
Lehigh University
Lehigh Preserve

Theses and Dissertations

1965

Some basic properties of isolators as circuit
elements
Howard A. Seid
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Seid, Howard A., "Some basic properties of isolators as circuit elements" (1965). Theses and Dissertations. 3329.
https://preserve.lehigh.edu/etd/3329

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F3329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F3329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F3329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F3329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/3329?utm_source=preserve.lehigh.edu%2Fetd%2F3329&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


• 

... ' 

"' 

• ... 

:.-· 

\_ 
•• 

:~ 

_ SOME BA_$IC PROPERJ.'IES OF ISOLA'IDRS AB CIRCUIT EU:MEBTS . 

• 

' t' 

by 

Howard Alan Seid 

A Thesis 

Presented to the Graduate Faculty 

of Lehigh University 

.,. 

in Candidacy for the Degree of 

Master of Science 

Lehigh University 

1965 

... 

--------------~---·--- - --~-- .--· --~--- - --- - - --- ... --- 'I'---- - ----·-

• ·~. J 

~~- - ---·-· -
.'I' 

i= 

k
. 

. . ' 

+-·-··· 
I 

i ' 
i 
,i 

. 



. . 

i 
I 
l 

' 
I 
II ,,,I 

------·-------··-- ----------··--·- . 

. J· ,, 
.... -------·--~- --------·-~--------

This thesis is accepted and approved in partial fulfill
ment of the requirements for the degree of Master of 
Science. 

~f\(i 14 I f \ bt;' 
date) f 

in charge 

of the Department 

I 

i· 

! 

-------------··-•---. --·-·-~ 

.fir. ,i. 

I 
- .;, .. ·- ..• ,, 

) 

.. ; 



' il 

·, 

' I I 

i 
..,.r••-·· ,}-, .. ,4:;:;, 

- 1' 

.. ... _ _:_ _________________ ._.,_ ·-·-··-·-·- --· ---·-·' .. '·---··· ' .• , ____ -4.----·-------- ------·-- -:=···==--- -- '. -;___..._ ___ ,- --~~-----.. ·-·---------~---·- i . l 
! . ~ 

·-

:. . ..: 

Acknowledgments 
·t· 

The author gratefully acknowledges Dr. Nikolai Eberhardt 

for giving the motivation for this thesis and for his tireless 

efforts in making it a success; Mr. Gunnar Bagge for his 

valuable discussions and critique. 

,~; 

•' 

,,.. 

·• . 

. . )· 

·-;,.· 

111 

i-
... ... 

., 

r 
1: 
;: 

:,: __ , ________ ..__ .. ~·---------·-· ------· --· -- --- .. --·--· -----·-·· ... 



/ 

Abstract 

Introduction 

. Section I 

.. 'l 

I • 

~l.e_ o_f Contents 

,. 

Compensation of Reflections in an Isolator 

1 

) 3 

5 

Sec·tion II 20 
The Theory of the Nonreciprocal Transmission Line -
Impedance Concept, Reflection Coefficient, and 
Voltage Standing Wave Ratio e 

Section III 27 
Matrix Rep:·'P.-:· •, · 1tion of a Nonreciprocal Transmission 
Line 

List of Figures 

Figure 1 33 
Figure 2 33 
Figure 3 33 
Figure 4 34 
Figure 5 34 
Figure 6 34 
~igure 7 34 
Figure 8 35 
Figure 9 35 
Figure 10 35 

Appendix A 36 

Appendix B 39 

References 4o 

Bibliography 41 

Biography 42 

iv 

- ---- -~~------· ·-----------

i 
-· It 

.. -• - --•·· --·---- -------·-- I~ -- F 

,(["'· 

'/ .. 

I. I . 

t . 
~ 

i 
j 
l 
I 
l 

I 
-



- . ·--··---------·- --

0 

~= 

"~ 

- --,- . -------- . - -- - - -·· --· -·-·-··- -- -· ----·-------- ____________ .,_ ·- --

. ' 

________________ ....._ ______ . ---~-------- ~ - -----------------·- - --~-------- ~ __ . -- -- - -~- ·-

J 

Abstract 

In many systems applications employing isolators, maximum power 

transfer of desired signals is ,required. Therefore, the elimination of 

reflections from the isolator becomes a primary goal. If the isolator 

were ideal (infinite loss in one direction), it would be possible to 

completely compensate for the reflections merely by a single correction 

from each side, if matching devices are placed before and after the iso

lator. However, where finite losses exist, it will generally require 

more than one adjustment of each tuning device. 

In order to determine· the maximum number of adjustments needed 

to obtain any given tolerance for reflections, one must make use of 

the fact that the reflection coefficient at a junction between an iso

lator and a reciprocal line is the same when measured from either side 

of the junction. This fact is true for any reciprocal device. In 

order to prove this for an isolator, a thermodynamical argument is 

offered. 

With the aid of this theorem, sequences giving an upper bound 

on the reflection coefficients which remain at each junction after n 
' -

adjustments of each matching device is developed. The convergence of 

\ 
these sequences are investigated for various values of the constants 

of the isolator. 
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An isolator is re~lly a special ca~e of a nonreciprocal trans-· . -----· . --------- ·• . . ..... . . .. . . . . C, 

mission line. Therefore, it .may be described by means of the theory 

o.f such a line. The impedance concept, reflection coefficfent and 

voltage standing wave ratio are derived for this theoretical device. 

A major result is that the theory of the lossless and lossy reciprocal 

lines may be completely described as special cases of the nonreciprocal 

transmission line. 

Finally, an alternate way of describing the ·nonreciprocal line 

in tenns of matrix elements is presented. The ABCD, z, and Y para.me

ters are derived. The applications o~ these matrix representations 

are also described. 
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Passive nonreciprocal devices are becoming vecy important be

ca~se of their varied systems applications. For instance, where 

klystrons are used, an isolator prevents "pulling" ,,1hich might other

wise occur due to the reflected power from other parts of the system. 
,. 

Also, delayed echoes which might cause "ghost'' images are eliminated 

by proper isolation of components. Multiplexed signals are separated 

into proper channels with circuits incorporating isolators. Many 

measuring _schemes include isolators in the circuits used. 

In general, an isolator is a two port device which has a low 

loss between ports one and two and a high loss between ports two and 

one. One major requirement for this device is that it have low re

flections from either port. When placed in a system, at least a 

spurious reflection of power will occur at both junctions. At first 

glance, it would seem possible to compensate the reflection at one 
r' 

junction with a matching device and then likewise compensate the re-

flection at the other junction and, with one adjust1nent of each 

matching device, achieve reflect1.onless power transmission. This is 
....... 

true for an ideal isolator with infinite loss in ~ne direction. How-

ever, in general, due to the finite losses, one faces the more involved 

problem of matching a lossy, nonreciprocal two port from both ends 

simultanously. A practical matching procedure for this case is dis-., 

cussed in section one. 

A specific nonreciprocal device, closely related to the iso

lator, is the nonreciprocal lossy transmission line. Although at 
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present this· is not a practical d.evice in itself, from theoretic&~.·-----~----·····-·-···· 

considerations, it is of interest because o_f the ease of handling of · 

transmission line equations as compared with those concerning the 

theory o:r ferrite loaded waveguide. And, it seems to be of some merit 

to have a theory of the nonreciprocal lossy transmission liine avail-

able. This _theory will be developed in section two. 

As an alternate way of describing a nonreciprocal two port, 

the matrix approach is presented in section three. 
,-i 

' 

The ABCD, z,and Y - -
parameters of pieces of nonreciprocal transmission line are derived. 

And, their usefulness in certain applicatious is discussed. 
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Section I 

~ompensation of Reflections in an Isolator 
( 

.Reflections caused by tlie insertion of an isolator may be due 

·· to two reasons. First, the geometry of the device may be such that its 
' ' 

cro·ss section may differ from the cross section of the waveguide or 

transmission line into which it was inserted. For instance, if the iso

lator were placed in a coaxial line assembly, its inner and outer con-,; 

ductors might differ in radius or position from the inner and outer 

conductors of the rest of the coaxial system. In a rectangular wave

guide application, the height or width of the wayeguide assembly of the 
' 

device might differ f1•om that of the rest of the system. The result is 

that at the junction between the device and the system, a reactive stor

age of energy occurs and this is responsible for the reflection of power. 

The second cause is due to the dielectric loading of the device. 

In many devices, there is a large amount of ferrite and alumina with 

dielectric and m6.gnetic properties much distinct from the rest of the 

system into which the device is placed. This results in an abrupt tran

sition from one medium to another with accompanying reflections. 

The reflectio~ at a junction is described by· the junction re-

flection coefficient, r. 

r = 
V ref. 
V inc. 

where V f is the reflected voltage from the junction and Vi is the re • nc. 

incident voltage at the junction. r is only a function of the geometry 
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and· loading and is a fixed quantity associated with the Junction be-

tween the device and system, at the given reference plane. 

In the case of junctions between reciprocal lines it is known 

th'at r is the same when viewed from either side of the Junction. In the 

case considered here, however, a separate proof is needed. This will be 

based on a thennodynamical argtlment derived from second law, which may 

be stated: "No process is possible whose sole result is the removal of 

heat from a· reservoir at one temperature and the' absorption of ~n equal 

quantity of heat by a. reservoir at a higher temperature ... (l) 

Consider Figure 1. '!he figure represents a general closed thermo

dynamical system at temperature, T. It contains only passive elements -
having noise bandwidth, B. Then, only noise power is able to flow in -
the system. At equilibrium, the flux of power through any plane cutting 

-the system, (e.g., A-A'), must be zero. If there ·were a net flux, then 

this would imply that sane part of the system is generating more noise 

power than it is absorbing thereby losing the:nnal energy and hence 

temperature. Another part of the system is absorbing more power than it 

is generating thereby gaining thermal energy and hence temperature. If 

such a condition were possible, one could construct a perpetual motion 

machine out of the system in clear violation of the second law of thenno-

, dynamics. Hence, there must be zero flux through any plane cutting the 

system. / 

Figure 2 shows an infinitely long uniform isolator. The device 

is at temperature, 1 and has noise bandwidth,~· The device has losses 

L, in the forward direction, and L', in the reverse direction, in a - -
section of length .. e 'Which will be under constderation. L is defined to -
be the ratio of the power absorbed by this .section in the forward 
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direction,to the power incident at A-A'. !!' is similarly defined ~.or 
••.... ·1 .. 

power flow in the reverse direction. By convention, L < L'- < 1. - - By a 

theorem due to Nyquist and by the above discussion, the infinite device 

generates available noise power, kTB (where k is Boltzmann's constant), 
\ - .. 

from right to left and vice versa. But, at any vertical plane {e.g., 

A-A' and B-B') the power flux is zero. 

Consider just the power flow from left· to right-.· At plane A-A' 

the incident power is kTB. Due to the uniformity of the device, there 

are no reflections. Therefore, the component of incident power which 

reaches plane B-Bt is (1-L)kTB due to the loss, L, in the forward -
direction. But at plane B-B', kTB power must be present. So the 

device must generate Lk.TB noise power in the region between A-A' and 

B-B' going from left to right. This is obviously a theorem QY itself. 

It predicts the noise power generated by an attenuator and will be 

needed below. By similar considerations of power flow in the direction 

from right to left, one finds that the device must generate L'kTB in 

the region b~tween A-A' and B-B' going from right to left. 

With this kno,;.rledge, it is now possible to prove the above 
I 

statement about the equality of the magnitude of th~ reflection coef-

ficient at the junction between an isolator and the system. 
q 

Consider Figure 3. The device is just as in Figure 2, to the 
.. 

left of B-B'. At l:s-B', a reciprocal lossless transmis·sion line, with 

characteristic imnedance Z, is connected to the isolator. The line ... 0 

is terminated in Z0 , a tennination with noise band,width, ~, and 

temperature, T. At the junction, there are assumed reflection coef--
ficients r1, as seen from the device side, and r2, as seen from the 

tennination side. 
7 
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As before, kTB noise power must flow from right to left and 

··- ...... v!ce versa. So P1 = kTB since it represents the power incident from 

.. 

the left on the pa.rt of the device under consideration. Then due to 
I 

the forward loss, P2 = (1-L)P1 = (1-L)kTB. And, due to the reflection 

coefficient, P3 = Ir 1 !2i>2 = Ir 112 (1-L)kTB. (When dealing with powers, 

one must use the square of the magnitude of r which ·was defined in terms 

2 2 of voltages.) P4 = (1-lr1 1 )P2 = (l-lr1 1 ) (1-L)kTB. The power, P5, 

is the component of P
3 

which reaches the vertical plane A-A'. It must 

traverse the reverse direction of' the device. So P5 = (1-L')P
3 

= lr1 12 

(1-L) (1-L'qkTB. The power, P6, represents the po·wer generated in the 

device traveling to the left, and, from the above discussion, has a 

value L 'kTB. From similar considerations, there must be a power 

2 2 P7 = LkTB traveling to the right. P8 = lr1 1 P7 = lr1 1 Lk.TB and 

P
9 

= (1-jr1 12) P
7 

= (1-jr1 1
2 )LkTB. P10 = (1-L') P8 = jr1 1

21(1-L')kTB. 

This concludes the consideration of :powers from the device above. 

Now, the powers arising from·the termination are developed. 

2 p11 = kTB is the power generated by the tennination. P12 = (r2 1 P11 = 

lr2 12irTB while P13 = (1-lr2 j
2

) P11 = (1-lr2 12)kTB. Finally, 

P14 = (1-L')P13 = (1-jr2 j2) (1-L')kTB. 
-

At plane A-A', the net power flux is zero. 
·\, 

pl= p5 + p6 + plO + pl4 
'-

By dividing both sides by kTB and expanding, one obtains 

1 ... lr1l2- L' lr1l2_ Llr1l2 + LL' lr1l2 + L' + Llr1l2- LL' lr1l2 + 1 
r ,I 

\ . 

. ,. 
\ B· 
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or, on 

./ 

further simplification, the following result is 
) 

o .. (1-eL')( lr{'l2 
- lr21

2
) 

.. 

obtained1 

As a check on this result, one may write power balance equation at the 

vertical plane, c-c•. 

pll = P4 + p9 + pl2 

On simplifying this equation, one obtains 

With the aid of this important theorem, it is possible to 

discuss the problem of matching an isolator into a lossless reciprocal 

transmission line or waveguide system. 

In principle, if the Z matrix of the isolator is known, it is -
mathematically possible to determine the necessary compensating 

impedance to eliminate re:flections and obtain maximum po1-1er transfer. 

Or, the method of Dechamps may be used to find experimentally the 

elements of the scattering matrix which also contain the information 

needed for compensation to eliminate reflections. But such procedures 

are not nearly as easily applied as the more practical approach of 

direct experimental matching procedures. It is the latter approach 

which will be considered here. 

Before going into theoretical details this method shall be 

described briefly: 

matched termination. 

The two port is inserted between a generator and a ' 

With one of the standard techniques the two port 

is corrected at the input port so that no power will be reflected back 

9 
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to the generator. 1 Now generator and load are interchanged and the 

same correction don:e at the other port. A new switch between 

generator and load however shows, that the initially established match 

now is destroyed. The procedure has to be repeated several times until 

satisfactory results are obtained. 

Suppose one places a isolator in a circuit such as that shown 

in Figure 4. Here, the only reflections occur at the junctions between 

the isolator and the transmission lines. Reflection coefficients 

(hereafter called partial reflection coefficients), r
1 

and rR, exist at 

the left and right junctions respectively. From the above theorem both 

rL and rR have the same values independent of whether one views the re

spective junctions from the device side or from the transmission line 

side. The device has a forward loss, L, and a reverse loss, L'. - -
If a component of the source power, P, is incident at the left 

s 

I 12 I 2 junction, rL Ps = P1 will be reflected and (1- r
1

1 )Psis trans-

2 2 mitted. At the right junction, lrRI (1-lr1 1 )(1-L)Ps is reflected 
2 · 2 

while (1-lrRI )(1-lr1 1 )(1-L)Ps is absorbed by the load, z
0

• Then 

(1-lr1 j
2

)(jrRj
2

)(1-L)(1-L')Ps is the component of power which returns 

to the left junction at which point (1-jr1 1
2)2 (jrRj 2)(1-L)(l-L')Ps=P

2 
is transmitted back to the source. If Land L' are large enough so - -
that any component of power which circulates through the device more 

than once may be neglected, the reflected component of power at the 

2 2 2 
left junction, lr1l (1-1r1I HlrRI )(1-L)(l-L')Ps will not be con-

sidered further. 

The powers P 1 and P2 are proportional to squares of the volt

ages v1 and v2 respectively. If the two voltage waves interfere 

10 
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constructively at the left junction, then the total returned powe1~ at 

* 2 the junction is proportional to (V1+v2) • 

· 2 2 2 2 2 2'. 2 (v1 +v2) = v1 +v2 +2v1 v2 = v1 +v2 +2 v1 v2 

I 1
2 returned power r . = b at the left junction. L tot - incident p wer ~ 

2 lrtltot as seen from 

pl + p2 . plp2 
the transmission line side of the left junction is p + ~ p ~. 

s s 
2 

Then since lr1 1tot Ps in the returned power, it is proportional to · 

2 (v1 + v2 ) . Therefore, 

and 

or 

(1) 

Thus lrLltot represents the upper bound o~ the possible magnitudes of 

reflection coefficients at the left junction. Similarly, if the gener-

ator and load in Figure 4 were switched around, one can define lrRltot. 
I 

for the right junction as 

* In this analysis, the interaction of voltage waves in the device 
due to the multiple reflections has been ignored. This is justi
fied if the total losses in the device are largeo Hov1ever, if .th~ 
Q of t11e de·vice attains large "\ralues, this analysis no longer 
applies because of the resonance behavior of the cavity. 

' .-11. 
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(2) 

Therefore" Ir R l~ot is an UEJ>€r bound for m~gnitudes of the reflection 

coefficients at the right junction. 

It is true that in an actual situation, the values of the total 

reflection coefficients may be less than those given by equations (1) 

and (2). But unless one has a device which approaches the ideal 

(L'=l), the total reflection ·coefficients at both the left and right 

junctions can be greater than the partial reflection coefficients at 

those respective junctions. 

If matching devices are placed before and after the nonrecipro

cal device, the resulting scheme will be as in Figure 5. Initially 

assume that matching devices are adjusted so that no compensation, for 

instance shunt susceptance, has been introduced. Then under the as

sumptions used to derive equations (1) and (2), the two partial re

flection coefficients, r1 and rR, and the losses,~ and 1', lead to a 

)rLltot which is greater or equal to the partial reflection coefficient 

at the left junction (which may be immediately see.n from equation (1)). 

If the left matching device now is used for tuning, it will introduce 

' a reflection coefficient, rLl which is equal in magnitude to but 180° 

out of phase with rLtot· Thus the total reflection coefficient will 

be completely compensat~d, though not so for the partial reflection, 

coefficient, rL. In the worst case, there now remains a new partial 

reflection coefficient, of magnitude lr1 ltot-lrLJ, at the left junction. 

If the source and load of FigQre 5 are now reversed so that power 

is incident on the right junction, a similar effect of overcompensating 
the partial coefficient at the right junction occurs due to the lrRltot 

12 
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f01:Jlld .!rcm1 equation (2) vith lrtl replaaed by lrLil• When-compen• 

sation has been added by the right matching device (in a similar 

manner as was discussed ·with the left rnatching device) a resultant 

~ial reflection coefficient of magnitude lrRltot-\rRI (where JrRll 
is the magnitude of the compensating reflection coefficient) now exists 

q 

. at the right junction. 

This new reflection coefficient at the right junction disrupts 

the equilibrium at the left junction so that there are again reflec

tions. These reflections necessitate the readjusting of the left 

matching device with the resultant need to retune the right matching 

device. Due to the fact that the total losses, Land L', are not suf-- -
ficient to completely isolate the reflections at one junction from 

those at the other junction, there may be a need for many adjustments 

of each matching device before reflections are sufficiently compensated. 
,/ 
ti 

It is therefore valuable to establish an upper bound which will 

allow one to determine the maximlllil number of adjustments needed to 

satisfy the tolerance for reflections in a given situation. 

It is convenient to define three quantities, lrn-lltot' Jrnl, and 
\ . 

\tr I for both the left and right junctions as follows: I n max 

frLn-lltot = the total magnitude of the reflection coefficient from the 

left side after n-1 adjustments of both the left and right matching 

devices. 

lrRn-lltot = the total magnitude of the reflection coefficient from the 
. -·-· 

right side after n-1 adjus-gnents of the right and n adjustments of the -
left matc~_ing devices. 

• 
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- - __ ,,...., .. lrLnl = the magnitude of the partial reflection coefficient at the 
left junction after n adjustments of the left and n-1 adjustments of -
the right matching devices. 

lrRnl = the magnitude of the partial reflection coefficient at the 

right junction after n adjustments of both·the left and right matching -
devices. 

The definition of the third quantity will depend upon the con

sideration of the phase of the voltage wave reflected at the incident 

junction of the device with respect to the voltage wave at that 

junction due to reflections from the other junction. It should be 

obvious that when these voltage waves are in phase, the total re-
I flection coefficient at the incident junction would be at least as 

large or larger than the total reflection coefficient under a more 

general phase relation. This condition is, in effect, a worst case 

approximation to the actual situation occurring in the device. After 

compensation, the partial reflection coefficient at the junction will 

also be a maximum under the condition that the waves are in phase. 

Then it becomes an obvious extention to define lrLnlmax = the magni

tude of the partial reflection coefficient at the left junction after 

n adjustments of the left and n-1 adjustments of the right matching -
devices under this worst case condition. 

lrRnlmax = the magnitude of the partial reflection coefficient at the 

right junction after n adjustments of both left and right matching -
devices under the worst case condition. 

In general, then, \rLnl ~ lrLn)max and )rRnJ ~ lrRnlmax• If 
the sequences, (lrLnlmax) and {)rRnlmax}' converge to zero, then the 

.. 
14 
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sequences, £ Ir Ln I } and l Ir Rn I} converge to zero at least as fast. 
This state1nent may be :proved very simply: 

Since by hypothesis, { Jr I } converges to zero, for any {c > 0, one nm~ , 

- ----- -

can find an N( e) such that 11 r Ln 1max - 01 < e whenever n > N( e). This 

is the definition of the convergence of a sequence. Therefore 1r1nl 
~ max 

· < c for n > N(e). But 1rLnl ~ )rLnlmax· So it follows inunediately 

that lrLnl < e for n > N(e). And, {lrLnl] converges to zero at least 

as fast as {lrLlmaxl· The :proof for the cO:iivergence of {lrRnlJ is 

exactly similar. Q.E.D. 

As a result of this :proof, the sequ.ences f lrLnlmaxJ and rJrRnlmaxl 
can be used as upper bounds for sequences ( Ir Ln I] and { Ir Rn I] respec

tively. The upper bound sequences will be developed 1U1der the follow

ing assumption: Any component of power that passes back and forth 

through the isolator more than once will be considered to be attenuated 

so much by the combined forward and reverse losses of the devices that 

it will-be negligibly small whenicompared with any component of power \. 

which had made only one circuit in the device. 

With no susceptance introduced by either matching devices, under 

the above assumption, the magnitude of the total reflection coefficient, 

(rLOltot' is found from Figure 5 and equation (1) to be 

since th~ worst case is being considered. If the left matching device 

is adjusted so as to be equal in magnitude to but 180° out of phase 

with rLO tot' then complete compensation has been accomplished from 

the left side. However, due to the overcompensation of the partial 

reflection coefficient, rL, there exists, in magnitude, a new partial 
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If the source and load in Figure 5 are reversed, then lrROltot 
may be found from equation (2) with lr1 1 replaced by lr11 1max· So, 

If the right matching device compensates completely for lrROltot in a 

similar manner as was discussed when lrLoltot was considered, then the 

right matching device has o·vercompensated for the partial reflection 

coefficient at the right jllllction. If frRoltot-is the magnitude of 

the compensating reflection coefficient, then the new partial reflec

tion coefficient at the right junction is equal in magnitude to 

But by adjusting the right matching device, the change in the 

partial reflection coefficient fran rR to rRl max causes the initial 

equilibrium at the left junction to be disrupted, thereby introducing 

reflections at that junction. If the source and load are returned to 

the original position, a r11 tot exists at the left junction. Its 

magnitude may be found from equation (1) with Jr1 ( replaced by lr11 1max 
and Ir RI replaced by 1 r Rl I max • 

.,_,.,. 

lr11ltot = Jr11lmru/ (l-lr11l!ax)( jrRllmax) J(l-L)(l-L') 

Since this quantity is a direct consequence of initial overcompensation 

from the left matching device, if the initial compensation were inductive, 
Ii 

for instance, one would have to add capacitance to obtain zero total 
16 
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reflection. If the initial compensation were capacitive, then 

inductance would be needed. In'either of the two possible cases, the 

magnitude of the c~pensation required must be equal to }rLlltot· When 

this adjustn1ent is rnade, the magnitude of the partial reflection coef-

. ficient remaining at the junction is lr12 f where 
n1ax 

.•:- ·=:-

So 

If the source and load are interchanged, there is a reflection 

at the right junction for reasons similar to those stated directly 

above in connection with the left jtU1ction. The magnitude of the 

total reflection coefficient, JrRlltot' may be found from equation (2) 

with )rRI replaced by lrRllmax and JrLI replaced by lrL2 1max· There-
r 1 , 

fore 

.. 

This total reflection coefficient is due to the initial overcompensation 

by the right matching device. Therefore the comments stated before the 
• 

derivation of )rL21max apply to this situation. Compensation of magni

tude lrRlltot must be added by the right matching device. After adjust-

ment, there is a new partial reflection .coefficient, rR2 , where max 

17 
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However, at both the left and right junctions, the matching 

devices have now undercompensated for the original partial reflection 

Due to the finite losses (Land L'), after - -
the next adjustments, there will be overcompensation at each junction. 

After every odd numbered adjustment of either matching device, over

compensation of the original partial reflection coefficient at the 

junction occurs. And after every even numbered adjustment, under-

" 
compensation occurs • As a result, after E. adjustments of the left and 

n-1 adjustments of the right matching devices, the partial reflection 

coefficient which remains at the left junction is 

n • 1, 2, 3, 4, ••. 

After n adjustments of both right and left matching devices, the partial -
reflection coefficient at the right junction is 

(4) 

n • 1, ;2, 3, 4, • • • 

Equations (3) and (4) are subject to the condition that lrLolmax· lrLI 

and Ir RO lmax = Ir R.I • 

The convergence of the sequences flrr.nlmaxl and r1rRnlmaxl will 

be demonstrated in the Appendix A for values of lrLI' lrRI' ~,and~, 

which obey the assumption used in deriving the sequences. The limits 

of these sequences (having nth t~nns as in equations (3) and (4) -
respectively) are zero when the limits exist. Thus for and actual 

device, the sequences fjrLnlJ and (jrRnl} converge at least as fast to 

the same 11mits as flrr.n lmaxl and fir Rnlmaxl, name1y to Ir &I .. Ir Lcx,I • o. 
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![beae limits are obviously the conditions for maximum pow~r transfer. 
' ) 

In many applications, it is found that only one or two adjust-

ments of each matching device are needed to obtain the aln1ost total 

elimination of reflections. This result follows directly from the 

extremely fast convergence of {lrLnlmax} and f lrRnlmax} inside their 

regions of convergence. For example a typical isolator might have the 
..-

following data associated with it: 

forward loss: 0.5 db 
reverse loss: .15db 

lrL I = 0.2 

and Ir RI = o.4 

Then, the resulting terms o:r the sequences f Ir Ln lmax) and f Ir Rn lmax} 

are: 

lrLllmax a 0.06458, lrL21max • 0.00147, lrL3 1max = 0.00004 and 

lrr.4lmax, ••• , lr1nlmax, ••• < o+ 

lrRllmax = o.oo877, lrR21max • 0.00025, lrR31max • 0.00001 and 

I I I I < o+ rR4 max' •••, rRn max' ••• 

where the notation O+ means 0.00000+. 

Therefore, after four adjustments each of the left and right matching 

devices, the trend of convergence of the two sequences is established 
if 

and the sequences are converging to zero • 
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Section II 

•. 
The Theory -of the Nonreciprocal Transmission Line - Impedance Concept, 

Reflection Coefficient, and Voltage Standing Wave Ratio 

.An isolator is a special case of the generalized nonreciprocal 

transmission line which is shown in Figure 6. The line is of length 

t with load at x = 0 and generator at x = - l• Unlike a reciprocal 

line, this line may not be characterized by one propagation constant, ... 
y, and one characteristic impedance, z0 • Due to the difference in 

. -~ propagat:1.on properties and loss characteristics for I increasing and 

X decreasing, in the nonreciprocal line, two propagation constants .. 
and two characteristic impedances are needed. The propagation constant 

for I increasing is y1 = ~l + jS1 where a1 is the attenuation constant 

measured in nepersfaieter and ~l is the phase constant measured in 

radians/meter. The characteristic impedance.is z01 in this direction. 

For 1 decreasing, the propagation constant is y2 = ~2 + jS2 and the. 

characteristic impedance is z02 • 

Because of the wave properties of voltage in a transmission 

line, the voltage in the forward direction (I increasing) is 
-ylx jwt vf = vl e e where vl is a complex amplitude. And similarly, 

Y2x j t 
Ui.e voltage wave in the reverse direction is Vr = v2 e e w where 

v
2 

is a complex amplitude. The total voltage is 

· ( -ylx Y2~ jwt ,v(x,t)= v1 e +V2 e )e (5) 

, V V 
f r 

By definition, I= z01 and I= -z02 • The reason for the negative 
f r 

sign in the reverse voltage to current ratio is due to the assumed 

forward direction of current ( from left to right in Figure 6). The 
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total current is I • If + Ir• 

I(x,t) = c:1 . ~-ylx_ :2 e Y2J ejwt 
01 02 

-(6) 

Due to the fact that only ratios of voltages and currents will 

. j t be considered, there is no need to carry the e w terms in~ equations 

(5) and (6). Therefore only V(x) and I(x) will be used where 

V(x) = V(x,t) and I(x) = I(x,t) when the ejwt term is dropped. 

The impedance is defined by 

= vf x~ = vl e 

-ylx Y2x 
+ v2 e 

Z(x) - Ix v
1 -ylx v2 

e -
ZOl 2

02 

from equations (5) and ( 6). 

v2 ( Y1+y2)x 
1 + - e v1 

Z(x) = --------...
exp ( Y1 +y2 )x 

V 
1 - _g Z02 
ZOl Vl 

Y2x 
e 

• 

... 
-~ 

It is convenient to define the load reflection coefficient, rL. 

- ~ (y1+y2>x I -~ 
r L = V l e x=O - V l 

Then, by substituting into equation (7) 
(yl+y2)x 

1 + r1 e 

Z(x) = 1 r L { Y1 +y2)x' 
-- e 
ZOl Z02 

At x = O, Z(O) = \ 

1 + rL 
2t --

1 rL -
ZOl Z02 
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:· I ··-Solve for rL. 

Subst;tuting equation (9) into (8), one obtains 

(yl+y2)x 
zo1(\+Zo2) + zo2(~-zo1) e 

Z(x) 

l -Now, for notational :pufyoses, y' = 2 (y1+y2) 

So 

1 1 • 2 (al+a2) + 2 J(s1+~2) =a'+ je' 

Z(x) • 
2y X 

e 

2n The quantity, \n is now defined such that \n = e'1 • 

. --- .. (9) 

(10) 

1 Th.en if a' were zero, Z(x) = Z(x±2 Arzi). This implies that Z(x) would be 
•, 

a J)eriodic function of I with period i \n if it were not for losses. 

With a' not zero, Z(x) is an aperiodic function. However, relative 

maximums or relative minimums of the impedance, Z(x), are separated 
l 

by 2 \n· 

Equation (10) is for the impedance at a point, X, only if the 
., 

. generator, nonreciprocal line, and load are as shown in Figure 6. If 

the nonreciprocal line had been reversed in that figure, the power, 

flowing in the direction of increasing I, would "see" a transmission 

line having constants z02,y2• The power reflected by the load would 
.. ~-,, 

"see" a transmission line with constants z01, y1 • Therefore, in all 

of the fonnulas developed so far, the roles of z01 and z02 must be 

interch~ged. _ The same applies to the propagation constants y1 an~ y
2 •· 

•, 
., 
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Then, the load reflection coefficient for the reversed line 
,., 

• • ... - - • - •.• ~ . ·- • • ~1~ 

1 
·1 

l - ·-- ---------- .-- ------ ---"-- - ~· 

The impedance function (denoted by Z1(x)) is 1 

Z'(x) • 

2y X 

e 

(10 1) 

One may wish to work with admittances rather than impedances. 

Therefore, it is convenient to define Y01 = ljz01, Y02 = l/z02, and 

YL = 1/2t· Then for the line pictured in Figure 6, equation (9) 
expressed in terms of admittances is 

(11) 

Substituting equation (1.1) into (8), one obtains Y(x) = 1/z(x). 

2 'x e y 
Y(x) = (12) 

Expressions may be written for r{ and Y'(x) for the reversed line 

merely by interchanging Y01 and Y02 in equations (11) and (12). 

A very useful tool in plotting impedances or admittances in 

reciprocal lossy and lossless transmission lines is the Smith Chart. 

This graphical device was derived to condense the infinite impedance 

or admittance plane into the plane of the reflection coefficient 

which consists of points in a unit circle.2
' 3 How·ever, the trans-

-fonnation used to accomplish this confonnal mapping is not the correct 

' one to use for the case of a general nonreciprocal line. This faet 
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can be innnediately seen by noticing that the expression of the load 

reflection coefficient for the reciprocal line differs materially 
/ 

from that for the nonrec..iprocal line. Therefore, the· 'Smith Chart is 

not applicable for the nonreciprocal line. 

A second important concept is the reflection coefficient as a . 

function of l• The reflection coefficient measures the ratio of the 
,. 

reverse traveling voltage wave to the forward traveling voltage wave 

at any point, I, on the line. Hence the reflection coefficient 

V V y2x 
2 'x 2 e 

r(x) r 
= r e y (13) - - = -- vf -ylx L 

vl e 

This derivation is for the line as shown in Figure 6. For the 

reversed line, the form of the reflection coefficient remains un-
I changed but, r L must be replaced by f L. 

By comparing equations (8) and (13), it becomes clear that r{x) 

determines the impedance function. As 1'1ith Z(x), if ct' were zero, 
1 --·~ r(x) would be periodic with period 2 Am• But with~, not zero, r(x) 

is aperiodic although its relative maximums or relative minimums 
1 occur at points which are separated by 2 \n. As one moves from the 

load in the direction of decreasing X, each successive maximum is 
-ex '\n 

decreased by a factor of e and the magnitude of each successive 

minimum is similarly attenuated. 

In a reciprocal lossless line, the voltage standing wave ratio 

(VSWR) is defined as, 

VSWR = maximum voltage 1 + I r LI 
- minimum voltage= 'i - jrLI 

and is a constant function of X along the line. But with any lossy 

line no such constant behavior is possible. So with lossy reciprocal 
24 
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or nonreciprocal lines, the VBWR is a f\Ulction of X and may be defined 

as follows for the nonreciprocal case: 
. . -·, ·- ....... - .... - - ··-------~ 

VSWR(x) • l + lr(x)I 

1 - I r(x) I 
,... .·N't 

• 

• 

VSWR(x) • 

l + lrL e2y'x I 

1 - I 2y 'x I rL e -

from equation (13) 

1 + 
2a '+j2a' 

lrLII e I 

2a'x 
e 

2a'x 
e 

J2a 'x 2a'x 
s1nce le I a lcos(2a 'x) + j s1n(2e 'x) 1 = 1 and e > o. 

(14) 

As with the impedance function and the reflection coefficient, 

equation (14) is derived for the line as shown in Figure 6. For the 

reversed line, VSWR'(x) may be found from (14) with lr1 1 replaced by -) 

From its definition, it is clear that O ~ lrLJ ~ 1. Therefore 

1 ~ VSWR(x) < ~. If there is no reflected voltage at the load in 

Figure 6 (~ ~ = z01), lrLJ = 0 and the VSWR(x) is a constant 

function of 1 of value 1. At the other extreme, if the load is a 

sho:t circuit, lr1 1 =\land at x = o, VSWR(O) _. a,• (In the case of a 

lossy reciprocal line, frL) al if the load is open circuited or short 

Z02 
circuited. But in a nonreciprocal line, JrLI = Z for an open cir-

01 I 

cuited load.) However due to the loss factor, e2a x, multplying 
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the Ir L I term in both ~l.Dnerator and denoininator of ( 14), the 

VSWR(x) for -t s: x < 0 is finite. At x = -t, the VSWR(-t) 

• 
2 '/I l+e-a.KJ 

-2Q' 1t 1 - e 
As -I, ... -m, the VSWR(-1,) _. 1 implying 

. perfect match at the gene-rater· (x • -t,- e~ren· though- the load is a 

--short circuit. 
.. 

It may be shown that 11: the, VSWR(-t) is known and if the phase 
"' 

of r(-t) and the propagation constants of the nonreciprocal line are 

known, the impedance at any point on the line is completely determined. 

(The VSWR(-£) and the phase of r(-1,) may be read from slotted line 

measurements while the propagation constants are detennined from the 

dielectric and penneable properties of the medium.) 

It should be noted that the reciprocal lossy and lossless lines 

appear now as special cases of the nonreciprocal line theory. If y
1 

= y
2 and z

01 = z
02

, then the above equations reduce to those for the 

reciprocal lossy line. (The pairs of equations for impedance, 

admittance, reflection -coefficient, and VSWR for the nonreciprocal 

line reduce to single equations for these quantities when y1 = y
2 

and 

z01 = z02 .) And further, if y1 = y2 = jS and z
01 = z02 = a real 

nmnber, then the theory reduces to that of the lossless reciprocal 

line. Just as lossy and lossless reciprocal line theory applies to 

waveguides, the nonreciprocal line theory also applies under the 

conditions of the proper definition of impedance. A few of these 

definitions for the reciprocal case with TE10 propagation are dis

cussed by Montgoruery( 4) and they are easily extended to the non

reciprocal waveguide if the magnetic and dielectric properties of the 

medium are considered to be different in the different directions. 
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Matrix Representations of a Nonreciprocal Transmission Line 

Instead of the theory introduced in Section II, one may wish to 

describe the nonreciprocal line in terms of the.measurable quantities 

of the input voltage and current and load ,,oltage and current. 

Consider Figure 7 in which the convention for voltage and current 

fused throughout this section is explained. ~~e input curr~nt and volt

age are i 1 and E1 respectivel\ while at the output, i 2 and E2 a.re the 

current and voltage respectively. The matrix elements deri,red in this 

section are for the line as pictured in the figure. If the line is 

reversed, the roles of z01 and z02 are interchanged. The same is true 

for the propagation constants y1 and y2• 

ABCD Parameters 

It is of interest to have a direct relationship between the 

input quantities and the output quantities. This relationship is 

accomplished by the ABCD matrix as follows: 

(15) 

The elements of the ABCD matrix are known as ABCD parameters. From 

equations (5) and ( 6) with x = 0 and dropping ejw\ 

V(O) = v1 + v2 = E2 

I(O) 
V1 V2 

= ZOl - Z02 a i2 

Solving the simultaneous equation (16) for v1 and v2 in terms of 

E2 and 12, one obtains 
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V • - l 
zo~2 .- zo1zo212 

ZOl + Z02 

... 

Therefore on substituting for v1 and v2 in equations (5) and (6): 

V(x) a 

Z02E2 -- ZOl 2-o2i2 

ZOl + Z02 

ZO;Li2 - E2 

ZOl + Z02 

' .• ·1 

(17) 

At x = -J,, V(-1,) = E1 and I(-1,) = 11 • Therefore at x == -t (with terms 

on the right of (16) rearranged) one has: 

Y1! -y2t yl J, -y2t 
ZOl e + Z02 e z0lz02(e -e ) 

ZOl + Z02 E2 + ZOl + Z02 
12 

y1t -y2L 
Z02 e + ZOl e 

(18) 

ZOl + Z02 

Comparing equations (18) with the matrix equation (15), one finds the 

ABCD parameters to be: 

'Y1i -y2l 
ZOl e + Z02 e 

A=---------
ZOl + Z02 

-~-

(19) 

C = 
ZOl + Z02 

Y1 J., -y2t 
Z02 e + ZOl e 

D • ---------
ZOl + Z02 

'\_;_ 
. .;.~ 

- -·· ,: . 

For reciprocal lines or nonreciprocal passive devices which may 

be characterized by one prop~gation constant, y or one transfer constant, 

28 
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8, the relationship, AD - BC• 1, holds.(5) However, for a nonrecipro

cal line ( or more generally, any device with two propagat·ion constants, 

y1, ~2 or two transfe~ constants, e1, e2,) 

(yl-y2).t 
AD-BC=e (20) 

From equation (20), it is seen that if any three of the ABCD parameters 

are known, the fourth is determined. 

The usefulness of the ABCD parameters is mainly found when one 

wishes to cascade two or more lines. Then, the input current- and volt-, 

~ age are related to the load current and voltage by an ABCD matrix 

formed by the product of the ABCD matrices of each of the cascaded 

lines, line one with parameters, P,_B1c
1
n

1
, and line two with parameters, 

Then by consideration of Figure 8, one sees that the load 
) 

voltage and current of the first liQe are the input voltage and current 

of the second line. So, if E1 and i 1 are inputs to the first line, and 

E2 and i 2 are the outputs of the first line, then with E1 and iL the 

output voltage and current of the second line, the following equations 

hold: 

~11] = [Acll DB11J [Ei22J ; r-E21 [~ B2J r~ 1 ' Li Li2 = C2 D2 L1LJ 
or 

(21) 

Z Parameters 

Very often, one may wish to relate the voltages, E1, E2, to the 

currents, 11, 12 , in the line (where all quantities are defined as in 

Figure 7). These quantities are related by the Z parameter matrix as 

follows: 

29 
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\ 

_ _) The -E2 element arises from consideration of Kirchhoff's 

fonn of the equation is discussed by Kara.k.ash.( 6) 

laws. 

(22) 

The 

The ABCD matrix elements may be used to de+ive the Z parameters. 

If 12 = O, 

11 
(since i = 

2 

' .. ~-..... ~. 

il 
With E2 = O, i = -

.. 2 

-z22 
Z when E2 = 0). 

21 

By systematically substituting from the 

known ABCD parameters, one finds: 

z12 = -

z22 = 

Y1L -y2t 
ZOl e + Z02 e 

Y1l -y2£ 
e - e 

(yl-y2).t 
(Z01+Z02) e 

(23) 

'lhe main use of the Z para.meter matrix is when two lines are 

connected, as shown in Figure 9, in series. The input voltages across 

each line add while the input current is the same for both lines. At 

the load end, the output voltages across each line add, while the out

~ut current is the same for both lines. Therefore, the total Z matrix 

.... 30 
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I 

·j 

for the series co ection of the two lines is the sum of the Z 
' (7) matrices for the two lines. - -• ----- ---~------- ~ -~--------· ·~-----------~1 

y·Parameters 

. 'IO 
One may wis~ to e~press tbe inp_ut an_d output. curre_nt.s __ o.f 

Figure 7 as a function of the input and output voltages. Such a repre-

· ., · sentation may be accomplished by~ means of the ! parameter matrix. 

J 

( 

(24) 

As might be expected, the Y matrix is the inverse of the matrix of Z 

parameters given by equation (23). However, the Y parameters may also 

be derived directly from the ABCD matrix elements (which will be left 

to the Appendix B). 

By using the standard method of inverting the Z matrix, (B) one 

obtains: 

yl2 = 
0,, 

(25) 
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The Y matrix is useful when two lines are connected in parallel 

as is shown in Figure 10. Here, the input voltage is the same for each 

line while the input current is the sum of the input currents to the 

two lines. At the output, the voltage is the same for each line while 

the current is the sum of the currents from the two lines.• Therefore, 

the Y matrix of the parallel connected lines is the sum of the Y 

matrices of the two lines. ( 9) 

The matrix elements reduce to those for the lossy or lossless 

reciprocal lines. If z01 = z02 and y1 = ~2, then the equations 

derived above apply to the lossy reciprocal line. If z01 = z02 = a 

real number and y1 = y2 = jS, then the equations apply to the lossless 

reciprocal line. This is a direct result of the theory presented in 

Section II. 
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Consider power P incident at the left junction in Figure 5. 
s 

Then if (1-L)(l-L') = 0.05 any component of P ·w·hich passes back arid 
s 

forth through the isolator two or more times will at le~st be attenu-

ated by a factor (1-L)(l-1 1
) in excess of a component of power which has 

J 

circulated the device just once. Therefore, the components undergoing 

multiple reflections more than an order of magnitude smaller than the 

others and hence they will be neglected. If the sequences [ lrLnlmax}, 

and f lrRnlmax} converge with L, L' chosen so that (1-L)(l-L') = 0.05, 

then they converge for L, L' such that (1-L)(l-L') < 0.05. Therefore, 

only values of JrLI and lrR} will be varied and (1-L)(l-L') will be 

fixed equal to 0.05. The values of lrLI and Ir RI will be chosen to 

demonstrate that the sequences r1r1nlmaxl and ffrRnlmax} converge under 

extreme conditions. 

Case 1: f r1l = lrRI = 0.9 

lrt1lmax .. (1-lrtl2)( Ir RI) J<1-L)(l-L') 

a (0.19)(0.9)(0.22361) 

lr11lmax a 0.03824 

lrRllmax = <1-lrRl
2

HlrL1lmax) J(l-L)(l-L') 

• (o.19)(0.03824)(0.22361) 

JrRllmax = 0.00162 

Ir r.2 lmax = <1 - lr11 l!ax)( Ir Rl lmax) ./(l-L)(l-L') 

9 

• (o.998538)(0.00162)(0.22361) 
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• 

tr1.2 I ax • 0.00036 .. m 

-----------------· tF}f2.1~"" (1-ltRll;~)(lrL2lm~) j{1-L)(i-Li
0

) 

• Ill 

-

• ( 0.999998) (0.00036) (0.22361) 

1rR21max = 0.00008 

lrL3 1max = (1-lrL2 l!axH lrR21ma.x) j<1-1)(1-L') 
= (1.oooooo)(o.00008)(0.22361) 

th and from the nature of the!!. terms of the sequences r)rLnlmaxl and 

{lrRnlmaxl, all the remaining elements of both sequences are< a+. 

So, lr11 1max = 0.03824, lrL2 1max = 0.00036, 

lrL31max = 0.00002, and lr141max' •••, lrLnlmax' 

lrRllmax = 0.00162, JrR21max = 0.00036 

lrR31ma.x = O.OOOo8, and lrR41max' •••, lrRnlmax' 

+ ••• < 0 

+ ••• < 0 

The method of solution of the following cases is just the same 

as that used in Case 1. So only the results will be given. 

Results: 

lrLllmax = 0.19924; lr12 1max = 0.00182, lrL31max = 0.00009 
and lrr,4lmax' ••• , lrLnlmax' ••• < a+ 

and + ••• < 0 
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Results: 

- + 
and I rL4 ) ' • • . ' I rL I ' . . . < 0 max n max 

lrRllmax • 0.00094, lrR21max = 0.00005 

and 1r R31max' ... ' Ir Rn lmax' ••• < o+ 

case 4: 

Results: 

----------------~. - - -- - -- -- -

\r11 1max • 0.02214, lrL2 1max = 0.00101, Jr13 \max a 0.00005 

and lr141max' ..• , lrLnlmax' ... < o+ 

lrRl,max = 0.00450, lrR21max = 0.00023, lr13 1max = 0.00001 

and lrR41max' ... , \rRnlmax' ••• < o+ 

In all of the above examples, no more than four adjustments 

of each matching de\rice were needed to obtain partial reflection 

coefficients~ o+ at each junction. Therefore the trend of con-

vergence is established; and flrLnlmax} and flrRnlmax) are converg

ing to zero. 
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AJ?l:,,endix B 

Derivation of the Y Parameter Matrix from the ABCD Parameters 

From equations (15) and (24), one obtains the following relation 
. ~ 

between the Y :para.meters and the ABCD :parameters: 

E1 Y22 
·Withi =0, - =· =A 2 E2 y21 

and, 11 == yll El-Yl2 E2 = yll ~2~ E2 - YiJl2 
21 

.. 
1. ylly22 - y2ly22 1 

• B - -
E2 

-
y21 

)S'\ 

i yll 
and..! = D --

y21 
·.!,';, 

12 

Solving for the Y parameters in terms of the ABCD parameters one obtains i 
Y1 .t -y2t 

Z02 e + ZOl e 

··-..;. 

.... 

·• 

These parameters ·-are exactly the same as those in equation ( 25) • 
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