent such as 

NH3, is sprayed before the flue gas flows past a catalyst. The catalyst is placed in a big 

reactor. The main reactions in the reactor are [5]: 

4NO + 4NH3 + O2 → 4N2 + 6H2O 

NO + NO2 + 2NH3 → 2N2 + 3H2O 

 

Figure 1. SCR NOx Removal Process [3] 

 

SCR equipment is usually installed downstream of the economizer in the boiler, as shown 

in Figure 2. Figure 3 amplifies the SCR portion of Figure 2. Besides the SCR reactor, there 

is a bypass around the SCR. When the SCR reactor needs to be fallen out of service, 

operators can modify the damper position so that the flue gas can pass through the SCR 

bypass and continue the operation of the unit. 
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Figure 2. Location of the Air Preheater and SCR in a Coal-Fired Power Plant [3] 

 

 

Figure 3. SCR Bypass Damper [3] 

 

1.1.3 Ammonia Slip 

NOx removal efficiency, ammonia utilization, and ammonia slip are three of the most 
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important indicators of SCR performance. NOx removal efficiency is defined as, EffNOx = 

(NOx,in – NOx,out)/NOx,in. Ammonia utilization is similarly defined as, U = (ammoniain - 

ammoniaout)/ ammoniain. Ammonia slip is highly related to ABS formation. During the NOx 

removal process in the SCR, ammonia is injected into the flue gas and most of it reacts 

with NOx, converting it to nitrogen. However, some portion of the ammonia passes through 

the SCR system unreacted. This is so called “ammonia slip” [6]. Reduction of ammonia slip 

is very important in the operation of SCR systems. Typically, NH3 is monitored in real time 

after the SCR reactor. Periodic tuning of the SCR system is also performed couple of times 

a year to minimize NH3 carryover. 

 

1.2  Air Preheater 

1.2.1 Background 

Air preheaters are used in coal-fired power plants to preheat the combustion air and 

improve the efficiency of the combustion process and the overall efficiency of the boiler. 

The air preheater transfers heat from the flue gas to the combustion air. This feature 

increases boiler efficiency 5 to 10%. Additionally, the hot combustion air is also used for 

drying and transporting the fuel in solid fuel plants. Figure 2 shows a diagram of the air 

preheater located downstream of the economizer and SCR reactor. 

 

Air preheaters can be classified into recuperative and regenerative types, depending on 

different operating principle and structure. In the recuperative air preheater, heat is 
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transferred directly and continuously through stationary and solid heat exchanging surfaces. 

The regenerative air preheater is more popular than the recuperative air preheater in coal-

fired power plants. 

 

1.2.2 Regenerative Air Preheaters 

The regenerative air preheater transfers heat indirectly through a storage medium. The 

storage medium is made up of multiple heating surface elements. Typically, metallic plates 

like tight packed bundles of corrugated steel are used as the heating surface elements [7]. 

Heating surface elements are periodically exposed to the hot and cold flow streams as the 

air preheater turns. There are two types of regenerative air preheaters the Ljungström-type 

and the Rothemühle-type. The Ljungström air preheater has a fixed cylindrical shell plus a 

rotor packed with the heating surface elements. The Rothemühle air preheater, rather than 

fitted with stationary heating surface elements, it has rotating ducts [3]. In coal-fired power 

plants, the Ljungström type of air preheater is used the most. 

 

Figure 4 shows a representation of a Ljungström air preheater. In this figure, it can be seen 

the counterflow of air and flue gas through the air preheater, from bottom and top, 

respectively. The air flows through one half of it while the flue gas flows through the other 

half. Ljungström air preheaters can be divided into two, three or four sectors, because of 

the various rotating plate designs. For instance, the tri-sector type divides the air channel 

into two parts, primary air and secondary air separately (see Figure 5). Therefore, two 
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sectors of air channel adding one sector of gas channel are three sectors. With respect to 

the heating surface elements, in the axial direction, this type of air preheater can be divided 

into two to four layers: hot layer, intermediate layer(s), cold layer, depending on the 

different metal temperatures. 

 

 

Figure 4. Ljungström-Type Air Preheater [3] 

 

Figure 5. Ljungström-Type Tri-Sector Air Preheater [3] 
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The rotation speed of regenerative air preheaters is quite slow, around 1-3 rpm [3][8], to allow 

heat to be transferred efficiently. Typical data for Ljungström air preheaters are shown in 

Table 1. 

 

Table 1. Typical Data for Ljungström-Type Air Preheater [8] 

 

 

High pressure air and water or steam are frequently used as the medium for air preheaters 

cleaning. Cleaning devices based on those media help air preheaters to maintain their 

normal operation. In most cases, sootblowing devices are installed at the junction of the air 

preheater and the flue gas duct. Superheated steam or dry air via high pressure nozzles is 

used to periodically clean the heating surface elements. Additionally, permanent water 

wash piping is also installed to clean the air preheater of heavy ash deposits. The water 

wash piping is typically located at the top of the rotor, so that most heating surface elements 

can be exposed to the nozzles while rotation.  



11 
 

1.2.3 Concerns with Air Preheaters 

The reason that air preheaters are equipped with cleaning means is the main issue of air 

preheater fouling. Fouling involves deposition of substances such as sulfuric acid, as well 

as ash deposition. 

 

In the case of acid deposition, SO2 is partly converted into SO3 at the boiler back-end. 

Subsequently, SO3 and moisture form sulfuric acid (H2SO4). Most air preheaters are 

operated at minimum metal temperatures larger than the H2SO4 acid dew point, to avoid 

sulfuric acid condensation onto the metal surface. If not mitigated, this can lead to air 

preheater cold-end layer corrosion. 

 

One new form of air preheater fouling and corrosion has become an issue with the 

penetration of SCR’s to the coal-fired power plant fleet. When SCR is used upstream of 

the air preheater, ABS fouling becomes a serious issue that needs to be addressed by power 

plant operators. 

 

1.3 Ammonium Bisulfate 

1.3.1 ABS Formation 

In the SCR process, some ammonia would pass the SCR reactor unreacted. Some of the 

ammonia slip would combine with sulfuric acid (H2SO4) and/or sulfur trioxide (SO3) to 

produce ammonium sulfate ((NH4)2SO4) and ammonium bisulfate (NH4HSO4). The global 
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NH3-SO3 reactions that take place in the formation of these salts are [9]:  

2NH3 + SO3 + H2O ↔ (NH4)2SO4 (s) = Ammonium sulfate (AS) 

NH3 + SO3 + H2O ↔ NH4HSO4 (l) = Ammonium bisulfate (ABS) 

These reactions proceed as the flue gas is cooled down in the air preheater.  

 

At the typical gas and metal air preheater temperatures, (NH4)2SO4 exists as solid in the 

flue gas. Formation of (NH4)2SO4 should not present a problem then, since the solid can 

not adhere to the air preheater metal surfaces as readily as a condensed phase [9]. However, 

NH4HSO4 deposits as sticky liquid and it can result in serious fouling and plugging problem. 

Plugging is used to characterize an excessive case of fouling, where the deposit plugs the 

open space in the air preheater basket, forcing the draft balancing system of the unit (forced 

and induced fans) to exceed their maximum capacity, forcing a shut down for water 

washing of the air preheater, with the associated down time and lose of generation. 

 

Typically, the flue gas enters the air preheater around 650°F, and leaves around 250°F. A 

temperature profile along the air preheater is presented in Figure 6. It is reported that ABS 

deposit is usually found at the cold and intermediate air preheater layers where the 

temperature is approximately 315°F [6]. The temperature at which ABS starts forming along 

the decreasing air preheater temperature profile is called ABS formation temperature, or 

ABS initial formation temperature. During the heat transfer cycle of the air preheater, the 



13 
 

temperature of the heating elements changes as they are continuously exposed to hot flue 

gas and cold combustion air. When the metal temperature is lower than ABS formation 

temperature, ABS will deposit on the heating elements. It is reported that in most air 

preheaters, ABS deposits are observed down-stream of the anticipated dew point, or 

formation temperature [6]. 

 

 

Figure 6. Typical Metal and Fluid Temperature Profile in the Air Preheater [6] 

 

1.3.2 Discussion of Problem Due to ABS Fouling 

During the ABS fouling process, ABS firstly forms and deposits onto the cold and 

intermediate layers of the air preheater. Subsequently, fly ash in the flue gas would adhere 

to the heating surface element. Gradually, it can cause a serious fouling issue. This fouling 

issue would result in increased air preheater pressure drop and associated thermal 

efficiency deterioration. If the pressure drop becomes significant, the boiler must reduce 
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load, leading to an inevitable unit outage. 

 

ABS fouling is a significant problem when the ABS deposit accumulates at the intermediate 

layer. Some of the reasons for this are:  

(1) Different from the cold-end layer, the intermediate layer is always manufactured from 

light-gauge carbon steel which is easy to be corroded due to the ABS deposits; 

(2) Since the sootblowing equipment is located at both ends of the air preheater, the 

intermediate layer ABS deposit is difficult to be removed by sootblowing; 

 

The key factors contributing to ABS fouling can be classified into two parts: the NH3 and 

SO3 concentration, and the air preheater design characteristics [2]. The concentration of NH3 

and SO3 in the flue gas directly impacts the ABS formation temperature, as shown in Figure 

7. Figure 7 shows an ABS formation temperature map developed by Hitachi-Zosen using 

thermodynamic equilibrium calculations [2]. As shown in Figure 7, higher concentrations 

of NH3 and SO3 will result in higher ABS formation temperatures. A high ABS formation 

temperature means that the ABS will form far away from the cold end, into the hotter parts 

of the air preheater, which is very difficult to be cleaned by sootblowing. On the contrary, 

low concentrations of NH3 and SO3 would lead to low ABS formation temperatures which 

will be more adequate for fouling-free air preheater operation. Therefore, concentration of 

NH3 and SO3 in the flue gas is strictly limited to avoid the ABS fouling issue. References 
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prescribe NH3 and SO3 concentrations, to prevent ABS fouling, in the range of 0-2 ppm [2]. 

 

Figure 7. Hitachi-Zosen Map of Formation Temperature of Ammonia Bisulfate [2] 

 

There are some main factors that lead to high concentration of NH3 and SO3. These include 

for NH3, the quantity and utilization effectiveness of the ammonia in the SCR, and SCR 

catalyst performance. For SO3, these include, the sulfur content in the fuel and the SO2 to 

SO3 conversion effectiveness, as well as the SCR catalyst fly ash composition (vanadium 

promotes oxidation of SO2 to SO3 in the SCR reactor). In addition to these factors, some 

other factors can influence high NH3 and SO3 concentrations in the flue gas, and thereby 

impact ABS formation. These factors include boiler operation which can impact high NOx 

formation and its level at the SCR inlet, and ash alkalinity (CaO, MgO) which impact SO3 

concentration indirectly. 

 

The air preheater design characteristics is other major contributing factor to the ABS 
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fouling issue. The three major influencing design factors are: the element profile, air 

preheater basket layer depth and configuration, and basket material selection. 

 

There are two typical types of element profiles in air preheaters, close and open. Closed 

element profiles have no flow communication between channels. The Double Undulated 

(DU) element is an example of an air preheater open element profile. In this profile the 

flow can move across the element between two sheets. Generally, the closed profile has 

better ABS fouling resistance performance, since the flow energy from the sootblowers 

have less deposit shattering energy waste than in the open profile. 

 

The depth of the heating element layers directly affect the temperature profile along the 

flow direction, thereby influencing the ABS formation location in the air preheater. As 

previously discussed, intermediate and cold layers have a higher risk of ABS fouling. 

Deeper cold layers are better choice to mitigate ABS deposition occurring within a single 

layer. In regard to material selection, carbon steel is the most common material used for air 

preheater heating elements. However, fouling and acid attack can damage carbon steel. An 

enameled plate is typically employed to mitigate fouling of air preheater heating elements. 

Fly ash and other deposits are not easy to adhere on the enameled material. Therefore, it 

has been widely used for the cold layer in air preheaters with a risk of fouling and corrosion. 

 

1.3.3 Mitigation of ABS Fouling in Air Preheaters 
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Based on the operating experience with SCR’s in Japan, Germany and the United States 

for decades, a good deal of experience has been accumulated on the ABS fouling issue. A 

summary of air preheater fouling criteria, including potential mitigating approaches is 

provided in Table 2. It is the concensus that the most important factors for preventing ABS 

fouling are the control of excess SO3 and NH3. If SO3 < 2-3 ppm and NH3 < 1-2 ppm, the 

ABS fouling can be greatly avoided. However, it is not so simple to meet this goal. 

 

Table 2. Air Preheater Fouling Criteria [2] 

 

Fouling Factor Criteria Mitigation Options 

SO3 < 2-3 ppm 

> 2-3 ppm 

 OK 

 Related to fuel quality and/or 

catalyst activity in SCR 

application 

 Add limestone to coal 

NH3 < 1-2 ppm 

> 1-2 ppm 

 OK 

 Monitor catalyst activity 

 Replace/add catalyst 

 Reduce reagent injection 

Element Layer Split  Shallow cold/int. layer 

 Deep cold/int. layer 

 Deep cold-end layer 

 Less desirable 

 Better 

 Best (all deposition within single 

layer) 

Element Material  Carbon steel 

 LACR 

 Enamel 

 Poor (corrosion) 

 Better 

 Best (lowest depositon/corrosion) 

Element Profile  Open 

 Closed 

 Less desirable 

 Better cold-end sootblower 

penetration/water washing 

Cold-End Sootblower Rapid fouling if 

malfunctioning or out of 

service 

 Upgrade nozzle to high-energy 

design 

 Consider spare 

SCR Location  High dust 

 Low dust 

 Lower fouling 

 Higher fouling 
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1.4 Scope of This Study 

It has been discussed that ABS is an acidic deposit that forms on the metal elements of air 

preheaters in utility boilers. Because of the sticky nature of ABS, particles in the flue gas 

stream accumulate on the ABS wetted surface and aggravate fouling, leading to plugging 

of the air preheater [6]. Although fouling mitigation approaches have been proposed and 

proven with success, an important aspect of ABS formation and its detrimental impact on 

boiler operation is the ability to monitor ABS formation temperature. If information on 

ABS formation temperature could be readily available, the ABS deposition location could 

be identified. Subsequently, corresponding actions to avoid further fouling could be taken 

by boiler operators. 

 

In this study, a literature review is provided, including previous studies of ABS formation 

temperature determination, by modeling and experimentation. Information on a sensor 

employed to measure ABS formation temperature in the field is introduced as well. An 

ABS modeling effort is then undertaken. This modeling is based on field data using plant 

performance data and readings from an ABS formation temperature monitor. PCA and SA 

were applied to reduce the number of variables that are important to impact ABS formation 

temperature. Then, KMC was used to select representative data samples. NN and SVM 

were employed to develop ABS formation temperature models.  
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These models were assessed in their ABS formation temperature predicted capabilities. An 

approach was finally recommended for a soft sensor for ABS formation temperature 

estimation based on SVM and NN. It was found that the prediction accuracy of this 

approach is within 8.8% of the ABS formation temperature determined by an actual ABS 

probe installed at a coal-fired power generation unit. 
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2 LITERATURE REVIEW 

2.1  Previous Studies of ABS Formation Temperature 

Studies on ABS formation temperature modeling have been carried out and reported in the 

literature. Examples of ABS formation temperature models are those from Radian [6][12], 

Hitachi-Zosen [2], Matsuda [11], and Menasha [6]. Most of model predictions of ABS 

formation temperature are related to the product of the concentration of NH3 and H2SO4. 

One example of such relationship is shown in Figure 8. In Figure 8, model results and 

experimental data for ABS formation temperature are reported vs. the product, 

[NH3]*[H2SO4]. The Radian model and the Hitachi-Zosen model provide a relatively lower 

ABS formation temperature than the corresponding temperatures obtained and reported by 

Mensha and Matsuda. The details of these four classical models are introduced next. 

 

 

Figure 8. Results of Previous Studies of ABS Formation Temperature [6] 
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2.1.1 Radian Model [6] [12] 

One of the earliest studies of ABS formation temperature is provided by Radian. Radian 

utilized results from various power plants to develop a kinetic model for the predition of 

ABS formation temperature and deposition of ABS. The Radian work identified the 

following principal chemical reactions for the formation of ABS: 

NH3+SO3+H2O → NH4HSO4 

NH3+H2SO4 → NH4HSO4 

SO3+H2O → H2SO4 

An equation was proposed to rate the formation of ABS in air preheaters according to [9]: 

Radian Number = [SO3] × [NH3] × [TIFT] × [Trep] 

Where TIFT is the initial ABS formation temperature, Trep is a combination of exit flue gas 

temperature and cold-end metal surface temperature, SO3 and NH3 are sulfur trioxide and 

ammonia concentrations in the flue gas. A larger Radian number indicates a higher 

probability for ABS formation [12]. 

 

In the Radian study, the conversion of SO3 to sulfuric acid was considered very important 

since the conversion of SO3 could reduce the amount of SO3 available in the flue gas to 

react directly with NH3. Therefore, it could lead to low ABS formation temperature because 

of the low reactant concentrations. As shown in Figure 8, the ABS formation temperatures 

predicted by the Radian model are relatively lower than those reported by the other studies. 
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Menasha reported that real ABS deposits are typically and mostly observed at temperatures 

located down-stream of ABS formation temperatures and predicted by theoretical 

calculations [6]. These down-stream ABS deposits location temperatures would then 

validate the predictions of ABS formation temperatures from Radian. 

 

2.1.2 Hitachi-Zosen Model [2] 

Hitachi-Zosen studied the formation of ammonium bisulfate and ammonium sulfate, 

theoretically. The formation temperature predicted by Hitachi-Zosen is included in Figure 

7. These Figure 7 predictions are based on thermochemical calculations, not experimental 

work. The data in Figure 7 were re-plotted in Figure 8 with the other ABS formation 

temperature data. The Hitachi-Zosen model also predicts relatively low ABS formation 

temperatures. 

 

2.1.3 Matsuda Model [11] 

Matsuda designed experiments to study ABS formation temperature. A diagram of 

Matsuda’s experimental apparatus is presented in Figure 9 [11]. In this setup a gas mixture 

containing different amounts of NH3 and SO3 was passed through a glass tube reactor in a 

furnace, with a decreasing temperature gradient. The furnace temperature decreased along 

the axial direction from 680 to 210°F. Eight axial zones were divided in the glass tube and 

a quartz wool was fitted along the glass tube to let ABS deposit on it. The approximate 
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midpoint temperature of the zone with the most dominant deposit was defined as the ABS 

formation temperature at the corresponding NH3 and SO3 concentration. Five experiments 

were performed using a gas mixture containing NH3 and SO3 by the following respective 

amounts 833: 100, 83.3: 100, 83.3: 10, 30: 65, 30: 10 (units in ppm). Matsuda indicates 

that NH3 + H2SO4 = NH4HSO4 is the predominant reaction below 570°F. Based on this 

assumption, Matsuda reported that the vapor pressure of ABS can be expressed as:  

PNH3·PH2SO4 = 1.14*1012 exp(-53000/RT) (P in atm).  

 

Where R is an ideal gas constant, and the value of this constant is 8.314 J⋅mol−1⋅K−1. T is a 

mixed gas temperature. 

 

 

Figure 9. Matsuda’s Experimental Design [11] 

 

2.1.4 Menasha Model [6] 

Menasha developed an experimental model, based on the experimental design shown in 

Figure 10. In Menasha’s experiments, simulated flue gas was composed of 75% N2, 13.5% 
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CO2, 8% H2O, 3%O2, 400ppm SO2, 2-10ppm NH3, and 5-45ppm H2SO4 
[6]. Nitrogen was 

passed through a liquid SO3 cylinder, preheated and then mixed with the other gases before 

entering the test channel. Cool, compressed air was introduced in the channel for 

counterflow cooling. Along the channel, temperature changed nearly linearly, and almost 

all the SO3 converted into H2SO4. The wall temperature was used to determine ABS 

formation temperature. The experimental results found that ABS forms as aerosol and then 

migrates to the wall surfaces of the channel. Menasha’s results are at a relative low 

[NH3]*[H2SO4] region, as compared to Matsuda’s results. The results of Menasha and 

Matsuda confirm each other, since they have similar temperature gradients so close to each 

other. 

 

Figure 10. Menasha’s Experiment Design [6] 

 

From Figure 8, it can be seen that the Radian model and the Hitachi-Zosen model (two of 

the earliest models, based on thermochemical calculations) give relatively lower ABS 

formation temperature compared to other models. The predictions of Menasha, Matsuda, 

Wei and Gatson are close to each other, at a higher ABS formation temperature. All the 
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models provide predictions related to [NH3]*[H2SO4]. It should be noticed that the 

concentration of H2SO4 is pretty difficult to measure in power plants. 

 

2.2  Measurement of ABS Formation Temperature 

In this study, data from an ABS fouling probe from Breen Energy Solutions, were used to 

obtain ABS formation temperature used in the modeling effort. The probe was installed at 

the air preheater inlet to measure ABS formation temperature and ABS evaporation 

temperature. The probe can control temperature of the detector’s heating surface by 

application of cooling air [12]. A simplified diagram of the Breen ABSensor is shown in 

Figure 11. 

 

At the beginning of a measurement cycle, the tip temperature is high enough and there is 

no material condensed on it. Then, the tip temperature is varied as cooling air flow is 

increased. When the temperature of the tip is sufficiently low, material begins to condense 

on the tip and an electric current is recorded by the device. The corresponding temperature 

for this point is noted as the “ABS Formation Temperature”. After this step, the cooling air 

to the tip is reduced and the tip temperature begins to rise. As the temperature increases, 

ABS starts to vaporize and finally it vanishes from the tip. This temperature is recorded as 

the “ABS Evaporation Temperature”. 
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Figure 11. Breen AbSensor - Condensables Measurement Device [21] 
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3 MODELING 

3.1  Plant and Data Description 

Data used in this study were obtained from Cayuga Unit 1. Cayuga Unit 1 is a 160 MW 

unit with a tangentially-fired boiler equipped with low NOx burners and overfire air for 

NOx emissions control. The unit was retrofitted with an anhydrous ammonia-based SCR 

system. The unit experienced heavy ABS fouling of the air preheater, resulting in an 

average of four air preheater water washes per year. In addition to this side problem, the 

cost of anhydrous ammonia represents a heavy burden on the operating cost of the SCR 

system [13]. The station was interested in keeping a good handle on their NH3 operation to 

reduce NH3 costs and minimize or eliminate the ABS fouling problem. Cayuga retrofitted 

the ABS probe from Breen Energy and performed an optimization of its boiler and SCR 

system. Cayuga Unit 1 field data were gathered for one month for analysis and modeling 

in this study. 

 

The Cayuga data are composed of 14,230 samples, distributed in 49 variables including 

ABS formation temperature. The variables in the Cayuga data set are shown in Table 3. 

Some of variables may have multi-values, since there are redundant sensor measurements. 

For this reason, the 49 included variables led to 80 input parameters in total. ABS formation 

temperature models were set up to predict ABS formation temperature based on the Cayuga 
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data. ABS formation temperature was regarded as a single output of the model. All the 

remaining 48 variables (79 parameters) were used as input to the models. 

Table 3. Variables in Cayuga Data Set 

General Parameter:  

Net MW    Gross MW    Fouling Evaporate Temp.     Fouling Formation Temp.     

Main Steam Temp.    Total Air Flow 

Furnace:            

Furnace Pressure 

Superheater：       

Steam Desuperheating Flow Low Range 

Reheater:           

Desuperheating Flow Low Range    Primary Reheater Outlet Draft    Reheater Outlet Temp. 

Economize:        

Inlet Draft    Outlet Draft    Outlet Gas Temp.    Outlet Damper Position    Bypass 

Damper Position     Oxygen 

SCR:             

Inlet: Temp.    NOx    Diverter Position 

Outlet: Temp.    Oxygen    NOx 

Dilution Skid NH3 Vap Temp    Load Based NH3 Flow, Calculated    Dilution Skid Ammonia Flow 

Operator Entered Allowable NOx Bias % 

Air Preheater:      

Air: Inlet Temp.    Outlet Temp. 

Gas: Outlet Temp. 

Cold End Temp. Bias    Bypass Damper Position 

Emissions:        

NOx Emission     

Analyzer Inlet SO2    Unit 1 SO2 Flow    ABS1 Outlet SO2 Flow 

Stack 1 CO2 

Opacity 

Mill & Fan:       

FD Air Flow     Unit 1 Inlet Gas Flow 

Coal Feeder Flow     

Mill Motor AMPS, Speed 

PA Fan Flow, Temp. 

Coal-Air Temp. 

Windbox to Furnace Diff. Pressure 

Overfire Air Flow 
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3.2  Modeling Strategy 

The overall modeling strategy is shown in Figure 12. Initially, variables were reduced by 

experience. Through this process, repetitive or less influential variables were removed to 

eliminate noise during modeling. For example, variables reporting data upstream in the 

combustion process, such as pulverizer information, were eliminated from the data set. 

 

PCA was applied to further reduce the variables in the reduced processed data set. SA was 

used to analyze the inputs’ influence on the output, so that the influence of each variable 

could be better assessed, resulting in an additional variable vector reduction. PCA and SA 

processes helped with the reduction of data dimension. Low dimensional data is more 

conducive to the improvement of model accuracy. 

 

The selected reduced data were divided into two parts, training data and testing data. 

Training data were set to be about 70% of the samples of the selected data, while testing 

data were composed of the remining 30%. Training data were used for modeling and testing 

data for model verification during model training. 

 

Finally, to further reduce the site of the data set, KMC was used to select even more 

representative samples.  
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After the compression of variables and samples, NN and SVM were employed to build the 

different models. All the data, including training samples and testing samples were used at 

the end to test and evaluate model accuracy. 

 

 

Figure 12. Overall Modeling Structure 

 

3.3  Variable Selection 

A variable selection process was carried out in two parts. In the first step, variables were 

reduced based on operational experience. For example, variables associated with the mills 

and fans are not pertinent nor play a direct role in the ABS formation temperature, thus, 

they were deleted to eliminate unwanted noise in the models. On the contrary, variables 

like SCR gas temperature and SCR inlet NOx were preserved because they are highly 

related to the ABS formation temperature. Additionally, a filtering procedure was employed 

to discriminating abnormal values of the different variables. The criteria to eliminate 
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abnormal data were situations where the data were out of a reasonable range or remained 

unchanged over a period of time. After this step was implemented, 19 variables (25 

parameters) were retained as shown in Table 4. Almost all the SCR and air preheater 

variables were retained because they are highly related to the ABS formation temperature. 

The second variable selection step used PCA. PCA was used to reduce the data dimension 

of the 19 variables. 

Table 4. Fitted Variables 

General parameter: 

Net MW    Total Air Flow 

Economize: 

Outlet Gas Temp.     Oxygen 

SCR: 

Inlet: Temp.    NOx 

Outlet: Temp.    Oxygen    NOx 

Dilution Skid NH3 Vap Temp    Dilution Skid Ammonia Flow 

Operator Entered Allowable NOx Bias % 

Air preheater:      

Air: Inlet Temp.    Outlet Temp. 

Gas: Outlet Temp. 

Cold End Temp. Bias    Bypass Damper Position 

Emissions:        

NOx Emission    Opacity 

 

 

3.3.1 Principal Component Analysis  

Principal component analysis is a statistical procedure that uses an orthogonal 

transformation to convert a set of observations of possibly correlated variables into a set of 

https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Orthogonal_transformation
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values of linearly uncorrelated variables called principal components [14]. PCA can treat 

high dimensional correlated data and is widely used for modeling of complex industrial 

processes [12]. PCA can reduce the number of dimensions of data while it keeps a maximum 

information of the raw data.  

 

Mathematically, PCA transforms the original data to a new coordinate system so that the 

greatest variance lies on the first coordinate (first principal component). The second 

greatest variance lies on the second coordinate, and so on [15]. Consider a normalized matrix, 

X with p columns (variables) and n rows (samples). Meanwhile, X has zero mean and unit 

variance. The essence of PCA is a Karhunen–Loève (KL) transformation which can be 

shown as: 

X = PY                                                            (1) 

or Y=PTX                                                          (2) 

Hence, Y is a projection of X which uses an orthogonal transformation PT. Where the P 

matrix is a p-by-p matrix whose columns are the eigenvectors of XXT. 

 

The covariance matrix of X can be defined as Sx. Sx can be expanded by the following 

equation: 

Sx = 
1

𝑛−1
XXT                                                        (3) 

XXT itself can be recognized as proportional to the empirical sample covariance matrix of 

https://en.wikipedia.org/wiki/Correlation_and_dependence
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the dataset X. Λ is the diagonal matrix of eigenvalues λ(k) of XXT, 

Λ=PXXTP-1                                                         (4) 

The greatest eigenvalue λ(1) in Λ represents the first principle component. After KL 

transforms, the first principle component can explain the 
λ(1)

∑λ(k)
 information of the original 

dataset X. Additionally, the first m principle components can represent 
λ(1)+λ(2)+⋯+λ(m)

∑λ(k)
 

information of X. For example, if the requirement is to keep 90% of X’s information in Y. 

Once m satisfies 
λ(1)+λ(2)+⋯+λ(m)

∑λ(k)
>90%, the data can be reduced to the m dimension by 

PCA. Therefore, PCA provides an effective way to reduce the dimensions of a data set. 

PCA was implemented by MATLAB in this study. 

 

3.4  Sample Selection 

The Cayuga data set contains over ten thousand samples. To obtain a more manageable 

data set, sample selection and compression was accomplished using KMC. 

 

3.4.1 K-Means Clustering 

KMC is a method of vector quantization, and it is popular for cluster analysis in data mining 

[16]. KMC is designed to divide M points in N dimensions into K clusters, so that the within-

cluster sum of squares is minimized [17]. 

 

Mathematically, given a set of samples (X1, X2, …, Xm); where, each sample is a N-
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dimensional real vector, K-means clustering tries to classify M samples into K (≤m) 

clusters: S = {S1, S2, …, SK}. Meanwhile, it also aims to minimize the within-cluster sum 

of squares (WCSS). WCSS is the sum of distance functions of each point in the cluster to 

the K center. In other words, K-means clustering attempts to meet: 

argmin
𝑆

∑ ∑ ||𝑋 − 𝜇𝑖||
2

𝑋∈𝑆𝑖

𝐾
𝑖=1                                           (5) 

where μi is the mean of points in Si. 

 

A sample result of K-means clustering application in this study is visually shown in Figure 

13. The x and y axis in the figure represent the first and second principle component of the 

processed data, respectively. The data could possibly have more than two-dimensions, but 

it is more convenient to show the space distribution of data points in a two-dimensional 

surface. In the left plot of Figure 13, all the data points (more than 12,000 points) are 

densely distributed in a two-dimensional surface. After the K-means clustering process, 

just 110 cluster center points are compressed from the over 12,000 points. All cluster 

centers are shown on the right plot as red points. The 110 cluster centers can cover the 

characteristics in the over 12,000 data points. KMC reduced the number of samples in the 

training data set of this study, and improved data structure. This was supposed to increase 

model accuracy and decrease computing time. KMC was implemented by MATLAB in 

this study. 
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Figure 13. Example of K-means Clustering Application 

 

3.5  Modeling Algorithms 

3.5.1 Neural Networks 

Neural network is a computational model used in computer science and other research 

disciplines, which is an imitation of the structure and function of the biological brain’s 

neurons. As pictured in Figure 14, each individual neural unit connects with all the other 

adjacent layers’ neural unit, and each unit computes using a summation function. Neural 

networks can consist of single or multi-layer architectures, where the end signal travels 

from the input layer to the output layer of the neural units. 

 

If the training data have been taken as {(X1, Y1), ..., (XL, YL)}, where Xi (i=1, 2, …, L) is 

the ith input vector and Yi (i=1, 2, …, L) is the ith output vector. Mathematically, a neural 

network problem can be interpreted as: 

𝑌𝑖̅=f(𝑋𝑖
⃑⃑  ⃑ ∙ ν + b) ∙ w                                                   (6) 
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Where ν is a weight vector, b is an offset, and f is a transfer function which minimizes 

√∑ (𝑌𝑖̅ − 𝑌𝑖)2𝐿
𝑖=1 .                                                     (7) 

 

In this study, a neural network software called Neuframe [22] was employed to build the 

neural network models. 

 

 

Figure 14. Neural Network Schematic 

 

3.5.2 Support Vector Machine 

Support vector machine is a novel machine learning method and it is a powerful tool for 

small sample problems [12]. SVM applies the structural risk minimization inductive 

principle to obtain good generalization on a limited number of learning patterns [18]. SVM 

is a widely-used algorithm in classification and regression analysis. Support Vector 

Regression (SVR) is the most common application of support vector machine. Compared 

to neural networks, SVM can easily avoid local minima and structure selection issues, 
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because SVM is based on the structural risk minimization principle, rather than the least 

square methods or the maximum likelihood methods in traditional neural networks [12]. 

 

As indicated for neural networks, if the training data is {(X1, Y1), ..., (XL, YL)}, where Xi 

(i=1, 2, …, L) is the ith input vector and Yi (i=1, 2, …, L) is the ith output vector, in SVM, 

a function f(x) needs to be found so that function f minimizes a given regularized risk 

function. [12] That linear function f can be described in the form as below to formulate a 

SVM problem [18]: 

f (x) = <ω, x>+ b                                                     (8) 

Where ω is the weight vector, and b is the threshold and ω and b are identified by the 

function f in the equation 8. Flatness in (8) means a small ω, and it requires to minimize 

the Euclidean norm ||ω||2. [18] If the Vanik’s 𝜀- insensitive lose function is employed, this 

can be represented in an optimization way as [18]: 

Minimize 
1

2
||ω||2 + 𝐶 ∑ (ξ𝑖 + ξ𝑖

∗)𝐿
𝑖=1  

Subject to {

𝑦𝑖−< ω, 𝑥𝑖 > −𝑏 ≤ 𝜀 + ξ𝑖
< ω, 𝑥𝑖 > +𝑏 − 𝑦𝑖 ≤ 𝜀 + ξ𝑖

∗

ξ𝑖 , ξ𝑖
∗ ≥ 0

                                 (9) 

The constant C>0, ξ𝑖 and ξ𝑖
∗ are slack variables. The slack variables are variables that are 

added to an inequality constraint to transform it to an equality. The 𝜀 - insensitive lose 

function |ξ|𝜀 is described by [18]: 

|ξ|𝜀 = {
0     𝑖𝑓|ξ| < 𝜀

|ξ| − 𝜀  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                           (10) 

By using a standard Lagrange multiplier and a dual set of variables, the SVM optimization 
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problem can be set up as: [12] 

Maximize {−
1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)𝐿
𝑖,𝑗=1 (𝛼𝑗 − 𝛼𝑗

∗) < 𝑥𝑖 , 𝑥𝑗 > −𝜀 ∑ (𝛼𝑖 + 𝛼𝑖
∗)𝐿

𝑖=1 +

          ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐿

𝑖=1 𝑦𝑖} 

Subject to {
∑ (𝛼𝑖 − 𝛼𝑖

∗)𝐿
𝑖=1 = 0

0 ≤ 𝛼𝑖, 𝛼𝑖
∗ ≤ 𝐶

                                        (11) 

Where 𝛼𝑖
∗ 𝑎𝑛𝑑 𝛼𝑖 are Lagrange multipliers and K is the kernel function [12]. For instance 

a Gaussian kernel is the most common kernel in SVM. After getting 𝛼𝑖
∗ 𝑎𝑛𝑑 𝛼𝑖 by some 

optimization algorithm such as sequential minimal optimization, the regression function 

can be rewritten as: [18] 

f(x) = ∑ (𝛼𝑖
∗ − 𝛼𝑖)

𝐿
𝑖=1 𝑘(𝑥𝑖, 𝑥) + 𝑏                                      (12) 

SVM was implemented by MATLAB in this study. 

 

3.6  Sensitivity Analysis 

After NN and SVM models were developed a sensitivity analysis was performed. 

Sensitivity analysis is a study of how the uncertainty in the output of a model (numerical 

or otherwise) can be apportioned to different sources of uncertainty in the model input [19]. 

In this study, a sensitivity analysis was used to test the influence of 25 inputs on the output 

(ABS formation temperature). At first, a new sample was made up of the average of each 

input. Then, one of the input was changed from its minimum value to its maximum value, 

while other inputs were fixed at their average value. Through model prediction, the impact 

on ABS formation temperature was associated with change in the corresponding inputs. 
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This process was repeated for all the inputs, and a better understanding of their effect on 

ABS formation temperature were clearly identified. Some inputs were then eliminated for 

subsequent modeling, since they had a second order contribution to the output. 

  



40 
 

4. RESULTS AND DISCUSSION 

In this study, five models were built base on NN or SVM. The overview of each model is 

presented in Table 5.  

 

Table 5. 5 Model Characteristics 

Model Initial Data Set 
Data Processing 

Methods 

Model Data 

Input 
Modeling Method NRMSE 

1 
14,230 samples 

25 inputs 

PCA, 

KMC 

213 samples 

10 inputs 
NN 44.2% 

2 
14,230 samples 

25 inputs 

PCA, 

KMC 

213 samples 

10 inputs 
SVM 19.6% 

3 
14,230 samples 

25 inputs 

SA, 

KMC 

774 samples 

7 inputs 
SVM 13.6% 

4* 
12,717 samples 

25 inputs 

SA, 

KMC 

849 samples 

7 inputs 
SVM 9.1% 

5* 
12,717 samples 

25 inputs 

SA, 

KMC 

369 samples 

4 inputs 
SVM 8.8% 

Notes: 

4* 5*: Only full-load data in the initial data set; 

NRMSE: Normalized Root Mean Square Error. 

 

To test the accuracy of the models, a Normalized Root Mean Square Error (NRMSE) was 

used as the validation criterion. NRMSE is calculated as: 

NRMSE =

√
∑ (𝑥𝑝𝑖−𝑥𝑎𝑖)

2𝑛
𝑖=1

𝑛

𝑥𝑎 𝑚𝑎𝑥−𝑥𝑎 𝑚𝑖𝑛
                                              (13) 
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Where n is the sample size. Additionally, xa is the actual ABS formation temperature, and 

xp is the predicted ABS formation temperature. xa max and xa min represent the maximum and 

minimum ABS formation temperatures among all samples. 

 

4.1 Description of Model 1 

Model 1 is based on a data set composed of 14,230 samples and 25 inputs (distributed in 

19 variables). For this model, a normalization procedure was applied to the data to meet 

the requirement of PCA (zero mean and unit variance). After normalization, PCA was used 

to achieve variable reduction. In the PCA process, ten principle components (new inputs) 

were retained to meet the goal of keeping more than 90% of the input information. The 

contribution of each component to the input information is shown in Table 6. KMC was 

then used to compress the sample set. KMC was able to reduce the data set to a new set 

composed of 213 samples compressed from the 9,606 training samples in the original data 

set. After applying the KMC, 213 samples and 10 inputs data were directly used to 

implement modeling by neural network. A diagram of Model 1 is shown in Figure 15. As 

introduced in the modeling strategy section, the testing and training data shown in Figure 

15 correspond to the data sets used to develop Model 1 and subsequent testing of the 

accuracy of the model with an independent data set not used in the building or training of 

the model.  
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Table 6. Contribution of Each Component in PCA Model – Model 1 

PCA 

Component 
1 2 3 4 5 6 7 8 9 10 SUM 

Data 

Contribution % 
27.5 15.7 13.7 11.5 5.7 4.7 3.7 3.5 2.9 2.7 91.4 

 

 

Figure 15. Diagram of Structure of Model 1 

 

4.2 Description of Model 2 

Model 2 uses the same 213 samples and 10 inputs selected by PCA and KMC in Model 1. 

However, Model 2 is based on SVM, instead of neural networks. A diagram of the structure 

of Model 2 is shown in Figure 16. 
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Figure 16. Diagram of Structure of Model 2 

 

4.3 Description of Model 3 

For Model 3, a sensitivity analysis was used to help with variable reduction. By the use of 

this sensitivity analysis, the original 25 inputs were reduced to 7 inputs (distributed in 6 

variables). Those variables include net load, SCR gas outlet temperature, SCR NOx inlet 

concentration, dilution skid ammonia flow (2 inputs), dilution skid ammonia vapor 

temperature, and total air flow. SCR operating parameters such as temperature and 

ammonia injection are related to NH3 slip as well as SO2 oxidation to SO3. Unit load and 

air flow relate to the residue time of flue gas in the SCR and further ABS formation timing. 

The variables were considered as the most relevant inputs in the 25 input set. Based on 

14,230 samples and 7 input data, the data set for Model 3 was further developed using the 

process of KMC for later modeling with SVM. The PCA step was omitted for this model 

because the data is 7-dimensional instead of 25-dimensional, making dimensionality 
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reduction not highly needed. The diagram of the structure of Model 3 is shown in Figure 

17. 

 

 

Figure 17. Diagram of Structure of Model 3 

 

4.4 Description of Model 4 

Different from the previous three models, Model 4 was based on only full-load data (>90% 

max-load). Except for the different data set used for development of this model, Model 4 

was developed using the same approach as for Model 3. The structure of Model 4 is shown 

in Figure 18. 
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Figure 18. Diagram of Structure of Model 4 

 

4.5 Description of Model 5 

Four variables were selected to build Model 5. These variables are: SO2 gas analyzer inlet 

concentration, SCR gas outlet temperature, SCR NOx inlet concentration and dilution skid 

ammonia flow. These variables were chosen to find out if a reduced variable set could keep 

improve model accuracy in terms of predicting ABS formation temperature. As with Model 

4, Model 5 was based on 12,717 data samples which correspond to full-load data. 12,717 

samples were reduced to 369 samples through KMC, and SVM was again used to build 

Model 5. The structure of Model 5 is shown in Figure 19.  
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Figure 19. Diagram of Structure of Model 5 

 

4.6 Models Results 

Figures 20 to 29 provide results from the five different models. These figures include 

predicted vs. measured ABS formation temperature trending and estimations of statistical 

differences between the predicted and actual ABS formation temperature. NRMSE of 

44.2%, 19.6%, 13.6%, 9.1%, 8.8%, for Models 1 to 5 were achieved. These NRMSEs were 

calculated from all the data samples, combining training and testing data used in each 

model. 

 

As introduced in section 4.1, Model 1 was developed using neural networks and based on 

a data set of 14,230 samples and 25 inputs. The NRMSE of Model 1 is 44.2%. The results 

achieved with Model 1 are shown in Figures 20 and 21. It can be seen from Figure 20 that 
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the predictions of ABS formation temperature are not in line with the actual values. 

Additionally, Figure 21 indicates that Model 1 is not an accurate model to predict ABS 

formation temperature, since points on Figure 21 are not aligned along the perfect 

correlation that would be represented by the 45° line in the figure. 

 

Model 2 uses SVM for modeling development, and it was based on the same data set of 

Model 1, 14,230 samples and 25 inputs. The NRMSE of Model 2 is 19.6%, which shows 

an improvement, compared to the result achieved with Model 1. The results of Model 2 are 

shown in Figures 22 and 23. Figure 23 shows that most of the predictions from Model 2 

concentrate around 360°F with very insignificant sensitivity. Figure 23 shows that of ABS 

formation predictions in the middle temperature range from 340 to 390°F are relatively 

closer to the actual values than those samples outside this range. Both of these figures from 

Model 2 indicate that Model 2 is still not very good to reproduce ABS formation 

temperature based on the set of inputs for this model. 

 

Model 3 was developed by SVM and based on 14,230 samples and 7 inputs. The NRMSE 

of Model 3 is 13.6%. As shown in Figure 24, Model 3 has a better tracking ability than 

Models 1 and 2. It was found that for 99% of data points, the deviation between the 

predicted and actual values in Model 3 are within 20°F of each other, as shown in Figure 

25. Results from both the NRMSE and the two figures for Model 3 show an improvement 



48 
 

compared to the former two models. 

 

Model 4 was developed by SVM and based on 12,717 samples and 7 inputs. Only full-load 

data were selected to develop Model 4. The NRMSE of Model 4 is 9.1%, which is a further 

improvement, as compared to Model 3. Figure 26 indicates that the tracking of ABS 

formation temperature in Model 4 is good. For more than 99% of the data points, the 

deviation between the predicted values and the actual values by Model 4 are within 15°F. 

However, it also can be found in Figure 27 that when the actual ABS formation temperature 

is below 340°F, Model 4 usually provides higher predicted values than the actual values. 

 

Model 5 was developed by SVM and based on 12,717 samples and 4 inputs. Full-load data 

and less variables were selected to develop Model 5 to find out if a reduced variable set 

could help improve model accuracy. The NRMSE of Model 5 is 8.8%, which is the best 

accuracy achieved for all five models. Figures 28 and 29 show the performance of Model 

5. Model 5 has a good tracking ability to the ABS formation temperature. At the same time, 

when the actual ABS formation temperature is below 340°F, Model 5 still provides a higher 

prediction of ABS formation temperature, as shown in Figure 29. 

 

The accuracy of the models was sequentially improved from Model 1 to Model 5. Several 

conclusions can be drawn from comparing the five models: 
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First, comparing results between Model 1 and Model 2, it can be found that SVM has a 

better predictive accuracy for ABS formation temperature than that of neural networks. The 

NRMSE of Model 2 is about half of the Model 1. The reason for this phenomenon is that 

SVM is more suitable for small sample set modeling. Here, small sample set does not mean 

the number of samples, but the operating conditions encompassed by the samples. 

Although the Cayuga data set has more than 10,000 samples, many of the samples 

correspond to the same operating condition. Additionally, the main advantage of SVM is 

that it adopts the structure risk minimization (SRM) principle, which has been shown to be 

superior to the traditional empirical risk minimization (ERM) principle, employed by 

conventional neural networks [20]. 

 

Second, the accuracy of the prediction is further improved from Model 3 to Model 4, 

because only full-load data was selected to develop the Model 4. In the Cayuga data, more 

than 89% of the unit operating data were at full-load. The conditions at partial-load vs. full-

load can be very different. Many uncertainties are avoided when full-load data is used for 

modeling. Full-load operation condition is also more stable, which is a benefit to improve 

model accuracy. This may imply that a large data set is needed to better model ABS 

formation temperature at part load together with additional variables. It should also be 

noted that it may be that the ABS temperatures produce by the actual probe are not reliable 

at part load. 
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Third, variable selection is very important for model development. By using PCA and SA, 

the inputs to the models were reduced from 25 inputs (Model 2) to 7 inputs (Model 3) and 

from 7 inputs (Model 4) to 4 inputs (Model 5). At the same time, the accuracy of the models 

was greatly improved. When variables highly relative to the ABS formation were chosen, 

the reduced variable set helped to improve model accuracy. Additionally, data dimension 

reduction can increase data density, and deletion of lower order variables can get rid of 

noise during model development. 

 

Fourth, both Models 4 and 5 can not provide a good prediction when the ABS formation 

temperature is below 340°F, even though Model 4 and Model 5 have relatively high model 

accuracy. Insufficient data in this range may be the cause of the bad predictions at these 

temperatures, or the reliability of the ABS temperature probe at those lower temperature.  
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Figure 20. Model 1 Results – Predicted and Actual ABS Formation Temperature Trend 

 

Figure 21. Model 1 Results – Predicted vs. Actual ABS Formation Temperature 
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Figure 22. Model 2 Results – Predicted and Actual ABS Formation Temperature Trend 

 

Figure 23. Model 2 Results – Predicted vs. Actual ABS Formation Temperature 
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Figure 24. Model 3 Results – Predicted and Actual ABS Formation Temperature Trend 

 

Figure 25. Model 3 Results – Predicted vs. Actual ABS Formation Temperature 
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Figure 26. Model 4 Results – Predicted and Actual ABS Formation Temperature Trend 

 

Figure 27. Model 4 Results – Predicted vs. Actual ABS Formation Temperature 
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Figure 28. Model 5 Results – Predicted and Actual ABS Formation Temperature Trend 

 

 

Figure 29. Model 5 Results – Predicted vs. Actual ABS Formation Temperature 
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Both NN and SVM are data mining methods based on pure mathematical approaches such 

as the ERM principle or the SRM principle. Thus, these models do not contain elements 

based on the physical nature of the process they attempt to model. A model that would 

contain certain degree of first principles would be regarded as a more reliable model. 

 

A sensitivity analysis was performed to assess the sensitivity of model output to certain 

input variables. Two inputs were analyzed in the sensitivity analysis, SCR gas outlet 

temperature and SCR inlet NOx. In this sensitivity analysis, only these two variables were 

varied from their minimum to maximum values, with all the other variables fixed at their 

average values. 

 

Results are presented in Figure 30 for Model 5. This is because it was the model that 

exhibited the best ABS formation temperature performance, as compared to the other four 

models. Figure 30 shows a direct correlation between SCR gas outlet temperature and ABS 

formation temperature. The gas outlet temperature directly correlates with the level of SO2 

to SO3 conversion. Similarly, Figure 30 shows a direct correlation between SCR inlet NOx 

and ABS formation temperature. The inlet NOx directly correlates with NH3 injection. SO3 

and NH3 would directly related to ABS formation, with increased level of both SO3 and 

NH3 leading to early formation of ABS in the flue gas at high flue gas temperatures. It 

should be noticed the inflection in the curves in Figure 30 indicating still a lack of fidelity 
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of Model 5 on providing monotonic trending for the prediction of ABS formation 

temperature. 

 

 

Figure 30. Two Inputs Sensitivity Analysis for Model 5 

 

Additionally, Figures 31 and 32 show contour plots of sensitivity analysis result between 

variables and the ABS formation temperature for Model 5. Figure 31 shows the relationship 

between ABS formation temperature, and SCR inlet NOx and SCR gas outlet temperature. 

From Figure 31, it can be seen that ABS formation temperature has positive correlation 

with SCR inlet NOx and SCR gas outlet temperature. The model shows some deficiencies 

as the gas outlet temperature approach the larger part of the temperature range. Figure 32 

shows the relationship between ABS formation temperature, and dilution ammonia flow 

and SO2 concentration. ABS formation temperature increases as the ammonia flow 
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increases, except for the low ammonia flow region. The increase of SO2 concentration also 

leads to the rise of ABS formation temperature.  

 

 

Figure 31. Relationship between ABS Formation Temperature, and SCR Inlet NOx and 

SCR Gas Outlet Temperature 

 

 

Figure 32. Relationship between ABS Formation Temperature, and Dilution Skid 

Ammonia Flow and SO2 Concentration 
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5. CONCLUSIONS AND RECOMMENDATIONS 

Monitoring ABS formation temperature is very important in ABS fouling control in coal-

fired power plants. If ABS formation temperature is known, boiler operators could take 

appropriate approaches to mitigate ABS fouling of air preheaters. However, it is difficult 

and expensive to accurately measure ABS formation temperature on-site. Researchers have 

performed modeling based on the thermodynamic equilibrium and performed bench scale 

experiments to find relationships between ABS formation temperature and the product of 

SO3 and NH3 concentrations. Data on the concentration of SO3 and NH3 are not readily 

available in power plants as well. Thus, the concept of indirectly inferring ABS formation 

temperature from readily available measurable parameters in power plants was studied. 

Based on data from Cayuga power station, five models were developed from data mining 

algorithms for the prediction of ABS formation temperature. Principal Component 

Analysis and Sensitivity Analysis were used to reduce the number of variables in the data 

set. K-Means Clustering was employed to compress the data samples. Neural Networks 

and Support Vector Machine were the two methods used to model data. The best model 

constructed in this study was built on four variables: SO2 concentration, SCR gas outlet 

temperature, ammonia flow, and SCR inlet NOx. These four variables were chosen since 

concentration of SO3 and NH3 are the key factors affecting ABS formation temperature. 

SO2 concentration and SCR gas outlet temperature are related to SO3 conversion. Ammonia 

flow and SCR inlet NOx are related to NH3 slip. This model was tested using all training 
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and testing samples. The NRMSE of the Model achieved 8.8%. 

 

Data mining provides an interesting approach to indirectly infer ABS formation 

temperature. However, the models developed in this study still contain limitations. They 

can not provide good prediction when ABS formation temperature is below 340°F. 

Additionally, the best available model does a good prediction on ABS formation 

temperature only in full-load condition. Therefore, a more general model needs to be 

exhibited in future work. New data mining modeling should be explored using data from 

more than one plant and covering a broad range of operating conditions and variable 

readings. The fidelity of the new model should be assessed with bench scale experiments 

to prove the merit of the artificial intelligence approach. 
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