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In many systems applicationé employing isolators, maximum power
transfer of desired signals is/required. Therefore, the elimination of
reflections frcm.the isolator becomes a primary goal. If the isolator
were ideal (infinite loss in one direction), it would be possible to
completely compensate for the reflections merely by &a single correction
from each side, if matching devices are placed before and‘after the iso-
lator.- However, where finite losses exist, it will generally require
more than one adjustment of each tuning device.

In order to determine the maximum number of adjustments needed
to obtain any given tolerance for reflections, one must make use of
the fact that the reflection coefficient at a junction between an iso-
lator and a reciprocal line is the same when measured from either side
of the junction. This fact 1s true for any reciprocel device. In
order to prove this for an isolator, a thermodynamical argument is
offered.

With fhe aid of this theorem, sequences giving an upper bound
on the ref}ection coefficients which remain at each Jjunction after n

ad justments of each matching device is developed. The convergence of

- \
these sequences are investigated for various values of the constants

bf the isolator.
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~ An isolator is really a special case of a nonreciprocal trans-

mission line. Therefore, it may be described by means of the theory

" of such a line. The impedance concept, reflection coefficientJand

voltage standing wave ratio are derived for this theoretical device.
A major result is that the theory of the lossless and lossy reciprocal
lines may be completely described as special casesrof the nonreciprocal
tranémission‘line.

Finally, an alternate way of describing thé‘nohreciprocal line
in terms of matrix elements 1s presented. The ABCD, Z, and Y par&me-

ters are derived. The applications of these matrix representations

are also described. —

IHI_IULJ; o\
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’Pnésive nonreciproéal devices are becoming #ery imporfant be=-
cause of their varied systems applicaﬁions. For instance, where
klystrons are used, an isolator prevents "pulling" which might dther-
wise occur due to the reflected powerhfrom.other parts of the system.
Also, delayed echoes which might cause "ghosf" images are eliminated
by proper isolation of componenfs. Multiplexed signals are separated
into proper channels with circuits incorporating 1solators. Many
measuring schemes include isolators in the circuits used.

In general, an isolator is a two port device which has a low
loss between ports one and two and & high loss between ports two and
one. One major requirement for this device is that it have low re-
flections from elther port. When placed in a system, at least a
spurious reflection of power will occur at both junctions. At first
glance, it would seem possible to compensate the reflection at one

o
Junction with a matching device and then likewise compensate the re-
flection at the other junction and, with one adjustment of each
matching device, achleve reflectionless power transmission. This is
true for an 1deal isolator with infinite loss in\éne direction. How-
evef, in general, due to the finite losses, one faces the more involved
problem of matching a lossy, nonreciprocal two port from both ends
simultanously. A practical matching procedure for this case 1s dis-

cussed In section one.

A specific nonreciprocal device, closely related to the iso-

lator, 1s the nonreciprocal lossy transmission line. Although at
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present this 18 not a practical device in itself, from theoretical
considerations, it 1s of intei'est because of the ease of handling of
transmission line equations as compared with those concerning the
theory of ferrite-loaded wavegulde. Arid, it seems fo be of some merit
to have a theory of the nonreciprocal lossy transmission 1ine avall-
able. This theory will be developed in section two.

As en alternate way of describing a nonreciprocal two port,

the matrix approach is presented in section three. The ABCD, Z,and Y
parameters of pieces of \nonreciprocal transmission line are derived.

And, theilr usefulness in certailn applications is discussed.
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Bection I

Camggnsation of Reflections in an Isolator

7

Reflections caused by the insertion of an 1solator may be due-
to two reasons. First, the geometry of the device may be such that its
cross section may differ from the cross section of the waveguide‘or
trensmission line into which 1t was inserted. For instance, 1if the iso-
lator were placed in a coaxial line assembly, its inner and outer con-
ductors might differ in radius or position from thelinneg and outer
conductors of the rest of the coaxial system. 1In a rectangular wave-
guide application, the height or width of the waveguide assembly of the
device might differ from that of the rest of the system. The resdit is
that at the juﬁction between the device and the system, & reactive sfgr-
age of energy occurs and this is responsible for the reflection of power.

The second cause 1s due to the dielectric loading of the device.
In meny devices, there 1s a large amount of ferrite and alumina with
dielectric and magnetic properties much distinct from the rest of the
system into which the device is placed. This results in an abrupt tran-
sition from one medium to another with accompanying reflections.

The reflectior at a junction is described by the Jjunctlon re-
flection coefficient, T

Vref.

Vinc .

where er is the reflected voltage from the Junction and Vinc is the

fe
incident voltage at the Junction. T is only a function of the geometry
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‘and loading ;nd 1s a fixed quantity associated with the junction be-

——r—

tween the device and system, at the given reference plane.
In the case of‘junctions between reciprocal lines it is known
that " is the same when viewed from either side of the Junction. In the

case considered here,vhowever; a separate proof is needed. This will be

~ based on a thermodynamical argument derived from second law, which may
be stated: "No process is possible whose sole result is the removal of
heat from a reservoir at one témperature and the’ absorption of an equal
quantity of heat by a reservoir at a higher temperature."(l)

Consider Figure 1. The figure represents a general closed thermo-
dynamical system ;tfemperature, T. It contains only passive elegents
having noise bandwidth, B. Then, only noise power is able to flow in
the system. At equilibrium, the flux of power through any plane cutting

-the system, (e.g., A-A'), must be zero. If there vere a net flux, then
this would imply that some part of the system is generating more noise
power than it is absorbing thereby losing thermal energy and hence
temperature. Another part of the system is absorbing more power than it
1s generating thereby gaining thermal energy and hence temperature. ff
such a condition were possible, one could construct a perpetual motion
machine out of the system in clear violation of the second law of thermo-

. dynamics. Hence, there mus% be zero flux through any plane cutting the
system.

Figure 2 shows an infinitely long uniform isolator. The device
1s at temperature, T and has n;ise'bandwidth,‘g. The device has losses
L, in the forward directlon, and L', in the reverse direction, in a
section of length £ which will be under consideration. I, is defined to

be the ratio of the power absorbed by this section in the forward




‘A-A' and B-B') the power flux is zero.

direction to the pover incident at A-A's L' is similarly defined for

pcwe;'flOW'in the reverse directioh. By convention, L < L' < 1. By a

theorem due to NyQﬁist and by the above discussion, the infinite device

- generates available noise power, kTB (where k is Boltzmann's constant),

from right to left and vice versa. But, at any vertical plane (e.g., .

o»
v

Consider just the power flow from left to righfl' At plane A-A!

the 1ncideﬁt power is kTB. Due to the uniformity of the device, there
are no reflections. Therefore, the component of incident power which
reaches plane B-B' is (1-L)kTB due to the loss, L, in the forward
direction. But at plane B-B', kTB power must be present. So the
device must generate LkKTB noise power in the region between A-A' and
B-B' going from left to right. This is obviously a theorem by itself.
It predicts the noise power generated by an attenuator and will be
needed below. By simllar considerations of power flow in the direction
from right to left, one finds that the device must generate L'kTB in
the region between A-A' and B-B' going from right to left.

With this knowledge, it 1s now possible to prove the above
statement about the equality of the magnitude of the reflection coef-
ficient at the Jjunction between an isolator and the system.

Censider Flgure 3. The device is jﬁst as in Figure 2, to the
left of B-B'. At BL-B', a reciprocal lossless transmission line, with
characteristic impedance Zo’ 1s connected to the isolator. The line

1s terminated in Z_, a termination with noise bandwidth, B, and

temperature, T. At the Junction, there are assumed reflection coef-

flcients Fl’ as seen from the device side, and r2, as seen from the

termination side.




As before, kTB noise poﬁer'must flow from right to left and

_ vice versa. So Pl = kTB since 1t represents the power incident from
the left on the part of the device under consideration. Then due to

the forward loss, P, = (1-L)P; = (1-L)kTB. And, due to the reflection

2
coefficient, Py = |1“1|2P2 = Irlle.(l-L)kTB; (When dealing with povers,

one must use the square of the magnitude of " which was defined in terms
. 2 2
of voltages.) P) = (1-|rl| )P2 = (1-|rl| ) (1-L)kTB. The power, Ps,

3 which reaches the vertlcal plane A-A'. Tt must e |
traverse the reverse direction of the device. So P5 = (l-L')P3 = |Fl|2 |

is the component of P

(1-L) (1-L')kTB. The power, P, represents the power generated in the
device traveling to the left, and, from the above discussion, has a
value L'kTB. From similar considerations, there must be a power

2 2
P, = LKTB traveling to the right. Pg = || P, = |ry|” LkTB and

2 2 2
P9 = (1-|rl| ) P, = (1-|rl| JLkTB. P (1-L') Pg = rl| L(1-L"')kTB.

10

This concludes the consideration of powers from the device above.
Now,"the powers arising from the termination are developed.
2
Pll = KTB is the power generated by the termination. P12 = |F2| Pl1 =

|F2|2kTB‘while P, = (1- r2|2) Py = (l-|ré|2)kTB. Finally,

%)

3
Pyy, = (LR 5 = (1-]ry

(1-L')kTB.

At plane A-A', the net power £lux is zero.
PlzP5+P6+?lO+P1)+
2 : . 2 (11 2y (11t
KTB = |rl| (1-1) (1-L')XTB + L'KTB + |rl| (1-L*')kTB + (1-|r2l ) (1-L')kTB

By dividing both sides by kTB and expanding, one obtains

o o A e A R A A L S A A S A O

/f\/

LI

% + 1,2
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Or, on further simplification, the following result is obtained:
} |

0= (1-1;')(lr'fl2 - |5,
But L' < 1. 8o |ry|” = |r,|° and |ry| = |r,).
As & check on this result, one may write power balance equation at the

vertical plane, C-C'.

Pll = Pll» + P9 + P12 8 | e

kT8 = (1-|r) |*) (1-L)kTB + (1-|r; |®)xrs + |1, |kms

On simplifying this equation, ohe obta.ins.

0 = (|rp)® - |ry|®). S0 as avove, |ry| = |r,|-

With the aid of this important theorem, it is possible to
discuss the problem of matching an isolator into a lossless reciprocal
transmission line or waveguide system.

In principle, if the Z matrix of the isolator is known, 1t is
mathematically possible to determine the necessary compensating
Impedance to eliminate reflections and obtain maximum power fransfer.
Or, the method of Dechamps may be used to find experimentally the
elements of the scattering matrix which also contain the information
needed for compensation to eliminate reflections. But such procedures

are not nearly as easlly applled as the more practical é,pproach of

" direct experimental match‘ing procedures. It is the latter approach

which will be considered here.
Before going into theoretical details this method shall be
described briefly: The two port is inserted between &, generator and a

matched termination. With one of the standard techniques the two port

1s corrected at the input port so that no power will be reflected back
9




to the generator.  Now generator and load are interchanged and the

same correction done at the other pert. A new switch between

- generator and load however shows, that the initially established match
now 1s deétroyed. The procedure has to be repeated several times until
satisfactory results are obtained.

Suppose one places a isolator in a circuit such as that shown
in Figure L, Here, the only reflections occur at the Junctions betweén
the 1solator and the transmission lines. Reflection coefficienté
(hereafter called partial reflection coefficients), ri and FR’ exist at
the left and right junctions respectively. From the above theorem both
FL and FR have the same values independent of whether one views the re-
spectlve junctions from the device side or from the transmission line
side. The device has a forward loss, L, and a reverse loss, Lf;

If a component of the source power, Ps’ 1s incident at the left
Junction, |1~L|21>s = P; will be reflected and (1-|1~L|2)PS is trans-
mitted. At the right junction, erle(l—lr‘ng)(l-L)Ps is reflected
while (:L-]rR|2)(1-|1~L|2)(1-L)PS 1s absorbed by the load, Zy+ Then
(1-|PL|2)(IFR]Q)(l-L)(l-L')PS 1s the component of power which returns
to the left junction at which point (1-|I~L|2)2( |1“R|2)(1-—L)(1-L')PS=P2
1s transmitted back to the source. If L and L' are large enough so
that any component of power which circulates through the device more
than once may be neglected, the reflected component of power at the
left junction, |Fi|2(l-lPL|2)(erle)(l-L)(l-L')Ps will not be con-
sidered further,

The powers P1 and P2 are proportional to squares of the volte-

ages Vi and Vé respectively, If the two voltage waves interfere

10




constructively at the left junction, then the total returned power at
. ‘

the junction is proportional to (V1+V2)2.

‘ 2 2. 2 2 .. 2 2., 2
(v1+v2) = V)V, TRV, V, = VTV, TR Y T
returned power

incident power

as seen from

—
—

at the left junction.

D 0
T | ot It ltot

P

P, +P, P1P2
the transmission line side of the left Jjunction is + g 7
| S S

Then since |rL'f:ot Ps in the returned power, it is proportional to

(Vl + V2)2. There fore,

2
Irpliot Pg = B + By 2-.,/;1P2

= Iry|°p, + (1-|ry |B)2(|rg ) (2-1) (1-L1)p,

+ 2|1y |- g 1) (g Jo-1)(-L1) 2,
and f |

2
IrLliot = [II‘LI + (1] ) (g ,ﬂl-L)(l-’L')]

or

Il + (-l A rgh famy ) ' (1)

IFLI tot

Thus |1“ represents the upper bound of the possible magnitudes of

thot

\

reflection coefficients at the left junction. Similarly, if the generw=

ator and load in Figure 4 were switched around, one can define Irledt-

for the right junction as

*
In this analysis, the interaction of voltage waves in the device

due to the multiple reflections has been ignored. This is Justi-
fied if the total losses in the device are large. However, if the
Q of the device attains large wvalues, this analysis no longer
applies because of the resonance behavior of the cavity.

‘:’ 40’.

1
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IPrlsos = Irgl + (=rgl)) (I D) [ET) (T (2)

Therefore.erlgot is an.EQPer'bound for magnitudes of the reflection

coefficients at the right junction.
It is true that in an actual situation, the values of the total
reflection coefficients may be less than those'given by eqﬁations (1)

and (2). But unless one has & device which approaches the 1deal

(L'=1), the total reflection coefficients at both the left and right
Junctions can be greater than the partial reflection coefficients at
those respective junctions.

If matching devices are placed before and after the nonrecipro-

cal device, the resulting scheme will be as 1in Figure 5. 1Initially

assume that matching devices are ad justed so that no compensation, for

instance shunt susceptance, has been introduced. Then under the asg-

sumptions used to derive equations (1) and (2), the two partial re-
flection coefficients, Iy, and Tg and the losses, L and L', lead to a
Ty |40 ¥hich is greater or equal to the partial reflection coefficient
at the left junction (which may be immediately seen from equation (1)),
If the left matching device now is used for tuning, it will introduce

a reflection coefficient, DLl which 1s equal in magnitude to_but 180°
out of phase with FLtot' Thus the total reflection coefficient will

be completely compensated, though not so for the partial reflection

coefficient, FL' In the worst case, there now remains a new partial
reflection coefficient, of magnitude lri'tot-'PL” at the left junction.
If the source and load of Flgure 5 are now reversed so that power

18 incident on the right Junction, a similar effect of overcompensating
the partial coefficilent at the right junction occurs due to the

- 2

ITrleot  +
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found from equation (2) with |pL| replaced by‘lnnlls When compen-
sation has been added by the right matching device (in & similar

memner &as was discussed with the left matching device) a resultant

parfial reflection coefficient of magnitude 'rthot-erl (where |tRl'

- 18 the magnitude of the compensating reflection coefficient) now exists

8

. at the right Jjunction.

This new reflection coefficient at the right junction disrupts
the equilibrium at the left junction so that thef; are again reflec-
tions. These reflections necessitate the read justing of the left
matching device with the resultant need to retune the right matching
device. Due to the fact that the total losses, L and L', are not suf-
ficlent to completely isolate the reflections at one junction from
those at the other junction, there may be & need for many &adjustments
of each matching device befoye reflections are Sufficiently compensated.,

It 1s therefore valuégle to establish an upper bound which will
allow one to determine the maximum number of ad justments needed to
satlsfy the tolerance for reflections in a given situation.

It 1s convenient to define three quantities, lrn-l'tot’ |rn|, and

\Fhlmax for both the left and right junctions as follows:

ELn-lltot = the total magnitude of the reflection coeffidiént from the

left side after n-1 ad justments of both the left and right matching
devices,
|1"Rn__1|tot = the total magnitude of the reflection coefficient from the

right side after n-1 adjustments of the right and n adjustments of the

left matching devices.

13
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_lrinl = the magnitude of the partial reflection coefficient at the

left Junction after n adjustments of the left and n-1 ad justments of

the right matching devices,
|ar| = the magnitude of thg partial reflection coefficient ét the
right Jjunction after n adjustments of both‘the 1é?£ and right matching
dévices. ’ w

The definition of the third quantity'will depend upon the con-
8lderation of the phasé of the voltage wave reflected at the incident
Junction of the device with respect to the voltage wave at that
Junction due to reflections from the other Junction. It should be
obvious that when these voltage waves are in phase, the total re-
flection coefficient at the incident Junction would bevgt least as
large or larger than the tbtal reflection coefficient under a more
general phase relation. This condition 1s, in effect, a worst case
approximation to the actual situation occurring in the device. After
compensation, the partial reflection coefficient at the junction will
also be a maximum under the conditicn that the waves are in phase,

Then it becomes an obvious extention to define lanl = the magni-

max
tude of the partial reflection coefficient at the left Junction after
n adJjustments of the left and n-1 adjustments of the right matching
devices under this worst case condition.
ITgn |pax = the megnitude of the partial reflection coefficient at the
right junction after n adjustments of both left and right matching
devices under the_worst case condition,

In general, then, |an| < lanJmax and ernl < lFRnlmax' If

the sequences, {IFLnImax} and {Iarlmax}’ converge to zero, then the

14




8equences, {II‘Lnl} and HI‘RnI} converge to zero at least as fast, o

This statement mey be proved very simply:

Since by hypothesis, {lrn|rnax} converges to zero, for any (e > O, one
can find an N(¢) such that HFLn lma.x" O| < ¢ whenever n > N(¢). This

1s the definition of the convergence of & sequence;% Therefore |FLn Ima.x

< ¢for n> N(e). But |1"Ln| < Ianlmax' So 1t follows immediately
that IanI < ¢ for n > N(¢). And, {II‘LHI} converges to zero at least

as fast as [|1“L lmax}' The proof for the convergence of f |1"Rn|} 1s

exactly similar. Q.E.D.

As a result of this proof, the sequences rlanlmax] and r'ar'ma.x}

can be used as upper bounds for sequences {Ir‘Lnl} and {Iar‘} respec- |

I
I
1

tively. The upper bound sequences will be developed under the follow-
ing assumption: Any component of power that passes back and forth

through the isolator more than once will be considered to be attenuated
80 much by the combined forward and reverse losses of the devices that

1t will be negligibly small whenpompared with any component of power

i

which had made only one circuit in the device.

e t—
S S

With no susceptance introduced by either matching devices s under

the above assumption, the magnitude of the total reflection coefficient,

S — e N — i =

Irmltot’ 1s found from Figure 5 and equation (1) to be

1 n

- e ——
e E—

ITroleot = vl + (=|ry (D) Ja-p)(2rt)

—— oy

s8ince the worst case is being considered. If the left nmatching device

1s adjusted so as to be equal in magnitude to but 180° out of phase N
o |
with FLO £ot? then complete cempensation has been accomplished from

the left side. However, due to the overcompensation of the partial | I

reflection coefficient, FL’ there exists, in magnitude, a new partial | ‘
15
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reflection coefficient, |ry,| .. = ITpolioe=ITyls

B o (i-lrLle)(|PR|)./(1-L)(1-L')“

If the source and load in Figure 5 are reversed, then |FR0|tot

—
may be found from equation (2) with lFLI replaced by IrLl'max' So,
2 '
IPeo Lot = IRl *+ (1=[Tp )y Lo, ) /(1LY (1-11)
If the right matching device compensates completely for |I‘Ro|tot in a

gimilar manner as was discussed when lDLOltot was considered, then the
right matching device has overcompensated for the partial reflection

coefficient at the right junction. "1s the magnitude of

If |Troltot
the compensating reflection coefflcient, then the new partial reflec-

tion coefficient at the right junction is equal in magnitude to

ITroltot = ITRl = |71 |pasc

IFRl|max - (l'IFRlQ)(|rLl|max) JQl-L)(l-L')A

But by adjusting the right matching device, the change in the
partial reflection coefficient from FR to rRl nax Causes the initial
equlllbrium at the left junction to be disrupted, thereby introducing
reflections at that Junction. If the source and load are returned to
the original position, a rLl tot exists at the left junction. TIts

magnitude may be found from equation (1) with |FL| replaced by lFLllmax

and |rR| replaced by |1~Rl |max.

- 5 —
M1 leot = 1702 hax (=10 s (TR L) «./(l L)(1-L')

Since this quantity is a direct consequenée of initial overcompensation

from the left matching device, 1f the initial compensation were inductive,

4
for instance, one would have to add capacitance to obtain zero total

16




reflection. If the initlal compensation were capacitive, then
Inductance would be needed. In either of the two possible cases, the

magnitude of the compensation required must be equal to When

P11 ot
this adjustment 1s made, the magnitude of the partial reflection coef-

' ficient remaining at the Junction is IFL2|max where

ITeo luax = ITLl =Urpoleos™ 1M1 ltot)

= 1Ty ltot™ 1Ty lumx

So

IPpo luax = (11701 oae) (ITgy ) [T (ITT)

If the source and load are interchanged, there is a reflection
at the right junction for reasons similar to those stated directly
above In connection with the left junction. The magnitude of the

total reflection coefficient, , may be found from equation (2)

IFRl'tot
with |FR| replaced by IrRlImax and IFLI replaced by IFLQ'max' There-

fore

2
lI‘RZthot - erlImax+ (l-IPRllmax)(lrLEImaxlﬁﬁ:L)(l-L') )

This total reflection coefficient is due to the initial overcompensation

by the right matching device., Therefore the comments stated before the

derivation of |rL2'max apply to this situation. Compensation of magni-

tude must be added by the right matching device. After adjust-

TR ot

ment, there 1s a new partial reflection coefficlent, y Where

I-‘RQ mex

lFREImax = lFRlltot- IrRllmax

e b = (11T o) (P ) [T (E)

17
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~ However, at both the left and right Junctions, the matching
devices have now undercompensated for the original partial reflection
coefficients, I and [ge Due to the finite losses (L and L'), after
~the next adjustments, there will be overcompensation at each junction.
After every odd numbered adjustme;t of either matching device, over-

- compensation of the original partial reflection coefficient at the

Junction occurs. And after every even numbered adjustment, under-

‘compensation occﬁrs. As a result, after n adjustments of the left and
n-1 adjustments of the right matching devices, the partial reflection

coefficient which remains at the left Junction is

. . A'
lI-‘Lnlmax B (l-lrin-llmax)(Iar-lImax)'Jkl-L)(l-L )

nﬂl, 2, 3, h‘, ' 3

After n adjustments of both right and left matching devices, the partial

reflection coefficient at the right Jjunction is

ITonbmax = (= IPgyey log (M | ) fimy (1n) W)

n= 1, 2, 3, )"', cee

Equations (3) and (4) are subject to the condition that lri&”max=~|nLl

and IrR.Olma.x = IrRl'

The convergence of the sequences {lr}meax} and»{lrhnlmax} will
be demonstrated in the Appendix A for values of IFL" er|’~£’ and L'
which obey thé assumption used in deriving the sequences., The limits
of these sequences (having.gth terms as in equations (3) and (4)
respectively) are zero when the limits exist. Thus for and actual

device, the sequences {lanl} and { } converge at least as fast to

'R
the same limits as {IanlmaX}_and { Ton lnesc b nemely to er:ol = |F1m| = 0,

18




These limits are obviously thg conditions for maximum power transfer,

In many applications, it i1s found that only one or two adjust-

ments of each matching device are needed to obtain the almost total
elimination of reflections. This result follows directly from the

extremely fast convergence of {IFLn|max} and (lr%m}max} inside their
regions of convergence. For example a typical isolator might have the

following date associated with it:

forward loss: 0.5 db
reverse loss: «15db

|rL| = 0.2
and |rR| = 0.b

Then, the resulting terms of the sequences {IFLnlmax} and r|ar|m&x}
are:

= 0.06L458, = 0.00147, = 0,00004 and

IFLllmax Fie max |FL3|max

Ithlmax’ *v*s \Tpplpax? ¢o° < o

ITR1 Imax = 00087y [Pgoliay = 0400025, |Ipgl ., = 0.00001 &nd

+
erhlmax’ T lFRnlmax’ o0 <0

where the notation O+ means 0.00000+.

Therefore, after four adjustments each of the left and right matching

devices, the trend of convergence of the two sequences is established
&

and the sequences are converging to zero.
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S8ection IT

. 'The Theory of the Nonreciprocal Transmission Line - Impedance Coneept,
Reflection Coefficlent, and Voltage Standing Wave Ratio

An 1solator 1s a speclal case of the generalized nonreciprocal
transmission line which is showﬁ in Figure 6. fhe line is of length
£ with load at x = O and generator at x = - g, Unlike a reciprocal
line, this line mey not be cEaracterized by one propagation constant,

v, and one characteristic impedance, Z Due to the difference in

OQ
propegation properties and loss characteristics for ) increasing\;ﬁd
Y decreasing, in the nonreciprocal line, two propagation constants

and two characteristic Impedances are needed. The propagation constant

for 1 increasing is Y, = @y + JB; where o, 1is the attenuation constant

1 1

measured in neperq/heter and Bl is the phase constant measured in

radians /meter. The characteristic impedance is Z.. in this direction.

Ol

For ) decreasing, the propagation constant is Yo = + 332 and the .
characteristic impedance is ZOE'

Because of the wave properties of voltage in a transmission

line, the voltage in the forward direction (Y increasing) is

Vf = V1 e 1 e’jwt where Vi 1s a complex amplitude. And similarly,
Y X
the voltage wave in the reverse direction is Vi = Vé e 2 ejwt where
Vé is a complex amplitude. The total voltage is
| ~Yq ¥ Y
V(x,t) = (Vl e L 4 vV, e 27 gdut (5)
| Ve v
By definition, — = 72 .. and — = -Z_ .. The reason for the negative
If Ol Ir 02

sign in the reverse voltage to current ratio is due to the assumed

forward direction of current (from left to right in Figure 6). The

20




total current is I = If + If.

B CL R G O L - )
0l 02

Due to the fact that only ratios of voltages and currents will

be considered, there is no need to carry thé e'jwt terms in equations

(5) and (6). Therefore only V(x) and I(x) will be used where

/\ .

V(x) = V(x,t) and I(x) = I(x,t) when the 97 term is dropped.

The impedanée 1s defined by

from equations (5) and (6). ol
V2 . (Yl+'Y2 )X

72(x) =

eXP(Y1+Yéy; (7)
1 Vs 7
y4 V
Ol 1

It is convenient to define the load reflection coefficient, rL.

1 x=0 Vl

Then, by substituting into equation (7)

- ) . - | .
| Z(x) = L r.L e(Ylw;); (8)

) e(Yl*Yz)x | Vo
L=7

IZL _ 1 + FL
1
Zo1  Zo2
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Solve for r‘L .

Zoe (Zp, = Zoy)

s T Zoy Oy ¥ ZOET o e o9 e

SBubstituting equation (9) into (8); one obtains

(y-+y,)x
_ 2012+ 200) + Zop(Zy=Zp;) @ e

(242050 + (Zg-2y) vl

7{x)

Now, for notational purposes, v’/ = % (yl+-¥2)‘ =

1 1
=3 (ozl+a2) t 3 J(Bl“"BQ) = o’ + 8’
So |
| Zoyq (% +200) + Zop(Z =751 ) 2y %
Ol 02 02 Ql
Z(x) = ~ (10)
Y X
(2p+205) + (2517;) e
The quantity, )‘m 1s now defined such that )\m = %;- .
B

Then if o’ were zero, Z(x) = Z(xi-é]: ). This implies that Z(x) would be
a periodic function of Y with period -]é"- N, 1f 1t were not for losses.
With o/ not zero, Z(x) is an gperiodic function. However, relative

maximums or relative minimums of the impedance, Z(x) y are separated

1
byE)h.

Equation (10) is for the impedance at a point, Y, only if the

- generator, nonreciprocal line, and load are as shown in Figure 6. If

the nonreciprocal line had been reversed in that figure, the power,
flowing in the direction of increasing Y, would "see" & transmission

line having constants Z The power reflected by the load would

022 Y2*

"gsee" a transmission line with constants Zyy» Yp+ Therefore, in all

of the formulas developed so far, the roles of ZOl and 202 must be

interchanged. The same applies to the propagation constants Y1 and Y2"
20 |




Then, the load reflection coefficient for the reversed line

(denoted by r'L) 1s

oo JoATe) = BT R—
L 202 2 201 )
The impedance function (denoted by Z’(x)) is , B
Z0o(2.42 ) + 2 (Z -7 ) v
+ + - e
2'(x) = 02\ %01 01' 4L g\e{}x (107)

(24751) + (255-2) e

One mey wish to work with admittances rather than impedances.,
Therefore, 1t i1s convenient to define Ybl = %/201, YCE = l/%oe, and
Y, = %/ZL. Then for the line pictured in Figure 6, equation (9)
expressed in terms of admittances 1is

= To17Y, .

Y02+YL'

I, (il)

Substituting equation (11) into (8), one obtains Y(x) = 1/7(x).

QYIX
YL+Y02) + YOE(YL-YOl) e

QYIX

Y(x) = YOl(
(YL+Y02) + (YOl-YL) e

(12)
Expressions may be written for p£ and Y’(x) for the revérsed line
merely by interchanging Yy, &nd Y., in equations (11) and (12).

A very useful tool in plotting Impedances or admittances in
reciprocal lossy and lossless transmission lines is the Smith Chart,
This graphical device was derived to condense the infinite impedance
or admittance plane into the plane of'the reflection coefficient
which consists of points in & unit circle.e’3 However, the transe-
formation used to accompliéh this conformal mapping is not the correct

Y |
one to use for the case of a generdl nonreciprocal line. This fact
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can be immediately seen by noticing that the expression of the load
refléétion coefficient for the reciprocal line differs materially
from that for the nonreciprocal line. Therefore, the Smith éhart is
not applicable for the nonreciprocal line., '

A second Important concept is the reflection coefficient as a.
function of I; The reflection coefficient measures the ratio of’the

reverse traveling voltage wave to the forward traveling véltage wave

at any point, Y, on the line. Hence the reflection coefficient

v, v, e?
e ¢ 2 'x
rx) = &£ = -2 =T e ! (13)
Vf ~y1x L
V. e

This derivation is for the line as shown in Figure 6. For the
reversed line, the form of the reflection coefficient remains un-

changed but, FL must be replaced by Fﬁ’

By comparing equations (8) and (13), 1t becomes clear that r(x)
determines the impedance function. As with Z(x), if o’ were zero,
r'(x) would be periodic with period~% ;m. But with o’ not zero, r(x)
1s aperlodic although 1ts relative maximums or relative minimums
occur at points which are separated byw% km' As oﬁe moves from the

load in the direction of decreasing Y, each successive maximum is

’
—o
decreased by a factor of e and the magnitude of each successive

minimum is similarly attenuated.
In a reciprocal lossless line, the voltage standing wave ratio
(VSWR) 1s defined as,

VSWR = maximum voltage 1+ lDLl
-~ minimum voltage ~ T -]FL[

1

and is a constant function of Y along the line. But with any lossy

line no such constant behavior is possible., So with lossy reciprocal
2l

e o ey




or nonreciprocal lines, the VSWR is a function of Y and may be defined

A
as follows for the nonreciprocal case:
VSWR(x) = 1+ |r(x) : |
1l - I‘(X) \ \
| ’
1+ |DL =Y x|
- from equation (13)
l 2’Y 'X |
- |rp e |
2(1"+JQB’
o lanfle |
2o+ 3281
1 - lFL|| € |
2o % -
1+ |FL e
VSWR(X) = - (1)4)
QQ' X
1 - ]FL e
JZB 'x ealx
since |e | = |cos(2p’x) + J sin(2g’x)| = 1 and e > 0.

As with the impedance function and the reflection coefficient,
equation (1) 1is derived for the line as shown in Figure 6. For the

reversed line, VSWR’(x) may be found from (1k4) with lFLI replaced by

’ .
lnLl' i _
From its definition, 1t is clear that O < Iri| < 1. Therefore

1l < VSWR(x) < . If there is no reflected voltage at the load in

Figure 6 (:»ZL = ZOl)’ IPL' = 0 and the VSWR(x) is a constant

function of I of value 1. At the other extreme, 1f the load is & 4

short circuilt, |rL| =.1 and at x = 0, VSWR(0) - w. (In the case of a

lossy reciprocal line, |rL| = 1 if the load is open circuited or short
Z

circuited. But 1in a nonreciprocal line, IPL‘ =2 Egg-for an open cir-
ol _ ,
82a %

cuited load.) However due to the loss factor, , multplying

25




the |pL| term in both numerator and denominator of (14), the

VSWR(x) for -4 < x <O is finite. At x = -4, the VSWR(-y)
22"y L | S

1f |rp| = 1. A5 =4 -+ —», the VSWR(-4) - 1 implying

-perfect match at the generator (x uu-zﬁ even though the loéd_is a
- -8hort circult. |

It may be showp that ii’the\VSWR(-z)his known and i1f the phase
of r(-z)“and the propagation constants of the nonreciprocal line are
known, the impedance at any point on the line is completely determined..
(The VSWR(-4) and the thase of r'(-4) may be read from slotted 1ine
measurements while the propagation constants are determined from the
dielectric and permeable properties of the medium.)

It should be noted that the reciprocal lossy and 1os§less lines
appear now as speclal cases of the nonreciprocal line theory. If Y1
= Y, and ZO1 = ZOQ’ then the above equations reduce to those for the
reciprocal lossy line. (The pairs of equations for impedance,
admittance, ref'lection coefficient, and VSWR for the nonreciprocal
line reduce to single equations for these quantities when Y1 = Yo and
Zo1 = Zyoe) And further, if Y, = Yp = B and Z,, = Z,, = & real
number, then the theory reduces to that of the 1ossless:reciprocal
line. Just as lossy and lossless reciprocal lihe theory applies to
waveguides, tﬁg nonreciprocal line theory also applies under the
conditions of the proper definition of impedance., A few of these
definitions for the reciprocal case with TElO propagation are dis-
cussed by Montgomeny(h) and they are easily extended to the non-
reciprocal waveguide 1f the megnetic and dielectric properties of the

medium are considered to be different in the different directions.
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Matrix Representations of a Nonreciprocal Transmission Line

Instead of the theory introduced in Section II, one may wish to
describe the nonreéiprocal line 1In terms of the measurable quantities
of the input voltage and current and load voltage and current.

Conslder Figure 7 in which the convention for voltage and current
used throughout this section 1s explained. The input currént and volt-
age are.il and E1 respectivelx\while at the output, 12 and E2 are the

current and voltage respectively. The matrix elements derived in this

section are for the line as pictured in the figure. If the line is
reversed, the roles of ZOl and Z02 are interchanged. The same is true

for the propagation constants Y1 and Yor

ABCD Parameters

It 1s of interest to have a direct relationship between the
input quantities and the output quantities. This relationship is

accomplished by the ABCD matrix as follows:
E A B E
l| = 2
[11] [C D] [121 (15)

The elements of the ABCD matrix are known as ABCD parameters. From

equations (5) and (6) with x = O and dropping cJwt

)

V() = V. + V., = E

1 2 2 .
V Vo
I(0) = = - 5= = 1, & (16)
Ol 02

SolVing the simultaneous equation (16) for Vi and Vé in terms of

E2 and 12, one obtains

27
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vV, = ;o
L Iyt B o1 * %02

ZorFo * Zo1%02ta _ Zoe®p T Zor%oe'e
Z

Therefore on substituting for V, and V, in equations (5) and (6):

Z01Bs + 201200t TY1X ZooPo T Zoi%oela YoX
V(x) = =577 © Y T 17 €
| or ¥ %oz o1V %02

(17)

' Ey + Zoolp  vi* Iyl By WX
I(x) =

e + e
Zo1 + Zop Zo1 * o2
At x = =g, V(-g) = E, and I(-g) = 1,. Therefore at x = -4 (with terms
on the right of (16) rearranged) one has:
Y4 4 "Ygf' Y. 4 "Ygff
1 17
. . 201 € 7 * Lo © _— Zo1Z0et® © e ) .
1 ZOl + 202 2 ZOl + 202 2
18)
i oy Yt (
Y14 Yod 7 el +7 e °
L . & - g . 02 01 .
1 ZOl + 202 2 ZOl + 202 2

Comparing equations (18) with the matrix equationm (15), one finds the

ABCD parameters to be:

Ylﬁ -YQL
ZOl e + 202 e
A= 7+ 7
o1 ~ ‘o2
. Zo1Zoa(e e )
Zo1 * 200 ’
(19)
ylz “Yol
C = i
Zo1 * %02
ylz 'Yg‘
Do Z02 e + ZOl e N
201 * Zo2

For reciprocal lines or nonreciprocal passive devices which may

be characterized By'one propagation constant, y or one transfer constant,
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@, the relationship, AD - BC = 1, holds.(S) However, for a nonrecipro-
cal line (or more generally, any device with two propagation constants,

Yi’ Yp Or two transfer constants, 6, 92,)

AD - BC = e(Yl-Yg)z | | (20)

From equation (20), it is seen that if any three of the ABCD parameters
are known, the fourth is determined.

The usefulness of the ABCD parameters is mainly found when one

-~

Yishes to éascade two or more lines. Then, the inpuf current aﬁd volt-
age are related to the load current and voltage by an ABCD matrix
formed by the product of the ABCD matrices of each of the cascaded
lines, 1line one with parameters, AlBlClDl’ and line two with parameters,
A2B2C2D2. Then by consideration of Figure 8, one sees that the load
voltage and current of the first line afi the input voltage and current
of the second line. So, if E. and i, are inputs to the first line, and

1 1

E2 and i2 are the outputs of the first line, then with EL and iL the

output voltage and current of the second line, the following equations

Lt -le o) ) (] -e weliee

Ll =g ot L el (@)

Z Parameters

hold:

or

Very often, one may wish to relate the voltages, E., E., to the

1’7 72’

currents, 1., 1., in the line (where all quantities are defined as in

1’ "2’
Figure 7). These quantities are related by the Z parameter matrix as

follows:

29




L] - 2] I S N

The €E2 element arises from consideration of Kirchhoff's laws. The
form of the equation is discussed by Karakash.(é)

The ABCD matrix elements may be used to derive the Z parameters.

E 7 1 7
If 1, = 0, o= = - =2 = A, With E, =0, & = - =2 = D,
> 21 | 2 o1
) 4 1 | Z22)
Ifi, =0, == =-=—=C. And ifE, =0, E. = (;———.i + 7, 4
2 S =TT > S VNS SIS PR
1 -7
(since Il' =‘-§$§ when E, = 0).
2 21
E

1 _ %128 " PPy

-— = B. By systematically substituting from the
i Z
\ 1 21 »
known ABCD parameters, one finds:
'le -'Ygf'
- ZOle + Z02 e
11 le --Yef,
e - e
(y -y )2
1 72
— (Z01+ZOQ) e
| 12 eylz ) e-yez
(23)
_ (261200
21 'Ylf, -Ygl,
e - e
Y14 “Yol
e + Z e
2, - Zo2 01
Y14 “Yok
- e - e

The main use of the Z parameter matrix is when two lines are
connected, as shown in Figure 9, in series. The input voltages across
each line add while the input current is the same for both lines. At

the load end, the output voltages across each line add, while the out-

Put current is the same for both lines. Therefore, the total Z matrix
30




sentation may be accomplished by means of the Y parameter matrix.

for the series co ection of the two lines is the sum of the 7
7) S . |

matrices fof the two lines.( - I

Y Parameters

~ One may wish to express the input and output currents of R

Figure T as a function of the input and output voltages. Such a repre-

BIgEEIE S

As might be expected, the Y matrix is the inverse of the matrix of 7%
parameters given by equation (23). However, the Y parameters may also
be derived directly from the ABCD matrix elements (which will be left
to the Appendix B).

By using the standard method of inverting the 2 matrix,(B) one

obtains: . Y14 , -ng
v _02°% T%°
11 Y4 -y
1 2
-ZOlZOg:é - e %)
(Y -Y )4
17Yo
. (ZOl+ZOE) e
- 2z 7z (o -Y2%>
01 oéié - ©
(25)
(Zo1 * Zop)

<
|

21

Y14 'Y2f>
J ZOlZOé<% - e

Y14 “Yo 4
ZOl e + 202 e

Y14 'Yef)
ZOlZOéC? - €

31
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The Y matrix is useful when two lines are connected in parallel

as Is shown in Flgure 10. Hére, the input voltage is the same for each
line while the input current is the sum of the input currents to the
two lines. At the output, the voltage i1s the same for each line while
- the current is the sum of the currents from the two lines. Therefore,
the Y matrix of the parallel connected lines is the sum of the Y
(9)

matrices of the two lines.

The matrix elements reduce to those for the lossy or lossless

reciprocal lines. If ZOl = Z02 and Y1 = Yoo then the equations

derived above apply to the lossy reciprocal line. If ZOl = 202

real number and Y] = Yo = JB, then the equations apply to the lossless

a

reciprocal line. This is a direct result of the theory presented in

Section II. | m
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Appendix A .

- . Examples of Convergence of the Sequences
S (1T et 209 (1T ]

______ - AN IR PAY S TR TN I A N T e .
/

ve

%’»
a -

Consider power Ps incident at the ieft Junction in Figu’re Se

Then if (1-L)(1-L') = 0.05 any component of P_ which passes back and

forth through the isolator two or more times will at least be attenu- . .

éfced by a factor (1-L)(1-L') in excess of a component of power which has
P .

clrculated the device Just once. Therefore, the components undergoing

.
= . VO +
IR ——— S A -
b .
~

multiple reflections more than an order of magnitude smaller than the
others and hence they will be neglected. If the sequences {lanlma.x}’
and {ernlmax} converge with L, L' chosen so that (1-L)(1-L') = 0.05,
then they converge for L, L' such that (1-L)(1-L') < 005. Therefore,
only values of ‘fiJ and |rR| will be varied and (1-L)(1-L') will be

fixed equal to 0.05. The values of 1“L| and |1"Rl will be chosen to

demonstrate that the sequences f|1"Ln } converge under

ma.x} and. f Iarlmax

extreme conditions.

Case 1: |r'L| = |rR| = 0.9

T b = (=1 1) (gD f1-2) (1-11)

= (0.19)(0.9)(0.22361)

= 000382)4-

et e = (21l [e) DI

= (0.19)(0.03824)(0.22361)

IPpoloay = (1=Irpq 150 ) ([T | o) f(1-L) (1-L)

= (0.998538)(0.00162) (0.22361)
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| lFLE ,lmax

and from the nature of the n

IFRE‘ lmtaax

II-'L3 Imtal.x

erB Imax

= 0.00036

o e = [Py ) (o b JODT)

= (0.999998)(‘0:.00036)&0.22361)

0.00008

(1= 2 I ) f(1-2) (1)

= (1.000000)(0.00008)(0.22361)

<o

terms of the sequences flanlmax} and

{'FRn'ma.x}’ 8ll the remaining elements of both sequences are < o".

So, |FL1 |ma.x

lrLBIma.x

IrRllma.x

IFRB Ima.x

= 0,00002, and lFL)-LIma.x’

coe, Ianlma.x’ vee < O

= 0,00162, |rp,| . = 0.00036

= 0.00008, end |rp | .,

cors |Tppl o eee <O

The method of solution of the following cases is just the same

as that used in Case 1.

Case 2: |r | = 0.1, [rg| = 0.9

Results:
11
and I-‘LL"
IR
and  |T'p)
Case 3: II‘Ll

mex 0.1992k, lrLE'max

ax? *0e |an|m&x,

ax = 000847, [ro |

ax? e ]arlmax,

= 0.9, |rg| = 0.1

So only the results will be given.

= 0.00182, |ry .| . = 0.00009
<o’
= 0.00041, |r

<o’

53 may = 0+00002




N

Results: 
11
Im
and“r‘R3
Case L, |rL|

Results:

Mt
and Ty,
Fm1
and FR )4
In all

oy = 0-00825, |y | o = 0.00021, |ryql . = 0.-00001,
| y |

max’ °°°7 lan‘max’ » <
max = 0'0009}4') lPREImax = OOOOOOS
max, ¢y IFRnlma.X, cee < O+

= |FR| =Q.l '\*

ox = 0-02214, |rpo| = 0.0010L, T3 | = ©+00005

+
o s Tppliasr +oe <O
o = 0.00450, |rp,| . = 0.00023, |yl o= 0.00001

max’ °*°°’ Iarlmax’

<ot

of the above examples, no more than four adjustments

of each matching device were needed to obtain partial reflection

coefficients < 07 at each junction. Therefore the trend of con-

vergence is established; and {|an|max} and {|ar|max} are converg-

ing to zero.
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Appendix B

Der‘iva}ion of the Y Paraméter Matrix from the ABCD Parameters

From equetions (15) and (24), one obtains the following relation

~ between the Y parameters and the ABCD parameters:

~ E Y
With i, =0, == = ?3-2- = A
> 21
2 |
and, 1) =7y, ByYyp By =¥y é’é’; By = Y8
1 _ 1% = Yo%
E Y =B
2 o1
1Y B
and £ = =% = D
Iy

Solving for the Y parameters in terms of the ABCD parameters one obtains:

Yli 'Ygz
v _ Z02 e + ZOl e
H 2.2 /eyl'a- -Y2£>
Ol OQK e | N -~
(Y “~,)4
1" Yo
. . (Z01+ZOE) e
12 Y14 -'YQS
Z01Zoz<e e o
;o lo1t%oz
%01 oz(e "€
Y14 Yok
v _ ZOl e + Z02 e
22

Yp 4 "Ye‘)
ZOlZ02<e ., - €

These parameters are exactly the seme as those in equation (25).
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