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) This paper is a further inveseigation of a problem out- . ¢
E | lined,iﬁ-report'uumber 65389950-O9h2 to the Boeing Airplane
f ;//' - .Company byfF..P. Beer, P. C. Paris.and L._Y. Bahar. The |
'neceqsary condltlons under'whlch two Gaussian processes of
uknowh power'spectra w1ll produce equivalent sequenc1ngs; |
*Ultlmately this would be used to ﬁLnd a wey to predlct crack
growth rate-uuder a random loadlng.. One of the condltlons
given”was-that the statistical distrlbutlen,of:rlses and
falls for the two processes must be the sameo |

The purpose of this paper; then, 1s the study of the

’Statlstlcal,dlstributlon of the~rlses‘and'falls for an
5“,!w~e&rbitrarynraﬂdemprecess. A se{ies solution for the dls-;_mm__?
"~ tribution is developed amd the results applied to the ex= .,
ample oann ideal low pass filter, The computations were
‘performed en_an'LGP-BOzcomputef.
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1. STATEME:NT' oF THE PROB;LEM

"The statistlcal dlstrlbutlon of rises and falls 1s
given by the probablllty density function P(h) where‘
h)dh is defined as the probablllty that a rise or fall in

'g01ng from one extremum of a random curve to the follow1ng

extremum will lie in the 1nterval h, h+dh , o .

v',»\

E | - Con51der the random curve Y( ) of Flgure 1l where h is

“now the distance from a given relative mlnlmum to the
following relative max1mum of the cqurve, Introduce%the
following notation: a | -\

| & dx = E.xpeeted number of minima pe'r
A Tk T o unit time in the interval

| ~ < 1-]
g | o | 10( a_fﬁ X + Ao (1-1)

‘ ! .- |
i Q/b( = Expected number of maxima per
| - : unit time in the interval

| , _ zx'ssa,so(%'(ﬁ(" - 1=z

‘Expected number of minima (or «
- maxima) per unit time (1-3)

-

! ﬁ @dd' ‘ - .. ¢ ™

| | probability, given a minimum

| D ,; . and the follow1ng max1mum, _that

| -val AL YL X+dxand the maximum

| | . in the interval o<'<9,<o<+e(o(’ (1-4)

o :
| Then the probablllty dalslty of having a rise h between a given °

minimum and the following maximum is obtalned by setting

0\ o(+lv and forming

R
s 2w=

Ty do

— 09
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To evaluate Fx the "inclusion and exclusion prin-  °

ciﬁie" is applied. First eonsidef the joint probabiliﬁ&
density of heving a minimurd at 'y =°‘% t =0 and a maximum ,
at y =0" , t éC. Denote thlS density by | ' |
~ Prob (Mln t O y = °(, Max t "‘, y —-0( )o  (1-6)

Ta ‘ ¢ I

ThlS is not however, the probablllty density of hav1ng _A

at y =’ ) —‘5 the first max1mum follow1ng the mlni-

mum at y =X, t =0, for it does not take into considera-

~ " tion the case where the first maximum occurs at O, where @

lies in the 1nterva1 oK0<b , Hence, thls is an overestlm- .

:ate of the probablllty den31ty of hav1ng the flrst max1mum

at y o’ , t =& and so the probability density of having
one other maximuff in the idnterval 04T must be subtracted,
exd udlng this case. This probablllty dend ty 1s denoted by

f Trol (Min t=0 3-0(‘ Max t =% }-"—'-0‘ Max‘t G‘)dr
| (1-7) °

~ But now too much has been excluded since a curve having two . .. . }

maxima in the interval- 0<t<® w1ll be excluded 2! tlmes. |
Hence (1/2!) times the probablllty of hav1ng two maxima in
the interval 0<t<® ‘must be added ~Again too much has
“been included and 1/3! times the probablllty of hav1ng
-three maxima in the: 1nterval P4 14 must be excl uded., <
Contlnuing in this way and then 1ntegrat1ng the resultlng;
series over the 1nterzva1 0<% T , l—ettmgT —a—pproach

-J.nflnlty and d-lV‘l.dl.ng the result by Q , the expected




f (T) J du J f?mb (Miw =0 &-«'mxe =G, & — Mex'ﬁnd‘ )am‘_{

.ﬁP(&)=-&/m fo[f ('1' -:E,_('r)-r é(-r)_...:\ el

sities become the prodicts of the individual'probability

A |

R S - : - - - - ':lp

number ofminimawperiunit time,-we have
a’ ; 2 (T) 2, (T)4---]

p*_ | [j?(Tﬁ TE(Tj*‘ 3 2, .

. -?o( = a T—)OO , 3' . B (1-8) R
| where
By(n) = J Brob (M t=o 3‘”‘ Max t= 3“( Ydz (1o

(1-11)
etC. " , L
Letting ' =& +h and substituting (1-8) into (l 5) we 5{1;.@.
tain the probablllty den81tv function P(h):

The.resultingxsefies, however, cannot be evaluated in

| ' A
this form since each of the terms R (T) defined in expres~,
31ons (1-8) and ‘the following w1ll approach inflnlty'w1th T,

In order to replace this series by a converging one, con81der

ﬁthe.results;obtalned»by assumlng that the pr obability density

of having a maximum or minimum at any time is 1ndependent of

the eglstence of any precedlng or subsequent maxima or minima,

For this unoorrelateducase, then, all joint probability den-

/
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den51t1es, Usmg the expressions deflned in (1-1), (1-2) and
(1-3) and using Q‘ (1), Q,(T),*+ in place of P,(T), P,(T", e
the fo_llow1ng results are obtained:
Q(.,.),f%(,[ms- 0, =] '.Erwb['mwc T, a-«'l e
. (1= 13)
s QT ~
Q(T) f J‘C giﬁ.ob[mmf-O a-“]TMLLMt‘ ?-’* Jmkﬁ'ﬂwtﬂd«'
= Qo( Q Q L j |
?.(T,) j j j EML[’MM‘E"O }.ﬁ(] EM\,[-(:_'E 3'—"(.]“
o Briok [may £20] Prolo [ thax £20'] er di'm & Q@ T
3 (1-15)
and so on. Substituting the Qz for the Pz' in equation
(1= 8) we 'obtain the probability density of having a mini-
mum at y = & followed b'y a maximum at v --0( y under the
assumptlon of uncorrelated maxima and m1n1ma as
QTaw____,(QT - QT QT )
Q e
! . -87N L , m’
= Gy Q L (l—e. )== oy &
Qv T== Q¥ nae
Adding Q,(Q“ - to P‘? and subtracting the series
. )y -—-—-’-/- ,,,,, e - e ,
for'm of Q: te%fn by sterm gives




(1-17) |

Substituting this into equation (1-5), the probability

density function P is expressed as

w,“). pi {Q“ + [’? m-o »ml

e . _ 6 R

R

@)

T 0O
etc.

.The term p, (h) represents the distribution of rises or

falls assuming that no correlatlon exists between success1ve

‘max1ma and minima. The following terms repPresent corrective

terms taking into consideration the fact that the sUCCessive

|

To obtaln a better in51ght into the meanlng of these

prior to any 1ntegrat10ns in time. This gives us

o+&, \ oo
= e '&MM ®
Te) af_ wQ;Q do+z Tow g_, e

+&
f {[EME(W\M‘}_O( t= O'Mw,( ‘}-0(+-0v tag) QO(QD( ]

- S -[fnplg(,(mr}n ~a=0<)=b =0; Maxj-oﬁ& +=% ; Max “q') 1-22)
JO

e A1 ELE ) R

o vhere be(&)= L ézo( e, Yan -20)
P (M *’«Vw S o1 (T)-8, (T)J dp( (1-21)

" maxima and min 1ma ‘are actually correlated.

corrective terms the form (1-18) is reverted to its form S
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Three facts- can be ascertained from equation (1-22).

(1) As ¢ becomes larger the integrands corresponding to the

Pi(h) terms (i#©O ) approach O since the effects of correla-
tion between maxima and minima become smaller. Tnis is a

necessary condition for convergence of the integrations over

Vs

‘z; V™ (2) Each of the terms Pﬁ( (i5£0) is more restrictive

e e gt

in its demands on the correln tion between the maxima and

minima than 1ts preced:fng term. For example, pl(h) says

nothlng about whether or not any other maxima occur before

t =% whereas p2(h) considers the case whereom maximum occurs

‘before that at t =g + The correlatlon between a maximum and |

- minimum when more and more maxima are in between will be

_, ;,s.ma’fl-e;r- and smaller, hence each succeding co“rrfective term
will bte smaller than its predecessorw (3) Since each pj(h)

(i #O ) represents a correction to the oversimplified as¢'sump-'-~'

tion of no correlation, each may be expected to be finite,

series for P(h), equation (1-12), has been replaced by a
series each term of which is ﬁnlte and af‘ter pl(h) | smaller

Wthan tha preceding term, thus the series may be expected to

gonverge rapidly.

Note that no assumptlon was made about the relatlve

smes of P, (h) and po(h) - Since P, (h) -represents the first
effects of assuming correlated maxima and m1n1ma p (h) may be
jlarge or may be small as compared to p (h) depending upon

the random curve under consideration,
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of the cowectlve terms po(h) (122) to be smaller than  ° ’

2. APPROXIMATING FORM FOR THE PROBABILITY DENSITY e
| FUNCTION, P(h)

It has prev:Lously been noted that one can exp ect each [

., | | :
the precedlng correctlve term. It is also hlghly probable o .

that ln most cases the term p,l(h) will be so much smaller &

.than D, (h) that a reasonable gpproximation to the proba-

bility density function P{h) will be given byconsiderlng D

the first two terms. Hence the remainder of this paper

v,

o genslty funetlen glvv%\{l b}f e | e

I
will deal with the & proximation for the probablllty ’ | s
|

P(h)-'# Po(h) + p (h) = B(h) - (2-1) - |
,_ &

_'Llil |_|

L mn ey mlmm | @@L |
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' 3, EVALUATION OF THE PROBABILITY DENSITY FUNCTION P(h)

3.1 Reduction to a Double Integral

In determining P(h) consider first p‘ (h) in the follow-

ing form obtained from equation (1-22):

Pl(‘e’)"‘ %2‘ e_‘;’_;‘;o g::o g [.f’u’lﬂ(wm\‘&—v( ‘t:—o M1=a&+4t-'9

- e N] dz A S
| (3.1-1)

The integrations in & and X are independent and"hence

may be interchanged giving

P.(b) = Q, T—}DO\SQ g_N[wa(m\m'}’-‘o( *EE My »3.,.=d*£)t-_-';,. -

- @e“*“l du ds

Cor

-(301f2)
Introduc:u.ng the following notation -

F ('G' 2.) S :EMB(M.M?_,O( +=0; way}gp(-...j, -&: 'g)g(o( «

(3.1-3)

Fi(Z;Q);=5m:;é2u€i¥+ﬁLx==f%ZrﬂﬂW%%M}=aOfuaL(,,,g

i ' T S S

by(k)= é"i Q’,—""oo S‘° [7(g,8)-F(R)ldz L
| o | . (3.1-5)

| N‘ete that ‘»~p°(h) is expressed in terms of F, (h) by

15.0 )= :é_"" -‘T‘e (&) n . . ( 3 ,]_-6) o




The evaluation of P, (h) 'arxld, in the process, of Dp (h)

now involves the calculation of a joint probability dené‘ity"

fun;t}on for F, and a product of two probability densities
for £, . It has already been noted that in the limit as @

ap proaches 1nf1n1tj the joint d1str1butlon approaches the

" product of the individual distributions. Hence, it will only
| .~ be necessary to go thrcmgh the evaluation of F ('c h), us:Lng
« the limiting case of the final result to obtain an expres-
sion for F, (h). ‘
- The ca‘lculat-i,,o_n of F (t h) involves the use of a joint
| j"probablllty density function in six random varlables.h_ The '

six random variables are the values of y(t), y'(t) and y' (t) - '

evaluated at t = 0 and t =%, Denote the density function

where the subscript 1 denotes the .values at t. = 0 and the '

£, 0,¥ 5«,0,%") o *
represents the joint pI‘Obablllty dens:u;y of hav.mg y _‘,( ﬁ

Y' 0, y "X at t = 0 and of having y,-go( , y’ = 0, yl X | 3!

~at t =@ . This density function is used to cal_culate' the |
joint probability deﬁpsity,xProb(Min y =X y, t = 0; Max v go(', |
t =@), which is sﬁh%fy“tﬁe joint probability that at t = O
'Y’Wlll pass through 0 in the 1nterval o, o+ doﬂ with a posi-

~ tive slope and that at t = © ) y Wlll pass through 0 in the .

N




interval o(' o('+ dd' with a negétive lepé. ’T'hat is,
Bwlo("rm =X, t=0; “‘*“‘»‘ ‘}-0" t=7%)
= ([T popiiodrde! O

Settlng o( = & + h and substituting (3.1-7) into the ex-

(0)

pression (3.1-3) glves us

'F(‘CL) ﬂd <y’ SY‘FM> 0,% ; 0(14;, o) Y/)do(

E!

(3.1-8)

In the case of a Gaussian process, the joint probability

rdensn.ty functlon f may be expressed as follows

‘*F’[ Nﬁ'zzqu pAe A ]

-F(do‘ao( OX

7'")3\"_ (3.1-9)

Where a ~ | ‘
’ Woem W
Ay =o Ac =0 =¥

and where |M| and Mse are respectively the determinant

and the cofactors of the ,matrix

| '~P(0) ‘Lel(c) te“(z)

. ~ ) =i |
M= || o)

o Lpg ©

‘where gP (e (e" ‘elB) and ‘fwrepresent the auto-correlation

- W i
function of the process under cons:Lderat:Lon and its successive

\

1 Ref. 3, pp. 189 - 191 (See Bibliography).




derivatives. <v “
The following identities arising from the symmetry of

the matrix llM” are useful in simplifying equation (3,1-8):

1) My =g | a (3.1-11)
(2) My =My, M33= Meg, My, = Mg, and My= M3
(3.1-12)

The latter equalities are.readily proved by elementary

Using the ‘results (3.1-9) and (3.1-10) and expanding

the series of (3.1 -8), the following is obtained for the

manipulations of the related cofactor determinants. o

Mmprobablllty den51ty funetion f:

f= &) )Sf_ “e [— 2IM| iMaa (¥ +B"2')+ 2 Mse Yyl 2 Ma *Q”"“"?'M'b%‘
v

+M\1.‘] L, +[Mis +M|63[X+'K’_]>O(+§L(Mn‘f M\ﬁ-)o(w-l- M\\‘&-z}}

+24([M||

o oy A
.

Substituting f in (3.1-13) into (3.1-8) we obtain

O

_u

E(Z, ) = j dot Su ! J X exp e

+ WMo Y+ aMia &Y'+ AM oLy +2
-V
4+ 2UM M+ M ] doy

| | , B (3.1-14)
All three integrations in (3.1-14) are independent and
hence, their order may be interchanged. We may therefore

perform the integration in X first. Rewriting F (g, h),
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'we have ™ —L” - o0 (X Y/L |
F(c,4)= f’it’_[_-,____ 2 | J ¥ 4y’ g Y e [—- o {Mu +Y'%)

| 81T5HM' o | o A
+aMygyy'+ 2 Mz hY '+ MY} ] H Ly

whe re

H 5 Q’H” [_ = i E‘n M\o;l'e» +[M,3+|‘1,Q:|[Y+Y]>°(+(M||+M|4-)0( }]40(
f —O.D(:b bO( b

“TE ErpEeed),

- (3.1-15)

| | X y
= ﬁ e'MY‘\ [_4.-__'__._____ {(M |+ M|4-)11{,~+(M|3+ Mlé) ( K‘PZ{’)

IMI'(M\ +M,
1+Mia) e 2(My+Mig )M+ MY }]

- Substituting H into (3.1-15), expanding the various terms

and then gathering like terms gives

_ 4r]  jmeopeo X
k ew [_(Nh MM- 13+M
e FER) e AT 1 f ¥exp|-am |{(""33 2N, +MmJ)
?71'5; VMH + M4 o

o (K+TIL> +’2:(M35 — L Mis+Mig]™ ) —(M.e, M|6)&(T" ’)}]4“(47

2’[ Mu +M 14] I

(3.1-16)

] _ | M43+Mlé]
w X |( 3. &(MWMM@}) 8

——
v"'\l("”% EM'E’M""]&/)“' (3.1-18
2(Mu +Myg) 3.1-18)

-——-—----ﬁﬂﬁ—-)—;—-

Let

(3.1-17)
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Rewriting F ('8";h) in-terms ‘o-f integrals
gives“
lMl e [-. (My -Mlq-)'ﬁ:']
F"(tj)g__. < Im)
o‘bﬂz, M+ M) (M - LMaMM, ”)
)

2, [ My +M

in the u v plane

Oaco

4 |
wv eyp {-— [

O

1My +M|4) z

To reduce this to a more compact form, t

e are introduced: ..

he following

. lMl“*
A @)= —— 7

1£Mu +Mg4.J

%{;&?-Mm)

(M +Me)
b (z:)...-.. iM%ﬁN”ﬁ-ﬁ-Mu‘:) }

_ [Ma+ Mcﬂ"‘*)z (3.1-20)

(3.1-21)

| k ('G)"' M.3 - Mﬁé'
i z\/MMI (Ms3 -

(M) +Mq)

IM3+ ITREY ) |
2[Mu +Mia] '

(Mi > + Mfé) } R R e e T

)

&

@

Substituting (3.1=20) to (3.1-23) into (3.1=19) the

final form of E (§,h) before integfating

- as

-B%S{WV —EM+ZE,M+V =24,

dw dy

P
"‘&\-\\

is determined

b - 2}2. 'evV]
(3.1=24) .

(3_01“22) R ey e ey e -
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3.2 Determination of a Certain Double Integral

Obtaining F'@:,h) depends on ¢a2lculating a double inte-
gral which is a particular case of the,following inyegrei,

defined as a functlon of r, s, b and m:

mvw"[.)( Zb lux =341
Qm( 5 b) ff X}-&- dxd}a (3.2-1]

Integrals of the type found in (3.1-24) and (3,.,2-1) -

Annecurwfrequentlywin~studieswéeaiingwwiehustatishicse%wu
USually, however, the linear termS-(such'es”rx and SY) are

missing, in which case a closed form solution is readily

terms elther present or not, a elosed form solution is
again easily foundo In thls latter instance the double
1ntegral becomes simply the product of two 51ngle 1ntegrals-
'each of which gives rise to the error functlon, erf x,
Considerable effort was made to obtain a closed form solu-

tion to the double 1ntegral of (3 1 22) but all attempts

W“@proved futile.,“w A series solutlon in a surprlslngly s:mele”"""”"'""”'"L'"":/UMHw

form was flnally found.whieh is generalized in the follow-

~of (3.2-1).

The first step in obtalnlng the solutlon to (3 2~1) ;
is to expand e, N g in a Maclaurln series, treating 2bxy
as a single variable,

3 See Appendix.




where

e A (%l)'(xz) (:zb) (xﬁ )(x I>+--’--“
- o (3.2-2)

This expansion is valid for any valuefbf'2bxy:\;$upstituting.

into (3.2-1):

Consider the fundamental integral obtalned by setting

 Golh,5,0)= j

and note that the general integral Gm(r, s, b) as given in

(3.2-3) can be written in terms'OfG;(ry s,0) in the follow-

~ ing manner, treating r, s as. variable parameters of the

integral G :

R (tm+1) ' ﬁ
<&M~(7U'$ b) Eafée__...EL? 2 i Qe O

=y
ml ,
| Dﬁa%;is the partial derivative obtained by

| T ‘
differentiating Gegp times with respect to r and p times

S+~ “ w-\-m

“with respect to s, Since the limits are independent of

r, s the partial derivatives of the integral may be taken

under tﬁgkintegral sign.
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"w_here erf x = a,/ﬁ f,:q*and_ where use was made of the fact
- - T IS - : o ﬁ

 that erf{- x}==erf x; i.e., that the error function is an
odd function.

| By letting

- 2; '
flwy= Vr- e (I+4

(3.2-7)
(3.2-6) can be put in the following simplified form:

GO <)'D3$} O) = 'JL (%) {'( g) ST T e (3;2-8) e s e e e e

Taking the various partials of G, with.?espect to

and s y:’elds

. 949 _ __ /_l'_r:._, _m
| :ngs = o ‘S: (z){' (n) W | 2’)-;: ‘\ Q/) |

2 G, _ L. Q%Eé ‘”%@bi
2 e SRS

(302"9)
Substituting (3.2-9) into the term of (3.2-5) gives the

" final series form for the 1ntegral Gy

le (n,,s, b) = —--' "‘-gfw( (rf - LE 2 | ‘; (%)f’(%)ﬁ-'?

N\ % ~v+~w) Q*+”9 ’
+ %———ﬁ% " FE) + -
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with f(u) defined in (3,2-7) | o h; - 7?;

Y

3.3 Evaluation of P(h) * e -

The double 1ntegral contained in Fy (‘G, h) (equation

3.1-24) is a partlcular case, of the. general double inte- T T

gral just evaluated Denotlng G. (r, s, b) by G m(r, b)

when r = s and setting m = 1, b =Dy and r = s = 2klh in

( 2"‘10 ) SUb Stltllt: :_Lng GTﬁJ* I“yb}w 3

(3.2—10) gives the final form for Fl(B, ‘h).

" Q_ R e
F (=, 4)= A(c)eam 2 c > (3) {'? (& (:)&)}

4~+
mzo M A (3.3-1)

- B, (B> |
or simply F(': )--A (E)Q- GT (2"&"% (C) L’“))B 3-2)

\ As was prev:Lously mentloned Fo (h) may be obtained from F. (h)

asg approaches 1nf1n1ty. As ® approaches igifinitj ?(8
;o o . : .
(?(‘), C( (ﬂ and ‘e all approagh zero., Define the terms --

‘ RN .
. = . .
. . - R . .
¥ i T . VBT .
B - A " v o e
) B " . L o B
: R4 . - l‘ v - o .
H . 1 S w . . . - 3
. B o 4 . :
: k. e X i oSy e e
T DR AR o . ~

or-the deubte=intesgral in—— = =




dll’ dzz: d33 by

i R
- 4..—8_‘-_'9_ “P(°>—-'T;_-J &(w)m‘

o

dra=4 1% -l o)=L 5 @(M)dw
dyy = 9'-'-"- ()= L 0w P (w) s

| o |
where § is the normalized power spe ctrum correspondlng to the

-

correlation functiontf . - Then in the 1limit the matrix I[M"

will approach the matrix nM._V" where

functlon _f_(°_<, ny), l!mu is .g'ive.n. as . ..

© d,, © ° 2 °
o @)

“M.Jl - “"d’Lz 0 .A‘33 O (303“’3)

© O o e 4-:% o
O °© o -d,, o A3y

Denoting by | m|| the matmix for the probability density

-

| d, © -dff | |
lomd =|lo des © | L (3.3-1)

writing these in terms of the cofactors of the deﬁ-erminar_zxt.g,

Im| , the following results are readily found:

(1) L) ,4"(ML.)|(, (M._) =0 - (3.3-5)

e T

(2)  (a) IMy|= ()™ ' (3.3-6)
o (B) (M), = oy ‘
(e) (MD)z = Mz Iml
() (MU)ga= Maz M

j I — | -.%O 4_3?,1 3 S e S “\; *_ e =

Obtaining the cofactors of the determinant M, | and




Substituting these cafactors into (3 1-20) through (3,1~ 23) ?

gives us the corresponding values for F, (h):

lon| 3/2 |

'Y - (393’7)
vy

__m - o

b= — z - | (3.3-9)

aim (g o) 3310
2 - | -

'By‘expanding the determinant |ml and its cofactors in terms

of the elements dyy, doo, d33 we obtain the following forms

for the é'Onstants of F

A _ ) L (du 4,33 mdzz) 433]
~ s/?/ cd,g&, (%@Ludaa - a.;);)z/

5. dsa

(3 03 "’11 ) e

(3,3=12)

o 4. (dudyg_. — a{,&,)

2
(-] | §303ﬁ13)'
2“&H5L35—-5L%L

& = - A \!4—35

S

(3.3-14)

3/\/ (ndas —-dﬂ&) 24‘"433"’412)

Y ? o . f

4




Hence, using either (3.3-6) through (3.3-9) or (3.3-10)
through (3.3-13), E, (h) is given as

K ()= A, S Z("') L {§m+'k )} (3.3-15)

9 M+

| -B L% . .
or Rk)=A€7 G &(9.,%,,4&,, bs) (3.3-16)
Using the following expression for Q, the expe‘cfed‘. g

number of maxima or minima per unlt tlme ,l* U

9—“ Z:g, | _ (3,3<17)

and subStituting (3.3~ lh) and (3 3-1) into (3. l 5) and ..

e ("3"“1"“6) and- théﬁ substrtutlng the results 1nto (2 l)glves ‘

the following approx:Lmatlon for P(h)g the dlstrlbutlon of

rises or falls:

Pr)= A 5 ETb )]

j‘ [ A -3 Lﬁa o ow i;m-t-l)(&'&)gz | .

oA ES T {4:‘”"”"(4@ &)}Jm o

- Mrzo m ) gt (3.3-18)
or, again, more simply in terms of the double integral

Gm(l", S b) as B‘( ) 2

X
Be)= 5 4@l &, b)r g [(lA@e " GQltsd@®,he@)
- Ao "B"'a"é, (9,—&@. bo)] az | (3.3-19)

- . - -_— -— — L -] ] - —— — -—3 - o - - omT = ) - e pre— pr— e ‘oo mmms e

4 Ref, 2, p. 133 (See Bibliography)
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4‘0 = -'- G—‘H (2,&06,, Lo) . \(3 "3 >20)

° q (.:u.& (%), b, (7))
& _Abéea-a& | (8t , bo )] 42 (3.3- 21)

~ " Thé final step, 1ntegrat1ng overs , can only be done

Py canit
Lo

- numerically due to the extreme complexity of the ~C,;~.Q,€f.flfcl€nts

A, B, b,, and k as functions of ®. .
1? 71? l’ i 1 | | . fg{/

=k

3
&
i
!
S
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¥
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b
b
T
24
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Using Q from (3.3m15), then, E' is formed as

), THE AVERAGE RISE OR FALL

Unllke the dlstrlbutlon of rises and falls the
average value of the rise or fall, h, can be computed

quite easily‘and.is, of course, an important character=-

- istic of a random curve, particularly since it can be

computed with no knowledge of the actual distribution of

rises and falls.
Th'e method of computation of ?1- is to determine the sum
Qf‘all'the rises and falls per unit time., Divf%ion Df‘tﬁig

by 2Q, the number of maxima and minima per unit time will

then give h,

The sum of all the rises and ﬁalls is found by inte=-

Q o - 7 '

’gratlng the product of NA: the number of times the curve

:c,ro.sses the line y =& , and of da(° Ne¢ 1S .eyxpr,e.ssed

M,( Z.L e, Zd.n

iy




Hence the average rise or fall can be simply found from

the second an® fourth moments of the power spectrum.

- e ey




5, EXAMPLE OF THE IDEAL LOW PASS FILTER

5.1 The Power Spectrum and Autocorrelation Function

The remainder of this paper will dealiwith the problem

of applying the results of the previous analysis to the partic-

ular case of an ideal low pass filter.
For a random curve the autocorrelation function is given

in terms of the normalized power spectrum as

f(=)=Re 'H P () Uy (5.1-1)

or P(B)= _-S %(w)cnw‘c dw (5.1-2)

Letting G(W) denote the nonnormalized power spectrum
then % () = G (W) S |
jm G () dw (5.1-3) .

For the ideal low pass filter G(Q)- 1s equal to

E i | osuwgle s 1ond
501 “’1+ )
O if -. We KW 2o

where @c is the cutoff frequencyo (SeeiEigure’Z)u Hence

P () S—«z—e@ o O (5.1-5)

Substituting into (5.1-2), the autocorrelation function lb

given by

P(e) = — J Crwg duw

T, (5.1=6)
From this, then, we obtain the followingj:

:




31T | g |
“ 2N (5,1=1L4)
‘k33 | u

502 Reduction of the Role of the Cutoff Frequency in the
Computation | | |

i

Set ® = t/ﬂﬁo Then the values ¢t 2“]!9 nN]|L, 2,000,
reprgsent n periods of the highest frequency, the cutoff
frequency @W.. Substitute this.value into (5,1-7) through
(5.1=11), inserﬁ the7fesults inﬁo the matrix ﬁMﬂ and solve
for the determinant and pertiﬂené:COfaCthSo Finally, solve
“fof‘the values Ai, Bj, bis.kig i.=ﬁl?'2gin.equ&$ib£§.(301»20)
through (3.1-23) and (3.3-7) through (3.3-10k The results

of this show that the coefficients By, bos kgs By, by, ky,

- are;ihdependent of the cutoff frequency @¢ while Ay is




e et e o e T ppe S e e Tt )

proportional to the square ofm c“‘ Subst_itutirigﬂexpressions
(5.1-13) and (5.1-14) into(3;3-l7) and determining Q, the
expected number of méxima,mshows th?t Q is proportional toﬁdc.
The net redult of this is that;poﬁh) is independent of the
cutoff frequency while pl(h)<v&ries directly as the cutoff
frequency,loc. It”has'already been noted that (1) the series
for P(h) is_alternating<in signzand (2) each of the terms'
p;(h) for i»2 are smaller than their _predecessors; S0 that
pg(h) being independent of @, and py(h) varying directly as
G). enables us to immediately draw the conclusion that for
small values of & Pp(h) alone will represent a reasonable

approximation to P(h).

“I-a*—..._ :"‘

5.3 Results for the Low Pass Filter

Attempts to carry out the numericalievaluaticn Qf‘§b(h)

and P; (h) for the low pass filter were only partially success-

ful. Use was made of the Lehigh University LGP-30 electronic
cﬂmputer in this phase of study. The princiﬁal result obtained
was an accurate plot Of‘pd(h), the probability density function
derived by assuming no correlation between maxima and minima,
(See Figure 3)¢ This curve wag-checked-atzthe value h = 0. by
evaluating the double integral‘Go(O; bg) in closed form as
shown in the Appea‘ix. The centroid'ofwﬁﬂé&arga underﬁhe
curve, giving hj., the average fise or fall asSuming«no é;rre~

lation, was fdund to be‘l.lfSE} E.being the actual average

i D O T o G R N 4 A S A B S R 73 20 L L L T B A T TR Ty T AR Y A T R T A N T R DS A S B B PRy R A T T T T T TN I G AT 1 K e T S e 1 et o, 7




rise or fall as;found by equation (L=1). EPis result in-
dicates that ignoring correlation between maéima and minima
tends to exaggerate the number of large rises and falls,
Thus it appears thapwby choosing at random a maximum aﬁd a
minimum,. chancés are better to get a largehrise than by
choosing a minimum and the follow%ng max1mum. | |

It should be noted that the evaluation of Po(h) without
the use of an electronic computer would be an extremely long
.and,tediousiprocess, The evaluation of GO(ZkOh; P0) for one -
value of h, as the series defined in general in equation
(3,2-10) required in one in stance as many as seventy-one
terms, |

Unfortunatel§,~similar success was not encountered in
the case ofpl(h) which could not be obtaihed due either to
the limited capabilities of the LGP- .30 Computer or to the

determinant routlne.‘ pl(h) is given by

(” (£)= T—am Q S [.F (?5 &)- (5, 2') 14z ('3:.,!:1---6,'),

@i .

where FI(Z,&)-:-An(‘C)CB' @ G, 0MR0D,5[)  (3.3-2)
_.EgJEP oo b

) =AY GORRe L)

Trouble was encountered in the evaluation of Aq, B1, by, ky
for values of t 4T, i.e. for those values of time less

than two times the period of the cutoff frequency. For these

values loss of significant figures gave results which were




completely unrellable. For'larger values if t accuracy
was as good as up to five 31gn1f1cant figures. A plot of
Fy (‘5,, 1(,5 shown in flgure 4 as a function of & (or t) for
the value h = 0. Flgure 5 is an estimate of the form of
pl(h) and its effect on the approximate form of P(h), It
'should be noted that g|limit is plak;ed on the maximum value
of W, for which the approximating form ﬁh) = po(ah-) + Py (h)
is valid. This 1limit arises from the fact that part of
’P.,l(-h) is negative. Since py (h) varies directly as wc;’ this
means that as w, becomes 1:~,1:r-g;er",u there will exist some W,
such that for some value of h, P(h) = po(h) + py(h) is nega-
tive, ah impossible occurrence,

Although ;c‘ihgafc'ks on the calcu}at-.i.o.‘n'.s of p_l(h) must nec- |
essarily be limited due to the 'exte}jnsive number of computa=-

tions involved, a method is indicated in the appendlx which

can be used to provide a check on the value of pl(h) at h = 0,
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6. SUMMARY

Using the first two terms of the convergent series

expansion given by equation (1-18), the statistical distri-

bution of rises and falls is given approximately by

where

P(L)=

Fo(h)

~~

Qo

F, (8, h)

N

T (n)

= R+ L (TR )-RW)] 47

o

probability densf%y of having a rise
h Dbetween a given minimum and the
following maximum assuming no correla-
tion between maxima and minima.

A €A G, (abk,, b))

(303"'16)

joint probabilit

y density of having

a minimum at t = 0, and a maximum of

T

e,

a distance h above the

minimum

2 o
A (C) > la. (z)‘a’éh (ﬁ/m.('&) - b, (‘C) )
| o ) (3.3-2)

5 e

and where oo A
G (nyb)= = S0
| (o

-§lﬁ~)=§ T & (1+enew)

-y

The values of A;, By, by, k; for i = 1, 2 are given in

equations (3.1-20) through (3.1-23) and(3,3-11) through

with

(3.3-14), the former in terms of the cofactors of the 6 x 6
matrix corresponding to a Gaussian probability dl stribution
function in six random variables, the la tter in terms of the

f :
area, and second and fourth moments of the power spectrum of

the random process under consideration.




Further study should be along the following lines:

(1)

- (3)

(4)

Add a function to the autom rrelation function
of the low pass filter which is even and whose
first six derivatives are zero at t = 0, The
effect of this would be to provide two different
random curves with the same di; , dp2, d33, (area,
etc. of the power spectrum).

' ~e
Calculate P(h).

Compare results to determine whether or not the
distribution of rises and falls are similar
enough to disregard any differences, If this

is so, it is an indication that only a similarity
between the area, and second and fourth moments
of the power spectrum are necessary in order that
two random curves have the same distribution of
rises and falls. .

Follow the same procedure for other random curves,

either verifying the results o three or, if .

ey

necessary, determining other factors, the variation

of which will have a significant effect on the"
distribution of rises and falls.,
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X , 1
L &% B . . | - 32

Y : R

-’ & %‘. St
s ‘The purpose/of this appendix is twofold: (1) as a
partial check on the validity of the series solution for v

G,(r, s, b) and (2) to outline a method by which a check
can be made on the computer salution for’pl(h).
Consider the double integral given by .-
o 00 00 —[ x& 2bxy +4°]
q.k)=| | ¢ E ey
o ‘9 | |

A cldsed form solution to this is found in the following

manner.

(1) Apply a transformation of coordinates which will
eliminate the cross term. a

Let F = x° + 2bxy + y2

Let % = X+ by |

Then F -§‘" = (1_b2)y2' | B
Therefore -let ?LZ = VLl - pz v o ~

Then the t?ansformation

§1= x + by

_ Y
3% Vi-b%y
reduces F to |

(X 2.
F o= §' +%,
The Jacobian of the transformation is given by

| J] = (14b2);l/2

a

so that the area dx

dy in the xy plane transforms into

6 Ref. 3, p. 205. (See Bibliography)
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" -l/2 : L
the area (1 - b“ )dgl d§ in the§ { plani. (See

Figure 6).
The line y = O transforms into the line »'§2;= 0 while

the line x = 0 transforms into the line giVen by
Vi—b%

Hence the area of integration is that included between the

lines

'%.‘_=.o .‘ | §'=: b€1

V1=t
The double integral now becomes

-1
. 'C:'[e (0) “'): gg "'(il'*‘?-z_.) (I—Ez) dgl dgz—
Changing to polar coordinates,

let. %, = r cos®

§,=r sin &
'then d§1d§2 = r dr dé

soii?atGOOb j j z\f,:ﬁ )-udmdﬁé‘

/-;,’ r——

where tan 845 = |1 - b (\blL] ) T =,

Evaluating GO(O b): o
- ©
Golo,b) = U= (-1e “

o

]
) - )—’i ‘a

If bg |, arc -tan V1 - b = arc cosb, hence

’QQ(Q,.b) = arc cos b | h; (1)

21 - 2
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Expandlng thlS in a power series

b2 3
Gn(0, D) = T - b - b 16 L
(

From the definiti on of G (r, s, b) in equation (3.2-10)

¢

the follow1ng is obtalned

(—lY‘“ b™ (£™0))™
(Recall that G (r, s, b) = Gy(r, b) when r = s),

The following are easily shown, using f as defined in équation
(302""7) .
£(0) =

toFgl'

-fl(O) = 1
£11(0) = \AT
),

111 gy

f(ﬁ%O = 2(n-1) ftﬁ'
Substituting these for G.:
;GO(O; b) = gL = g,+ b M - b’16
122 2123
A more general comparison of the seriéséis possible by
noting the formation in the first series of a recurrence
formula for the derivatives at b = O similar to that of f

in the second. L

This method of evaluation of the double integral when

P

the linear terms are missing can be carried a step further,

providing the means for a check on pl(h) at the value h = 0,
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aConé@der

N 00 m[xz-&-z-bx&-\-'g}_'l
Gy (0, b) = L EW e dx dny

and note that

,,(ou) I J X? e-fx “2bxg el x A}

Lo
23h

1l - b arc cos'b)
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