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... The purpose of this paper is to exhibit some

extremal problems that abound in the literature of bounded

1.

analytic funétioﬁs.as_well as to ;llustrate the methods of

‘solving—these provlems. Much of the work in this fieid

has been contrlbuted by P. R. Garabedian {5] and by L.V. .
Ahlfors [l], and their results, in turn, have been ex-
panded by Z. Neharl, see [6,7,8,9,10].

The first chapter of the thesis introdﬁces'basic
conéepfs such as the Green’s,and.Néumann’s funétions,
harmonic functions and harmonic measure. Above all, a
fundamental result in the theory of éxtremal problems
COncerningvthe existence of solutions to such problems
is.given at the conclusion of the chapter.

In Chapter II, within the confines of an ex-
tremal problem, we illustrate how, by means of a con-
formal map, we are able to transform our original problem
into a more workable one. In the next chapter we set out
to prove the existence of two specific fﬁnctions KA(z,b)
and LA(Z96)which are then used to solve subsequent

extremal probiemso Careful observationAshows that, by

limiting the positive function A(z), the extremal problee |

is nothing more than a generalization of Schwarz’s lemma.

Chapter IV presents an extension of the
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results.in the previous two chapters to derivatives‘of;

bounded functions. These reéﬁlts are generalizations of
.,résults stated by Caratheédory [2]§ Qhere we make eﬁplicit
. use of,the:fuﬁctions KA(E,b) and LA(z,&) developed in tﬁe o ':51
previous chapter. | |

In conclusion, we present two elementary

~

e

~ theorems which illustrate the behavior ofwbéggded functionsg ..

. . m—-

. arp—e o— .

in starlike and convex domaings, . ] S . L
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- | . INTRODUCTION

. SECTION 1. Definitions and Notation
é | | | R Before embarking on tne main topics of this
. | *thesis, we will first state some of the p@rulnenb e

;Wdeflnltlens and thearems/from analytic function theory

| o | - ‘ VS e ame -
fOI‘ X“@ﬁﬂy E“@f@l"@ll@@e | | T e e | e b

S—
e - Y B T ¢ R~

| Deflnltlon lgl. A domain D is an epen arcdwise

connected set.

- Definition 1.2. A domain D is simply-connected if its
complement relative to the extended plane (Riemann

~ sphere) is connected.

Definition 1.3. A domain D is of copnectivity n,

. n =1,2,3,...4 if its complement relative to the

Riemann sphere consists of n components. In other words,

- a domain of connectivity n is obtained by punéhing n
- holes in the Riemann sphere,

Definition 1.4. The boundary ¢ of a domain D is the

S R intersection of the closure of D with the closure of
its complement relative to the Riemann sphere.,

1 | For our purposes the boundary ¢ of a domain
i o 0 .

; | of connectivity n will always consist of n simple

T~

closed curves CiseeesC The boundary curve c, is

n’
called smooth if it has a contihuously turning tangent.

1 o Definition 1,5. A“function u(x,y) is said to be.

- ~ harmonic in a domain D if




4,

2 2

g-‘-‘, duU QU QU oxigt and are continuous and if
d
4 Y dx= dy -
A 21 2 o o
" Au-§-§+§—%a.0at all points of D,
- X y | T

We shall have recourse to ~the maximum principle
for harmonlo functions. If u(x,y) is a harmonic function

........................................................................

R in a domaln D it cannot attam its absolute maximum or |

3 : . ' 3

T "minimum at an 1nt'erior point of ﬁ unless u(x,y) = C‘onst.
"We now state Green’s oformula.' Let u and V«»be
functlons with continuous flrst and second partial deriva-

‘tlves in the closure of a domain D, then
’g (uav - vau)dA = f (u én -V <m)ds N w-{l.—l)

where &= denotes differentiation in the direction of the
- ~outward normal and S is the arc length pa;;'ameter.' The
1line integral in (1.1) is taken in the positive sense

over each component of the boundary of D. We note, in

particular, that when both u(:t,y) ahd v(x,y) are harmonic,
Vyad du |
/. (u%a-)ds = [ (v $)as (1.2)

- Definition 1.6. The Green’s function g(z,o) of a domain

D with respect to a point & ¢ D is of the form

- g(2,86) = = log|z - 8| + G(=z, 6) and has the following |
properties:
’ i) g(z,6) is harmonic in D + ¢ except a:t z = b3
ii) G(z,8) is regular harmonic in D + c;
iii) g(z,6) = O for z € c, J6 e D.

Now let D be a bounded domain with boundary c¢

B aa




’ and let f be a given function defined and continuous on
¢c. The Dirichlet problem is to find a function harmonic -
2 . in D and continuous in D + ¢ such that
u(s) = £(6) Bec .
ilif;._m - We now state‘without probf’ﬁhe'following'im-

IR I T I T N T TR T T L T T R R PRI

e Pheorvem 1,1, If g( z;5) is the Green’ s function of D
k relative to z € D, then the solution of the Dirichlet

problem is given by
| u(z)v == - —2-]-'-1-[- f £(5) M ds " - (1.3)"
At this point we make the important observation
that the Dlrichlet problem is actually equivalent to a
minimal problem in the calculus of variations. The

solution of the Dirichlet problem is thus the extremal

function for the corresponding variational problem.

Riemar?ii called this variational principle the ,,Dirichlet

y principle, see Courant [3]. o ‘

| We now consider the ‘related Neumann problem of '
‘_. finding a harmonic function with the property that the
values of its nbrmal derivative are prescribed on c.
Definition 1.7. Thé Neumann function N(z,5) of a domain
D with Boundary curve ¢ with reépect to 6 €D is of the

:f form ) ] |

‘ N_;(z,b); = - log|z - 8| + Nl(ng) and has the

3 ,f‘ following prgperties:

1) N(z,8) is harmonlc' in D"+" c except at z = 6; |
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-11) Nl(z,b) is regular harmonic in D + c¢;

-»

1ii) For all 3z ¢ C, émégﬂbl% = constant,

| | >
To define the Neumann function uniquely, we will require

é%l(zgﬁ)ds =0 .

Using this normalization, the constant of (iii) above

” 'is seen to be

— e w—— - —t—

8 TRANEITE IR

R 7= -

where L"’ jc':d.s .- o
SECTION 2. Harmonic f;léasure

Let D be a bounded domain with smodth boundary
c. Let « denote an open arc which fOrms.a part of ¢ and
let B3 denote the remainder of ¢ excluding the end points
of o« , Then we defi;e the\har"monic measure w(z,x) of
with respect to D to be a harmonic function in D which
takes on the boundéry values 1 or O as z approanch,es X
or A , respectively. Since w-e' are concerned mainly with
domains which are bounded by simple smooth closed curves

CyseeesCps we shall define harmonic measure as follows:

Definition 1.8. Given a domain D bounded by n smooth ‘
curves ¢, , k =1,...,n, the harmonié measure wj(z) of
the component °j relative to D at the point 2z is the
function which is harmonic in D and has the boundary
values 1 and O on cj‘and ciA(i # J) respectively.
Simple consequences of this definition are

‘the following:

Lemma 1.1. Let wj(z) be the harmonic méasure of a dOmain,,_.

, ’ j
¢ . .

-

B
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D with boundany C=0Cy + cee +Cpo Then o
n | | . | [
L w.(z) 1 forzeD+c¢c .
. j=1 *
~ Proof: wd(z) =1 for z € Cs
l'\) M
wa(z)ao orzeg oy 4t
- _Hence forallzee =~ - .
o m@ (=1 -
_Applying the maximum principle we have that both the . . %
maximum and the minimum of ’
wl(z) + oo + wn(z) in D are equal to 1.
Hence . )
n | - |
pX wj(z) =1 , zeD+c .
J=1 | A .
Q.E.D. o
= Lemma l.2. The period of the harmonic conjugate of the o

Green’s function;g(ng) of d\multiply_connected domain D

with respect tcma circuit about the boundary component

°j is - 2nwj(6), where wj(b) is the harmonic measure of

coo ' wr
J

Proof: From eq. (1.3) and from the'fact thaf the har-

monic measure is nothing more than the solution of a

‘Dirichlet problem, we may write

1, 38(2,8) ae Crian
FIOREE A ranks (1.4

If D is of connectivity m, we'are able to express the

‘miiaindependent periods pj of the harmonic conjugate by

\ au 'r | -
~ p. = [ 3n dS J=1,...,m-1 - (1.5)

J %j >
of the inner boundaries of D.




For the outer boundary, namely the'mth boundary,
Py = [ 2 as | | (1.6)
ma - |
Hence we have that
jé é‘s'a(?zl"'—él dS = - 27 wj(b) °
J | | 5 Q.E.D.

Although .the harmonic measﬁre functions have many-more

‘properties, the aboveswentioned facts will suffice for

PN XL L . .
AV ¢ ¥ QPNIICB AR NN R G N @ A pereiee L L e e e e e e e m e e e e e e e e = e w

Nyt T A

NI S e v WM. agmgne voat BPALS S AN Lt ATt e C t e, 4
= OuUr purposes.

. SEGTION 3. Extremal Problems | | ‘é
With the facts introduced above, we are now in
a position to discuss briefly theftheory of’ extremal
prdblems. Such a problem requires the finding of the

precise upper or lower bound of a functional relative to

¢

a given class of functions,

The existence of such a solution is asserted

by the following basic result:

‘Theorem 1.2. Let M(f) be a continuous functional de-

fined in a normal and compact family F = {f(z)} » then
the problem |M(f)l = max. has a solution within F.

Proof: We wish to. show that there exists at least one

f(z)e F such that for all f(z)e F the inequality

M) € |M(f°)| is satisfied.
The numbers |M(f)] have a least upper bound, say A.

By definition of least upper bound, there exists a

sequence of functions f_(z)e F such that 1im|M(f,)| = A.

n—»co




9,

Since F is normal, we can choose a subsequence

£, (z) of f.(z) which converges to a function f,(z). Since
k | RN
F 1s compact f,(z)eF.
- ~ Since M(f) is continvous we have that
fhk(z) - f,(z) implies that M(fn ) = M(f,).

| k o |
- ) ‘ v b ’\‘.
Hence we have that : 'f‘ S | o

|M(f;g s 11nrh*(f ;| TN el R

Hence there exists a function fo(z)e:F sﬁnh that 'M(f)l = A,
J All we need to show is that A is finite and this follows

easily from the fact that M(f) takes on only finite values

“by deflnltlon of a functional Hence the theorem,

Q.E.D.

Y Al In Chapter II we shall investigate the method N

of solving a particular type of extremal problem under

certain-boundedness conditions, Chapter IIT will be con-:

cerned with the closely associated class\of domain

functions and Chapter IV will include an extension of the

methods of Chapters II and III to the first derivatives

Oof bounded functions as well as .to derivatives of the kth

order, We shall t%:g cpnclude the paper with a brief

discussion of tﬁe effect that certain domain properties

can have on the solution of extremal problems,

-
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Chapter II - | ~
s A GENERALIZATION OF SCHWARZ'S LEMMA T
We begin this chapter by stating without proof
the classical Schwarz lemma:;m,
... lLemms 2.1. Lot the analytic function f(z) be regular in
— . (z]| < R and let £(0) = 0. If, in |z| < R, |£(2)] < M,
T NG e e T —
o . then USSR .
| |f(2)l S ZRM ’ 'Z‘ <R ’
where equality can hold only if )
M if
£(z) = =
£(z) g e 2z
where 0 is a real constant,
) | In particular, we see-that the Schwarz lemma
holds for bounded functions in the unit disk which vanish
@ ) \
t th igin, ,
a e origin Y

This result is easily generalized to bounded
functions in |z| < 1 which do not vanish at the origin:

Lemma 2.2. Let f(z) be regular in [z | <1 and |f(2) < 1,

then

1 - () 2 1
f? < <
|22 (2)| : 1 |Z|§l > I ‘z:§

for |z| < 1, where equality holds only if

10 2z - &
*®
l - § 2

1

f(z) = @€ . O real.-

This latter lemma states that among the class

. . . _

v | | | .
. ,1The conjugate of & is denoted by & .

W
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i

e e e e v

of Schwarz'’s lemma, .

~of functions which are bounded and regular in |z| < 1,

the problem |£'(z)| i.max. is sOlved by the function

which maps the unit disk onto itself and maps z = & into

the origin. We are now interested in generalizing these

results as follows:

Let D be a domain of connectivity n, and'let B

\

+ - rr—

‘Wregﬂiér in D forhwhibhtjf(i)fﬁf l,dz1émb. Let eachc$¥be

a closed analytic Jordan curve. We again designate the

boundary of D as ‘ ‘

C = Cy + eeu +C (Seg FPig. 1)

Figure 1

The results stated and methods used here are due princi-
pally to Nehari [6], [10]. For different approaches to
the problem, see Ahlfors [1l] and Garabedian [5].

In the proof of the theorem that follows we
state an extremal problem for functions belonging to the
class B and by means of a conformal map, we then arrive
at an equivalent but simpler extremalnproblemﬁ We now

state and prove the following important generalization

y)'"

11,




12,
l " o |
| Thooreh_a.l. The extremal problem
max lf’(b)' . . 6 €D
B o
.18 solved by a function F(z) € Bfwhich yie1ds a (1,n)
conformal map of D onto the unit disk. Moreover, there
N exists a function Q(z) which is regular in.D + c.except .
for a double pole at—=z = 6 such that ) N
S T R R @) Az 30, mee e T
Proof: | | |
For F(z) to be a maximum we must have F(6) = O,
- For if not, then we set .

F (z) =-F(2) = F(8)
‘1 -~ 1 = F [{6) F(z)

which is clearly in B and o
{

Fl’(z) = F’(z) - 1l - 4F£§1L_..
(1 -F (8)F(2)]

Thus, we find,

B = AEBL g pgy) .

1 - |F(8)]

This shows that we may confine ourselves to those func—

tions of B for which F(8) = 0.

- Let By be those functions f(z) in B for which
£(6) = O and |

~|re {22)}] € 1. . o (2.1)
If £(z) € B, then the function | |




N 13,
#(z) - %tan'l £(z)
‘iill clearly satisfy the inequality . |
|Re "{ﬁ(z)}, <1 . -
noreovér, @(6) = 0 whenever £(6) = O so that @(z) & Bo.
| Finally, 1f #(z) is aﬁ“éitféﬁAi"fﬁﬁctibﬁ; ----- - -
,mwéaF(a}, 8-real, w111 ‘be one also. We may therefore g )
)'suppose without loss of general;ty that F’(&) > 0.;' |
Since ) | . |
#'(z) = = _L(z , -
,‘ SRR R (z) 0 fj. -
we see that £
2°(8) = 2£°(6)> 0 .

Our problem is therefore reduced to
max Re {ﬁ(z)} o

Without loss of generality we may restrict the functions
@(z) by requiring that they be continuous in D + c.

Clearly,
e{g’(z)} = _a_%%l .

where @(z) = u(z) + 1 v(z) and 2 =X + iy.

let 6= §+1im , then the problem

@ (8) =H'J%§%?l' = ma#.

’ ;

1s equivalent to our original problem,




o A,' * . B L L . L - - —— - | — i,}; “—*"'*
< . o . ~ - o - 14,
Using eq. (1.3) we have
CP°(6) - - fu(é) 3°%(3,6) 4 ' (2.2)
A T ‘c on 42 | *=
Since u( z) is a harmonic function which satisfies
Ju(z)] € 1 in D and which possesses a singlewvaiued
RIS harmenlc ;:‘:;;n-jﬁﬁgate—~-thére‘-,-‘its--p—erio&s -mu—st-nec'essarily""“ AR
vanish. In fact, L
""" J'; u(z) « fn“f-”ds = 0 J”’f ly.eey n=1 (2.3) |
To see this{ye/note that, using eq. (1.2) we have
. ow.(z)
i . ou(z
j(';u(z) 3o dS. j;wj(z) n— ds
| du(z) . dv(z) , ,
= 43 3p 45 = 43 35~ 48 = '/"’J dv(z) P
since w ;j( z) =1 for z ¢ c:j and the Cauchy-Riemann g_gggtion,‘
u(z v(z
'%’:%‘l'“%‘é“'l holds.
But j; dv(z) = O because @(z) is single~valued in D.
It follows from (2.2) and (2.3) that
| 2 n-1 dw.(z) |
/ . ’ T - __];_ b Z 4 O JJ
, #(8) = - 5 fu(z) (G5B, e amas, (2.8)
o~ | where €;45...4€ _, are arbitrary, real constants.,
Since lu(z)l €1 for z € D,
| 3 2 _,. n-1 dw.(z) o
, 1 (B18) | -~ | a5
[°® < 2 f |EHR Ioeg a2
’ .
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Hence for any choice of €4, the right hand side of (2.5) ..

~yields an upper bound f@f l@”(b)l

We now wish to minimize the right hand side of

(2.5) with respect to E1veresEp_ 1 in the following é&y.

Clearly ,Q’(&)l 1s a 'lower bound in (2,.5).

We also know that a converging subsequence of a minimizing

sequeﬁce-muBL converge to a fivite limit, _For 1f'n0t, i

.then Qﬂﬁn@Fw&@E@-@fwtu@'ﬁﬁ“ﬁ%@id“@3ﬁﬂ“ﬁ0 +m”0T ~THerGe ~

there-would exist an e, such that

k.

lim sup

Y

<1, (J #K).

S8ince we are dealing with a minimizing sequence, the right
hand side of (2.5) will be bounded. If we divide the
integrand in (2;5) by  lskl we have that

-1|_a_§sgmz e, 2
j=1 J dn

Since we can find a subsequence for which the integrand
tends to a well-defined positive function, we have a
contradiction. Hence the minimizing sequence convez;gea;
to a finite limit,

We notice that the intggrand cannot vanish

identically since

AW




- . n-l ) ow 2) .
P = : ztb N 3»1 &5 ajﬁ( | (2.6)

- 16.

and €y40000€ y be the particular "alues of the parameters

N v T 5o

i s,...,sn_l)' S0 that

e

= 4

”U

£ |1=| ﬁ[l‘i £ —é-‘:i+0(e)]cis

AW.
a j;|P| dsiejé—;;A-ELdS‘rO(e).

That is,
_ - 5 *
4 c—%—--é-ﬁ-ld5+0(s)>0¢

3

Since € is arbitrary, we conclude from this that

W A )
LB Sglas -0, §=1,.0m-1 (2.7)
The function J%L is evidently not defined for P = O buts
P + 1 ° P(O ®

Using this as the boundary values in (1.3), we obtain a

harmonic function

‘which minimize (2 5)  Then lP(sl""’sn 1\5'4 P(El'mu’egw_




> 7 cT .
17,
| - 1 IPI (2,6 : . |
.o ) ,U(b) = 7 L P Jécg‘—l»ds . - (2.8)
" o N '
In view of (2.7) o
| aw > S ' — " ‘
" Jéu(z) Tﬂl dS = 0 9 J = -1,...,11-1 °
_'_*A,‘,,,,ngparing this with (2.5}_@&@@'@“ that the harmonic | o
conjugate v(z) of I_J(z)_'is_ﬂnec_e_ssag}_;y f_ree of periods so
that the analytic function |
| §(z) = U(z) + 1 V(a) | o
| U *
| ! | _
is sir}{gle-valued in D. Moreover, we haye from the maxie
-4 mum principle that |U(z)| £1 for z € D. On c, wermay
write .
|| - - P U(z) . - (2.9)
80 that a comparison with (2, 5) - shows
- 42 n-1 6w;.
y . 3_5%,_61 i
o o)|s - 2 £ uta EEgH I €5 3miles .
However, I(z) is s“ingl‘e-v'alued s0 that
v u, (6 < U, (8
| | e )| < U, (8)
which shows U(z) to be the solution of our extremal
T | problem, |
B - We note from (2.9) that for z ?5
U(z) P(z) € 0 B (2.10)
$




18,
. : . . = } ‘./ . " ' -- i I- .
We now show that W = @(z) yields a (1,n) conformal map

of D onto the strip. o o - §

-1 £ Re {W} <1 | S

re { ()} | 'U(z)l( 1

- for 2 £.D...M .o.r.e.o.v.er, lU(z)ﬁ ~.l. on ¢ except where

As boiﬁ%ed out before,

---------------
Pr e v s rsrerrrrrevsieeirs sV 9o b e e e sy

e T P2 ) 2 D A:s We pass— ohrough each zero ui‘ ‘the value 777 T

of U jumps from +1 to -1, Qr,c.onveme].y. The image of —_

¢ R D, SR

D under the mapping z\}/ is therefore a multiple covering
of the infinite strip |Re {W}| <1. “The number of sheets
'is evidently half the number of zeros of P on c. Ve will
show that P has precisely 2n zZeros on C. |

‘Let p(z) and W (z) be analytic functions such
that Re {p(z)} = g(z 6) and Re {W (z)} = wJ(z) .
J=lyseeyn=-1. | ‘i |

Writing
p(z) 8(2,6) + 1 h(z,6)

and noting that g = 0 on ¢, we find, with the help of

the Cauchy-Riemann equation —%% = -g'ls-l that,

-1 p’(2) dz a.'-i(-ggds-o-i%gdS)

—g-gds .

Using definition (1.8) on Cry 8 similar"grgumeht, shows

that

- i w:j’(Z) dz = Tﬁl ds 9 zZ E.C °
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| , | f
I Combining these results' with (2.6) we find that
. n=l ' o
Pds -'-i [-a-p(z) + I ej WJ’ (z)]dsz |
| o J=1 ~ y
T = 1 q(z) dz - (2a1)
Since 8(2,6) = = log z - 6' + G(z 6), where G is regular i
e harmon:r.c, the fﬁnction p? \z ) ev1den'tly has a sz.mple pole
" at z = & with residue -1 . The quantlty 95 D (z) is
necessarily of the form
..é_E.’_LEl .. ‘ + t(z) ~ o N

where t(z) is regular in D. Combining with (2.11), we

can therefore write

1
(z - 6)

P(z)dS sui q(z) dz =1 [ 5 + tl(z)]dz, zec (2.12)

where tl(z) is regular in D. The zerps of P will thus

coincide with those of qi(z) on c.

From (2.12) we have:

[q(z) 4z1° € ©

¢

80 that A o 8T8 Lq(2z) dz‘]2 = 0 from which we conclude that

A arg [a(z)] + A, arg [dz] = 0.

Now, for a finite domain of connectivity n, it is well




- IO

known that, [IO, .p. 135], A, arg (dz) = 2n(n- 2).
-Since a(z) has a double pole in D and the zeros of q on
¢ are counted by hal their multlpllclty9 it follows
from the Argument Principle that q(z)9 and hence P9 has

* . exactly 2n zeros on ¢. We have thus shown the image of

””;flﬁl;fﬁ;nb hn.ba,an“n-fold.covaring of. the infinite. strip |

[ 15 R U e

— e —e - We now wish to.rel yeaxhe inequaelity-£2.10)
with functions belonging to B in an obvi@us manner. We

relate F(z) € B and ]E(z) > BR as follows:
P(z) = tan E §(z)

where EEkz) is defined as before. Clearly, F(z) meps D
onto the multiply covered unit disk. |
For z ec, “EEKZ) =%1 +1t where t is real.

Consider the expression

1l + F<(2)

A computation shows that it is
1 n
tzCosh§t ’ Z EC o

Since Cosh g t is positive, this expression is positive

or~negative according as U(z) = 1 or -1. Thus,

f————&z-l—?——f— > 0 on ¢ .

U(z) [1 + F°(z2)]

20, .




N .
i E_(_Z_L_%Lg), 2 o , zec ,
1+ F gz)
 Or more simply
. -iF@Q@ 2 0, zee , (213
e 10)) 52.(._3. + A simple argument shows that the =~
; . l + P (2
e zeros of q(z) and 1 + Fz(z) coincide so that (2.13) be-
| comes | |
| *
-1 F(z) Q(z) > o |, Z EC o (2.14)
Since Q(z) has a double pole at 2 = 6, it follows from
the Cauchy integral formula that
£9(6) = i Lf(2) Q) dz , f£(z)eB .
Hence,
1 -
B EROIP SN |ac=) dz| .
Since [F(z) | = 1 on c, we see from (2.14) that
.. ,f’(é),< L L |E R(2) Q2) az
o =2n < |1 \
- == [ F(z) Q(z) dz (2.15)
2ni | *
= F’(b) o &
- Bquality holds evidently for f(z)%a el F(z), 6 real, -




This shows tihat. Cae - A4

maxlf’(b), - P(8) ,  &6€eD .
| " Q.E.D,

| We have the following easy corollary to Theorem

2.1:
" Corollary 2.1, The problem
= ) pes o omin, , — - - o

has a solution where h(z) is given by

. 1
h = h “ ’
! (Z) (z _ 6)? + .1(2) |

hy (z) regular in D. f,
Proof: |

Let jélh(z)l s £ = .

Let F(z) be the extremal function of Theorem 2.1. Apply-

ing the residue theorem, we obtain

2# F’(b) a l?]i- jc.: F(z) h(z) dz

< .'/él'h‘(z)'ds

Since F(z) = 1 for ze c, (2.15) shows that

2n F'(6) = L F(z) Q2) dz

- ./; |Q(Z)'d8 K

Hence jé |Q(z)|ds < j": ‘h(z)ldé, and the function.

22,
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Q(z) solves the extremal problem. It can easily be'shoﬁn

that the equality holds only if

Q(Z). 0’“'

h(z)

e e e e e e

........

23,

f?/




— Chapter III-

THE CLASS B, |

We are now interested in solving a slight .

variation of the extremal problem found in Chapter II.

- The difference between the two is found in the re-

-~ g o m = m e s e = el a s W v W et w e w w e w m = m e e & m oa . s e s
- L .
- P

v .- - ~slele e N . v e m = e e w v W M o w mew e e o w o w W oW o~ oW ow
Aal LY > .- . PR - W S B R Y m e . v wow e e e

strictions placed on the function f(z) which we now give.oiuuf_

N S e - o e~

Again D denotes a multiply conneeted domein

O DT ST CUTTC T A S TR wa S

KRR @ u e
ot R ST NETT ¢ A A TAN 0 MDD

fm‘whlch is bounded by n closed analytic curves c. Jcl,...,n.'

J’
We deflne the following class B, of functions:

{f(z)'f(o) =0, 1lim sup ,f(z)lsA(zo), zos c},

Z—-+2
o
where A(z) is a pos{%ive function continuous on each c',j
and f is a single-valued analytic function regular in D.

Theorem 3.1. Given a domain D and a positive continuous

function A on the boundary c¢ of D, there exist two
analytic functions K(z,6) = KA(z,o).and L(z,8) = LA(z,b)
- uniquely determined by the following properties:

i) K(2,6) and IL(z,6) -[2n(z-6)]- are regular in D,
ii) lK(z 5), is continuous in D + ¢ and |L(z 6)Jis
continuous in D + C = Cpy where Ce denotes an
open disk about the point & ¢ D,
iii) K(z,o)\and L(z,8) are connected by the identity

A(z) [K(2,6)1d8 = - i L(z,6)dz ,

for z € ¢ and dS = ]dz'

Proof: We begin by investigating the existence of K(z,6)




"'each cJ, log A(t) is also continuous there. The boundary L

and L(z,6). Consider the harmonic function u(z) défined

as follows:

P

u(s) = - A /log /\(’c) -a-&m as

i

t | L 4

Since by hypothesis‘A(t) is positive and continuoas on:

o e\ S -

" valu@@ of u are evidently'é log,ﬁ(z), zZ € ¢c. The harmonic

- comgugete v(z) of v (#3—is mot necessarily single-velued -

in D. We shall denote the periods of .v (z) about ¥ by

2mpy, le”,...,n./.Consider the function U(z) defined by

n-1
U(z) = ) ’
(2) u(z) + o €k 8(Zy2,)

)

Where Zk & D, k=l,...,n-l, () = i' 10

k o
Since ggg,zk) = O for z € ¢, U(2z) has thé same boundary
values és u(z). The period of g(z,zk) about cj with
respect. to D is - (En)'l wj(zk), where wj(z) is the
harmonic measure of cj. The period of 2nPj of the harmonic
conjugate V(z) of U(z) about °j is thus

n-1

The analytic function

q(z) = eU(z) + 1 v(z2)

will be single-valued in D if the periods PJ are integer-

val ued °

- wr cEw W WMWY v wde e =




Py + o0 + P,=n -1, Hence we must find the points

Since the sum of the n periods must be‘equal to

the sum of the periods due to logarithmic poles,’ then

Z)seeesZ, 5 in D which satisfy

n-1 _ | . "
R

.t m e

- i -

——

for suitable choiceg of £ . and. integere By

We prove the existence of the n-1 points zk'
which satisfy eq. (3.1): |
- First of all: we know that. a ﬁnivalenﬁ conformal
map transformssthe harmonic measures of D into the
harmonic measures of its conformal image., Insté%d of
handling the whole conformal equivalence class of domaiﬁs,
we shall consider only its representative domain. We

choose the representative domain by conslderlng the con-

(formal mapping which takes the domain D with boundary c

into the upper half plane Dp, c. will correspond to the
real axis, |
Now, since wj(z) = ly..0yn=1 are O on the real

axis, they may be analytically continued beyond the real

axis by means of the identity wj(z*) = - ﬁj(z).“ The

functions wj(z) are harmonic in D’ where D® =D + D; o

(See Fig. 2)

p .
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(Denote ¢’ as the boundary of D?,)

- By virtue of the above identity, eq. (3.1) is équivalent'

to | NN |

n-1

kzl wj(zk) = p;J + Dy, J=ly.ee.yn=1, z2y €D . (3.2)
Now let ’

R = R(Zl,...,zn_'l) %

n-l n-1 (2) - 5

We ‘see that R is continuous in D’ + ¢’., For some definite
choice of integers msy R assumes a non-negative minimum
for n-1 points 2, €D + ¢, h | o

Since - 1 < wa.(z) < 1, there are a ‘Ifinite_nﬁ'rh‘ber

of sets {mj} ; hence we are able to choose inteéérs m:j
such that the minimum of R is as smagll gshpossible. '

Suppose ml”"’@n-l are the desired integers
which minimize R. Then we may write




P R N I TP

4 3 ~ 280 o
n-l n-l 2 |
R = I [Z wJ(zk)o- AJJ = min, = (3.3)
;jll kﬂl | 1 | "
_ ’ ) 4+ et .
.where Aj p'j + mJ and Z, € D’ + ¢ )

It is easy to verify that there exists at least |

one minimizing seth = {ZK% entirel?“?y Df},???_f????e?f.“;_"

. more,..eq. (3.3) shows that we may assume that the mini-

(] o - : " : . < . * ._
mizing seb &oes not centain both 2z, and its conjugate 2, .
“ . e 4. Vv T and 1v 1

Since D' 2 ... e e . | — e ——
S—ale: =- 0 k = l,ooo’n-l ]
‘ )
where -%%; = % ({%i - i ?ii) s for all z), € Z. |
The necessary condition for a minimum is thus |
n-1 : ~ "
’ = = - ‘
n-1
whe?e ay = kfl Vj(zk) - A and
Re {Wj(z)} = wj(z) .
We have two possibilities; either all the a.j vanish, or
W’(zk) = Q0 for all zk € Z where
| . n-1 | :
W(z) = I a5 Wj(z) 5 (3.5)
j=1 | -
In the first case,
| " (o)
. - k=1 J "k J

and hence




—n cpatas v

--'k & Z dare critical points of W(z). If some of the z

'according to thelr multlpllclty.-

29,

| n-1
= m - X W
and the(problem ;s solved.,
For the second case, all we need to consider is the

existence of at least one aj # O. For 1if so, then alI 

coin01de, the critical p01nts will ‘then be counted

e

| atramy AR . .. - . ) . " PPN PSRy e ek e

Since the aJ\are real, by the Schwarz re-
-
flection principle we have that w3(z*) = - [Ws(z)] and

Z*, the set of conjugates of points in Z, is also a set

of critical points of W(z). If no 2, € Z lies on the

real axis (See Fig. 2), then clearly Z and Z* are dis-
Joint and there are then 2(n-1l) critical points of W(z)
of which only n-1 of the se belong to Dp. But by the

Argument P;1n01ple, W(z) cannot have more than n-2

critical p01nts in Dp which is 1mpossible. Thus, we

 need only consider the case where at least one point of

Z is on the real line and 8, # O for some k. TIn this
case R is constant on the real line and all points of

the real line will be critical points of W(z) so that

n-1
W'(z) = z L ®3 wi(z) 5 0 .

This also holds for all z € D' if we proceed by analytic
continuation. But since the W (z) are linearly inde-

pendent this implies that all the a'J = O which leads

also to a contradiction,
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solutions holds.,

see fhet the slngu‘ar1t+es of Zk of U(z) are elther

where ZyveeesZ

50,

i

Hence the assertion that eq. (3.1) hae n-l

4

Now let V(z) be the harmonic conjugate,ofmU(z) >
above, The periods of U(z) + i V(v) are integral multi-

1

ples of 2mni, so that q(z) has no periods about cJ We

’slmple zeros or simple poles of q(z), depending upon

- ————— —

-

whether ¢, =1 or -1 . The function q(z) is thus single- S

valued in Dp, and the number of zeros and poles counted
according to their multiplicities is less than n-1.

-

Let

q(Z) 2 = A(z) Z € g ;  (3.6)

We define the following functions:

n-1
6)==K’ o) 20‘ K( ) L X, L(z, 3.7
l(z (z,86) + 2 j K(z, Zj +J=m+l . (2 zj) ( )

m <n-1 ,

and
" m n-1 |
Ll(z,b) = L'(z,6) + ZO(J* L(z,zj) + 0(3' K(z,zj) (3.8)
jal ¥ ,j==m+1

are the zeros of q(z) and o VSR EEEE LW}

its poles, and K(z,t) and L(z,t) satisfy the equation

m

K*(Z,t)ds = = 3 L(z,t)dz 2 ¢ o, (3-9)

‘We further impose on eqs. (3.7) and (3.8) the requirement

that the constants O‘;j shall be determined by the canditions
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Kl(zkgb) , = 0 9 k = l’o!oo’m 4
- and

4’ Ll(zktb) - 0 " k = m‘.‘l’ooc’n-l ®

By virtue of eq. (3.9)

\

o g~ f——

';:”ﬁé”can&efinéiKA(Zfﬁ) and Iu«xtﬁ) as~Tollows:   ' | ‘”';%‘

—

| Kl(Z,ﬁ) ' |
K(z,6) = KA(z,b) = - —_— (3.11)
A q(z) L[q(6)]
and
' } Ll(Z,ﬁ) a(z) o
L(z,8) = L,(2,6) = B¢ B (3.12)

We assert that K(z,5) is‘reguléf in D because the zeros

| p
of q(z) are cancelled by the zeros of Kl(z,b), and the

poles of q(z) are cancelled by the poles of K,(2,56).
- L(z,8) is regular in Dp except for a simple pole at z = 6.
Since the residue of L(z,5) is (2n)-l, the same holds for

LA(z,b).
For % € c we have that

{K(z,6) a(2) (a(8)1"}*as = § L2a2)a(B) 4, .

Hence,

(a(2)]"K"(2,8) a(e)as = 3 M22090) g5

Kl*(z,é)ds. = -4 IL,(z,6)dz2 zec . (3.100)
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[q(z)]'K‘(z,b)dS\\n %-quzé dz .

.............

‘Thus, 'q(z)|2 K'(q,ﬁ)ds = - i L(z,56)dz zZ2eEcCc .

- By (3.6)

Az) = - 1L(z,6)dz
. I K*(z,8)ds

~ This proves property (iii).

. MowsinceA(z) >0, _ - - -
— el L) K(2.8) 5o
,K(z,6)| -
or | ‘
- 1 L(2,6) K(z,6) >0, zec. (3.13)

A

oy

We now consider the function h(z) defined as follows:

h(z) = /' K(t 5) LA(t b)dt . 2, € c':j .

For z ¢ c Re {h(z)} = constant, '

By the Schwarz inversion principle h{z) therefore is

regular and consequently, K(z ) L(z,86) is regular on c.
Both 'K(z b)l and 'L(z 6)' are contlnuousi

separately, since

Léz,g} |
K(z,56 !

and both the product and ratio of 'K(z,6)| and IL(z,6)|

A(z) = ,A(Z) o=

are continuous on c. Since L(z,6) has a pole at & ¢ D,

lL(z,b)l 18 continuous in D except at the point &. This

proves property (ii). To show uniqueness, let there be




Z €cC we have that | | : -

~and hence,
/\(z)[K(z 6) - K"(z 5)] dS = - i[L(z 6) - L"(z 6)]dz, zec(a 14)

w”whengﬁLLzﬁb) .lL"Lz*b)Miaur@gulamuoa~Dp. From<@qV~(3.14) —

. A(z)lK(z,6>-K"(z,6)|2ds - -1[L(z, 6)-1"(2,8) 1 [K(2, 6)-K"(2,6) 1dz.

and |
0 = -1 [L(z,8) - L"(2,6)]dz,
or
L(z,6) = L"(2,86) , ze€c .
This completes the proof of the theérem. i <

Corollary 3.1. Let f(z) be regular and single-valued in

53

another~pair'of functions K"(z,6) and L”(z,b) Then for

A(z) [K"(2,6)1%d8 « - 1 L"(2,6)dz

et ymmn e e e e e e o e e e e w w = = om . e+ e aaw

~\-.v.-~~——

it follows that

Integratlng both sides of the last equatlon over ¢ we ob?-

tain, by Cauchy’s theorem,
"/ 2
L |E(z,8) - K (2,8)|< d8 = 0©

Hence, K(z,5) = K"(z,86) ,

QeE.D.

We state without proof the following corollaries

which follew immediately from the preceding theorem:

D and let ,j(':/\(z) lf(z)'ed.s exist, where the integral is

¥ ' . et )




taken in the Lebesgue sense. Then

LACz) £(2) [K(2,6)1%8 = _f£(8) .

- Corollary 3.2. K(z,8) is hermitian; i.e,,

K(z,6) = [K(z,6)]"
r":?

Comriagg 33, I(z,8) = -‘I‘) (2,6),

L [ T 1ot A et

 ——— Mhere . . ' — P

A(z) u(z) = 1,

The following theorem illustrates how the

-

function KA(z,b) solves the extremal problem which is

given in its hypothesis:

Theorem_é 2, Let g(z) be regular and single-valued in D;
let j)\(z) lg(z)l d8 < = and g(8) = 1

then

LA |8 < A eC2)|2as,

| b M(2) KA(Z95)
wnere Z = KA(b’Sy

g(z) = M(z).
Proof: By Corbliary 5e1,

jé)(z)lK(z,b)'zdS = K,(8,6) ,

where we have replaced f(z) by KA(z 6) = K(z 6)

by Corollary 3.1, we have that

L A(z) g(z) [K(z,5)]%as

£

& € D 3

Equality holds only if |

(3.15)

Also,

34‘




Hence,
1= |e®|? = LA s k(2801083

< L A)|e(2)|%as [ A(2)|K(2,6)| %as

by Schwarz's inequallty.!

o - e e B A L I T T e T T T . I SO
L T T S R I - - - - - - - -

| But the latter expression is equal to

Cn e O e~

SUNESIPRE Y . - - - & . - e

:---W - - ..._M~KA(6’5) 7;‘7\(2) l g(z)‘2ds

Hence,

LN

1 < K,(6,8) fA(z) | e(z)|%as
or

LA(2) | 8(2)|%s > [KA(b,b)];'l :
Since M(z) KA(b,b) = K(z,8)
| k(2,8)|2 = |uco)|? | K,(8,8)|°

From eq. (3.15) it follows that

(3.16)

LA@|M(2) [%x,(8,6)|%as = | K ,\(8,6) 2L A(2)|M(2)|%as

= KA(é,b) .

Therefore

LA M2) [Pas = (x,(6,6)17
Hence, combining eqs, (3.16) and (3.17) we have that

MA@ M) |28 < £ A s(2)]%s .

If the equality is to hold, we must have that

(3.17)
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Since KA(B,E) o
M(6 = — = 1
o = rEe -t
g(d) = M(8) ,. 6D, ot .
H’ejﬁce - g(z) 2 M(z) for equality to hold., o
- | | | Q.ECD‘ .o ha

£X2) 8(2) [K(2,8)1%a87 2 0

which implies that g(z) [(K(z,6)]* > O and that
lg(z)' = lM(z)l for z € c. |

Theorem 3.3, Let the function h(z)ﬁ be regular in D

except for a simple pole of residue (21t)°1 at z = 6; then
jéu(z)'h(z)l ds 2 Jc':.u(z)lL(‘z,b)' ds,

where u(z) l\(z) = 1, z'ec .
Equality holds only for h(z) = LA(z,b) = L('_z,b).
Proof: ‘

h(z) = nlz-b + rzgular terms.

Then

%.-j;h(z) K(z,6)dz = é-:,'t-'z ,/;%%E_"%%dz-l;‘(b’b)

by Cauchy’s integral formula.
Using the Schwarz inequality and the hypothesis that
u(z) A(z) = 1 we obtain

K(8,8) < [u(2)|n(2)|Pas [ A(=)|K(z,6)|%as

- K\(6,6) [ u(z)|n(2)|?s ,




.....

the latter equality due to Coroilary 3.1,

Hence,

OEN6,8) € fu(a)|n(a)|%as .

..

Using property (iii) in Theorem 3.1 and the inequality *

- (3.13) we have . = -

s e e

~ Hence — — —- - ——

fu(2)|u(z,0)|%s ¢ £ u(2)|n(2)|%as .

Clearly, equality holds only if

A)

on C,

- 1 h(z) K(z,6)as > 0 and lh(z)' = lL(zC’{J

QeE.D,

e pu)|n(2,6) %88 - -1 £ K(2,8) L(z,5)dz = K,(6,8) &

- a e erew e ee s .o
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~*Chapter IV

BOUNDS FOR DERIVATIVES OF ANALYTIC FUNCTIONS

" SECTION 1. Functions of the Class By

We .now consider the following problem:

| | ~ f 18 /%), . -
oo Let  @(z)eBy 776 e D 5 Re {e-‘emkz(‘s)} = max.

where 0 is an arbitrary fixed angle.

Theorem 4.1. The solution to the above stated problem

is a function W = E(z) which yields a (1,m) conformal .

map of D with bbundary ¢ onto the strip -1 (Re {W} <‘l_

where m < n+k-1,

| Proof:

Let N(z,8) be the Neumann'’s function of D and

M be its conjugate. Set q(z,6) = N(z,6) + i M(z,6).

From Chapter I, Section 1, for z € c,

ON 2n

9n - T T

Let v(z) be harmonic in D. If we delete a-circular

neighborhood ¢, of 6 and apply eq. (1.2) we arrive at

~ the following computations:

V(8) = F= [ N(z,6) 9KBas + 1 [ v(z) W=ablag

- & [ N(z,0) 92y

o Loy

jév(z)ds .
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N
&

Letting @(z) = u(z) + 1 v(z) be an analytic function,
| \ @
applying the Cauchy-Riemann equations and integrating by

parts we have

£, N(2,5) %—} .- ./;N(z,b)g‘-s-lds - - fu(z8) 45

| Hence v(b) == A fu(z) Mz 8) g5 - £ Lv(2)as. . (41) .

- m ——— o T S e . L,

80 tha‘t o - . T
7 "Re {elea—(—b)} = Re{(Cos 0+1 Sin 6)[u(6)+i v(S)]} .~

= u(d) Cos 6 = v(6) Sin 8 I

j;u(z) Cos 6 a_gg(le_,_bl dS

f u(z) Sin 6 aMa(zlbl as

gﬂr-'

n

+
'I—'
&

+

- N

Sin 6 jév(z) ds

Re {eieﬁ(b)} - - 2 [ u(z)[Cos 6 a-%%ﬁl-sm o A(2.0) 195

Sin 6 j;v(z)ds .

o |

+

For & = £ + im differentiating k times

k+l k+l
Re{eieg(k)(b)}a - '2}'1? [, u(z)[Cos 6 O "g(z.8) _ Sln o9 ! Pﬁ 161

c)gka ag dn
n-1 AW (z) - |
+'38 /\ ] ds o (4.2)
where jéu(z) awiﬂds = 0, .j-l,.i;,n-;l_

and )‘.j are arbitrary real parameters.

e T RS T




Since #(z) € By lu(z)'| <1,

Therefore | - | | - | o

Q “
e e e e
n-l 3w e
..................................................................................
+ X . ds
J n N
‘ v
———— aac;l ' . . =

As before (see eq.[2.7]) =

ow
& 1?" 53t 48 = 0

where jc': |P| dS 1is minimized and U(z) is defined in

Chapter II,
Hence the harmonic conjugate V(z) of U(z) is
single-valued in D. If we let }(z) = U(z) + 1 V(z) be

regular and single-valued in D and if |P| = - P U, then
Re {ew{z(k)(b)s 215 jc|1>| s = - 21-,; LUPas

- Re {10 T 5y} .
Hence

re {1990 (6)} < e {10 F(e)}

» ~ Since {(z). € By, W = I(z) solves the extremal problem.

To show that W = I(z) is a conformal map we

&%

note that U(z) = 1 or -1 for all but a finite number of




............

We also have that

z € ¢ and |U(z)| < 1. We now determine the number of
coverings as fol‘llows:

Since |P| = -PU, ‘
UPAdS <0 Z2EC

”eammg;fa«;af;dNu6>+ldm2”

A s S oA Oy o =~ =

- M dS,_f 4 aM(__:b). as o e

mRREERRRES. ¥ < I

"a*f’rligz 5) IN(z 8)
- - SHz.8) g5, 4 aL‘n J s

] _AMzb ds__21t

0 —L-idS, Z € C .,

Hence

2N

IM(z,8) 2x

9n

dS = - q'(2,6)dz -

~therefore for p(z) defined in Chapter II,

- UlCos eak (=i p’ dz) - Sin 6 ak (- q' 4z _ 2m i)
égk ‘)Ek L
n-1
+ I A(-1iw.,?")]dz > o .
j=1 9 J

It then follows that

k | | -1
-iU(@z) a-a-g—E[Cose p’(z)+ i8in @ q’(z,&)-rnEAj (z)]ldz €0(4.4)

ll*_‘ \
S

If we make the obvious substitution of R(z) in (4.4) we
obtain '

- i.U(Z) R(z) dz € 0 Z € c‘.  (4.5)

Clearly, R(z) is single-valued in D,

i dS 9 Z & C (4.3)

41,
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)

\

o Since p?(z) - i J§%§§1él', R(z) has' a pole at z = b,
| Expanding R(z) in a neighborhood of z = 6:
| Ly .18 n-1 |
LOREE S e SR W CE L
* (z=5) Jj=1 .

- L T L T T T T T O I R

- - - -respect to the domain enclesed by it. However, the n-1
s inner boundaries will be described. in the negative sense.

Hence arg(dz) on ¢ is given by
ex - 2n(n=-1) = - 2n(n-2) = 'Ac arg(dz) .
Thus, since A, arg R(z) = = A, arg (az) ,
I Ac arg R(z) = 2n(n-2) .

If we let n, denote the number of zeros in D and n, the
number of zeros on ¢ (recall that we must count the
nunber of zeros on ¢ with half of their multiplicities)

we have that

5 = k+l
n2‘
.Hence D) + 5 = n-2 + k+1

or 2n; +n, = 2(n+k-1) .,

Cpnsequently,

n, £ 2(n+k-1),




coincides with a zero of R(z). Every two changes in sign

~ Hence the number of sheets m <€ n 4+ k - 1,

- equivalently of those of class B. Due to the repetitive-

. . The maximum number of sgheets is therefore n + kX = 14 - - — oo i - ..

.)v&

From (4.5) we have that each Ehange in sign of U(z) on ¢

corresponds to a single sheet of the multiply covered

strip - 1 CRe {W} < 1.

. — P e Brp wa i

“‘QoEoD.b

These examples illustra¥e the procedures in-

volved in solving extremal problems of the class BR and

nesg and lengthy nature of the proofs involved, from now

on we shall omit similar arguments.

SECTION 2. Univalent Functions

We shall say that a function f(;) is univalent
in a~region D if'it is analytic, single-valued and one-to-
one.,

Consider the following problem, solved by Landau:
Let f(z) be regular and bounded in the unit disk such that

lf’(O)I = a, 0{adl. Then f(z) yields a univalent

mapping of the disk | z |< P" afl + ‘Jlea]ml, and in fact,

the function f(z) with the smallest radius of univalence

yields a (1,2) mapping of the unit disk onto itself.
In order to see how this has been generalized

we state without proof the following:

Theorem 4.2. Let @(z) ¢ BR v P°(8) = A where A = a + ib,

L T




6 € D; 21,22 € D. Then

|\|f<z1) - V(2] <|¢<z1> - 9(s,) |

where W(z) e B, and 41’(6)

Also, W \!I(z) yields a (1,m) conformel map of D -onto -
‘ .......... ............ thé StI‘lp _1 < Re {w} ( 1 where n < m < n+2

——— ' Wim this theorem in mlnd we are now able to o

- state and prove the f‘ollowing

L - Iheorem 4.3. Let £(z) € B and f’(&) = A where 6 € D.

v Let /‘) be the largest number such that all functions g(z)
Wwith the properties satisfying Theorem 4.2 are univalent
in Iz-6|< /9 . Then there exists a function F(z) ¢ B,
with F'(86) = A which yields a (1,m) map of D onto‘the'
unit disk such that \;P(z) is not univalent in any circle

| z-8 < P* with F«P’

Proof:- Let @(z) = % tan~! £(z).
If ¢ (zl) = ¢(z2) then
tan™l £(z,) - tan™! £(z,) .

Hence,

Since f(z) € B, f(z) is Bingle-valued in D so that
Zl = 220

@(z) is therefore a univalent functiOn.

Let @°(6) = A and define BRA as'folldws:
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B(s) € By and @'(6) = A} (4.6)

Bé = ‘{QI(Z)

Clearly B, > Bj . | o

- Since Bg is closed and bounded, it is compact. Hence

there exist real numbers P >0, (/’ <Pj sy 1 < j) such

- that for al ¢(z) R , @(z) are univalent for -

|z-5 i<5@ ,,,,,,,,,,,,,

A TGP VL S P -

Let /9 = max_I l9 i Then P is the radius of unlvalence

mﬂnww- AT 4 =t v o e s ergn e A vE eV

of BR Hence there ex1sts a functlon 7, (z) 2 Bp which

B = T T R . . I T . T I T A S R S R A AR T A N I R

w.ﬁw PR

- is univalent in iz=6|<Fbut not in 'z-—é!% € where e)P.
We now consider two cases for boundary points:

Case I: Let 29 and Z5 be points such that |zl- 6' =

and |22- 6| = Pand for which ¢°(zl) = ¢°(z2), 2, # Zoe

Then by Theorem 4,2 there exists a function\'l(z) > BIAQ

such that

<| oz - 0]

Yz - Wizp)
, Vi) = W)

\ll(z) therefore cannot be univalent in a disk about &
with a radius € >Io. For if it were 80 , q/(zl) = \ll(za) '

Hence

- would imply that Z) = 2Z which contradicts the hypothesis.
‘Case II: Let z3 be another point on the circumference

' 2-0 | = Fat which ¢’(Z3) = 0, From Theorem 4.2 we have.

N’(Zl)" (zz)l < |g(zl)-¢(22)|

B D ]




‘Then since l\l/ (33)| <| 7* (25) I

Now let S z3 and Z5 — 23'

Then. Wz, |< |92y |

where 410( z) = 1im \Qﬁk(z) and where for each integer k,
‘ Koo

“|’k<z) mape D onto strips whose maximum number is ne2.
Dince the Set of all .#’h(z) is comPaCt, the‘”—‘_ LT

SLM e MY W e v e mow ® e enww o

- 1limit function \y (z) vields a mapping of the same typa. |

A

Now let @,(z) € Br such that ¢’(23) = 0, -

\y’(ZB) = 0 ,

Hence \‘/(z) is the required function; therefore, since
@(z) is univalent, the statement of the theorem is
equivalent to the corresponding result for functi’ons be-

longing to Bﬁ Hence the theorem.
) ' QoEoDo

SECTION 5. PFunctions of the Class BA

We now wish to extend the results of Chapter III

to the first derivative of functions belonging to the

class By To do this we state and prove

Theorem 4.4, Let f(z) € B,, then

|fj(5)| < B8 = 2mK, (8,8)

| 'Ku(z'b)
where u(zo))\(zo) = 1, 2, € cand F(z) * Tz °
u\“ |

If L;l(z,b) # O for z € D, F(2) € B, and the inequality
|£7(6)| € F*(6) is sharp; if L (2,6) = O at the points




ZyseeesZy, then the inequality holds for the wider class
of functions f(z) which may have a simple'or'double pole

,gat~zl;,..,zk, For this wider class, the 1nequality is
sharp and again, equality holds only if |

K (z,5)
F(z) = 52(2,67 . ‘r;~‘””

—Broof: Since f(z)-¢B, ,

BN N

Un sup |£(2)| €A(z,), 3, €c .

o
Z-»Z o

£f(2z) therefore must be bounded in D and hence 1lim £(2)
Z—2
(-]

exists almost everywhere on ¢,

By property (i) of Theorem 3.1

Lu(z,b) - [2n(z-6)]°l is regular in D.

.'Hence‘(2n)'l is the residue of Lu(z,é).
By Cauchy'’s theorem,

1 f(z)
£°(8) = 2_1!-{'/(.:(2-6)2 dz

-1
2
But L (z,6) = iz—:%_

2\~1
2 g4n 2 1l
’6 = = T °
oF Fu(z ) (z-6) 41 (z-b)2

2
Hence f£'(6) = g%" L f(z) L (z,6)dz

or equivalently,

£0(6) = ZF [ £(2) 12 (2,6)dz R




Therefore "

'y

|f’(6)| £ 2n jéx(z) lI'121 (z,s)dz |

since lim sup ,'f(z) | < )\(z) .  | |

By property (iii) of Theorem 3.1

A(Z)[Kﬁ(z,b)]‘[Lu(z,é)]"‘ds = = 1 L,(2,6){L (2,8)]%d2

Xz) |k, (z,8) L,(z,6)dz | =

*dS = - 1

Ry AR .

—e—— . .

.

Substituting into (4.8)‘ we have

|f’(6) |-$ °n J;X2(Z) |Ig",(z,6) Lu(_z,6)<}2|

AN

or | "
|£28) | < 2n ] Ky(2,6) Ly(z,8)az] .

In view of (3.13) it then follows that

|27¢6) | € 2x [ K, (2,6) 1,(z,6)az

By Cauchy’s theorem, the expression on the right of (4.9)

12 (z,6)dz

Lﬁ (z,6)dz l .

. (4.8)

- et oo -

L T T

(4.9)

is equal to 2n Ku(b,b). But F'(6) = 27 Ku(b,b) and

hence

J

'f’(b)ls F'(8) = 2m K (6,8) .

lF(Z)I f

Ku(Z,b)

LuT 7,0 ).

u(z) ,

i (K,(z,6)]%as

LuTz ,0)dz

2 £ C o,

If L (z,6) has no zeros in D, we are done. If Ly(2,8)
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'has zZeros zl,..,,zk, then everything still follows if

£(z) has simple or double poles at these points. There=

»fore the equality will now hold at points which will have

-~

simple pdles.
| Q.E.De

Theorem 4.4 may be extended by.further re- R

- ————— -~ -

I R e .

~this by stating tﬁE"TbTEGWiﬁg“tib corollaries to Theorem

A

Corollary 4.1. Let f(z) be regular and |f(z)| € 1 in D,
and let £(8) = £(a)) = f(ay) = ... = #(z_) = O, 6y8, 485,

eee o8

p € D+ Then

IR R IO 2 KA‘(~6,6) ,

where /\(z) = i]l; 'z -.\a:j| Ib -. ajl-l zZ€eEc, 5

KA(Zgb) . a (z—&.)

' and P(z) = 11 .
LSy Gy ]

Corollary 4.2. Let g(z) be regular in D apart from m

simple poles located at the points 8110058 ;5 let

m
g(6) = 0, 6 € D, and let lim sup' g(z)l <€ 1. Then

Z—-C -
|e'(e) | € @'(8) = 2nk (5,0) ,
m

J J

j=1

where u = u(z) = ll '6'-a.| 'z - a.|°1 zeEc, 5D ’




.............................

or double poles af tne p01nts Zk' G(z) solves the ex-

z,6) I ‘6‘ )
167-]];(5‘&;7 *

If 1,(2,6) # O in D, then G(z) satisfies the hypothesis

and G(z)

| s:t"ﬂcw

of the theorem and the inequality is sharp. If L,(2,6)
- has the zeros Z, in D, then the inequality is “sharp for

——— S

. ARSI . s 8 ~vag -
~ASGEITMS - ¢

trémal problem in thls case.

" the wider class of functions g(z) which may have Blmple--~:
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Chapter V

' BOUNDED FUNCTIONS IN STARLIKE
AND CONVEX DOMAINS

The theory presented earlier has an enalogous

development for functions belonging to the class BR -

| o which 1s defined fogfstarllke and convex domains. 4

domain D is starlike relative to an_interior p01nt'z

if every straight line segment joining z_, with a boundary
point Z, lies entirely in D. An example of a domain

which is not.starlike is illustrated in Fig. 3.
Alternatively we may say that a domain D is starlike withw
respect to a point z, € D if for any z, € D all

z = az_ + (1 --a)z1 ’ O£al also belong to D.

Figure 3

We may now state the following:

Definition 5.1. The radius of starlikeness rs(b) of an

analytic function f(z) with respect to the point 6 at
which f(&) = O is the radius of the largest circle about
& which is mapped by £(z) onto a univalent domain that is

starlike with respect to the origin.
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Similarly'we‘may,say that a domain D is convex

~1f for any two points 2112, € D the points of the set M -

also belong to D where | - - S s
{z,z = 24 .+ a(22 - 2y), Ofafl}
We now define the radius of convexity as follows:

mmﬁa”7"'”QefinitignigfagifmheAradiuséffééﬁfggif&ffw(b) is defined

- Y.

- — ——

—_— - as the radius of the largest circle about & wnlch is
‘mapped by f(z) onto a convex univalent domaln,
With these defihitidns in mind, we may state
the following: |
Theorem 5.1. Let

B - {90 |8 e my L 9e) - 0 ana g7(6) = )

and let r (8) be the radius of starlikeness of B: with
respect to 6. Then rs(é) is the exact radius of star-
likeness of a function W = qy(z) € Bﬁ’ which yields a
(1,m) mapping of D onto the strip =1 < Re {W} { 1.
Proof: Consider the quantity

Re {eie [¢(zl) - a ﬂ(zz)]} y a>0 .

We then obtain that for

% ”  #(2) = u(z) + i v(z)

Re {eie [¢(z_l)-a ¢(22)J} = (u(zl)}-a u(zz)] Cos 6

- [v(zl) - a v(zz)] Sin 6




_ ) . \ 1 ’ 2 " w [}
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where A are arbitrary real parameters.

o % w v s e e e v s ety s e me 1w s e e m e e e s e e e e ne e o et es e B T meWRNSE M NS EEEEE P e e AR AT e w e mewma® e e owowon o= T T T T T R R IR

S Since &4 = @*'(8) 3u€5 —— 1'-%‘}%&

we may write

: Re {¢1° (0(2)) - a #(2,)1}
(z52,, 9499
- & fute) toos 0252 gy ANCHimyn)

.:o' +n21Aoaw.-+d32 220

, 2 .,
A -é_n‘l 8leb) @ 9 Egg's\zn,bh ds

-BX + ¢ /3 where

o, ﬂ are arbitrarywi"eal parameters, A = B + i €, and

iM(z;zl,:L) _ AM(z,zl) o M(z, 22)

a n 3 n T -\a ‘3 n *
Since lu(z)l < 1 we have that




\ 'I #(z,) - a¢(22)|‘¢ Re {eia [¢le) “ e ¢(22)]}'

2

149 9 . 9N ) ‘ ’
<2 [ |cos o ag(%? %2) _ Sin 6 — (zazr} z5)
n-1 bwl 2 R ‘ azg 6)
C B AR X .595’%’.‘5‘!;. .*ﬂ 37 an |98

A— -

Abbreviating this expression in the obvious manner we now

have that

- ¢(zl) - a ¢(z2) |S §1E jélPI dS - B + 6/3. (5.1)

As before, we minimize the right hand side of

(5.1) assuming that o( and @have been 80 chosen as to

yield the minimum of the expression. Again defining

U(z) = - Lel

2 €¢C, P # O as before we obtain the necessary

conditions for the existence of the minimum to be the

following:
Qw,(2) : “
j; U(z) —a-'j-ﬁz—ds = 0 “ (5.2)
-2 L U(a) %-Q-Mds = B (5:3)
21 ‘¢ Q9 EJn -
- §11—t L U(z) _%Eﬁgéﬁé; dS = -C - o (5.4)
7
- & [ U(z)[Sin 6 ag(zgi;’”?l;+cos eém(zgz}l’zé-)-]dsw (5.5)

Eq. (5.2) indicates that the harmonic conjugate V(z)- of
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U(z) is eingle-valued therefore \P(z) s'U(z) + 1 v(z)
is single-valued in D. |

.‘:-” _]equ (5.3) and (5.4) indicate that gg B and %};--.- C

at z = b, Hence by the Cauchy—Riemann equations, |

. (5.5) indicates th&t — LTI T

In{ 10 L\‘I(zl) - a \'I(zg)]} (5.6)
Hence

e[‘ﬂ (z;) - ag@g (25,)] is real, | |

We now show that
Pl (z) -ag(z)] £ 0

by considering an increment of 8. In the expression y
for P, if we replace 6 by 6 + £ and call this new ex- /

pression P* we have that the following holds:

. L de(usnyen)
jé'P*'dSsj;IPldS-ejéL-l[Sinﬁ—jzsi’z

E’M(z 521 925)
+ Cos 6 3111 2.1 as
98(2;52, ,2,) OM(2z52,,2,)
- % e fcj-l;-l [Cos © 3%1 2. _ 8in 6 3111 £_1ds

3

+ 6(82)

By (5.5) the first variation vanishkes,
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ol

Since ,/;|P"'| as .[;IPl dS, the second
variation is non-negative., ‘
Therefore

' de(232),2,) OM(z;2y,2,) |
j&U(z) [Cos © Ia =— - 8in 6 — 3 —Jd8 > 0

Hence. Re{ 16 [ \‘I(zl) - a \y(za)]l < 0

. o P e N T b NP PRI B, i 3 ity
B :

Since eq. (5 6) holds,"””

- T ——

el® [ \‘/(21) - a \Y(ze)l -~-| \'/(zl‘) - a \y(zz)l

. We"also have that

- | #(z,) - a ?Z(zg)l < Re {e” [\"(21)" a\V(zg)J}”
Hence X -

- | #(z)) - a ¢(22)| < H/(zl) - a 4/(2'2)'

or equivalently,

| 82 - 2 9z

\{I(zl) - a W(zz)

Now W = \Ij(z) maps D onto the strip -1(Re{W}<i m

(5.7)

times where m ¢ n +2 by Theoren 4.2,

A.’

Let rs(ﬁ) be the radius of starlikeness of BR

with respect to z = 6.

| - L
Then for € > O there exists a function \l]o(z) € Bﬁ and

points 2112, oOn | z =0

=T (6) + € such that ¢°(zl) -
a @, (22) = O for some a)O.

Hence by (5.7), there exists a function 4!(2) such that

_ _ 9

-~
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\ll(zl) _.\';(zz) = 0 and which maps ,z-—b ' (r (6) + ¢
4 onto a non-starlike dbmain. Now let € — 0. Since Hg’
| is closed and bounded, it is compact. Hence rs(é) is the
 exact radius of starlikeness. -
| 0. E.D.
T 'Bhe analogoue theoren c@nveming ‘the- radius of corwe‘xiﬁy‘ ',‘r* ot
- =———-  will be stated without proof. _ __ . ]
— Theorem -5+2, Leerﬁ be defined as above and ret r 8 T

be the radius of convexity of BR with respect to z = &.

Then rc(b) is the exact radius of convexity of a function
W= \{I(z) of BR which yields a (1,m) mapping (m <n+§)

of D onto the strip - 1 <Re {W}<1. a

. .:!' 1 /
B - ) - .
i . L .“11 * f . .
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