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Abstract

Considering the class of linear time-invariant (LTI) systems and utilizing the vari-

ous mathematical tools, for diverse scenarios, we design sparsity-promoting feedback

controllers while attaining a reasonable performance loss. Diverse scenarios can be

classified as follows: (i) feedback controller sparsification subject to attain a simi-

lar frequency behavior for the case without/with parametric uncertainty (Chapters 2

and 4) (ii) improvement on sparsity in time domain in addition to sparsity promotion

in feedback controller (Chapters 3 and 8) (iii) sparse feedback controller design for

uncertain time-delay systems (Chapter 5) (iv) row-column (r, c)-sparse feedback con-

troller design (Chapter 6) (v) feedback controller sparsification for large-scale systems

(Chapters 7 and 9). Sparsity promotion in feedback controller is done via several tech-

niques including `1-relaxation, a notion of non-fragility, and quasi-norms. Sparsity

improvement in time domain is obtained via periodic time-triggered and self-triggered

control. In Chapters 2, 3, 4, 5, and 6, the non-convexity arisen by Lyapunov stability

condition is handled utilizing the bi-linear rank penalty technique. In Chapters 7 and

9, stability is provided by means of continuity of maximum real part of eigenvalue of

the closed-loop system. In Chapter 8, stability is imposed by a performance-based

condition which consists of a quadratic cost-to-go and a Lyapunov function.
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Chapter 1

Introduction

1.1 Literature Review

The area of sparsity-promoting control systems has been growing rapidly in the past

decade and it has been applied to various real-world applications such as formation

control of autonomous vehicles, frequency synchronization in wide area control of

power networks, transportation networks, mobile wireless networks, only to name

a few. In several important applications, the centralized control methodologies are

unable to be applied due to the lack of access to global information in subsystem

level throughout the network. Such a design constraint has motivated researchers to

investigate the possibility of designing near-optimal sparse feedback controllers for

large-scale dynamical networks [1–35].

To generally solve the sparsity-promoting control problems, diverse methods have

been proposed. In [1, 6], the authors propose an ADMM-based primal-dual itera-

tive approach which also takes advantage of conjugate gradient method. In [36], a

projection-based method is developed in which some bounds on the optimal value

of the sparsity-constrained problem is presented. Motivated by linearization idea,

utilizing the sequential convex programming has led to the methods proposed by
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[18, 20].

All the methods mentioned so far (except the [18]), have been proposed for the

continuous-time setup. However, in addition, some methods have been presented by

considering the discrete-time setup which propose sparsity-promoting state feedback

gain controllers [13, 18, 37–40]. In [38, 39], a decentralized state feedback controller

is presented based on convex relaxations where utilizing a graph theoretic proof, an

upper bound on rank of the relaxed SDP solution is derived and if such a rank is

equal to 1, then the globally optimal solution can be reconstructed from the relaxed

SDP solution. However, the solution obtained by such a relaxation-based method is

decentralized and is not presented for general sparse controllers. But, it is spanning

both finite and infinite horizon discrete-time sparsity-promoting LQR problems.

The methods presented in [13, 22] are basically classified as (convex optimization)-

based methods. Another recently proposed method recast the sparsity-promoting

optimal control problem as a rank-constrained optimization problem, then tries to

take advantage of ADMM and Singular Value Decomposition (SVD) to deal with

such a rank-constrained optimization problem [21]. Authors in [27, 28, 32, 35], in-

stead of utilizing ADMM, have utilized bi-linear rank penalty technique to tackle the

rank-constrained optimization problem. The solution proposed by such a technique,

satisfies a rank inequality which features the sub-optimality of the proposed solu-

tion. Newly, in [33], the authors have novelly proposed a non-fragility based method

for sparsification of large-scale feedback controllers. Also, another large-scale feed-

back controller sparsification is proposed by [41] which is built upon minimization of

quasi-norms.

One of the newly-investigated systems in sparsity-promoting control is spatially

decaying systems [7, 14, 30, 42]. In such research works, a large class of spatially

decaying systems is classified where their quadratically-optimal feedback controllers

inherit spatial decay property from the dynamics of the underlying system. Moreover,
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a method based on q-Banach algebras is proposed where sparsity and spatial localiza-

tion features of spatially decaying systems can be studied when q is chosen sufficiently

small or sufficiently large. For the class of spatially distributed systems, due to specific

properties of such systems, truncation-based theoretical sparsity-promoting optimal

control designs are provided by [30, 42]. Obviously, for a general class of systems, it

is not possible to derive and design theoretical sparsity-promoting controllers.

The concept of sparsity is not limited to the space of state feedback controllers.

In other words, the concept of sparsity can be considered in the time domain as well.

To be more specific, time-triggered, self-triggered, or event-triggered methods can be

seen as methods in which sparsity in time is promoted in the sense that number of

triggering times is supposed to be as few as possible. To address the research works

in such an area, we suggest to take a look at [26, 34, 43–65].

1.2 Main Contributions

1.2.1 Dense Output Feedback Controller Sparsification while

Preserving its Frequency Characteristics

The dense output feedback controller sparsification is investigated while the frequency

characteristics of designed closed-loop system remains similar to that of the system

controlled with dense one. Considering a well-performing pre-designed dense con-

troller and utilizing the concept of H2/H∞ control, a rank constrained optimization

problem is developed which has the capability of transferring such a dense controller

to a sparse one while preserving the frequency characteristics with reasonable toler-

ance. In our proposed method, sparsification leads to less number of communication

links and H2/H∞ minimization guarantees the preservation of frequency character-

istics. Finally, the effectiveness of our proposed method is evaluated by testing it on

synchronous generators with sparse interconnection topology, network with unstable
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nodes, and mass-spring system.

1.2.2 Periodic Time-Triggered Sparse Linear Quadratic Con-

troller Design

The periodic time-triggered sparse Linear Quadratic Controller (LQC) design is in-

vestigated for the class of Linear Time Invariant (LTI) systems. Given a time period

and keeping the control input fixed during such a time period, an optimization prob-

lem is formulated in which the objective function consists of a quadratic performance

term along with an `0-regularization term. Recasting such an optimization problem

as a rank-constrained optimization problem and utilizing the weighted `1-relaxation

enable us to apply so-called bi-linear rank penalty technique to design periodic time-

triggered sparse LQC. Employing the various test cases and running our proposed

algorithm for different values of time period, performance/sparsity trade-off curves

are visualized which suggest a helpful criterion to choose the time period in a way

that the desired balance between controller sparsity and rate of periodic triggering is

made.

1.2.3 Feedback Controller Sparsification Under Parametric

Uncertainties

We consider the problem of output feedback controller sparsification for systems with

parametric uncertainties. The performance of a centralized controller deteriorates

as a result of the sparsification process. We develop an optimization scheme that

minimizes this deterioration, while promoting sparsity pattern of the feedback gain.

In order to improve temporal proximity of an existing closed-loop system and its

sparsified counterpart, we also incorporate an additional constraint into the problem
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formulation so as to bound the variation in the system output pre and post spar-

sification. We also show that the resulting non-convex optimization problem can

equivalently be reformulated into a rank-constrained optimization problem. We then

formulate a minimization problem along with an algorithm to obtain a sub-optimal

solution via the bi-linear rank penalty technique. Finally, a sub-optimal sparse con-

troller design for IEEE 39-bus New England power network is utilized to showcase

the effectiveness of our proposed method.

1.2.4 Sparse Memoryless LQR Design for Uncertain Linear

Time-Delay Systems

The sparse memoryless LQR design problem is formulated for uncertain linear time-

delay systems. In such a problem, the goal is to minimize a quadratic cost supple-

mented by sparsity-promoting term (weighted-`1 in our case) subject to stability of

closed-loop system under norm-bounded uncertainty. It is shown that such an op-

timization problem can be reformulated as a rank-constrained optimization problem

which consists of convex constraints except one rank constraint. Utilizing the bi-linear

rank penalty technique, the sparse memoryless LQR is designed. Numerous numeri-

cal results depict that there exists a trade-off between time-delay and sparsification

quality. In addition, the larger time-delay, the poorer performance-sparsity trade-off

is observed.

1.2.5 Row-Column Sparse Linear Quadratic Controller De-

sign via Bi-Linear Rank Penalty Technique and Non-

Fragility Notion

We consider the problem of row-column sparse linear quadratic controller (LQC)

design. An optimization problem is formulated in which the quadratic performance
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loss is minimized subject to satisfaction of m + n sparsity constraints to obtain the

row-column (r, c)-sparse LQC design where m and n refer to the number of inputs

and states, respectively and r/c represent the maximum allowed density level for each

row/column of controller. It is expressed that the obtained non-convex optimization

problem can equivalently be reformulated as a rank-constrained problem withm+n+1

rank constraints. After applying the non-fragility notion provided by [33] to such

a rank-constrained problem, bi-linear rank penalty technique is deployed to find a

sub-optimal row-column (r, c)-sparse LQC design which fulfills the rank constraint

with desired tolerance. At last, to verify our proposed algorithm, given a randomly

generated system, a sub-optimal row-column (r, c)-sparse LQC design is proposed

and subsequently, the fundamental trade-off between r/c and quadratic performance

loss is visualized.

1.2.6 State Feedback Controller Sparsification via Non-Fragility

Notion

We introduce a notion of non-fragility for a state feedback controller which stabilizes

a linear time-invariant (LTI) system. The lower and upper bounds on such an intro-

duced non-fragility are derived. On the basis of such derived bounds on non-fragility,

a sparsification procedure is developed to obtain sparsified state feedback controllers

out of a given stabilizing state feedback controller. Investigating the extensive numer-

ical simulations, it is observed that the proposed method is capable of being applied

to large-scale systems consisting of thousands of states. As further, as illustrated via

case studies, the (non-fragilty)-based sparsification procedure can outperform a well-

respected existing method in the literature, in terms of sparsity-performance trade-off

behavior. Also, considering a set of sparse stabilizing state feedback controllers and

applying the (non-fragilty)-based sparsification procedure, a trade-off between upper
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bound on non-fragility and sparsity level of such state feedback controllers is visual-

ized. Moreover, two greedy algorithms are proposed to obtain a set of sparse state

feedback controllers out of a given stabilizing state feedback controller.

1.2.7 Improving Sparsity in Time and Space via Self-Triggered

Sparse Optimal Controllers

The optimal control of linear time-invariant (LTI) systems via self-triggered sparse

optimal control (SSOC) laws is considered. The control objective is to design an

optimal control law which stabilizes the LTI system for all initial conditions, re-

quires less sensing, minimizes communication requirements among the subsystems,

minimizes the number of active actuators, and provides guaranteed closed-loop per-

formance bounds. To achieve such control objectives, a sequence of `0-regularized

linear-quadratic optimal control problems is formulated, wherein the objective is to

optimize a cost function which involves three terms: one for maximizing the inter-

execution time, another for minimizing the number of nonzero elements of the state

feedback gain, and the last for minimizing the number of active actuators. Deriving

the lower bounds on inter-execution times, we propose a scheme to solve this prob-

lem. Such a scheme consists of two main levels: (i) A nonlinear optimization is solved

for inter-execution time while the feedback gain is kept fixed. (ii) An `1-relaxed

semi-definite program (SDP) is solved for feedback gain while the inter-execution

time is kept fixed. We show that the proposed SSOC laws are feasible and results

in a stabilizing sequence of sparse optimal controllers. Additionally, we prove that

the performance of the resulting closed-loop system does not exceed a pre-specified

performance bound. Due to numerical verification of our proposed method on spa-

tially distributed systems, the sparsity in time and space is improved compared to

the periodic time-triggered LQR design. Moreover, a tradeoff between pre-specified

performance bound and sparsity in time/space is observed. Furthermore, the effect
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of spatially decaying rate on sparsification process is visualized.

1.2.8 Feedback Controller Sparsification via Quasi-Norms

We utilize the q ∈ (0, 1) quasi-norms to sparsify a given well-performing feedback

controller which stabilizes a linear time-invariant (LTI) system. To achieve such a

goal, we firstly formulate an unconstrained optimization problem which incorporates

two terms: (i) The Frobenius norm of difference of the given feedback controller and

the one to be designed; (ii) The q ∈ (0, 1) quasi-norm of the feedback controller

to be designed. The former term heuristically features the closed-loop stability and

the latter term promotes the sparsity. Next, obtaining an analytic threshold for the

sparsity-promoting parameter, the analytic solution of the formulated unconstrained

optimization problem is expressed which is basically the designed sparse feedback

controller. Throughout the numerical simulations, it is observed that in some cases,

our proposed method can outperform the well-known truncation operator which ap-

pears in cardinality minimization problems. In other words, sometimes, the q ∈ (0, 1)

quasi-norms can be more effective than `0 sparsity measure. As another observa-

tion, when q decreases, the sparsity-performance balance is significantly improved.

Furthermore, our proposed method is interestingly capable of being applied to the

large-scale systems with thousands of states.

1.3 Subject-Based Classification of Chapters

1.3.1 Spatial Sparsity

Chapters 2, 3, 4, 5, 6, 7, 8, and 9.
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1.3.2 Temporal Sparsity

Chapters 3 and 8.

1.3.3 Regulation

Chapters 3, 5, 6, and 8.

1.3.4 Disturbance Attenuation

Chapters 2, 4, 7, and 9.

1.3.5 Similar Frequency Behavior

Chapters 2 and 4.

1.3.6 Quadratic Performance Loss Minimization

Chapters 2, 3, 4, 5, 6, and 8.

1.3.7 Design Under Parametric Uncertainty

Chapters 4 and 5.

1.3.8 Design for Time-Delay Systems

Chapter 5.

1.3.9 Feedback Sparsification

Chapters 2, 4, 7, 8, and 9.
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1.3.10 Sparse Feedback Design

Chapters 3, 5, and 6.

1.3.11 State Feedback

Chapters 2, 3, 4, 5, 6, 7, 8, and 9.

1.3.12 Output Feedback

Chapters 2, 4, and 9.

1.3.13 Bi-Linear Rank Penalty Technique

Chapters 2, 3, 4, 5, and 6.

1.3.14 Row-Column Sparsity

Chapter 6.

1.3.15 Non-Fragility

Chapters 6 and 7.

1.3.16 Quasi-Norm Minimization

Chapter 9.

1.3.17 `1 Relaxation

Chapters 2 , 3, 4, 5, and 8.

11



1.3.18 H2 Minimization

Chapters 2, 3, 4, 5, and 6.

1.3.19 H∞ Minimization

Chapters 2 and 4.

1.3.20 Convex Optimization Techniques

Chapters 2, 3, 4, 5, 6, and 8.

1.3.21 Non-Convex Optimization Techniques

Chapters 7, 8, and 9.
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Chapter 2

Dense Output Feedback Controller

Sparsification while Preserving its

Frequency Characteristics

2.1 Introduction

Although numerous works have been done in the area of distributed controller design

[42, 66] , the capability of efficiently solving the general problem via a systematic

approach is far away from the desirable point. For some classes of systems such

as spatially invariant systems and spatially decaying systems useful results on the

structure of the solution space have been derived [42, 67]. Furthermore, several other

design frameworks, each with their specific imperfections, have also been proposed

to design sparse/structured controllers for the continuous/discrete time linear time

invariant systems both in time and frequency domain [2, 18, 19, 21, 27, 28, 39, 40, 68].

The common approach in the synthesis of distributed controllers is to minimize

performance loss subject to stability guarantee and minimization of number of needed

communication links among controller nodes. Unlike such an approach and similar to
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methodology presented by [21, 27, 40], our proposed framework in this chapter is based

on the assumption that there already exists a well-performing dense controller such as

conventional centralized LQR method. We aim to synthesize a sparse controller which

preserves the performance characteristics as much as possible close to that of the pre-

assumed dense controller. Such a performance preservation is achieved via adopting

the concepts from mixed H2/H∞ control [69–71] to not only obtain minimum gap in

the frequency characteristics of the closed-loop transfer functions, but also consider

the difference between the characteristics of the control signals generated by both

dense and sparse controllers.

In particular, firstly, it is assumed a well-performing pre-designed output feed-

back controller is given and then considering the bounds on difference of output and

control input signals and their corresponding well-performing pre-designed signals,

(i.e., H∞-norm of difference between closed-loop constructed by our proposed output

feedback controller and the one constructed by such a well-performing pre-designed

output feedback controller), respectively, the H2-norm of difference between closed-

loop constructed by our proposed output feedback controller and the one constructed

by such a well-performing pre-designed output feedback controller is minimized while

minimizing the number of communication links of our proposed output feedback con-

troller.

It is shown that our proposed synthesis framework can equivalently be reformu-

lated as a fixed rank-constrained optimization where all non-convexities are collected

into a rank constraint.

This chapter is organized as follows: After expressing our used mathematical

notations in Section 2.2, Section 2.3 is dedicated to formulate the problem which is

supposed to be solved. In Section 2.4, it is explained how our formulated problem can

equivalently be reformulated as an optimization problem consisting of several linear

matrix inequalities and a rank constraint. Section 2.5 provides some visions to our
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chosen sparsity measure and the bi-linear rank penalty technique algorithm which is

chosen to come up with the corresponding rank-constrained optimization problem.

Our sparsification method is verified via various numerical simulations presented in

Section 2.6. Finally, Section 2.7 reveals some discussions and conclusions.

2.2 Mathematical Notations

Throughout the chapter, the following notations are adopted: The space of n by

m matrices with real elements is indicated by Rn×m. The n by n identity matrix

is denoted by In. Operators Tr(.) and rank(.) denote the trace and rank of the

matrix operands. The transpose operator is denoted by (.)T . The matrix element-

wise product, i.e., Hadamard product is represented by ◦. A matrix is said to be

Hurwitz if all its eigenvalues lie in the open left half of the complex plane. ‖.‖0

represents the cardinality of a vector/matrix, while ‖.‖1, ‖.‖2, and ‖.‖F denote `1, `2,

and Frobenius norm operators, respectively. Also, the norm ‖.‖L2(Rn) is defined by

‖x‖2
L2(Rn) :=

∫ ∞
0

‖x(t)‖2
2 dt.

A real symmetric matrix is said to be positive definite (semi-definite) if all its eigen-

values are positive (non-negative). Sn++ (Sn+) denotes the space of positive definite

(positive semi-definite) real symmetric matrices, and the notation X � Y (X � Y )

means X − Y ∈ Sn++ (X − Y ∈ Sn+). The ith largest singular value of a matrix is

denoted by σi(.).

15



2.3 Problem Formulation

Let a linear time invariant (LTI) continuous-time system be given by its state space

realization  ẋ(t) = Ax(t) +B1u(t) +B2d(t)

y(t) = C1x(t)
,

where A ∈ Rn×n, B1 ∈ Rn×m, B2 ∈ Rn×r, and C1 ∈ Rp×n. It is assumed that the pair

(A,B1) is controllable and (A,C1) is detectable.

Our goal is to design a static feedback controller

u(t) = KC2x(t), K ∈ K, C2 ∈ Rq×n,

which achieves minimum performance difference comparing to a reference well-performing

pre-designed dense controller, namely K̂, while minimizing the number of non-zero

elements of the controller matrix. We, also, desire that controller to be contained

in a set of admissible feedback gains with previously specified structure, denoted by

K. In this chapter, we just consider the case where the set K is convex, since it

reduces the complexity of the problem, and, more importantly, it covers a wide range

of practical constraints on the controller that should be considered in the synthesis

of the controller. For instance, in some real-world applications, it is not practically

feasible to construct a link between special nodes; such limitations are translated to

the convex constraints for which the corresponding element of the controller matrix

should be equal to zero which can be applied via element-wise Hadamard product.

Other practical limitations such as upper bounds on the elements of the controller

matrix, (e.g., technological impositions), can also be addressed by convex constraints

on controller matrix K.

Additionally, it is preferred the energy level of the input/output signals, generated
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by the designed sparse controller, to be in the close neighbourhood of that of the

input/output, produced by the original dense controller when an input signal d(t)

with bounded energy is applied to the closed-loop plant. Representing the closed-

loop systems controlled by the controllers K and K̂ by the state space realizations

S and Ŝ, respectively, the search for sparse controller K can be formulated as the

following optimization problem:

minimize
K,ε0,ε1

ε0 + λ1ε1 + λ2‖K‖0 (2.1a)

subject to: K ∈ K, (2.1b)

A+B1KC2 : Hurwitz, (2.1c)

‖S − Ŝ‖2
H2
≤ ε0, (2.1d)

‖yS − yŜ‖L2(Rp) < ε1‖d‖L2(Rr), (2.1e)

where ‖.‖H2 and ‖.‖H∞ are H2 and H∞ norms, respectively, and λ1 and λ2 are reg-

ularization parameters. Moreover, positive constants ε0 and ε1 are upper bounds on

H2 and H∞ norms of difference system S − Ŝ.

Remark 1. In case of C2 = C1 6= I, the controller K would be an output feedback

controller.

It is worth noting that the term appeared on left hand side of inequality (2.1d)

can be simplified into the H2 norm squared of an augmented system, namely S̄,

constructed by the following state space realization matrices:

Ā =

 A+B1KC2 0

0 A+B1K̂C2

 , B̄ =

[
BT

2 BT
2

]T
, C̄ =

[
C1 −C1

]
.

Furthermore, the constraint (2.1e) can equivalently be cast by enforcing bounds on

the H∞ norm of the closed-loop transfer functions from d(t) to y(t). Then, problem
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(2.1) can be reformulated as follows:

minimize
K,ε0,ε1

ε0 + λ1ε1 + λ2‖K‖0 (2.2)

subject to: K ∈ K,

A+B1KC2 : Hurwitz,

‖C̄(sI − Ā)−1B̄‖2
H2
≤ ε0,

‖C̄(sI − Ā)−1B̄‖H∞ < ε1.

In problem (2.2), the terms ε0 and ε1 in the objective function capture the gap

between the frequency response of the systems in terms of H2 and H∞ norms, re-

spectively. Hence, it makes it possible to identify another stable network with sparser

communication structure and approximately the same frequency characteristics. Un-

like the design of sparse LQR controllers, introduced by [68], taking such an approach

in the design of the controllers with sparse structures has the capability of exploiting

the deliverable merits in various controller synthesis strategies.

Next, it is described how to formulate problem (2.2) as an optimization problem

with linear/bi-linear matrix inequality/equality constraints. Then, it is shown how

all nonlinear constraints can be summarized in a fixed rank constraint.

2.4 Fixed Rank Optimization Reformulation

In this section, some lemmas are expressed which help us cast the constraints of

the optimization problem as a fixed rank constraint along with some linear matrix

inequalities.

Lemma 1 ([21]). Assuming P is a stable Linear Time Invariant system with real-

ization matrices (A,B, C), where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n, and the pair

(A,B) is controllable; then, ‖P‖2
H2
≤ γ if and only if there exists a positive definite
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matrix X � 0 such that

Tr(CXCT ) ≤ γ, Y + YT + BBT � 0, rank

 X Y

In AT

 = n.

The previous lemma helps cast the H2-optimal sparsification problem as a rank-

constrained optimization problem where all nonlinear constraints are lumped into a

fixed rank constraint. Several solving algorithms have been proposed to efficiently

solve rank-constrained optimization problems [72–74]. Hence, we aim to make such

algorithms applicable in solving our problem by collecting various forms of non-

convex/combinatorial constraints into a rank constraint.

Similar to the rank-constrained reformulation of the H2 problem, it is proved that

the H∞ constraints of the problem (2.2) can also be cast as a finite set of rank-

constrained LMI’s. Next lemma helps us to accommodate the H∞ constraints in the

framework of rank-constrained optimizations.

Lemma 2 ([21]). Given P is a Linear Time Invariant system with realization matri-

ces (A,B, C), where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n, the matrix A is Hurwitz,

and ‖P‖H∞ < γ if and only if there exists a positive definite matrix X � 0 such that

 Y + YT + CTC XB

BTX −γ2Im

 ≺ 0, rank

 X Y

In A

 = n.

Consequently, we can reformulate the problem (2.2) as a rank-constrained prob-

lem, as explained in the following.
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Theorem 3 ([21]). The H2/H∞ problem (2.2) is equivalent to the following rank-

constrained optimization problem:

minimize
K,ε0,ε1,Φ

ε0 + λ1ε1 + λ2‖K‖0 (2.3a)

subject to: K ∈ K, (2.3b)

Xi � 0, i = 1, 2, (2.3c)
M1 X1C̄

T B̄

C̄X1 −ε1Ip 0

B̄T 0 −ε1Ir

 ≺ 0, (2.3d)

M2 + B̄B̄T � 0, (2.3e)

Tr(C̄X2C̄
T ) ≤ ε0, (2.3f)

rank(Φ) = 2n, (2.3g)

where

Φ =


I ĀT

X1 Y1

X2 Y2

 , (2.4a)

M1 = X1A
T
o + Y1B

T
K + AoX1 +BKY1

T , (2.4b)

M2 = X2A
T
o + Y2B

T
K + AoX2 +BKY2

T , (2.4c)

Ao =

 A 0

0 A+B1K̂C2

 , (2.4d)

BK =

[
BT

1 0

]T
, (2.4e)

CK =

[
C2 0

]
. (2.4f)
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2.5 The Choice of the Sparsity Measure and a

Tractable Design Protocol

2.5.1 The Choice of the Sparsity Measure

There are quite a number of sparsity measures of mostly used in diverse areas of

science. Among the functions used to measure the sparsity of matrices, `1 norm and

its weighted version, as convex relaxations of the `0 measure, [75] and the references

within, are definitely the most common ones and have been utilized in numerous

applications [18, 68]. Non-convex surrogates for the cardinality function, such as `q

measure for q ∈ (0, 1), have also received an increasing attention in the literature,

recently [7, 14]. However, since adopting weighted `1 norm in optimization problems

does not cause numerical issues, which usually occur in `q and `0 measure minimiza-

tion problems due to their non-convex and combinatorial natures, respectively, we

choose to employ weighted `1, as the measure of the sparsity of the controller matrix

in the current work.

2.5.2 Bi-Linear Rank Penalty Technique

The choice of weighted `1 norm notably reduces the complexity of our problem, since

the norm is a convex function and, as a result, the only arising non-convexity in

problem (2.3) becomes the rank constraint (2.3g). However, the existence of the

rank constraint still makes our optimization problem computationally expensive. Al-

though an efficient systematic algorithm to solve rank-constrained problem has not

been developed yet, there exists a set of optimization protocols which have the capa-

bility of solving special types of rank-constrained optimization problems by achiev-

ing sub-optimal solutions. In [21], authors have proposed to utilize the Alternating

Direction Method of Multipliers (ADMM), originally developed in 1970, to solve a
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rank-constrained optimization problem. The method has been proved to be useful in

determining the optimal solution of large-scale optimization problems [76]; however,

its convergence has not been proved for non-convex problems.

In this chapter, instead of ADMM, we will take advantage of bi-linear rank penalty

technique used by [27, 28]. Before presenting the rank penalty technique, it is im-

portant to note that the rank constraint in the optimization problem (2.3g), can

equivalently be replaced by rank(Ψ) = 2n, where Ψ is symmetric square matrix and

constructed as follows:

Ψ =



X2 Y2 X1 I

Y T
2 − Y T

1 KCK

X1 Y1 − −

I (KCK)T − −


, (2.5)

where the elements with no specific significance are depicted by ”-”. As discussed in

[21, 27, 28], the rank constraint on the matrix Ψ can be relaxed by replacing it with

a positive semi-definite constraint, i.e., Ψ � 0, due to the assumption X1 ∈ S2n
++.

The next corollary is obtained immediately.
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Corollary 4. The problem (2.3) can be cast as the following problem:

minimize
K,ε0,ε1,Ψ

ε0 + λ1ε1 + λ2‖K‖0 (2.6a)

subject to: K ∈ K, (2.6b)

Xi � 0, i = 1, 2, (2.6c)
M1 X1C̄

T B̄

C̄X1 −ε1Ip 0

B̄T 0 −ε1Ir

 ≺ 0, (2.6d)

M2 + B̄B̄T � 0, (2.6e)

Tr(C̄X2C̄
T ) ≤ ε0, (2.6f)

rank(Ψ) = 2n. (2.6g)

As for the sparsity-promoting term of the objective function, since the `0 measure

is an integer-valued function, utilizing it in our formulation brings the complications of

combinatorial optimization. In order to reduce the complexity of sparse vector/matrix

recovery problems, the `1 norm and its weighted version are utilized which are most

useful convex surrogates of the `0 measure. Then, we will have

minimize
K,ε0,ε1,Ψ

ε0 + λ1ε1 + λ2‖W ◦K‖1 (2.7)

subject to: (2.6b)− (2.6g),

(2.4b)− (2.4f).

where the weight matrix W = [Wij] ∈ Rm×q is element-wise positive and chosen

according to the objectives of the problem.

The convex relaxation of the sparsity-promoting term in the cost function of (2.7)

leaves us with an optimization problem in which non-convexity only arises in the
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form of a rank constraint, i.e., rank(Ψ) = 2n. It is known that existence of the rank

constraint still causes our optimization problem to become NP-hard. Therefore, we

propose a technique, which is built upon the method proposed in [27, 28], to solve

the rank constraint optimization problem. Fundamentally, this method is based on

substituting the rank constraint on the symmetric matrix Ψ with a positive semi-

definite constraint while introducing extra convex constraints along with a bi-linear

term to the cost function. Since the resulting optimization is all convex except for the

auxiliary bi-linear term in the objective function, it can iteratively be solved [77, 78].

Definition 1. For a given ε > 0 and matrix X, we say that rank of X is k with

tolerance ε, and it is denoted by rank(X; ε), if exactly k singular values of X are

larger than or equal to ε.

Theorem 5 ([27]). Let us consider the rank-constrained optimization problem (2.7)

and define the following auxiliary optimization problem:

minimize
K,ε0,ε1,Ψ,Y

ε0 + λ1ε1 + λ2‖W ◦K‖1 + νTr(YΨ) (2.8)

subject to: (2.6b)− (2.6f),

(2.4b)− (2.4f),

0 � Y � I6n+m,

Tr(Y ) = 4n+m,

Ψ � 0,

in which λ1, λ2, ν > 0 and the element-wise positive matrix W are some given design

parameters. If problem (2.7) is feasible, then there exists a constant η > 0 for which

the optimal solution Ψ from solving (2.8) satisfies

rank(Ψ; ην−1) ≤ 2n, (2.9)
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i.e., rank of Ψ is less than or equal to 2n with tolerance threshold ην−1 according to

Definition 1.

Remark 2. It should be reminded that according to (2.5) and the specific structure of

matrix Ψ, it is always true that rank(Ψ) ≥ 2n. Keeping this in mind and considering

the inequality (2.9), under the following condition:

σ2n

(
Ψ∗(ν)

)
≥ ην−1, (2.10)

the rank equality constraint with tolerance ην−1 gets satisfied, i.e., rank(Ψ, ην−1) =

2n. In fact, the condition (2.10) is equivalent to the inequality rank(Ψ; ην−1) ≥ 2n.

As a result of the previous theorem, we can now solve the optimization problem

(2.8) for an appropriately-chosen parameter ν to obtain a sub-optimal solution to the

problem (2.7). For the sake of simplicity in our notations, the stack of all optimization

variables excluding variable Y is denoted by Z. The optimization problem (2.8) can

be rewritten as

minimize
Z,Y

F(Z, Y )

subject to: Z ∈ Cz, Y ∈ Cy,

where Cz is the convex set defined by the constraints (2.6b)-(2.6f), (2.4b)-(2.4f), along

with Ψ � 0, and the convex set Cy is generated by Tr(Y ) = 4n + m and 0 �

Y � I6n+m. Note that F(Z, Y ) represents the bi-linear objective function in the

minimization problem (2.8). The above reformulation allows us to carry out this

problem by iteratively optimizing the objective function for Z and Y . As a result,

the main steps of this iterative method can be divided into two sub-problems

1. Z-minimization step,

2. Y -minimization step.
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As both Z-minimization and Y -minimization steps are convex optimizations, they

can be performed in a computationally efficient manner. Furthermore, for the Y -

minimization, there also exists analytic solution, stated in the next theorem.

Theorem 6 ([27]). The optimal solution to the Y -minimization step is given by

Y ∗ = I6n+m −
2n∑
i=1

uiui
T , (2.11)

where vectors ui for i = 1, . . . , 2n are the singular vectors corresponding to the 2n

larger singular values of Ψ.

2.5.3 Summary of The Approximation Algorithm

We utilize the following sequence of iterations to obtain the minimizer of the con-

strained problem (2.8). First, we solve the Z-minimization and Y -minimization sub-

problems:

Z(k+1) = arg minimize
Z∈Cz

F(Z, Y (k)), (2.12)

Y (k+1) = I6n+m −
2n∑
i=1

u
(k+1)
i u

(k+1)
i

T
, (2.13)

where Ψ(k+1) =
∑6n+m

i=1 σ
(k+1)
i u

(k+1)
i u

(k+1)
i

T
is the singular value decomposition of

Ψ(k+1). The stopping criterion is established by ε(k+1) ≤ ε∗, where ε∗ is the given

desired precision, with the following update law:

ε(k+1) =
‖K(k+1) −K(k)‖2

‖K(k+1)‖2

. (2.14)

In the last step of the algorithm, we truncate negligible elements, e.g., those smaller

than 5 × 10−5, of the resulting feedback gain K. The small enough elements show

very weak couplings between the nodes in the information structure of the controller.
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Algorithm 1: Solution to problem (2.8)

Inputs: A, B1, B2, C1, C2, Q, R, λ1, λ2, ν, K, W , and ε∗.
1: Initialization:

Set Y (0) = I6n+m, ε(0) > ε∗, K(0) = 0m×q and k = 0.
2: While ε(k) > ε∗ Do
3: Update Z(k+1) by solving (2.12),
4: Update Y (k+1) using the equation (2.13),
5: Update ε(k+1) using the equation (2.14),
6: k ← k + 1,
7: End While
8: Truncate K.

Output: K

A summary of our proposed algorithm is described in Algorithm 1.

Remark 3. The choice of the weight matrix W plays an important role in the sparsity-

promoting properties of our method. When a proper weight matrix is not accessible,

the weighted `1 norm technique can also be employed to promote the sparse controller

recovery. In this method, the weight assigned to each controller element is updated

inversely proportional to the value of the corresponding matrix element recovered from

the previous iteration, i.e.,

W
(k+1)
ij =

1

|K(k)
ij |+ ξ

, ∀i, j, (2.15)

where the constant ξ > 0 which is chosen as a relatively small constant, is augmented

to the denominator of the update law (2.15) to guarantee the stability of the algorithm,

especially, when K
(k)
ij turns out to be zero in the previous iteration [75]. It should be

noted that, our simulation results are obtained by incorporating this update law into

the first few iteration.

27



Remark 4. It is remarkable that, in implementation phase of our algorithm, utiliza-

tion of constraints

ε0 ≤ 0.01ρ2
0‖Ŝ‖2

H2
, (2.16)

ε1 ≤ 0.01ρ1‖Ŝ‖H∞ , (2.17)

will help us to find a better locally optimal solutions. Because, otherwise, by removing

them, convex optimization solver would not be able to give sparse controller designs

with higher quality in terms of performance/sparsity specifications. Also, due to some

practical purposes, sometimes, it is not permitted to have a H2/H∞ gap larger than

a certain value which highlights the necessity of using constraints (2.16) and (2.17).

2.6 Numerical Simulations

The effectiveness of our proposed method is evaluated on three classes of dynamical

systems:

1. Mass-spring system,

2. Synchronous generators with sparse interconnection topology,

3. Network with unstable nodes.

In this section, based on matrix C2, each subsection is divided into two parts as

expressed below:

1. C2 = I which specifies the case that a state feedback is designed.

2. C2 6= I which corresponds to structured state feedback design which includes

the class of output feedback designs.
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The pre-designed well-performing feedback controller K̂ is computed via method pro-

posed by [79]. Such a chapter, given an upper bound on H∞ of closed-loop system

Ŝ, proposes an H∞ output feedback controller K̂.

Before proceeding to consider our test cases, following density/performance rela-

tive specifications are defined to compare the frequency characteristics of our proposed

controller with respect to the pre-designed dense controller

RD =
‖K‖0

‖K̂‖0

, R2 =
‖S − Ŝ‖H2

‖Ŝ‖H2

, R∞ =
‖S − Ŝ‖H∞
‖Ŝ‖H∞

, RJ =
J(S)− J(Ŝ)

J(Ŝ)
,

where J(.) represents the quadratic cost for a closed-loop system. For S, such a

quantity can be computed for both cases (C2 = I), (i.e., state feedback) and (C2 6= I),

(i.e., structured state feedback).

When (C2 = I)

J(S) = Tr(B2XB
T
2 ),

where X is the unique positive definite solution of the following Lyapunov equation:

(A+B1KC2)TX +X(A+B1KC2) +Q+ CT
2 K

TRKC2 = 0,

and when (C2 6= I)

J(S) = Tr(B2XB
T
2 ),

where X is the unique positive definite solution of the following Riccati-like equation:

(A+B1KC2)TX +X(A+B1KC2) +Q+ CT
2 K

TRKC2 +
1

γ2
XB2B

T
2 X = 0,

and γ is the H∞ upper bound parameter which is introduced in [79].

In a similar way, J(Ŝ) is computed for both cases (C2 = I) and (C2 6= I).
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2.6.1 Mass-Spring System

State Feedback (C2 = I)

For a mass-spring system with N masses on a line, assuming that pi is the dis-

placement of the ith mass from its reference position, denoting the state variables by

x1 := [p1, . . . , pN ]T and ẋ2 := x1, the state space realization matrices are given by

A =

 0 I

T 0

 , B =

 0

I

 ,
where T is an N ×N tri-diagonal Toeplitz matrix with −2 on its main diagonal and

1 on its first sub-diagonal and super-diagonal, and I and O are N ×N identity and

zero matrices, respectively [68]. State performance weight Q is set to I and control

performance weight R is set to 10I. The output matrix C1 is assumed to be equal to

C2 = I.

For parameters shown in Table 2.1, the density-performance trade-off plots are

depicted in Figure 2.1. As Figure 2.1 demonstrates, there is a trade-off between den-

sity level of our designed controller and the amount of relative performance loss. The

larger value in sparsity-promoting coefficient λ2, the sparser design we get, the more

performance loss occurs. Due to plot shown in Figure 2.1(a), at the expense of about

5.4170 % RJ relative performance loss, 86 % of controller links has been removed

which has led to fully-decentralized controller. It shows that our proposed method

is reasonably effective. However, the effectiveness of our rank-penalty technique is

somewhat decreased when sparsity-promoting regularization λ2 enlarges. Since the

objective function 2.8 is a linear combination of performance/sparsity terms and the

rank bi-linear term, there is another trade-off (in addition to the trade-off existing

between performance loss and density level) between quality of sparsification and ex-

actness of the achieved controller design K. As an observational evidence to such
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N λ1 λ2 ν ε∗

5 1 ∈ [0.01, 10] with a log-scale 1000 0.001

Table 2.1: Parameters for mass-spring system.

an issue, according to Figures 2.1(a), 2.1(b), and 2.1(c), a significantly large slope is

observed in three segments connecting two leftmost points of such plots. One possible

solution to overcome such an issue may be increasing the ν to obtain less performance

loss for large values of λ2.

Structured State Feedback (C2 6= I)

In this part, the matrix C2 is chosen as C2 = [0 I]. In fact, in such a case, due to

the physical model of mass-spring system, the feedback is taken from velocities. It

is noteworthy that in previous part, the feedback is taken from both positions and

velocities which needs extra effort with respect to the one considered in current part.

A question is arisen: why do not we consider the case C2 = [I 0], (i.e., taking feedback

from just positions)? The answer is that for such a matrix C2, the controllability

matrix [C2B2 C2AB2 . . . C2A
n−1B2] gets equal to zero and consequently, is not full-

row rank.

The output matrix C1 is opted equal to C2. Then, according to the remark 1, the

K would be an output feedback controller. Utilizing the H∞ output feedback design

procedure proposed by [79] for H∞ for an H∞ upper bound of γ = 10, provides us

an output feedback controller K̂. Next, our sparsification method is run to get the

output feedback controller K. Similar to plots depicted by Figures 2.1(a), 2.1(b), and

2.1(c) and considering 20 log-scale values in [0.01, 10] for λ2, we achieve plots shown

in Figures 2.2(a), 2.2(b), and 2.2(c).
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2.6.2 Synchronous Generators with Sparse Interconnection

Topology

State Feedback (C2 = I)

A power network consists of NG synchronous generators with sparse interconnection

topology are considered [14]. The generators are randomly and uniformly distributed

in a box-shape region with dimensions 10 × 10 unit square. The rotor dynamics

of generators for purely inductive lines and constant-current loads are given by the

classic second-order Kuramoto model

Miθ̈i(t) +Diθ̇i(t) = PGi(t)−
NG∑
j=1

Pij sin
(
θi(t)− θj(t)

)
,

for i ∈ G = {1, . . . , N}, where PGi is the effective power input to generator i and the

coupling weight Pij is the maximum power transferred between generators i and j

which is given by Pij = EiEj|Yij|. The constant Ei is the internal voltage of generator

i. All angles are measured with respect to a 60 Hz rotating frame. The reduced

complex admittance matrix with elements |Yij| incorporates models of transmission

lines and transformers connecting generators i and j. The spatial location of generator

i is denoted by zi ∈ R2×1. In order to construct a sample sparse power network, first

we uniformly distribute NG generators in the region. Then, we define the coupling

structure of the network by imposing the following proximity rule: If ‖zi − zj‖2 >

ρ, then |Yij| is set to be equal to 0, otherwise, |Yij| can be chosen as a nonzero

number which is drawn from the uniform distribution U(0, µ) for some ρ, µ > 0. The

parameter ρ defines the proximity radius between the neighbors. The corresponding

graph is shown by G and its incidence matrix by B(G). The vector of all angles,

angular velocities, and effective power inputs are represented by θ = (θ1, . . . , θNG)T ,

θ̇ = ω = (ω1, . . . , ωNG)T , and PG = (PG1 , . . . , PGNG )T , respectively. The centralized
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optimal governor control problem is to find the vector of effective power inputs for

generators to promote the steady-state security of the grid by improving the rotor

angle profile, i.e., the goal is to minimize

J =

∫ ∞
0

(
θ(t)TQθθ(t) + ω(t)TQωω(t) + PG(t)TPG(t)

)
dt,

where Qθ = B(G)TB(G) and Qω = 1
2
M .

In order to visualize the spatial structure of the centralized optimal state feedback

controller, the swing equation is linearized around the operating point (θ̄, ¯̇θ) = (0, 0)

by replacing the nonlinear coupling terms sin(θi−θj) by θi−θj. The linearized swing

equations are given by

Mθ̈ +Dθ̇ + Lθ = 0, (2.18)

where M = diag(M1, . . . ,MNG), D = diag(D1, . . . , DNG), and L = [Lij](i,j)∈G is the

Laplacian or admittance matrix with off-diagonal elements, (i.e., i 6= j)

Lij = −Pij,

and diagonal elements

Lii =

NG∑
k=1,k 6=i

Pik.

The centralized optimal state feedback control law for the linearized model (2.18) is

given by

PGi =

NG∑
j=1

[K C2]ij

 θj

ωj

 ,
where [K C2]ij ∈ R1×2. The numerical simulations are done with parameters given

in per unit system as follows: Di = Mi = Ei = 1 for all i = 1, . . . , NG, ρ = 7, and
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N λ1 λ2 ν ε∗ ρ µ
10 1 0.1 1000 0.001 7 5

Table 2.2: Parameters for synchronous generators with sparse interconnection topology.

µ = 5. In our simulations, those sparse network samples are selected for which

( 0 I

−L −D

 ,
 0

I

 ,
 Q

1
2
θ 0

0 Q
1
2
ω

),
is stabilizable and detectable. Matrices Q and R are set to 5I and I, respectively.

Remark 5. Since our goal is synchronization of angles of generators and A+B1KC2

will have a pole at zero, we take advantage of linear algebraic trick used by [80]

to compute RJ and K. To reach such a goal, the output matrix C1 is selected as

C1 =

 UUT 0

0 I

 where U is the NG× (NG− 1) matrix consisting of columns which

construct an orthonormal basis orthogonal to span of vector of all ones.

For parameters shown in Table 2.2, spatial distribution of 10 synchronous genera-

tors, the sparsity pattern of sparsified controller K, schatten 2-norm of S and Ŝ, and

maximum/minimum singular values of S and Ŝ are visualized in Figure 2.3.

For such a designed controller, RD, R2, R∞, and RJ , are 36 %, 5.2943 %,

9.0774 %, and 1.1338 %, respectively. It is worth noting that utilizing the con-

straints (2.16) and (2.17), has made a notable improvement in terms of obtaining a

lower performance loss comparing to the numerical results within [21, 27, 28] in which

improving constraints like (2.16) and (2.17) are not incorporated. Frequency plots

provided by Figures 2.3(c) and 2.3(d), validate that two closed-loop systems, the one

with pre-designed dense controller, i.e., Ŝ and the one with our sparse controller de-

sign, i.e., S, have reasonably similar frequency characteristics. In particular, for high

frequencies, they act extremely similar.

34



Figures 2.4(a) and 2.4(b) show angles and angular velocities versus time. As it is

observed angles of all generators are synchronized via our proposed controller K.

Structured State Feedback (C2 6= I)

Here, we consider the case that C2 = [0 I]. For parameters shown in Table 2.2, spatial

distribution of 10 synchronous generators, the sparsity pattern of sparsified controller

K, schatten 2-norm of S and Ŝ, and maximum/minimum singular values of S and Ŝ

are visualized in Figure 2.5.

For such a designed controller, RD, R2, R∞, and RJ are 42 %, 5.9487 %,

13.1502 %, and 2.3250 %, respectively.

Figures 2.6(a) and 2.6(b) show angles and angular velocities versus time. As it is

observed angles of all generators are synchronized via our proposed controller K.

2.6.3 Network with Unstable Nodes

State Feedback (C2 = I)

In the following simulations, N nodes are randomly distributed (with a uniform dis-

tribution) in a region of area 10 × 10 unit square [42]. Each node is assumed to be

a linear system which is coupled through its dynamics and the LQ cost functional to

other subsystems. The aggregate dynamics of N linear subsystems can be described

as

ψ̇k(t) = [A]kkψk(t) +
N∑

i=1,i 6=k

[A]kiψi(t) + [B]kkuk(t),

for all k ∈ G = {1, . . . , N}. It is assumed that for all k ∈ G = {1, . . . , N} and i 6= k

we have

[A]kk =

 1 1

1 2

 , [B]kk =

 0

1

 , [A]ki =
1

Xα(dis(k, i))

 1 0

0 1

 , [B]ki =

 0

0

 ,
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N λ1 λ2 ν ε∗ α
15 1 1 1000 0.001 1

Table 2.3: Parameters for network with unstable nodes.

where Xα is the coupling characteristic function which can be chosen as an expo-

nentially decaying function, i.e., Xα(d) = e−αd and dis(k, i) denotes the Euclidean

distance between locations of nodes k and i. The output matrix C1 is opted as

C1 = C2 = I. Both state performance weight Q and control performance weight R

are set to identity.

The spatial visualization of network with 15 unstable nodes and its corresponding

sparse controller design are depicted in Figure 2.7 where the corresponding selected

parameters are shown in Table 2.3.

In such a case, RD, R2, R∞, and RJ are 18.67 %, 16.2391 %, 27.7032 %,

and 1.2317 %, respectively. Running the code developed by authors of [68] for

our 15-node system, a sparse controller F and structured sparse controller F opt

with RD = 18.67% are obtained. The triple (R2,R∞,RJ) for F and F opt are

(15.7615 %, 37.7944 %, 0.66 %) and (15.0428 %, 39.2530 %, 0.54 %), respectively. A

simple comparison shows that our designed sparse K outperforms the ones proposed

by [68] in terms of H∞ performance criterion (36.43 % compared to F opt and 41.69 %

compared to F , respectively). Also, in the case of H2 performance criterion, although

their method outperforms ours, the weakness of our designed controller compared to

theirs are 3.03 % and 7.95 % for F and F opt, respectively which are negligible. It

must be added that such a result is expected. Because, in our proposed method, H∞-

norm is incorporated in addition to considering the H2-norm and minimized, while

the method proposed by [68], only considers the H2
2 LQR cost with special perfor-

mance output matrix

 Q
1
2

−R 1
2F

. However, in terms of RJ measure, the weakness
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of our proposed method are 86.6212 % and 128.0926 % for F and F opt, respectively.

It is not far away from our expectations. Because, their method specifically aims to

minimize the RJ measure.

Structured State Feedback (C2 6= I)

Here, we consider the case that C2 =

 I I

0 I

. The output matrix C1 is chosen

equal to C2 =

 I I

0 I

, i.e., K would be an output feedback controller. Both state

performance weight Q and control performance weight R are set to identity. The

spatial visualization of network with 15 unstable nodes and its corresponding sparse

output feedback controller design are depicted in Figure 2.8 where the corresponding

selected parameters are shown in Table 2.3.

In such a case, RD, R2, R∞, and RJ are 19.5556 %, 25.8923 %, 36.2158 %, and

3.3510 %, respectively.

2.7 Conclusion

A new sparsification approach is developed to obtain optimal sparse controllers. Basi-

cally, an available pre-designed dense controller is altered towards a sparse controller,

while heeding the performance deterioration caused by the sparsification process. By

equivalently reformulating the problem into a fixed rank optimization problem and

utilizing the bi-linear rank penalty technique, a method is achieved by which a sparse

structured controller capable of exhibiting similar frequency and time characteris-

tics of the pre-designed controller, in terms of H2 and H∞ norms is proposed. Our

method can also be modified to incorporate constraints on the control signal. Since

our method takes advantage of SDP solvers, it is not applicable to large networks. A

future work can be development of scalable sparsification methods.
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Figure 2.1: Density-Performance trade-off curves for a mass-spring system (C2 = I) (a)
RJ percentage versus RD (b) R2 percentage versus RD percentage (c) R∞
percentage versus RD percentage.
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Figure 2.2: Density-Performance trade-off curves for a mass-spring system (C2 6= I) (a)
RJ percentage versus RD (b) R2 percentage versus RD percentage (c) R∞
percentage versus RD percentage.
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Figure 2.3: State feedback (C2 = I): (a) Spatial distribution of sparse interconnection
topology consisting of 10 synchronous generators. Blue solid lines represent
the bi-directional links connecting synchronous generators specified by red ∗
(b) The sparsity pattern of sparsified controller K. Blue dots represent the
non-zero elements (c) Schatten 2-norm of S (Red) and Ŝ (Blue) (d) Maxi-
mum/minimum singular values of S (Red) and Ŝ (Blue).
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Figure 2.4: State feedback (C2 = I): (a) Angles versus time (b) Angular velocities versus
time.
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Figure 2.5: Structured state feedback (C2 6= I): (a) Spatial distribution of sparse inter-
connection topology consisting of 10 synchronous generators. Blue solid lines
represent the bi-directional links connecting synchronous generators specified
by red ∗ (b) The sparsity pattern of sparsified controller K. Blue dots repre-
sent the non-zero elements (c) Schatten 2-norm of S (Red) and Ŝ (Blue) (d)
Maximum/minimum singular values of S (Red) and Ŝ (Blue).
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Figure 2.6: Structured state feedback (C2 6= I): (a) Angles versus time (b) Angular ve-
locities versus time.

43



0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

Figure 2.7: Spatial distribution of 15 unstable nodes and the sparsity visualization of
sparsified controller K. Blue solid lines, red dashed lines, blue ◦, and black ∗,
represent the bi-directional links, one-way links, self-loops, and no-self-loops,
respectively.
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Figure 2.8: Spatial distribution of 15 unstable nodes and the sparsity visualization of
sparsified output feedback controller K. Blue solid lines, red dashed lines,
blue ◦, and black ∗, represent the bi-directional links, one-way links, self-
loops, and no-self-loops, respectively.

44



Chapter 3

Periodic Time-Triggered Sparse

Linear Quadratic Controller Design

3.1 Introduction

Sampled-Data control systems have been studied deeply from previous decades [55,

81, 82]. In such a control setup, the system to be controlled is in continuous time,

however the controller is synthesized in a discrete manner [83]. Because, there is a

great tendency to use discrete implementations in technological applications. One

of the crucial topics in such a control systems is how to decrease the number of

samplings which even it could be done in a non-uniform fashion. Equivalently, the

long maximum allowable time interval is of desire in terms of sampling cost. Indeed,

such an objective leads to Temporal Sparsity-Promoting Optimal Control [56] which

deals with sparsity in time horizon.

The sparsity in the space of static feedback controllers is called Spatial Sparsity-

Promoting Optimal Control [1]. In recent years, the spatial sparsity-promoting op-

timal control has been growing rapidly [1, 3, 7, 13, 14, 18, 19, 21, 23, 24, 27–

29, 31, 38, 40, 42, 80, 84]. The fundamental objective of spatial sparsity-promoting
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optimal control is to decrease the number of communication links between nodes pre-

serving the guaranteed level of performance. Such a balance is obtained through some

sparsity-promoting `1-regularized term which is supplemented to the performance loss

term in objective function of the corresponding regularized optimization problem.

Considering the switching control strategies, some works have been done to achieve

Temporal Sparsity-Promoting Optimal Control in sampled-data control framework.

One of the significant methods to obtain such an aim is called Self-triggered Control

[43]. The fundamental advantage of self-triggered control is that the control signal is

kept fixed when there is no need to new update (sampling) [52, 56, 58, 59]. Indeed,

some performance-preserving condition or Lyapunov-based stability condition (called

self-triggering conditions) is checked in such a methodology and specifies whether a

new sampling is necessary or not. The more detailed explanations about synthesiz-

ing of self-triggered control can be found in [56, 59]. In [56], it is highlighted that

next update time is calculated based on current state information. Unlikely, in event-

triggered control (another aperiodic control method) the previous states are also used

to compute the activation time [44]. Likewise, in [62], assuming the finite sequence

of interval lengths and their corresponding spatially-varying stabilizing controllers, a

self-triggered method is proposed to find the switching rule on the basis of current

state information. By spatially-varying, we mean different feedback gains in the space

of feedback gains which are applied throughout the time intervals. In [85], the pro-

posed self-triggering method, ensures L2 stability of the closed loop system and the

average time period has an increasing behavior versus L2 gain. In [62], some similar

but not exact relationship between H2,∞ performance indices and the average time

period is expressed.

Motivated by such results between performance indices and average time period,
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we propose periodic time-triggered sparse LQC design via bi-linear rank penalty tech-

nique. Next, we define spatio-temporal sparsity criterion to evaluate the spatial spar-

sity and temporal sparsity at the same time. Simply, such a criterion is defined as a

summation of density level of periodic time-triggered sparse LQC and non-negative

multiplier of inverse of time period. Thus, for a fixed performance loss, the less this cri-

terion, the more desirable design is obtained. It is known that traditional centralized

LQR, takes so many samples and also uses too much battery life for communication

between nodes. The spatio-temporal sparsity criterion enables us to make a deci-

sion based on our desired level of trade-off between complexity of the controller and

performance loss. It is worth noting that current sparsity-promoting optimal control

strategies choose continuous-time or discrete-time setup to derive sparse controllers

while the latter group don’t consider the sampling rate connecting the continuous-

time and discrete-time setups. In this work, we have tried to utilize such an issue in

our sparse control design.

This chapter is structured as follows: Mathematical notations are expressed in

section 3.2. Section 3.3 is devoted to the statement of the problem to be solved. In

section 3.4, periodic time-triggered sparse LQC design procedure is presented. Section

3.5 describes bi-linear rank penalty technique in a detailed way. Section 3.6 defining

the spatio-temporal sparsity criterion, investigates various numerical simulations to

visualize the relationship between spatio-temporal sparsity criterion and performance

loss of periodic time-triggered sparse LQC. Finally, section 3.7 concludes the chapter

with drawing some future insights.

3.2 Mathematical Notations

The set of real numbers, positive integer numbers, and non-negative integer numbers

are denoted by R, N, and Z+, respectively. The set of real-valued n×1 vectors and set
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of real-valued m×n matrices are represented by Rn and Rm×n, respectively. The pos-

itive semi-definiteness and positive definiteness are shown by � and �, respectively.

The identity matrix is I as usual. The Euclidean norm of vector v is denoted by

‖v‖2. Matrix operators acting on some arbitrarily-chosen matrix M , are summarized

in Table 3.1.

Symbol Definition
‖M‖0 Cardinality of matrix M , i.e., num-

ber of nonzero elements of matrix
M

‖M‖1 `1 norm of matrix M , i.e.,∑
i,j |Mij|

‖M‖2 Largest singular value of matrix M
‖M‖F Frobenius norm of matrix M , i.e.,√∑

i,jM
2
ij

Tr(M) Trace of matrix M , i.e.,
∑

iMii

λi(M) ith largest eigenvalue of matrix M ,
i.e., for j > k, λj ≤ λk

ρ(M) Spectral radius of matrix M , i.e.,
maxi |λi(M)|

Table 3.1: Matrix operators

The Hadamard product is shown by ◦. The normal distribution with zero mean

and σ2 variance is denoted by N (0, σ2). The expectation of a random variable w is

represented by E{w}.

Definition 2. For a given ε > 0 and matrix X, we say that rank of X is k with

tolerance ε, and it is denoted by rank(X; ε), if exactly k singular values of X are

larger than or equal to ε.
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3.3 Problem Formulation

We consider the class of linear time invariant (LTI) systems

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0, (3.1)

which is stabilized by

u(t) = Fkx(tk), for t ∈ [tk, tk+1), (3.2)

where x ∈ Rn, u ∈ Rm, k ∈ Z+, t0 = 0 and x0 is drawn from a standard normal

distribution, (i.e., with zero mean and unit standard deviation).

The sequence of feedback controllers and triggering times are denoted by {Fk}∞k=0

and {tk}∞k=0, respectively. The main assumptions about such spatio-temporal se-

quences are stated as follows.

Assumption 1. The sequence of linear quadratic controllers {Fk}∞k=0 is invariant,

i.e., we are dealing with spatially-invariant case (Fk = F ) for all k ∈ Z+.

Assumption 2. The sequence of triggering times {tk}∞k=0 is known and consists of

equidistant values. In other words, we have a temporally-known periodic time setup

(tk = kδ) for all k ∈ Z+ and some given positive δ which is called time period.

Considering Assumptions 1 and 2, a spatially-invariant and temporally-known

periodic time-triggered sparse LQC design is desired. In order to achieve such a goal,

the Periodic Time-Triggered Sparse LQC Problem (P1) is defined as follows:

minimize
F

E
{∫ ∞

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt

}
+ γ‖F‖0 (P1)

subject to: (3.1) and (3.2),

F : stabilizing,
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where the regularization parameter γ determines what amount of sparsification is

needed. Also, Q � 0 and R � 0 are state-weight and input-weight matrices, respec-

tively. The quadratic terms appeared on objective function of (P1), represent the

performance loss in (P1).

3.4 Periodic Time-Triggered Sparse LQC Design

Procedure

Now, we try to simplify (P1) as much as possible. To reach such an aim, firstly,

we remove the sparsity-promoting term γ‖F‖0 from the objective function and pro-

vide some lemmas and propositions to get an equivalent form for the Periodic Time-

Triggered LQC Problem (P2) which will be defined later. Then, finally, the sparsity-

promoting term γ‖W ◦F‖1 (the weighted `1-regularization term) is added to the cor-

responding performance loss term. The similar approach has been taken by authors

of [18] in which an equivalent form of H2 problem is obtained and then sparsity-

promoting term is augmented to the corresponding H2-squared term.

Lemma 7. Solving the system (3.1) and (3.2) for time interval [tk, tk+1), the corre-

sponding state x(t) for all k ∈ Z+ is calculated as follows:

x(t) = M(t− tk)x(tk),

where M(τ) is defined as follows:

M(τ) := eAτ
(
I + Z(τ)BF

)
, Z(τ) =

∫ τ

0

e−Aξdξ.

Proof. Proof is immediately resulted from solving a first order ordinary differential

system.
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Lemma 8. For all t ∈ [tk, tk+1) and k ∈ Z+, we have

x(t) = M(t− tk)Mk(δ)x0. (3.3)

Proof. Applying the induction principle to Lemma 7, proof is quite straightforward.

Lemma 9. The quadratic part of the objective function in (P1), i.e.,

E
{∫ ∞

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt

}
,

reduces to the following form:

Tr

( ∞∑
k=0

Mk(δ)TY (δ)Mk(δ)

)
, (3.4)

where

Y (δ) :=

∫ δ

0

M(τ)TQM(τ)dτ + δF TRF. (3.5)

Proof. According to (3.3), breaking down the integral to sum of sub-integrals, cyclic

property of Tr, commutative property of any pair of linear operators
∑

, Tr, and E,
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we have

E
{∫ ∞

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt

}
= E

{
∞∑
k=0

∫ tk+1

tk

(
x(t)TQx(t) + u(t)TRu(t)

)
dt

}

= E
{ ∞∑

k=0

Tr

(
Mk(δ)TY (δ)Mk(δ)x0x

T
0

)}
= E

{
Tr

( ∞∑
k=0

Mk(δ)TY (δ)Mk(δ)x0x
T
0

)}
,

= Tr

(
E
{ ∞∑

k=0

Mk(δ)TY (δ)Mk(δ)x0x
T
0

})
= Tr

( ∞∑
k=0

Mk(δ)TY (δ)Mk(δ)E{x0x
T
0 }
)
. (3.6)

Since x0 is drawn from a standard normal distribution, we have E{x0x
T
0 } = I. Hence,

the formula (3.6) takes the following form:

Tr

( ∞∑
k=0

Mk(δ)TY (δ)Mk(δ)

)
.

Thus, proof is completed.

The expression (3.4) is not at desired simplicity level and still has some sort of

complicated appearance. The following proposition is utilized to simplify (3.4).

Proposition 10. The periodic time-triggered LQC is stabilizing if and only if

ρ
(
M(δ)

)
< 1,

holds.

Proof. Let us assume that the periodic time-triggered LQC is stabilizing. Thus, since
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we have x(tk) = M(δ)kx0, it yields that

lim
k→∞
‖x(tk)‖2 = 0. (3.7)

According to (3.7), it is resulted that we must have ρ
(
M(δ)

)
< 1.

Since all elements of M(t− tk) are continuous functions of t− tk and t− tk is bounded

by 0 and δ, according to a mathematical fact, there exists a M for which we have

max (‖M(t− tk)‖2) =M.

Now, let us assume that we have ρ
(
M(δ)

)
< 1. Thus, (3.7) will be satisfied.

Hence, for a given ε there exists a kε for which we have ‖x(tk)‖2 ≤ ε
M for all k ≥ kε.

For any t chosen greater than tkε , there exists an index l for which t lies between tl

and tl+1. Now, we claim that ‖x(t)‖2 ≤ ε can be achieved by considering the following

inequalities:

‖x(t)‖2 = ‖M(t− tl)x(tl)‖2 ≤ ‖M(t− tl)‖2‖x(tl)‖2 ≤M‖x(tl)‖2 ≤ ε.

Thus, ‖x(t)‖2 ≤ ε will be satisfied for all t ≥ tkε . Hence, the periodic time-triggered

LQC is stabilizing.

Thus, in the rest of the chapter, to deal with stability guarantee, we are allowed

to consider the necessary and sufficient condition derived by Proposition 10 in our

problem castings. The following assumption expresses such a consideration. Then,

assuming the ρ
(
M(δ)

)
< 1 and defining the

P (δ) :=
∞∑
k=0

Mk(δ)TY (δ)Mk(δ),

P (δ) will be the unique positive definite solution of the following discrete Lyapunov

equation:

M(δ)TP (δ)M(δ)− P (δ) + Y (δ) = 0. (3.8)
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Remark 6. From here, for the sake of the simplicity and space saving, the argument

δ is dropped in our notations, if it is necessary.

Now, using the stability criterion (3.8), (P2) is defined as follows:

minimize
F,P

Tr(P ) (P2)

subject to: MTPM − P +

∫ δ

0

M(τ)TQM(τ)dτ + δF TRF = 0,

P � 0.

As it is observed, in (P2), the constraint corresponding to the Lyapunov equation

has some non-convexities. To deal with such non-convexities, we utilize the Schur

complement and fixed-rank constraint reformulation. Taking an advantage of rank-

constrained optimization, we propose a spatially-invariant and temporally-known pe-

riodic time-triggered sparse LQC design. The following lemma takes a crucial step

toward the achieving simplest form for (P2).

Lemma 11. The discrete Lyapunov equation (3.8) can be rewritten as follows:

M(δ)TP (δ)M(δ)− P (δ) +H0(δ) + F TH1(δ)T +H1(δ)F + F TH2(δ)F = 0,

where

H0(τ) =

∫ τ

0

eA
T tQeAtdt, H1(τ) =

∫ τ

0

eA
T tQeAtZ(t)Bdt,

H2(τ) =

∫ τ

0

(
eAtZ(t)B

)T
Q
(
eAtZ(t)B

)
dt+ τR.

Proof. Note that by substituting the M(τ) = eAτ
(
I + Z(τ)BF

)
in (3.5) and doing

some simple multiplications, Y (δ) is expressed in terms of H0(δ), H1(δ), and H2(δ).
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Lemma 12. For all τ > 0, matrix H2(τ) is positive definite, i.e., H2(τ) � 0 in the

cone of all positive definite matrices.

Proof. In order to prove that the matrix H2(ζ) is positive definite for all positive

values of ζ, we consider an arbitrary vector v ∈ Rm (v 6= 0). Then, we prove that

vTH2(ζ)v is positive. Thus, we have

vTH2(ζ)v = vT
( ∫ ζ

0

(
eAτZ(τ)B

)T
Q
(
eAτZ(τ)B

)
dτ + ζR

)
v,

=

∫ ζ

0

(
eAτZ(τ)Bv

)T
Q
(
eAτZ(τ)Bv

)
dτ + ζvTRv.

Since Q � 0 and R � 0 hold, the term appeared inside the integral is non-negative

and ζvTRv is positive, respectively. The definite integral of a non-negative function

over some interval gives a non-negative value. Thus, vTH2(ζ)v > 0 and proof is

done.

Lemma 13. The optimization problem (P2) is equivalent to the following auxiliary

optimization problem:

minimize
F,P

Tr(P )

subject to: MTPM − P +

∫ δ

0

M(τ)TQM(τ)dτ + δF TRF � 0,

P � 0.

Proof. Suppose that pairs (F̂ , P̂ ) and (F ∗, P ∗) denote the corresponding optimal so-

lutions of (P2) and the auxiliary optimization problem, respectively. Since (F̂ , P̂ )

belongs to feasible set of the auxiliary optimization problem, then we have Tr(P ∗) ≤

Tr(P̂ ). It is known that there exists a positive semi-definite matrix N for which we
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have

M∗TP ∗M∗ − P ∗ +

∫ δ

0

M∗(τ)TQM∗(τ)dτ + δF ∗TRF ∗ +N = 0.

In other words, we have

P ∗ =
∞∑
k=0

M∗kT (

∫ δ

0

M∗(τ)TQM∗(τ)dτ + δF ∗TRF ∗ +N)M∗k.

Defining the P̃ as follows:

P̃ =
∞∑
k=0

M∗kT (

∫ δ

0

M∗(τ)TQM∗(τ)dτ + δF ∗TRF ∗)M∗k,

it implies that Tr(P ∗) ≥ Tr(P̃ ). We know that P̃ satisfies the following equation:

M∗T P̃M∗ − P̃ +

∫ δ

0

M∗(τ)TQM∗(τ)dτ + δF ∗TRF ∗ = 0.

Thus, the pair belongs to feasible set of (P2). Then, we can conclude that Tr(P̃ ) ≥

Tr(P̂ ). Thus, Tr(P ∗) ≥ Tr(P̂ ) and consequently Tr(P ∗) = Tr(P̂ ) are resulted and

proof is done.

Now, considering Lemmas 11, 12, and 13, we can state the following proposition.

Proposition 14. The optimization problem (P2) can equivalently be reformulated as
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the following rank-constrained problem:

minimize
P,F,K

Tr(P ) (P3)

subject to:


K 0 M

0 H−1
2 F

MT F T P −H0 − F THT
1 −H1F

 � 0,

P � 0, rank(

K I

I P

) = n.

Proof. In order to prove such a proposition, a series of equivalent statements is ex-

pressed as follows:

minimize
F,P

Tr(P )

subject to: MTPM − P +

∫ δ

0

M(τ)TQM(τ)dτ + δF TRF = 0,

P � 0,

minimize
F,P

Tr(P )

subject to: MTPM − P +

∫ δ

0

M(τ)TQM(τ)dτ + δF TRF � 0,

P � 0,

minimize
F,P

Tr(P )

subject to: MTPM − P +H0 + F THT
1 +H1F + F TH2F � 0,

P � 0,
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minimize
F,P

Tr(P )

subject to:

M
F


T P 0

0 H2


M
F

 � P −H0 − F THT
1 −H1F,

P � 0,

minimize
F,P,K

Tr(P )

subject to:


K 0 M

0 H−1
2 F

MT F T P −H0 − F THT
1 −H1F

 � 0,

P � 0, K = P−1.

The equivalences up to here can be proved by using Lemmas 11, 12, and 13 and also

applying the Schur complement. Due to a linear algebraic fact, K = P−1 can be cast

as rank(

K I

I P

) = n. Then, we get

minimize
P,F,K

Tr(P )

subject to:


K 0 M

0 H−1
2 F

MT F T P −H0 − F THT
1 −H1F

 � 0,

P � 0, rank(

K I

I P

) = n.

Remark 7. It is known that dealing with `0 sparsity measure is generally an NP-

hard problem. Thus, to make numerical computations tractable, we will substitute
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the `0 sparsity measure with weighted `1 norm which has been shown to be effective

in sparsification problems [1], [18],[21]. Then, we reach to the following regularized

problem:

minimize
P,F,K

Tr(P ) + γ‖W ◦ F‖1 (P4)

subject to:


K 0 M

0 H−1
2 F

MT F T P −H0 − F THT
1 −H1F

 � 0,

P � 0, rank(

K I

I P

) = n,

in which γ and the element-wise positive matrix W = [Wij] ∈ Rm×n are some given

design parameters.

3.5 Bi-linear Rank Penalty Technique

The terms in optimization problem (P4) are all convex, except the rank constraint.

This section is devoted to highlight our approach in dealing with this non-convex

term.

It is known that presence of the rank constraint causes our optimization prob-

lem to become NP-hard. Therefore, we propose a technique, which is built upon

the method proposed in [27, 28], to solve the rank-constrained optimization problem.

Basically, this method is based on substituting the rank constraint on the symmet-

ric matrix

K I

I P

 with a positive semi-definite constraint while introducing extra

convex constraints along with a bi-linear term to the cost function. Since the result-

ing optimization is all convex except for the auxiliary bi-linear term in the objective

function, it can iteratively be solved [77, 78].
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Theorem 15 ([27]). Let us consider the rank-constrained optimization problem (P4)

and define the following auxiliary optimization problem:

minimize
P,F,K,G

Tr(P ) + γ‖W ◦ F‖1 + νTr(G

K I

I P

) (P5)

subject to:


Y 0 M

0 H−1
2 F

MT F T P −H0 − F THT
1 −H1F

 � 0,

P � 0,

K I

I P

 � 0, 0 � G � I, Tr(G) = n,

in which ν > 0 is a penalty parameter. If (P4) is feasible, then there exists a constant

η > 0 for which the optimal solution

K I

I P

 obtained from solving (P5), satisfies

rank(

K I

I P

 ; ην−1) ≤ n,

i.e., rank of

K I

I P

 is less than or equal to n with tolerance threshold ην−1 according

to Definition 2. In addition, η is greater than or equal to optimal value of (P4).

According to the specific structure of matrix

K I

I P

, the inequality

rank(

K I

I P

) ≥ n,

holds. As a consequence of Theorem 15, we can now solve the optimization problem
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(P5) for an appropriately-chosen parameter ν to get a sub-optimal solution to (P4).

For the sake of simplicity in our notations, the stack of all optimization variables ex-

cluding variable G is denoted by H. The optimization problem (P5) can be rewritten

as:

minimize
H,G

F(H,G)

subject to: H ∈ Ch, G ∈ Cg,

where Ch is the convex set defined by constraints of (P5) which do not contain G,

and the convex set Cg is generated by those constraints of (P5) which consist of G.

Note that F(H,G) represents the bi-linear objective function in (P5). The previously

mentioned reformulation enables us to implement this problem by iteratively optimiz-

ing the objective function for H and G. As a result, the main steps of this iterative

method can be divided into two sub-problems: H-minimization and G-minimization

problems. Since both H-minimization and G-minimization steps are convex opti-

mization problems, they can be run in a computationally efficient manner. However,

for the G-minimization, there also exists an analytic solution which is expressed in

the next proposition.

Proposition 16 ([27]). The optimal solution to the G-minimization step is given by

G∗ = I −
n∑
i=1

uiui
T ,

where vectors ui for i = 1, . . . , n are the singular vectors corresponding to the n largest

singular values of

K I

I P

.

The following sequence of iterations is utilized to get the minimizer of (P5). First,
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we solve the H-minimization and G-minimization sub-problems

H(k+1) = arg minimize
H∈Ch

F(H,G(k)), (3.9)

G(k+1) = I −
n∑
i=1

u
(k+1)
i u

(k+1)
i

T
, (3.10)

where

K I

I P


(k+1)

=
∑2n

i=1 σ
(k+1)
i u

(k+1)
i u

(k+1)
i

T
is the corresponding singular value

decomposition. The stopping criterion is applied via ε(k+1) ≤ ε∗, where ε∗ is the

pre-specified precision, with the following update rule:

ε(k+1) =
‖F (k+1) − F (k)‖2

‖F (k+1)‖2

. (3.11)

In the last step of the algorithm, we truncate negligible elements, e.g., those smaller

than 5× 10−5, of the resulting feedback controller F . The sufficiently small elements

show weak couplings between the nodes in the information structure of the controller.

A summary of our proposed algorithm is described in Algorithm 1.

Algorithm 1: Solution to (P5)

Inputs: A, B, Q, R, γ, ν, W , and ε∗.
1: Initialization:

Set G(0) = I, ε(0) > ε∗, F (0) = 0m×n and k = 0.
2: While ε(k) > ε∗ Do
3: Update H(k+1) by solving (3.9),
4: Update G(k+1) using the (3.10),
5: Update ε(k+1) using the (3.11),
6: k ← k + 1,
7: End While
8: Truncate F .

Output: F

Remark 8. The choice of the weight matrix W plays a significant role in the sparsity-

promoting properties of our method. When a proper weight matrix is not accessible,

62



the weighted `1 norm technique can also be utilized to promote the sparsity of feedback

controller. In this method, the weight assigned to each controller element is updated

inversely proportional to the value of the corresponding matrix element obtained from

the previous iteration, i.e.,

W
(k+1)
ij =

1

|F (k)
ij |+ ξ

, ∀i, j, (3.12)

where the constant ξ > 0 is opted as a relatively small constant and added to the

denominator of the update rule (3.12) to guarantee the stability of the algorithm,

specifically, when F
(k)
ij turns out to be zero in the previous iteration [75]. It is note-

worthy that, our simulation results are obtained via utilization of this update rule to

the first few iterations.

Remark 9. By putting a pre-specified upper bound on performance loss, the balance

between performance loss and sparsity level can be obtained in a better way. Because,

an additional regularization term has been added to the objective function to deal with

rank constraint. This fact can be helpful, when we are allowed to have at most a

certain level of performance loss.

3.6 Numerical Simulations

In this section which takes an advantage of sub-optimally solving of (P5), for each

given time period, the regularization parameter γ takes logarithmically-scaled values

in some pre-specified interval. Then, for two different values of δ, solving the (P5), the

corresponding values of ‖F‖0, and performance loss are computed. Finally, defining

the spatio-temporal sparsity criterion

STSC := ‖F‖0 +
c

δ
,
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and comparing to the traditional centralized LQR, the relationship between such

a criterion and performance loss is visualized. The parameter c ≥ 0 balances the

relationship between spatial sparsity and temporal sparsity. We will set it equal to 1

in our numerical simulations. However, based on extra information, it can be chosen

accordingly.

In order to depict such a relationship between spatio-temporal sparsity criterion

and performance loss, we consider three cases: (i) IEEE 39-Bus Power Network (ii)

Randomly-Generated Systems (iii) Spatially-Decaying Systems.

3.6.1 IEEE 39-Bus Power Network

Here, we consider the IEEE 39-bus test case which its model has been depicted in

Figure 3.1. Such a power network consists of 10 generators. The model which we

take an advantage of is the linearized swing equation model which is used in [86].

Assuming the Q = I, R = 0.1I, ν = 5000, γ ∈ [10−3, 10−1], and ε∗ = 10−2, Figure 3.2

Figure 3.1: IEEE 39-bus power system model

depicts the performance loss versus spatio-temporal sparsity criterion for δ = 0.1 and

δ = 0.2. Also, the sparsity pattern of designed controller for δ = 0.2 and γ = 10−1

has been shown in Figure 3.3.
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Figure 3.2: Performance loss percentage versus spatio-temporal sparsity criterion percent-
age for δ = 0.1 and δ = 0.2 (IEEE 39-bus power network).
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Figure 3.3: Sparsity pattern of designed controller for δ = 0.2 and γ = 10−1 (IEEE 39-bus
power network). The corresponding performance loss percentage is equal to
6.8862 %. Blue dots represent the non-zero elements.

3.6.2 Randomly-Generated Systems

Let us consider an 10× 10 randomly-generated system. In other words, suppose that

the matrix A is defined as follows:

A = randn(10),

where randn(10) is a MATLAB command which produces an 10 × 10 normally-

distributed randomly-generated matrix. Also, let us assume that other parameters
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are as B = randn(10), Q = I, R = 0.1I, ν = 5000, γ ∈ [10−7, 10−5], and ε∗ = 10−2.

The performance loss versus spatio-temporal sparsity criterion for δ = 0.1 and δ = 0.2

has been visualized in Figure 3.4. Also, the sparsity pattern of designed controller for
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Figure 3.4: Performance loss percentage versus spatio-temporal sparsity criterion percent-
age for δ = 0.1 and δ = 0.2 (10× 10 randomly-generated system).

δ = 0.2 and γ = 10−5 has been shown in Figure 3.5.
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Figure 3.5: Sparsity pattern of designed controller for δ = 0.2 and γ = 10−5 (10 × 10
randomly-generated system). The corresponding performance loss percentage
is equal to 79.0340 %. Blue dots represent the non-zero elements.
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3.6.3 Spatially-Decaying Systems

The ijth element of spatially-decaying system is defined as follows:

Aij = Aije−α|i−j|
β

,

whereAij is a normally-distributed random variable with zero mean and unit variance,

i.e., it belongs to N (0, 1), α determines the band-width of matrix A and β specifies

the rate of spatially-decaying in such a system.

Let us consider a 10 × 10 spatially-decaying system with αA = 1 and βA = 0.75.

Assuming the αB = 2, βB = 0.5, Q = I, R = 0.1I, ν = 5000, γ ∈ [10−7, 10−5], and

ε∗ = 10−2, the performance loss versus spatio-temporal sparsity criterion for δ = 0.3

and δ = 0.6 has been visualized in Figure 3.6. Also, the sparsity pattern of designed
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Figure 3.6: Performance loss percentage versus spatio-temporal sparsity criterion percent-
age for δ = 0.3 and δ = 0.6 (10× 10 spatially-decaying system).

controller for δ = 0.6 and γ = 10−5 has been shown in Figure 3.7.

As it is observed in Figures 3.2, 3.4, and 3.6, there is a trade-off between per-

formance loss and spatio-temporal sparsity criterion. One of the benefits of such a

trade-off is that by prefixing the specified amount of performance loss, we can check
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Figure 3.7: Sparsity pattern of designed controller for δ = 0.6 and γ = 0.00001 (10 × 10
spatially-decaying system). The corresponding performance loss percentage
is equal to 14.9894 %. Blue dots represent the non-zero elements.

which value of δ leads to less spatio-temporal sparsity criterion.

3.7 Conclusion

In this chapter, we present a combination of switched control methods and sparse con-

trol: spatially-invariant and temporally-known periodic time-triggered sparse LQC

design. Defining the spatio-temporal sparsity criterion, a trade-off between such a

criterion and performance loss is observed. Visualizing the performance/sparsity

trade-off curves for different values of time period, suggests a methodological way

to choose time period, when we are given a pre-specified level of performance loss.

A future work can be the co-design approach to design the controller at each step of

inter-execution time calculation in either periodic or aperiodic time setups. In other

words, spatially-invariant and temporally-unknown periodic time-triggered sparse

LQC design or spatially-varying and temporally-unknown aperiodic time-triggered

sparse LQC design.
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Chapter 4

Feedback Controller Sparsification

Under Parametric Uncertainties

4.1 Introduction

It has been known that optimal controller design under controller structural con-

straints is a challenging problem. Nonetheless, numerous studies have been carried

out to either propose controller design frameworks or reveal inherent structural prop-

erties of controllers for special classes of systems [3, 19, 42, 67, 87, 88].

Another concern in the design of large-scale control systems is the number of

communication links between the subsystems which poses major issues especially

when establishing links between nodes is very costly. Sparsifying the controller gain

leads to fewer information pathways as well as fewer controller sensors and actuators.

As a result, the design of controller gains with minimum number of non-zero elements

can mitigate the communication overflow issues emergent in large interconnected

systems. In the sparsity-promoting control problem, the ultimate objective is to

minimize the number of feedback links without losing much performance. This is

achieved by incorporating additional functions into the optimization cost function to
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penalize the number of communication links. The problem has been addressed by

a number of researchers, who opted for various techniques to tackle the inherently

non-convex problem [6, 9, 10, 15, 20, 68].

In [15], the authors proposed a novel framework in which all non-convexities are

lumped into a rank constraint further enabling it to address output feedback problems

with norm constraints on the input/output signals. In some recent papers an uncon-

ventional approach to synthesize near optimal sparse controllers has been adopted.

This proposed sparse controller design framework is founded based on the assump-

tion that a pre-designed well-performing controller is available and the ultimate goal

is to obtain a sparse feedback controller approximating the attributes and qualities

of the original well-preforming controller [21, 27, 40, 89]. In this chapter, we extend

the work published in [21] by introducing parametric time-varying uncertainty to the

open loop system. We then show that by utilizing the results fromH2 andH∞ control

[90, 91], this novel approach to robust controller design can equivalently be reformu-

lated into a rank-constrained optimization where all non-convexities are collected into

the fixed rank constraint. The next notable improvement in the current chapter is

that we replaced the ADMM algorithm [21] with our novel algorithm, which employs

a bi-linear optimization to reach the sub-optimal solution of the rank-constrained

optimization problem. We also show that our optimization parameters can be tuned

such that the rank of the optimal solution of our proposed minimization satisfies the

constraint with arbitrary tolerance. We, then, use the proposed procedure to study

the controller spairsification problem in a power network model.

This chapter is structured as follows: Section 4.2 provides key definitions and no-

tations used throughout the chapter. In Section 4.3, we formally state the problem

we aim to solve. In Sections 4.4 and 4.5, we elaborate how our problem can equiv-

alently be reformulated into an optimization problem constrained to several linear

matrix inequalities and a fixed rank constraint. Section 4.6 provides insight into our
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proposed algorithm and states several related results. The results of our numerical

simulations are presented in Section 4.7. Finally, we end with concluding remarks in

Section 4.8.

4.2 Mathematical Notations

Throughout this chapter, matrices are customarily referred to with upper-case letters.

The vectors, on the other hand, are symbolized by lower-case letters with components

denoted by the same letter using subscripts. A unit vector with its ith element equal

to one is denoted by ei. The set of real numbers is denoted by R. The space of n by

m matrices with real elements is indicated by Rn×m. The set of real matrices with

non-negative (positive) elements is represented by Rn×m
+ (Rn×m

++ ). The n by n identity

matrix is denoted by In. The vector of singular values of matrix X is denoted by σ(X).

The element-wise product of two matrices, i.e., Hadamard product, is represented by

◦. If X = [Xij], then the matrix |X| is the element-wise absolute value of X, i.e.,

|X| = [|Xij|]. The number of non-zero elements of a matrix is denoted by ‖.‖0 while

‖.‖1 denotes `1 norm, ‖.‖2 denotes the maximum singular value, and the L2-norm is

defined by

‖x‖L2(Rn) :=
(∫ ∞

0

‖x(t)‖2
2 dt

)1/2

.

Whenever it is not confusing, we use L2 instead of L2(Rn). Tr(.) and rank(.) de-

note the trace and rank of the matrix operands, respectively. The operator diag(.)

constructs block diagonal matrix from input arguments.

Definition 3. For a given ε > 0 and matrix X, we say that rank of X is k with

tolerance ε, and it is denoted by rank(X; ε), if exactly k singular values of X are

larger than or equal to ε.
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A matrix is said to be Hurwitz if all of its eigenvalues lie within the open left

half of the complex plane. A real symmetric matrix is said to be positive definite

(semi-definite) if all of its eigenvalues are positive (non-negative). Sn++ (Sn+) denotes

the space of positive definite (positive semi-definite) real symmetric matrices, and the

notation X � Y (X � Y ) means X − Y ∈ Sn+ (X − Y ∈ Sn++).

Remark 10. For simplicity of our notations, we will use a new notation in statements

of theorems, where we use an asterisk ’*’ to represent the upper triangular sub-blocks

of symmetric matrices. Moreover, in the occasions when the optimal solutions of the

optimization problems in these theorems do not depend on some of the sub-blocks of

matrices, we use a dash ’-’ to represent such sub-blocks with no apparent utilization

in the problem.

4.3 Problem Formulation

4.3.1 LTI Systems with Parametric Uncertainties

The focus of this chapter is on the following class of uncertain linear time-invariant

(LTI) systems that are defined by the state space realization1

ẋ(t) = [A+ ∆A]x(t) + [B1 + ∆B1 ]u(t) +B2d(t),

y(t) = Cx(t), (4.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input and d(t) ∈

Rp represents the exogenous disturbance input. We assume that the matrices A ∈

Rn×n, B1 ∈ Rn×m, B2 ∈ Rn×p, and C ∈ Rq×n are constant real matrices describing

the dynamics of the nominal system, whereas ∆A and ∆B1 represent the parameter

uncertainties of the matrices A and B1, respectively. In this chapter, we consider a

1It is assumed that the pair (A,B1) is controllable and (A,C) is detectable.
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special uncertainty structure expressed by

[
∆A ∆B1

]
= D∆

[
EA EB1

]
, (4.2)

where D, EA and EB1 are known constant real matrices with appropriate dimensions,

which characterize the structure of the uncertainties, while ∆ is an unknown i by j

real matrix which is constrained by

∆T∆ � ρ2Ij. (4.3)

This class of uncertain linear systems was initially reported by Petersen in papers

[92, 93] and later thoroughly addressed by Khargonekar et al. [94].

4.3.2 Controller Sparsification via Hp Approximations

Suppose that a pre-designed well-performing controller, namely K̂, is readily available

and the nominal system controlled by such a controller, represented by Ŝ, has all the

desired characteristics. The objective is to synthesize a constant gain output feedback

controller of the form

u(t) = Ky(t), K ∈ K, (4.4)

with minimum number of non-zero elements, while minimizing the performance de-

terioration from that of the closed-loop system Ŝ under parametric uncertainties. In

(4.4), K denotes a set of admissible feedback gains which holds desirable properties

such as pre-defined communication layout.

Assumption 3. It is assumed that the set K is convex.

It should be emphasized that this assumption does not offer any premise on char-

acterization of the set of all stabilizable output feedback controllers. In our follow-up
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discussions, we will show that if our proposed optimal control design is feasible, then

the resulting output feedback controller will be stabilizing and satisfy the structural

constraint K ∈ K.

There are numerous applications associated with such convexly constrained con-

troller design, such as power grids or multi-UAV systems. It is sometimes practically

infeasible to establish some specific communication links between particular nodes

due to the nodes distant locations or security issues in networks. There are also cases

where the attenuation/amplification in certain feedback paths is upper bounded, due

to technological shortcomings. Such restrictions are addressed by forcing the corre-

sponding controller elements to be contained in a convex set.

Our goal is to solve the following `0-regularized optimal control problem to com-

pute a sparse output feedback controller under parametric uncertainties:

minimize
K,εy ,εS

εS + λ1εy + λ2‖K‖0 (4.5a)

subject to: K ∈ K, (4.5b)

S : Stable, (4.5c)

‖yS − yŜ‖L2 < εy‖d‖L2 , (4.5d)

‖S − Ŝ‖2
H2
≤ εS , (4.5e)

in which ‖.‖H2 is the well-known H2 norm. Nominal closed-loop system Ŝ is a previ-

ously designed desired optimal closed-loop system with output signal yŜ and S is the

resulting system by closing the loop using sparse feedback controller K. The output

signal of S is denoted by yS . In order to promote sparsity of feedback gain matrix K,

the `0 measure of K, which is denoted by ‖K‖0, has been added to the cost function.

Two design parameters λ1 and λ2 are introduced to achieve desired trade-off between

performance loss and sparsity.

In the optimal control problem (4.5), constraint (4.5e) is included to ensure that
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the nominal closed-loop system Ŝ is well-approximated by a closed-loop system con-

trolled by a sparse controller K. To enhance temporal features of our approximation,

we also incorporate another requirement into our design scheme, characterized by con-

straint (4.5d). This constraint guarantees that the energy level of the difference be-

tween the output signals of the two closed-loop systems remains under a pre-specified

level εy when both closed-loop systems are excited by a disturbance input d with unit

norm.

The goal of this chapter is to study the effect of parametric uncertainties on the

best achievable levels of sparsity. However, finding the optimal solution of the problem

(4.5) is inherently NP-hard; see our discussion in Section 4.5. In Section 4.6, we will

propose a tractable approximation algorithm to solve this problem. The following

sections discuss the equivalent problem reformulation exploited in numerically solving

our optimization problem.

4.4 Equivalent Reformulation

The first two terms in the cost function of the optimization problem (4.5) can be

simplified into the H2/H∞ norms of an augmented system, namely S̄, constructed by

the following state space realization matrices:

Ā = diag(Ā11, A+B1K̂C), B̄ =

[
BT

2 BT
2

]T
, C̄ =

[
C −C

]
, (4.6)

where Ā11 = [A+∆A]+[B1 +∆B1 ]KC. As it can be seen, the system S̄ represents the

difference between the nominal system controlled by the pre-designed controller and

the uncertain system, stabilized by closing its feedback loop using a sparse controller.

Hence, we can re-formulate our problem into the H2/H∞ norm minimization of the
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augmented system as follows:

minimize
K,εy ,εS

maximize
∆A,∆B1

εS + λ1εy + λ2‖K‖0 (4.7)

subject to: K ∈ K,

Ā11 Hurwitz,

‖C̄(sI − Ā)−1B̄‖H∞ < εy,

‖C̄(sI − Ā)−1B̄‖2
H2
≤ εS .

In problem (4.7), the attempt is to minimize the worst case gap between the fre-

quency response of the systems in terms of a weighted sum of the H2 and H∞ norms.

Therefore, unlike the design schemes introduced in [15, 68], the approach proposed

in this chapter allows us to exploit the advantages offered by other controller design

schemes in the sparse controller design. In the next section, we show that the op-

timization problem (4.7) includes bi-linear matrix inequality constraints mainly due

to the existence of the Lyapunov stability conditions. Here, we intend to employ the

idea of lumping all nonlinear constraints into a rank-constrained problem, proposed in

[15], to rewrite problem as a rank-constrained optimization. Based on the obtained

reformulation, it is possible to either develop heuristics to sub-optimally solve the

problem or provide necessary and sufficient conditions for the feasibility of the points

with particular desired costs.

4.5 Fixed Rank Optimization Reformulation

The approach adopted in this chapter is based on solving the problem of sparse con-

troller approximation via rank-constrained optimization. Hence, we start by stating

the main lemmas which helps us cast the constraints of the optimization problem as

rank-constrained linear matrix inequalities.
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Lemma 17 ([15]). Let U ∈ Rn×n, V ∈ Rn×m, W ∈ Rm×m, and Y ∈ Rm×n, with

U � 0. Then, rank(M) = n if and only if W = YUYT , VT = YU , and Z = U−1

where

M =


U V In

VT W Y

In YT Z

 .

The above lemma can be utilized to collect almost all non-convex terms of the

optimization problems in one and only one constraint in the form of a rank constraint.

There are a number of algorithms proposed to solve rank-constrained optimization

problems [72–74, 95, 96]. In this manuscript, we aim to render such algorithms

applicable in solving our inherently nonlinear controller sparsification problem by

collecting various forms of non-convex/combinatorial constraints into a fixed rank

constraint.

As a first step, we show how theH2 norm of an uncertain system can be formulated

by rank-constrained linear matrix inequalities.

Lemma 18 ([27]). Given a strictly proper uncertain linear system P with state space

realization (A + ∆A,B, C), where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n, ∆A = D∆E and

∆T∆ � ρ2Ij, then P is stable and ‖P‖2
H2
≤ γ if and only if there exists a positive
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definite matrix X � 0 and a positive scalar ε such that

Tr(CXCT ) ≤ γ, Y1 + YT1 + BBT + ερDDT √
ρY2

√
ρYT2 −εIj

 ≺ 0,

rank



X ∗ ∗ ∗

YT1 − ∗ ∗

YT2 − − ∗

In AT ET −


= n.

Similar to Lemma 18, which paves the way in casting the H2 norm term in our

optimal controller sparsification problem, as a rank-constrained optimization problem,

the H∞ norm term of problem (4.7) can also be equivalently represented with a set

of rank-constrained linear matrix inequalities. In the next lemma, we prove such

equivalence, which later helps in accommodating the whole problem of controller

sparsification under parametric uncertainties into the framework of rank-constrained

optimization.

Lemma 19 ([27]). Suppose a strictly proper uncertain LTI plant P, represented in the

state space triplet (A+∆A,B, C), where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n, ∆A = D∆E

and ∆T∆ � ρ2Ij, then the system is stable with H∞ norm less than γ if and only if
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there exists a positive definite matrix X � 0 and a positive scalar ε > 0 satisfying



Y1 + YT1 + ερDDT ∗ ∗ ∗

BT −γIm ∗ ∗

(CX ) 0 −γIq ∗
√
ρYT2 0 0 −εIj


≺ 0,

rank



X ∗ ∗ ∗

YT1 − ∗ ∗

YT2 − − ∗

In AT ET −


= n.

Consequently, we can reformulate the problem (4.7) into a rank-constrained prob-

lem, as described in the sequel.

Theorem 20 ([27]). The optimization problem (4.7) is equivalent to the following
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rank-constrained optimization problem:

minimize
K,εy ,εS

εS + λ1εy + λ2‖K‖0 (4.8)

subject to: K ∈ K,

Xr � 0, r = 1, 2,

εr > 0, r = 1, 2,

Tr(C̄X1C̄
T ) ≤ εS , P1 + B̄B̄T ∗

√
ρY T

2 −ε1Ij

 ≺ 0,



P2 ∗ ∗ ∗

B̄T −εyIp ∗ ∗

(C̄X2) 0 −εyIq ∗
√
ρY T

4 0 0 −ε2Ij


≺ 0,

rank(M1) = 2n,
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where

Pr = Y2r−1 + Y T
2r−1 + εrρD̄D̄

T , r = 1, 2,

M1 =



X1 ∗ ∗ ∗ ∗

Y T
1 − ∗ ∗ ∗

Y T
2 − − ∗ ∗

X2 Y3 Y4 − ∗

I2n ATcl ET
cl − −


,

Acl = diag(A+B1KC,A+B1K̂C) ∈ R2n×2n,

D̄ =

[
DT 0

]T
∈ R2n×i,

Ecl =

[
EA + EB1KC 0

]
∈ Rj×2n.

The next corollary is now immediate.
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Corollary 21. The optimization problem (4.7) can equivalently be cast as the follow-

ing rank-constrained optimization problem:

minimize
K,εy ,εS

εS + λ1εy + λ2‖K‖0 (4.9a)

subject to: K ∈ K, (4.9b)

Xr � 0, r = 1, 2, (4.9c)

εr > 0, r = 1, 2, (4.9d)

Tr(C̄X1C̄
T ) ≤ εS , (4.9e) Q1 + B̄B̄T + ε1ρD̄D̄

T ∗
√
ρR1 −ε1Ij

 ≺ 0, (4.9f)



Q2 + ε2ρD̄D̄
T ∗ ∗ ∗

B̄T −εyIp ∗ ∗

(C̄X2) 0 −εyIq ∗
√
ρR2 0 0 −ε2Ij


≺ 0, (4.9g)

rank(M2) = 2n, (4.9h)
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where

Qr = XrA
T
o + AoXr + YrB

T
K +BT

KY
T
r , r = 1, 2, (4.10a)

Rr = EoXr + EB1Y
T
r , r = 1, 2, (4.10b)

M2 =



X1 ∗ ∗ ∗

Y T
1 − ∗ ∗

X2 Y2 − ∗

I2n (KCK)T − −


, (4.10c)

Ao = diag(A,A+B1K̂C) ∈ R2n×2n, (4.10d)

D̄ =

[
DT 0

]T
∈ R2n×i, (4.10e)

Eo =

[
EA 0

]
∈ Rj×2n, (4.10f)

CK =

[
C 0

]
∈ Rq×2n, (4.10g)

BK =

[
BT

1 0

]T
∈ R2n×m. (4.10h)

4.6 A Tractable Approximation Algorithm for Com-

puting Sparse Feedback Controllers

Although both optimizations (4.8) and (4.9) can be utilized to solve our controller

sparsification problem, we choose to only implement the one formulated in (4.9). The

terms in our optimization problem are all convex except the sparsity-promoting term

in the cost function and the rank constraint. This section intends to shed light on

our approach in dealing with these two non-convex and combinatorial terms.

As for the sparsity-promoting term of the objective function, since the `0 norm

is an integer-valued function, utilizing it in our formulation introduces the compli-

cations of combinatorial optimization. In order to reduce the complexity of sparse
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vector/matrix recovery problems, we employ the `1 norm and its weighted versions.

This is because convex surrogates of the `0 norm are among the most common func-

tions used to measure the sparsity and have been utilized in diverse applications

[68, 97]. Therefore, we have

minimize
K,εy ,εS

εS + λ1εy + λ2‖W ◦K‖1 (4.11)

subject to: (4.9b)− (4.9h),

(4.10a)− (4.10h),

where the weight matrix W = [Wij] ∈ Rm×q is element-wise positive and chosen

according to the objectives of the problem.

The convex relaxation of the sparsity-promoting term in the cost function of (4.11)

leaves us with an optimization problem in which non-convexity only arises in the form

of a rank constraint, i.e., rank(M2) = 2n. It is known that presence of the rank

constraint still causes our optimization problem to become NP-hard. Therefore, we

propose a technique, which is built upon the method studied in [28], to solve the rank

constraint optimization problem. In a nutshell, this method is based on substituting

the rank constraint on the symmetric matrix M2 with a positive semidefinite con-

straint while introducing extra convex constraints along with a bi-linear term to the

cost function. Since the resulting optimization is all convex except for the auxiliary

bi-linear term in the objective function, it can iteratively be solved [77, 78].

Theorem 22 ([27]). Let us consider the rank-constrained optimization problem (4.11)
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Algorithm 1: Solution to problem (4.12)

Inputs: A, B1, B2, C, Q, R, λ1, λ2, ν, K, W , ρ, and ε∗.
1: Initialization:

Set Y (0) = I6n+m, ε(0) > ε∗, K(0) = 0m×q and k = 0.
2: While ε(k) > ε∗ Do
3: Update Z(k+1) by solving (4.14),
4: Update Y (k+1) using the equation (4.15),
5: Update ε(k+1) using the equation (4.16),
6: k ← k + 1,
7: End While
8: Truncate K.

Output: K

and define the following auxiliary optimization problem:

minimize
Y,K,εy ,εS

εS + λ1εy + λ2‖W ◦K‖1 + νTr(YM2) (4.12)

subject to: (4.9b)− (4.9g),

(4.10a)− (4.10h),

0 � Y � I6n+m,

Tr(Y ) = 4n+m,

M2 � 0,

in which λ1, λ2, ν > 0 and the element-wise positive matrix W are some given design

parameters. If problem (4.11) is feasible, then there exists a constant η > 0 for which

the optimal solution M2 from solving (4.12) satisfies

rank(M2; ην−1) ≤ 2n,

i.e., rank of M2 is less than or equal to 2n with tolerance threshold ην−1 according to

Definition 3.

We should remind that according to (4.10c) and the specific structure of matrix
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M2 it is always true that rank(M2) ≥ 2n. As a result of the previous theorem, we

can now solve the optimization problem (4.12) for an appropriately-chosen parame-

ter ν to obtain a sub-optimal solution to the problem (4.11). For the simplicity of

our notations, the letter Z is used to denote the stack of all optimization variables

excluding variable Y . The optimization problem (4.12) can be rewritten as follows:

minimize
Z,Y

F(Z, Y )

subject to: Z ∈ Cz, Y ∈ Cy,

where Cz is the convex set defined by the constraints (4.9b)-(4.9g), (4.10a)-(4.10h),

along with M2 � 0, and the convex set Cy is generated by Tr(Y ) = 4n + m and

0 � Y � I6n+m. Needless to say that F(Z, Y ) represents the bi-linear objective

function in the minimization problem (4.12). The above reformulation allows us to

carry out this problem by iteratively optimizing the objective function for Z and Y .

As a result, the main steps of this iterative method can be divided into two sub-

problems, Z-minimization and Y -minimization problems. As both Z-minimization

and Y -minimization steps are convex optimizations, they can be performed in a com-

putationally efficient manner. However, for the Y -minimization, there also exists an

analytic solution, stated in the next theorem.

Theorem 23 ([27]). The optimal solution to the Y -minimization step is given by

Y ∗ = I6n+m −
2n∑
i=1

uiui
T , (4.13)

where vectors ui for i = 1, . . . , 2n are the singular vectors corresponding to the 2n

larger singular values of M2.
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4.6.1 Summary of the Approximation Algorithm

We utilize the following sequence of iterations to obtain the minimizer of the con-

strained problem (4.12). First, we solve the Z-minimization and Y -minimization

subproblems

Z(k+1) = arg minimize
Z∈Cz

F(Z, Y (k)), (4.14)

Y (k+1) = I6n+m −
2n∑
i=1

u
(k+1)
i u

(k+1)
i

T
, (4.15)

where M
(k+1)
2 =

∑6n+m
i=1 σ

(k+1)
i u

(k+1)
i u

(k+1)
i

T
is the singular value decomposition of

M
(k+1)
2 . The stopping criterion is established by ε(k+1) ≤ ε∗, where ε∗ is the given

desired precision, with the following update law:

ε(k+1) =
‖K(k+1) −K(k)‖2

‖K(k+1)‖2

. (4.16)

In the last step of the algorithm, we truncate negligible elements of the resulting

feedback gain K, e.g., those smaller than 5× 10−5,. These small elements show very

weak couplings between the nodes in the information structure of the controller. A

summary of our proposed algorithm is described in Algorithm 1.

Remark 11. The choice of the weight matrix W plays an important role in the

sparsity-promoting properties of our method. When a proper weight matrix is not

accessible, the weighted `1 norm technique can also be employed to enhance the sparse

controller recovery. In this method, the weight assigned to each controller element

is updated inversely proportional to the value of the corresponding matrix element

recovered from the previous iteration, i.e.,

W
(k+1)
ij =

1

|K(k)
ij |+ ξ

, ∀i, j, (4.17)
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Figure 4.1: IEEE 39-bus power system model

where the constant ξ > 0 which is chosen as a relatively small constant, is augmented

to the denominator of the update law (4.17) to guarantee the stability of the algorithm,

especially, when K
(k)
ij turns out to be zero in the previous iteration [75]. It should be

noted that, our simulation results are obtained by incorporating this update law into

the first few iterations.

4.7 Numerical Simulations

In this section, we examine our proposed method by utilizing the IEEE 39-Bus New

England power system which consists of NG = 10 synchronous generators. Specifi-

cally, we take advantage of the state-space model provided by [86], which is a linearized
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state-space model of swing equations is characterized by (4.1), where

x =

[
θT ωT

]T
, A =

 0 I

−M̃−1L −M̃−1D̃

 , B1 =

 0

M̃−1

 , B2 = B1,

M̃ = diag(M̃1, · · · , M̃NG), D̃ = diag(D̃1, · · · , D̃NG), u = Kx, K =

[
Kθ Kω

]
,

ω = θ̇.

The Laplacian or admittance matrix L satisfies the following equations:

lij = −bKron
ij , lii =

NG∑
k=1,k 6=i

bKron
ik ,

where BKron is the susceptance matrix of the corresponding Kron reduced admittance

matrix.

The power network utilized in our simulation is depicted in Figure 4.1, and its

parameters, in per unit system, are presented in Table 4.1.

We define the following performance metrics which quantify the deviation in H2

and H∞ norms casued by the sparsification process. They also allow for comparison

of the sparsification performance in the absence and presence of uncertainty on the

system matrices.

R2 =
‖S − Ŝ‖H2

‖Ŝ‖H2

, (4.18)

R∞ =
‖S − Ŝ‖H∞
‖Ŝ‖H∞

. (4.19)

Now, we assume that the susceptance corresponding to the link between two randomly-

chosen nodes i1 and i2 is affected by an uncertainty of the form

ρ = ρrel(b
Kron
i1i2

),
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Figure 4.2: (a) Sparsity pattern of K for ρrel = 0%; Blue and red bullets are used to depict
diagonal and off-diagonal elements ofK, respectively (b) Sparsity pattern ofK
for ρrel = 30%

(
(i1, i2) = (2, 3)

)
. Blue and red dots represent the off-diagonal

and diagonal non-zero elements, respectively. (c) Sparsity graph of |Kθ|+|Kω|
for ρrel = 0%; Blue solid lines, red dashed lines, and black self-loops are
used to depict doubly-connected, singly-connected, and self-connected edges
of |Kθ| + |Kω|, respectively (d) Sparsity graph of |Kθ| + |Kω| for ρrel = 30%(
(i1, i2) = (2, 3)

)
.

where ρrel is called the relative uncertainty and bKron
ij is assumed to take non-zero

values. In order to relax this assumption, the uncertainty and relative uncertainty

will have to be defined in a different way, e.g.,

ρ = ρrel min

{ NG∑
k=1,k 6=i1

bKron
i1k

,

NG∑
k=1,k 6=i2

bKron
i2k

}
.

To study the effect of adding uncertainty to the link between generators i1 and i2,
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the matrices D, EA, and EB1 are chosen as follows:

D = −

0 0

0 M̃−1

 (ei1+NG − ei2+NG), EA = eTi1+NG
− eTi2+NG

, EB1 = 0.

Assuming C = I, Q = I, R = 10I, λ1 = 0.5, λ2 = 0.1, ν = 100, ξ = 10−6, and

ε∗ = 10−2, we randomly choose two generators, i1 = 2 and i2 = 3, and consider

the uncertainty cases ρrel ∈ {0 %, 30 %}. The results of the static state feedback

controller design using our method are presented in Table 4.2. According to this

table, an increase in uncertainty increases R2 and R∞, and worsens the sparsification

of the controller.

Figures 4.2(a) and 4.2(b) visualize the corresponding sparsity patterns for both

cases ρrel = 0 % and ρrel = 30 %, respectively, and Figures 4.2(c) and 4.2(d) visualize

the corresponding sparsity graphs for both cases ρrel = 0 % and ρrel = 30 %, respec-

tively. It should be noted that elements K22, K23, K2(12), K2(13), K3(12), and K3(13)

take non-zero values after applying the 30 % relative uncertainty. The interpretation

is that, since uncertainty causes interference to the link between two randomly-chosen

generators, the construction of communication links between such generators is vital.

Furthermore, additional plots are presented in Figure 4.6 to show the similarity of

the frequency behavior of the sparsely-controlled system to that of the LQR-controlled

system. The upper left sub-figure, i.e., Figure 4.6(a), depicts the largest and smallest

singular values of S and Ŝ for the case of ρrel = 0 %. It can be seen that the smallest

singular values of the systems match for almost the whole frequency range and largest

singular values achieve the same values for higher frequencies. Similar plots for the

case of uncertain system with ρrel = 30 % are depicted in Figure 4.6(b). The plots

depict that the deviation of the maximum singular value, caused by increasing the

magnitude of the uncertainties, is much larger compared to the deviation of the

minimum singular value. Also, the plots of Schatten 2-norm of the systems S and Ŝ,
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Figure 4.3: Gray scale pattern of susceptance of all links of power network, i.e., L.

are depicted in lower sub-figures of 4.6 for both cases, i.e., ρrel = 0 % and ρrel = 30 %.

It is noteworthy that in neither of the cases, does the sparsification process seem

to affect the higher frequency content of the closed loop systems. This is desirable,

since the controller sparsification will not be amplifying the harmonics in power grids,

which are the main cause of power quality degradation.

In order to verify the relationship between the magnitude of the susceptance of

each link, visualized in Figure 4.3, and the density level of the corresponding elements

in the controller design, we consider all cases with the ρrel = 30 % uncertainty on one

link at a time, which results in 45 cases. We then, compute f(Kθ) and f(Kω), the

sub-blocks of the controller matrix K, in which the matrix-valued function f(X) =

[f(X)ij] is defined as

f(X)ij =

 ‖Xii‖0 + ‖Xij‖0 + ‖Xji‖0 + ‖Xjj‖0 if i 6= j,

0 otherwise.

f(Kθ) and f(Kω) are used to visualize the number of controller links, necessary to be

added to the generators connected with the uncertain link. Figures 4.4(a) and 4.4(b)
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show this visualization.

As depicted in Figs. 4.4(a) and 4.4(b), in the case of links with higher susceptance,

more communication links in controller design need to be established. This can

be interpreted as the effective uncertainty of each link being proportional to the

susceptance of that link. Therefore, an increase in susceptance of a link magnifies the

uncertainty of that link, which results in establishment of more links in the designed

controller to compensate for the fragility of the network on that link. This leads to

similar patterns in Figures 4.3, 4.4(a), and 4.4(b).

We furthermore showcase the effect of increasing the relative uncertainty of the

network links on the cardinality of their corresponding controller elements for two

randomly chosen links, connecting generator 4 to generator 5 and generators 2 to

3. As seen in Figures 4.5(a) and 4.5(b), the increase of relative uncertainty, leads to

construction of more communication links between two corresponding generators in

the designed controller gain.

4.8 Conclusion

We have proposed a new approach for the design of optimal sparse controllers under

parametric uncertainties. This method is developed based on altering an available

previously designed controller towards a sparse controller, while heeding the perfor-

mance deterioration caused by the process sparsification as well as the parameter

uncertainties in the system. We have achieved our goal through formulating an opti-

mization problem which seeks a sparse structured controller capable of exhibiting sim-

ilar frequency and time characteristics of the previously designed controller, in terms

of H2 and H∞ norms. By equivalently reformulating the problem into a fixed rank

optimization problem, we propose to utilize the bi-linear rank penalizing technique,

modified to include weighted `1 norm minimization, as a computationally tractable
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(a)

(b)

Figure 4.4: (a) Gray scale pattern of f(Kθ)+f(Kω) for ρrel = 30 % (b) Gray scale pattern
of f(|Kθ|+ |Kω|) for ρrel = 30 %.

algorithm to sub-optimally solve our problem. As our results are very promising,

especially when the optimization parameters are finely tuned, we are considering a

thorough study of the effects of parameter selection, with a focus on the weight on the

bi-linear term, on the performance deterioration caused by the sparsification process.

As another future research direction, our method can easily be modified to study
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the effect of the structure and magnitude of the uncertainties on the robustness of

the closed loop systems as well as the sparsity level of the controller. An important

application of this study is the analysis of the robustness of networks, such as power

grids, against possible attacks on the critical nodes.
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Bus Generator M̃i D̃i θ0 ω0

30 G10 4 5 −0.0839 1
31 G2 3 4 0.0000 1
32 G3 2.5 4 0.0325 1
33 G4 4 6 0.0451 1
34 G5 2 3.5 0.0194 1
35 G6 3.5 3 −0.0073 1
36 G7 3 7.5 0.1304 1
37 G8 2.5 4 0.0211 1
38 G9 2 6.5 0.1270 1
39 G1 6 5 −0.2074 1

Table 4.1: Power parameters used in our numerical simulations.

ρrel R2 R∞ ‖K‖0/‖K̂‖0

0 % 21.35 % 49.42 % 4.5 %
30 % 36.31 % 88.71 % 7.5 %

Table 4.2: Performance and cardinality quantities for the case ρrel ∈ {0 %, 30 %}.
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Figure 4.5: (a) f(Kθ) + f(Kω) versus ρrel % (b) f(|Kθ|+ |Kω|) versus ρrel %.
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Figure 4.6: Frequency characteristics of the closed loop systems controlled by the LQR
(blue), the sparse controller (red) for the case ρrel = 0 %, and the sparse
controller (green) for the case ρrel = 30 %. (a) and (b) depict maximum
and minimum singular values for the cases of ρrel = 0 % and ρrel = 30 %,
respectively. (c) and (d) exhibit the Schatten 2-norm of the closed loop system(
(c) case ρrel = 0 % (d) case ρrel = 30 %

)
.
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Chapter 5

Sparse Memoryless LQR Design

for Uncertain Linear Time-Delay

Systems

5.1 Introduction

Time-Delay systems have been thoroughly investigated in control theory and its ap-

plications. Some fundamental works can be listed as works done by [98–107]. The

existence of time-delay in characterization of dynamical systems is a realistic fact.

Since neglecting the existence of time-delay simplifies solving the control theory prob-

lems, most of the research works in such an area fall into systems with no time-delay

considerations. Thus, solving the control theory problems along with time-delay ex-

istence enables us to have much more accurate vision than when time-delay effects

are ignored.

Dealing with uncertainty is another significant issue which arises in uncertain time-

delay systems control and has been well-studied by [100, 101, 108–110]. Uncertainty is

an undeniable concern in robust control applications. One of the fundamental works
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in area of control against uncertainty is the work done by [94].

One of the control theory problems which has not been touched too much in

domain of uncertain linear time-delay systems is sparsity-promoting optimal control

of such systems. The necessity of sparse control designs has been highlighted in recent

decade in research papers [1, 3, 7, 15, 19–21, 26–29, 38, 42]. It is clear that traditional

centralized control methodologies are no longer of interest in power network control,

control of platoons of vehicles, and multi-agent control systems. Thus, the tendency

to utilize the structured, distributed, decentralized, or localized control methods has

been tremendously increased in controlling such systems.

Inspired by achievements in uncertain linear time-delay systems and sparsity-

promoting optimal control, we propose sparsity-promoting optimal control design for

uncertain linear time-delay systems and investigate the effect of time-delay on sparsi-

fication process and performance-sparsity trade-off curves. In this work, the stability

of uncertain linear time-delay system is characterized via linear matrix inequality

(LMI) approach utilized by [101]. Such a sufficient condition is derived based on

Lyapunov functionals introduced by [111].

In the following, the chapter is organized as follows: Section 5.2 presents our

utilized mathematical notations. In Section 5.3, the sparse memoryless LQR design

problem is formulated for uncertain linear time-delay systems. In Section 5.4, it is

stated how our problem can equivalently be reformulated as an optimization problem

with several LMIs and a rank constraint. Section 5.5 includes steps to be taken to

tackle the rank-constrained optimization problem via bi-linear rank penalty technique.

In Section 5.6, throughout the several numerical simulations, sparsity visualization of

sparse memoryless LQR design, (time-delay)-(performance/sparsity) trade-offs, and

(time-delay)-(performance-sparsity trade-off) behavior are visualized. Finally, Sec-

tion 5.7 concludes the chapter along with sketching possible future insights.
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5.2 Mathematical Notations

Throughout the chapter, the set of real numbers and the set of n by m real matrices

are denoted by R and Rn×m, respectively. The n by n identity matrix and n by m

zero matrix are shown by In and 0n×m, respectively. Trace and rank of a matrix are

specified by Tr(.) and rank(.), respectively. The transpose operator is represented

by (.)T . The Hadamard matrix product is denoted by ◦. The symbol ‖.‖0 symbolizes

the number of non-zero elements of a matrix and symbols ‖.‖1 and ‖.‖F symbolize

the `1 and Frobenius norms, respectively. Also, the maximum singular value of a

matrix is represented by ‖.‖. A symmetric matrix is called positive definite (positive

semi-definite) if all the eigenvalues are positive (non-negative). The space of positive

definite (positive semi-definite) matrices are represented by Sn++ (Sn+) and the notation

X � Y (X � Y ) means X − Y ∈ Sn++ (X − Y ∈ Sn+).

Definition 4. For a given ε ≥ 0 and matrix X, rank of X with tolerance ε is k and

denoted by rank(X; ε) = k, if and only if k is the maximum number of singular values

of X which are larger than ε.

5.3 Problem Formulation

The uncertain linear time-delay system is characterized as follows:

 ẋ(t) = (A+ ∆A)x(t) + (A1 + ∆A1)x(t− τ) + (B + ∆B)u(t)

x(t) = φ(t), t ∈ [−τ, 0]
, (5.1)

where A ∈ Rn×n, A1 ∈ Rn×n, B ∈ Rn×m are known, positive τ denotes the con-

stant time-delay, and φ(t) represents a vector-valued initial condition. Matrices ∆A,

∆A1, and ∆B are matrix-valued functions which symbolize time-varying parameter

uncertainties.
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The form of parameter uncertainties is considered as follows:

[
∆A ∆B ∆A1

]
= DF (t)

[
EA EB EA1

]
,

where D, EA, EB, and EA1 are known matrices which determine the structure of

uncertainties and F (t) ∈ Ri×j is an unknown matrix-valued function whose elements

are Lebesgue measurable and it satisfies the following matrix inequality:

F (t)TF (t) � Ij.

Our goal is to design a sparse memoryless LQR

u(t) = Kx(t), (5.2)

which minimizes the following quadratic cost functional:

J =

∫ ∞
0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt, (5.3)

subject to stability of closed-loop system under uncertainties. Matrices Q � 0 and

R � 0 represent state weight and input weight matrices, respectively.

To reach such a goal, we define the following optimization problem:

minimize
K

∫ ∞
0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt+ γ‖K‖0 (P1)

subject to: (5.1) and (5.2),

K : stabilizing,

where γ is the sparsity-promoting parameter.

Remark 12. Any convex structural constraint on K can be embedded into our sparse
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memoryless LQR design process. Distributed, decentralized, localized, and other topo-

logical assumptions are few examples of such a convex structural constraints on K.

For the case γ = 0, using the results of Theorem 3 stated by [101], implies that

(P1) can be relaxed to the following convex optimization problem (assuming that

γ = 0):

minimize
δ,α,M,X,Y,Z

α + Tr(M) (P2)

subject to:



Ã A1Z ẼT X Y T X

ZAT1 −Z ZET
A1

0 0 0

Ẽ EA1Z −δIj 0 0 0

X 0 0 −Q−1 0 0

Y 0 0 0 −R−1 0

X 0 0 0 0 −Z


≺ 0,

−α φ(0)T

φ(0) −X

 ≺ 0,

−M N(τ)T

N(τ) −Z

 ≺ 0,

where N(τ) depends on time-delay τ and equals to the principal square root of matrix

∫ τ

0

φ(t)φ(t)Tdt. (5.4)

Also, matrices Ã and Ẽ are equal to AX+BY +(AX+BY )T+δDDT and EAX+EBY ,

respectively.

In fact, assuming the γ = 0, solving (P2) provides us with a sub-optimal solution

K = Y X−1 to (P1) with upper bound

J∗ = φ(0)TX−1φ(0) + Tr
(
N(τ)N(τ)TZ−1

)
, (5.5)

on J defined by (5.3).
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5.4 Equivalent Rank-Constrained Reformulation

In this part, we see how (P1) can be cast as an equivalent rank-constrained reformu-

lation.

Motivated by formulation of (P2) and noting the NP-hardness of dealing with `0

sparsity measure, we define the weighted `1 relaxation of (P1) as follows:

minimize
δ,α,M,X,Y,Z

α + Tr(M) + γ‖W ◦K‖1 (P3)

subject to:



Ã A1Z ẼT X Y T X

ZAT1 −Z ZET
A1

0 0 0

Ẽ EA1Z −δIj 0 0 0

X 0 0 −Q−1 0 0

Y 0 0 0 −R−1 0

X 0 0 0 0 −Z


≺ 0,

−α φ(0)T

φ(0) −X

 ≺ 0,

−M N(τ)T

N(τ) −Z

 ≺ 0,

Y = KX. (5.6)

As it is observed, the constraint (5.6) is non-convex and consequently, solving (P3)

gets difficult in its current format. To overcome such an issue, we take an advantage

of the following lemma which has been presented in [15].

Lemma 24. ([15]) Let U ∈ Rn×n, V ∈ Rn×m, W ∈ Rm×m, and Y ∈ Rm×n, with

U � 0. Then, rank(M) = n if and only if W = YUYT , VT = YU , and Z = U−1
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where

M =


U V In

VT W Y

In YT Z

 .

Choosing the V = Y T , Y = K, and U = X in Lemma 24, the constraint (5.6) gets

equivalent to the following rank constraint:

rank(M1) = n, (5.7)

where M1 is described as follows:

M1 =


X Y T In

Y S K

In KT T

 .

Although (5.7) implies that S = KXKT and T = X−1 hold in addition to (5.6),

they do not have any significant role in our next derivations.

Thus, utilizing the (5.7), the equivalent rank-constrained reformulation of (P3) is
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obtained as follows:

minimize
δ,α,M,X,Y,Z,S,T,K

α + Tr(M) + γ‖W ◦K‖1 (P4)

subject to:



Ã A1Z ẼT X Y T X

ZAT1 −Z ZET
A1

0 0 0

Ẽ EA1Z −δIj 0 0 0

X 0 0 −Q−1 0 0

Y 0 0 0 −R−1 0

X 0 0 0 0 −Z


≺ 0,

−α φ(0)T

φ(0) −X

 ≺ 0,

−M N(τ)T

N(τ) −Z

 ≺ 0,

(5.7),

where W is element-wise non-negative weight matrix, i.e., all the elements take non-

negative values.

5.5 Sparsification Algorithm via Bi-linear Rank Penalty

Technique

Since (5.7) is non-convex, to deal with such a non-convexity, the bi-linear rank penalty

technique is employed. Such a technique has been extensively utilized in recent works

[26–28, 72, 77].

The core of such a technique is basically relaxing the constraint (5.7) with M1 �

0, adding a bi-linear penalty term to the objective function of the corresponding

optimization problem, and then, iteratively solving two main convex sub-problems

which will be explained in detail later on. It is worth emphasizing that the convergence
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of such an iterative method is discussed through the facts provided by [72, 77, 78].

The following theorem is the main basis of bi-linear rank penalty technique and

it is derived with few changes based on Theorem 5 proposed by [27].

Theorem 25. Let us consider (P4) and define the following auxiliary optimization

problem:

minimize
S

α + Tr(M) + γ‖W ◦K‖1 + νTr(GM1) (P5)

subject to:



Ã A1Z ẼT X Y T X

ZAT1 −Z ZET
A1

0 0 0

Ẽ EA1Z −δIj 0 0 0

X 0 0 −Q−1 0 0

Y 0 0 0 −R−1 0

X 0 0 0 0 −Z


≺ 0,

−α φ(0)T

φ(0) −X

 ≺ 0,

−M N(τ)T

N(τ) −Z

 ≺ 0,

M1 � 0, 0 � G � I2n+m,Tr(G) = n+m,

in which ν > 0 is bi-linear penalty parameter and S denotes the stack of variables

δ, α,M,X, Y, Z, S, T,K,G. If (P4) is feasible, then there exists a positive constant η(
the optimal value of (P4)

)
for which the optimal solution M1 resulted from solving

(P5) satisfies

rank(M1; ην−1) ≤ n,

i.e., rank of M1 with tolerance threshold ην−1 is less than or equal to n due to Defi-

nition 4.

In addition to rank inequality derived by Theorem 25, the specific structure of
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matrix M1 yields that the inequality rank(M1) ≥ n holds as well. Thus, if nth largest

singular value of M1 is at least ην−1, then rank(M1; ην−1) = n holds.

As a consequence of Theorem 25, (P5) can be solved with an appropriately-chosen

parameter ν to achieve a sub-optimal solution to (P4). For the sake of simplicity in

our notations, the stack of all variables excluding variable G is denoted by H. The

optimization problem (P5) can be reformulated as

minimize
H,G

F(H,G)

subject to: H ∈ CH , G ∈ CG,

where CH is the convex set characterized by H, and the convex set CG is generated

by Tr(G) = n+m and 0 � G � I2n+m.

No need to say that F(H,G) denotes the bi-linear objective function in (P5). The

above-mentioned rewritten optimization problem enables us to solve such a prob-

lem by iteratively minimizing the objective function for H and G. Consequently,

the important steps of this iteratively implemented method can be summarized in

two sub-problems: H-minimization and G-minimization sub-problems. Since both

H-minimization and G-minimization steps are convex optimizations, they can be ex-

ecuted in an efficient way with existing convex solvers such as CVX developed by

[112]. Fortunately, for the G-minimization step, there exists an analytic solution

which is expressed in the following theorem similar to Theorem 6 stated by [27].

Theorem 26 ([27]). The optimal solution to the G-minimization step is given by

G∗ = I2n+m −
n∑
i=1

uiui
T , (5.8)

where vectors ui for i = 1, . . . , n are the singular vectors corresponding to the n largest

singular values of M1.
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The following sequence of iterations is employed to achieve the minimizer of (P5).

The H-minimization and G-minimization sub-problems are expressed as follows:

H(k+1) = arg minimize
H∈CH

F(H,G(k)), (5.9)

G(k+1) = I2n+m −
n∑
i=1

u
(k+1)
i u

(k+1)
i

T
, (5.10)

where

M
(k+1)
1 =

2n+m∑
i=1

σ
(k+1)
i u

(k+1)
i u

(k+1)
i

T
,

is the singular value decomposition (SVD) of M
(k+1)
1 which is simply M1 at (k + 1)th

iteration. The stopping criterion is applied via ε(k+1) ≤ ε∗, where ε∗ is the pre-

specified precision, with the following update rule:

ε(k+1) =
‖K(k+1) −K(k)‖2

‖K(k+1)‖2

. (5.11)

At last, negligible elements of obtained K, (e.g., those smaller than 5 × 10−5) is

truncated. In fact, the relatively small elements of K correspond to weakly-coupled

links between the nodes in the information structure of the memoryless LQR. A

summary of our proposed algorithm is described in bi-linear rank penalty technique

sparsification (BRPTS) algorithm.

5.6 Numerical Simulations

In order to validate our utilized algorithm, we employ the class of spatially distributed

systems which has been deeply studied by [42]. Firstly, we introduce how spatially

distributed systems are characterized via their specific state-space realizations. Sec-

ondly, we design sparse memoryless LQR and visualize its sparsity visualization.

Finally, the effect of time-delay on sparsification process and performance-sparsity
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BRPTS Algorithm Solution to (P5)

Inputs: A, B, A1, D, EA, EB, EA1 , Q, R, γ, ν, W , φ(t), τ , and ε∗.
1: Initialization:

Set G(0) = I2n+m, ε(0) > ε∗, K(0) = 0m×n and k = 0.
2: While ε(k) > ε∗ Do
3: Update H(k+1) by solving (5.9),
4: Update G(k+1) using (5.10),
5: Update ε(k+1) using (5.11),
6: k ← k + 1,
7: End While
8: Truncate K.

Output: K

trade-off are investigated. Although all of our derivations hold for uncertain linear

time-delay systems, to purely assess the effect of time-delay on sparsification pro-

cess and performance-sparsity trade-off, in current work, we assume that there is

no uncertainty, i.e., D = 0, EA = 0, EB = 0, and EA1 = 0. The effect of uncer-

tainty on sparsification process and performance-sparsity trade-off can separately be

investigated in future works.

5.6.1 Spatially Distributed Systems

Similar to the idea developed by [42], let us consider N = 10 randomly distributed

(with a uniform distribution) nodes in a 10× 10 box-shaped region (See Figure 5.1).

Each node represents a linear sub-system which is coupled via its dynamics and the

quadratic cost to other sub-systems. The dynamics of the ith linear sub-systems is

characterized as follows:

ẋ(i)(t) = [A]iix
(i)(t) +

N∑
j=1, j 6=i

[A]ijx
(j)(t) + [B]iiu

(i)(t),
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Figure 5.1: Positions of N = 10 randomly generated nodes in a 10× 10 box-shape region.

where

[A]ii =

1 1

1 2

 , Bii =

0

1

 for nodes marked by red ∗,

[A]ii =

−2 1

1 −3

 , Bii =

0

1

 for nodes marked by blue ◦,

and

[A]ij =
1

Xβ
(
dis(i, j)

)
1 0

0 1

 , Bij =

0

0

 , ∀j 6= i,
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where Xβ represents the coupling characteristic function and dis(i, j) symbolizes the

Euclidean distance between nodes i and j in Figure 5.1. Several choices have been

introduced for Xβ by [42]. The one which we will utilize is the exponentially decaying

operator which is defined as follows:

Xβ(x) = eβx.

In general, the positive parameter β determines the spatially decaying rate in spatially-

decaying operators.

In our numerical simulations, the matrix A is constructed in the above-mentioned

manner. The matrix A1 is chosen as a real multiple of A, i.e., A1 = ρA where ρ ∈ R.

5.6.2 Sparse Memoryless LQR Design and Visualizations

In this chapter, we assume that φ(t) = x0 in whole time interval [−τ, 0] where x0

is drawn from a standard normal distribution. Subsequently, N(τ) gets equal to

the principal square root of τx0x
T
0 . Also, to select x0, we use command randn in

MATLAB.

Considering the 20× 20 randomly distributed system (β=1) drawn from N = 10

nodes in Figure 5.1 and setting ρ = 0.1, γ = 0.1, ν = 100, Q = I20, R = 4I10, the

sparsity visualization of sparse memoryless LQR designs for cases τ = 0 and τ = 9

are depicted in Figures 5.2(a) and 5.2(b), respectively.

5.6.3 Investigation of Effect of Time-Delay on Sparsification

Process and Performance-Sparsity Trade-Off

For previously-mentioned 20 × 20 randomly distributed system and the same setup

for all parameters except τ , by considering the 26 equidistant values for τ (with step
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(a)

(b)

Figure 5.2: (a) Sparsity visualization of K for τ = 0 (b) Sparsity visualization of K for
τ = 9. Blue dots represent the non-zero elements.

size 0.5), cardinality percentage

‖K‖0

‖KLQR‖0

× 100,

and performance loss percentage

J∗ − JLQR

JLQR
× 100,

are visualized versus time-delay τ in Figures 5.3(a) and 5.3(b), respectively. The

superscript LQR is utilized to denote the quantities related to standard traditional

LQR design corresponding to A when there is no time-delay (τ=0).

As Figures 5.3(a) and 5.3(b) demonstrate, as time-delay τ increases, cardinality

percentage and performance loss percentage get increased. Thus, it is observed that
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the larger time-delay we have, the poorer quality of sparsification process we get.

To assess the effect of time-delay on performance-sparsity trade-off, considering

the same 20×20 randomly distributed system and choosing the fixed time-delay from

set {0, 2.5, 5, 7.5, 10, 12.5}, we run BRPTS Algorithm for 20 logarithmically spaced

sparsity-promoting parameter γ ∈ [10−4, 10−1] which leads to plots depicted by Figure

5.4.

As Figure 5.4 showcases, when time-delay τ gets larger, the performance-sparsity

trade-off gets worse. In other words, prescribing a fixed value of cardinality percentage

(proportional to number of controller communication links), having a larger time-

delay leads to higher performance loss which is not desired.

5.7 Conclusion

Considering the class of uncertain linear time-delay systems, the sparse memoryless

LQR design is presented. Utilizing the LMI techniques, deriving the equivalent rank-

constrained reformulation, and applying the bi-linear rank penalty technique, sub-

optimal sparse memoryless LQR design is achieved. Employing the various numerical

experiments, the negative effect of constant time-delay on sparsification process and

performance-sparsity trade-off is observed. The improvement of sub-optimality level

of utilized technique can be seen as a possible future work.
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Figure 5.3: (a) Cardinality percentage versus τ (b) Performance loss percentage versus τ .
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Chapter 6

Row-Column Sparse Linear

Quadratic Controller Design via

Bi-Linear Rank Penalty Technique

and Non-Fragility Notion

6.1 Introduction

Sparsity-Promoting control problems can be categorized as two important classes:

(i) sparse controller design,

(ii) row/column sparse controller design.

Some examples of the first category can be found in [3, 18, 19, 21, 26, 27, 30, 32,

42, 68, 89]. On the other side, row/column sparse controller design is investigated by

[10, 28].

In this chapter, focusing on the second category of sparsity-promoting control

problems, i.e., row/column sparse controller design, we consider row-column (r, c)-

sparse controller design. In such a design problem, each node will communicate to
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at most r other nodes and information of each node will be used by at most c other

nodes. While in [10] the definition of row/column sparsity is different from ours and

[28]’s, the new contribution of our work compared to [10] is capability of having row

and column sparsity at the same time with possibly distinct values for r and c. Also,

in comparison with [28], instead of using majorization theory and computationally

expensive algorithm, we utilize the non-fragility notion provided by [33] to have a

purely utilized bi-linear rank penalty technique and relatively fast algorithm. It is also

remarkable that numerical simulations provided by [28], do not satisfy the sparsity

constraints for all rows or columns. As we will see in our simulation section, all the

sparsity constraints hold for all rows and all columns.

The chapter is arranged as follows: The section 6.2 is dedicated to explain our

mathematical notations which are used along the chapter. In Section 6.3, we express

the problem which we aim at solving. In Section 6.4, we show how our problem can

equivalently be translated to an optimization problem constrained to several linear

matrix inequalities and m + n + 1 rank constraints. Section 6.5 provides the vision

to our bi-linear rank penalty technique and its details. Our numerical simulations

are visualized for the class of randomly-generated systems in Section 6.6. At last, we

finish the chapter with drawing some future directions in Section 6.7.

6.2 Mathematical Notations

Throughout the chapter, matrices are denoted by capital letters, and the elements

are shown by capital letters with subscripts. The vectors, on the other hand, are

represented by lower-case letters, with elements denoted by the same letter with

subscripts. The identity matrix of size n×n is denoted by In. The Hadamard matrix

product is denoted by ◦. The number of non-zero elements of a matrix is denoted by

‖.‖0. The `2 norm of a matrix is represented by ‖.‖2. The notation‖X‖max represents
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the maximum absolute value of all elements of matrix X. The trace operator is

denoted by Tr(.) and the rank operator is demonstrated by rank(.). The block

diagonal matrix construction operator is shown by diag(.). The operator sign(.) is

used to take element-wise sign of a matrix. The element-wise comparison between

two matrices is denoted by usual ≥. A matrix is called Hurwitz if its all eigenvalues

lie in the open left half of the complex plane. The set of n× 1 real vectors and m×n

real matrices are represented by Rn and Rm×n, respectively. A symmetric matrix is

called positive definite (positive semi-definite) if all of its eigenvalues are positive (non-

negative). The space of positive definite (positive semi-definite) matrices is denoted

by Sn++ (Sn+) and X − Y ∈ Sn+ (X − Y ∈ Sn++) is symbolized with X � Y (X � Y ).

The normal distribution with zero mean and unit variance is represented by N (0, 1)

and the expected value is represented by E. The ith row and jth column of matrix X

are shown by X(i, :) and X(:, j), respectively.

Definition 5. For a given ε ≥ 0 and matrix X, rank of X is k with tolerance ε and

denoted by rank(X; ε), if exactly k singular values of X are greater than ε.

6.3 Problem Formulation

6.3.1 Linear Time-Invariant System Controlled by Linear Con-

troller

The linear time-invariant (LTI) system controlled by linear controller K ∈ Rm×n is

considered as follows:

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

u(t) = Kx(t), (6.1)
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where x(t) ∈ Rn denotes the state vector, A ∈ Rn×n denotes the state matrix, B ∈

Rn×m denotes the input matrix, u(t) ∈ Rm denotes the control input, and x0 ∈ N (0, 1)

denotes the initial condition of the system.

6.3.2 Row-Column Sparse Linear Quadratic Controller (LQC)

Design

Suppose that a linear time-invariant (LTI) system along with linear controller is given

as shown in (6.1).

Definition 6. A stabilizing controller K is called row-column (r, c)-sparse if and

only if each of its rows/columns has at most r/c non-zero elements. Mathematically

describing, it means that for 1 ≤ i ≤ m and for 1 ≤ j ≤ n, m + n constraints

‖K(i, :)‖0 ≤ r and ‖K(:, j)‖0 ≤ c hold, respectively.

Given a non-negative integer ordered pair (r, c), the goal is to design a row-column

(r, c)-sparse LQC design which minimizes the following quadratic functional:

J(K) := E
(∫ ∞

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt

)
, (6.2)

where Q � 0 and R � 0 are corresponding state and input weight matrices, respec-

tively.

Our goal can mathematically be translated to solve the following optimal control

problem:

minimize
K

J(K) (6.3a)

subject to: K : Row-Column (r, c)-sparse. (6.3b)
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6.4 Rank-Constrained Optimization Reformulation

In order to reformulate the constraints of an optimization problem as rank-constrained

linear matrix inequalities, we state the following lemma proposed by [15].

Lemma 27 ([15]). Let U ∈ Rn×n, V ∈ Rn×m, W ∈ Rm×m, and Y ∈ Rm×n, with

U � 0. Then, rank(M) = n if and only if W = YUYT , VT = YU , and Z = U−1

where

M =


U V In

VT W Y

In YT Z

 .

Assuming that x0 ∈ N (0, 1), considering the fact E(x0x
T
0 ) = I, and doing simple

expected value calculations it is resulted that

J(K) = Tr(QX11 +KTRKX11),

where X11 denotes the unique positive definite solution of the following Lyapunov

equation:

(A+BK)X11 +X11(A+BK)T + In = 0.

Utilizing the Lemma 27 with U = X11, V = X12, and W = X22, we construct the

following equivalent rank-constrained optimization problem of problem (6.3):
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minimize
K,X11,X22,X12,Z11

Tr(QX11) + Tr(RX22) (6.4)

subject to: K : Row-Column (r, c)-sparse,

X11 � 0,

AX11 +X11A
T +BXT

12 +X12B
T + In = 0,

rank(


X11 X12 In

XT
12 X22 K

In KT Z11

) = n,

Now, we translate the row-column (r, c)-sparsity of K into rank constraints via

the following proposition.

Proposition 28. The optimization problem (6.4) can equivalently be reformulated

into the following rank-constrained optimization problem:

minimize
K,X11,X22,X12,Z11

Tr(QX11) + Tr(RX22) (6.5a)

subject to: X11 � 0, (6.5b)

AX11 +X11A
T +BXT

12 +X12B
T + In = 0, (6.5c)

rank(


X11 X12 In

XT
12 X22 K

In KT Z11

) = n, (6.5d)

rank

(
diag

(
K(i, :)

))
≤ r, 1 ≤ i ≤ m, (6.5e)

rank

(
diag

(
K(:, j)

))
≤ c, 1 ≤ j ≤ n. (6.5f)
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For the sake of simplicity in our notations let us assume that

H =


X11 X12 In

XT
12 X22 K

In KT Z11

 .

6.5 Bi-Linear Rank Penalty Technique for Com-

puting Row-Column (r, c)-Sparse LQC Design

All the expressions in optimization problem (6.5) are convex excluding the m+n+ 1

rank constraints (6.5d), (6.5e), and (6.5f). In this section, we describe our strategy

in facing such non-convex constraints.

It is a well-known fact that existence of the rank constraint leads to computa-

tional difficulties in the corresponding optimization problem. Hence, to handle such

a difficulty, we employ the bi-linear rank penalty technique which has been shown to

be effective in recent research works by [26–28, 72, 77]. Basically, such a methodology

is proposed on the basis of substituting the rank constraints with convex relaxations

on positive semi-definite cone and subsequently, establishing additional convex con-

straints along with a bi-linear term to the objective function. Thus, (6.5d) is replaced

by the positive semi-definite constraint H � 0 while establishing such additional con-

vex constraints along with a bi-linear term to the corresponding objective function.

To make a similar convex relaxation regarding the rank constraints (6.5e), and

(6.5f), motivated by sparsification via non-fragility notion presented by [33], we make

the assumption that for all elements, our resulted row-column (r, c)-sparse K has the

same sign of corresponding standard LQR design namely KLQR. In fact, in [33], the

ijth element of a class of (non-fragility)-based sparsified controller Knfs is obtained
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via the following rule:

Knfs
ij = 0, if |KLQR

ij | ≤ ρ,

Knfs
ij = KLQR

ij , if |KLQR
ij | > ρ,

where ρ denotes the non-fragility of KLQR.

Thus, such an assumption on sign of elements of our proposed row-column (r, c)-

sparse K can be embedded in:

K ◦ sign(KLQR) ≥ 0,

which enables us to relax the m + n rank constraints (6.5e) and (6.5f) which leads

to obtain a problem with all convex constraints and auxiliary bi-linear terms in the

objective function which can be handled utilizing the iterative algorithm implemented

by bi-linear rank penalty technique.

Remark 13. To provide more details on ρ, we express the definition of non-fragility

introduced by [33] as follows:

ρ := sup{α > 0 : A+B(K + ∆K) is Hurwitz, ∀∆K ∈ Sα},

where

Sα := {X ∈ Rm×n : ‖X‖max < α}.

Note that Sρ denotes the maximal stabilizing hypercube with side length 2ρ, i.e., if we

add any point ∆K of Sρ to K, it will give us a stabilizing static feedback controller

K + ∆K.

Inspired by Theorem 5 in [27], we state the following similar theorem.
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Theorem 29. Let us consider the rank-constrained optimization problem (6.5) and

employ the following auxiliary optimization problem:

minimize
K,X11,X22,X12,Z11,G′s

Tr(QX11) + Tr(RX22) + νTr(GH) + νr

m∑
i=1

Tr(Gi
rH

i
r)

+ νc

n∑
j=1

Tr(Gj
cH

j
c ) (6.6)

subject to: (6.5b)− (6.5c),

0 � G � I2n+m, Tr(G) = n+m,

H � 0,

0 � Gi
r � In, Tr(Gi

r) = n− r, 1 ≤ i ≤ m,

H i
r � 0, 1 ≤ i ≤ m,

0 � Gj
c � Im, Tr(Gj

c) = m− c, 1 ≤ j ≤ n,

Hj
c � 0, 1 ≤ j ≤ n,

in which ν > 0, νr > 0, and νc > 0 are some given design parameters and H i
r =

diag

(
K(i, :) ◦ sign

(
KLQR(i, :)

))
and Hj

c = diag

(
K(:, j) ◦ sign

(
KLQR(:, j)

))
are

considered for 1 ≤ i ≤ m and 1 ≤ j ≤ n, respectively. By G’s in subscript of

minimize, we mean G, Gi
r’s, and Gj

c’s. If problem (6.5) is feasible, then there exist

constants η > 0, ηr > 0, and ηc > 0 for which the optimal solutions H, H i
r’s, and

Hj
c ’s achieved by solving the (6.6) satisfy

rank(H; ην−1) ≤ n,

rank(H i
r; ηrνr

−1) ≤ r, 1 ≤ i ≤ m,

rank(Hj
c ; ηcνc

−1) ≤ c, 1 ≤ j ≤ n.

According toH � 0 and the specific structure of matrixH the inequality rank(H) ≥

n is satisfied. As a result of Theorem 29, we are able to solve the optimization problem
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(6.6) for an appropriately-selected parameter ν to obtain a sub-optimal solution to

the problem (6.5). To simplify our notations, we denote the stack of all optimization

variables except the variables G, Gi
r’s, and Gj

c’s by Z. The optimization problem

(6.6) can be restated as

minimize
Z,G,Gir

′s,Gjc
′
s

F(Z,G,Gi
r

′
s,Gj

c

′
s)

subject to: Z ∈ CZ ,

G ∈ CG,

Gi
r ∈ CGir , 1 ≤ i ≤ m,

Gj
c ∈ CGjc , 1 ≤ j ≤ n,

where CZ is the convex set formed by the constraints (6.5b)-(6.5c) in company with

H � 0, H i
r � 0, and Hj

c � 0 and the convex set CG is characterized by Tr(G) = n+m

and 0 � G � I2n+m. The similar notational agreement to Gi
rs and Gj

cs are applied as

well. We mention that F(Z,G,Gi
r
′
s,Gj

c
′
s) represents the bi-linear objective function

in the optimization problem (6.6). The previously mentioned reformulation enables us

to tackle this problem by iteratively minimizing the objective function for Z and G’s.

The key steps of such an iterative method are twofold: Z-minimization sub-problems

and G’s-minimization sub-problems. As both Z-minimization and G’s-minimization

steps are convex optimization problems, they can be executed in an efficient way.

Fortunately, for the G’s-minimization, there exists an analytic solution, expressed by

the next theorem which is built on Theorem 6 by [27].
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Theorem 30. The optimal solution of the G’s-minimization step is presented with

G∗ = I2n+m −
n∑
p=1

upup
T , (6.7)

Gi
r

∗
= In −

r∑
pr=1

uipru
i
pr

T
, 1 ≤ i ≤ m, (6.8)

Gj
c

∗
= Im −

c∑
pc=1

upcu
j
pc

T
, 1 ≤ j ≤ n, (6.9)

where vectors up for p = 1, . . . , n represent the singular vectors corresponding to

the n greatest singular values of H. Vectors uipr and ujpc are defined similarly for

pr = 1, . . . , r and pc = 1, . . . , c, respectively.

We employ the following sequence of iterations to achieve the minimizer of the

constrained problem (6.6). First, we solve the Z-minimization and G’s-minimization

sub-problems

Z(k+1) = arg minimize
Z∈CZ

F(Z,G(k), Gi,(k)
r , Gj,(k)

c ), (6.10)

G(k+1) = I2n+m −
n∑
p=1

u(k+1)
p u(k+1)

p

T
, (6.11)

Gi,(k+1)
r = In −

r∑
pr=1

ui,(k+1)
pr ui,(k+1)

pr

T
, 1 ≤ i ≤ m, (6.12)

Gj,(k+1)
c = Im −

c∑
pc=1

uj,(k+1)
pc uj,(k+1)

pc

T
, 1 ≤ j ≤ n, (6.13)

where H(k+1) =
∑2n+m

p=1 σ
(k+1)
p u

(k+1)
p u

(k+1)
p

T
is the singular value decomposition of

H(k+1). We have similar notations for H i
r’s and Hj

c ’s. The stopping criterion is

established by ε(k+1) ≤ ε∗, where ε∗ denotes the pre-specified desired precision, with

the following update rule:

ε(k+1) =
‖K(k+1) −K(k)‖2

‖K(k+1)‖2

. (6.14)

127



Algorithm 1: Solution to problem (6.6)

Inputs: A, B, Q, R, ν, νr, νc and ε∗.
1: Initialization:

Set G(0) = I2n+m, G
i,(0)
r = Im 1 ≤ i ≤ m,

G
j,(0)
c = In, 1 ≤ j ≤ n, ε(0) > ε∗, K(0) = 0, and k = 0.

2: While ε(k) > ε∗ Do
3: Update Z(k+1) solving the (6.10),
4: Update G(k+1) via (6.11),

5: Update G
i,(k+1)
r ’s via (6.12),

6: Update G
j,(k+1)
c ’s via (6.13),

5: Update ε(k+1) via (6.14),
6: k ← k + 1,
7: End While
8: Truncate K.

Output: K

In the final step of the algorithm, we truncate unimportant elements, e.g., the ones

less than 5×10−5, of the computed K. The small enough elements showcase relatively

weak couplings among the nodes in the controller design. Our proposed algorithm is

summarized in Algorithm 1.

Remark 14. It is remarkable that in implementation phase of our algorithm, uti-

lization of a constraint to bound Tr(QX11) + Tr(RX22) will help us to find a better

locally optimal solutions. Because, otherwise, by removing them, convex optimization

solver would not be able to give row-column (r, c)-sparse designs with higher quality

in terms of sparsity-performance specifications. Also, due to some practical purposes,

sometimes, it is not permitted to have a quadratic performance loss larger than a

certain value which highlights the necessity of using such an optimization constraint.

Remark 15. By putting r = m our row-column (r, c)-sparse design reduces to column

c-sparse design. Likewise, substituting c = n changes our row-column (r, c)-sparse

design to row r-sparse design. Additionally, our row-column (r, c)-sparse design can

be generalized to any sparsity-promoting control problem with sparsity constraints in

the form of ‖S(K)‖0 ≤ s in which S(K) is an arbitrarily-chosen set of controller
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elements Kij’s and s is a pre-fixed non-negative integer number.

6.6 Numerical Simulations

To assess the efficacy of our proposed methodology, we consider the class of randomly-

generated linear systems. Such systems can be generated via MATLAB command

randn.

Also, we define the following performance measure to make a comparison between

the given controller and row-column (r, c)-sparse one:

R = 100× J(K)− J(KLQR)

J(KLQR)
,

where J(K) and J(KLQR) denotes the corresponding quadratic performance losses

for K and KLQR, respectively.

6.6.1 Row-Column (r, c)-Sparse LQC Design

Let us consider 25×25 randomly-generated system A and 25×20 randomly-generated

input matrix B. Suppose that Q = 2I25, R = I20, r = 10, c = 13, ε∗ = 0.0005,

ν = νr = νc = 5000.

Running the Algorithm 1, we obtain row-column (10, 13)-sparse LQC design for

which the sparsity pattern is depicted by Figure 6.1. The measure R for such a design

is equal to 39.08 % while 60 % of controller elements has been sparsified.

6.6.2 Sparsity-Performance Trade-Offs in terms of (r,R) and

(c,R) Pairs

Considering the same randomly-generated matrices A and B, we investigate the re-

lationship between R % and r by fixing the c and vice versa. Firstly, we assume that
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Figure 6.1: Sparsity pattern of row-column (10, 13)-sparse LQC design for 25 × 25
randomly-generated system with 25 × 20 randomly-generated input matrix
B. Blue dots represent the non-zero elements and it nz denotes the number
of non-zero elements.

c = 13 is fixed, then for 10 ≤ r ≤ 16, then setting the Q = 2I25, R = I20, ε∗ = 0.0005,

ν = νr = νc = 5000, Figure 6.2 is plotted. As it is observed, there exists a fundamen-

tal trade-off between r (maximum allowed density level for each row of controller) and

performance loss percentage R %. Secondly, assuming the r = 20 and 10 ≤ c ≤ 16,

and substituting the Q = 2I25, R = I20, ε∗ = 0.0005, ν = νr = νc = 5000, Figure

6.3 is drawn which depicts the fundamental trade-off between c (maximum allowed

density level for each column of controller) and performance loss percentage R %.

6.7 Conclusion

We utilize the bi-linear rank penalty technique and non-fragility notion for the de-

sign of row-column (r, c)-sparse LQC for LTI systems. We do not use the `1-norm

130



r
10 11 12 13 14 15 16

R
 %

0

5

10

15

20

25

30

35

40

Figure 6.2: Relationship between r and R % for 25× 25 randomly-generated system with
25× 20 randomly-generated input matrix B.

relaxation. Instead, utilizing the non-fragility notion motivates us to translate the

row-column (r, c)-sparse LQC design problem into a rank-constrained optimization

problem which can sub-optimally be handled via bi-linear rank penalty technique.

As future directions, the extension of row-column (r, c)-sparse LQC design to large-

scale systems and improving the sub-optimality caused by non-fragility notion can be

interesting topics.
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Figure 6.3: Relationship between c and R % for 25× 25 randomly-generated system with
25× 20 randomly-generated input matrix B.
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Chapter 7

State Feedback Controller

Sparsification via Non-Fragility

Notion

7.1 Introduction

The notion of fragility has attained growing attention in control theory literature. In

past two decades, to name a few, we can list the following research works [113–124].

Such a notion basically refers to the sensitivity of the controller design parameters

with respect to the stability guarantee. Two fundamental reasons are expressed to

highlight the importance of the fragility in controller implementation and control the-

oretical design; (i) Imprecision in analog-digital and digital-analog conversions, finite

word length, and finite resolution measuring instruments and round-off errors in nu-

merical computations [113]. (ii) Every theoretical design needs readjustment because

no scalar index can describe all the performance requirements in a control system

[113]. Consequently, a certain level of tolerance against the changes in controller

parameters is necessary.
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Considering the trade-off between robustness and non-fragility [113], researchers

have made an effort to design robust and non-fragile controllers simultaneously. In

[118–121] and [123], non-fragile H∞ controllers are proposed for diverse structural

uncertainties including multiplicative and additive via LMI approach. Also, a set

of stabilizing robust non-fragile controllers are formulated in [122]. In [124], it is

observed that the traditional Ziegler-Nichols PID tuning method is surprisingly non-

fragile, in the sense that it remains in the admissible stabilizing region. Thus, it has

been shown that the notion of non-fragility has been significantly effective in control

theoretic designs and applications.

After highlighting the effectiveness of the non-fragility in controller design, from

another different point of view, we note that during the past decade, the area of

sparsity-promoting optimal control has attained considerable achievements [1, 13,

14, 18, 21, 26–30, 32, 35, 38, 40, 42]. The main aim in sparsity-promoting optimal

control is to decrease the number of communication links among nodes preserving the

guaranteed level of performance.

All the above-mentioned sparsity-promoting control methods are unfortunately

unable to deal with large-scale systems and fail to propose a sparse feedback con-

troller for such systems. In this chapter, we will show how a notion of non-fragility

can be utilized as an effective tool to find sparse stabilizing feedback controllers in

the vicinity of a given stabilizing feedback controller even for a large-scale system.

However, a drawback of our proposed method is that an upper bound exists for the

rate of sparsification while other sparsity-promoting optimal controller design meth-

ods do not have such an issue when they are applied to medium-size systems. Another

drawback is that we do not consider any performance measure in our sparsification

approach and it is intentional, since we want to propose a sparsification method which

is capable of being applied to large-scale systems. However, we will take advantage

of H2 performance measure to improve the closed-loop performance in the case of
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small-size systems. In addition to deriving the lower and upper bounds on our in-

troduced non-fragility, via extensive numerical simulations, we visualize the trade-off

between upper bound on non-fragility and sparsity level of the feedback controller.

Also, it is illustrated through case studies that the (non-fragilty)-based sparsification

procedure can outperform a well-respected existing method in the literature, in terms

of sparsity-performance trade-off behavior. In fact, our numerical simulations show

that although our proposed sparsification method does not employ any performance

measure, surprisingly, its closed-loop performance loss is reasonable and not quite

much. Moreover, for the case of small-size systems, utilizing a H2 performance mea-

sure, two greedy algorithms are proposed to obtain a set of sparse feedback controllers

out of a given stabilizing feedback controller.

This chapter is structured as follows: After stating the mathematical notations in

Section 7.2, Section 7.3 defines the concept of non-fragility for a feedback controller

and then provides analytic lower and upper bounds on such a defined non-fragility

notion. Section 7.4 explains how the introduced non-fragility notion can be helpful to

sparsify a given feedback controller. Section 7.5 by providing the extensive numerical

simulations evaluates the effectiveness of our non-fragility based sparsification method

for large-scale systems, points out some notes about performance loss, sparsity level,

and their relationship including that the sparser feedback controller we consider, the

more fragility is observed. As further, two greedy algorithms (brute force greedy and

gradient-based greedy) are proposed to obtain a set of sparse feedback controllers.

Section 7.6 mentioning some discussions and concluding remarks ends the chapter.

7.2 Mathematical Notations

In this chapter, vectors and matrices are shown with lower-case and upper-case letters,

respectively. Set of real numbers, n × 1 real vectors, and m × n real matrices are

135



represented by R, Rn, and Rm×n, respectively. The transpose of a matrix is denoted by

superscript T . The ith column of matrix M is denoted by M(:, i). Vector ei is defined

as I(:, i) where I denotes the identity matrix. The Kronecker matrix product and

Hadamard matrix product are represented by ⊗ and ◦, respectively. The Euclidean

norm of vector v is denoted by ‖v‖2. The notation ‖M‖max represents the maximum

absolute value of all elements of matrix M . By λi(M), we mean the eigenvalue of M

which has the ith largest real part and λmax is defined as λmax := λ1. A matrix M

is called Hurwitz if and only if λmax(M) < 0. The positive definiteness and negative

definiteness are shown by � 0 and ≺ 0, respectively. The `1 norm of matrix M is

sum of absolute value of its elements and denoted by ‖M‖1. The number of non-zero

elements of matrix M is denoted by ‖M‖0 and called `0 sparsity measure. Trace of

square matrix M is sum of its eigenvalues and shown by Tr(M). The element-wise

sign function of matrix M is represented by sign(M). The supremum of a set is

denoted by sup. The set subtraction and union are denoted by \ and ∪, respectively.

The empty set is represented by ∅. The big O time complexity is denoted by O.

7.3 Non-Fragility Notion: Definition, Lower and

Upper Bounds

Suppose that the linear time-invariant (LTI) system

ẋ(t) = Ax(t) +Bu(t) +Dd(t), (7.1)

is controlled by

u(t) = Fx(t), (7.2)

where x(t) ∈ Rn, u(t) ∈ Rm, d(t) ∈ Rp, and F denote the state vector, control input,

disturbance input, and state feedback controller, respectively.
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Given a triplet Σ = (A,B, F ) wherein F is an arbitrary stabilizing state feedback

controller, the non-fragility is defined as follows:

ρ(Σ) := sup{r|A+B(F + ∆) stays Hurwitz ∀∆ ∈ Sr}, (7.3)

wherein

Sr := {X ∈ Rm×n|r > 0, ‖X‖max < r}. (7.4)

It is noteworthy that Sρ(Σ) denotes the largest stabilizing hypercube with side length

2ρ(Σ), i.e., if we add any point ∆ of Sρ(Σ) to F , it will give us a stabilizing state

feedback controller F + ∆. In the sequel, we present Theorem 31 to enlighten the

point that our introduced non-fragility is a strictly positive number, in other words,

it is well-posed.

Theorem 31. Given a triplet Σ = (A,B, F ), the non-fragility ρ(Σ) defined by (7.3)

is a strictly positive number.

Proof. Let us define the following scalar-valued function:

g(V ) := λmax(A+BV ) = λmax

(
A+B

n∑
i=1

eTi ⊗ V (:, i)
)
.

We know that the function g(v) is a continuous function of v where

v := [V (:, 1)T . . . V (:, n)T ]T .

Because, it is a composition of a series of continuous operations including taking

maximum, taking real part, and calculating eigenvalues of affine expression of state

feedback controller. Thus, defining the

f : = [F (:, 1)T . . . F (:, n)T ]T , δ := [∆(:, 1)T . . .∆(:, n)T ]T ,
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and considering the continuity property of g, we can say that

g(f + δ)− g(f) ≤ ε, (7.5)

holds for all ‖δ‖2 ≤ c(ε) where c(ε) is a strictly positive number which depends on

ε. To guarantee g(f + δ) < 0, we enforce g(f) + ε < 0 to hold, i.e., we choose ε as

follows:

ε < −g(f) = −λmax(A+BF ).

The side length of the largest hypercube inscribed by ‖δ‖2 ≤ c(ε) (equivalently ‖∆‖max

in space of Rm×n) is equal to 2c(ε)√
mn

. Because, all the 2mn corner points of the hypercube,

i.e., (± c(ε)√
mn
, . . . ,± c(ε)√

mn
) satisfies

mn∑
i=1

δ2
i ≤ c(ε)2,

and particularly, the equality holds which implies the maximality of such a hypercube.

Thus, regarding the non-fragility ρ(Σ) we deduce

ρ(Σ) ≥ c(ε)√
mn

, ∀ε ∈
(
0,−λmax(A+BF )

)
. (7.6)

Since c(ε)√
mn

> 0 holds, then non-fragility ρ(Σ) is strictly positive and proof is done.

Remark 16. To obtain the best lower bound on non-fragility ρ(Σ), we can take supre-

mum from lower bound c(ε)√
mn

over all choices ε ∈
(
0,−λmax(A + BF )

)
. It can easily

be checked that c(ε) is an increasing function of ε. Thus, the best lower bound would

be limε→−λmax(A+BF ) c(ε).

Remark 17. It is noteworthy that the result of Theorem 31 may seem trivial because

of r > 0 in definition of Sr. However, it is not the case and the result of Theorem 31
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is nontrivial. Because, Theorem 31 basically shows that in (7.3), the set on which the

supremum is taken, i.e., the following set:

{r|A+B(F + ∆) stays Hurwitz ∀∆ ∈ Sr},

is not empty. If such a fact is not shown, then taking the supremum will not be possible

and consequently, the strict positivity of the non-fragility ρ(Σ) defined by (7.3) cannot

be implied trivially.

Remark 18. In the rest of the chapter, for the sake of the simplicity in our notations,

we drop the argument Σ from ρ(Σ) and simply use ρ.

To compute ρ in an exact way, the infinite set of feasibility problems should be

considered. However, such an approach is not computationally cheap nor practical.

In [125], it is mentioned that calculating the exact minimum destabilizing real pertur-

bation is unfortunately impossible. Thus, we present the following theorems which

suggest an analytic upper bound on ρ.

Theorem 32. Given a triplet Σ = (A,B, F ), the non-fragility ρ(Σ) defined by (7.3)

is upper bounded by

ρ̂ = −Tr(A+BF )

‖B‖1

. (7.7)

Proof. The expression Tr(A+BF +B∆) is sum of eigenvalues of A+BF +B∆ and

must be negative. Thus, we have

Tr(B∆) < −Tr(A+BF ), (7.8)

for all ∆ in Sρ. Since

(ρ− ζ)sign(BT ) ∈ Sρ,
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then (7.8) holds for

∆ = (ρ− ζ)sign(BT ),

(
In fact, the left hand side of (7.8) takes its maximum value for ∆ = (ρ−ζ)sign(BT )

)
.

Equivalently, we have

Tr(B∆) = Tr
(
B(ρ− ζ)sign(BT )

)
= (ρ− ζ)‖B‖1 < −Tr(A+BF ).

Taking the supremum from both sides, (7.7) is resulted.

Stating the following theorem, we improve the upper bound ρ̂.

Theorem 33. Given a triplet Σ = (A,B, F ), the non-fragility ρ(Σ) defined by (7.3)

is upper bounded by γρ̂ where

γ = sup{α|λmax

(
A+BF + βρ̂Bsign(BT )

)
< 0,∀β ∈ [0, α]}. (7.9)

and the parameter γ is less than or equal to 1.

Proof. Substituting the α = 0, we observe that

λmax

(
A+BF + βρ̂Bsign(BT )

)
= λmax(A+BF ) < 0.

Because, A + BF is Hurwitz. Since λmax

(
A + BF + βρ̂Bsign(BT )

)
is a continuous

function of β and it takes the negative value of λmax(A+BF ) at β = 0, then α > 0.

Since for γ + θ, there exists a β ∈ [γ, γ + θ] for which we have

λmax

(
A+BF + βρ̂Bsign(BT )

)
≥ 0,

then ρ < (γ + θ)ρ̂ is resulted. By taking the infimum from both sides, the proof of
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first part of the theorem is done.

To prove the second part, for β = 1, we claim that

λmax

(
A+BF + βρ̂Bsign(BT )

)
≥ 0.

Because,

n∑
i=1

λi
(
A+BF + ρ̂Bsign(BT )

)
= Tr

(
A+BF + ρ̂Bsign(BT )

)
=

Tr(A+BF ) + Tr
(
ρ̂Bsign(BT )

)
= Tr(A+BF ) + ρ̂Tr

(
Bsign(BT )

)
= 0,

and since the sum of all real parts of eigenvalues is 0, then λmax cannot be less than

0. Meanwhile, the last line of the above-mentioned lines is resulted from (7.7). Thus,

α cannot be greater than or equal to 1. Since α < 1, then according to the definition

of supremum, it is resulted that γ ≤ 1.

7.4 State Feedback Controller Sparsification Pro-

cedure

After obtaining the upper bounds on non-fragility, by taking advantage of introduced

non-fragility notion, a procedure to sparsify a given stabilizing state feedback con-

troller is presented. The following theorem enlightens such a procedure and shows

how the notion of non-fragility can be utilized as an effective sparsification tool,

specifically, for the case of large-scale systems.

Theorem 34. Given a triplet Σ = (A,B, F ), a class of stabilizing state feedback

controllers F nf consisting of sparse stabilizing state feedback controllers F nfs is char-

acterized as follows:

F nf = Gρ ◦ F, (7.10)
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where  Gρ
ij = 0 if (i, j) ∈ S,

Gρ
ij ∈ (1− ρ

|Fij | , 1 + ρ
|Fij |)\{0} otherwise,

(7.11)

and sparsity structure S ⊆ Iρ = {(i, j)| |Fij| < ρ}. When S 6= ∅, F nf is taken to

account as a sparse stabilizing state feedback controller which is called F nfs.

Proof. To prove that F nf is stabilizing, we show that (F nf − F ) ∈ Sρ. First, let us

consider (i, j) ∈ S. Then,

|F nf
ij − Fij| = |0− Fij| < ρ,

holds, since (i, j) ∈ S and S ⊆ Iρ. Second, assume that (i, j) /∈ S. Thus, we get

|F nf
ij − Fij| = |(G

ρ
ij − 1)Fij| = |Gρ

ij − 1||Fij|.

Since (i, j) /∈ S, then

− ρ

|Fij|
< Gρ

ij − 1 <
ρ

|Fij|
,

or equivalently

|Gρ
ij − 1| < ρ

|Fij|
.

Thus,

|F nf
ij − Fij| < ρ,

is resulted.

Since for all elements of F nf − F , |F nf
ij − Fij| < ρ is satisfied, then

‖F nf − F‖max < ρ,

holds, i.e., (F nf − F ) ∈ Sρ and proof is done.
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Remark 19. Note that in the case that (i, j) /∈ S is satisfied, Gρ
ij can be set to 1,

when we desire to remove just structured weak links and let the other links to remain

unchanged.

Remark 20. In our proposed sparsification procedure, to mention the dependency of

F nfs on ρ̃, we will simply use F nfs(ρ̃) whenever it is needed.

Due to the fact that we cannot compute the exact value of non-fragility ρ, we

develop the following sparsification procedure based on our obtained upper bounds

on non-fragility ρ:

Non-Fragility Sparsification (NFS) Procedure

1. Begin

2. Compute ρ̂ via (7.7),

3. Compute γ via (7.9),

4. Compute ρ̃ = γρ̂,

5. Compute F nfs(ρ̃),

6. If λmax

(
A+BF nfs(ρ̃)

)
< 0, go to step 7,

else, update ρ̃ with (η − ε)γρ̂ and go to step 5,

where η < 1 is computed via

λmax

(
A+BF nfs(ηγρ̂)

)
= 0,

and ε is an infinitesimal strictly positive number,

7. End.
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Remark 21. In addition to the advantages of (NFS) procedure, including its high

speed, simplicity, and applicability to large-scale systems, the sparse state feedback

controller proposed by this method can be utilized as an initialization for methods

presented by [1, 21].

An immediate implication of Theorem 34 is stated in the following corollary.

Corollary 35. Given a triplet Σ = (A,B, F ), the non-fragility ρ(Σ) defined by (7.3)

is upper bounded by ηγρ̂.

Remark 22 (Time Complexity). In the worst-case scenario, the time complexity of

(NFS) procedure is equal to O
(
n3s+mn+(n3 +mn)s

)
or equivalently O

(
(n3 +mn)s

)
wherein s refers to the time complexity of solving the equation λmax(A+ BF nfs) = 0

with a prespecified precision. The expression n3 is the corresponding term for the

eigenvalue decomposition (via Cholesky factorization) [126]. Since we need to find the

λmax in (NFS) procedure, such a term appears in the time complexity. The term mn

shows the time complexity of computation of F nfs via Hadamard matrix product and

element-wise comparison. Assuming the m ≤ n, the dominant term in O
(
(n3+mn)s

)
is n3s. As another sparsification method, the method proposed by [1], attains the time

complexity of O
(
(n3 + mn)q

)
in which n3, mn, and q are corresponding terms to

(Lyapunov and Sylvester equations), (matrix addition, Hadamard matrix product, and

element-wise comparison), and Frobenius norm stopping criteria of the algorithm,

respectively. Assuming the m ≤ n, the dominant term in O
(
(n3 + mn)q

)
is n3q.

It is noteworthy that (NFS) procedure is finished after at most 2 iterations and s

is determined based on the chosen nonlinear optimization method while the method

proposed by [1] is finished whenever the Frobenius norm stopping criteria are fulfilled

and there is no analytical determination about q.
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7.5 Numerical Simulations

This section evaluates the effectiveness of our proposed method in terms of capability

of being applied to large-scale systems, relative performance/sparsity specifications,

and trade-off between upper bound on non-fragility and sparsity level of state feed-

back controller. Moreover, for the certain case of the small-size systems, two greedy

algorithms are proposed to obtain a set of sparse state feedback controllers given a

stabilizing state feedback controller. Unlike the case of large-scale systems, the small

size of such systems allows us to consider and improve the closed-loop performance.

It is remarkable that throughout the section, to choose the state feedback con-

troller to be sparsified, i.e., F , we will utilize the standard linear-quadratic regulator

(LQR) design unless otherwise it is stated.

7.5.1 Sparsified State Feedback Controller via Non-Fragility

for Large-Scale Systems

Considering the large-scale randomly generated systems and spatially-decaying sys-

tems, the effectiveness of our non-fragility sparsification (NFS) procedure is assessed.

Randomly Generated System

Utilizing the MATLAB command randn(n), we produce 10, 000 by 10, 000 randomly

generated matrices A and B. Assuming the LQR state-weight matrix Q = 2I, LQR

input-weight matrix R = 5I, D = B, S = Iρ, Gρ
ij = 1 for all links satisfying

(i, j) /∈ S, and running the (NFS) procedure, for such a large-scale system, F nfs is

obtained. Figures 7.1 and 7.2 visualize the eigenvalues of open loop and closed loop

for both cases, (LQR) design F and (NFS) procedure F nfs, respectively. As Figures

7.1 and 7.2 demonstrate, the open loop is unstable while both closed loops are stable.

Costs and density levels for both cases, F (LQR) and F nfs (NFS), are demonstrated

145



Figure 7.1: Eigenvalues of open loop and closed loop for F (LQR) (10, 000× 10, 000 ran-
domly generated system).

J(F ) J(F nfs)
4, 191, 252.0732 4, 318, 583.8859

‖F‖0 ‖F nfs‖0

100, 000, 000 65, 126, 579

Table 7.1: Cost and cardinality quantities for F (LQR) and F nfs (NFS) (10, 000×10, 000
randomly generated system).

by Table 7.1. Table 7.1 depicts that compared to the LQR design, 34.8734 % of

links, (i.e., structured weak links) is removed and the payoff is just 3.0380 % which is

reasonable. Although the (NFS) procedure does not take advantage of optimal control

techniques nor optimization-based methods such as semi-definite program (SDP) and

second-order cone programming (SOCP), its corresponding specifications consisting

of density level and performance loss are considerably desirable.
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Figure 7.2: Eigenvalues of open loop and closed loop for F nfs (NFS) (10, 000 × 10, 000
randomly generated system).

Sub-Exponentially Spatially-Decaying System

The ijth element of sub-exponentially spatially-decaying system X is defined as fol-

lows:

Xij = ξXije−α|i−j|
β

,

wherein Xij is a normally-distributed random variable with zero mean and unit vari-

ance, i.e., it belongs to N (0, 1), α determines the band-width of matrix X, β specifies

the rate of spatially-decaying in such a system, and ξ is a positive constant.

Let us consider a 10, 000 × 10, 000 sub-exponentially spatially-decaying system with

αA = 0.5, βA = 0.5, and ξA = 10. Assuming the αB = 0.25, βB = 0.75, ξB = 10,

Q = 6I, R = 4I, D = B, S = Iρ, Gρ
ij = 1 for all links satisfying (i, j) /∈ S, and

running the (NFS) procedure, for such a large-scale system, F nfs is obtained. Figures
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7.3 and 7.4 visualize the eigenvalues of open loop and closed loop for both cases, F

(LQR) and F nfs (NFS), respectively. Similar to the randomly generated system case,

the open loop is unstable while both closed loops are stable. Costs and density

Figure 7.3: Eigenvalues of open loop and closed loop for F (LQR) (10, 000× 10, 000 sub-
exponentially spatially-decaying system).

levels for both cases, F (LQR) and F nfs (NFS), are shown in Table 7.2. Table 7.2

showcases that compared to the LQR design, 98.9600 % of links, (i.e., structured

weak links) is removed and the payoff is just 0.1333 % which is negligible. Again,

(NFS) procedure acts well and its corresponding specifications consisting of density

level and performance loss are notably convincing.

The sparsity pattern of F nfs (NFS) is depicted by Figure 7.5 and Figure 7.6 visualizes

the sparsity pattern of first 1, 000× 1, 000 diagonal sub-block of F nfs (NFS).
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Figure 7.4: Eigenvalues of open loop and closed loop for F nfs (NFS) (10, 000 × 10, 000
sub-exponentially spatially-decaying system).

J(F ) J(F nfs)
1, 241, 286.5123 1, 242, 941.7377

‖F‖0 ‖F nfs‖0

100, 000, 000 1, 040, 037

Table 7.2: Cost and cardinality quantities for F (LQR) and F nfs (NFS) (10, 000×10, 000
sub-exponentially spatially-decaying system).

7.5.2 Investigation of Relative Performance/Sparsity Speci-

fications for Medium-Size Systems

For a given F , density level of F nfs is defined by

σD := 100× ‖F
nfs‖0

‖F‖0

, (7.12)
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Figure 7.5: Sparsity pattern of F nfs (NFS); Each blue spot represents a nonzero ele-
ment of the state feedback controller and number of nonzero elements of the
state feedback controller is denoted by nz (10, 000× 10, 000 sub-exponentially
spatially-decaying system).

sparsity level of F is defined by

σS := 100− σD, (7.13)

and performance loss is defined by

σP := 100× J(F nfs)− J(F )

J(F )
, (7.14)
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Figure 7.6: Sparsity pattern of first 1, 000×1, 000 diagonal sub-block of F nfs (NFS); Each
blue spot represents a nonzero element of the state feedback controller and
number of nonzero elements of the state feedback controller is denoted by nz
(10, 000× 10, 000 sub-exponentially spatially-decaying system).

wherein J(.) denotes the squared H2-norm of the corresponding closed loop system

[1].

IEEE 39-Bus New England Power System

Let us consider a 130× 130 linear model of IEEE 39-Bus New England power system

and a 130× 10 input matrix B. Running the (NFS) procedure with Q = 7I, R = 3I,

D = B, S = Iρ, Gρ
ij = 1 for all links satisfying (i, j) /∈ S, F nfs is obtained. The

sparsity pattern of F nfs is depicted in Figure 7.7. Table 7.3 showcases the relative
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Figure 7.7: Sparsity pattern of F nfs (NFS); Each blue spot represents a nonzero element
of the state feedback controller and number of nonzero elements of the state
feedback controller is denoted by nz (130 × 130 IEEE 39-bus New England
power system).

σS (%) σP (%)
60.1538 0.007560

Table 7.3: Relative performance/sparsity specifications for closed loops with F (LQR) and
F nfs (NFS) (130× 130 IEEE 39-bus New England power system).

performance/sparsity specifications corresponding to the closed loops with F (LQR)

and F nfs (NFS). As data in Table 7.3 illustrates, the relative performance/sparsity

characteristics match the desired levels.

Randomly Generated System

Considering the 100 × 100 randomly generated matrices A and B, Q = R = I,

S = Iρ, Gρ
ij = 1 for all links satisfying (i, j) /∈ S, and running the (NFS) procedure

and algorithm proposed by [1], we obtain F nfs and sparse LQR F , respectively. For

such designs, Figures 7.8 and 7.9 depict the corresponding sparsity patterns.

Table 7.4 showcases the corresponding values of cost and density levels for both

cases. According to the data presented in Table 7.4, our proposed state feedback

controller outperforms the state feedback controller proposed by [1], because it gives

sparser state feedback controller with less quadratic cost. It is worth emphasizing

that running the (NFS) procedure for such a medium-size system takes few seconds

while optimal sparsification methods proposed by [1, 18, 21, 27, 28] are not able to

do so, i.e., our sparsification method is the fastest one among all. Also, we should
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Figure 7.8: Sparsity pattern of F nfs (NFS); Each blue spot represents a nonzero element
of the state feedback controller and number of nonzero elements of the state
feedback controller is denoted by nz (100× 100 randomly generated system).

mention that all the tests were performed on an iMac with CPU 4 GHz Intel Core i7.

Remark 23. It should be clarified that it is not claimed that in the case of medium-

size systems, (NFS) procedure always outperforms the other sparsification methods in

terms of performance-sparsity trade-off, via such a numerical simulation, it is just

shown that it may outperform the other sparsification methods in some cases. In

other words, such an outperforming highlights that although (NFS) procedure does not

embed any performance minimization along with Lyapunov/Sylvester equations, its

sparsity-performance trade-off behavior could be even better than other sparsification

methods. Also, in general, it is true that (NFS) procedure is the fastest among all at
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Figure 7.9: Sparsity pattern of F (Sparse LQR); Each blue spot represents a nonzero
element of the state feedback controller and number of nonzero elements of
the state feedback controller is denoted by nz (100× 100 randomly generated
system).

the cost of utilizing the (non-fragility)-based stability guarantee rather than utilizing

the Lyapunov/Sylvester equations. In other words, the specific advantage of (NFS)

procedure is its applicability to the large-scale systems (its high speed) while other

sparsification methods are slow Lyapunov-based methods which generally attain better

sparsity-performance trade-off in the case of medium-size systems.

Remark 24. In [1] a structured H2 design method is proposed by which, the H2

quadratic cost of a proposed sparse design can be improved. Utilizing such a structured

method can enable us to improve the H2 quadratic cost in the case that we utilize the
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J(F ) J(F nfs) ‖F‖0 ‖F nfs‖0

1162.5 1154.6 6100 6099

Table 7.4: Cost and cardinality quantities for F (Sparse LQR) and F nfs (NFS) (100×100
randomly generated system).

J(.) as a performance measure.

7.5.3 The Trade-Off Between Upper Bound on Non-Fragility

and Sparsity Level

Let us consider a set of sparse state feedback controllers designed by [1] and then

compute the sparsity level and the upper bound on non-fragility ηγρ̂. The procedure

is simply as follows:

For a 100 × 100 randomly generated system, after collecting the set of 50 sparse

LQRs F designed by [1] for B = randn(100 ), Q = I, R = I, D = B, we run the

(NFS) procedure with Q = I, R = I, D = B, S = Iρ, Gρ
ij = 1 for all links satisfying

(i, j) /∈ S. Figure 7.10 depicts the trade-off between upper bound on non-fragility ηγρ̂

and sparsity level of those 50 sparse LQRs and their corresponding (NFS) sparsified

state feedback controllers.

As Figure 7.10 illustrates, the sparser design considered for both sparse LQR F

and F nfs (NFS), the smaller upper bound on non-fragility is obtained. In other

words, sparser state feedback controllers will be more fragile in terms of notion of

the non-fragility. In Figure 7.10, such a trade-off is visualized via blue points ◦ for

set of 50 sparse LQRs F and via red points ◦ for set of 50 sparsified state feedback

controllers F nfs, respectively.

In Figure 7.10, another similar observation is that for any of 50 sparse LQRs F ,

the non-fragility of sparsified state feedback controller F nfs is less than non-fragility of

the corresponding sparse LQR F . Thus, similar to the previously mentioned trade-off,
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Figure 7.10: The trade-off between upper bound on non-fragility and sparsity level for
Sparse LQRs F designed by [1] (Blue) and F nfs (NFS) (Red) (100 × 100
randomly generated system).

a trade-off exists between upper bound on non-fragility and sparsity level.

7.5.4 Two Greedy Algorithms to Obtain a Set of Sparse State

Feedback Controllers

This subsection utilizes two greedy algorithms to determine the greedy sparsity struc-

tures Sk’s where S0 := S and Sk ⊂ S for all k ∈ {1, . . . , ‖F‖0 − ‖F nfs‖0} and obtain

the set of sparse state feedback controllers F k between F 0 := F and F ‖F‖0−‖F
nfs‖0 =

F nfs in terms of the `0 measure. As it was previously mentioned, because of scalability

complexities, such algorithms are applicable to small-size systems.
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Brute Force Greedy Algorithm

To reach the previously mentioned goal, starting from F 0 = F , at kth step, we

compute J(.) for all

F k−1 − F k−1
ij eie

T
j ,

where (i, j) ∈ Sk−1 and then by removing the link corresponding to the minimum

achievable cost (i∗k, j
∗
k), we obtain F k as

F k = F k−1 − F k−1
i∗kj
∗
k
ei∗ke

T
j∗k
.

Such an iterative approach can be summarized as the following greedy algorithm:

Brute Force Greedy Algorithm

1. Begin

2. Set F 0 = F , S0 := S = Iρ, and k = 1.

3. Find (i∗k, j
∗
k) = arg min

(i,j)∈Sk−1

J
(
F k−1 − F k−1

ij eie
T
j

)
.

4. Update F k = F k−1 − F k−1
i∗kj
∗
k
ei∗ke

T
j∗k

.

5. Update Sk = Sk−1\{(i∗k, j∗k)}.

6. If k = ‖F‖0 − ‖F nfs‖0,

then go to step 8.

7. Set k → k + 1 and go to step 3.

8. End.
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Remark 25. Considering the (7.10) and (7.11) and defining the Uk as

Uk := ∪kl=1{(i∗l , j∗l )}, (7.15)

it is followed that by setting S = Uk in (7.10) and (7.11), Gρ
ij = 1 for all links

satisfying (i, j) /∈ S, and applying such formulas to F 0 = F , F k is resulted.

Let us consider the 15× 15 randomly generated matrices A and B. Suppose that

Q = I and R = I. Applying the greedy algorithm, we visualize σP (%) versus σD (%)

in Figure 7.11.
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Figure 7.11: The visualization of σP (%) versus σD (%) obtained from brute force greedy
algorithm (15× 15 randomly generated system).

In such an illustration, blue ◦’s and red ∗’s represent (i, j) ∈ Sk−1’s and (i∗k, j
∗
k)’s,
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respectively. As it is observed, points shown by red ∗ specify a lower bound for

performance-sparsity trade-off curves. In other words, such a greedy curve provides

an improvement regrading the performance loss for our sparse state feedback con-

trollers. However, it is clear that it does not suggest the best optimal performance-

sparsity trade-off curve. In terms of scalability, the greedy algorithm is appropriate

for medium-size systems; unfortunately, it is not applicable to large-scale systems.

Gradient-Based Greedy Algorithm

Here, instead of computing the measure J(.), over all possible choices at each step,

we compute the gradient of J for F k−1. Then, we remove the link which attains the

minimum absolute value of gradient term of J for F k−1. Specifically, for the case

of the measure J(.), this method reduces the time complexity of brute force method

by ‖F‖0 (mn in the case of fully dense F ). Because, we no longer need to solve

Lyapunov equations for all possible choices at each step and in return, we solve just

2 Lyapunov equations at each step. The only pay-off is the increase in performance

loss. This method enables us to obtain a set of sparse state feedback controllers for

larger systems.

Now, the gradient-based greedy algorithm is explained by reconsidering the mea-

sure J . According to [1, 127], the gradient of the measure J is computed via:

∇J
(
F k−1 − F k−1

ij eie
T
j

)
= 2(−RF −BTP )L,

where observability Gramian P and controllability Gramian L represent the unique

positive definite solutions of the following Lyapunov equations:

(A+BF )TP + P (A+BF ) = −(Q+ F TRF ),

(A+BF )L+ L(A+BF )T = −DDT .
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Starting from F 0 = F , at kth step, we compute J(.) for all

F k−1 − F k−1
ij eie

T
j ,

where (i, j) ∈ Sk−1 and then by removing the link corresponding to the minimum

absolute value of the gradient term (i∗k, j
∗
k), we obtain F k as

F k = F k−1 − F k−1
i∗kj
∗
k
ei∗ke

T
j∗k
.

Such an iterative approach can be summarized as the following greedy algorithm:

Gradient-Based Greedy Algorithm

1. Begin

2. Set F 0 = F , S0 := S = Iρ, and k = 1.

3. Find (i∗k, j
∗
k) = arg min

(i,j)∈Sk−1

|∇J
(
F k−1 − F k−1

ij eie
T
j

)
F k−1
ij |.

4. Update F k = F k−1 − F k−1
i∗kj
∗
k
ei∗ke

T
j∗k

.

5. Update Sk = Sk−1\{(i∗k, j∗k)}.

6. If k = ‖F‖0 − ‖F nfs‖0,

then go to step 8.

7. Set k → k + 1 and go to step 3.

8. End.

Considering the 20× 20 randomly generated matrices A and B, assuming that Q = I
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and R = I, and applying the greedy algorithm, we visualize σP (%) versus σD (%) in

Figure 7.12.
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Figure 7.12: The visualization of σP (%) versus σD (%) obtained from brute force and
gradient-based greedy algorithms (20× 20 randomly generated system).

In such an illustration, blue ◦’s and red ∗’s represent (i, j) ∈ Sk−1’s and (i∗k, j
∗
k)’s

achieved by brute force method, respectively. The green +’s and magenta �’s demon-

strate the (i∗k, j
∗
k)’s achieved by gradient-based greedy method and randomly sparsified

(ik, jk)’s, respectively. The black 4 depicts the state feedback controller achieved by

randomly chosen sparsity structure. As it is observed, points shown by green + spec-

ify sub-optimal performance-sparsity trade-off curve. In other words, such a greedy

curve provides a cheap computational method while attaining a relatively poor perfor-

mance loss for our sparse state feedback controllers. As depicted, the state feedback
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controller obtained from randomly chosen sparsity structure and randomly sparsified

state feedback controllers are outperformed by gradient-based greedy method.

7.6 Conclusion

A notion of non-fragility is introduced and some lower and upper bounds are derived

for such a notion of non-fragility. On the basis of such a notion of non-fragility, a

sparsification procedure is presented. Sparsity/performance features of such sparsi-

fied state feedback controllers are evaluated via large-scale and medium-size systems.

Considering the set of sparse state feedback controllers for medium-size systems, a

trade-off between our achieved upper bound on non-fragility and sparsity level of

those state feedback controllers is observed for both sparse state feedback controllers

and their sparsified ones. Also, there exists a trade-off between upper bound on

non-fragility and sparsity level when we compare any of sparse LQRs with its corre-

sponding sparsified state feedback controller. In addition, two greedy algorithms are

proposed to obtain a set of sparse state feedback controllers, the brute force one and

the gradient-based one which is computationally cheaper while attaining a reason-

ably higher sub-optimality level. A remaining problem could be the improvement of

limited sparsification rate of the (non-fragility)-based sparsification method.
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Chapter 8

Improving Sparsity in Time and

Space via Self-Triggered Sparse

Optimal Controllers

8.1 Introduction

The area of distributed control systems has rapidly been growing in the past decade,

and it has been applied to various real-world problems including formation control of

autonomous vehicles, power systems wide area control, wireless networks stochastic

control, and so on. In several important applications, the centralized control method-

ologies fail, since it requires a dense communication graph which is not practically

achievable in most cases. Also, the less communication we have, the less we are

faced with privacy issues; therefore network information is kept more secure. Thus,

minimizing the number of communication links with pre-specified guarantee on per-

formance loss becomes crucial which is the main goal of the Spatial Sparse Optimal

Control [1].

Sampled-data control systems have thoroughly been investigated in previous decades
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[81, 83]. In such control systems, the system to be controlled is considered in contin-

uous time; however, the controller is synthesized in a discrete manner [83]. One of

the significant issues in such an area is to decrease the number of samplings. In other

words, the longer maximum allowable time interval is desired in terms of sampling

cost. Achieving such an objective, leads to smarter CPU task scheduling in embed-

ded systems and more battery life in networked control systems. Both previously

mentioned applications are categorized as Temporal Sparse Optimal Control [56].

Recently, the spatial sparse optimal control has attained much attention in control

theory and applications [1, 13, 21, 26, 27, 38]. The main goal in such an area is

to decrease the number of communication links among nodes while preserving the

guaranteed performance level. Such a balance between performance loss and density

level of feedback controller is customarily made via some `1-regularized term which

is augmented to the performance loss term appeared in objective function of the

optimization problem [1, 21, 26, 27]. Also, in the case of sparsity promotion in space

of control actions, in [128], it is proved that `1 relaxation provides an effective tool

to obtain sparsity in the space of control actions, i.e., having the minimum support

length over time horizon. Moreover, they propose a self-triggered maximum hands-off

control design which is numerically evaluated for specific single-input systems.

One of the main switching control methods to achieve temporal sparse optimal

control is called Self-triggered Control [43]. The fundamental advantage of self-

triggered control is having no control update when there is no need to take new

updates (samplings) [52, 56, 58, 59, 85]. In fact, a performance-preserving condition

or Lyapunov-based stability condition (known as self-triggering condition) is checked

to determine whether new sampling is necessary or not. Also, the next update time is

solely computed based on current state information [56]. However, in event-triggered

control (another well-established aperiodic control method), triggering condition is

monitored continuously and whenever it is satisfied, the event is triggered. Thus, it

164



requires a dedicated hardware which is not available in most cases [52]. In [64], a roll-

out event-triggered control approach is proposed which outperforms the traditional

periodic LQR design while having the same sampling rate. In such an approach,

inter-execution times are computed via event-triggering condition and control action

uk is set to either 0 or Fkxk where Fk’s are dense time-varying gains which is obtained

from corresponding Riccati equations and xk’s denote the triggering states. Moreover,

all such calculations are done after transforming the continuous time setup to discrete

one. In [62], assuming the finite sequence of interval lengths and their corresponding

spatially-varying stabilizing controllers, a self-triggered method is proposed to find

the switching rule on the basis of current state information. In [85], the proposed

self-triggering method, ensures L2 stability of the closed loop system and the average

time period has an increasing behavior versus L2 gain. In [62], some similar but not

exact relationship between H2,∞ performance indices and the average time period is

expressed.

Merging advantages of spatial sparse optimal control and temporal sparse optimal

control, the self-triggered sparse optimal control (SSOC) problem is proposed. This

chapter is improving the spatial sparsity of the feedback gains/actuators utilized by

self-triggered control design while achieving a pre-specified bound on performance

loss and stability guarantee for any arbitrarily-chosen initial condition. At each time

interval, our design procedure breaks into two main parts: (i) Via solving a nonlin-

ear optimization, the maximum allowable inter-execution time is computed by taking

advantage of commonly-used tools such as discretization rule. (ii) For a fixed value

of inter-execution time, we design optimal sparse feedback gains via minimizing the

`1 sparsity-promoting terms corresponding to both feedback gain and actuation over

such a time interval subject to performance constraint. Investigating the feasibility

of the corresponding optimization problems, the closed-loop stability is immediate.

The effectiveness of the SSOC design is assessed by utilizing the spatially distributed
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systems. The extensive numerical simulations show that, compared to the periodic

time-triggered LQR design, the average density level of feedback gains is appropriately

improved, the number of utilized actuators is meaningfully reduced, and compara-

tively less sensing is required. Spatial sparsity and temporal sparsity are effectively

improved by our proposed SSOC design while preserving the guaranteed performance

loss and stability for any arbitrarily-chosen initial condition. Also, a tradeoff be-

tween pre-specified performance bound and sparsity in time/space is observed. In

other words, the tradeoff between performance bound and average inter-execution

time means that the higher allowed performance loss results in less frequently sam-

pling. Furthermore, the effect of spatially decaying rate on sparsification process is

visualized. Additionally, the effect of penalizing parameters on sparsification process

is depicted.

The structure of the chapter is described as follows: Section 8.2 introduces the

mathematical notations that are used. Section 8.3 is devoted to the statement of the

problem to be solved. In Section 8.4, an equivalent reformulation of the self-triggered

sparse optimal control problem is presented. Section 8.5 guarantees the feasibility

of our formulated problem. Section 8.6 includes the stability proof, assuming the

feasibility of sequence of corresponding optimization problems. Section 8.7 details

the self-triggered performance-based method. Section 8.8 presents the corresponding

algorithm which consists of constrained convex programming and nonlinear equa-

tion solving. Considering a class of spatially-distributed systems and utilizing the

algorithm proposed by Section 8.8, Section 8.9 assesses the effectiveness of our pro-

posed method. Finally, Section 8.10 concludes the chapter with drawing some future

insights.
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8.2 Mathematical Notations

The set of real numbers, positive real numbers, positive integer numbers, and non-

negative integer numbers are denoted by R, R++, N, and Z+, respectively. The set

of real-valued n× 1 vectors and set of real-valued m× n matrices are represented by

Rn and Rm×n, respectively. The supremum of a subset of real numbers is denoted by

sup. The derivative of time-dependent function f with respect to time t is shown by

f ′ and partial derivative of multivariate function g with respect to x is represented by

∂g/∂x. The positive semi-definiteness and positive definiteness are shown by � 0 and

� 0, respectively. The identity matrix is represented by I as usual. The Euclidean

norm of vector v is denoted by ‖v‖2. Cardinality (`0 sparsity measure), `1 norm,

and largest singular value of matrix M are represented by ‖M‖0, ‖M‖1, and ‖M‖,

respectively where ‖M‖0 is identical to number of nonzero elements of M and ‖M‖1

refers to sum of absolute values of elements of M . Matrix M is called to be Hurwitz

if any of its eigenvalues has a negative real part. Vectorization and determinant of

matrix M are denoted by vec(M) and det(M), respectively. The Kronecker matrix

product is denoted by ⊗. The mathematical limit operator is represented by lim.

8.3 Problem Formulation

Let us consider the class of linear time invariant (LTI) systems described by

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0, (8.1)

where x ∈ Rn denotes the state vector, u ∈ Rm represents the control input (control

action), t0 = 0, and x0 is an arbitrarily-chosen initial condition. The control objective

for system (8.1) is to stabilize the system using the following class of sample-and-hold
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control laws:

u(t) = ψ
(
x(t)

)
= uk = Fkx(tk) = Fkxk, (8.2)

for all t ∈ [tk, tk+1) and k ∈ Z+. The time instants tk’s are called triggering times

and their sequence is denoted by {tk}∞k=0. The control law (8.2) is defined based on a

time-varying feedback gain Fk where its sequence is shown by {Fk}∞k=0. Also, let us

define the kth inter-execution time as difference of kth and (k + 1)th triggering times,

i.e., as follows:

δk := tk+1 − tk.

Considering system (8.1) with control law (8.2), the cost functional corresponding

to [tk, tk + ξ) is denoted by Jk(Fk, ξ;xk) and defined by

Jk(Fk, ξ;xk) :=

∫ tk+ξ

tk

(
x(t)TQx(t) + u(t)TRu(t)

)
dt, (8.3)

for ξ ∈ [0, δk) where Q � 0 and R � 0 are corresponding state-weight and input-

weight matrices, respectively.

Assumption 4. The pair (A,B) is controllable.

Assumption 4 is standard in the literature and along with observability of pair

(Q,A) which is implied by positive definiteness of Q, it ensures the uniqueness of the

LQR solution and boundedness of the total cost value.

The method proposed by [56] solely takes advantage of the Lyapunov function

evolutions. However, our proposed problem setup is mostly similar to the method

proposed by [59] in which ∀ξ ∈ [0, tk+1 − tk), a performance-based condition is con-

sidered in addition to utilization of the Lyapunov function. In our problem setup,

the Lyapunov function V is considered in the form of V (x) = xT P̃ x where P̃ denotes
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the unique positive definite solution of the following Lyapunov equation:

(A+BF̃ )T P̃ + P̃ (A+BF̃ ) +Q+ F̃ TRF̃ = 0, (8.4)

where the feedback gain F̃ is a predesigned well-performing feedback gain which

stabilizes system (8.1) via control law u(t) = F̃ x(t), i.e., A + BF̃ is Hurwitz. It is

noteworthy that positive definiteness of P̃ is resulted from positive definiteness of

Q+ F̃ TRF̃ , the following equation:

P̃ =

∫ ∞
0

e(A+BF̃ )T t(Q+ F̃ TRF̃ )e(A+BF̃ )dt,

and the fact that A + BF̃ is Hurwitz. Also, the stability of A + BF̃ implies the

uniqueness of P̃ . We utilize a parameter α > 1 which specifies the pre-given upper

bound on performance loss. A possible choice for selection of F̃ can be standard

LQR design FLQR. The cost value J̃ = JLQR for such a controller is computed via

solving an optimal control problem (via solving a Riccati Equation). Thus, it is rather

reasonable to make such a choice.

The control objectives of our chapter can be listed as follows:

(i) reduced sensing requirements,

(ii) minimum inter-subsystems communication requirements,

(iii) minimum number of utilized actuators,

(iv) guaranteed closed-loop performance losses.

In order to achieve the first objective, we minimize −δk because maximizing δk

leads to having a decreased number of required sensing instants. The second and

third objectives can be achieved via minimization of sparsity-promoting terms γ‖Fk‖0

(feedback gain) and η‖uk‖0 (control action), respectively and the fourth objective can

be realized via enforcing a pre-specified upper bound on performance loss at each time

interval. Such a four control objectives can be realized by computing time-varying
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feedback gains {Fk}∞k=0 utilizing the following self-triggered sparse optimal control

(SSOC) problem:

minimize
Fk,δk

− δk + γ‖Fk‖0 + η‖uk‖0 (P1)

subject to: (8.1) and (8.2),

∀ξ ∈ [0, δk) : Jk(Fk, ξ;xk) ≤ α

(
V
(
x(tk)

)
− V

(
x(tk + ξ)

))
, (8.5)

It is noteworthy that Jk(Fk, δk;xk) denotes the kth time interval cost, i.e., the cost

corresponding to [tk, tk + δk). Parameters γ and η adjust the balance between com-

munication/actuation spatial density levels and temporal density level.

It is emphasized that in general, the simultaneous satisfaction of all four objectives

by imposing (P1) is a hard task because each objective has its own computational

complexities. Thus, they need to be relaxed and subsequently, the control objectives

are sub-optimally achieved. However, throughout the chapter, we see how (P1)

enables us to reflect the fundamental facts regarding the self-triggered sparse optimal

control (SSOC) design.

In the rest of the chapter, we aim at solving (P1) to sub-optimally achieve the

control objectives.

8.4 Equivalent Reformulation

Throughout this section, we show how (P1) can be reformulated as a regularized

quadratically-constrained quadratic program (QCQP) when δk is kept fixed. In the

following, we explain all necessary steps to be taken to achieve such a reformulation.

The feedback control law (8.2) can be decomposed as

u(t) = FkNkx0,
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for all t ∈ [tk, tk+1) where N0 = I,

Nk = Mk−1(δk−1)Nk−1, Mj(ξ) = eAξ
(
I + Z(ξ)BFj

)
,

Z(ξ) =

∫ ξ

0

e−Aτdτ,

for all k ∈ N and j ∈ Z+. Because, solving system (8.1) and (8.2) for time interval

[tk, tk+1), we get

x(t) = eA(t−tk)x(tk) +

∫ t

tk

eA(t−φ)BFkx(tk)dφ,

= eA(t−tk)(I +

∫ t−tk

0

eA(−τ)BFkdτ)x(tk),

= eA(t−tk)
(
I + Z(t− tk)BFk

)
x(tk),

= Mk(t− tk)x(tk).

Thus, assuming the continuity of x(t) at t = tk+1, we have x(tk+1) = eAδk
(
I +

Z(δk)BFk
)
x(tk) = Mk(δk)x(tk). Utilizing the principle of mathematical induction, it

turns out that x(tk) = Nkx0.

Next lemma expresses how we can explicitly calculate the kth time interval cost,

i.e., Jk(Fk, δk;xk).

Lemma 36. The kth time interval cost Jk(Fk, δk;xk) can be expressed as

Jk(Fk, δk;xk) = xTk Yk(Fk, δk)xk,

where

Yk(Fk, δk) = H0(δk) + F T
k H1(δk)

T +H1(δk)Fk + F T
k H2(δk)Fk,
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for all k ∈ Z+ and

H0(ξ) =

∫ ξ

0

eA
T τQeAτdτ,

H1(ξ) =

∫ ξ

0

eA
T τQeAτZ(τ)Bdτ,

H2(ξ) =

∫ ξ

0

(
eAτZ(τ)B

)T
Q
(
eAτZ(τ)B

)
dτ + ξR.

Proof. The kth time interval cost Jk(Fk, δk;xk) can be written as a sum of two terms

as follows:

Jk(Fk, δk;xk) = Jxk (Fk, δk;xk) + Juk (Fk, δk;xk),

wherein

Jxk (Fk, δk;xk) =

∫ tk+1

tk

xTkMk(t− tk)TQMk(t− tk)xkdt

= xTk

∫ δk

0

Mk(τ)TQMk(τ)dτxk,

and

Juk (Fk, δk;xk) =

∫ tk+1

tk

xTkF
T
k RFkxkdt = xTk (δkF

T
k RFk)xk.

Then, we get Jk(Fk, δk;xk) = xTk Ykxk wherein

Yk(Fk, δk) =

∫ δk

0

Mk(τ)TQMk(τ)dτ + δkF
T
k RFk. (8.6)

Substituting the Mk(τ) = eAτ
(
I + Z(τ)BFk

)
in the right side of (8.6), Yk(Fk, δk) is

expressed in terms of H0(δk), H1(δk), and H2(δk).

The following proposition states an important property about matrix H2(ζ) which

will lead to the convex reformulation of (P1) (in terms of variable Fk) when δk is
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kept fixed.

Proposition 37. For all ξ > 0, the matrix H2(ξ) is positive definite, i.e., H2(ξ) � 0.

Proof. To prove the positive definiteness of matrix H2(ξ) for all positive values of ξ,

we consider an arbitrary nonzero vector v ∈ Rm (v 6= 0). Then, we showcase that

vTH2(ξ)v is positive. Let us calculate vTH2(ξ)v as follows:

vTH2(ξ)v = vT
( ∫ ξ

0

(
eAτZ(τ)B

)T
Q
(
eAτZ(τ)B

)
dτ + ξR

)
v

=

∫ ξ

0

(
eAτZ(τ)Bv

)T
Q
(
eAτZ(τ)Bv

)
dτ + ξvTRv.

Since Q � 0 and R � 0 hold, the term appeared inside the last integral is non-negative

and ξvTRv is positive, respectively. It is known the definite integral of a non-negative

function over a finite interval results in a non-negative value. Thus, vTH2(ξ)v > 0

and proof is done.

The following proposition is a consequence of Lemma 36.

Proposition 38. The self-triggered sparse optimal control (SSOC) problem (P1) can

equivalently be cast as follows:

minimize
fk,δk

− δk + γ‖fk‖0 + η‖(xTk ⊗ I)fk‖0 (P2)

subject to: ∀ξ ∈ [0, δk) :
1

2
fTk P1(ξ)fk + q1(ξ)Tfk + r1(ξ) ≤ 0, (8.7)

where fk = vec(Fk),

P1(ξ) = (xkx
T
k )⊗

(
2H2(ξ) + 2αBTZ(ξ)T eA

T ξP̃ eAξZ(ξ)B
)
,

q1(ξ) = 2vec

((
H1(ξ)T + αBTZ(ξ)T eA

T ξP̃ eAξ
)
xkx

T
k

)
,

r1(ξ) = xTk
(
H0(ξ) + α(eA

T ξP̃ eAξ − P̃ )
)
xk.
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Proof. The building block of the proof is the following linear algebraic identity:

vec(UVW ) = (W T ⊗ U)vec(V ),

for any triplet (U, V,W ). Utilizing the identity above for U = I, V = Fk, and W = xk,

the objective function of (P1) takes the form appeared in objective function of (P2).

Likewise, (8.7) is derived from (8.5), by repeated utilizations of such an identity to

corresponding appropriate matrices.

From (8.6) and considering Proposition 12, it is evident that Jk(Fk, δk;xk) is a

quadratic convex function in terms of fk = vec(Fk). Thus, when δk is kept fixed, (P2)

takes the regularized quadratically-constrained quadratic program (QCQP) form.

Substituting the `0 sparsity measure with its convex surrogate, i.e., `1 norm, (P2)

takes the following form:

minimize
fk,δk

− δk + γ‖fk‖1 + η‖(xTk ⊗ I)fk‖1 (P3)

subject to: ∀ξ ∈ [0, δk) :
1

2
fTk P1(ξ)fk + q1(ξ)Tfk + r1(ξ) ≤ 0.

Although the `1 relaxation makes (P2) more tractable, still there may exist a non-

convexity in the nature of constraint of (P3) in terms of form of dependency on

argument ξ. Figure 8.1 showcases a possible case in which the expression on left hand

side of (8.7) is a non-convex function of argument ξ. Thus, solving (P3) for optimal

solutions generally remains as a difficult non-convex task with mn + 1 variables.

In order to sub-optimally solve (P3), the form of (P3) motivates us to define the

following two main sub-problems:

1. The optimal control problem (P3) while Fk is kept fixed which boils down to

solve a nonlinear equation.

2. The optimal control problem (P3) while δk is kept fixed which fortunately
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reduces to solve a tractable convex problem.

One may say that since (P3) is a tractable convex problem when δk is kept fixed, we

can solve (P3) via solving it when fixed δk’s are chosen among the set of discretized

values and finally the optimal solution will be the one which produces the minimum

value for objective function of (P3). However, such an approach is highly costly in

terms of computational concerns which makes it practically inefficient. In addition, for

each calculated Fk while a fixed discretized δk is pre-considered, it should be monitored

if such a Fk is valid for ξ ∈ [0, δk) or not and this adds extra computational complexity.

Further detailed points regarding the procedure of solving (P3) via solving such two

sub-problems are included later on.

8.5 Feasibility

Although the feasibility analysis of our formulated problem is straightforward, for the

sake of clarification, we state the following remark on feasibility analysis.

Remark 26. The self-triggered sparse optimal control (SSOC) problem (P1) is fea-

sible.

Inspired by form of (8.5), we define the following scalar-valued function:

gk(ξ) = xTk

(
Yk(Fk, ξ) + α

(
− P̃ +Mk(ξ)

T P̃Mk(ξ)
))
xk. (8.8)

The proof is done, if we show that for some Fk, there exists a positive θk such that

∀ξ ∈ [0, θk) inequality gk(ξ) ≤ 0 holds. Knowing that the function gk is differentiable,

we show that g′k(0) < 0 holds and implies that for Fk = F̃ , there exists a positive θk

such that ∀ξ ∈ [0, θk) inequality gk(ξ) ≤ 0 holds. According to the definition of right
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Figure 8.1: A non-convexity in the nature of constraint of (P3) in terms of form of de-
pendency on argument ξ.

derivative and noting that gk(0) = 0 holds, we have

g′k(0) = lim
ξ→0+

gk(ξ)

ξ
. (8.9)

Due to (8.9) and definition of mathematical right limit, we have

∀ε > 0, ∃θk > 0 s.t. ∀ξ ∈ (0, θk), |
gk(ξ)

ξ
− g′k(0)| < ε.

Consequently

gk(ξ) < (g′k(0) + ε)ξ, (8.10)
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is resulted. Doing simple calculations implies that

g′k(0) = xTk

(
Q+ F T

k RFk + α
(
(A+BFk)

T P̃ + P̃ (A+BFk)
))
xk.

According to (8.4), for Fk = F̃ , we get

g′k(0) = (1− α)xTk (Q+ F̃ TRF̃ )xk.

Since α > 1 and Q + F̃ TRF̃ is positive definite, g′k(0) < 0 gets satisfied for Fk = F̃ .

Thus, due to (8.10), the choice of ε < −g′k(0) implies that for some Fk (namely F̃ in

this case), there exists a positive θk such that gk(ξ) < 0 holds ∀ξ ∈ (0, θk) and since

gk(0) = 0 holds, subsequently gk(ξ) ≤ 0 holds ∀ξ ∈ [0, θk) which completes the proof.

Next, we present a lemma which expresses a necessary condition. Later, we will

see how it will help us in our design procedure.

Lemma 39. Given the function gk(ξ) defined as (8.8), the feasibility of (P1), implies

that the following inequality holds:

g′k(0) ≤ 0, (8.11)

where

g′k(0) = xTk

(
Q+ F T

k RFk + α
(
(A+BFk)

T P̃ + P̃ (A+BFk)
))
xk.

Proof. According to (8.5), gk(ξ) ≤ 0 holds for all ξ ∈ [0, δk). Thus, due to (8.9), it

implies that g′k(0) ≤ 0 holds.

In the following, we see a proposition which firstly suggests an equivalent Linear

Matrix Inequality (LMI) to (8.11) and secondly provides a sufficient condition to
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guarantee (8.11).

Proposition 40. (i) The condition (8.11) is equivalent to

 R−1 Fkxk

xTkF
T
k −xTk

(
Q+ α

(
(A+BFk)

T P̃ + P̃ (A+BFk)
))
xk

 � 0.

(ii) The condition (8.11) is satisfied, if the following LMI holds:

R−1 Fk

F T
k −α

(
(A+BFk)

T P̃ + P̃ (A+BFk)
)
−Q

 � 0. (8.12)

Proof. (i) Applying the Schur complement [129] to (8.11), proof is achieved.

(ii) Considering the form of (8.11) implies that satisfaction of the following matrix

inequality:

Q+ F T
k RFk + α

(
(A+BFk)

T P̃ + P̃ (A+BFk)
)
� 0. (8.13)

leads to guarantee such a condition. Applying the Schur complement to (8.13), (8.12)

is obtained and proof is completed.

Remark 27. Since we aim to propose a design procedure which works for any arbitrarily-

chosen initial condition x0, the sufficient condition (8.12) becomes necessary, i.e.,

(8.12) would be necessary and sufficient condition in our design procedure when we

solve for Fk along with a fixed δk. In other words, necessary condition (8.11) holds for

any arbitrarily-chosen initial condition which leads to necessity of (8.12). It is worth

emphasizing that xk can be interpreted as an initial condition of kth time interval

[tk, tk+1) and since the design procedure should work for all arbitrarily-chosen initial

condition x0’s, such a conservative interpretation makes sense. The conservatism

comes from the complicated nature of the dependency of xk on x0.

Remark 28. It is worth considering the case that F0 = 0 and δ0 = ∞ are solutions
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for problem (P1). Evaluating function gk(ξ) in (8.8) with F0 = 0, we get the following

expression:

g0(ξ) =

∫ ξ

0

xT0 e
AT τ
(
Q+ α(AT P̃ + P̃A)

)
eAτx0dτ. (8.14)

Thus, (8.14) is non-positive for any arbitrarily chosen x0 and for any non-negative ξ

if and only if

AT P̃ + P̃A+
1

α
Q � 0, (8.15)

holds. Thus, F0 = 0 and δ0 = ∞ are solutions for problem (P1), for any arbitrarily

chosen x0, if and only if (8.15) holds. Moreover, according to the linear quadratic

Lyapunov theory, satisfaction of (8.15) implies that A is Hurwitz (stable).

Also, if the following condition holds:

AT P̃ + P̃A+
1

α
Q 6� 0, (8.16)

then ∃x0 for which, F0 = 0 and δ0 =∞ are solutions for problem (P1).

Motivated by Remark 28, for the rest of the chapter we assume the following

assumption to avoid the trivial solutions for any arbitrarily chosen x0.

Assumption 5. For a given 5-tuple (A,B,Q,R, α), (8.15) does not hold.

8.6 Stability

Section 8.6 investigates the stability of the closed-loop system which is controlled by

sequence of performance-based self-triggered sparse optimal controllers (8.2). The

remark which we will state on stability guarantee is a well-investigated concept in

model predictive control (MPC) literature [59].

Before commenting on the stability of our proposed controller design, we define

the total cost for our proposed SSOC problem by summing up all elements of sequence
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{Jk(Fk, δk;xk)}∞k=0 and obtain

J :=
∞∑
k=0

Jk(Fk, δk;xk).

The above mentioned definition is constructed based on the fact that (P1) is feasible

according to Remark 26. Otherwise, it is not possible to utilize such a definition in

our controller design problem. Knowing that, the remark on stability is presented in

the following.

Remark 29. The optimal control problem (P1) results in stabilizing {Fk}∞k=0 and the

relative performance loss percentage ν = 100× J−J̃
J̃

is upper bounded by 100× (α− 1)

where J̃ = xT0 P̃ x0.

Let us define Sl as follows:

Sl :=
l∑

k=0

Jk(Fk, δk;xk).

Taking the sum of both sides of (8.5) for first l + 1 terms, we get

0 ≤ Sl ≤ α(xT0 P̃ x0 − xTl+1P̃ xl+1) < αxT0 P̃ x0 = αJ̃. (8.17)

The sequence {Sl}l=∞l=0 is an increasing sequence. According to (8.17), it is bounded.

Thus, it implies that the sequence {Sl}l=∞l=0 is convergent. Taking the limit from both

sides of (8.17), we get

J =
∞∑
k=0

Jk(Fk, δk;xk) = lim
l→∞

Sl < lim
l→∞

αJ̃ = αJ̃. (8.18)

Doing simple calculation on (8.18) shows that the following inequality holds:

ν = 100× J − J̃
J̃

< 100× (α− 1).
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8.7 Self-Triggered Sparse Optimal Control (SSOC):

Performance-Based Method

This section consists of three parts where first two parts enable us to solve (P3) via

solving two sub-problems (P4) and (P5). The first part describes the case for which

(P3) is solved for δk when Fk is kept fixed. The second part is dedicated to solve

(P3) for Fk while δk is kept fixed. The third part provides us with lower bounds on

inter-execution times. Such lower bounds play an important role in computation of

inter-execution times, because they provide an appropriate estimate for initial guess

of solution of the corresponding nonlinear equation.

8.7.1 Solving (P3) for δk when Fk is Kept Fixed

It can simply be verified that inequality (8.7) can equivalently be cast as the following

quadratic constraint:

1

2
uTkP2(ξ)uk + q2(ξ)Tuk + r1(ξ) ≤ 0, (8.19)

where uk = Fkxk,

P2(ξ) = 2H2(ξ) + 2αBTZ(ξ)T eA
T ξP̃ eAξZ(ξ)B,

q2(ξ) =
(
2H1(ξ)T + 2αBTZ(ξ)T eA

T ξP̃ eAξ
)
xk.

Assuming the fixed value for Fk and according to (8.5), (P3) boils down to the

following auxiliary nonlinear optimization problem:

minimize
δk

− δk (P4)

subject to: ∀ξ ∈ [0, δk) :
1

2
uTkP2(ξ)uk + q2(ξ)Tuk + r1(ξ) ≤ 0.
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Considering (P4), it implies that the kth inter-execution time δk can be obtained as

follows:

δk = sup
{
θk ∈ R++|(8.5) is satisfied ∀ξ ∈ [0, θk)

}
. (8.20)

In order to solve (8.20), we utilize the simple, commonly-used discretization rule which

has been employed by [49, 56] as well. To do so, we will utilize the derived lower

bounds on inter-execution times which will be discussed in detail in next subsection.

It is worth mentioning that other computational tools such as nonlinear optimization-

based methods can be effective to solve (8.20) too. In particular, for the case that

we have just 1 input, i.e., single-input systems (such as one of numerical simulations

provided by [128]), the method proposed by [130] can be utilized.

8.7.2 Solving (P3) for Fk when δk is Kept Fixed

Since solving (P3) for Fk when δk is kept fixed, requires satisfaction of infinitely many

constraints, it is undoubtedly a computationally expensive task. To overcome such an

issue, instead of checking the all set of infinitely many constraints, we only consider

the endpoint of the corresponding time interval, i.e., just δk.

Applying the Schur complement to (8.19) and changing the arguments to δk, the

following LMI constraint is obtained:

2P2(δk)
−1 Fkxk

xTkF
T
k −q2(δk)

TFkxk − r1(δk)

 � 0,
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Then, assuming a fixed value for δk, we get the following regularized SDP:

minimize
Fk

γ‖Fk‖1 + η‖Fkxk‖1 (P5)

subject to:

2P2(δk)
−1 Fkxk

xTkF
T
k −q2(δk)

TFkxk − r1(δk)

 � 0.

According to Remark 27, in process of solving (P5) for Fk, we strictly include LMI

(8.12) as an additional constraint.

It should be emphasized that Fk obtained from solving (P5) may not satisfy

inequality (8.7) for all ξ ∈ [0, δk). This is an expected issue which obviously arises

from ignoring the continuously satisfaction of the optimization constraint. However,

solving (P3) for δk when Fk is set to the value obtained from solving (P5), enables

us to check that if obtained Fk from solving (P5) is valid or not. In other words,

to see if such an Fk satisfies inequality (8.7) for all ξ ∈ [0, δk) or not. If it does not

satisfy such a condition, then, we will repeat solving (P5) for a decreased value of δk

and again check the validity of the newly calculated Fk. This process will definitely

be stopped because due to satisfaction of (8.12) which is strictly implemented in the

design procedure, g′k(ξ) < 0 holds and subsequently gk(ξ) < 0 continuously holds for

all ξ ∈ [0, δk).

8.7.3 Lower Bounds and Constraints on Inter-Execution Times

The following two propositions suggest lower bounds on inter-execution times which

will later be utilized as an effective tool in computation of inter-execution times via

solving (P4).

Proposition 41. The kth inter-execution time δk given by (8.20) is lower bounded
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by δ∗k which is defined as follows:

δ∗k := sup{θk ∈ R++|Mk � 0, ∀ξ ∈ [0, θk)}, (8.21)

where

Mk =


1
α
P̃−1 0 Mk

0 H−1
2 Fk

MT
k F T

k αP̃ −H0 −H1Fk − F T
k H

T
1

 .
Proof. A sufficient condition which implies (8.5) is as follows:

Yk(Fk, ξ) + α
(
− P̃ +Mk(ξ)

T P̃Mk(ξ)
)
� 0. (8.22)

Knowing that

Yk(Fk, ξ) = H0(ξ) + F T
k H1(ξ)T +H1(ξ)Fk + F T

k H2(ξ)Fk,

holds, substituting it in (8.22), and applying the Schur complement we get Mk � 0.

Thus, δ∗k gives us a lower bound on δk.

Remark 30. Similar to the point mentioned by Remark 27, since robust stability is

desired in terms of dealing with arbitrarily-chosen initial condition, conditionMk � 0

becomes necessary, i.e., Mk � 0 would be a necessary and sufficient condition when

we solve for Fk assuming a fixed value for δk.

Proposition 42. The kth inter-execution time δk given by (8.20) is lower bounded

by δ†k which is defined as follows:

δ†k := min{ξ ∈ R++| det
(
Nk(ξ)

)
= 0}, (8.23)
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where

Nk(ξ) = Yk(Fk, ξ) + α
(
− P̃ +Mk(ξ)

T P̃Mk(ξ)
)
.

Proof. Let us define ĝk as follows:

ĝk(ξ, xk) = xTkNk(ξ)xk.

In order to find a lower bound on δk which is the smallest positive solution of

ĝk(ξ, xk) = 0, it can be assumed that ξ = hk(xk) where hk is an implicit mapping.

In other words, we have ĝk
(
hk(xk), xk

)
= 0. Thus, similar to the idea used in [49],

setting the derivative of hk with respect to components of xk equal to 0, it implies

that

∂ĝk/∂xk = 0.

Since Nk(ξ) is a symmetric matrix, ∂ĝk/∂xk would be equal to 2Nk(ξ). Thus, we get

Nk(ξ)xk = 0 or equivalently det
(
Nk(ξ)

)
= 0.

The following corollary is immediately resulted from merging Propositions 41 and

42.

Corollary 43. The kth inter-execution time δk given by (8.20) is lower bounded by

δk which is defined as follows:

δk = max{δ∗k, δ
†
k},

wherein δ∗k and δ†k are defined by (8.21) and (8.23), respectively.

Using (8.19), the following proposition is derived which suggests a property of δk.
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Proposition 44. For ξ = δk
(
the kth inter-execution time given by (8.20)

)
the fol-

lowing inequality holds:

−1

2
q2(ξ)TP2(ξ)−1q2(ξ) + r1(ξ) ≤ 0. (8.24)

Proof. If the quadratic term on the left side of (8.19) is non-positive, then the mini-

mum value of such a quadratic term would also be less than or equal to zero. Since

P2(δk) is positive definite, then the unique minimizer for such a quadratic term would

be −P2(δk)
−1q2(δk). The corresponding minimum value for such a minimizer would

be the left side of (8.24). Thus, proof is achieved.

8.8 Algorithm

In section 8.8, we develop an algorithm to find the sequence of self-triggered sparse

optimal controllers. The main scheme of the algorithm is described as follows:

For each non-negative k, at kth time interval, firstly, setting Fk = F̃ , solving (8.20),

we find δ
(0)
k . Then, setting δk = δ

(0)
k , we solve (P5) to get Fk. Secondly, for such an

obtained Fk, solving (8.20), we find δ
(1)
k and compare it with δ

(0)
k , if δ

(0)
k ≤ δ

(1)
k holds

then we update δk by obtained δ
(1)
k and process is done. Otherwise, we update δk by

δk − ωδ(0)
k where 0 < ω < 1 holds and repeat the previous step. As it is explained in

subsection 8.7.2, such a repetition will definitely be stopped after finite iterations.

The optimal control problem (P5) can be solved by convex solvers such as CVX

[112] with MOSEK solver [131]. A big picture of our algorithm is simply stated as

Algorithm 1.

It is noteworthy that all matrices H0(ξ), H1(ξ) and H2(ξ) can separately be com-

puted ahead of time as their values only depend on the state-space matrices A and

B, the weight matrices Q and R, and the time argument ξ. Also, xk+1 is computed

via Mk(δk)xk wherein xk is pre-known from the previous time interval.
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Algorithm 1: Self-Triggered Sparse Optimal Control
(SSOC) Design

Inputs: A, B, Q, R, nmax, ω, γ, η, and α.
For k = 0 : nmax

If k = 0 then
Nk = I,
End

Compute H0(ξ), H1(ξ), and H2(ξ),

Solve (8.20) for δ
(0)
k with setting Fk = F̃ ,

Solve (P5) for F
(0)
k , with setting δk = δ

(0)
k ,

Solve (8.20) for δ
(1)
k with setting Fk = F

(0)
k ,

While δ
(0)
k > δ

(1)
k

Solve (P5) for F
(1)
k , with setting δk ← δk − ωδ(0)

k ,

Solve (8.20) for δ
(1)
k with setting Fk = F

(1)
k ,

End

Put δk = δ
(1)
k , Fk = F

(1)
k ,

Compute Mk(δk) via Mk(τ) = eAτ (I + Z(τ)BFk),
Update Nk+1 and xk+1 via Nk+1 = Mk(δk)Nk

and xk+1 = Nk+1x0, respectively,
k ← k + 1,
End

Output: {Fk}nmax
k=0 and {δk}nmax

k=0 .

8.9 Numerical Simulations

To assess the effectiveness of our self-triggered sparse optimal control (SSOC) design,

we consider the class of spatially distributed systems. Such a class of systems has

thoroughly been investigated in [42].

8.9.1 Spatially Distributed Systems

Similar to the methodology utilized by [42], let us consider N = 10 randomly dis-

tributed (with a uniform distribution) nodes in a 10 × 10 box-shaped region (See

Figure 8.2).

Remark 31. Since (P5) is in the form of SDP, for large-scale systems, our algorithm
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Figure 8.2: Positions of N = 10 randomly generated nodes in a 10× 10 box-shape region.

will be highly costly in terms of time complexity. As a result, we choose a reasonable

value for N such as 10. However, we can increase the number of nodes, i.e., N , the

payoff would be the higher computational cost.

Each node represents a linear sub-system which is coupled via its dynamics and

the linear-quadratic cost to the other sub-systems. The dynamics of the ith linear

sub-system is characterized as follows:

ẋ(i)(t) = [A]iix
(i)(t) +

N∑
j=1, j 6=i

[A]ijx
(j)(t) + [B]iiu

(i)(t),
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where

[A]ii =

1 1

1 2

 , [B]ii =

0

1

 for nodes marked by red ∗,

[A]ii =

−2 1

1 −3

 , [B]ii =

0

1

 for nodes marked by blue ◦,

and

[A]ij =
1

eβdis(i,j)

1 0

0 1

 , [B]ij =

0

0

 , ∀j 6= i,

where β determines the spatially decaying rate in spatially-decaying operators and

dis(i, j) denotes the Euclidean distance between nodes i and j in Figure 8.2. Later

on, we will visualize the effect of β on sparsification process.

8.9.2 Spatial/Temporal Sparsity Visualizations for SSOC De-

sign

Considering a 20× 20 randomly distributed system (β=1) drawn from N = 10 nodes

in Figure 8.2 and setting the parameters γ and η to 0.001 and 0.001, respectively,

nmax = 49, ω = 0.05, α = 1.15, Q = I, and R = 2I, Figures 8.3(a) and 8.3(b) are

obtained which depict the relative cardinality of controllers

100× (‖Fk‖0/‖FLQR‖0),

and relative cardinality of control inputs

100× (‖uk‖0/‖uLQRk ‖0),
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respectively. In Figure 8.3(a), at each triggering time tk, the corresponding bar shows

the relative cardinality of controllers. In Figure 8.3(b), at each triggering time tk, the

corresponding bar depicts the relative cardinality of control inputs. As Figures 8.3(a)

and 8.3(b) express, both relative cardinality of controllers and relative cardinality of

control inputs attain values less than 100 % which means that SSOC improves the

spatial sparsity compared to the periodic time triggered LQR design. Specifically,

on average, cardinalities of controllers and control inputs are improved by 38.3857 %

and 50.3325 %, respectively while the corresponding payoff is 15 % performance loss.

Figure 8.4(a) compares the Euclidean norm of state trajectories of SSOC with the

Euclidean norm of state trajectories of periodic time-triggered LQR design. Dividing

the each time interval to 20 equidistant sub-intervals and evaluating the x(t) in such

points via x(t) = Mk(t− tk)xk, Figure 8.4(b) visualizes the state trajectories of SSOC

starting from an arbitrarily-chosen x0.

Figure 8.5 showcases the inter-execution times δk versus time t. To measure the

average value of relative cardinality of controllers (spatial sparsity) over time, the

following quantity is defined:

RF := 100×
∑nmax

k=0 δk(‖Fk‖0/‖FLQR‖0)∑nmax
k=0 δk

.

Likewise, the average relative cardinality of control inputs (spatial sparsity) over time

can be defined as follows:

Ru := 100×
∑nmax

k=0 δk(‖uk‖0/‖uLQRk ‖0)∑nmax
k=0 δk

.

Also, the average inter-execution time (temporal sparsity) is defined as follows:

D =

∑nmax
k=0 δk
nmax

.
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The dependency of quantities RF , Ru, and D on parameter α is captured in Table

8.1. As it is observed, the trend demonstrates that the higher performance loss,

the sparser control design we get in terms of both spatial sparsity, i.e., RF/Ru and

temporal sparsity, i.e., D.

α RF Ru D
1.05 85.5552 % 62.5386 % 0.2823
1.10 72.5959 % 66.8855 % 0.2715
1.15 61.6143 % 49.6675 % 0.3322
1.20 53.8641 % 41.0432 % 0.3247
1.25 50.6312 % 36.8142 % 0.3629
1.30 49.0471 % 31.9999 % 0.3529

Table 8.1: Dependency of quantities RF , Ru, and D on parameter α.

8.9.3 Effect of Spatially Decaying Rate β on Sparsification

Process

Having the same numerical specifications from previous subsection except for the β

and fixing the values of γ and η, the effect of β on RF , Ru, and D is studied.

Here, we assume that γ and η are set equal to 0.001 and 0.001, respectively. Figures

8.6(a), 8.6(b), and 8.7 demonstrate the dependency of RF and Ru on β, respectively.

As Figures 8.6(a) and 8.6(b) depict, there is a tradeoff between spatially decaying

rate β and RF/Ru, respectively. Such a tradeoff is not unexpected. Because, as

β increases, the spatially distributed system automatically tends to be sparser and

consequently, the controller gains Fk’s and control inputs uk’s tend to be sparser.

Also, according to Figure 8.7, the similar observation is true for temporal sparsity,

i.e., as the spatially distributed system gets sparser, the average inter-execution time

increases which means that less number of samplings will be required.
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8.9.4 Effect of Penalizing Parameters γ/η on Sparsification

Process

In this subsection, considering the previously considered setup, the effect of parame-

ters γ/η on quantities RF/Ru is investigated. To investigate the effect of penalizing

parameter γ on RF , assuming the α = 1.15 (at most 15 % performance loss), fixing

the η = 0.001, and choosing 20 log-scaled values for γ varying between 10−5 and 10−3,

and running Algorithm 1, the decreasing behavior between γ and RF is visualized via

Figure 8.8(a). Such a decreasing behavior is not unexpected. Because, the penalizing

parameter γ appeared in objective function of (P5), is the coefficient multiplied by

the `1 norm of controller Fk. Thus, when it increases, the cardinality is supposed to be

decreased. In such a case, the number of communications among nodes is decreased.

Figure 8.8(b) illustrates the relationship between η and Ru, for setting α = 1.15,

γ = 10−3, and 20 log-scaled values for η varying between 10−5 and 10−3. Similar

to RF -γ relationship, there exists a trade-off between Ru and η. In other words, as

penalizing parameter η increases, it enforces the components of control inputs to be

equal to zero and as a consequence less number of utilized actuators.

Remark 32. The reason which we choose an upper bound for γ/η in our demonstra-

tions is implicitly implied by the fact that we assume the upper bound α for the per-

formance loss. In other words, since as γ/η enlarges, the corresponding performance

loss increases accordingly, we cannot increase the upper bound for γ/η arbitrarily for

a pre-specified α.

8.10 Conclusion

We present a mixture of self-triggered control and sparse optimal control. Each

time interval is divided into two main levels: (i) computation of the inter-execution

time while feedback gain is kept fixed (via nonlinear optimization). (ii) design of the
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sparse optimal controller while inter-execution time is kept fixed (via convex optimiza-

tion). At both previously mentioned levels, stability is guaranteed via an enforced

performance-based constraint. The numerical simulations show that SSOC improves

sparsity both in time and space. In other words, the average sampling rate and av-

erage cardinalities are less compared to the periodic time-triggered LQR design and

the performance loss payoff is not much comparatively. Meanwhile, its performance

loss can be upper bounded by means of a pre-specified parameter. Also, it is ob-

served the average relative cardinality of controller gains, average relative cardinality

of control inputs, and average sampling rate decrease as performance loss increases.

Additionally, in the case of spatially distributed systems, it is verified that there exists

a trade-off between spatially decaying rate and spatial sparsity quantities. Another

visualized trade-off is the one between penalizing parameters and spatial sparsity

quantities. A future work can be the distributed version of our proposed method in

which each node should compute its control inputs accordingly. Furthermore, the

improvement on sub-optimality of our proposed method can be thought as another

future direction.
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Figure 8.3: (a) Relative cardinality of controllers 100×(‖Fk‖0/‖FLQR‖0) versus triggering

times tk (b) Relative cardinality of control inputs 100 × (‖uk‖0/‖uLQRk ‖0)
versus triggering times tk.
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Figure 8.4: (a) The Euclidean norm of state trajectories of SSOC and periodic time-
triggered LQR design ‖xk‖2 versus triggering times tk (b) State trajectories
x(i)’s of SSOC starting from an arbitrarily-chosen x0 for i ∈ {1, 2, · · · , 19, 20}.
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Figure 8.5: Inter-Execution times δk versus time t.
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Figure 8.6: (a) Average relative cardinality of controllers RF versus spatially decaying
rate β. (b) Average relative cardinality of control inputs Ru versus spatially
decaying rate β.
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Figure 8.8: (a) Average relative cardinality of controllers RF versus penalizing parameter
γ. (b) Average relative cardinality of control inputs Ru versus penalizing
parameter η.
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Chapter 9

Feedback Controller Sparsification

via Quasi-Norms

9.1 Introduction

During the past two decades, several research works have been done in the area of

sparsity-promoting optimal control. To address some of such works, we encourage the

interested reader to see [1, 7, 13, 14, 18, 20, 21, 26–28, 30, 33, 34, 38, 40, 42, 80, 132–

135]. The main goal in sparsity-promoting optimal control is to make a reasonable

balance between the number of communication links among nodes and the network

performance loss.

All of the above-mentioned methods except the [33], are unfortunately unable to

deal with large-scale systems and fail to propose a sparse feedback controller for such

systems. Throughout the chapter, we show how q ∈ (0, 1) quasi-norms enable us to

find sparse stabilizing feedback controllers in the geometrical norm based vicinity of

a given dense centralized feedback controller for a large-scale system. However, the

drawback of our proposed method is that an upper bound exists for the sparsification

rate while most of the other sparsity-promoting optimal controller design methods
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do not face with such an issue when they are utilized to design a sparse feedback

controller for medium size systems.

This chapter is structured as follows: After stating the mathematical notations

in Section 9.2 and subsequently formulating the problem to be solved in Section 9.3,

Section 9.4 explains how q ∈ (0, 1) quasi-norms can be considered as a handy tool

to sparsify a given feedback controller. Providing the extensive numerical solutions,

Section 9.5 assesses the effectiveness of our q ∈ (0, 1) quasi-norm based sparsification

method for large-scale systems, showcases that q ∈ (0, 1) quasi-norm based method

can outperform the truncation based cardinality minimization in some cases, and

investigates the relationship between q and the sparsity-performance trade-off (in

particular, it is observed that the less q we consider, the better sparsity-performance

balance we get). Section 9.6 mentioning the concluding remarks and possible future

directions, ends the chapter.

9.2 Mathematical Notations

Throughout the chapter, vectors and matrices are shown with lower-case and upper-

case letters, respectively. The set of real numbers, n× 1 real vectors, and m× n real

matrices are represented by R, Rn, and Rm×n, respectively. The transpose of a matrix

is denoted by superscript T . The vector of all ones is denoted by 1. The symbol I

denotes the identity matrix. A matrix M is called Hurwitz if and only if all of its

eigenvalues lie on the complex open left half-plane. The `0 sparsity measure of matrix

M is denoted by ‖M‖0 which simply equals to its number of non-zero elements. The

`1 norm of matrix M is sum of absolute value of its elements and denoted by ‖M‖1.

The trace of square matrix M is sum of its eigenvalues and shown by Tr(M). The
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q ∈ (0, 1) quasi-norm of matrix M is defined as follows:

‖M‖q = (
∑
i,j

|Mij|q)
1
q .

The Frobenius norm of matrix M is denoted by ‖M‖F and defined as
√

Tr(MTM).

The sign function of a scalar s is represented by sign(s). The big O complexity

notation is denoted by O. A normally-distributed random variable u with zero mean

and unit variance is denoted by u ∈ N (0, 1).

9.3 Problem Formulation

In the area of sparsity-promoting control, to sparsify the feedback controller, diverse

operators have been utilized such as truncation operator (cardinality minimization),

soft thresholding operator (`1 norm minimization), and sum of logs [1]. However, the

q ∈ (0, 1) quasi-norms have not been utilized in this specific area in general. Such

quasi-norms have thoroughly been studied and utilized by [7, 14, 30] to measure the

sparsity and sparsify the feedback controller in control of a special class of systems,

i.e., the class of spatially-decaying systems. In addition to the control theory field,

such quasi-norms have been helpful in other fields such as data compression, image

signal processing, and linear least squares. In [136], utilizing the q ∈ (0, 1) quasi-

norms, sparse solutions are obtained for a linear least squares problem.

According to the works authored by [33, 40, 133], it is reasonable to seek for

sparse feedback controllers in the geometrical norm based vicinity of the given well-

performing feedback controllers.

Thus, merging the notion of q ∈ (0, 1) quasi-norms and concept of geometrical

norm based vicinity, we formulate the following unconstrained optimization problem:

minimize
K

1

2
‖K − F‖2

F + γ‖K‖qq, (9.1)
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where F is a given well-performing feedback controller which stabilizes the following

LTI system:

ẋ(t) = Ax(t) +Bu(t) +Dd(t), (9.2)

via u(t) = Fx(t) and K denotes the sparse feedback controller which stabilizes (9.2)

via u(t) = Kx(t). Meanwhile, keep in mind that A ∈ Rn×n, B ∈ Rn×m, and D ∈

Rn×p denote the state matrix, control input matrix, and disturbance input matrix,

respectively.

The goal is to design the sparse feedback controller K via solving problem (9.1).

Remark 33. For the sake of simplicity in our notations, with a little bit abuse of no-

tation, we show the optimal solution of problem (9.1), with K, i.e., the same notation

used for its corresponding optimization variable.

Remark 34. Since considering the stability constraint on K, generally makes problem

(9.1) complicated (NP-hard in the case of `0 sparsity measure), we loosen such a

constraint and after obtaining the K, we check that if A + BK is Hurwitz or not.

Since the closed-loop stability is heuristically imposed via the Frobenius term appeared

in objective function of problem (9.1), A + BK is not necessarily Hurwitz. Thus,

we hope to get a sparse stabilizing K out of a given dense F which can be seen as a

drawback of our proposed method. However, in Section 7.5, our extensive numerical

simulations showcase that our proposed method properly obtains a sparse stabilizing

K out of a given dense F .

9.4 Feedback Controller Sparsification via q ∈ (0, 1)

Quasi-Norms

The following theorem includes the main part of this chapter which is employed as a

basis for constructing the sparsification algorithm.
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Theorem 45. Given a 4-tuple (A,B,D, F ) for system (9.2), the analytic solution

(sparse feedback controller) of unconstrained optimization problem (9.1) is character-

ized as follows:

If Fij = 0, then Kij = 0,

If Fij 6= 0 & γ > γij, then Kij = 0,

If Fij 6= 0 & γ = γij, then Kij = 0 or c(q)Fij,

If Fij 6= 0 & γ < γij, then Kij = Xij,

where

γij =

(
2(1− q)

)1−q

(2− q)2−q |Fij|
2−q, (9.3)

c(q) =
2(1− q)

2− q
, (9.4)

and Xij denotes the solution of the following equation which has the larger absolute

value:

Xij + γqsign(Xij)|Xij|q−1 − Fij = 0. (9.5)

Proof. It is clear that to solve unconstrained optimization problem (9.1), we can solve

it element-wise. Hence, let us consider the following scalar function:

f(Kij) =
1

2
(Kij − Fij)2 + γ|Kij|q.

If Fij = 0, then it is obvious that the Kij = 0 would be the optimal solution. Now,

assume that Fij 6= 0. Let us define g(Kij) as follows:

g(Kij) := f(Kij)−
1

2
F 2
ij =

1

2
K2
ij −KijFij + γ|Kij|q.
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We observe that g(0) = 0. If sign(Kij) = −sign(Fij), then Fij 6= 0 implies that

Kij 6= 0 holds and subsequently

g(Kij) =
1

2
K2
ij −KijFij + γ|Kij|q > 0 + 0 + 0 = g(0),

which contradicts the optimality of Kij,
(
i.e., g(Kij) ≤ g(0)

)
. Thus, the optimal Kij

is either 0 or has the same sign as Fij. We claim that depending on value of γ, the

number of roots of function g can be 1, 2, or 3. We know that (w.l.o.g. assume that

Fij > 0)

lim
Kij→0+

g′′(Kij) = lim
Kij→0+

1 + γq(q − 1)Kij
q−2 = −∞,

lim
Kij→+∞

g′′(Kij) = lim
Kij→+∞

1 + γq(q − 1)Kij
q−2 = 1,

g′′′(Kij) = γq(q − 1)(q − 2)Kij
q−3 > 0,

hold which along with intermediate value theorem, imply that g′′(Kij) is a strictly

increasing function that exactly has 1 root. We prove the claim by contradiction.

If function g has more than 3 roots, then sequential applying of Rolle’s theorem to

functions g and g′ implies that function g′′ has at least 2 roots which is a contradiction.

To classify the 3 possible cases, we firstly specify the crucial case in which g

has 2 roots because it automatically classifies other two cases. When g has 2 roots,

g(Kij) ≥ 0 holds for all values of Kij. Also, in addition to 0, another optimal solution

exists for which both g(Kij) = 0 and g′(Kij) = 0 hold. Solving such a pair of

equations implies that g has 2 roots when γ = γij holds in which γij is calculated via

(9.3). Moreover, the second optimal solution would be equal to c(q)Fij wherein c(q)
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is calculated via (9.4). Thus, it suffices to solve the following equations:

1

2
Kij

2 − FijKij + γij|Kij|q = 0, (9.6)

Kij + γqsign(Kij)|Kij|q−1 − Fij = 0. (9.7)

Multiplying (9.7) by Kij and subtracting it from (9.6) we get:

Kij = sign(Fij)(2γij(1− q))
1

2−q . (9.8)

Combining equations (9.6) and (9.8), γij is obtained as expressed by (9.3). Substi-

tuting the γij derived by (9.3) in (9.8), Kij = c(q)Fij is resulted in which c(q) is

calculated via (9.4). For the case that γ > γij holds, g has 1 root and the optimal

solution would be Kij = 0. In the case that γ < γij holds, g has 3 roots and the

optimal solution Kij lies between the two non-zero roots. To find the optimal solution

Kij, it suffices to consider the necessary optimality condition g′(Kij) = 0 and solve it

and choose the solution which lies between the two non-zero roots of g and has the

larger absolute value. The Xij is the optimal solution in this case. Thus, proof is

complete.

Remark 35. It is noteworthy in the case that γ = γij holds, the choice of Kij = 0

provides a sparser solution compared to the choice of Kij = c(q)Fij. However, it may

lead to a poorer performance loss.

To shed light on proof of Theorem 45, we present a geometrical interpretation via

a simple example. To investigate the number of roots of function g, we define the

following auxiliary functions:

h1(Kij) := −1

2
K2
ij + FijKij, h2(Kij) := γ|Kij|q.
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It can easily be verified that

h1(Kij) + g(Kij) = h2(Kij),

holds, i.e., g(Kij) = 0 is satisfied if and only if h1(Kij) = h2(Kij) holds. It means that,

to find the solutions of g(Kij) = 0, it suffices to take a look at intersections of plots

of functions h1 and h2. Based on such a geometrical interpretation and considering

the Fij = 4 and q = 0.4, in Figure 9.1, we geometrically visualize the 3 possible cases

(γ = 1.1γij > γij, γ = γij, or γ = 0.9γij < γij) in which function g attains 1, 2, or

3 roots, respectively. Utilizing formulas (9.3) and (9.4) and substituting Fij = 4 and

q = 0.4 into those formulas, we get γij = 4.8330 and c(q) = 0.7500, respectively. As

it is observed in Figure 9.1, when γ = γij holds, the plots of functions h1 and h2 are

tangent to each other at Kij = c(q)Fij. It simply states the geometrical interpretation

of satisfaction of g(Kij) = 0 and g′(Kij) = 0 that is mentioned in proof of Theorem

45. Also, the corresponding set of roots in each of those previously mentioned 3 cases

are expressed as follows:

If γ = 1.1γij > γij, then {0},

If γ = γij, then {0, 3.0000},

If γ = 0.9γij < γij, then {0, 1.7225, 4.4462}.

In addition, the corresponding plots of function g in each of those previously

mentioned 3 cases are visualized in Figure 9.2. Moreover, the corresponding optimal
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solutions K for any of those previously mentioned 3 cases are stated as follows:

If γ = 1.1γij > γij, then {0},

If γ = γij, then {0, 3.0000},

If γ = 0.9γij < γij, then {3.1211}.

It is remarkable that in the case of γ = 0.9γij < γij, equation g′(Kij) = 0 has 2

solutions: Kij = 0.2821 and Kij = 3.1211. However, as it was previously mentioned

in proof of Theorem 45, the optimal solution would be the one which lies between the

non-zero roots of g, i.e., 1.7225 and 4.4462. Thus, the optimal solution is Xij = 3.1211

as it is shown in Figure 9.2
(
and obviously calculated via (9.5)

)
.

Also, it should be mentioned that g′(Kij) = 0 has 2 non-zero solutions if and only

if plots of auxiliary functions

h3(Kij) := Fij −Kij and h4(Kij) := γq|Kij|q−1,

intersect each other at 2 points
(
note that h3(Kij)+g′(Kij) = h4(Kij) holds

)
. Equiv-

alently, it suffices to consider the intersection of tangent line to h4 with vertical axis

Kij = 0, namely, (0, Tij) and impose |Fij| > Tij. It can easily be verified that γ ≤ γij

implies |Fij| > Tij, i.e., equivalently, function g′ has 2 roots in such a case. The sketch

of the proof is as follows: Firstly, Tij is calculated via

Tij = (γq)
1

2−q (1− q)
q−1
2−q (2− q).

Then, considering (9.3), we equivalently rewrite |Fij| > Tij as follows:

γ <
|Fij|2−q(1− q)1−q

q(2− q)2−q =
2q−1

q
γij. (9.9)
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Thus, if we can show that

h5(x) := 2x−1 − x > 0,

holds for all x ∈ (0, 1), then γ ≤ γij implies |Fij| > Tij. We show that such a

condition holds. Since h′5(x) = ln(2)2x−1 − 1 < ln(2)(1) − 1 < 0 holds
(
because

2x−1 ≤ 1 holds for all x ∈ [0, 1]
)
, function h5 is strictly decreasing in interval [0, 1].

Thus, since h5 is strictly decreasing in interval [0, 1], then for each 0 < x < 1, we have

h5(x) > h5(1) = 0, i.e., h5(x) is positive for all x ∈ (0, 1). Thus, |Fij| > Tij is resulted

and proof is complete. Notice that, in addition to γ’s satisfying γ ≤ γij, for all the

γ’s between γij and 2q−1

q
γij, |Fij| > Tij is implied, i.e., equivalently, function g′ has 2

roots in such cases as well as the case that γ ≤ γij holds. In other words function g′

has 2 roots if and only if (9.9) holds wherein 2q−1

q
> 1 is satisfied.

Figure 9.3 visualizes the implication of |Fij| > Tij, (i.e., the case that function g′

has 2 roots) from γ ≤ γij. As it is observed in Figure 9.3, |Fij| = 4 > Tij = 2.9257

holds which means that function g′ has 2 roots 0.3461 and 3.0000 where the first one

is local maximizer and the second one is both local and global minimizer. Also, in

such a particular setting, (i.e., Fij = 4 and q = 0.4), function g′ has 2 roots if and

only if γ < γij
2q−1

q
= 4.8330× 20.4−1

0.4
= 4.8330× 1.6494 = 7.9715 holds.

Based upon Theorem 45, given a well-performing feedback controller F , we are

able to obtain the sparse feedback controller K. The summary of our proposed

algorithm is stated by Algorithm 1.

Remark 36 (Time Complexity). In the worst case, the time complexity of the pro-

posed sparsification algorithm (Algorithm 1) is equal to O(mns) in which s refers to

the time complexity of the computation of Xij. It is noteworthy that the time com-

plexity of the method proposed by [33] is equal to O(n3r) in which r refers to the time

complexity of the computation of a solution of a nonlinear equation.
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Figure 9.1: Geometrical visualization of 3 possible cases (γ = 1.1γij > γij , γ = γij , or
γ = 0.9γij < γij) in which function g attains 1, 2, or 3 roots, respectively, in
the case of Fij = 4 and q = 0.4.

9.5 Numerical Simulations

This section is divided into four subsections as follows: (i) Outperforming the Trun-

cation Operator (Operator Associated with Cardinality Minimization); (ii) Relation-

ship Between q and Sparsity-Performance Trade-Off Curves; (iii) Feedback Controller

Sparsification for Large-Scale Systems; (iv) Network Sparsification for Large-Scale

Networks.

Before proceeding to showcasing the numerical simulations, we define the following

measuring quantities:

σD(K) := 100× ‖K‖0

‖F‖0

, σP (K) := 100× J(K)− J(F )

J(F )
,

in which J(F ) and J(K) represent the quadratic performance corresponding to F
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Figure 9.2: Plots of function g in 3 possible cases (γ = 1.1γij > γij , γ = γij , or γ =
0.9γij < γij) in the case of Fij = 4 and q = 0.4.

and K, respectively. Such values can be calculated via the following formulas:

J(F ) = Tr(DTPD), J(K) = Tr(DTLD),

wherein P and L symbolize the unique positive definite solutions of the following two

Lyapunov equations:

(A+BF )TP + P (A+BF ) = Q+ F TRF,

(A+BK)TL+ L(A+BK) = Q+KTRK.

9.5.1 Outperforming the Truncation Operator (Operator As-

sociated with Cardinality Minimization)

Prior to showing the case of outperforming the truncation operator, we mention that

the truncation operator (the operator associated with cardinality minimization) is
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Algorithm 1: Solution to problem (9.1)

Inputs: A, B, D, F , γ, and q.
For i = 1 : m

For j = 1 : n,
If Fij = 0 then Kij = 0,
Else

Calculate γij via (9.3),
If γ ≥ γij then Kij = 0,
Else
Calculate Xij via (9.5) and put Kij = Xij,
End

End
End

End
Output: K.

acted as follows:

If |Fij| ≤
√

2γ, then Kij = 0,

If |Fij| >
√

2γ, then Kij = Fij.
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J(K) J(KT) ‖K‖0 ‖KT‖0

168.7350 168.8755 64 64

Table 9.1: Performance/Sparsity quantities for K and KT in the case of 10×10 randomly
generated system

(
J(F ) = 151.2711 and ‖F‖0 = 100

)
.

Considering a 10 × 10 randomly generated system A and a 10 × 10 randomly gen-

erated input matrix B (produced by MATLAB command randn), state-weight ma-

trix Q = I, input-weight matrix R = 5I, γ = 0.0532, and q = 0.05, we observe

that the q ∈ (0, 1) quasi-norm based sparsification method can outperform the well-

known truncation operator. The detailed performance/sparsity quantities are shown

in Table 9.1. As it is observed, for the same level of sparsity, K and KT attain

σP (K) = 11.5448 % and σP (KT) = 11.6376 %, respectively. Thus, the q ∈ (0, 1)

quasi-norm based sparsification method proposes a sparsified controller which has

0.0929 % performance loss less than the one proposed by well-known truncation op-

erator.

9.5.2 Relationship Between q and Sparsity-Performance Trade-

Off Curves

The main goal of this subsection is to assess the relationship between q and sparsity-

performance trade-off curves. Directed by such an attitude, let us consider a 100×100

randomly generated system A and a 100 × 100 randomly generated input matrix B

along with state-weight matrix Q = 4I and input-weight matrix R = 2I and 9

equidistant values of q ∈ (0, 1), (i.e., 0.1, 0.2, · · · , 0.9), and then, visualize such trade-

off curves for those varying values. Also, for each q, we consider 100 logarithmically

scaled γ between γmin and γmax where

γmin := minimize
i,j

γij, γmax := maximize
i,j

γij.
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The sparsity-performance trade-off curves are visualized in Figure 9.4. The zoomed

versions of such curves are visualized in Figures 9.5, 9.6, and 9.7. The more detailed

illustration of data visualized in Figures 9.5, 9.6, and 9.7 is partially provided by

Tables 9.2, 9.3, and 9.4, respectively. Observing the data illustrated in Tables 9.2,

9.3, and 9.4, we see that as q decreases, for a fixed level of sparsity, the obtained per-

formance loss σP (K) decreases accordingly. In other words, as value of q gets close to

0, i.e., truncation operator (operator associated with cardinality minimization), the

sparse controller with better sparsity-performance balance is obtained. Also, simi-

larly, as Figures 9.4, 9.5, 9.6, and 9.7 demonstrate, the sparsity-performance trade-off

curve with lower q lies below the sparsity-performance trade-off curve with higher q,

that is, the lower q we have, the better sparsity-performance balance is struck.

Remark 37. It is worth mentioning that to obtain a sparse K, we must have γ ≥

γmin. Also, If γ > γmax holds, then K = 0 is resulted which is not stabilizing for an

unstable system A. That is the reason we assume that γ varies from γmin to γmax in our

numerical simulations. In addition, based on our numerical simulations, we observe

that there exists a γcritical between γmin and γmax such that for all γ ∈ [γmin, γ
critical), we

get a stabilizing K and for all γ ∈ [γcritical, γmax] we get a destabilizing K. Definitely,

such an invalid destabilizing ones are excluded in plotting Figure 9.4.

9.5.3 Feedback Controller Sparsification for Large-Scale Sys-

tems

To show the effectiveness of capability of our proposed method in the case of ap-

plying to the large-scale systems, we consider two classes of systems: (i) Randomly

Generated Systems; (ii) Sub-Exponentially Spatially Decaying Systems.
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Figure 9.4: Sparsity-Performance trade-off curves for varying values of q. We set the fol-
lowing visualization rules: (i) qRed < qGreen < qBlue (ii) qCircle < qAsterisk <
qPlus, wherein each superscript refers to the corresponding color or sign asso-
ciated with q. (For the 100× 100 randomly generated system).

q σP (K)
(
σD(K) = 37.45

)
σP (K)

(
σD(K) = 42.57

)
0.1 18.0053 12.1427
0.2 18.7679 12.6295
0.3 19.8644 13.3451
0.4 21.4750 14.4124
0.5 23.9205 16.0469
0.6 27.8241 18.6587
0.7 34.5709 23.1265
0.8 47.9838 31.7213
0.9 84.5283 52.8658

Table 9.2: Performance quantities for fixed values of sparsity quantities around σD = 40
and varying values of q. (For the 100× 100 randomly generated system).

Randomly Generated Systems

Let us consider a 10, 000×10, 000 randomly generated system A and a 10, 000×10, 000

randomly generated input matrixB. Also, for state-weight and input-weight matrices,

we choose Q = I and R = 5I, respectively. Furthermore, γ = 7.3410 × 10−5 and
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Figure 9.5: Sparsity-Performance trade-off curves around σD = 40 for varying values of
q. We set the following visualization rules: (i) qRed < qGreen < qBlue (ii)
qCircle < qAsterisk < qPlus, wherein each superscript refers to the corresponding
color or sign associated with q. (For the 100×100 randomly generated system).

q σP (K)
(
σD(K) = 59.82

)
σP (K)

(
σD(K) = 63.52

)
0.1 3.1581 2.2763
0.2 3.2606 2.3469
0.3 3.4292 2.4676
0.4 3.7013 2.6670
0.5 4.1416 2.9954
0.6 4.8703 3.5459
0.7 6.1326 4.5078
0.8 8.5056 6.3239
0.9 13.7439 10.3145

Table 9.3: Performance quantities for fixed values of sparsity quantities around σD = 60
and varying values of q. (For the 100× 100 randomly generated system).

q = 0.005 are assumed. The performance/sparsity quantities of the corresponding

sparse feedback controller is illustrated in Table 9.5. According to the data presented

in Table 9.5, 68.228982 % of elements of feedback controller K is sparsified while

having the 76.0190 % performance loss.
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Figure 9.6: Sparsity-Performance trade-off curves around σD = 60 for varying values of
q. We set the following visualization rules: (i) qRed < qGreen < qBlue (ii)
qCircle < qAsterisk < qPlus, wherein each superscript refers to the corresponding
color or sign associated with q. (For the 100×100 randomly generated system).

q σP (K)
(
σD(K) = 78.31

)
σP (K)

(
σD(K) = 80.54

)
0.1 0.4539 0.3263
0.2 0.4670 0.3358
0.3 0.4930 0.3552
0.4 0.5404 0.3909
0.5 0.6239 0.4549
0.6 0.7720 0.5695
0.7 1.0428 0.7815
0.8 1.5722 1.1998
0.9 2.7503 2.1380

Table 9.4: Performance quantities for fixed values of sparsity quantities around σD = 80
and varying values of q. (For the 100× 100 randomly generated system).

The sparsity pattern of the first 100× 100 sub-block of K is visualized in Figure

9.8.
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Figure 9.7: Sparsity-Performance trade-off curves around σD = 80 for varying values of
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σP (K) σD(K) J(K) ‖K‖0

76.0190 31.771018 6.2137× 106 31, 771, 018

Table 9.5: Performance/Sparsity quantities for K in the case of 10, 000×10, 000 randomly
generated system

(
J(F ) = 3.5302× 106 and ‖F‖0 = 108

)
.

Sub-Exponentially Spatially Decaying Systems

Likewise the previous case, let us consider a 10, 000× 10, 000 sub-exponentially spa-

tially decaying system A and a 10, 000 × 10, 000 input matrix B. It is noteworthy

that the ijth element of sub-exponentially spatially decaying system M is defined as

follows:

Mij = cMije
−α|i−j|β ,
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Figure 9.8: Sparsity pattern of the first 100× 100 sub-block of K in the case of 10, 000×
10, 000 randomly generated system (Blue dots represent the non-zero elements
and ”nz” denotes the number of non-zero elements of the first 100× 100 sub-
block of K).

where Mij ∈ N (0, 1), c is a fixed positive scalar, α determines the band-width of

matrix M , and β specifies the rate of spatially decaying in such a matrix. For state-

weight and input-weight matrices, we choose Q = 5I and R = I, respectively. In

addition, αA = αB = 0.25, βA = βB = 0.5, c = 10, γ = 3.2052 × 10−6, and q =

0.005 are assumed. The performance/sparsity quantities of the corresponding sparse

feedback controller is illustrated in Table 9.6. On the basis of the data presented in

Table 9.5, 89.552029 % of elements of feedback controller K is sparsified while having

the 0.0079 % performance loss.

The sparsity pattern of K is visualized in Figure 9.9.
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σP (K) σD(K) J(K) ‖K‖0

0.0079 10.447971 8.4083× 105 10, 447, 971

Table 9.6: Performance/Sparsity quantities for K in the case of 10, 000 × 10, 000 sub-
exponentially spatially decaying system

(
J(F ) = 8.4077×105 and ‖F‖0 = 108

)
.

Figure 9.9: Sparsity pattern ofK in the case of 10, 000×10, 000 sub-exponentially spatially
decaying system (Blue dots represent the non-zero elements and ”nz” denotes
the number of non-zero elements of K).

9.5.4 Network Sparsification for Large-Scale Networks

One of advantages of our proposed method is that, by a slight modification, it can

easily be translated to a network sparsification method which is applicable to the

large-scale networks. Indeed, to sparsify a network, (i.e., Laplacian L), it suffices to

sparsify the corresponding adjacency matrix, (i.e., A) of the corresponding underlying

graph. In other words, to obtain the sparsified network L̂ out of a given network L,
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σP (L̂) σD(Â) J(L̂) ‖Â‖0

70.7598 42.5389 0.8526 424, 964

Table 9.7: Performance/Sparsity quantities for L̂ in the case of 1, 000 × 1, 000 randomly
generated undirected network

(
J(L) = 0.4993 and ‖A‖0 = 999, 000

)
.

we consider the following modified version of problem (9.1):

minimize
Â

1

2
‖Â − A‖2

F + γ‖Â‖qq, (9.10)

in which Â and A denote the corresponding adjacency matrices of Laplacians L̂ and

L, respectively. Let us assume that a 1, 000× 1, 000 randomly generated undirected

network L is given. Moreover, γ = 0.5822 and q = 0.01 are chosen. Applying the

proposed sparsification method, the performance/sparsity quantities associated with

the obtained L̂ are illustrated in Table 9.7.

As it is observed, at the expense of 70.7598 % performance loss, 57.4611 % of links

is sparsified. The graph representations of subgraphs consisting of the first 50 nodes

of L and L̂ and their corresponding links are visualized in Figure 9.10.

Comparing Figures 9.10(a) and 9.10(b), verifies that the subgraph corresponding

to L̂ has less link than the one corresponding to L.

Remark 38. It is noteworthy that the sparsity/performance quantities for the case

of networks are defined as follows:

σD(Â) := 100× ‖Â‖0

‖A‖0

, σP (L̂) := 100× J(L̂)− J(L)

J(L)
,

wherein J(L) and J(L̂) are calculated via the following formulas:

J(L) =
1

2
Tr
(
(L+

11T

n
)−1 − 11T

n

)
, J(L̂) =

1

2
Tr
(
(L̂+

11T

n
)−1 − 11T

n

)
.
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9.6 Conclusion

On the basis of notion of q ∈ (0, 1) quasi-norms, a sparsification procedure is presented

which is importantly applicable to large-scale systems. Sparsity-performance trade-

off related to such sparsified feedback controllers are assessed via large-scale and

medium-size systems. It is observed that in some cases, q ∈ (0, 1) quasi-norm based

method can outperform the truncation based cardinality minimization. Also, as an

interesting observation, it is seen that, as q decreases, the corresponding sparsity-

performance trade-off behavior is improved. However, our proposed procedure has

two main drawbacks: (i) because of its heuristic nature the closed-loop stability is

not guaranteed (ii) the sparsification rate is limited.A remaining problem which can

be regarded as a future direction, is the improvement on the sparsification rate.
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Figure 9.10: (a) Graph representation of subgraph consisting of the first 50 nodes of L
and its corresponding links (b) Graph representation of subgraph consisting
of the first 50 nodes of L̂ and its corresponding links. (For the 1, 000×1, 000
randomly generated undirected network).
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Chapter 10

Conclusions and Future Directions

After formulating the sparsity-promoting optimal controller design problems for the

class of LTI systems, various optimization tools are employed to tackle such non-

convex and generally NP-hard problems. Some of such optimization tools are as

follows: bi-linear rank penalty technique, `1-regularization, SDP, nonlinear optimiza-

tion, and quasi-norm minimization. Particularly, in the case of feedback controller

sparsification for large-scale systems, two helpful ideas are utilized: (i) non-fragility

(ii) quasi-norms. Merging the ideas from spatial sparsity and temporal sparsity,

self-triggered sparse optimal control (SSOC) design is proposed in which sparsity is

improved both in time and space simultaneously. Throughout the dissertation, exten-

sive numerical simulations confirm the following main observations: a fundamental

trade-off exists between density level of feedback controller and its corresponding

performance loss, parametric uncertainty and time-delay have negative impacts on

sparsification process, a fundamental trade-off exists between non-fragility and spar-

sity level of feedback controller, and in the case of sparsification via quasi-norms,

the smaller q, the sparser solution is achieved. Some problems still remain open:

improving the quality of density-performance trade-off curves via decreasing the sub-

optimality level of our proposed solutions, improving the limited sparsification rate in
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the case of large-scale systems, developing the computationally distributed version of

our proposed methods, and applying the proposed methods to real-world applications

in an experimental way.
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[17] Fardad, M., Lin, F. & Jovanović, M. R. Design of optimal sparse interconnec-

tion graphs for synchronization of oscillator networks. IEEE Transactions on

Automatic Control 59, 2457–2462 (2014).

[18] Fardad, M. & Jovanovic, M. R. On the design of optimal structured and sparse

feedback gains via sequential convex programming. In American Control Con-

ference, 2426–2431 (2014).
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