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L _ | - iNTRODUCTION . “ o R %-~—% _:.h__ﬁ_ _~%m__ﬂ,

»In,this paper I present sdme of the concepts-that result.

when one considers a linear space with two norms'oh it. A

L

'twoénormlconvergence-is definedg calledeégonvergeﬁce,;and
from this, in a mdreﬁor less natural manﬁer;.ariSe'queStions N | 1
| of <y-linear functionals, <y-conjugate spaces, vy-reflexivity, | | |
~ and y-topological problems. In Chapter 2 it is shown that |
. therefexists a locally convex linear separated tcpolbgy
‘generating fhe-y-convergence. Finally, in Chapter Y I.in-
clude a briefgenéralization to the case offé spacé with a _
norm topology and a lccaliy convex linear tdpology{
| The system of reference is a standard one, e.g., U.V.Ww ;
refers to statement w in section v of chapter w. |
The folloﬁing results, for which I‘giveonly referencga_ ]

_ to the proofs, will be used later. S V P j
. t ’ . 4 . Vﬁ . ’
o P |

N

(a) The Mackey-Arens Theorem: Let L be a locally con-

/

- . |
vex linear separated space and denote its conjugate space by vg

: \"‘"m,; / - ~ - ' %i

L'. Let o(L,L') and B(L,L') denote, respectively, the weak | ?

et e e - B0G_ BtrONe topologies on ... let t he .any locally.convex.. . e o

~ §~

,‘.linear\separated topology on L and‘éenéte‘the conjugate space
~of Lunder t by Li. Then L{ = L' if and only if
(LL) gEgBLLY). T e
| This is Avens' refinement of a theorem by Mackey. The

above»is not exactly Arens' statement but may be deduced L _—

from the results of his paper, [6]. R e | - &l




- 2 -
: e __ _,_.o : (b ) A}Wiuweger! 5 Lemma Let P be a family of functionals E
D ‘defined on an arbitrary set Q and such that | |
. sup!|f(q):feF}'<~m;foP every q Q, and let'(qn) be a
sequence in Q. The 9011OW1ng prop031tions are equivalent°‘
(1) for each sequence of positive numbers (aL)
 tend1ng to and for each sequence (£) in F there is an M
; such that | . -
'fn(qm)' <Ma’n forn=1,2,.... and m’>.M
% (2) for each fcF we have lim'f(Qh) =O0and -
- il )] feF, n - 1,2,....] 1s bounded. o o
§ ‘See [18] P 126. o
% ) ’__. | . (c) A theorem of Alexiew1c2° Let X be alnetric space,
%l\ and call any subset whose complement is of Categomw'l
? | residual. Let (U (x)) be a sequence of operations on X con-
% 'vergent in a residual set A.  Then (U ) is equicontinuous
1in a residual set B CX.
See p. 5 of [1].
(d) A result of, Dixmier° Let E BPe 2 normed space and
. 1cs conjugate spave.” Tet A and B be suospaces“oij' whicﬁ T
are dense in E' under o(E',E) and such that o(E-A) endve(E;B) B
v}\ f | are separated. Then o(E A) and o(E B) agree on S the uuit_ - |
- | | ball of E, if and onlv ir R=R u@ere‘the clogures are~ e
taken in E' under the norm‘topology. - . o ',";

See p. 1059 of [10].
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The Two Norm Convergence

l.;l‘he Convergence Defined

| an F-norm on X, i.e.,

Let X be a linear space and ||.
(1) Jl=xl] >

f‘or all X in X,

0
(2) |lxl| =0 if and only if x = O,
(3) llx+yll g

(4) 1r a, —a and |Xn-x| - 0, then IIanxnea,xIQI -0

x| + [lyl] for all x and y in X,

where (a ) is a scalar sequence and’(xn) a
sequence in X.

If, in place of (4), |]|.]] satisfies the stronger con-

‘dition that ||ax|| = |a|.||x|| where a is any scalar and x

- 1s in X, we shall call | e .| a norm on X. Clearly any norm

- is an F-norm. = <.

-

Suppose a second F-norm ||.|| 1s defined on X weaker

- than ||o|l, l.e.,

. Ppostulate (1): |lx || -0 implies that ||x ||* - o.

e s s s gequence (X)) K ALY De calied Fy-conveTEenT EG T
| e " s | 1 . . - * |

- Af it is bounded with respect to |j.|| and if =, -x||~ -o0.
St We shall write |

Chd W T IB W N @ A WS ¢SSR e AN

7-11m Xy =% or X A X.

_ g
,,,,,,,

This c.on\(_e-zfgence will also be called the "two-norm" convergence.




> The Space X supplied with this convergence.will be d,enoted

ey (XL and called a "two-norm space”. In this
notation the weaker F-norm is always the last element of

the triple. o | A "

-~

By : ’ . . '

2. Yy-Convergence and Norm Convergence

In general, - convergence is equivalent to an F-norm
convergence only in the trivial case where Il.]] and |]. H
are equivalent (Two convergences are eeid to be equiva-=
lent" when the classes of convergent sequences coincide and

" the 1limits are "identical.)

1.2.1. Lemma: Let ||.|| be an F-norm on a linear spa.ceu

X and let (x) be a sequence in X with | X ||-0. Then

there is a scalar sequence (an) with. la, | = 0 such that

i .}{Tl ' ’ *

H -é-ﬁ-l l‘-> 0.
Proof: For any fixed positive integer k, | Im% | i-o 0

L]

_

by property (4) of an F-norm. Choose N, such that
I Ilcxni | < whenever n >N. Wemay assume that |
. Hl < Na < N3 ._<Q seo. o . ng?ii = l fOI‘ i l 2, ce e ey NE, and

1

1ngeneral let a,, = fori-N +l Nk+2....,N.

=

i}'» z .. Al W waad . e e e s a2' ¥ WNE

ey 9 C - . PEIPS e mm M v s iy, L e Ll L L N [l O e w dara b T s TR el Wt - . A
-~ Mg - e n&r- B-F.. A e Grvregs ot o e | N N va N e - trddiadl - L P R . -~ - 4] P )

+ X
Then | il 0. - | |
T an | . o

-1.292., Lemma “.Suppose there is a scalar sequence a’n"" 0

ﬁ | n y T | -
8uch that A, = Xo Then,c—.ll,xnl | 0. | . | |

jopvwveinsosvvsa P PP CIPPIUDEPIVPINIS o ~sag s

Proof. ( ) is || ll-boundea." Hence llﬁu r iteo

[ e e
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1. 2»3 Corolla;x, If 7~cmnvergence is equivalent to an “;%N.S

F-norm convergence, it is equivalent to II | | -convergence.

e B - Proof: Let.cx '-Y#»O. S:ane 1t's an F-norm convergence
| Xn

there is a scalar sequence an-;o such that 1»0. Hence

| an
by l.\g2.2.';“ | Ixnl | - 0.

i.2.4. Theorem: Let X be a Banach space under ‘|].|].

‘%mw'~ n Each of the following is necessary and sufficient tggtfy-

- | convergence be equivalent to a norm convergence:

A % _ e
3 (a) |lx,/| -0 implies boundedness of (x ) under

(b) |l.]] and ||.]|| are equivalent,
| 1

(¢c) X is complete under

®
r

‘Proof: (a) implies (b): Let ||x_ |*> 0, then, as in

the prdof of the corollary, we can show that | xh'l-ao,

(b) implies (c): Obvious since | *is a \

-

linear metric on X.

*

¥ %
.||~ are complete

~ (c) implies (a): |].

comparable linear metrics on the same space and hence are

g LA I

equivalent. - - | | o

It is clear tnat (o) is a suffiC1ent condltion. Further-

= . . - . HEP I i.. . - T G ol e T M- W i
BB bt v, i W R S wme w2l A maDD . AT EL WL S vm wwa ewa. - e Ve G5, S . - -,

more, ( ) is a nccessary condition as we now show. Let

11

:.--3;_;1 Y, 0 and by lemma 1.2.2. xnll 0. But this is impossible.




‘ sible to introduce a metric on X such that the metric con-

‘vergence is equivalent to.y-convergenee.

1l.2.5. Remark: If Y-convergence is metrical, then it

.|| convergence.

Proof: Let X Y, 0 and let (an) be a scalar sequence

wilth an-»o, Ciearly, then, 3% Y, 0 so that the“metric 1§\‘;mwﬁ:eeii
an F-norm, and the remark foliowe by corollary 1l.2.3.. L |
3. Some Examples
 In the following, (X,|]-
induced by ||.||. Similar notation will be used throughout
the remainder of this paper. |
We now state two more postulates. - |
‘Postulate (11): The unit disc, = {x:||x|]]| ¢ 11, in ///é\
(x,11.11) s [].]]"~complete. o -
Postulate (iii): If x is in X and (xn) is a sequence
} '1n'X/converging to xunderkl[.llf, then ||x|| < lim inf
llxn I; i.e., ||.|| is a lower semi-continuous function on

1. 3,1; Lemna (A,Il Islletd ) satisfie (411) if and

%*

only if S is closed in (X, 01-1]7). the non-
o —— . 2 :
trivial case, (X,||.|| ) is of Category T in itseif, . = '
.h@uQ""Luun;vﬁﬁeeﬁa,“é"necessaxygeneweu?f&eieneweendieieﬁv%erw}{p}Lunuvwh#~wn~~
-%ewbe»1ewer~semi—eentinaeee~en~(X;{};{l?)-isfthatwwwww~m» e
x| x]] < K beclotedfer all k. e

. e, -
B . ’ *
\ _ .
¢ ) . - . - X
1. X
[




S a

The lemma shows that (111) followe trgm (ii)
assumed. Spaces~satisfy1ng (1ii) will be termed "normal'.
' Now let us consider some examples of two-norm spaces
satisfying (1) and (11). ¢

1.3.2. Remark: Let p > q > 1 be integere and let [.]1

denote the ueual norm on LP = Lp [O 1] and . Il

Lq 12 (o, 1] Then (IP,|]. ,|| 11q) satisfies (i)

Proof° P @ ch S, where S is the space of measurable
functlon on [Oal] For £ in S, let |f| -_-f1 +f§t_ ~ dt.
G

| | O h
It is easily seen that S is Hausdorff and I and LY are FH

subspaces of S. Hence ||.||. is stronger then ll.llq.

P | |
eEAIINTPRTNTINE

Let A be the set of simple

1.3;3.>Example: We have already

seen that (i) is satisfied.

functions on {0, l] Then A © L®€ L. Furthermore A is

dense in (Ll,ll ||1), so that L2 = LY. Let (x,) be a

sequence in the unit disc of (L%,||.||2) which eonvényu#n X,

x in LY, under .lll. Since (xn) converges to x in the mean

E of order one, there is a subsequence (x ) which converges to

5
w

X pointwise a.e.. Thus x° - x° pointwise a.e, and hr Faton!
en, Ner W, e g By Me, mod. e S i - RERCHARN 31’ e o e S T BT R R eoSew S
I ‘. F 'VK HEE> . » a
lemma , l lXi 5 g iim inf I ankl | = g 1. Thus {ii}, and hence
‘also (iii), are satisfied. It is clear that y-convergence
‘ﬂ,‘f.re.___may be eharacterized es: 'Xq 3, =X if'and 9313 if iessnm e
}/ }x (t)x “dt < K for all n and‘/ lx (t)-ﬁ(t)tdt —»0.
[ B o - o

ngeyer,wmwgw-;;

—there will be times in the sequel where (1ii) alone will be

P
that on | B

tn
{ B . L RS




. ~i - . .. .
- - N o

R 1-3 4, ‘Example: (L%,|]. ll 1. ll ),\where

lell 'x(.,tz dt. Tt can then be shown that 12* = g
1+{x(t \ ;
and that (i) and (ii) are satisfied. Moreover, y-convergence o

may be characterized as: Xx, L, x if and only if .

flxn(t)ldt <K for all n and x - X in measure.
~ Chapter 2
) Theé Linear Functionals
1. Preliminaries
_ Unless otherwise stated it is supposed throughout this
chapter that (X, II II,II | | ) 1S a two-norm space satisfylng .
postulates (1) and (iii). It is further assumed that ||.|| I
- 18 a norm and that (11.1] ) is a B =spece9 i, there 1s
a sequence of seminorms ([ ] 1) such that S 2 [x]i = 0 implies
| 1= A ]
X = 0. If we set | | - }
21 [zl f
Hxl]™ =3 . k \
| R =P Hx],
| : ~ then ||. Ifis an F-norm and Hxn-xl‘lf-)o if and only if

L

, j dn o - - y - e g - Py <5 = 4 [ — el ) i - .
6 AP ey e e Y & AR g SRR E&Kn-:?}iul & wﬁ - Q Q. fgzvg@§h~ el :"I'ﬁ "“ &ﬁ‘&“ t"e"‘" ﬁﬁg'%df ‘ﬁ‘ﬂ&i\}“ ORGSR R B T Bl SF s‘? *W‘!ﬁﬁ“a&h mw*‘ Tj ;
ek o o e - ' -

“ [xls g Ixl2 € vuve, and, in fact, we shall do this later.
The spaces eon,juga,te to (x,11. II) and (%111 ) will be
_ aenoted ’oy Cc and ("f respeotlvelvg i. e , the set. of, f‘ua.’r b

als linear and cont;nuous under the respective topologa,es - B

By a "yalinear" functional we mean a functional f on X whioh
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is“lineaf and‘satisfies:'

i+

{ | x;'lx implies ,f(xri) - f(ic)'
The set of y-linear functionals will be written as Cy. It
18 clear that C € C_ C C. | -

2,1.1. Lemma: Let Xo be a dense subspace of a normed

*
.|| be an F-norm on X coarser

space (X,|]|.

than ||.|| and satisfying (iii) in X, Then (iii) is also
* .
satisfled in X. If ||.|] is a norm in X_, it is a norm in

-

P,

The proof 1is elamentary; o

We are not assuming (X,If.ll) to be complete. However,
in many caees of interest, this may be assumed for the com-e"
pletion X is egain‘a-two-norm space satisfying (i) and
(iii) Let xEX and let (xn) be .an element of the equiva- £

lence class given by'xa Since (Y ) is | II-Cauchy, 1t is
I %*

also ||.||‘-Cauchy, and so we define le = 1im lenll_.
This value is clearly independent of the representativev
chosefi“for x. |

Rt . %*
2.1.2, Theorem: (X,|l.[l,]i.|| ) 1s a two-norm space

satisfying {i) and (ii1i). Every continuous linear functional
on (X,||.]|) may be uniquely exeendeé“%e a continuous linear

~ functional dn (i [l |1). Furthermore, the ? iinear‘func- |

| tionals and the continuous linear functlonals on (X,l..ii’)
may also be~unique1y extended to vslinear-functionals on

R e R R4 “t L LAY SR




N | (E, . ,II If ) and continuous linear funetignals om ...
(i, . ) respectively. | | |
Proof: The first assertion follows from the previeﬁ
1emma. The proof of the sepond 1s,we11-known, and the
others follow readily. - | -
<4
2.‘ The Null Sets = | -
] The y-closure of a subset Y, of (X,]].11,1]. II*) is
A_E%U“the set of all y-limits of sequences in Y, and every set
including its y-closure will be termed "y-closed". We shall
denote the y-closure of Y by v(Y). Note that normality need
net be assumed in this section. | |
2.2.1. Lemma: Let Xy be a linear subspace of
(X, 111111 II*) and Suppose that x_ is not in the y-closure
of Xa. Let Xz be the linear span of (Xl,x ) and let f be
defined on X2 by £(x) = A where x = z + lxo.//Then £ is
7-l%near on Xz2. | ”
Proof: Let (xn) be a sequence in Xz withxn 1 0. Sup-
pose f(xh)+ao. There is a Subeequence, say (xﬁ),'and a %
. —— b },d.sughgbagﬂifixijlu>mﬁawwmgwxihe‘e=iema~eubaequeneeww”miﬂ“*w%%w*“
| (x“3 (vi) such thet [£(x “)]i converges to a.linitﬁd; ‘ ' .
_7 | ujlW’P‘ite xlf; =z, + £(x < )%,-  Then 2+ f(xn) %0 am S0 ""‘\
g eIt + x; beo= 0. Bus this asserts that %  is in

_;,l V(Xz) contrary to our hypothe31s.¥;] - MM;WH L




2“"_%f"‘s-ﬂ-’

o 2:2.2 Meorems Aswbset Hof (X,[I.ILII11") 1 the
null set of a ncn~tr1vz.al Y- linear functional if and only |
' if it is y-closed, linear, and of deficiency 1.
o | - Proof: Necessity is obvious, and sufficiency follows
from the lemma |
For any subset A of X, write Al U ﬁ_ ‘ where
{x'llxll < n! and B is the closure of B in (X 1.1 )_

n

We then have: .

' 2.2.3. Theorenm: A 1s <y-closed 1f and only if'A' = at.

Proof: First consider the necessity. Fix n and 1et

IR x€ AnS_ There is a sequence (x ) in Aﬂs with x_ - x
in ||. II - Then xﬂ X, SO xeA° Thus Aﬂs @ A for each
n, and so Ale A, But A = U AnS, € A, Hence a = al,

n=1 I

Now the sufficiency. A = A~ implies that 45 Qﬁsn"

for any n. Let (xp) be a sequence in A with X, Y, x. Then

for some M, x e S, for all p, so that lepgxll;,—»o implies
xeA. ‘
As we shall see in section five of this chapter,

oo

Mazurkiewicz has constructed an example for which y(A) is

not equal to y(?(’ﬁ)) _ However, since the mtersection of

N . o - : - PP - PRS- TIIDN e ’ “ 4 Salr 83 Bl Tl
e @ margt? A mE sl e dar 7 - ve e at s b N whpmesestienire o Swedt wmeowe dkv Letm 0 ey SEL ) L e A - Wseyic $a B WS e wBE TSI Sl T
. Y

‘any family of y-closed sets 1s y-closed, t“iere exists for =
~any set A a smallest y-closed set, %’Y(A), containing A. Now

write,.*yr(A) = A and ‘)"a(ﬁ) =y (U ¥,(4)) for any ordinal .
b<a | |

heS

'a>1. We then have: | . I -

2.2.4, Lemma: 7¥(A) is identical with Vo, (A) where @y

is the smallest uncountable ordinal. B
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T Proof: By the construction of v, (A) it 1s clear that
¥(a) o 'le(A)'. Let »(J%) be 2 sequence in ywl(A) with

P Y, x. Each K is.a v-1limit of a sequence in 'yb(A) for
some countable ordinal b. Thus xe'y('ym (4)) and Xy (A)
e
Hence *y (A) is y- —closed and s6 includes 'y(A)

- 3. Rgpreéentation of the y-linear Funétionals’

231 Lemé.‘i Let H be a closed:linear subspace ofh
.|1) and x_ not in H. There is a constant A such that
; hell and ||a'x+ h|| 1 for a scalar at imply ||nl| < A.
g Prooi. I:et Y be the linear span of (H,_xo), Every ele- |
ment of Y may be uniquely written as x = h(x) -f a(x)xo_ where
~h(x) is in H and the functional a is con’cinuoxis on (Y,||.]l)
~ since its null set is closed in (¥Y,]||.|]). Thus, letting
@ P 4=' a'x  + h = an.(x)xo + n(x), |ln]| = 'x-a(x)on
< xll+ Hallollxl 1 lxgll g2+ Hall-Hxgll = &
2.3.2., Theorem: The genéral form of the y-linear fune-

tionals in (x,||.||,||.||*_*) is

f(x) lim gn(x)

0 R dol & &ie s X5
N %a-ml:‘{,&&m B W WS WS R R R TR, ¢ BT Ay R e TR AL e o BT A R 1T TR i S5 b e S ﬁm-&ma lﬁmwnﬁmmm&mﬁmmm WL IR TR A R
¢

where g € c and ||f-g ||-0.

| Proof: It is sufficient to cgnsider only non-triv:_Lal
functionals. Tet feC,, f =|= 0. Denote the null set of T by
H and let x ex with f(x ) 1. “ No;: note that for any p@sitive

._.__.__*
integer n, EAS, C S, since if x is a I1.117-11mit point of -
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. _Has_ ;giiswin S Dby the normality of X. I’c then follows _

I

that Ha S =S AH" =85 n(HnS ) -HnS ", l.e., the set

Z =HnS_ is closed in (X, 1111 ‘).' Furthermore Z, 1s con-

| *
vex and x + Z,- Hence there is a g eC  such that

<1 for xezn

5 | En(X){=lforx=xo.
| Thi’us implies that Ign(x).l < 1/n for x€2Z,, for assume
Ign(x)-l ?ﬁ- for some X€Zj. . Then nxeZ_ and ,Ign(nx)l >1,
a contradiction. Let fn(x)‘ = P(x) -‘g’n(x)‘, then
{ < % for xe€Z,
If (X)l =Oforx=xo¢.
Lej:xex with ||x|| € 1. Then x = h + ax_ with heH and, by

the 1emma, there is an A such that ||h|| < A. ~ Thus h/A € 2,
and it follows that

le ()] = e ()] =& le (wa)l < o -

Hence | | f—nl < A/n which yields I f-gnl | »0 and

f(x) = 1im gn(x)' for all X.

We shall now show the s“ufficie'ncy of the repn“sentation; -

e i s mae!;azf .3.1 Do Then -sup.d | FRp e K< o.204. HS{PH Oy BO-LUBG . o i e
~ for eacb,n, [2(x,)1 < ey (k)] + (e, n"F) (%] '
o D < lgo, f(::{ )l + K | lg -F| | and so lim sup II(&p)l S K Hgn-fH - :

*
since g, € C. Letting n tend to = we have li% If(xg)l

'a.nd the c:heorem o follows.

The *orevious ‘theorem shows that- C'Y is equal to the olosure

of ¢ in (C,]]. II). Tnis assertion is not true when ||.]|*
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e

B Tt s RN

1s only an F-norm. Let X be the space 17 of éssent':_lally'

‘bounded measurable functions on [O,l] and 1let

= X\t |
IIXII = ess sup Ix(t)l, Ilel u/*rkﬂﬁr%¥r |

In this case c* = {0}. However, these are non-trivial

functionals“mcy since lell*'=;/a|x(t)|dt'1eads to the

| 0 -
same ‘y-convergence as IIxH*. Note that the lack of local

convexity causes the difficulties here.
o The thieorem also shows that f is <y-linear if and only
1f for each E > O it may be represented in the form

© ) = (x) + h(x)

. » o
where geC , heC, and ||h|| < E. The necessity is clear by

the theorem. Now consider the sufficiency. For.every

. L S 1
pos:.tivs integer n there are g eC  and hyeC with “‘hnll <=
j_,'@u.c'h that *f = &gn “+ h_ . Then | If—'-g || = Hh || > 0 as n- =,

n

;’I\flmfénce fecy since C_ is the closure of C. in (C, II ||)

Y
2.3.3. Lemma. If Y is a linear subspace of a normed

_space (X, 1.1 '-):_ and if y €Y, then there is (y_) in Y_ such

that

S wabanurl Blval rorivia MWD e e W3-

cs

yo=>y, and > |lyll<=.
e p=1 B . n=E1l

Moreover, for any € > O, (y_n) may be chosen so thart _

Ily H g lly Il + &

£
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| pronQ Let e> O and let (y ) be a sequence in Y

converging to y - F.or each ,positive integer i there is an

M, such that m,n g My imply IIym-ynll < & /2“'l with

M 3 > "Mp for j > p. Let K > M, and such that

Hyg-v Il < €/4. Then |lygll < €/4 + |lyoll. Now let

' - L
Yy, = ¥
vy = Y, - Ik
- -
Yo = I, ~ Yy,
and, in general, for n > 3, 1th A y%-l Mn-?z- . Then ,
" n '
> and
kT M 1 N
d B o L - |
> Ilyll=llyll+lly--yil. > llyy - ||
= K K M1 °K n=e M My,

S €+ T ll + /4 /2= |Iy ]l + €

I3 ' ' | ~ L .

" This lemma immediately yields the following alternative

- form of theorem 2.3.2.

2, 3.4. Theorem: The general form of the vy- linear
functionals in (X,II IR ) 18

J

o p— A e W e e AW Wh Wy W RN Wa O W, e . Wbasesse s W
o B Wi B0k 5 mdes § Ber N GBsier Wikenkipr T2k ,,-:," el & e . SIS SR I R “PJ‘T (Ix ) > .'vf‘qx- .,(x ) PRPETYRE EXSN- O e e . i _3 "'.ifr ARZ ('] r . s : Ih wt l:n >

where gneC and > !lgnll < = . For any £> O this represen-
0

_tation may be chgsen so that > llo: I g Hfll + 6
n=

o o rdod St e ey e e [
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- Now let us suppose that the seminorms [.], form a non- =
decreasmg sequence. Let C(n) be the set of linear func- -
tionals continuous when X is given the [.] -topology I e

assert that: C U C(n) It is rather clear that

Cete (T o) 7 clm), Ssuch
c € U ¢\, ret re U ¢c\®), mnere is an m ‘such that
- n_l N .

n=1

| fec(m), S0 alsogec(p) for p > m since C(l)C C(E)C ceee o

'S—- ;k [X]k

k=m 2 1+[X]k .

Hence f is continuous under ||x]|| * =

But ||. II < . H ‘and so f is continuous under I_l!l.lf,

i.e ’ feC

2 3.5. Theorem. The functionals g, :l.n 2 3. 4. may be
chosen so that 8. ec(n) :
. Proof: C(l) c 0(2) < .... implies there are L euch
that gn"ec(kn)_ﬂand ki < ka < ..o. . Let ‘ .
/ gﬁ _ { git for n-ki, 1—1 2
O elsewhere

g} 1is the desired representation.

l"|8'

Then f =
=1

e

!

4. Wiweger's Theorem

(R T RN SRR T TN SR - I X TR YOI o W B ple R

"t this sec‘ciczn we shall shew there is a "cma ly convex

4

-----

| linear separated topology u on X such that sequentlal een-

vergence under T is equivalent to y-convergence and such that
u-eengugate space 1is equa.l to C Such 'to*oologlzation is

essentially due to A, . wiweger, see [18] but the on"ei given

here is not Wiweger's. |




.\ —

s

in general, not true.

| _17 -

———

A subset Aof C is called "ner!mms" in- (X, H H) Y

the norm

E

I,IXIIA = sup lf(x) feA, ll"’fl,l _s_il,i

is equivalent to the given norm*‘ A is termed "strictly
norming in (X,|]|.]|) if for every sequence (x ) such that |
supnlf(xl}l < o for every £ in A, (xn) is necessarily bounded.
Every strictly norming set is norming, but t‘he‘ converse 1is,

2.4.1. Lemma: The set Y = {f : feC", ||f|| = 1} 1s

| horming in (X,|[.[]), in fact, ||x|| = sup if(x) : feY} for

et " Proof: Let (xn) be a sequence in X such that

xeX. |
Proof Let lell = 1 and let € > 0. The set |
S = leII < 1} is closed in (X,]||.]| )'si‘nce X is normal

Now (l+ & )x is not in S and hence ¢an be separated from S,
~

'i e., ther'e is'an'f in C 5~uch that -

< 1l for xeS

f(x) { =1 for x = (l+€)xo.
Then | |x]| l < 1 implies lf(x)l < 1 and so fe¥, However,
Yo W G G gy we .,3 '-Kggj‘. . e @emdise R WEe 3 e e a an ee e WAL TET et N R ‘,‘,a-;.,tmz.-..,aaw‘g., e e ﬁ--".‘f-%ié’:ﬁ
f (X O} = jjof s uhe:ee é 'as grbi t:::*a;.z"j;, - Phus | — |
| 1+& | |
sup | g(};g) geY} g[lxo! | . The reverse inequality 1s obvious,
and since both norms are homogeneous the lemma is established.

~

tn

2:4:2¢ Lemma:  C; 1= strictly norwing. for (K i}.11).
i

ot @1 W L P b

i

sup If(xn)i < o for every feC. . Let B d,enpte the space of all

Y

T
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bounded since C, is strictly norming on (X,||

E ¢
— -,11; -
-
,.¢

bounded scalar-valued functions g defined on (xn\) It is

“elementary that B is a Banach space under llel] = =_Sup_ Ig(x )l

Let T:C y.=.-~>B be defined by ‘l‘f(xn) f(xn), )'I‘ is clearly —

linear, and Ilf-fnl | > 0 implies that f,(x)- £(x) for each
xé}f. | Thué if Tf = 85 then g ="/‘I'f'” Hence T is closed  Since

Cy and B are complete, it follows that T is continuous. - Thus

for any n and any feC., f(;%)l < sup If(%)l | 1Te| |
< Hell-Hell. But [x || = sup {£(x): fec,, II£l] g 11,

as one can readily deduce from the previous lemma.-, Hence -

”xn” < Tl for all n.

Let (X,,.g “,II ) be the two-norm space under con-
sideration and le’c T denote the topology induced by ||. H
Further, let W = o (X’C"y) be the weak topology on X under

- C,. Now let the p topology be TWW, i.e., p has as subbase

‘Y
TUW. Recall that p is the weakest topology strongor than T

and W. It is clear that p is a locally convex linear separ- |

ated topology on X. Furthermore, we have: f

2.4.3. Theorem: X, Y, x if and only if X L, x“*"/

Proof: If x, %0, then x -0 in T, and | x ||} s

). _Hence

SRRTEIAY . Nebeeat v

t-
e

e e

1t x, %0, then :%-»o in W and in T. Let G be a -

neighoorho‘.od of 0. There are G; and G-, T and w neighbor-

Cecand® tew S 8 GG wMWMEGOBen B

[

hoods of O ﬁespeccively, such that ¢ o G, Ga .But (x)

is ev.entually in G; N G2. Hence X, 5 o.

4 drea e W Bt e e

C Ward e e RSr

CRCR I R T
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Y

ar'e 6(1 C ) and ’%‘ X,C" ) respecti vely. Re‘caii that %ﬁé*”ﬁés’:is

hif it is u-cont:muous and 1inear. - S

- Jugave space € theve vy ‘weakes u,f é ong
.

R
| R v f % fra | of oV
sets ¢f the form S R o

S - - \ Y

2.4.4, Theorem: A functional is 'y-linear if and only

o B

Proof“ Let £ be linear and u—oontinuous, and 1et
L.

x b RA 0. Then x S0 and so f(xn)->0 i. 2F f is v- -linear.

Let f' be y-linear and let N be a neighborhood of‘ O in
the scalars. There is a W-neighborhood of 0, Gz, such that

£f(G2) € N since f is W-continuous. TLet Gy be any T-neighbor-

‘hood of 0. Then Gi N Gz is a p-neighborhood of 0 and

£(Gy A G2) C N, i.%., f is p-linear.

As we shall see '1a,ter, the requiz*éments that the topology. |

satisfy the conclusions of the above two theorems do not

determine the topology uniquely
then |]|.

L
2.4.5. Theorem: Ifo = C 1.]] are

y?
equlivalent.

Proof: By normality and theorem 2.1.2., we may assume
that (X, | ‘.I I') 1s complete. Let us first consider the case

, %

where ||.]|" is a norm. We may assume that | | x| I* < x|

for all x in X. By the Mackey-Arens theorem, of all -the

locally convex linear separated topologifes on X having as con;

*

i
-
Selehw

I\)

!Zx

and

(1"’

a-
C

.{m
m

\

of olosed nelghborhoods of 0 for ’E(X c ) consists of all

‘ R
. o Ve £ Vi 3 e o o
Lt wnere @ iz z subset of C

T d
-
.
-y
==

" We shall now show that ¢ is bounded in

| '(C*,H. 117). Note that the topology c(C ,X)

—

is identical with %the topology tnduced by o(C X) on c”. Henee/ |

¢ is compact in ¢(C,X) and it follows that ¢ is bounded 1n

f ! T R 178 » e X T i
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i - - o(c,X). So.for each x in X there is an M such that
| ulf(x)l < M for each fe¢, i.e., b is pointwise bounded on

(X, 11.11), a tonelé space. Moreover, each f in ¢ is in C.

{Hénce ® is bounded in (C,II. ) by the Uniform'%oundedness L

Principle, and hence in (0 , .]1). Since X is normaly

*
o =,.C7 is closed in (C,||.|]) so that C% is complete with

%* |
respect to both ||.|]| and ||.|]| . But then (C?,II.II*) and m

(C#,II:]I) are topologically isomorphic since each is an R
FH suospace:of.(c,ll.ll). So the identity méb, i:(C*;II.Il)—»

- (Cf,llfll*) is a linear homeomorphism, and hence preserves -
| bounded sets. Thus ¢ is bounded in (C,||.[1¥), 1.e., ¢ |

is included in a sphere 3, = {f : ||f|ff‘§ r{. Thus . | t

N xlex)] g1 O i)l g1 = xlixl*<d |
fep fes, = - | o | |

_— | * | [
Thus ¢ (X,C ) is weaker than the ||.|| -topology on X. The \

. converse follows by the Mackey-Arens theorem. . A
Now suppose that (X, II.II ) is a B o-Space with the

~ sequence of seminorms ([. ] n) defining 1ts topology Since .“ﬂ
each of the seminorms [.], is weaker than ||.[], there exist r

IV\

constants K such tha* [Y] Kyl ! !! for x 1n X Let

rdetea it v s W Elc Gl Ol A ¢ er deae @ des mli it . e ,.,.. €Tt A e ._‘..0“ e bemrr st 1 ekt '\v B s ;'.,;_.;-- S SRwesds T SEEE R e mcd TE e e e S e e W e S e Bl G ael e Rl ekt iy A S e um L]
. ; 1
s .. 5

[ o8]
Wt

L e ; [ - S "5 T
| i S i'xli = D . Ix] .
| | ' ,”‘» ®) H:l EHKh . n |

“ThEﬁ . || is a norm. Let (xP) be a null sequenoé in

.y L _
tear that - ix;l;~.0.48 p~.2 for sach b ...,

"";'}(X:H i

%, |
}Hence (np) is null in (X,!l |1”), and therefore II | - is .

_“ff.{-,,..
. ds

o’

@

**;

i

_ |
stronger than |- || It is obvious, though, that \xlI: o ;
S l|X|' for all x in x S | i - o ';?
\ . | i

|
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’ (x:” H:H H )and (X' °| :H

We shall now show that .llo}and‘ll;ii* are equivalent

on bounded subsets of (X II %/‘ Let B be a beunded subset

of (X 11.1]1). Let xeB and consider B-x = {yax.yeBl. Let
(xp) be a sequence in B-x such that |lx Il - 0. Then

R

[xp] — 0.as po © for each n. Note that

| *» 2 | |
||x||0 = > L [X]n 1s uniformly convergent on B-x by the .
n=1 2" K, | | ‘

Welerstrass M-test, since B-x is bounded in (X,|!.||). Hence

) |
um ST 4 s = (um X . [xp]n)s 0.
po o am1 20 K~ . =l p-o=2 K

* ‘ -
Hence ||.|| > |L.||6 on B, but we have already seen the re-

Py

verse inequality. Therefore ﬁl.llf,and II.IIZ

on bounded subsets of (X,]|]. )fmmHence the <y-convergence in

are equivalent

| ) are identical.

We shall now show that v- convergence in (X,]1]. ||,|| ||*

)

,is metrical. Tt will then follow by 1.2.5 and 1.2.4 that
* ‘

I1.1] anda ||. 'afe equivalent. Let x Y, x in

* | ‘ * | ¥
(X, L1, 117) . Then x »x in (X, [1=11]). Now let C_ de-

| %
mnote the conjugate space to (X,|]. Ho)' Then = o C’C'Y

By the first newf~m§

L ]
"'i’ ““‘“ Vi T caew Tarer . W G WIOABIGRATE ¢ W

* .?.;. LS V)
i b P 5 .
the proof, tne !!.!!O-EDPOLOEV is stronger than the u-topology.

B %
~ Therefore x - X in (X,11.11) implies Xn X, which in turn

n- 0
implies X Y, x. Hence y-convergence is metrical, and so

Thus C, = C* only in the trivial case. On the cther_.

_ hand, we may have C_ = C in a non-trivial case.*‘The~spacee'

oy
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e (L 51 H,_, H’ H 4) gives an example of this ca,se, (see 1. 3 3 )l Y

The above theorem is not true if (X,]].]|" ) is only an
“F-space, i.e., a complete linear metric space. A counter-
example is given by (L‘,ll H‘ |]. ] ) (see 1.3.4). 1In
this case C and CY consist only of the identically zZero

.
A

~ functional. Obviously, however, the two norms are not

equiva;e\n:;a\:c‘)r Ootherwise C would also be just the zero func-

tional. tn, it's the absence of local convexity that

causes the trouble.

. aaizz PR —_ .

5. Sor’nef Patholog;cal Remarks\ |

R

In this section we shall use the space (£, Il H,II | )
00
| — 1
with | |x|| = l | and lell => Ix l to produce
*n n=1 2

some rat-her' disturbing facts. For a sequence (xh) in E" it

.18 rather easily seen ’chat xn Ipx if and only if

sup_ le || < » and 1im xp 2&3 for each posi’cive integer p.

n- o

I shall first show that the space is normal Let

”xn_on = 0 with || H 1 f‘or all n. Assume l x°|| > '1_, | X
= Mo
1.e.3 lzol > 1. There is an M such that '>"" on > 1. T
Let (3 [x3]) - 1 =8 >o0. Lét n be fixed but arbitrary.
- - p=1 o - .
Mo
Then >_ |x%| < 1, and so
p=1 bl 25 ®
LN ’Xgl-»i_lxgi $I> (gl - 121 _
g_pz;llf;tpl IJ&,H __g%;llxp % |
4 — —




. " where 8¥ = (5k). It is easily seen that bkec* so that

*" o3 -
- oML M M
o/2" <o (%alxp - ﬁ,-.l‘) < %; Eﬁg {l, 1.e.,
| fOr any n, |[x" - x°| l*'> t‘>/2M a flagrant con’cradictrion.
Thus I|x°|| < 1 and the space is normal by 1.3.1.
Recall that (zl_, | | ||) is conjugate to C the ,Spa.ce' L
) of null sequences. "é |
| 2.5.1. Iemma: For sequences, y-convergence is equiva-
1ent ’co weak ¥ convergence in £%, i.e., to ccnvergence in “ | |
o(L,e, ). ; _. | ‘
. Proof: IlLet "xn' :on and let aec_ . Then a = g;l akﬁk '
> - =

aeC . Thus a(x )-a(x°) for each aeco, and so x'- x° in

R
o(zl,ce).
Let X - x° in c(z_",co). For each aec, > akxk-,->> akxk.
| = Lk n = k o . n n‘) N —‘
Hence -f:laixi". %__ 61 52 i.e., X =Xy for each k.. f{I'hL}s
| |x™-x°|| =0 _Furthermore, (x?) is c(ﬂl,co)-bounded and

hence is equicontinuous, i.e., there is an M such that
nj l

%

||x"]] <M for 211 n. | B T T T T _
et ﬁ&zzu'riﬁew*i’cﬂz‘;'”ifff"‘{.jg“}‘f“ﬁis*"6’6ﬁ’*§t*rﬁc’t"ed“ a Tifesy ggplT T R -
|  _ space of £* which we may use to advantage here. Arrange all

5 - pairs ofpositive‘integer's (i,k) in a Sequence and liet

N(i, k) denote the pobltiﬁn of the pair (1, k) - Let

R . + . gel-l ', il =




......

g

g_ :;‘\ : | v . 24 _

R ‘Rte set M, of Mazurkiewicz, 1s the linear span of the set

~ of all x*X, . Now write h
© -1 n 2kl
o_—0 - — O |
X = and xn =
B o SeETE

2.5.2. Fact: x e’y(M) and x1 lx However x°¢vy(M).

Thus, in general; 'y('y(A)) 4 V(A)
Proof: I shall first show that for any n, x ey(M‘)
Consider the subsequence of the sequence of integer pairs

‘consisting of (n,k) with N(n,k) > n. It is clear that for

nk, |

‘this subsequence | |x < ntl for all k. For each positive

integer p it is equally clear that 1im xpnk = xg Hence

- 00
n k
this subsequence y-converges to x :

It is trivial that x* lxo, and it \\remains only to

show that x°¢v(M). Supposé there is a sequence (xP) in M
“with xp %, x°, For each p; x° is a certain 1inear combination
) of elements of the basis of M. ' Let a, be the maximum of the |
absolute values of the scalar coef'ficients in this linear
combination and let 1 be the maximum of the first elements
of the ihteéer pairs (i‘ i) such that x+d 4s in this linear

combina.tlon fw:s.th non-zero scalar coefmclent)

B Lo SFRE I L D, T, Tie - G, ST G Blows sy sl S5 L ettt A ey oh g pmi ey (e AmET. e e e OO e A%

that .Lp-» ® as p= . We may also write x¥ = xpjL + ,x"‘

xP* is an element of £ yith 0 in each even position and xP2.

is an element of 31 with O in each odd position, i.e.,

4 eaBiete Gws g W M B BE AV GCIDISOTERYSY FEY VDR vopves £ S253 8 van Ty w s ua= « 1o mm - v e & ® e S M e e A W A N

xPl =51 1"21'1 and xp’- 5: b-iﬁei where the bi's are
- =11 o iIm
scalars. Now xP lx implies xﬁ as p-» » for each”n_'.
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| -'Hénce «P2 2,0 u-ms implies a,p->0 For suppese not there o

1s an € > 0 such that ap is frequently greater than &,

i.e., for any Q there is r > Q such that a_ > & . Then

pr2|| > €1 But 1p-> ® as p- ©, which contradicts

xP2 % 0. Hence ap->0 and then xP! % O and so = Y. Con-

% x°.  Hence x° 1s ns

I 7

 tradiction to our assumpti@’n that xP t

in y(M). |
 2.5.3. Remark: 1In (2,]]. II,II ll*) there is a linear

subspace .H and a 7-linear ! ’”""""""'ctional on (H,||.|l,]].]] ) |
which cannot be extended' to £! with the preservation of
y-linearity. o ‘ ‘ |

Proof:  Let (x") and x° be as above and let H be the
linear span of (M,x°), Then (H,|]|.|], II II‘*) is normal.
‘Since x° is not in v(M), there is, by 2.2.1., a y-linear
functional f on H such that f(x) = o for X in M and
- £(x°) = e However, there is no ex’pénsion F of £ onto #?1
which is vy-linear. Suppose there is; then F(xn)' = 0 for all
n. But x" 15‘;:0 and so F(x°) = 0 £ £(x°). ‘

The remark shows that the extension theoren is, in h

e o enar. wrn e mmne e b o o

~-~Aan-—>ea, i.e., sets of %his femcempose a baszrs ofmigﬁbcr

hoods of 0. Let u = TvV.

gener—al ot true for the /-...1, ar functicnals.
Let T aeﬂece cne i; 1; pe‘logy on X fgr a twe-ncrm
space (A, a1 1] ) and@let V be the topology generated

by all sets of the form {x:lf (x)Al <a, for all n} where (£, )

: c R : & = * - 3 3
~1s a sequence in C with ii: i 1 and where ¢ < a_ and

A




------- - w —
- 2. 5.4. Lemma: K 1s a locally convex linear separated
topology and u, is weaker than u.
Proof: I shall first show that each neighborhood of 0

n e mPANEI Y A PO I R ST .

is @bserbing. ~Let G be a L!. -neighborhood of 0. There are

G1 and G2, T and V neighborhocods of O respectively, such

that G DG1 A Gz. Let xeX. There is an € > O such that

|b| < € implies bx is in G; since the T-topology is linear.

Gz is of the form {x:lf’n(x)l <a for all n} where
l*

£ 1]" ¢ 1and 0 <a —= ILetms=g.£.Db.1a :n=1,2,....}.

For |b| < TT%W’ we have If (bx)l < Ibel' <m < 2, for all

n, i.e., bX is in Ge. Letting 6 = min ( lxll’f) we have -
the fact tnat |b| < & implies bX 1s in Gi A G=.

Now G, contains a balanced neighborhood of 0, N, and
G2 1s balanced Thus N n Gz is a balanoed 1! -neighborhood
of 0 included in G. |

It 1s clear that Gz is convex ano we may assume 'also
that N is convex. Thus N A G2 is convexA, and it follows’
that $ NGz + 3Nn Gz = Nn Gz C G.

Thus u% is‘ a locally convex linear topology. It is

‘ *
also separated since u

iy W LD O T, X T

Cle{ar'ly (xa) is eventually in G3 %éﬁnce it 1s stronge
t

Lol d AT L AR IR S DT P8 RIS O asA 1. »-v PO e A EPETTACLA A L g

i
It remains to show that u is weaker than u. Let (x_ )

be a net converging to 0 i_n“the w-topology, and let G be a

,'utn_eighbo;:hood of 0. Then GO G Gz, Ga andGz as above.

l-«’,

* Than

- PCIERITIT RO EULY A WEA o Bagy Mo T L7270 19 B BT T etV R & . o e P O I,

m be as above. Since X, 0 in the p-topology,
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fo )-»G for every feC . Thus there is an ay such,that

7
> a implies If(x ) < m. Therefore (x ) is eventually

1n G2, and so (x ) is eventually in G. Thus p is stronger

than u . |
. D %*
2.5.5. Lemma: x_ L x 1f and only if X L

*
Proof Necessity is clear since L is stronger than p .

Let xn O. Then X~ O in T and in V By Wiweger's lemma
He(x )l:fc e <1l, n-= 1,2,...},1s bounded. Since C'

is norming on (X,||.||) this implies that (x ) 1s |[.]]-
‘bounded. ' Hence x_ Y, x. ”
, : - x
Note that u* depends only on C . Hence for every

. | x | |
- linear subspace A the p -topology constructed for

(4,]]. I ol e *) is identical with the induced u*-topology

* ,
for (x l, I, 1].117). We then have:
x
)
is suChlthat X L x is equivalent to X Erx. éghe y-linear

*
functionals, however, are not ldentical with the p -con-

2.5.6.‘Remark: The n -topology'on (El,ll NIl

tinuous linear functionals.

)

*
Y-1linear functional were “vGﬁv;ﬂuuuo,'the every 7—111ear

2reé. XL TE D . CR L DRI A TS Shr (5 fTH ST R
. TEL A rD Ly verTe VPR sl FR BT, R PP e v ITTCEOD N AN S I Jremv s KV o pE R ST @ G b
= mwrgen e T A > d

. Benam -

fun tlo"al ‘ould be extended to afl of £Y. But we have_?

seen this is not SO.

A topology, 2, on (X,||.1],I-11%) wi1l e termed

"approoriate" if oy
L

(1) 1t 1s a looally oonvex.linear separated topology
| for X,

< Proof: The Iirst assertion is simply 2.5.5.. If every -

LIRS,

|

Bt




topologies for the space (X,||.1l,|]-

. .
- ‘6.‘?28I -
L aaaasaered .

st '

- {11) for sequences, y-convergence is equivalent

to & -convergence,

(111) ¢

v is equal'to the set of linear functionals

- continuous in the topology 2 .
*, :
1)

Proof: I shall first show that o = a(zs,ao) is appro-

'priate for (£3%,]]. ||,|| || ).’ Property (1) is~c1eermand

property (ii) was shown in Lemma 2.5.1.. Let feC_ & C.

Y
Then fem, the space of bounded sequences, l.e.,
(x) akxk where (ak) is in m. Consider 8" %0 and
| k—l i |

£(6") = ﬁﬁ x = 2,0, so that actually, (a )ee c - Hence

f is o-continuous- Since the two convergenoes are equiva-

1ent, sequentially, ‘it is clear that a o-continuous linear |

functional is also Y- 1inear Thus o(ziecé)~is appropriate,

and Cy == of | , | . .

Thus we heve two appropriate topologies, ¢ and u, on

. R
(e, s LY. Since each aec  is <y-linear, and hence

+ NS A2 T TR S m‘ *‘m L Y - 8 ]

. c o ~, - P R . 4 )
‘are no O-neighborhoods of 0 ineluded in V since every G- 0 o0

p-continuous, it is clear that o is coarser than u. We'shali

; : EMT ol & ofe S el S L n® W el e el o e fﬁmwmn.a Y
S‘how THEL T Ig FEPIETIY 1 _vé‘r“““ﬁiﬁ"‘&”“‘ft" e . e
. ¥ . | S
V= Ix:/|x||" <1l G where G is an x»o(zi,c ) neighborhood

of 0. Then V 45 a w-neighborhood of O. Fﬁrtnenmore, there
£

‘v’
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| — 258 emark: There is a .1iné'arﬁspace X with narm "%‘“‘""
|1-1] and two weaker norms; || . | and [].]|1, such that
. 3 _ | . % %
the y-convergencesin (X, ||.|[,||.]|") and (X,|[.1],1].]]2)

~ D1 ¥y e *
are ‘different but (X,||.|],[|.]|") and (X, ||.||,]|.|]1) have

the same set of ?’-1linear fuﬁctionals;

|
.
- e ,,M,Mawawa,wmmm?w-‘- ooy

Proof: Again consider /% and let ||x||1 = suplxn

Denote the y-convergence in (X,11.] l,1]. I:) by Yi. The

yl-convergence implies y-convergence, but nvot conversely,

since (5") is y-convergent to zero but is not Y1-convergent

" We have previously seen, in 2.5';7., that feC_. implies

Y

fe.co and conversely. Let f be yl‘l-linear. Since feC, fem.

Suppose fem ~ c_, say f = (an). There is an ¢ > O and a

o’

subsequence (a_ ) such that a, > & for every 1 or -2, D&

for every i. If it is the latter case, Jjust consider -f -
rather than f. I assume the former. Now consider the

sequence (x") in £2 where

o {0 .i(norj%_riiforsome'i

J>nand jJ = n, for some 1 -*©
——_— L EJ T " 1 .
Then x* ¥ 0, but
BP0 A o AT 2 WS AT MR OF T FICED L. &L PIPRIMENTLC T IR s KRS0 IS ML T RAR ARSI S QTR RIS R e m.a.né-msm S I STAOL. T2 Ml s FPT PTCRP ST RSO SRR L mm“mmma“
- £(x7) > T

-

Thus f£(x") b O, a contradiction. Hence fec , 1-3;:

'P&"ﬁ' € ¢ . -Since.ya~convergence.farges. yroonyvaergenca, it 48

easily seen that G, €C, , i.e., o, €0

oy Y1 . Hence we have

Ll

— [




R -In the next .seotion 'w-e‘ shall see sufficient 'éoh'ditiohs
A for the pointwise limit of y-linear functionals to be vy-

linear. In general, however, the set of functionals which

are point;wise limits of a 'sequence of y-linear functionals

| ‘ %*
is larger than C_. Consider, for example, (#s,||.[[|,|].]]").

Y
In thie case, c = m and C, = ¢, so that Cy G C, but every
element of C is the pointwise 1imit of a sequence in Cy.
Let £ = (a Jem, i.e., £(x) = a, x,. Let
k—l e
£, = {al,aa,....,an,o,o,o,. .}ec . Clearly f(x) 1im fn(x).'

6. y-y Continuous Operations
) .

For this section drop the gssumptions mentioned at the

beginning of the chapter The necessary assumptions will
be mentioned as we proceed
| Suppose X arid@:‘Y are Banach s;k)"aces‘and each is pr"ovidedl
with a ‘y-convergence. A linear operationU from X into Y
will‘be called "y-vy continuous™ if it satisf‘ies the condition )
that x Y, x implies U(xn) LU(x). 1Ir the y-convergence in |
-y is metrical (and hence equivalent to the ||.| lk -oon.vergence),m

mﬂzmmmnswnnm.anaﬁ'f‘s liﬁ&&%””a‘*‘* Im «G-@r—r" .f.?fuu* .'3‘7 -%isa.fie‘wl’vf o.rbé m&% ”*e*—eeuﬁwmmmmm

..... u
.x.uuuu.a .

Now consider a seguence (U ) of linear y-v contmuous

operations wtn.‘r.:n (?j ( )) '-r'rmve'n 311' f or each wxe¥. MThe
..QQ. i e cem iR rriae veesw et 4 4d -. esAardgiens P P P rrT e, i M F e e e T :

question naturally arises as to whether or not the operation

defined by the pointwise 1limit is y-y contlnuous. As we




have seen by the example of the v-linear functionals en

(li,ll 11,1]. ll ), the answer is not:necessarily". How-
~ ever, we can state sufficient conditions to provide this
result. To this end we state:

Postulate (iv): Let S be the unit disc in (X,]]. ll)

*
and give S the metric-||.|| . Then for any open set G in
S, G-G is a neighborhood of O in S, where

'G-G ix-y X€G,yeG,x~-yeS 1.

2.6.1. Theorem: Let (X, [1.1]) and (Y |l |]) ve Banach |
spaces and X aﬁtwo~nerm space satisfying (i), (ii), and
(1iv). .Let'([]n) be a sequence of linear y-continuous oper-
ations from X into Y which is pointwise convergent. Then
. ‘the oﬁeration defined by'KI(x) = linltfn(x) is linear and =
y-contihuous. | | ‘
Proof: I shall first show that 1. ] andlll.llf are
equivalent-on S. By (ii), (s,||.] *) is complete, but-alsc

(S,I].]]) 1s complete since (X,||.||) is a Banach space.

Thus ||.|| and |1.]1]1" are equivalent on S since they are

eomplete comparable linear metrics on the same space.

=U._(x) and V(x) = U Lx)‘m.,,u,gg,e._.m,.,m.m

* X2 in S implies that V_{xz: % x»

For xeS let

BT DAZLITIRIED M I BTSSRI D PN AR, 2 size sribio (i SEiva L BTSRRI 3 TSN - TmeT e 1§_£

t&sa.t Xl, Rz, Xi

= V‘(xv) + V‘(kg) and V(xli Xz2) = - \Rxl) ==(xé). It 1is

‘clear onat the Vv are continuaus in (S ll I ) anﬁ converge

o
w
o
S
:°3:
‘P‘

LT "60“"V Thus they are equicentlnmus.-a - %y (“*"‘?‘U&P~

introduction). Thus given 6 > Oﬂtﬁere is an &> 0 such that

\




3.

S “z=x_l|~ < &, xeS implies |1 (x)-V (x,)I| < & for
n=1, 2,

-~ Let G be an open set of (S,|].]| lf) with

. |
G C {x:| x-on < &}. By (iv) G-G is a neighborhood of

- 0in (S,|].]]"). ZLet xeG-G. Then x = x3 - X2 where xi; and
Xz2-are in G, and we have |Vh(x),lfjr””= HVn(xJ.) - Vn(Xe)”
< NV (x2) - V (x )|+ [V (x2) - V (x )] <28. SoVis

continuous at 0. Let xeS and (xn) a sequence with

! % R :
| Ixh-.xl | "= 0. Then also | Ixn-xl | -0, so there is an M such
that n > M impiies xn-xes Considering the sequence thus

"truncated" we have V(xn-x)-:» 0 so that V(x )-¥(x) and V is

Ik

continuous on (S, |]. ). The 'y-con’cinuity ernow follows

quite readily. | | | |
‘ | | *
_2.A6.2.,Theor»em° Let (X,|1-11)y (X, 1].11) and (Y,1|.]]")

- be Banach spaces, and let X and Y be two-norm spaces satis-

fying (i). Further, suppose that (X, }|.{[,11.]] ) satisfies

also (ii) and (iv). Let (Uﬁ)_ be a sequence of linear T
continuous operations from X into Y which is pointwise y-
convergent. Then the operation defined by U(x ) y-limUn(x)

is also linear' and Y- 'y contlnuous

< rnemrs o s m,...;.,.,,. e commrene o PRQRL e TE o i&@é@«ﬁeﬁewf&«te -8how--that axm‘x»e mm,.wmm. ey

;g Let *n 1’0 and a_-» 0 where. (a ) is a sequence of scalars
We may write a_ = b n? with b = * 1. Let V. a(x) = ¢ U (x)
- ~ PFix p and let || 2, | ;e-;g}_ uch, Ehat A.....

S llthzn_iwg. Then V (t,2,) Le so that Ht‘l v (tnvn)ll
= Hv (z )| =0 since tl-—:»o “and (‘v (t z )) is H Ilabounded

Thus for each p, V is H Il-continuous




((((((((

- EE L. - - - S Rp tme e m s e e smemeemes e oo
V- - - ~ . e e e i T ) £ - : : ENE. B
* ' : — " F T T . -
: N o o o " o N - - - .
> - —_— . - .
L4 33 L J : - -
vy . . :
S T T e e LR RN T R L T .

- . -  For xeX, ||Vn(X)||->0 Sincé ¢, - 0 and (Urfl‘(x)) s |].1]1-
bounded. Hence by the Uniform Boundedness Principle there
1s a K such that ||V || < K for all n. Thus

HanUn(xnII = cnvn(bnxn)l | » 0, and we have the fact that

(U (x))) is ||.]||-bounded in ¥.

, are y-continuous as operations

Now the operations U
| x “
~from X to (Y,||.|]| ). Thus, as in the previous theorem,

there is a neighborhood of O, N, in (S,||.||") such that
%* :
||Un(x)|| <& if x is in N, and the theorem follows.

(. -Some Examples

£

For an abundance of example utiiizing theorem 2.4.4.,

the reader is referred to section 6 of [4]. I shall give

only twci ‘rat‘_her short examples.
2.6.1. Example: Let 1< b<a < ®and X = L2, - Let
SRR L% -
1lx|| = |lx||, anda ||x|]| = ||x||, where in general,
5 | a 1/ 'b |
x|, = (f‘ x(t)lc) - Marking the conjugate exponent
A |
by an apostrophe we have
c = 18’ ¥
[ Recall that L® 1s dense in L° under ||.| |, S0 that o
- v ‘ | |
| o c" =1 - -

~ Now L”'c 12' and is denmse in L?"underlle!la,,ée.$ha€~

. 'g!z .
¢, =1% =




b > 1 for every n and bn a non-decreasing SéduenCé. Let

=l = 1lxl], ana [x] =”x”'bn
" We then have

p(n) — L n , c — La. . - c* = U L n
o " n=1

% ‘ 1 ‘ |
Evidently, C is dense in 1% under Il.lla, and again

C al _ ¢ ;'
, =18 =c.

Chgpter 3

The Conjugate Spaces

M 1. Preliminaries
Throughoututﬁf: chapter we shall assume that [1.1] and
- -—II.II*‘are.both norms. In the\pfeViOus chapter we Had.

assumed only that Ci,ll.ll*) was a Bi~space. However; our

_ restriction is nof to0 great since»(as shown in the proof of”
2.4.5.) one may alwvays introduce a norm || . l:'in X, finer

o tran |[.]]" suoh that v-convergence in (X,||.|I,|[.113)1s
© equivalont to y-convergence in (K, 0[-11,/].11%). In the -~

present chapter normality, i.e., postu}afe (iii), is not
" assumed unless specifically stated.

.........................
o -

Cma B c 0 L R PLUEEE i
We assume, naturally, that-{{+{} 18 weaker than ||.||,




-
2 .
- . *
. »
[ __J o - -

A sequence, ’\(xn)", will be termed "y-bounded" if = B o
tox %0 for any null sequence of scalars, t('tn ). A useful O

- fact now arises:

&

3.1.1. Lemma: (x ) is y-bounded if and only if

sup| |x || < =,

 Proof: Sufficiency is obvious. Let (x,) be y-bounded

and suppose sup xnll = o, There is a subsequence (Xn )
| | . | "
such: that len' — o, Consider the sequence of reals
'k
, | ¢ 0, m#4 n, for some k
~ 2 _ ' | t - { ' -
m - - , M = n_for some k .
RE k
k

Then t -0, but- ||t xn |- 1 sothattnz%% 0.

‘Since II || and |]|.||" are norms it follows that their

* .
con,jugate spaces, (C,]|]. ) and (C_.- [1.1]") respectively, — w
are Banach spaces. Recall that C < C, a.nd it is clear that
for feC. s, HIEl € IIfll We shall also use the following

notation:

8 = {x:xeX, ||x|] < 1 N - L

: Sf {x:xeX, x*g 1}

mm mwwmdmw
AN mmmnmm—nswmw.:mm: S TS T LSBT B S AT B AT ”m“m S PN Y, T % . ~ ‘ :

- £ = if:fec, Tl <1L ey D
, - 5" !f feC Ilfll <l}
... ... Obviously, S*ﬁsr' and Z'_ c =
...... e e now state: 4" Temms WhiGh Wili ‘bé"‘bf’ dse Tatep: A

3.1.2. Lemma: Let Ube a linea*?\ 'y-'y contn.nuous opera-‘

tion from (X 11 NI H )to (Y,H ll H || ), *thenUis




Yo B
e - 36 - a
.

~continuous as an operation from (X,||.||) to (¥,]].]]).
- Proof: Consider U(S) where S is the unit disc of . ... ... ..
. (X, .11). Any countable subset of [JKS) is bounded in

(Y,|].]]) since ifpreserves Y-boundedness and y-boundedness

is equivalent to ||.||-boundedness for sequences. Thus | |
U(S) 1is bounded in (Y, 111) and so | (U] ] o :
2. The Conjugate Spaces
For a given two-norm space, (X,||.||,||.]} ), the space
| *
(C*,ll.ll »11-11) 1s also a two-norm space with II.II* the
stronger norm. (Cf,ll.ll*, |.1|) will be called the
" . HoS . T 1T %
y-conjugate space" to (X,||.||,|]|.|]").
L % | ~
3.2.1. Theorem: (C ,||.|| ,|].]|) 1s a normal, v-
complete two-norm space. | |
 Proof: Let ||£||" <K for all n and let || -f |[-0,
as n,m-». Then for any xeX, fh(x)-fm(x)->0 and we define
fo(x) = limfn(x)° So for any xeX we have fo(x) |
| ’ * * o
= Ilim‘fn(x)l < 1im inf Ifn(x)l < 1lim inf | £ =] ;
- | * 7 | * ‘. - |
,,. This shows that ||f ||” < 1im inf ||f || < K so that the - '
| o = - o o |
:;;;;;;;;;axuaéggiiaiiml;ﬁgﬁgégig%gggeé;59~QQEE§;&- e
Now let (D, '} and (D ;1|.]] ) denote the spaces

conjugate to (C,||.||) and (C,| .Ilf) respectively. Thus

®

e b = sup  FP{g) tEeC AT B Far el e e e e

| | | | * % ®
and |irf = sup {f(g):geC M Z | for feD .

,].1]) and (Df,ll.l{f)’are the second conjugate spaces to

/7
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% 11.11) ana (%,11.1] *) respectively. Let (n“) .01

~ be the space conjugate t (¢ ,|| II),_in this case
- tgeC, y(v)
|[I£]] = sup {f(g):geC A=} ror red'?/ .
It is clear then that (D(V) || 1, 1] II*) is y-conjugate to_4”,_“ ‘i

e
(¢, 11,]

(X,l -I»:II’ i ) .

Finally, in accordance with our earlier‘notation, let

.|]) and so it is the second y-conjugate to

D denote the set of y-linear functionals on (C*,li}ll*,ll.ll).

Y

~Since this space is normal, DY is the closure of-D(y) in

| (Dt 1. l*) Also, we obviously have D‘(V)-C D C:VD%.

| Y
3.2.2. Theorem: Let (X,|[.]],!]. ||*) be normal. Then

(D(y) | ||) may be identified with the space congugate to N

(C.l1-11). ‘*

Proof: -Since (X,]]. 11:" | ) is normal, (C "l ||)

*

~“is identical with the completion of (C ,ll II) Hence their

conjugate spaces are, in a sense, identical, and

[1£]] = sup if(g):geC” A 2} = sup 1£(g):geC, N =}

thej however,‘thatJin generéi the topoiogies

Y | - 2 LY ) PN

see

........

i
~(D(V),||,]|,1 .Il*). _Thus if these two topologies were

quivalent they'would induce equivalent topologies on X?éhd
*

it would follow that G = C , 2 remarl not true in general. -

&3

Notice also that a(DW} ¢*) 1is weaker than ||.[|* on D(¥)

but G(D(V),Cy) is not. _4 R




o ‘ ~ S e e e o R |
) c,u‘;.,_ .
s

| .
The first v-eenjugate space depends on the‘norm II I

’essentially. ‘Given a strong norm || . II and two weaker
*
1

* * , *
vergence, the spaces C; and Ce, conjugate to (X,||.]|]1)

norms ||.||, and Il.llg which give rise to theqsame y-cons
~and (X,]|- ||2) respectively, need not be equal. Thé'second

‘y-conjugate space, D(V) however, depends only on (C s ||),
i.e., | P L | |

| ; and Il.llgﬁBe.two coarser

3.2.3. Theorem: Let |].

norms in a normed space (X,||.||) satisfying (i1i) and
leading to the same class CY of y-linear functionals. Then
- the spaces D(y) are equal in both cases.
Proof: Theorem 3.2;2..
Recall 2. 5 8. which showed that two coarser norms
'cculd lead to the same class Cy but determine different vy-
.convergenc ®s. On the other hand, the.norm ||.| | | in D(Y)
determines ||.||™ in X uniquely. ~

It is well known that the canonical mapping which
takes x into f_ where fx(g) = g(x) embeds (X,||.|]|) iso-
metrically and isomorphically"into (D, ||.1]) and likewise
ssecfKyee-o *H’- -

4+

.26

ke d &

linear functionals on (C»,ii.{i}, it also embeds
(X, 11111 tnto 0O, 111111 || ). As thus re-

LE) ! ) - o P L4 i ‘ -
wEo-. -LD .y .,‘., b g ' .L- = SARCe BRI -MAERINS - SefiNllrnr sar i MRt cia asis i

‘stricted, the mapplng will be termed 'y-canonical" |

' 3._ @ Thedf%m* T?“fﬁ”*“{??i{ 'i ) is normal, then‘

" the v-canonical mapping embeds (X,]]. ll,ll II ) into

L -




(n"),u 1,11 11*) with the preservation of ||.[] and
LI, teen, gyl = Hixl| and e l1* = [1xl|

- versely, the preservation of the norms by the y-canonical

Con-

mapping implies (X,||.|], I ) is normal.
Proof: By Lemma 2.4.1. we have

Hiegll = sup la(x):gec el s11 - lell

- To show the preservation of ||.]| I*, note that
| *
fxeD('Y) C D#Q Thus fo|e|, = ||x * since (X H II_) is
| *
isometrically embedded in (D, *)

The converse statement is apparent since
| *
J . s normal by 3.2.1 and any subspace o
N INININIWE 1 by 3.2.1 and b :
. a normal space is also normal. |

* * -
Now let (# ,.|.|| ,||.]|) denote the y-conjugate space

to (.D(‘Y), [1.11511.]1"). The canonical mapping of C? into

~ #_.1s given by | R

g > z,(f) = £(g)

~ ‘ - | T —

Let # be the space of Y- 1inear functionals on

e %,.Q?(?i PO L w.l:) .5 %gfﬁ ‘fﬂl}iﬂ;iafgﬁiff L,F?Lp.g{gg 2 £ ence s .+ e e e
E , @ S, 0] enveds ¢F an (#0117 1111 with the |
,‘ o | preservation of both norms, and since the canonical mapping

| . embeds (C’,H jl ) into (# ) | H ) con,jugate to (D('Y) Il H*)
H ih trwreser £30m 0. 1L 1%, WELRATE: - s caeenseneseecmeseenaeas

;{_’3,2. 5. Theorem: Let (X,||.]||,]].}| ‘) be nomai, “then
. | L B ¥, (%,
“the canonical mapping of (€ ,||.|]|) into (#,]]. ITf)

N

AR
-~
i \ _
I‘ -




‘ B f b - . ]
o embeds c'y into #, . S s
= “ Proof: The closure of # under || || is equal to |
R o #&, Thus the closure of C, as .a subaetof.#g, under
I 11.]] is contained in #ﬁ' |
R ﬁ;. - :  3. y-Reflexive Spaces

| (X,ll.ll,ll.llf)'will be called "y-reflexive" if it is

3%

normal and if the v-canonical mapping embeds (X,||.|]|,]].]]")
onto (D('Y)‘, I‘I“.~| 511 ‘f)', or equivalently, if each linear

functional on (07,

xeX. Every y-reflexive space is obviously y-complete.

|.11) is of the form f(g) = g(x) for am::

' ' * o
Let (X,[]|.1l,]].]]1") be normal. WHen X is given the

topology o(x,cy), (recall c,

topology 1) the conjugate space is CV’ We shall now consider

is the conjugate space for the

the strong tqpology B(C ,X) on C . Recall that in this“top-
| ology the ba81s of neighborhoods of zero 1is compaaed of the
polar sets ofwg}l‘d(x,cy)-bounded subsets of X.
3.3.1._Fact: If (X,||.[l,1].11") is normal, then the

~strong topology B(CY’X) on C_ is equivalent to the ||.]]-

. )
O u i N o g ey Py " o P . Y, 2 R TR,

S 70, ORI wsPer PR S 2 ”m-ualgp‘ _lucsgnﬂ,: gqv‘:..m.aa-—t; 2 NXT A, - L -My&g—tm " TETD e SRR T - " = R AR THA N

’ ’ - .

- - Proof: Let A be a g(u,c ) bounded Sub et'ef.x. Then

sup {lg(x )| xeA}< © for every g 6C,Y Thus A €n S for some

" n since c is striotly'ngrming Denoting the polar, under = =
2) A C,. Henzs 'S'(‘EZ{:\X), |

wu»

i_aoanq-‘:mfnzn-u‘v'.o'cou- o .3(5’; } 5 A we havf\ l'\ : (nS) =. {

is weaker than the II.II-topoloay.
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Now consider A'S fOI’ any n0n zero Scalar A Let V bea - .

basic nelghborhood of zero for o(X,C ) Then V may be

‘written as

n

[gi(x)l < Millxll for some M,. It then follows that

AS C©A(My +...+ M )V, and so AS is o(X,C )-bounded Thus
(As) is a a(c ,X) neighborhood of zero and so the ||.|]|-
topology is weaker than B(Cy,x)

A

3.3.2. Theprem: ’(X,II.II,Il.II?)\is y-reflexive if and

only if the ball S is compact for the weak topology o(X, C )
Proof: If (X I In ) is y-reflexive, then

which 1s conjugate to (C ,II || ), and hence S is G(X C )~

Now suppose S is o(X,C )-compact. Then S is U(X,C*)rw 

* v v
compact and so S is ||.|]| -closed. Thus (X,||.|[,[].]1]")

is normal. Let S’ be the unit ball of'(D(V) l; 1). Clearly
‘ ﬁ,:.umﬁlmp.g.‘.a...tx.emmsmx, £581..5.8 ds clogedin ﬁg.(,gillww}“mm.‘m

mmu——mnmm > 38 -.ﬁhm—m

slnge this top logy agree

x,that g(x ) + 0 while g(S)
i e

\
is o(D‘ ,C.. )-dense in DV¥/, 50 that g is identically zero.

m

a linear“functional g in the conjugate of G(D(y), Cy) such

n
|
o
_
<
S

A contradictlon, so that S' S. It folidws tﬁaévx =

with G\X,Gv) on 8. Hence there is

. - o e g e e
with giecy for i=1,...n. Now C,yc C implies that for all x _

o(x,0,) = o(D("),cy). Now S 1s the unit ball of (D(V) |- ll_) -

O. Then also g(X) = 0. But X |




| 3 3 3 Remark In the previous theorem,{hetopology
O(X c ) may be replaced by o(x C ).M' | B

Proof: Recall that Cv is the closure of C* in (C,|].[]),

'and that any total 11near subspace of C 1sadense in ¢ under

o(C,X) The statement then follows from the theorem of

Dixmler (see introductlon)

3.3.4. Theorem: A y-closed subspace of a y-reflexive

space is y-reflexive.

Proof: Let X, by a y-closed subspace of (X, [|.|l,[].]1%),

_ %
. a 7y-reflexive space. Thus S is compact in o(X,C ). The unit

R ball, S, of (XO,II. ) is X, N S which is convex and'll.ll*-

closed (recall S is ||.|| -closed by normality of X). Hence

o . . ‘ .
'~ "8, 1s closed in o(X,C ) and so, as a subset of S, it is

compact in o(X,C ). Let C. be the conjugate to (g, 11-117).
By the‘Hahn-Benachtheorem,oo(x C ) is identical with the'
topology induced by o(X,C ) on X, Thus S, 1s oompact in
o(x C ) and the theorem follows by 3. 3 2. and 3. 3. 3..

3.3.5. Theorem: A space which is yfconjugate to a~y; u)

~reflexive space is <y-reflexive.
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3.3.6. Theoremf Let (X i I,I] II ) be normal and 7-

complete and let (C ,ll II , | .Lw) be y-reflexive, then

” ,'(X:H.H,H,-H*) is y-reflexive. -




BEECE

Proof: By the previous ﬁh@brem.(D(V),I[.lf;{l.ll*)'is'e
O\ 4 |
y-reflexive. Now (X,||.[],||.]] ),.since it is y-complete,
1s a <y-closed subspace of this space and hence is 7y-

reflexive by 3.3.4..

3 3 7 Theoremf The following assertions are equiva-

- A

1ent

(1) (X I1-1l,1].]]") is y-reflexive and Cy = C.

(2) (X ]1.1]) 1s reflexive.
‘[Note: In particular this says ﬁhat the reflexivity of
= \
(X,II.II) implies (X,|].]1,]]-]] ) 1s normal and y-complete

for any norm, ||.llf, weaker than ||.]].]

— . “Proof: (2) implies (1): The reflexivity of (x .1y
implies S is ©6(X,C)-compact which in turn implies that S
1s o(X,C,)-compact. Thus, by 3.3.2., (X,|[.11,11.11%) 1s

, %‘v—reflexive. Since (x . II,IL || ) is then normal, it

follows that C, is closed in (c,ll 1]). cy 13 total with

respect to X since C is total. Assume Cyg C. Let

f C~Cy. By the Hahn-Banach theorem there is an xex such

that x = 0 on'Cy_and x(f) = 1. But x = O since Cy is total

AW JPRE SR RYNEH YT WA M S SEEAIS S I . 1 SRCWTY CTATENR I SEIE. O3 AR W " [ Bl « Gy comps AFWSY- VIR ML SAIRANS WRTL e b ARA B @ 2 U at TP L, > DT S . S ot I 3 OGN L 25 . caade AAES. iR TR AT Sy " . Con VTS A NG St -

Hencevcy = C.

- (1) tmplies (2): Since C, = C, the spaces con-
B Jugate to (C,II 1) and (C ,II |]) are equallso'thatw |

(X ll ll) 1s reflexive




- that it can be embedded in“(D(Y),II.II,II.II?) which is

N plete space. To do this, we take an appropriate subset

" onto X° preserving Y-linearity and the norm, ||.|].

e

4. The y-Completion

B e L -

= “ ' * - ‘ . . .
Ie (5 0]-11,11-117) is normal, we have already seen

y-complete, with the preéefvaticn of.both norms. However,

we would alse like to say that every y-linear functional

on (X,{I.]I;II.IIf) is uniquely extendable to the <y-com-

of D(V). Before stating The theorem, let us also note
that the usual Cantor method of éompletion is not suiltable
for our case since Y(v(A)) # v(A) in general.

~ o
3.4.1. Theorem: If (X,||.||,|[.]]) is normal, there«

*
is a normal, y-complete space (x%, 1. ,/1-1]") containing
(X,Il.ll,ll.ll*) as a subspace. Moreover, every y-linear

functional on X may beﬁextended in pngrénd~only one way

Proof: Let DO be the y-canonical image of X in D(V).
Sihce‘D‘V) is <y-complete, then so is V(Do). Reference to
2.2.4. shows that ?(DO) is a linear subspace and we have

X "contained” in ¥(D_). Hence (¥, ), 111,11 1) 1s a -

as the conJugate to (Cﬂ,ll ll) Thus we extend £ as

O e neeX; DT & AT, wn PO A Err oy S L B oD G R LD Sy o s, AT Tl T 1 € o AR FE WPy 38T T (TR i sty T i YT W TP TTIDS SNEEP A TR il P CS BALINS, T U X Bmd 3 S P PP

normal y-complete space ccnﬁa;nlng a subspace equlvalent

' *
to (X, [-11,11-117%).

€
- Let g, Cy

LR

fcllaws.

(1) ;ﬂ(%) for _#e‘-?wo) .

Recall that (D(V) II II) may be considered | -




- 45 o

- We shall now show that 8, 1s y-linear on\(7(D ), l].fl,[l.ll*);

Let f_ % 0.

~Then sup {f, (g):geC., |lgl| < 1,n=1,2,....} < =,

i.e., sup ||f || < =, and Sup Ii‘n(g) gec ,Hgll i1 30,
i.e., Ilf 11*~0. Thus for every geC 5 g(f ) = f (g)—ae

Hence (f ) is

convergent to zero in C whlch is dense in Cy

under ||.]] and sup lif Il < ® , Therefore fn(g)-»o for all

geC,, and in particular go(fn) = fh(go)"O'

"y

Let us 'n

ow consider the uniqueneQé of the extension.

Clearly, the demand that y-linearity be preserved implies

" that gecy can

duction it fo
for n a posit
Suppose g and
there -is (xn)

be extended in only one way to y(X). By in-
llows that the extension is unique to v, (x)
ive integer. Now consider 77U (X) = y(g;y X)
g'! are two extensions of g. Let xe'ym (x), SO

in {J yn(X) with X Y x. For each n there is
n

m_such that xheyﬁn(x - Hence g(x,) =g (;n) for each n

and again the

'a‘u s X

5and the exten

Y-linearity implies that g(x) = g-(x). So the

extension is unique to N, (X). We then have

g

Y(x) = w;, (X) = Y(rg (1)) -

| bizt also 1z

F&nally

“= gl

< sup {f(g) f

follows by 3.

Fa

con81der that ;m;'_f

&

ﬁ

| = sup {r{
eD(Y),ilfl

2.2.. Hence || gll = |legll.

fﬁ(ﬂg)‘, ellg
1} = {legl| where the last equality

/AN v

slon is unique. :toggg_(,x”),‘ ¢t et e e e e £ 55 e S i e et

‘Ilsll = sup 3f(g) rev(D,), Hfll <1 sunlx(p:) xeX, l!xH < 1}
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| X is not strictly contained hn V(D ). Hcﬁever, we may
“define X° =Xy [%(D,) ~ DJ]. -Then X°, with the norms in-
duced by Y(D_), will be denoted by (X, |1.11,11.11%) and

called the "y-completion" of (X,||.||,|].]| *). It is obvious

. that x© s as a subset of D(V), is the smallest y-closea set
containlng X. However, as we shall,now see, this condition

does not determine X° uniquely.

Consider £% with | 1x|| = > Ignl and IIxIl > §n1x |

5 n=,
Let M be the set of Mazurkiew1cz and x° as in section 2.5,

and let X = {y+tx°:yeM, t a scalar} Let A be the functional
on X defined by My+tx°) = t. Further let (Xl,ll.ll,ll.ll*)
denote the y-completiqn of (X,Il.ll,ll.ll*)'énd let X2 = y(X)
tn (#8,11-101,11.11%). Now X 1s y-linear on (x,[].11,1].11*)
but it cannot be exﬁended to Xz with the preservation of
&-1ineariﬁy (sée 2.5.3.). Thus X; and X» are essentially
different. More precisely, we have shown thai thepe are
normal two-norm spaces (X, |[.[1,[1.11%), (Xa,|[.11,11.11%),

| *
and (Xz2,|].||,1|.]|") such that:

(1) X C€X1; X € Xa.

pec o AN 4 mnm CF S M w2 SN O PR e S Nq\mn

R ) ;
.11 and [1. || are identiecal on X,Xn Xi,

U B2 10 el ORI AANH DI e WP AN, L T TR AT BT T B P U R AR D 0 ey R AT
X

|
.
N
"h-r

o

- X nXe | . | N
(3) (11T 11 11%) ana (xe, 111,11 11%)

are y-complete.

(4) 7¥(X) = X1 considering X as a subset of X1.




(5) T(X) X2 considering X as*a subset of Xa.

4/ ’&r “ : | | : | ' ‘.m
#zf. (6) there 1s no linear y-vy continuous oneate-ane R

mapping of (Xa,|[.1],[].11™) onto

(Xeslléllall°*lm) equal on X to the identity

e .
mapping.

~Now let 'us consider a more,positive approach, 

3.4.2. Lemma: There is a natural isomorphical em-

- bedding of the set X° into the completion X of the space
(X, |.]] ). Hence x© may be identified with a part of X'
‘and every functional 1inear on (X,|].]] ) may be extended
% - * |

- Zuniquely to X° with the preservation of |- Il
5 Proof: U51ng the notation of 3 4, l » we have
. DCV@)gﬂ”gD. T i
- * * '

The canonical map of X" in (D',ll.ll-) is the closure
| | % ¥, | o
of Dy in (D ,|[.||") and obviously this closure contains
¥(D,)- . | o

* e |
3 4.3. Theorem: Let (X |.'|, |.117) be a normal y-

*
complete space containing (X f A1, .117) as a subspace

and such that

n‘ ..3’ . 2L e --w-;uu-ar-am- BT S B IE MG a‘(ﬂvi)tu &oy"gz S SRS P SE Xub'A "R, RLMTAC L RIND I8 Klru i mummm SER. ML A s IR 30 Gt~ mma.-nc“ma&éwourms’m;:m A i eI
(2) every v-linear functional on (X 00-01.11. |f) .

. may be uniqﬁéiy?éxtended to (XA 1NN .llf)_‘
with preservation of ll II and of 7 linear-

ity. a D | | | N
- Then there is an 1somorphism.from.xA onto the y-completion, } |

Xc, of X Moreover, this map is isometric with respect to -
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1 ana 1101

Proof: By our'hypothesis (2) (C ,ll |]) 1s congruent

to (CQ,II;I!), i.e., there is an 1someﬁylc isomorphism from

the first space onto the second. It then folloWS by 3.2.2.

' that (D&Y),iJ.ll) = (D(V),ll.ll), where 2 denotes congruence. -
It 1S clear that C, € C . By the Hahn-Banach theorem,

* ¥*
¢ € ¢, and, moreover, 1117 is preserved. Thus

* x ¥ .
(c,11.117) = (Cps .11 "), and this in turn implies that
. * * ’
(Dgy),l .ll,ll.ll‘) = (D () s 11,11 .117) where the congru-

ence here means that ||.|| and‘ll. | are both preserved.

Hence we have

3§ _‘?
= :.“q:_
P

A‘.

¢ = 3(x) in (") = ¥(X) in Dp) = X

X

)1~ _, i Thus the vy-completion X% is defined uniquely, withinp-.

| - congruences, by requiring that it be normal, y-complete and

’suohthat Y(x) = %%, and the y-linear funotionais.be‘exten-

sible in only one mannefewith the preservation of ||.|| and
7y-linearity. L _—

* .
I (X0 4s normal as we observed in section

2.1. then (X,Il 1,1 oy ) is also & normal two-norm space,

e d"'c'»' § -t-] I ?- ﬂ?%F" ‘mﬂ“w‘.v ﬁﬂ £y m‘}”ﬁﬁ M‘T { -;- TTTY T Al ”r"?;f‘-‘h T e et SR I, 49 .6 G T2 ‘
f"ﬁ?""‘! ’7 o e e
ﬁ e J“!Q-- ¢ ol R i 7. nowever o -

= e RS LW - ,;;,3 o

-

ion is n t necessarily equd¢ to the - compleuion,' - )

(1]
ck

TS Clipal

since the completeness of (%,]].1]) does not imply v-com-

..pleteness. On the contrary'we have:

TR

3.4.4 Tema: 1t (%,11.11,11.11%) 15 Y-complete and

normal then (X 11.11) is complete

e ————— o




Proof Let (x) be a Cauchy sequence in (X,H H)

. Xn
Then X‘n < M for all n; so that ﬁ._, is in S. By the 'y-com-

g a8
pleteness, ﬁg 1> %mhwh is in S, since S is ||.[|]" -closed

- by normality. Now, as in the proof of theorem 2.6.1., vy~
convergence in S is equivalent to | |. Il-convergence in S,
.
I

since y-convergence is clearly equivalent in 8, to ||.||"

convergence. Thus X ->X under ||.]| with xeX.

| It then fc:llows that X c x°. Moreover, it is not hard
- tosee that (%[ 1L 111N @ G 1L T, tee., the

" norms are identical on X.

3.4.5. Theorem: Let (X,|].]|,[].] I'*) be normal and

let (;(,I | .]1|) denote the completion of (X, .| |). Then
the 'y-‘comple"cion of (X,|].] I_, | l . lf)‘coincides with
(;{ IRINIn l%) if and only‘if every continuous linear
‘functlonal on (X,]]|- ||) has a unique extension to a contin-
" uous linear functional on xS, 11.11). ﬁ
Proof: The necessity is trivial. Now note that = x°
and X is a ||.||-closed linear subspace. Suppose there is

xex® ~ X. Then there is a linear functional g, continuous

A)
S

- mmm st (X Lol sibioh 152820 -0k Yebub g lx s Lo e Gt G-

(D'

= an extension of the zerc functiocnal on (X,}|.}] ). But the
' zero funetienal on (X%, | I- . H) 'is another such extension,
which contradicts the uniqueness.
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| e | e | Chapter 4
R | on Generalizing the Two Norm Spaces

1. A Gemeralization = -

ln this chapter we shall g@nsider (X || . Il, %‘) a -
_triple in which X is a linear space, |[.|]| a seminorn, and
¢ a locally convex linear t@pology on X weaker than the
norm topology. In addition we shall assume that the ball.
= {x:||x]|| < 1} 1s closed in (X, 2 ). v (X011, %)
wlll be termed a space w:;.‘th a "mixed topology". Such gen-
eralizations Were first considered by A. Wiweger [18].
The pseudonorms con’cihuous with respect to 7 will be
B denoted by [x]_, and {[. ]a}aeA will denote the totality
- of all -these pseudoncr'rns (Recall that the topelogy 7 can
" actually be glven by a fam_lly of seminorms. ) |
A linear functional f on X will be called
Vg-linear, if lim [x ] = 0 for all aeA and
sup,_ l Ix H < ®» implies fr(lz °)°-> 0, | o
| fyt-llnear, if it _Ais continuous on S with respect

et s aramsremnsn 5B AR5 BB LS

p PR TR L 2l TR D LDBIERTRI TR RN LR AP OTEGY. 28 1 o
g’w« T L AT v Y FINS, QAR ST AN L S5 T OO peo OO IS S ST SRR AT FVTE A 8 O L TR LIRSSty T )

()"’&

-
_‘1

B .

nd C denote the sets of v _

¥ Y s
S S 't
functionals respecuvely, and let C and C‘L’ denote the class

Ay

- Let C - and "t inear

of functmnal¢ continuous with respect to the norm Il || and

' sewsmeessans sesaas ¢
........................ HeBAENS FBEAEB ACIIITBUBITAIIRAIBIINORLRS 20N o

P KT/ P DSSPeeTRvely-

o ». T A emma | G? c C‘th c’ysc C.

Proof: C,_& C_ : Obvious.




c,ytc: cys: Let l[ ] Bf_aeB denote.the family of semi-

~ ‘norms which gives the topology & , and let fec_y . Let

1im [-'xn] d = O'for each aeA. Then (x;.‘,) converges to O in

¥ since BC A. Thus f(x )-0. |
€, € 0: Let feC, and let ||x ||-0. For each aea,

[.1, < |].]] since [.] 4 18 continuous with respect to 2

which is weaker than the norm topology. Then [x‘n_] 4 O for
each aeA and sup le | | < ». Hence £(x,,)= 0. o .

4.1.2. Theorem' C‘Y is the closure of Ct' in (C, II II),

. equivalently, each yt-linear functional is of the form

e

o0
where g €Cp and > 1||g || < .
ne

Proof: Similar to that of 2.3.2. and 2.3.4.
The followling theorem allows us to restrict considera -
‘tions of countable sets of V¢-linear functionals to the case

of normable topology ’t’ .

¢

4.1.3. Theorem: For each Sequence (f ) of yﬁ-linear

functionals there is a sequence of seminorms ([.] 7 and a

and such that

A :
T T T R I A R N I R N IR TIET YT T IR B B Ty S S R G S S Y SRR PETaN - e ' L R e N A A N R A AN N Y

sup| [xp || <=, [Ix||” -0 1mply £ (x ) Do

for m=1,2,.... .




z - 3 R -
) — , —_,proof: - For each m, let f _}}E__lgm where’ gkmecf»n and S
©o , | v
o _l_i_;\lgmll < », Then lgkm(x)l [x] km with oertain BkmeA E ]
| (moreover these may actually be chosen as seminorms rather
tha.n pseudonorms) | By arrang::.ng the seminorms into a s:z.ngle

sequence ([ ]k) we have [x] < M| lx]] for each x and, o ]

setting by = (2]‘{1\'1k , we are led to the conclusion of the - ;.

theoremn. | | |
) - 4.1.4. Example: uLet‘X be the oon,juge.te to a Banach
space Z. L»et ||.]| denote the usual norm‘onf X and ’K be
"’ the weak = topology, o(X,Z). Then C is the second conjugate
of Z, end Ct is the canonical image of Z since Z is equal
to its second conjugate when X is given ’che weak topology o
It follows that Co is closed in (C,||.1]). Hence the gen-
eral form of v -linear f‘unctionals in 111, 2) 18- :
I"(xﬂ) = x(z) with zeZ andjlndependent of x, and M-'C?_, - C,Yt. | e ..
We shall now show that, in general, cy ! c Let
X, be the space of all bounded measurable functlons x = x(t)
- with t € [0,1], and 1let | -
] = sup|x(8)] [xlw foade L]
g iel I
let o be thelo;e,li" convex li near to*ology given by the o ;"
* famidiy of seminorms ”']tgte[o,ll’ I novw assert that if
f 1s 'Yt-iinear on Xo it 1s of the form Jf
- |
|




T with fixed ti,ts.... and > ]a | < wnfh The;proof ;oll ISt
,Let-fecv . gByfTheorem 4. l 3 there 1s 2 sequence
([.1;) of seminorms in the above family and a sequence (b )
of positive numbers suéh-that '
* 2 S | =
[xl 1™ = 3" v, [x], | -
| _ | B . %‘l
1s a norm on X  and fec, for (Xc;ll.ll,ll.ll*); | - ; |
S * | ' ) :
. Now (Xo,1l-||5) has a Schauder basis, for let - L |
- . 5 . .[
| | T | " | |
3 | 1’ u - t . | , 1
Xi(u) = { '» 1 for gelo,1].
We then have | | | | ! | | {
* x =_>_:_aixi where a, = x(ti)
1= |
since
A x = -
| [x - %:iaixill = %;1bk[x - %;1aixi]k |
S o x(t,) - )
= > b, lx(t - a,X.(t
o e 7 2 % () - :
, n * '
“‘““f“‘“‘”“f“"‘“%tl"f?bl“‘!l”? ""k:“’f‘ﬁ“ “%‘tmf"j:g"z?ff@““‘”?"‘é‘““‘*?j? 1“;‘"“ 'L!“’ B
The uﬁiqueness of the expansion 1s”épparéﬁt. Thus (xi) ]
15 a Sehauder basis for (xo,ll. [*).
Furthermore, for‘each"n,“! §: 3 %] x| | so that
B & i i) *y-converges to x in (X., Ll 1101 7). Sinee . . 7 7 .
o ] | Lelfalle . . R . -




s | N
,_f'eCl,*,' ‘we havgh :
o e T |
f(x) = f'[%;laixi] = %‘flif(xi) = %:11”( 1 )x(ty) -
Letting f(xi) = a4 we have f(x) = g-:l *'(t ) and 1t remains
only to show that (a ) is in 4%. Consider the function
1(t) = 1 for te[0,1]. Then = I
A %-_Tlai = %;lf(xi) = f(%;lxi) == £(1) < .
It is clear that every rearrangement ,_Qf.__.Za:l converges so fgat
> I‘Aa | conirerge's'.
_' Thus every i‘ C,Yt is of the prescribed form. However,
the functional ] x(t)dt is clearly vg -1linear but is not in
| | C'Yf;. Hence, in general Cyt* Cys
- " Under Ulam's hypothesis (that there are no inaccessible -
I 'Ialephs between mc and EV ) it may be shown that each Vg~
' linear MCt,ioﬁal on thisb épacé is, of the form
f(x) = fo'(x) +fx(t)r¢(t)ut
| 5 |
where foecvt and jfllfb(t)ldt < w. However, if X is the space
o.._.0f 211 bounded fullctions on [0,1] with the same || || ana
L‘j s ‘then, aJ.SO under U.La,m‘s nvpocnesz.sg tne séaees G,}ls and
| C'Yt coincide and consist of all the fungtlogals of the form *“”
I




the v -linear functionals-do not have the extension property. =~

APPENDIX

ed

s

In this sectlon I shall allow myself the privilege cf
stating results only, witheut their suppurting azguments -
The proofs may be found in tne refefences cited in the |
Bibliography, [5] bemg of narticular usefulness
I shall assume th:feughout this section that

- (x, I 1,11, | | ) a two-norm space for which ||.|| and

11 are both norms. A subset A of X will be called |
"'y-dense if y;,(a). Ve X, and (X, ||.||,]]-]] ) will be termed

ly- separable" if it includes a countable y-dense subset.

Theorem: (X, |].]| I, |- I'I ) is y-separable if and only
: *
if (X,||.|]") 1s separable.

* n i |
(- 10011) will be called "y-compact" if every
Y-bounded sequence contains a 7Yy-convergent subsequence,

and (X, ||.|],[].] l*) will be called "y-precompact" if every

'y-bounded sequence contains a 7y-Cauchy subsequence

Theorem° If (X | . II,II I ) is normal and Y-compact,

b e il
AT £ T Ha T ATTIY VI 2D I ch SR AT - - RN Wl AR ST O S .
__4&4:&:.",_ mmn:ﬂ:. t":..ﬁ LI+ TV AR SRR RGN OGPl

“"Ch It rlexive.

l\
_. “'"3?""‘

Theorem: The 'y-separability of (C j

* . e u-i‘E
| plies the 'y-separability of (X, INININIE |

Theorem. (X, |1].] l, [].1] ) is y-precompact if and only |
| '1f (™, {1117, 11+11) 1s v-compact.

Tl'reor*em. If (X, H H,H | | ) is hormal, then it is V-
precompact if and only if its 'y-completion (Xc, L1 ” H )




-56- &

N is 7~compact

A normed space (x Il |1) will be called "prereflexive

if its completion is reflexive.

. Theorem: If (X,II.II_) is prereflexive and separable,

| : | ‘ ‘ *
then all y-conjugate spaces to (X,ll.l],ll.ll{Q,are Y-

separable. - - | - K -
A one-to-one linear <y-y continuvous operation from a
y-complete two-norm space onto another does not, in general,
satisfy the Banac h.inversion property. 'However the inverse .
is linear and y-Yy continuous if the domain space is <y-com-

pact, i.e.,

” * | | ‘ |
Theorem: Let (X,||.|[,]].]]") be y-compact, and 1let
(X, 11.11) and (¥,||.|]) be complete. Let U be a linear

Y=Y continuous one-to-one mapping of (X,II.I],}!.!I%) onto

* o =1 ' o = | ' °
(Y, 00-011,11-117). Then U® is linear and Y=Y continuous

and U establishes a linear homeomorphism between (X,||.|])

and (Y,[].1]]). |
Theorem: Let (X, 1l bls )] ) be a Y- compact let U

be a linear Lot 4 continuous operation from (X,|]. ,l .II*)

Onggwgyi&ll, 2 L a_' l : l l ).s iaﬂggm];:@g ~Q{AJNL~LLLM@Q~JXM o

,___
=
B

mplete: Then-(¥;ii;ij,ii;ii%) isu$=eempeeto

- =

o 24 e 1 e e _ R 2 f
if it is <y-separable and y-conve gence in {(C ,|

4-1a
vil

2
$

is equivalient to convergence w

b

] . .
espect to ol L,X).

m-‘

§°§!‘ be a Banach space. Then the

0
(')
ﬂ)
&3
|
b
ct
/ o~
'@

ffollowing conditions are equivalent

Theorem: (X, ]|.11,1):117) is vy-prec ﬁpact‘if and only =
e




(1) there 1s a coarser norm, |[.||®, such trat
o ®ILILIHT) s y-precompact, ' *‘
(2) there exists a total sequence of continuous
. - 1inear functionals on ( 1 II)
i Furthermore, if (x, II 1) ﬁ@ separable, then (1) and (2)
are always satisfied. | / o
| (x,ll.||,|'l.|l*) is termed "saturated" if c, = ,c.»
Recall that, for normal spaces, Cy == C* onlﬁ'in'the trivial |
‘case. However, there are non-trivial saturated‘Spaces.,
‘Theorem: Any saturated two-norm space is ‘normal. -
 Theorem: The following conditions are equivalent'" %L
(1) Cy = C,
(2) c” is dense in (C,|].|]),
(3) #any y-convergent sequence is convergent ln
©a(x,0),
‘(4) Ufor every feC and for every & > O there 1is
a K such that f(x) < €+ Kllxll*'for'all
| xeS, P |
| J(5) Cylﬂ 3 is closed in o(C,X),
e A8) _eVery convex closed subset of ( (X L J,) s

yYy-ciosed.

Theorem: If (X, || BINININET y-compact and saturated . :

0

then (X.||.l]) is reflexive and separable and Y-converg

R

C)

e

- g * | | : -
in (X, 11.11, .11 ) is equivalent tc crveﬂﬂenoe in *(A,o),-
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