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Abstract

The tokamak is currently the most promising device for realizing commercially-viable
fusion energy production. The device uses magnetic fields to confine a circulating
ring of hydrogen in the plasma state, i.e. a cloud of hydrogen ions and electrons.
When sufficiently heated the hydrogen ions can overcome the electrostatic forces
and fuse together, providing an overwhelmingly abundant energy source. However,
stable, high-performance operation of a tokamak requires several plasma control
problems to be handled simultaneously. Moreover, the complex physics which gov-
erns the tokamak plasma evolution must be studied and understood to make cor-
rect choices in controller design. In this thesis, two key control issues are studied
intensely, namely the optimization and control of the plasma current profile and
control of the plasma rotation (or flow).

In order to maximize performance, it is preferable that tokamaks achieve ad-
vanced scenarios (AT) characterized by good plasma confinement, improved magne-
tohydrodynamic stability, and a largely non-inductively driven plasma current. A
key element to the development of AT scenarios is the optimization of the spatial
distribution of the current profile. Also, research has shown that the plasma rotation
can stabilize the tokamak plasma against degradations in the desired magnetohy-
drodynamic equilibrium.

In this thesis, new model-based control approaches for the current profile and
rotation profile are developed to allow experimental exploration of advanced toka-
mak scenarios. Methods for separate control of both the current profile and rotation
profile are developed. The advanced model-based control methods presented in this
thesis have contributed to the understanding of tokamak profile control and in some
cases they have been successfully validated experimentally in the DIII-D tokamak.

1



Chapter 1

Introduction

This chapter begins with a review of basic nuclear fusion concepts and the experi-
mental fusion reactor known as the tokamak. The initiated fusion sciences reader is
advised to skip to Section 1.5.

1.1 Nuclear Fusion

A fusion reaction involves the literal fusing of two lightweight nuclei to produce a
heavier product. Generally, the total mass of the products is slightly lower than
the total mass of the reactants. The mass defect, i.e. the missing mass, is con-
verted to energy in an amount determined by the law, E = ∆mc2, where ∆m is the
mass defect. However, in order to obtain fusion reactions, particles must be heated
to extremely high temperatures. At low energies, the Coulomb repulsion between
like-charged nuclei deflects the particles away from each other, preventing fusion.
When the particles are fast enough, i.e. the collisions between particles are ener-
getic enough or equivalently the temperature of the particles is high enough, they
can overcome the Coulomb barrier, at which point the short range nuclear force
overwhelms the electrostatic force and the particles fuse together. The Coulomb
barrier between singly charged ions is roughly 380 keV. However, due to an effect
known as quantum mechanical tunneling, the particles can with small probability
“tunnel” through the coulomb barrier at energies around 10-20 keV, as illustrated
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(a) Particle collisions can tunnel through the
Coulomb barrier at energies around 10-20 keV.

(b) The reactivity (probability) of vari-
ous types of fusion reactions: Deuterium-
Tritium (D-T), Deuterium-Deuterium (D-D),
Deuterium-Helium (D-He3).

Figure 1.1: The Coulomb barrier of the D-T reaction is an extremely high 380 keV,
but, with some probability, the particles can tunnel through the barrier at
10-20 keV.

in Figure 1.1(a). At the temperatures required for fusion (10s of keV equivalently
100s of millions of degrees Kelvin), matter can only exist in the plasma state, i.e.
when electrons are dislocated from their nuclei. Thus, fusion science is inherently
connected to the study of plasma physics.

1.1.1 The Promise of Fusion

Imagine a world powered by a safe, clean, and virtually limitless fuel source such as
water. It may sound fanciful, but that is in fact the world promised by a commer-
cially viable fusion power plant.

The likelihood of fusion reactions can be described by a parameter called the
reactivity, which is quantified by the cross section1 times velocity averaged over the
velocity distribution function. The deuterium-tritium (D-T) fusion reaction,

2D + 3T→ 4He (3.57MeV) + 1n (14.06MeV) (1.1)

is the easiest to produce because it has the largest reactivity as compared to other
1The cross-section σ measured in units of areas characterizes the probability that a nuclear

reaction will occur
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Figure 1.2: A fusion breeder reactor schematic. Energetic neutrons react with the sur-
rounding lithium to produce tritium, which is pumped back into the confine-
ment vessel to sustain further fusion reactions.

potential reactions (see Figure 1.1(b)). Deuterium is a stable hydrogen isotope which
makes up 0.014% of hydrogenic atoms in ocean water, or approximately 1.6 grams
per liter. Tritium does not exist in nature as it is radioactive and short-lived with a
lifespan of about 12.5 years, but fortunately it can be produced from lithium, which
can be mined or found in ocean water in an amount of 0.15 grams/m3.

It is anticipated that a fusion reactor will produce the necessary tritium fuel
from lithium. Tritium is a product of the reaction between an energetic neutron
and Li6 (Lithium-six),

n + Li6 → T + He + 4.8MeV.

along with Helium and 4.8 MeV of energy. Since energetic neutrons are a product
of the D-T reaction, they can be used to “breed” the tritium fuel in a reactor. The
concept breeder-reactor is illustrated in Figure 1.2, where the plasma confinement
vessel is surrounded by a blanket of lithium. As fusion reactions occur, neutrons
escape the confinement vessel and enter the blanket, at which point some neutrons
react with the lithium to produce tritium. Also, significant heat is produced as
neutrons strike the lithium blanket, which can be used to generate steam in a heat
exchanger; in turn, the steam drives turbines for the production of electricity.

W.P. Wehner 4 Lehigh U.



1.1. Nuclear Fusion

The real potential of fusion power becomes sharply apparent when comparing
the specific energy (energy density) of the D-T reaction to that of conventional fossil
fuels. For example, coal has a specific energy of 30 MJ/kg, oil 50 MJ/kg, fission
(U-235) represents a giant leap forward to 85 million MJ/kg, but the D-T reaction
brings about an incredible energy density of 350 million MJ/kg, more than 10 million
times the energy density of coal.

Furthermore, nuclear fusion is incredibly safe. Unlike nuclear fission (the split-
ting of heavy nuclei into lighter nuclei), fusion does not involve a chain reaction,
and the amount of fuel in a large, production-scale reactor would only be around a
few grams. Even in the worst case scenario involving complete destruction of the
machine, the small amount of radioactive material leaked would be no cause for
concern to neighboring residents.

1.1.2 The Fusion Triple Product (Requirement for Energy

Production)

In this section, some definitions are introduced in order to establish the necessary
conditions on various plasma parameters (density, temperature, and confinement)
for net energy production in a D-T plasma. Consider, for example, a purely hydro-
genic plasma made up of equal parts deuterium and tritium (nD = nT = n/2), where
n is the density of the electrons. To obtain the fusion power density of the entire
plasma, we start with the fusion power density for a particular relative velocity of
the D-T collision,

PF (v) = nDnTσDT(v)v
# reactions/s/volume

× EDT
energy of reaction

,

where EDT is the energy released from a D-T fusion reaction. If we assume a
Maxwellian velocity distribution for each of the plasma species and integrate over
the velocity, we can obtain the average energy density of the plasma

PF = 〈PF (v)〉 =
1

4
n2〈σv〉DTEDT.
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Figure 1.3: Example burning plasma in steady state. Alpha heating is the energy asso-
ciated with the alpha particle, i.e. the Helium product of reaction (1.1.1).

Assume the plasma has reached steady state, in which case the power injected into
the plasma plus the power produced from reactions must be equal to the power
expelled from various types of losses as in Figure 1.3,

Pin + Pα = Prad + Pdl. (1.2)

The power associated with alpha particle (Helium product of reaction (1.1.1)), Pα,
remains in the plasma after a reaction. The losses include that from radiation, Prad,
and the direct losses, Pdl, from convection and conduction. The direct losses can
be characterized by the plasma energy confinement time, τE, i.e. the characteristic
time over which energy is transported outside the plasma. If we assume equipartition
between the ions and electrons, which have an energy of 3kBT/2 each, where kB is
Boltzmann’s constant2, then the direct power losses per unit volume are given by

Pdl =
energy/volume

τE
=

3nT

τE
.

The fusion gain, Q, is defined as the ratio of fusion power to input power, i.e.

Q =
Fusion Power
Input Power

=
Pfus

Pin
,

where Pfus is the total power produced by D-T fusion reactions including that as-
sociated with the neutrons and alpha particles of (1.1), i.e. Pfus = Pα + Pneut.

2If temperature and energy are both measured in eV, the Boltzmann’s constant kB = 1.
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At temperatures high enough for a significant number of fusion reactions, the di-
rect losses will dominate over radiative losses. Therefore, at steady state the input
power is approximately equal to the direct losses minus the alpha particle power,
Pin = Pdl − Pα, and the fusion gain can be written as

Q =
Pfus

Pdl − Pα
=

1
4
n2〈σv〉DTEDT

3nT
τE
− 1

4
n2〈σv〉DTEα

,

where Eα is the alpha particle energy associated with the D-T reaction.
Alternatively, writing the input power in terms of the fusion power (Pin = Pfus/Q)

we can obtain a constraint on the plasma parameters (density, temperature, and
confinement time) required for a desired fusion power gain Q. Substituting Pin =

Pfus/Q, Prad ≈ 0, and Pdl = 3nT/τE, the power balance per unit volume (1.2), can
be written as

Pα +
Pfus

Q
=

3nT

τE
,

Pfus

(
Pα
PDT

+
1

Q

)
=

3nT

τE
,(

1

4
n2〈σv〉DTEDT

)(
Ealpha

EDT
+

1

Q

)
=

3nT

τE
,

and, finally, obtaining

nτE =
12T/〈σv〉DT

EDT

(
Eα
EDT

+ 1
Q

) . (1.3)

From the expression (1.3) we can obtain the necessary conditions for net

energy production in a burning plasma. In the range of temperatures typical
for tokamaks (10-20 keV), the D-T reactivity can be approximated as

〈σv〉DT ≈ 1.4× 10−24T 2 (m3 s−1), (1.4)

where the D-T reaction energies are EDT = 17.59 MeV, and Eα = 3.56 MeV. To
reach break-even energy production, Q = 1, it is required from (1.3) and (1.4), that

nτET |break even
∼= 1021 (keV m-3 s). (1.5)
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In theory it is possible to sustain the plasma with zero auxiliary input power, in
which case the plasma is sustained solely by alpha particle heating, and the fusion
gain Q→∞. This condition called “ignition,” requires

nτET |ignition = 6 nτET |break even . (1.6)

Of course, imperfect energy conversion efficiencies will imply even more demanding
constraints on density, temperature, and confinement for a desired fusion gain.

The term nτET is called the fusion triple product and expression (1.5) is referred
to as the Lawson Criterion [1]. Maximizing this quantity is the primary objective
of experimental fusion reactors.

1.2 The Tokamak

The most promising approach to develop a production-scale fusion power plant is
the tokamak. Charged particles are bound in tight orbits around magnetic field
lines thanks to the very strong Lorentz force, F = q̂(v×B), where q̂ is the particle’s
charge, v is the particle’s velocity, and B is the magnetic field strength. Taking
advantage of the Lorentz force, numerous approaches have been explored to confine
hot plasmas with magnetic fields for the purposes of sustaining controlled fusion
reactions. The tokamak (a Russian acronym for toroidal chamber with magnetic
coils) curves a cylindrical magnetic field into a torus. The construction of a tokamak
involves wrapping a set of coils poloidally around a toroidal vacuum vessel to produce
a toroidal magnetic field as shown in Figure 1.4. However, a purely toroidal field is
insufficient to confine the plasma because forces arising due to the radial decay of the
toroidal field3 act on the ions and electrons in different directions leading to charge
separation. The resulting electric field subsequently forces the plasma column to
drift into the wall of the confining structure. To counteract the charge separation, a
poloidal field is introduced. The combined poloidal + toroidal magnetic field lines
wind helically around the torus as shown in Figure 1.4. As the particles travel

3The toroidal field is inversely proportional to the major radius, Bφ ∝ 1/R, where R is the
major radius (see Figure 1.5).
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Figure 1.4: The tokamak: toroidal field coils wrap poloidally around the plasma torus
and provide the primary toroidal field which confines the plasma. The plasma
current, typically induced by a transformer effect, provides an additional
poloidal field, resulting in a helical field structure.

around the plasma column in the poloidal direction, the particles sample regions of
the plasma with opposite drift directions, and, on average, the drift is cancelled out.
Since the plasma can also carry electrical currents, a tokamak produces the poloidal
field by driving current in the plasma along the toroidal direction. Typically, the
main plasma current is induced by a transformer action, where the central coil acts
as the transformer primary and the plasma itself acts as the secondary.

The tokamak plasma geometry is essentially a torus (donut) in shape. The
toroidal angle, φ, lies in a plane parallel to the torus, and the poloidal angle, θ,
lies in a plane associated with a vertical cross-section of the plasma as shown in
Figure 1.5. Two coordinate systems are typically used to describe the tokamak
geometry, the quasi-cartesian coordinate system defined by (R,Z, φ), and the quasi-
cylindrical coordinate system defined by (ρ, θ, φ). These coordinate systems will be
useful in the development of first-principles-based models of the current profile and
rotation profile evolutions. The major radius of the tokamak is R0, the minor radius
is a, and the aspect ratio is A = R0/a. For conventional tokamaks, the aspect ratio
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Figure 1.5: The tokamak geometry and coordinate system.

φ

is about 3.5.
Research into tokamaks began in the 1960s at the Kurchatov institute in Russia.

Today, there are about 40 tokamaks in operation worldwide. The largest, JET, has
demonstrated power production of about 16 MW from D-T fusion with transient Q
values in the range of 0.6-0.9. The future of tokamak research is now focused around
the ITER tokamak ("The Way" in Latin), which is expected to be completed in the
2020s [2] and will be able to produced sustained power production around Q = 5−10

for ≈ 1000 seconds.
For stable tokamak plasmas, a hard limit on density exists (the Greenwald den-

sity limit), therefore, the primary goal of tokamak research is to maximize the energy
confinement time. For various reasons described in the following sections, both the
current profile and rotation profile play an important role in improving the confine-
ment of tokamaks. Therefore, control of these parameters is becoming increasingly
important in the tokamak research community.

1.2.1 Heating and Current Drive Systems

During the ramp-up phase much of the plasma current required for the poloidal
magnetic field is driven inductively by a transformer action. The induced plasma
current also heats the plasma due to resistive heating. However, the temperatures
that can be reached by ohmic heating alone are insufficient to initiate a burning
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plasma, therefore alternative heating sources are necessary. Besides ohmic heating,
auxiliary heating sources generally fall into one of two categories; 1) injection of
highly energetic neutrals, which heat the plasma through collisions between the
energetic particles and the plasma particles; 2) injection of radio-frequency (RF)
waves, whereby a wave is coupled to the plasma at a frequency resonant with a
category of particles in the plasma and, therefore, capable of transferring energy to
those particles.

Ohmic Heating and Current Drive

Ohmic heating is the heating of a plasma by an electrical current. The current is
generated by swinging the flux in the transformer coil, i.e. running a current through
the coil, to produce an electromotive force in the plasma ring, which in turns drives
a current in the plasma. The portion of the total plasma current that is driven
by the transformer effect is referred to as the ohmic current throughout this work.
Since the plasma resistivity is known to scale approximately with temperature as
η ∝ T

−3/2
e , where η is the plasma resistivity and Te is the electron temperature,

we can make a couple of observations about the ohmic current. First, the current
driven by a transformer effect is given by

Ip = − 1

Rp

dφtrans

dt︸ ︷︷ ︸
Transformer
Flux Swing

,

where Ip is the total plasma current and Rp is the average plasma resistance. The
ohmic heating power is given by

Pohm = RpI
2
p ∼ ηj2

φ ∼ T−3/2
e ,

where jφ is the toroidal current. Therefore the heating effect of the plasma cur-
rent becomes progressively more and more inefficient as the plasma temperature in-
creases. Above temperatures of about 1 keV, the ohmic heating effect is essentially
absent. This implies alternative heating sources are required to reach temperatures
necessary for fusion. Second, since the temperature profile is peaked at the plasma
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(a) Transformer (b) Ohmic Current Profile Shape

Figure 1.6: Ohmic current driven by flux swing of transformer. Since the resistivity is
proportional to temperature, and the temperature is peaked in the plasma
center the ohmic current will also be peaked in the plasma center.

dφ
dt

Ip = − 1

Rp

dφ

dt

center, the resistivity will be smallest at the center, and therefore the ohmic current
will also be peaked at the plasma center as shown in Figure 1.6(b). As will be de-
scribed in the following sections, centrally peaked current profiles are not desirable
for high plasma performance implying a need for alternative sources that can drive
current off-axis.

Because the ohmic current is driven by a flux swing, which is inherently limited
by the maximum current limit of the ohmic coil, inductive current drive is necessary
limited in duration. This is the primary reason that tokamaks are operated in short
pulses. Non-inductive current drive sources can, in principle, lengthen the pulse of
tokamaks to indefinite operation, and can also be used to locally modify the current
profile.

Neutral Beam Injection

Neutral beam injection (NBI) consists of injecting highly energetic neutral particles
into the plasma. The neutral particles become ionized once they enter the plasma
and transfer their energy and momentum to the existing plasma particles via colli-
sions.

A schematic of a simplified neutral beam system is shown in Figure 1.7. First
a source of neutral gas flows into the neutral beam injector, the neutral gas is then

W.P. Wehner 12 Lehigh U.



1.2. The Tokamak

converted into positive ions by an arc discharge, for example. The newly created
ions are then accelerated by a set of electrostatic grids. The beam of highly energetic
ions is then passed through a neutralization chamber, which is essentially a large
box filled with a low density neutral gas. As the ions pass through the neutral gas,
some of the ions experience a charge exchange with the neutral atoms, obtaining an
electron and thus neutralizing the positive ion. Of course, only a fraction of the ions
will be neutralized so the remaining charged particles are defected into an ion dump,
which must be actively cooled. Once neutralized, the high energy particles are free
to pass through the deflector and the confining magnetic field into the tokamak
plasma.

NBI systems typically function as the auxiliary heating work horse in many
present-day tokamaks. If the beams are aligned tangentially with the plasma torus,
they can also provide momentum drive and current drive to the plasma. Varying the
alignment of the beam with the plasma allows the application of different current
and torque input profiles enabling current and rotation profile control. However,
their are a few drawbacks associated with NBI; i) the power deposition profile is
not very localized which limits their effectiveness for profile control, ii) the large
size of the of the neutral beam implies the need for a large opening in the plasma
chamber which can lead to concerns associated with neutron leakage from a reactor
device, iii) the present-day technology has a low electrical efficiency which presents
a problem for a commercial device. Substantial research efforts including the use of
negative ions to improve the efficiency of NBI devices is on going [3].

Radio Frequency (RF) Waves

Radio frequency waves can be used to heat the plasma by an effect known as cy-
clotron absorption or drive current by an effect known as Landau absorption. In any
case, the wave is generated by different systems according to frequency (tetrodes or
diacrodes for ion cyclotron frequency, klystrons for hybrid frequency, gyrotrons for
electron cyclotron frequency), then is propagated to the tokamak by carefully scaled
transmission lines (wave guides), and then is coupled to the plasma by means of an
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Figure 1.7: Neutral beam injector schematic.

antenna, placed inside the vacuum chamber. Apart from the material problems
posed by these sensitive electro-technical systems, the difficulty consists in coupling
the wave to the plasma, involving complex physical processes and requiring proper
control of the plasma edge.

1.3 Tokamak Parameters of Interest

The plasma toroidal β, defined as the ratio of kinetic pressure to magnetic pressure,

β =
〈p〉

B2
φ,0/2µ0

, (1.7)

represents a measure of confinement efficiency, where 〈p〉 is the volume averaged
plasma pressure, Bφ,0 is the vacuum toroidal field strength at the magnetic axis,
and µ0 is the vacuum permeability. Normalizing the plasma β to the total plasma
current, Ip, we obtain a parameter that is often used as a heuristic for plasma
stability,

βN = β[%]
a[m]Bφ,0[T]

Ip[MA]
. (1.8)

The maximum βN that can be obtained before instigating a complete collapse of the
plasma is given by the TROYON limit, which is generally around βN ≤ 3.5 for most
conventional tokamaks [4]. The DIII-D tokamak, which is the tokamak of primary
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Figure 1.8: The poloidal flux definition.

focus throughout this work, has been able to exceed the TROYON limit (βN ∼ 4)
by using highly triangular shaped plasma.

A quantity closely related to the current profile is the safety factor profile, q.
The safety factor

q =
∂Φ

∂Ψ

is a measure of the pitch of the helical magnetic field lines, where Φ is the toroidal
field component and Ψ is the poloidal field component. A tokamak discharge oper-
ates at constant toroidal field, thus the q profile is considered in most cases to be
purely a function of the poloidal field. Since the poloidal field is dominated by the
toroidal current density distribution (the current profile), the q profile is connected
in a one-to-one relationship to the current profile. It is in fact common to refer to
q profile and current profile interchangeably.

To model the q profile evolution it will be important to define the poloidal
magnetic flux. As is illustrated in Figure 1.8, the poloidal magnetic flux, Ψ, at a
point P in the cross section of the plasma (i.e., poloidal cross section) is the total
flux through the surface S bounded by the toroidal ring passing through P , i.e.,
Ψ =

∫
S

1
2π
BpdS. As mentioned above the q profile can be expressed as a function of

the poloidal magnetic field or equivalently of the poloidal flux, i.e., q = q(Ψ).
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1.4 Tokamak Confinement Modes and Operating Sce-

narios

Experiments conducted on the ASDEX tokamak in the early eighties led to the dis-
covery of the H-mode (for “High Confinement”), which provided for a near doubling
of the confinement time over what was then the more standard operating mode now
called L-mode (for “Low Confinement”). The H-mode is obtained by injecting a suf-
ficient amount of power into the plasma until the appearance of an edge transport
barrier (ETB), which is characterized by a steep pressure gradient towards the edge
of the plasma. In contrast, the L-mode plasma shows a pressure profile which decays
at a smooth rate towards the plasma edge as shown in Figure 1.9(a).

In a standard H-mode discharge most of the current is driven by inductive means,
which translates to a monotonic q profile, with q near 1 at the plasma center, see Fig-
ure 1.9(b). Today, the H-mode, is solidly established, and research is well underway
on alternative scenarios called advanced tokamak scenarios. The tokamak operating
scenario is for the most part defined by the pressure and q profiles. We can obtain
an advanced scenario by introducing a significant fraction of non-inductive current
off-axis. Slowly increasing the non-inductive, off-axis current, the first operating
scenario observed is the hybrid scenario, which is characterized by a flat zero mag-
netic sheared q profile near the plasma center. For a toroidal magnetic confinement
device, the magnetic shear is given by

s =
ρ

q

dq

dρ
. (1.9)

High values of magnetic shear provide stability, since the radial extension of q values
where MHD modes can become unstable is reduced. Negative shear also provides
stability because convective cells, generated by curvature-driven instabilities, are
sheared apart as the field lines twist around the torus [5]. Increasing the non-
inductive current fraction further results in a negative sheared q profile, which char-
acterizes the advanced scenario. Strongly negative sheared q profiles are correlated
with the appearance of internal transport barriers (ITB), a strong pressure gradient
in the core, providing a region of significantly reduced transport in the plasma center

W.P. Wehner 16 Lehigh U.



1.5. Current Profile Control

(a) Confinement modes characterized
by pressure profile.

(b) Operating scenarios character-
ized by q profile.

Figure 1.9: Tokamak confinement modes and operating scenarios.

(see Figure 1.9).
The steep gradient in the plasma pressure profile associated with advanced sce-

narios also corresponds to a large amount of off-axis bootstrap current reducing
the needs for auxiliary current drive sources. In principle, if all the current can
be driven non-inductively, the ohmic current drive could be eliminated therefore
enabling continuous or non-pulsed operation of the machine.

The advanced tokamak scenario is highly promising, but requires sophisticated
control solutions to actively shape the current profile distribution during the dis-
charge.

1.5 Current Profile Control

Control and optimization of the plasma current profile shape is key to improving
tokamak performance. This is largely due to the effects of the q profile on transport
and plasma heat confinement. For example, optimizing the q profile to obtain low
magnetic shear across a large volume of the plasma core, i.e. the hybrid scenario
described in Section 1.4, has achieved improved confinement and higher β limits
(improved stability against deleterious MHD) relative to the standard inductive H-
mode [6, 7]. This is partly due to the absence of large sawteeth which can trigger
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NTMs and partially due to a reduction in radial transport that is accompanied
by triggering internal transport barriers (ITB). Furthermore, the increased central
pressure associated with a sheared magnetic profile drives bootstrap current aiding
in the access of steady-state plasmas, i.e. plasmas composed of 100% non-inductive
current, which are most likely required for reactor-grade devices. An extensive body
of research on the connection between current profile shape and plasma performance
in terms of stability, transport, and steady-state potential exists in the literature,
see [8–11] for a review.

The standard method to obtain an advanced tokamak scenario characterized in-
volves a fast current ramp-up with early heating [12]. The ohmically driven current
is initially focused towards the plasma edge and the early heating slows the diffusion
of the current into the plasma center. The induced off-axis current can be replaced
by non-inductive current driven from auxiliary sources or bootstrap current, to pre-
vent the q profile from relaxing to a standard monotonic profile. A careful timing
of the current ramp and application of auxiliary sources is necessary to guide the
plasma through a stable operating space and avoid instigating MHD activity. Main-
taing good profile development on a reliable shot-to-shot basis requires sophisticated
current profile control algorithms.

1.6 Rotation Profile Control

In a tokamak, each individual particle has its own velocity. The net sum of veloc-
ities of a particle species, hydrogen ions for example, is the fluid velocity of that
species. The fluid velocity can be separated into components parallel and perpen-
dicular to the flux surfaces. Fluid velocity perpendicular to a flux surface is called
convection, and fluid velocity parallel to the flux surface is called rotation [13]. The
toroidal shape of a tokamak produces strong poloidal rotation damping [14], there-
fore the toroidal rotation is usually of much more importance to plasma stability
and performance.

It is generally accepted that plasma rotation can contribute to both stability
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and confinement in tokamak plasmas. The confinement in a tokamak is governed by
the radial transport of energy from the plasma center to the plasma edge. A large
part of this transport is driven by turbulence, which is substantially reduced by
rotational shear. The role of the so-called E×B rotation shear in enhancing energy
confinement by suppressing turbulence is now well established theoretically [15] and
experimentally [16].

Plasma toroidal rotation, or its shear, has also been recognized as a stabilizing
mechanism for deleterious magnetohydrodynamic (MHD) instabilities such as the
neoclassical tearing mode (NTM) [17–19] and the resistive wall mode (RWM) [20,
21]. If not suppressed, such MHD instabilities would otherwise limit the achievable
β. NTMs and RWMs undesirably reshape the confining magnetic field lines. Ide-
ally, a plasma will be confined in a set of perfectly nested magnetic-flux surfaces.
However, sources of free energy in the plasma or external deviations in the confin-
ing magnetic field, error fields, can break up and reconnect the flux surfaces with
deformed magnetic topology, a process known as a tearing mode. Error fields are
static, and as a result, the tearing modes they excite do not move. Tearing modes,
however, have to rotate with the plasma velocity. In rotating plasmas, the tendency
of error fields to drive tearing modes is suppressed. The RWM, a non-axisymmetric
phenomena in tokamaks, is a form of plasma kink instability. In a kink mode,
the entire plasma configuration deforms in a helically symmetric manner. RWMs
occur in plasmas with a high plasma energy density. When they lock, i.e. when
they do not move with respect to the vessel wall, RWMs can cause a disruption (a
catastrophic loss of plasma energy to the confining wall). Like tearing modes, the
magnetic topology of RWMs is suppressed in rotating plasmas. It has been shown
that the critical rotation speed for RWM stabilization is indeed a function of the
rotation profile shape, implying a radially distributed stabilizing mechanism [22].

Torques on the plasma, i.e. sources of toroidal angular momentum include neu-
tral beam injection (NBI) and the non-axisymmetric magnetic fields (NRMF) gen-
erated by a set of coils adjacent to the plasma.

NBI is the dominant source of momentum (and therefore rotation) in present-
day tokamaks [23, 24]. Mature numerical codes, such as TRANSP [25], are now
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routinely used to compute the NBI sources of momentum and energy. NBI also
enables a technique known as charge exchange spectroscopy [26], which is used to
measure the rotation across the plasma radius.

Ambient or purposely imposed non-axisymmetric magnetic fields (NRMF) (per-
turbations from the perfectly symmetric tokamak field configuration) create a drag
force on the plasma rotation, an effect known as neoclassical toroidal viscosity
(NTV) [27, 28]. Theoretically, this can be understood in terms of increased radial
transport resulting from nonuniformity of the magnetic field caused by the nonax-
isymmetric fields [29]. Recent experiments have observed that static NRMF fields
tend to drag the rotation to a negative offset [30, 31], allowing spin-up of rotation
in the counter-current direction. Plasma acceleration has also been achieved using
rapidly rotating resonant fields [32], creating a “forward drag”.

1.7 Experimental Fusion Devices Considered in this

Work

1.7.1 The DIII-D Tokamak

The DIII-D tokamak pioneered the distinctive D shape plasma, now the standard for
most tokamak operation around the world, shown in Figure 1.10(a). The D shape
was found to suppress a variety of instabilities and therefore vastly improve the
plasma confinement. The NBI system at DIII-D consists of four beam-lines, each
of which has two ion sources in parallel. Each ion source can inject a maximum
of around 2.0 MW of power into the plasma. Of the eight ion sources, four are
configured to inject in the co-current direction (in the same direction as the plasma
current) aligned with the magnetic axis, two beams are configured to drive co-
current with alignment 16.5◦ off-axis, and the last two beams are configured to inject
counter-current (opposite to the plasma current direction) with on-axis alignment.
The configuration of each beam type is shown in Figure 1.10(b). Additionally,
DIII-D is equipped with six gyrotrons which can be configured for electron heating
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(a) Direction of on-axis vs off-axis NBI de-
position. The DIII-D plasma shape has a
very D like shape, improving access to high
confinement operating regimes.

(b) DIII-D configuration of various neutral
beam injectors relative to the plasma current di-
rection.

Figure 1.10: DIII-D NBI configuration.

or current drive. The discharge length of the DIII-D tokamak is about 6 seconds,
which is about 5 times the resistive diffusion time. Combined with the long discharge
time and the assortment of auxiliary current drive sources, DIII-D makes for a good
test bed for current profile control algorithms.

1.7.2 The Spherical Torus and NSTX-U

A spherical torus (ST) [33–35] differs from a conventional tokamak in that it has a
much smaller aspect ratio (major radius/minor radius) of A = R0/a < 2 compared
to 3.5-5 for typical tokamaks. Whereas a conventional tokamak plasma is much
like a donut in shape, the ST plasma resembles a cored apple, see Figure 1.11(a).
As the aspect ratio shrinks, the qualitative structure of the field lines is altered
as illustrated in Figure 1.11(b). In a tokamak the toroidal field is much stronger
than the poloidal field, whereas the ST poloidal field is of comparable or greater
strength than the toroidal field in the plasma out-board region. At the in-board
region, however, a stronger toroidal field and relatively short toroidal circumference
compared to the poloidal circumference, results in a qualitatively different field line
structure. The net result is that the edge safety factor q can be raised to ≈ 10

in the ST plasma [34]. Comparatively, the tokamak requires an edge q around 3-5
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(a) The spherical torus is characterized by a larger
aspect ratio (A = R0/a) and larger elongation (κ =
b/a) than that of a conventional tokamak.

(b) Due to the large aspect ratio
and elongation, the ST field lines
spend more time on the in-board
side of the machine.

Figure 1.11: Tokamak vs spherical torus.

to permit interesting plasma β values. The higher safety factor provides improved
stability of large-scale MHD modes in the plasma.

The improved stability of the ST can be understood from the increased β limit
associated with lower aspect ratio and higher elongation. The critical β limit is
given by

βcrit ≈ 5〈BN〉
(

1 + κ2

2

)
1

Aq?

where 〈BN〉 is a constant and q? is the modified cylindrical safety factor [36]. Due to
the low aspect ratio, A, and large elongation, κ in the ST, the plasma β can exceed
that of a standard tokamak by an order of magnitude. The improved stability of the
ST is due to the fact that particles spend an increased portion of their orbit on the
in-board side of the device, see Figure 1.11(b), where they experience convex lines
of magnetic force as opposed to concave on the out-board side of the device. It is
theorized that field line curvature associated with convex magnetic force is beneficial
to plasma stability [34].

The ST approach is economically attractive because it discards components from
the inner side of the plasma: no in-board blanket or shield, no in-board poloidal coil,
and the field coils are inherently much smaller on account of the compact plasma
shape. However there is a downside to the compactness: little room is left for a
central solenoid, which means the ST will have to rely on little to no inductive
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current drive. This presents a significant challenge especially during the plasma
startup and current ramp-up phases of the discharge.

Methods for non-inductive startup have included lower hybrid (LH) current [37]
RF assistance [38], and helicity injection [39]. Initial progress towards the design
of non-inductive current ramp-up scenarios in the National Spherical Torus Exper-
iment Upgrade (NSTX-U) has been made through the use of TRANSP predictive
simulations [40]. The strategy involves, first, ramping the plasma current with high
harmonic fast waves (HHFW) to about 400 kA, and then further ramping to 900 kA
with neutral beam injection (NBI). However, the early ramping of neutral beams
and application of HHFW leads to an undesirably peaked current profile making
the plasma unstable to ballooning modes. It is expected that careful control and
optimization of the density and current profiles through the ramp-up phase will be
necessary to ensure robust, reliable current ramp-up. Recently completed upgrades
to NSTX-U including 3 additional large tangency radius NBI, see Figure 1.12, will
enable sufficient current drive for 100% non-inductive scenarios and control of the
current profile.

Figure 1.12: Recently upgraded NSTX-U includes three additional NBI at large tangency
radii.

1.8 Dissertation Outline

The dissertation is organized as follows:
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– Chapter 2: Data-Driven Modeling of Current Profile and βN Evolu-

tion

A control-oriented, linear model of the poloidal magnetic flux profile, which is
directly related to the current profile, and normalized beta, βN , evolution is
developed based on experimental data from the DIII-D tokamak. Dedicated
system-identification experiments have been carried out to generate data for
the development of this model. The data-driven model, which is both device-
specific and scenario-specific, describes the response of the poloidal flux profile
the inductive current drive as well as the auxiliary heating and current drive
systems during the flat-top phase of a H-mode discharge in DIII-D.

– Chapter 3: First-Principles Based Modeling of the Current Profile

and Rotation Profile Evolution

Simplified physics-based models of the current profile and rotation profile evo-
lution are presented that are suitable for control design. The models combine
first principles laws with correlations of various plasma parameters specific to
the particular scenario and machine to be controlled. These models are used
for the development of real-time optimal control strategies in later chapters as
well as simulation testing of the proposed control strategies.

– Chapter 4: Feedforward Control Design via Nonlinear Optimization

In this chapter, feedforward control solutions for reaching target q profiles
during the ramp-up phase of the tokamak discharge are developed. The control
problem is formulated as a nonlinear optimization problem, and designed so
as to produce a control strategy that the steers the tokamak plasma to the
desired target q profile while avoiding plasma stability limits.

– Chapters 5 and 6: Feedback Control Design for the Current Profile

Evolution

In these chapters, the feedforward control strategy of Chapter 4 is combined
with feedback control to mitigate deviations from the desired target current
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profile evolution. Various approaches to feedback control are considered, each
with increasing complexity until arriving at a model predictive control strat-
egy that combines current profile control with plasma stored energy control.
Constraints are imbedded into the control design actions so as to avoid vi-
olation of plasma stability limits. Numerous experiments demonstrating the
effectiveness of the combined feedforward + feedback control approach are
presented.

– Chapter 7: Feedback Control Design for the Rotation Profile Evolu-

tion

Two feedback control approaches suitable for regulating the combined rotation
profile and plasma stored energy evolution are considered. The first, a state
feedback control approach, presents a simple solution for profile control, and,
the second, a model predictive control approach allows the introduction of
various types of constraints to provide a control approach that can regulate
the profile while avoiding plasma stability limits or adapted to a variety of
control objectives.

– Chapter 8: TRANSP-Based Optimization for Non-inductive Ramp-

up

In this chapter, the TRANSP code is combined with an optimization routine to
aid the design of open-loop control strategies in tokamaks. The particular case
of non-inductive ramp-up in NSTX-U is considered as an example problem.

– Chapter 9: Conclusions and Future Work

This chapter summarizes the contributions of the dissertation and discusses
possible directions for further research.
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Chapter 2

Data-Driven Modeling of Current

Profile and βN Evolution

In this chapter a data-driven model for the evolution of the poloidal magnetic flux
profile, which is directly related to the safety factor profile (equivalently the cur-
rent profile), and the normalized plasma beta, βN , is constructed for the DIII-D
tokamak based on experimental data. Mathematical modeling of plasma transport
phenomena with sufficient complexity to capture the dominant dynamics is critical
for plasma control design. Transport theories (classical, neoclassical and anomalous)
even under restrictive assumptions, produce strongly nonlinear models based on par-
tial differential equations (PDEs). The complexity of these first-principles models
needs to be reduced for control design since it is very challenging, if not impossible,
to synthesize compact and reliable control strategies based on these complicated
mathematical models. During this control-oriented model reduction process there is
always a trade-off between the simplicity of the model and both its physics accuracy
and its range of validity, which will of course be reflected in the model-based con-
troller performance and capability. First-principles modeling provides the freedom
of arbitrarily handling this trade-off and deciding on the level of complexity and ac-
curacy of the model. If, however, model simplicity is preferred over model accuracy
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and range of validity, data-driven modeling techniques, including system identifi-
cation [41] and data assimilation [42], emerge as an alternative to first-principles
modeling and have the potential to obtain low-complexity, linear, dynamic models
useful for the design of local regulators that are effective around an equilibrium.

Data-driven modeling techniques have been successfully used in the past to model
plasma transport dynamics for active control design in tokamaks [43]. System iden-
tification using input/output data has been used to model the current profile dy-
namics in ASDEX Upgrade [44]. In the JET tokamak [45], a two-time-scale linear
model has been used to describe the dynamics of the magnetic and kinetic pro-
files around certain quasi-steady-state trajectories, where system matrices can be
identified from experimental data. In low confinement (L-mode) discharges of the
JT-60U tokamak [46], diffusive and non-diffusive coefficients of the momentum trans-
port equation of the toroidal rotation profile dynamics have been estimated from
transient data obtained by modulating the momentum source.

This chapter is organized as follows. In Section 2.1, a model structure suitable for
system identification is derived. In Section 2.2, the system identification procedure
used to obtain the identified model is described. Finally, in Section 2.3, a statement
of conclusions is made.

2.1 Model Structure

The poloidal magnetic flux at the plasma edge evolves according to ∂Ψedge/∂t =

−Vloop, where Vloop is the externally applied loop voltage. Since the poloidal mag-
netic flux will therefore not reach a stationary1 if the applied loop voltage is nonzero,
we instead consider the poloidal magnetic flux relative to its boundary value. Let
ψ be the poloidal magnetic flux per radian, i.e. ψ = Ψ/2π, and ψ̄ be the value of
ψ relative to the boundary value, i.e. ψ̄ = ψ(ρ̂, t) − ψ(1, t). With this change of
variables, the boundary condition at the edge becomes, ψ̄(1, t) = 0, allowing the
profile to reach a stationary value for constant inputs.

1A stationary profile is one that is fixed in time.
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The evolution of ψ̄ is given by the magnetic diffusion equation [47, 48], which,
with the assumption of a fixed cylindrical plasma shape, can be written as [49]

∂ψ̄

∂t
= c1η

1

ρ̂

∂

∂ρ̂

(
ρ̂
∂ψ̄

∂ρ̂

)
+ c2jNI +

1

2π
Vloop, (2.1)

with boundary conditions ∂ψ̄/∂ρ̂(0, t) = 0, ψ̄(1, t) = 0, where c1 and c2 are constants
associated with the plasma shape and the toroidal magnetic field configuration, and
jNI is the noninductive current density. The spatial coordinate, ρ, can be expressed
in terms of the toroidal magnetic flux, Φ, and the toroidal field strength at the
plasma center, Bφ,0, i.e. πBφ,0ρ

2 = Φ. Normalized ρ, denoted by ρ̂ ∈ [0, 1], is
defined as ρ/ρb, where ρb is the value of ρ at the last closed magnetic flux surface.

The evolution of the plasma electron temperature, Te, is given by

3

2
ne
∂Te
∂t

= c3
1

ρ̂

∂

∂ρ̂

(
ρ̂neχe

∂Te
∂ρ̂

)
+Qe, (2.2)

with boundary conditions ∂Te/∂ρ̂(0, t) = 0, Te(1, t) = Te,bdry, where ne is the plasma
electron density, χe is the electron heat diffusivity, and Qe is the total electron heat-
ing power density, and Te,bdry is the electron temperature at the plasma boundary,
which is assumed constant [50]. Since the plasma resistivity and the bootstrap cur-
rent, which contributes to the noninductive current density, are both functions of
the electron temperature, the dynamics of the poloidal magnetic flux are coupled to
the dynamics of the electron temperature.

2.1.1 Linearization and Reduction to State Space Form by

Galerkin Projection

Assuming the coupled system defined by (2.1) and (2.2) is linearized around a sta-
tionary equilibrium2, we can introduce some unknown linear differential operators,
Lα,β(ρ̂), where the first subscript denotes the equation linearized and the second
subscript represents the deviation variable. The differential operators depend only

2An equilibrium state, referred to as the reference state, is defined as a state where the internal
plasma parameters are stationary, i.e. no longer evolving in time.
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on the variable ρ̂ since the linearization is assumed to be obtained at a stationary
equilibrium point. The linearized system can then be written as

∂ ˆ̄ψ

∂t
(ρ̂, t) = Lψ̄,ψ̄(ρ̂) ˆ̄ψ(ρ̂, t) + Lψ̄,Te(ρ̂)Te(x, t) +Lψ̄,uu(t), (2.3)

∂T̂e
∂t

(ρ̂, t) = LTe,ψ̄(ρ̂)ψ̄(ρ̂, t) + LTe,Te(ρ̂)T̂e(ρ̂, t) +LTe,uu(t), (2.4)

where ˆ̄ψ and T̂e represent the values of ψ̄ and Te, respectively, relative to their
reference equilibrium values, i.e.

ˆ̄ψ(t) = ψ̄(t)− ψ̄ref,

T̂e(t) = Te(t)− Te,ref.
(2.5)

The input vector, u(t), represents the set of actuators relative to their reference
values associated with the equilibrium of interest,

u(t) =



PCO(t)− PCO,ref

POA(t)− POA,ref

PCT(t)− PCT,ref

PBAL(t)− PBAL,ref

PEC(t)− PEC,ref

Vloop(t)− Vloop,ref


(2.6)

where PCO is the co-current on-axis NBI power, POA is the co-current off-axis NBI
power, PCT is the counter-current on-axis NBI power, PBAL is the balanced NBI
power, PEC is the total ECCD power, and Vloop is the externally applied plasma
loop voltage. The eight NBI sources at DIII-D have been reduced to a set of four
actuators for simplicity by grouping the NBI with similar effects on the plasma. The
PCO group consists of NBI sources 30L and 330L, the POA group consists of NBI
sources 150L and 150R, the PCT group consists of the NBI source 210R, and the
PBAL (balanced) group consists of NBI sources 210L and 330R (see Figure 1.10(b)).
The balanced group combines one counter-current NBI source with one co-current
NBI source, with the purpose of creating an actuator that drives little current and
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only heats the plasma. The last NBI source, 30R, is used for diagnostics and not
considered as a control actuator.

The system defined by (2.3) and (2.4) represents the minimal distributed-parameter
model one can possibly derive for the time evolution of the magnetic and kinetic
profiles of the plasma. The profile ˆ̄ψ and electron temperature T̂e can be considered
as state variables.

Overview of Galerkin Projection

The continuously distributed spatial variables such as ψ̄(ρ̂, t) are discretized by
Galerkin projection, a process by which an infinite dimensional parameter is pro-
jected onto a set of trial basis functions. The Galerkin projection of a generic
dynamical variable, y(ρ̂, t), reads:

y(ρ̂, t) ≈
N∑
i=1

Gy,i(t)bi(ρ̂), (2.7)

where N is the number of coefficients, bi(ρ̂) are the basis functions, and Gy,i(t)

are called the Galerkin coefficients. A variety of basis functions could be chosen,
for example, cubic splines or piece-wise linear functions. Most important is that
the spatial derivatives of the basis functions match the spatial derivatives of the
continuous dimensional variable at the boundaries, and the order of the functions is
sufficient to calculate any relevant spatial derivatives [51].

The expansion coefficients, Gy,i(t), are lumped together in a vector array denoted
by the bold symbol y(t), i.e. y(t) = [Gy,1, Gy,2, . . . , Gy,N ]T . To determine the
Galerkin coefficients, we multiply both sides of the expansion equation (2.7) with
any basis function bj(ρ̂), j = 1, 2, ...N and integrate over the spatial coordinate to
obtain, ∫ 1

0

y(ρ̂, t)bj(ρ̂)dρ̂ =

∫ 1

0

[
N∑
i=1

Gy,i(t)bi(ρ̂)

]
bj(ρ̂)dρ̂, (2.8)

for j = 1, 2, ...N . If the basis functions are orthonormal, i.e.
∫ 1

0
bi(ρ̂)bj(ρ̂)dρ̂ = δij,

then the coefficients Gy,i can be computed explicitly. Otherwise the coefficients are
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obtained by solving the linear system
ŷ1

ŷ2

...
ŷN

 =


m11 m12 . . . m1n

m21 m22 . . . m2n

...
... . . . ...

mn1 mn2 . . . mnn




Gy,1

Gy,2

...
Gy,N

 . (2.9)

where mij is the inner product of bi and bj, i.e.,
∫ 1

0
bi(ρ̂)bj(ρ̂)dρ̂ and ŷj is the inner

product between y(ρ̂, t) and bj(ρ̂), i.e., ŷj =
∫ 1

0
y(ρ̂, t)bj(ρ̂)dρ̂. It is simply assumed

that by increasing the number of basis functions, the discrete approximation con-
verges towards the infinite dimensional variable.

Model Discretization by Galerkin Projection

To identify the differential operators of the distributed parameter model given
by (2.3) and (2.4), we can reduce the model to a finite-dimensional state space
representation by Galerkin projection. The resulting system can then be identified
by conventional system identification techniques [41].

Multiplying the equations (2.3) and (2.4) by the an appropriate basis function
set, labeled aj(ρ̂) for j = 1, 2, . . . , N , and integrating over the domain yields an
ordinary differential equation system of the form

Mψ̄
˙̄ψ(t) = Aψ̄ψ̄ψ̄(t) + Aψ̄TeT e(t) + Bψ̄uu(t), (2.10)

MTeṪ e(t) = AT ψ̄ψ̄(t) + ATeTeT e(t) + BTeuu(t), (2.11)

where ψ̄ and T e represent the Galerkin approximations of ˆ̄ψ and T̂e, respectively.
The matrices Mα and Aα,β have elements of the form

(Mα)i,j =

∫ 1

0

ai(ρ̂)aj(ρ̂)dρ̂, (Aαβ)i,j =

∫ 1

0

ai(ρ̂)Lα,β(ρ̂)aj(ρ̂)dρ̂, (2.12)

and Bαu is a matrix whose ith row is given by

(Bαu)i =

∫ 1

0

ai(x)Lα,u(x)dρ̂. (2.13)
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Finally, inverting the matrices Mα results in the coupled linear system given by

˙̄ψ(t) = A11ψ̄(t) + A12T e(t) + B1u(t), (2.14a)

Ṫ e(t) = A21ψ̄(t) + A22T e(t) + B2u(t). (2.14b)

Noting that the plasma temperature evolves much faster than the poloidal mag-
netic flux diffusion time, we can approximate (2.14b) with its steady-state counter-
part, 0 = A21ψ̄(t) + A22T e(t) + B2u(t). This is a fair approximation given we are
primarily interested in control of the magnetic profile. In this case, we can obtain a
state space model given by

˙̄ψ = Asψ̄ + Bsu, (2.15a)

T e = Csψ̄ + Dsu, (2.15b)

where ψ̄ arises as the system state and T e arises as a system output. The matrices
As, Bs, Cs, and Ds are linked to original model (2.14a)-(2.14b) matrices by

As = A11 −A12A
−1
22 A21,

Bs = B1 −A12A
−1
22 B2,

Cs = −A−1
22 A21,

Ds = −A−1
22 B2.

(2.16)

The plasma βN is proportional to the volume averaged plasma energy divided
by the total plasma current, i.e. βN ∝ E/Ip, where the volume averaged plasma
energy is defined as

E =

∫
V

3

2
neTe +

3

2
niTidV, (2.17)

where V is the plasma volume, and the total plasma current is a function of the
externally applied loop voltage, noninductive current drive sources, and bootstrap
current. Therefore, assuming a constant plasma density and equilibrium between
the electron and ion species (Te = Ti), and noting the form of the linear temperature
model given by (2.15b), a linearized model for βN can be written as

β̂N = Cs,βN ψ̄ + Ds,βNu, (2.18)
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where β̂N represents βN relative to its reference value associated with the equilibrium
state (β̂N = βN − βN,ref), and the row matrices Cs,βN , Ds,βN are unknown and to be
determined by system identification.

2.2 System Identification Procedure

2.2.1 Collecting Experiment Data For System Identification

To collect data for system identification, a number of discharges of an advanced
tokamak (AT) scenario (i.e., at high plasma pressure relative to the magnetic field
pressure) were run with identical ramp-up phases during the experimental campaign
of 2009. The reference plasma state (equilibrium state) was that of a plasma current
Ip = 0.9 MA AT scenario which had been optimized to combine non-inductive cur-
rent fractions near unity with 3.5 < βN < 3.9, bootstrap current fractions larger than
65%, and H98(y, 2) = 1.5 [52]. During flattop, various actuators were modulated
around their reference values. Actuator modulations were applied from t = 2.6 s,
i.e., after 1 s of 0.9 MA current flat top. Figures 2.1(a)-2.1(b) display some typical
modulations of the system inputs and the resulting outputs.

The actuators include the neutral beam injectors, the electron cyclotron current
drive, and the plasma surface loop voltage. The NBI were grouped by: co-injection
beam power, counter-injection beam power, and balanced-injection beam power,
where the co-injection means in the direction of plasma current, counter-injection
is the opposing direction, and balanced-injection refers to equal co- and counter-
injection power. All actuators were modulated individually in open loop according
to predefined waveforms while the other actuators were kept constant and equal to
those values used to produce the reference discharge. Starting in 2012, two of the
co-injection neutral beam injectors were re-positioned to direct their beams at 16.5◦

off-axis, providing more current drive towards the center of the profile. Data from
the 2012 campaign is used to include the effects of off-axis NBI.
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Figure 2.1: Sample data for model identification. (a) Time evolution of Ip, PCO, PCNT ,

PBAL, and PEC in DIII-D shots #140093 (blue), 140094 (red), and 140109
(green). (b) Time evolution of the magnetic profile, ψ̂ for each shot.

2.2.2 Model Order Reduction

As described in Section 2.1, the model to be identified for the evolution of ψ̄ and
βN takes the form

˙̄ψ = Asψ̄ + Bsu, (2.19a)

β̂N = Cs,βN ψ̄ + Ds,βNu. (2.19b)

First, the measured ψ̄ profile data was projected onto 9 trial basis functions (cubic
splines as shown in Figure 2.2) by Galerkin reduction, reducing the distributed data
set to an approximate discrete data set of 9 points across the normalized plasma
radius ρ̂ = 0.1, 0.2, ..., 0.9. However, if we attempt to identify a model of full order,
i.e. an As matrix of dimension 9 × 9, the number of parameters becomes rather
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Figure 2.2: Cubic splines ai(ρ̂), used for the Galerkin reduction of ψ̂(ρ̂, t).

large. When using noisy experimental data, the possible solutions become multiple
and unstable to small changes in the data, and the identification algorithm cannot
determine a consistent model. In order to find a model that applies to all 9 discrete
points, the data set has to be projected onto an appropriate subspace of reduced
order. Then we identify only the dynamics within this subspace and neglect the
remaining dynamics.

From (2.19a), the steady state gain of ψ̄ is given by the static gain matrix

Ksg = −A−1
s Bs, (2.20)

which represents the approximate steady state response of the ψ̄ profile in response
to a step input for each of the actuators. The static gain matrix can be used to
determine an appropriate subspace for system identification, since it contains the
most essential aspects of the model for control purposes, namely the steady state
response. Singular value decomposition of the static gain matrix is used to determine
its principal components, the most significant of which are used to form the subspace
basis

Ksg = W ·Σ ·VT , (2.21)

= [W1 W2 . . . Wnψ̂
] ·Σ · [V1 V2 . . . Vnu ]T . (2.22)

The output vectors corresponding to the largest singular values are used as the
subspace basis. For example, if we choose to identify a model with order 3, the

W.P. Wehner 35 Lehigh U.



2.2. System Identification Procedure

0.5

1

1.5

ψ

ψ(0.1)

ψ(0.3)

ψ(0.4)

ψ(0.5)

ψ(0.6)

ψ(0.7)

 

 

Experiment
Model

1 2 3 4 5 6
0

2

4

β N

time (sec)

(a) Shot 140076 (training shot)

0.4

0.6

0.8

1

1.2

1.4

1.6

ψ

ψ(0.1)

ψ(0.3)

ψ(0.4)

ψ(0.5)

ψ(0.6)

ψ(0.7)

 

 

Experiment
Model

1 2 3 4 5 6
0

2

4

β N

time (sec)

(b) Shot 140094 (test shot)

Figure 2.3: Comparison between measured (blue line) and estimated (red dash) of the ψ̂
profile (Wb) and βN for training shot 140076 (data used in model identifica-
tion) and test shot 140094 (data not used in model identification).

first three singular vectors, W1, W2, and W3, would form the subspace basis. Thus,
the data used for identification would capture the dominant characteristics of the
system in steady state. A reduced order model of the form

Ẋ(t) = Ar
sX(t) + Br

su(t) (2.23)

is then sought by system identification, where X(t) represents the reduced order
state, determined by

X(t) =
[
W1 W2 W3

]T
ψ(t) , WT

s ψ̂(t). (2.24)

Once Ar
s and Br

s have been identified, the system output equation which maps the
state, X, to the variable ψ̂ is assumed to be ψ̂(t) = WsX.

The model is then identified using a step-wise approach, meaning parts of the
model are identified in one step, then held constant to identify other parts of the
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Figure 2.4: Model static gain matrix. The powers are the co-current NBI PCO (MW), off-
axis co-current NBI POA (MW), counter-current NBI PCNT (MW), balanced
NBI PBAL (MW), electron cyclotron PEC (MW), and surface loop voltage
Vsurf (0.1 V).

loop

model, iterating back and forth until a suitable model is determined. The identi-
fication experiments, alternatively referred to as shots, used to generate the model
were organized into various groups; one group for shots with little modulation, and
one group for each set of shots with modulation in just one of the actuators. We
start with the low modulation group to identify the free dynamics of the system,
i.e. the matrix Ar

s. Once the Ar
s matrix is determined, we identify the Br

s matrix
one column at a time using shots with only one modulated input corresponding to
that Br

s column. Then the static gain matrix is updated and the subspace basis is
updated for subsequent iterations.

The identification process is carried out using the prediction error method [41]
which calculates the matrices Ar

s and Br
s by minimizing the norm VN(Ar

s,B
r
s), which

for a least squares fit is defined as

VN(Ar
s,B

r
s) =

1

N

N∑
k=1

ε2(k) (2.25)

where ε(k), called the prediction error, is the difference between the measured out-
put and the predicted output at discrete time k (see Appendix A.5). We begin the
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identification considering only the data without off-axis NBI. To begin the identifi-
cation of Ar

s, a model and subspace of order 1 was chosen to identify the smallest
eigenvalue, i.e. the longest characteristic time of the system. This eigenvalue was
then held constant and the model order was increased to 2 to identify the next eigen-
value, this process was repeated up to order 4 using the shot group with low input
modulation. Then we began with identification of the Br

s matrix using the appropri-
ate shot group for each column, while holding the eigenvalues of Ar

s constant. The
identified model was found to have characteristic times of 5.88, 2.38, 1.05, and 0.19
seconds. This means that model orders above 4 have very fast transients with time
constants less than 0.19 s, therefore they will not contribute much to the control
design and a model of order 4 should be sufficient.

The off-axis NBI deliver a different current drive distribution from that of the on-
axis co-injection beams used to identify the model, therefore they must be considered
as a new actuator group. To account for this effect an additional column was added
to the Br

s matrix using various experiments from the early 2012 campaign with
similar plasma scenarios to that of the open-loop system identification experiments
carried out in 2009. Figure 2.3 displays an example of the typical fit between the
experimental data and the identified model for one of the training shots 140076, i.e.
a shot data used to inform the model identification algorithm, and test shot 140094,
which was not used in the model identification. The fit between the original data
Y (t) and the reconstructed data Ym(t) is characterized by the parameter f ,

f = 1−

[∑N
k=1 [Y (t)− Ym(t)]2∑N
k=1 [Y (t)− 〈Y 〉]

]
, (2.26)

where f = 1 (100%) is a perfect fit and f = 0 corresponds to a reconstructed data
set equal to the mean of the measured data, 〈Y 〉. Fit parameters were between
60-80% for almost all shots and the worst matches were around 50%. While the
model was identified using only data from the current flattop phase, i.e. after 2.5 s,
it is noted that good fitting is achieved during much of the current ramp-up phase
as well, i.e. t = 1− 2.5 s.

For control purposes it is preferable to have a model that spans the whole profile
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without an output equation, i.e. one in which the states represent the 9 discrete
points of ψ and the outputs are identically the states. The full order model can be
achieved by using the subspace basis to expand Ar

s and Br
s while imposing arbitrar-

ily, large stable eigenvalues to the new eigenstates whose dynamics have not been
identified. We refer to the new state equation matrices as A and B:

A = WsA
r
sW

T
s , B = WsB

r
s. (2.27)

At this point we have obtained a state equation for the ψ̂ profile of order 9 with
6 inputs, but have yet to consider βN . The matrices Cs,βN and Ds,βN of (2.19b)
are estimated in a similar manner as Ar

s and Br
s, first using the shots little input

modulation to identify Cs,βN and then identifying Ds,βN column by column using
shots with the corresponding input modulated. Figures 2.3(a) and 2.3(b) show a
model fit comparison for βN .

The final static gain matrix of the identified model can be represented as in
Figure 2.4. In the figure, the steady-state response of the poloidal flux to unitary
changes in the various inputs is plotted. The surface loop voltage has the greatest
effect in manipulating the profile, the co-injection and counter-injection beams are
the second most powerful, affecting the profile in different directions. The contradic-
tory affects of co-injection and counter-injection beams agree with prior experiments
considering neutral beam injection at different trajectories [53]. Both the balanced-
injection beams and the gyrotrons lead to a small increase in the magnetic profile.
The off-axis co-injection beam has a similar effect to the on-axis co-injection beam
with the exception of reduced gain on the interior of the profile.

2.3 Conclusions

A simplified linear model for the evolution of the poloidal magnetic flux profile as
well as βN in the DIII-D tokamak was obtained based on a semi-interactive system
identification method. Reasonable model prediction of the magnetic profile evolution
in response to modulations in the on-axis and off-axis neutral beam injector power,
the total gyrotron power, and the surface loop voltage was achieved. The linear
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model obtained in this chapter can be used to design controllers for the simultaneous
regulation of current profile and βN evolution, which has been shown in closed-loop
TRANSP simulations [54] and a single experimental test at DIII-D [55]. The model
identification approach is straightforward and could be applied to other tokamaks
or extended to other tokamak parameters important for plasma stability, such as
the rotation profile evolution. While the modeling approach presented is limited
in applicability to a certain plasma reference associated with the chosen plasma
equilibrium state, in theory, the approach could be extended in applicability by
identifying additional models around different operating points. This would enable
current profile control in different scenarios (around different reference states) or
control of the current profile during the ramp-up and ramp-down phases.
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Chapter 3

First-Principles Based Modeling of

the Current Profile and Rotation

Profile Evolution

3.1 Introduction

In this chapter we describe control-oriented models based on first-principles laws to
describe the evolution of the poloidal magnetic flux and the toroidal angular rotation.
Naturally, the models must neglect some components of the underlying physics to be
suitable for real-time control applications. First, we assume axisymmetric plasmas,
i.e. no change along the toroidal angle, furthermore all quantities are averaged
over flux surfaces to limit the complexity to only one spatial coordinate. Such
models are often referred to as 1D within the physics community since the spatial
dependence is limited to only the radial coordinate of the plasma. Still, with only
these simplifications, the models remain overly complex for control design. They
amount to partial differential equations (PDE) which are coupled nonlinearly to
various plasma quantities. To further simplify the models, empirical scalings are
used to approximate some of the plasma parameters.

As one might expect, since the tokamak’s poloidal field is primarily generated
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by the plasma current, the current profile can be expressed in terms of the poloidal
magnetic flux profile. To model the poloidal magnetic flux evolution, we begin
with the simplified 1D model referred to as the magnetic flux diffusion equation
(MDE) [47, 48]. The MDE is a complicated partial differential equation which is
coupled to the temperature of the plasma, as the resistivity depends intimately on
the plasma temperature and in turn plays a significant role in the diffusion rate of
plasma current. To simplify the model to a control-oriented form, the MDE can
be combined with physics-based correlations for the electron temperature, plasma
resistivity, and the efficiency of each of the current drive sources including neutral
beam injection (NBI), electron cyclotron current drive (ECCD), and bootstrap cur-
rent drive. In this chapter we describe each of the terms of the model and the
model’s overall qualitative behavior. The interested reader should examine [56–58]
for the details associated with tailoring each of the parameters to specific operating
scenarios in DIII-D tokamak.

In a similar fashion, modeling of the toroidal angular rotation evolution be-
gins with the complete momentum balance equation assuming an axisymmetric
plasma and taking flux surface averages of each of the spatially varying quantities
involved [59, 60]. All but the most dominant contributions to the momentum bal-
ance equation are neglected and empirical scalings laws are used to approximate the
plasma temperature, density, and momentum drive from various auxiliary sources.

It is important to note that the models considered in this work are only aimed at
being sufficiently accurate for feedback control design purposes. Consequently, the
models need only capture the dominant effects of the system dynamics because one
of the main characteristics of feedback is the ability to deal with model uncertainties.
At the same time the models must be sufficiently simple to be applicable for real-time
model-based control solutions. It is, however, not entirely possible to assess whether
the models contain sufficient accuracy for a successful control implementation until
experimental tests of the controller are performed.

This chapter is organized as follows. The first-principles based control-oriented
models for the current profile evolution and rotation profile evolution are described
in Section 3.2 and Section 3.3, respectively; finally, in Section 3.4, a statement of
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conclusions is made.

3.2 Modeling the Current Profile Dynamics

Let ρ represent the radial coordinate of the plasma cross section. Since all the
model parameters will be taken as flux surface averaged quantities, any flux surface
constant quantity could be used to define ρ. We use the mean effective minor radius
of the magnetic surface as ρ, i.e. πBφ,0ρ

2 = Φ, where Φ is the toroidal magnetic
flux and Bφ,0 is the reference magnetic field at the magnetic axis of the tokamak.
Normalizing ρ by the mean effective minor radius of the last closed magnetic surface,
ρb, we obtain a normalized spatial coordinate ρ̂ = ρ/ρb ∈ [0, 1].

The toroidal current density profile j(ρ̂, t) is essentially prescribed by the poloidal
magnetic flux profile, Ψ(ρ̂, t). To describe the evolution of poloidal magnetic flux,
we start with the well known magnetic diffusion equation (MDE) [47, 48], which
can be written as

∂ψ

∂t
=

η(Te)

µ0ρ2
bF̂

2

1

ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

∂ψ

∂ρ̂

)
+R0Ĥη(Te)

〈j̄NI · B̄〉
Bφ,0

. (3.1)

Each of the terms involved in the MDE are briefly summarized for reference in
Table 3.1, where ψ is the poloidal stream function (related to poloidal magnetic flux
by Ψ = 1

2π
ψ), η is the plasma resistivity which depends on the electron temperature,

Te, µ0 is the vacuum permeability, j̄NI represents the total non-inductively driven
current density, B̄ is the toroidal magnetic field, and 〈·〉 denotes flux-surface average.
The parameters F̂ (ρ̂), Ĝ(ρ̂), and Ĥ(ρ̂) are associated with the magnetic geometry
of plasma [57], and are given by

F̂ (ρ̂) =
R0Bφ,0

RBφ(R,Z)
, Ĝ(ρ̂) = 〈R2

0|∆ρ|2/R2〉, Ĥ(ρ̂) =
F̂

〈R2
0/R

2〉
. (3.2)

From (3.2), we can note the model assumes the magnetic geometry is fixed in time.
For completion, the MDE is combined with the boundary conditions given by sym-
metry at the plasma center and a forcing function at the plasma edge,

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0,
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= −µ0

2π

R0

Ĝ|ρ̂=1Ĥ|ρ̂=1

Ip(t), (3.3)
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where Ip(t) is the total plasma current.
A simplified model for the electron temperature can be obtained by first consid-

ering the plasma internal energy, i.e. the volume averaged energy density over the
plasma volume, which is given by

E =

∫
V

(
3

2
ne(ρ̂, t)Te(ρ̂, t) +

3

2
ni(ρ̂, t)Ti(ρ̂, t)

)
dV, (3.4)

where ne(ρ̂, t) and Te(ρ̂, t) are the electron density and temperature profiles, and
ni(ρ̂, t) and Ti(ρ̂, t) are the ion density and temperature profiles. Under the assump-
tion of fixed magnetic geometry, the plasma stored energy evolution can be well
approximated by the 0D (zero-dimensional) energy balance equation,

dE

dt
= − E

τE
+ Ptot, (3.5)

where τE is a the global energy confinement time, and the total absorbed power,
Ptot is equal to the auxiliary power injected into the plasma by NBI and ECRH,
Paux =

∑nNBI
ξ=1 PNBI,ξ + PEC, plus the power from the ohmic coil, Pohm, minus the

radiative power, Prad,
Ptot = Paux + Pohm − Prad. (3.6)

Based on experimental data from numerous machines, scaling approximations for
the energy confinement time have been developed for specific tokamak operating
scenarios [61, 62]. In general the confinement time scales with total plasma current,
total absorbed power, line averaged electron density, and other parameters which are
always assumed fixed in this work. For example, in a typical DIII-D H-mode plasma,
the confinement time can be approximated by the IPB98(y,2) scaling law [61],

τE = 0.0562HH98(y,2)B
0.15
φ,0 R

1.39κ0.78a0.58M0.19I0.93
p n̄0.41

e P−0.69
tot , (3.7)

where HH98(y,2) is the energy confinement enhancement factor, a is the plasma minor
radius, M is the average ion mass, and κ is the plasma elongation. In this work,
Ip, Ptot, and n̄e are treated as control parameters, and the remaining terms involved
in (3.7) associated with the plasma geometry and magnetic equilibrium are assumed
to be fixed.
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Because the thermal diffusion time is much faster than the current diffusion time,
the temperature is always in quasi-equilibrium on the time-scale of current diffusion.
Therefore, the temporal dynamics of the electron temperature can be neglected in
the development of a model relevant to current profile control. At steady state,
the energy dynamics (3.5) and the expression (3.4) provide a relation for volume
averaged temperature,

〈Te〉 =
PtotτE
3〈ne〉V

(3.8)

where we have assumed, as an approximation, equilibrium in the electron and ion
species, i.e. ne = ni and Te = Ti. Noting from (3.7) that a typical confinement
time scaling law takes the form τE ∝ Iγsp n̄

εs
e P

ζs
tot, the volume average temperature at

steady state can be written as

〈Te〉 ∝ Iγsp 〈n̄e〉εs−1P 1+ζs
tot . (3.9)

The form of this expression suggests a potential static map electron temperature
model

Te(ρ̂, t) = kTe(ρ̂)T prof
e (ρ̂)

Ip(t)
√
Ptot(t)

n̄e(t)
, (3.10)

where the scalings on plasma current, line averaged density, and total absorbed
power (γs = 1, εs = −0.5 and ζs = 0) are chosen according to the Goldston scaling
law [62]. The reference profile, T prof

e (ρ̂) describes the experimentally measured shape
of the temperature and the profile kTe(ρ̂) is introduced to normalize the model.

By a simplified Spitzer model, the plasma resistivity η(Te) scales with the electron
temperature according to

η(ρ̂, t) =
kspZeff

T
3/2
e (ρ̂, t)

, (3.11)

where ksp is a constant normalizing profile and Zeff is the approximate effective
charge of the ions, assumed to be constant. The electron density is modeled by

ne(ρ̂, t) = nprofe (ρ̂)n̄e(t), (3.12)

where nprofe (ρ̂) is a reference electron density profile, and n̄e is the line-averaged
electron density. This model implies that the control action only weakly affects the
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Parameter Units Description
ρ =

√
Φ/πBφ,0 m Radius term: Square root of normalized

toroidal flux
ρ̂ – Normalized radius ρ̂ = ρ/ρb
R0 m Major radius of magnetic axis
Φ Wb Toroidal flux
Ψ Wb Poloidal flux
ψ Wb/rad Stream function (ψ = Ψ/2π)

η(ρ̂, t) Ω m Plasma resistivity
j̄NI(ρ̂, t) A m−2 Non-inductive current drive
Bφ,0 T Cacuum toroidal field at R0

ne(ρ̂, t), ni(ρ̂, t) #/m3 Electron and ion density
Te(ρ̂, t), Ti(ρ̂, t) keV Electron and ion temperature
F̂ (ρ̂), Ĝ(ρ̂), Ĥ(ρ̂) – Geometric factors

Zeff – Effective average charge of ions in the plasma

Table 3.1: Parameters associated with the magnetic diffusion equation (MDE).

radial distribution of the electron density, which is a valid assumption assuming the
plasma remains in a single confinement mode.

Contributions to the non-inductive current drive include the bootstrap current
and that produced by auxiliary sources such as ECCD and NBI,

〈j̄NI · B̄〉
Bφ,0

=
〈j̄EC · B̄〉
Bφ,0

+

nNBI∑
ξ=1

〈j̄NBI,ξ · B̄〉
Bφ,0

+
〈j̄BS · B̄〉
Bφ,0

(3.13)

where j̄EC is the total non-inductive current generated by the gyrotrons, j̄NBI,ξ is
the non-inductive current generated by the ξth NBI system (ξ = 1, 2, . . . , nNBI),
and j̄BS is that produced by the bootstrap effect. While there are multiple ECCD
sources (gyrotrons) at DIII-D, we choose to model the ECCD contribution as a single
block since all the control formulations considered in later chapters will assume the
gyrotrons function as a group. For the gyrotrons and NBI systems, the non-inductive
current drive contribution is modeled as a function of the electron temperature,
electron density, and system power

〈j̄EC · B̄〉
Bφ,0

= jprofEC
Te
n̄e
PEC, (3.14)
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〈j̄NBI,ξ · B̄〉
Bφ,0

= jprofNBI,ξ

√
Te
n̄e

PNBI,ξ, (3.15)

where jprofEC (ρ̂) and jprofNBI,ξ(ρ̂, t) are reference profiles describing the current drive de-
position shapes of the ECCD and individual NBI systems. The bootstrap current
contribution is modeled using the well known Sauter Law [63, 64]. Assuming equi-
librium in the electron and ion species, i.e. ne = ni and Te = Ti, we have

< j̄bs · B̄ >

Bφ,0

=
R0

F̂ (ρ̂)

1

∂ψ/∂ρ̂

[
2L31Te

∂ne
∂ρ̂

+ (2L31 + L32 + αL34)ne
∂Te
∂ρ̂

]
, (3.16)

where the coefficients L31, L32, L34, and α depend on the equilibrium and collision-
ality (degree to which plasma behavior is dominated by collisions) of the plasma.
The bootstrap current is primarily driven by the radial pressure gradient, which is
evident from the contribution of the terms Te ∂ne

∂ρ̂
and ne ∂Te

∂ρ̂
in (3.16). Because the

plasma density and temperature profiles of L-mode scenarios do not exhibit a steep
gradients at the plasma edge (see Section 1.4), the bootstrap current fraction will
be relatively small as compared to H-mode scenarios.

3.2.1 Output Quantities Important for Control

From knowledge of the flux profile, ψ(ρ̂, t), and the plasma stored energy various
quantities related to the magnetic configuration of the plasma can be calculated.
Most important of which are the safety factor profile q and the normalized plasma
β (βN) as these quantities are directly associated with the desired plasma oper-
ating scenario and are often used as a heuristic for avoiding unstable plasmas.
The safety factor, a quantity related to the toroidal current density, is given by
q(ρ, t) = −dΦ/dΨ. This expression can be written as

q(ρ̂, t) =
dΦ

dΨ
= − dΦ

2πdψ
= −Bφ,0ρ

2
bρ̂

∂ψ/∂ρ̂
, (3.17)

where in the last expression we have used the assumption of a large aspect ratio
(R0/a > 3.5) typical of conventional tokamaks such as DIII-D. The normalized
plasma beta, βN , is related to the volume-averaged plasma stored energy, E, and is
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defined as
βN = βt[%]

aBφ,0

Ip[MA]
, βt =

p

B2
φ,0/2µ0

=
(2/3)(E/Vp)

B2
φ,0/2µ0

, (3.18)

where βt is the toroidal plasma beta, a is the plasma minor radius, Ip is the total
plasma current, p is the volume-averaged plasma kinetic pressure, µ0 is the vacuum
magnetic permeability, and Vp is the total plasma volume.

Below we list other output quantities of interest, some of which have already
been mentioned in previous sections, but are listed here again for convenience.

• Toroidal current density (A/m2) [65]:

jtor(ρ̂, t) = − 1

µ0ρ2
bR0Ĥ

∂

∂ρ̂

(
ρ̂ĜĤ

∂ψ

∂ρ̂

)
(3.19)

• Rotational transform, i.e. inverse safety factor:

ι(ρ̂, t) =
1

q
= − 1

Bφ,0ρ2
bρ̂

∂ψ

∂ρ̂
(3.20)

• Magnetic shear:
s(ρ̂, t) =

ρ̂

q

dq

dρ̂
(3.21)

• Toroidal plasma loop voltage (V):

Up(ρ̂, t) =
∂ψ

∂t
(3.22)

• Spatial derivative of plasma loop voltage (V/m):

gss(ρ̂, t) =
∂Up

∂ρ̂
(3.23)

• Ohmic power density (W/m3) and total ohmic power (W):

Qohm(ρ̂, t) = jtor(ρ̂, t)
2η(ρ̂, t), Pohm =

∫
V

QohmdV (3.24)
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• Power loss density (W/m3) due to Bremsstrahlung radiation [1] and total ra-
diative power (W) where kbrem = 5.5×10−37 Wm3/

√
keV is the Bremsstrahlung

radiation coefficient:

Qrad = kbremZeffne(ρ̂, t)
2
√
Te(ρ̂, t), Prad =

∫
V

QraddV (3.25)

A number of related quantities may be computed such as the bootstrap current
fraction Ibs/Ip and driven current fraction from auxiliary sources Iaux/Ip. From the
plasma loop voltage profile we can define the conditions for a stationary plasma. A
stationary plasma is typically described by a flat loop voltage profile. We use the
term “stationary state” to avoid confusion with the conventional terminology “steady
state”, which refers to a loop voltage profile identically equal to zero. In a stationary
state the loop voltage profile is flat but not necessarily zero. Stationarity essentially
means the plasma is no longer evolving but some of the current is provided by
inductive means. The fusion science community typically reserves the term steady-
state to describe a stationary plasma in which all the current is driven by non-
inductive sources. In principle, a purely non-inductive discharge could continue
indefinitely, hence the description steady-state.

3.2.2 Qualitative Effects of Various Actuators

The first and most effectual actuator is the total plasma current, which is regulated
by the main ohmic coil (central solenoid) through a transformer effect. By control-
ling the total current inside the plasma, the internal current profile can be modified
through resistive diffusion. Also, since the plasma is slightly resistive, some of the
plasma current is dissipated into heat. The plasma resistivity scales inversely with
the plasma electron temperature, therefore, as the temperature increases the resis-
tive diffusion decreases, which tends to freeze the current profile evolution. The NBI
system at DIII-D consists of four beam-lines, each of which has two ion sources in
parallel (see Figure 1.10(b)). Each ion source can inject a maximum power around
2.2 MW into the plasma. Currently, of the eight ion sources, four are configured to
inject in the co-current direction (same direction as plasma current) aligned with
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Figure 3.1: Left: Current deposition profiles for the co-current on-axis (CO) group and
the co-current off-axis (OA) group. Middle: Current deposition profiles for
the individual gyrotrons (colored) and the sum total EC (black). Group
deposition profiles are the average of the individual beam deposition profiles
associated with the group. Right: Bootstrap current drive density profile at
low energy (blue) and high energy (green). The bootstrap current increases
at the plasma edge and decreases at the plasma center with increasing energy.

the magnetic axis, referred to as co-current on-axis beams (CO-on). Two beams are
configured to drive co-current with alignment 16.5◦ off-axis, referred to as co-current
off-axis beams (CO-off). The last two beams are configured to inject counter-current
(opposite the plasma current) with on-axis alignment, referred to as counter-current
on-axis beams. The ECCD system is composed of six radio-frequency (RF) wave
generators (gyrotrons), which drive current and heat the plasma. The gyrotrons can
inject a maximum of 0.5 MW each (3 MW in total) for a pulse length of 3 s. The
final actuator is the line averaged electron density, which is controlled by gas-feed
and pellet launchers.

The typical driven current density profiles of the neutral beam groups and gy-
rotrons can be seen in Figure 3.1. Of the NBI; the CO-on group drives positive
current (co-current direction) mostly near the plasma center and the CO-off group
drives current towards the middle of the profile, and the CNT group drives negative
current (counter-current direction) towards the plasma center (not shown). The
ECCD group is configured to generate a sharply localized current drive toward the
mid section of the plasma. Notice that the CO-on group appears to be far more
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efficient at driving current than the CO-off group. This is because the total cross-
sectional area is much smaller towards the center of plasma than around the middle.
Thus while the current drive density is higher for the CO-on beams relative to the
CO-off beams, the total driven current is about the same.

It can be shown that the value of q on a flux surface is inversely proportional to
the plasma current enclosed by that flux surface. Hence, increasing (or decreasing)
the current flow inside a flux surface reduces (or raises) q on that surface. Assuming
the total plasma current is held constant by the ohmic coil, we can see from Fig-
ure 3.1, that injecting CO-on power modifies the current distribution towards the
plasma center, i.e. an increase in current flow at the center and a corresponding
decrease of current flow at the edge. Similarly, injecting CO-off power modifies the
current distribution away from the plasma center. The bootstrap current distribu-
tion is plotted in Figure 3.1. An increase in plasma energy enhances the bootstrap
current drive at the plasma edge and reduces it at the plasma center.

3.3 Modeling the Toroidal Rotation Dynamics

In this section we consider the spatial and temporal evolution of the toroidal an-
gular rotation profile in response to the various actuators including neutral beam
injection (NBI), electron cyclotron resonance heating (ECRH), and non-resonant
magnetic field fields (NRMF). A complete treatment of the parabolic partial differ-
ential equation that describes the toroidal angular momentum, Pφ = mini〈R2〉Ωφ,
(mass density times angular rotation) can be found in [59, 60]. Assuming each ion
species has the same angular bulk velocity and neglecting the momentum associ-
ated with the electrons, the momentum conservation equation for a fixed straight
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Parameter units Description
ρ =

√
Φ/πBφ,0 m Radius term: Square root of normalized

toroidal flux
ρ̂ – Normalized radius ρ̂ = ρ/ρb

Ωφ(ρ̂, t) krad/s Toroidal angular velocity (Vφ = RΩφ)
V (ρ̂, t) 1/m3 Plasma volume
mi kg Ion mass

ni(ρ̂, t) #/m3 Ion density
R0 m Major radius of magnetic axis
Ĥ(ρ̂) – Geometric factor

ηNBI(ρ̂, t) N m/m3 Total NBI input torque density
ηNRMF(ρ̂, t) N m/m3 Total NRMF input torque density
χφ(ρ̂, t) m2/s Effective momentum diffusivity

Pφ = mini〈R2〉Ωφ N m s/m3 Angular Momentum Density

Table 3.2: Parameters associated with the momentum diffusion equation (3.26).

cylindrical plasma can be written as

∂

∂t
Pφ =

∑
i

nimi〈R2〉∂Ωφ

∂t
+ Ωφ〈R2〉

∑
i

mi
∂ni
∂t

+
∑
i

nimiΩφ
∂〈R2〉
∂t

+
∑
i

nimi〈R2〉Ωφ

(
∂V

∂ρ̂

)−1
∂

∂t

∂V

∂ρ̂
=

∑
j

ηj

Torque sources

+

(
∂V

∂ρ̂

)−1
∂

∂ρ̂

[
∂V

∂ρ̂

∑
i

nimiχφ〈R2(∇ρ̂)2〉∂Ωφ

∂ρ̂

]
Momentum loss due to viscous dissipation

−
(
∂V

∂ρ̂

)−1
∂

∂ρ̂

[
∂V

∂ρ̂

∑
i

nimiΩφ〈R2(∇ρ̂)2〉 νρ
|∇ρ̂|

]
Momentum loss due to convection

−
∑
i

nimi〈R2〉Ωφ

(
1

τφcx

)
Momentum loss due to charge exchange

.

(3.26)

To reduce the modeling complexity of the rotation profile evolution we make
the following simplifying assumptions:, i) the plasma shape is fixed, ii) the plasma
ions can be modeled as a single fluid species, iii) the momentum transport is purely
diffusive, i.e. the momentum loss due to convection and viscous dissipation can
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be lumped together into a single effective diffusion term, iv) the momentum loss
due to charge exchange is relatively small compared to that from viscous dissipa-
tion, and v) the dominant torque sources are from NBI and NRMF. With these
assumptions (3.26) reduces to

nimi〈R2〉∂Ωφ

∂t
+mi〈R2〉Ωφ

∂ni
∂t

= ηNBI + ηNRMF

+
1

ρ̂Ĥ

∂

∂ρ̂

[
ρ̂Ĥnimiχφ〈R2 (∇ρ̂)2〉∂Ωφ

∂ρ̂

]
,

(3.27)

where mi and ni, are, respectively, the single fluid ion mass and ion density, χφ is the
effective angular momentum diffusivity coefficient, η(·) represents the local torque
density from NBI and NRMF sources, the operator 〈·〉 stands for flux surface average,
R is the major radius of the plasma, and Ĥ is a spatial geometric factor specific
to the magnetic configuration1 (see Appendix A.4). The boundary conditions are
determined from symmetry at the plasma center and an assumed no slip condition2

at the plasma edge,
∂Ωφ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0, Ωφ|ρ̂=1 = 0. (3.28)

In a similar fashion as that described in Section 3.2, the model for toroidal angu-
lar rotation evolution is transformed to a more control-oriented form by combining
it with scenario-specific empirical correlations relating the ion density, ion temper-
ature, and driven torque from various auxiliary sources. Assuming rotation control
is limited to the H-mode regime, the control action employed to regulate the line-
averaged ion density can be fairly approximated as only weakly affecting the radial
distribution of the ions. Therefore, the ion density ni(ρ̂, t) is modeled as

ni(ρ̂, t) = nprofi (ρ̂)n̄i(t), (3.29)

where nprofi (ρ̂) is a reference profile, and n̄i is the line averaged ion density. Following
the approach of Section 3.2, the ion temperature profile evolution can be modeled

1Same as that used in the poloidal flux evolution model
2The rotation at the edge is not necessarily zero but very small compared to the bulk rotation

for typical H-mode, NBI heated plasmas.
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Figure 3.2: NBI torque estimated by the scaling model (3.31) in comparison to that cal-
culated by NUBEAM for DIII-D shot 147634. The linear regression trend
line compared to a small sampling of estimation data set (left) and compari-
son of torque estimate as predicted by (3.31) to that predicted by NUBEAM
(right).

according to the scaling law [66],

Ti(ρ̂, t) = kTiT
prof
i (ρ̂)

Ip(t)
√
Ptot(t)

n̄i(t)
, (3.30)

where kTi is a constant, T prof
i (ρ̂) is a reference ion temperature profile, Ip(t) is the

total plasma current, and Ptot(t) is the total power absorbed by the plasma. Again,
as in Section 3.2, the total absorbed power is defined as the auxiliary power injected
into the plasma by NBI and ECRH, plus the ohmically driven power, Pohm, minus
the radiative power, Prad, i.e., Ptot = Pohm + Paux − Prad. The ohmic and radiative
powers are functions of the poloidal flux and electron temperature and density as
described in Section 3.2.1.

To model the torque density deposited by each neutral beam, we propose the
scaling law,

ηNBI,ξ(ρ̂, t) = ηprofNBI,ξ(ρ̂)ni(ρ̂, t)
αnTi(ρ̂, t)

αTPNBI,ξ(t), (3.31)

where PNBI,ξ(t) is the power for each neutral beam line, ηprofNBI,ξ(ρ̂) is the torque
density reference profile for each beam, and kNBI,ξ is a constant. The label ξ =
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Figure 3.3: Comparison of NBI torque density modeled with (3.31) (dashed line) and
TRANSP NUBEAM package (solid line) for shot 147634.

1, . . . , nNBI is used to index the individual NBIs. The scalings αn = 1.5 and αT =

−0.5 are determined by a linear regression fit to data based on DIII-D shots 147634,
154358, 154691, 146419. A comparison of the model fit, NBI torque density produced
by (3.31) to that produced by the NUBEAM package is shown in Figure 3.2. On the
left, a small sampling of the observed data-set is plotted over the model trend line to
demonstrate the near one-to-one correspondence between the scaling model (3.31)
and physical data, and on the right, the total torque density computed by NUBEAM
as compared to the scaling model estimate is plotted. Additionally, in Figure 3.3,
we plot the torque estimate for several of the individual NBI.

The NRMF torque density is dependent on the collisionality regime of the
plasma, and thus dependent on plasma temperature and density. We make use
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Figure 3.4: The NRMF torque density reference profile, ηprofNR , (left) and the offset rota-
tion Ω?(ρ̂) of (3.32) (right). As can be seen by the shape of the reference
profile, the NRMF torque density is deposited primarily off-axis and has a
dragging effect on the plasma rotation.

of the model reported in [67, 68],

ηNRMF(ρ̂, t) = ηprofNRMF(ρ̂)
(
Ωφ(ρ̂, t)− Ω∗φ(ρ̂)

)
× ni(ρ̂, t)

βnTi(ρ̂, t)
βTωE(ρ̂)βωINRMF(t)2,

(3.32)

where INRMF(t) is the current in the perturbation field coils, Ω∗φ(ρ̂) is an offset
rotation, ωE(ρ̂) is the toroidal component of the E × B drift velocity, ηprofNR (ρ̂) is a
reference profile, kprofNR (ρ̂) is a constant scaling profile, and the scalings determined
by linear regression fit to data, are given by βn = 3.6, βT = 2.6, and βω = −0.6 [68].
The profile for Ω? plotted in Figure 3.4(b) is assumed to be constant; it can be
determined from shot 131408. During this shot an applied NRMF field had no
effect on the velocity profile implying the NRMF torque was zero, and thus the
plasma velocity during that shot must have been equal to the offset velocity.

The parameters 〈R2〉(ρ̂), 〈R2(∇ρ̂)2〉(ρ̂), and Ĥ(ρ̂) do not change significantly
during the plasma current flattop phase of a discharge, thus we elect to approx-
imate them as fixed spatial profiles. The profiles are obtained from a TRANSP
simulation of DIII-D shot 147634. The selected profiles for each parameter are
shown in Figure. 3.5. As can be seen, the profiles do not change significantly during
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Figure 3.5: Time constant profile parameters used in
the evolution of toroidal angular rotation
model (3.27).
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the discharge after 3.5 s, i.e. during flattop. Thus, the chosen parameter profiles are
sufficient for modeling during the current flattop of the plasma discharge. Modeling
of the effective diffusivity term, χφ, which is partly composed of turbulent effects,
is not considered in this work. Instead, we select a constant nominal profile shape
based on the time average of the measured diffusivity from DIII-D shot 147634 as
shown in Figure 3.5. In the control development sections that follow, variations of
χφ from the nominal profile will be modeled as an uncertainty.

The rotation profile control strategies considered in later chapters often incor-
porate control of the plasma stored energy in combination with rotation, in which
case the plasma stored energy is modeled by (3.4). Note that the ohmic power,
which enters into the expression for total absorbed power, Ptot, is a function of the
poloidal magnetic flux profile, therefore the rotation profile evolution is coupled to
the poloidal magnetic flux evolution.
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Figure 3.6: Comparison of modeled toroidal rotation evolution and experimental data.
(Left) DIII-D shot 146419. (Right) DIII-D shot 147634. In both cases their
is no NRFM torque contribution.

Shot 146419 Shot 147634

3.3.1 Comparison Between Model-Predicted Toroidal Rota-

tion Evolution and Experimental Data

In Figure 3.6 a comparison between the model-predicted toroidal rotation evolution
given by (3.27) and two experimental DIII-D H-mode discharges is shown. In both
cases the discharges involve only torque contributions from NBI and no NRMF.
The model captures most of the trend of the rotation evolution. The primary short-
coming of the model is due to the assumed constant shape of the diffusivity term,
χφ (see Figure 3.5). In actuality, χφ varies substantially throughout the discharge,
but unfortunately due its complex and anomalous behavior, dynamic models for χφ
are not yet available. However, it is important to note again that the model needs
only capture the dominant effects of the system dynamics because one of the main
characteristics of feedback is the ability to deal with model uncertainties. In the
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Figure 3.7: Comparison of modeled toroidal rotation evolution and experimental data
for DIII-D shot 131320 which includes torque sources from both NBI and
NRMF. The values TNBI and TNRMF represent the volume integrated torque
densities, i.e., TNBI =

∫
V ηNBIdV and TNRMF =

∫
V ηNRMFdV .

TNBI

TNRMF

second case, Figure 3.7, we consider a DIII-D shot with applied torque sources from
both NRMF and NBI. In this plot, the modeled rotation evolution is shown with
and without including the torque contribution from NRMF given by (3.32). While
again the model prediction is only approximate, it is clear that the NRMF torque
model greatly improves the model-predicted evolution of the rotation profile.

3.4 Conclusion

First-principles, physics-based models for the evolution of the current profile and
the rotation profile were described. These models were combined with scenario-
specific correlations for the plasma temperature, density, and sources (current drive
or torque) to develop simplified models suitable for real-time control strategies.
In the following chapters these models will be used for the design and simulation
testing of various control strategies. Since the models can be tailored to different
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scenarios and to different tokamaks by adjusting the model parameters, the model-
based control approaches described in the forthcoming chapters, which are design
specifically for the DIII-D tokamak, can still be applied to other tokamaks with little
modification.
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Chapter 4

Feedforward Control Design via

Nonlinear Optimization

4.1 Introduction

For reasons described in Section 1.5, control of the current profile (or equivalently
q profile) is crucial for sustaining stable, high performance operation of tokamaks.
Present-day tokamak operation typically relies on “scenario planning”, i.e. prepro-
gramming a set of auxiliary current drive and heating powers according to semi-
empirical laws to obtain a desired q profile. This process often relies on extensive
experience gained during operation of a particular machine as well as numerous
trial-and-error attempts. In this chapter, the model describing the poloidal flux
evolution of Section 3.2 is used to formulate the scenario planning task as an opti-
mal control problem with the aim of improving shot-to-shot reproducibility of target
current profiles, and retiring the long trial-and-error periods currently devoted by
experimentalists to manually adjusting actuator waveforms.

We consider the control objective of achieving the best possible matching of the
target current profile at a specified time during the early flattop phase of the dis-
charge. Such a matching problem can be formulated as a finite-time optimal control
problem. Solutions to optimal control synthesis can be categorized into indirect
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and direct methods, based on calculus of variations [48, 69] and nonlinear program-
ming [70], respectively. Calculus of variations can be used in indirect methods to
derive the optimality conditions for a given optimal control problem. These opti-
mality conditions result in a two boundary value problem, which usually requires
numerical computations for its solution. Indirect methods tend to be numerically
unstable and are difficult to implement and initialize [71]. As an alternative ap-
proach, the system states and controls over the optimization period can be treated
as independent variables in direct methods to reformulate the original optimal con-
trol problem as a finite-dimensional optimization problem, which can be solved
numerically with good accuracy by modern nonlinear programming techniques such
as sequential quadratic programming (SQP).

Prior works have considered feedforward current profile control optimization by
numerical methods including extremum seeking [72] and SQP combined with low-
dimensional models [73]. Extremum seeking does not require a model to perform
optimization, it is essentially a black-box optimization method, and therefore the
methods considered in [73] could potentially be used for scenario planning with-
out designing a model. Instead real machine data would be used to perform the
optimization. However, this would, of course, require a large number of real toka-
mak discharges dedicated to the optimization procedure. The feedforward control
design considered in this chapter is originated from the dissertation efforts of J.E.
Barton [56], and in this chapter Barton’s work is extended with the inclusion of
analytic gradients calculations. Not only do analytic gradient calculations greatly
reduce the time necessary to solve the optimization problem, but also addresses is-
sues associated with inaccurate finite difference approximations that creep in as the
dynamics become more complicated. Additionally, because of the high dimension
of the system dynamics associated with the current profile only a small number of
control parameters could be incorporated into the optimization problem when using
finite differences to compute gradients. With explicit gradient calculations, it be-
comes practical to solve for optimal feedforward control solutions with many more
control updates.

This chapter is organized as follows. In Section 4.2, the dynamic model of the
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current profile described in Chapter 3 is re-introduced in a form more tractable for
control design. Using finite difference approximations to the spatial derivatives, the
governing infinite dimensional PDE is approximated by a finite dimensional system
of ordinary differential equations to enable the synthesis of optimal control solutions.
Section 4.3 describes the formulation of the open-loop optimal control problem as
a finite-dimensional nonlinear optimization problem, and Section 4.4 describes the
particular form of the optimal control problem for current profile control in the
DIII-D tokamak. In Section 4.5, specific examples of the optimal control synthesis
are presented for both L-mode and H-mode DIII-D discharges, and the chapter is
closed in Section 4.6 with a statement of conclusions.

4.2 Reduced Order Modeling

In Chapter 3, a first-principles-based model (3.1) was described for the evolution of
the poloidal magnetic flux profile (equivalently the current profile), which was sim-
plified for applicability to model-based control design techniques. For convenience
of control design, we can separate the time-varying and spatially-varying parameters
of the model (3.1) to obtain

∂ψ

∂t
(ρ̂, t) =

fη
ρ̂

∂

∂ρ̂

(
ρ̂Dψ

∂ψ

∂ρ̂

)
uη(t) +

nNBI∑
ξ=1

fNBI,ξuNBI,ξ(t)

+ fECuEC(t) + fBS

(
∂ψ

∂ρ̂

)−1

uBS(t),

(4.1)

with the boundary conditions,

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0 and
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= kIpIp(t). (4.2)
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The functions f(·)(ρ̂) capture the spatial dependence of the various parameters of
the model (3.1), which are given by

Dψ(ρ̂) = F̂ ĜĤ,

fη(ρ̂) =
keffZeff

µ0ρ2
bk

3/2
Te
F̂ 2
(
T profile
e /nprofilee

)3/2
,

fEC(ρ̂) =
keffZeffR0ĤkECj

profile
EC

k
1/2
Te

(
T profile
e nprofilee

)1/2
,

fNBI,ξ(ρ̂) =
keffZeffR0ĤkNBI,ξj

profile
NBI,ξ

k
1/2
Te

(
T profile
e

)1/2
, for ξ = 1, 2, . . . , nNBI,

fBS(ρ̂) =

(
kTe (2L31 + L32 + αL34)

dT prof
e

dρ̂

+ 2L31kTe
T prof
e

nprofe

dnprofe

dρ̂

)/
kJevR

2
0ĤkspZeff

F̂
(
kTe

Tprof
e

nprof
e

)3/2
,

kIp = −µ0

2π

R0

Ĝ|ρ̂=1Ĥ|ρ̂=1

,

(4.3)

and u(·)(t) are a set of nonlinear input functions of the form,

uη(t) =

(
n̄e(t)

Ip(t)
√
Ptot(t)

)3/2

,

uEC(t) =

(
1

Ip(t)
√
Ptot(t)n̄e(t)

)1/2

PEC(t),

uNBI,ξ(t) =

(
1

Ip(t)
√
Ptot(t)

)1/2

PNBI,ξ(t), for ξ = 1, 2, . . . , nNBI,

uBS(t) =

(
n̄e(t)

3

Ip(t)
√
Ptot(t)

)1/2

.

(4.4)

The form of these functions, f(·)(ρ̂) and u(·)(t), arise from the empirical correlations
for plasma density, temperature, resistivity, and auxiliary current drive described
in Section 3.2. The controls (4.4) admit diffusivity control, uη, interior controls
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from uNBI,i and uEC, and boundary control, Ip. The control term labeled uBS is
associated with the bootstrap current drive, it can also be thought of as an interior
control term.

As the q profile depends inversely on the spatial derivative of the poloidal flux,
we can introduce the terms θ and ι given by

θ(ρ̂, t) ,
∂ψ

∂ρ̂
(ρ̂, t), ι(ρ̂, t) ,

1

q(ρ̂, t)
=

−θ
Bφ,0ρ2

bρ̂
, (4.5)

which will be useful for control purposes. We can differentiate (4.1) in space to
obtain an expression for the evolution of θ,

∂θ

∂t
=
∂

∂ρ̂

{
fη
ρ̂

∂

∂ρ̂

(
ρ̂Dψ

∂ψ

∂ρ̂

)}
uη(t) +

nNBI∑
ξ=1

∂fNBI,ξ
∂ρ̂

uNBI,ξ(t)

+
∂fEC
∂ρ̂

uEC(t) +
∂

∂ρ̂

{
fBS

(
∂ψ

∂ρ̂

)−1
}
uBS(t),

(4.6)

After carrying out the spatial derivatives, the model (4.6) reduces to

∂θ

∂t
=h0uηθ

′′
+ h1uηθ

′
+ h2uηθ

+

nNBI∑
ξ=1

f
′

NBI,ξuNBI,ξ + f
′

ECuEC + f
′

BS
1

θ
uBS − fBS

1

θ2
θ
′
uBS,

(4.7)

where (·)′ denotes the spatial derivative, and the functions, h(·)(ρ̂), introduced for
compactness, can be written in terms of the functions Dψ(ρ̂) and fη(ρ̂),

h0 = fηDψ,

h1 = f
′

ηDψ + fηDψ
1

ρ̂
+ 2fηD

′

ψ,

h2 = f
′

ηD
′

ψ + f
′

ηDψ
1

ρ̂
+ fηD

′

ψ

1

ρ̂
− fηDψ

1

ρ̂2
+ fηD

′′

ψ.

(4.8)

Thus, we can control q indirectly be controlling either θ or ι, and avoid the nonlin-
earity associated with the inverse of the spatial derivative of the poloidal magnetic
flux in (3.17). Finally the boundary conditions (4.2) can be written in terms of θ as

θ|ρ̂=0 = 0, θ|ρ̂=1 = −kIpIp. (4.9)
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The system defined by (4.6) and (4.9) represents a PDE system for which it is
very challenging and usually impossible to design optimal feedback control laws due
to the infinite dimensionality of the system that arises from the continuous spatial
domain. To transform the system to a finite dimensional state-space form, we first
discretize the system in space using finite difference approximations to the spatial
derivatives. Central difference spatial derivative approximations of O

(
∆ρ̂2

)
are used

in the interior node region, 2 ≤ i ≤ (l − 1) and forward and backward difference
approximations of O

(
∆ρ̂2

)
at the boundary nodes i = (1, l). The domain of interest,

ρ̂ = [0, 1], is truncated to l evenly spaced nodes, separated by ∆ρ̂ = 1/(l − 1) to
obtain the finite-dimensional system,

θ̇ = f θ(θ,u), ι = Cθ, (4.10)

where the model state is θ = [θ2, θ3, . . . , θl−1]T (see Appendix A.1). The actuators
represented by u include the nonlinear input functions of (4.4). Note that in addition
to the non-inductive sources, we also have control of the total plasma current, Ip,
allowing control of the profile boundary. The total plasma current, represents the
sum of non-inductive and inductive currents. It is assumed that a low level dedicated
controller exists to regulate the tokamak central coil voltage to drive any missing
current between the requested total current and the sum of non-inductive sources.

Alternatively, in some control cases we take the poloidal stream function relative
to the boundary value, i.e. ψ̄ = ψ−ψb as the system state in which case we approx-
imate the spatial derivatives of the system (4.1) and (4.2) with finite differences to
obtain

˙̄ψ = f ψ̄(ψ̄,u), (4.11)

where the model state is ψ̄ = [ψ̄ρ̂=2, ψ̄ρ̂=3, . . . , ψ̄ρ̂=l−1]T .

4.3 Formulating the Feedforward Control Problem

The control problem is formulated as a trajectory optimization problem to search
for a feasible path from the expected initial condition to the desired target. The
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t0 t1 t2 tFt3 ...

u(t)

x(t) x(tF )

x(t0 )

Figure 4.1: Discretized control sequence, w = [u0,u1, . . . ,uF ] and output of integrator
function f , which maps w, x0 and t to x(t).

result comprises a sequence of feedforward (open-loop) control requests which steers
the system state from some specified initial condition state to some desired state.
Consider a dynamical system defined by

ẋ = f(x,u), (4.12)

we can formulate the feedforward control design as an optimization problem of the
form

minimize
u(t)

J(x(tF ))

subject to ẋ = f(x,u),

x(t0) = x0,

gin(x(t),u(t)) ≤ 0,

geq(x(t),u(t)) = 0.

(4.13)

This is often called a trajectory optimization problem because it involves the search
for a state trajectory, x(t), that starts from the initial state, x0, and reaches some
goal state at time tF quantified by the scalar function J . This state trajectory
must be consistent with the system dynamics described by the equality constraint
ẋ = f(x,u). Additionally, the optimization requires the state trajectory to avoid
undesirable regions of the state space, which are quantified by the constraints, gin

and geq. The undesirable regions of the state space are those regions of the tokamak
operating space that are associated with MHD instabilities.
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Problem (4.13) describes an infinite dimensional optimization problem on ac-
count of the fact that the optimization variables, x(t), and u(t), are defined on a
continuous domain, t ∈ [t0, tF ]. The most successful approach to solving an optimal
control problem like (4.13) is to parameterize the problem with a finite set of deci-
sion variables, and then to solve it by using numerical optimization methods [71].
As illustrated in Figure 4.1, over a time grid t0, . . . , tF , we discretize the control as
a zero order hold

uk = u(t ∈ [tk, tk+1]), (4.14)

and then prescribe x as a function of w = [u0,u1, . . . ,uF ], x0, and t to obtain

x(t) = F(w,x0, t) ≡ x0 +

∫ t

t0

f(x(s),u(s))ds. (4.15)

The function F is an integrator function which depends on the choice of integration
scheme used to simulate the system modeled by (4.12). With the use of (4.15), we
can rewrite the original optimal control problem (4.13) as

minimize
w

J(F(w,x0, tF ))

subject to gin(F(w,x0, ti),ui) ≤ 0, for i = 0, 1, . . . , F

geq(F(w,x0, ti),ui) = 0, for i = 0, 1, . . . , F

(4.16)

where we are now optimizing over a finite set of optimization variables defined by the
feedforward control sequence w1. Additionally, the constraints have been reduced
to a finite number by evaluating geq and gin only at the times ti, for i = 0, 1, . . . F .

First-order necessary conditions for optimality require solutions to the prob-
lem (4.16) to be feasible, i.e. to satisfy all the constraints, and to be a stationary
point to the Lagrangian. By assuming for the moment that problem (4.16) includes
only equality constraints, the Lagrangian can be written as L = J(w)− λTgeq(w),
where λ is a Lagrange multiplier, and the first-order necessary conditions can be
summarized as [

∇J(w)−∇geq(w)λ

geq(w)

]
= 0, (4.17)

1Note that the state, x(t), has been solved away from the optimization problem with the use
the integrator function F(u0,u1, . . . ,uF ,x0, t) = x(t).
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where ∇ represents ∂/∂w. We can proceed to search for a minimizer to the prob-
lem (4.16) by searching for points that satisfy (4.17). The natural approach is to
solve the nonlinear equations (4.17) with Newton’s method. Start with an initial
guess, (wk,λk), of the optimal solution, (w?,λ?), and make updates (wk+1,λk+1) =

(wk,λk) + (∆wk,∆λk), where the update, (∆wk,∆λk) is determined by solving a
linear approximation of (4.17), i.e. it is given by the Newton step,[

∇2
wwL(wk) −∇geq(wk)

∇geq(wk)
T 0

][
∆wk

∆λk

]
=

[
−∇J(wk) +∇geq(wk)λk

−geq(wk)

]
. (4.18)

Sequential quadratic programming (SQP), the numerical optimization method used
in this work, reformulates (4.18) as a quadratic optimization problem (quadratic
program (QP))

minimize
∆wk

J(wk) +∇J(wk)
T∆wk +

1

2
∆wT

k (∇2
wwL)∆wk,

subject to geq(wk) +∇geq
T (wk)∆wk = 0.

(4.19)

It can be shown that the solution of (4.19) is also given by (4.18) [74]. While it
is not possible to include inequality constraints into Newton’s method because the
optimality conditions associated with inequality constraints are non-smooth, they
can be incorporated into (4.19) in the same form as the equality constraints. A
complete description of the SQP method is provided in Appendix D.1.

Several techniques can be applied to find the gradients ∇J , ∇geq, and ∇gin,
which include forward finite differences, forward sensitivity propagation, and the
adjoint method (see [75] for a review of each one of them). The simplest method,
forward finite differences, involves perturbing each element of w by a small amount
and then computing each element of the gradient according to

∇J |j =
J(w + εej)− J(w)

ε
. (4.20)

If n is the dimension of w then calculating gradients by this approach requires
n + 1 evaluations of the cost function and constraints, which therefore requires
n+1 evaluations of the function (4.15) at time t = tF or equivalently simulating the
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system (4.12) from t0 to tF . If n is large or the dynamics are difficult to integrate, for
example stiff dynamics requiring implicit integration schemes, the finite difference
calculation can be a lengthy process.

Forward sensitivity propagation involves propagating the sensitivity of the state
along the trajectory to changes in each of the optimization variables. In order to
carry out this method, first we need to decide on a discrete integration scheme to
approximate the evolution of the system modeled by (4.12). Because the underlying
dynamical model (3.1) (plasma current diffusion) is approximately a linear diffu-
sion equation, an appropriate integration method is the backward (implicit) Euler
method,

xk+1 = xk + dtf(xk+1,uk+1). (4.21)

We require an implicit integration scheme as in (4.21) to handle the stiffness as-
sociated with the current diffusion dynamics (3.1), which arises due to the steep
changes in the coefficient profiles around the boundary. The sensitivity of the state
with respect to the optimization variables, w, can be computed during the “forward
simulation” of the dynamics. Taking partial derivatives of (4.21) with respect to w,
we obtain

∂xk+1

∂w
=
∂xk
∂w

+ dt

(
∂f

∂x

∣∣∣∣xk+1
uk+1

∂xk+1

∂w
+
∂f

∂u

∣∣∣∣xk+1
uk+1

∂uk+1

∂w

)
. (4.22)

Since the optimization variables include only the control values we have ∂x0/∂w = 0,
∂u0/∂w = [I,0, . . . ,0], ∂u1/∂w = [0, I, . . . ,0], etc. From (4.15), it can be seen
that ∂F(w,x0, tk)/∂w = ∂xk+1/∂w, which can be used in the chain rule to obtain
gradients of both the cost function and each of the constraints. For example,

∇J =
∂J

∂w
=

∂J

∂F(w,x0, tF )

∂F(w,x0, tF )

∂w
=

∂J

∂xtF

∂xtF
∂w

, (4.23)

where xtF is found by propagating (4.22) forward. A complete description of the for-
ward sensitivity calculation for general Runge-Kutta integration schemes is included
in Appendix C.2.

The adjoint method allows for analytic calculations of the objective function,
however, it cannot be applied directly to problems involving state constraints.
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Actuator Rate Limit Lower Limit Upper Limit
Ip (Total Plasma Current) ±2 MA/s 0.3 MA 1.5 MA
n̄e (Line Averaged Electron Density) none 1·1019/m3 5·1019/m3

PNBI,ξ (NBI source) none 0 1.6 - 2.2 MW
PEC (Total ECCD) none 0 3.0 MW

Table 4.1: DIII-D actuator bounds and rate limits.

Rather one must use penalty methods to incorporate the state constraints; the
constraints are included as additional terms to the cost function, and add a large
penalty (cost) commensurate with the amount of constraint violation. This ap-
proach is not quite as accurate and it can be complicated to appropriately choose
the penalty parameters. Ideally, the cost associated with the constraints must be
high compared to cost of the primary objective, but making it too high can lead to
numerical conditioning issues. Throughout this work we make use of the forward
sensitivity propagation method to calculate gradients.

4.4 Cost Function and Constraints

The cost function J consists in this case of a weighted sum of objectives associated
with reaching the target q profile, the target βN value, and a measure of stationarity,

J =
(
q(tF)− qt)T Wq

(
q(tF)− qt)

+WβN (βN(tF)− βt
N)2 + gss(tF)TWssgss(tF),

(4.24)

where qt represents the target q profile, βt
N represents the target βN value, and

the terms Wq, WβN and Wss are cost weights. The term gss represents the spatial
derivative of the plasma loop voltage profile. The plasma stationarity is reached
when the loop voltage profile is flat or equivalently when the spatial derivative is
zero, i.e. gss = 0, (see Section 3.2.1).

The constraints include bounds and rate limits on the actuators as listed in
Table 4.1, a limit on q,

q > 1, (4.25)
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Figure 4.2: Feedforward control is parameterized by a piece-wise linear function described
by p = [p1,p2, . . . ,pF ].

to avoid the onset of sawtooth oscillations, a limit on density associated with the
Greenwald density limit,

n̄e[1020m−3] ≤ Ip[MA]

πa2
, (4.26)

and an upper bound on βN to avoid the onset of neoclassical tearing modes,

βN ≤ βmax
N . (4.27)

Each of the constraints (4.25)-(4.27) and cost function (4.24) can be written as a
function of the state x and control u, therefore the gradients can be obtained with
the forward sensitivity propagation method described above.

4.4.1 Parameterizing the Input Function

The optimization problem as described above involves a set of optimization vari-
ables which includes the control variables at each time step k. This amounts to
substantially large number of optimization variables making the problem difficult
to solve. To reduce the complexity, sacrificing optimality to some extent, we choose
to parameterize the control sequence w as a piecewise linear function, as illus-
trated in Figure 4.2. Thus the optimization variables w are reduced to the set
p = [p0,p1, . . . ,p5], which has dimension 6 × (# of actuators considered for opti-
mization).
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4.5 Examples

L-mode Discharges

First, we consider control during L-mode discharges with the goal of reaching a
specified target at a specified time. Three different target q profiles are considered,
each with monotonically increasing q profiles shown in Figure 4.3. The control is
optimized over the period topt ∈ [t0, tF ] = [0.4, tF ] s, where tF , the target time, is
taken as a design parameter.

The optimization setup includes the following design choices. The control update
times (tPi of Figure 4.2) are selected as tPi = [0.4, 0.5, 0.75, 1.0, . . . , tF ]. The initial
control value at time tP0 = 0.4 is fixed in accordance with the required powers for
start-up conditions. The to be optimized inputs include the total plasma current,
the off-axis co-current NBI (150L and 150R), and the on-axis co-current NBI (330L
and 330R). The 30L and 30R NBI are dedicated to diagnostics, and the counter-
current NBI are not used in order to avoid triggering locked-modes due to low torque,
and therefore low rotation, plasmas. As the particle confinement in the plasma is
strongly dependent on the value of the total plasma current, the line average electron
density trajectory is chosen to be proportional to the total plasma current trajectory
following the expression

ne(t) [1019m−3] = 2.5Ip(t) [MA]. (4.28)

Finally, to avoid L-H transitions, a total auxiliary power limit was imposed as an
optimization constraint. From experimental tests, the H-mode transition power was
observed to approximately scale with the electron density according to

PLH = 2n̄3/4
e . (4.29)

Therefore the total auxiliary power is constrained according to

nNBI∑
ξ=1

PNBI,ξ + PEC ≤ PLH (4.30)
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Figure 4.3: Target q profiles for L-mode discharges. All targets are monotonically in-
creasing with various values of qmin and q95 to be obtained at target time
tF . Target 1: qmin = 1.3, q95 = 4.4, Target 2: qmin = 1.65, q95 = 5.0, and
tF = 1.3 s, and Target 3: qmin = 2.1, q95 = 6.2, and tF = 1.5 s.

The optimized control sequences for Target 1, 2, and 3, are displayed in Fig-
ures 4.4, 4.5, and 4.6, respectively. Qualitatively similar results can be noted in
each case. The auxiliary heating scheme is characterized, initially, by little injected
power (other than the power injected by the 30L-NBI required for diagnostics).
Towards the end of the ramp-up phase, the off-axis NBI power (150L and 150R
beamlines) is rapidly injected as required to setup the plasma state with off-axis
current drive. This is required to achieve the desired q value at the plasma cen-
ter. Additional, NBI power is injected closer to the target time to raise the plasma
temperature, which lowers the plasma resistivity, and in turn, slows the diffusion of
current in an attempt to freeze the obtained q profile as best as possible.

H-mode Discharges

The optimization setup for H-modes discharges is very similar to that of L-mode
discharges. The two primary changes include updating the model of the current
profile dynamics (3.1) by tailoring the model parameters to H-mode discharges,
and swapping the upper power limit (4.29) for a lower power limit to avoid back-
transitions to L-mode.

The optimization is carried out over the time interval topt = t ∈ [t0, tf ] = [0.5, 3.0]

s, and the control updates are parameterized by a first order hold as in Figure 4.2
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Figure 4.4: Optimized control sequence for Target 1 of Figure 4.3, where tF = 1.5 s. The
black dots represent the optimized control parameterization. The optimized
150R and 330L neutral beam injection powers are 0 MW (not shown). The
total auxiliary power limit (green dash) of the upper right plot is associated
with the L-H transition (4.29).

with time points tPi = [0.5, 1.0, ..., 3.0] s. For simplicity the gyrotorns (ECCD
sources) are controlled as group, therefore the total gyrotron power, PEC, is evenly
distributed amongst the individual gyrotron launchers. Also, the ECCD power is
restricted to be OFF during the time period t ∈ [0.5, 2.0], since the DIII-D have
a limited amount of total energy they can deliver during a plasma discharge. For
diagnostics purposes, the 30L and 30R NBI are modulated to deliver a constant
1.1 MW to the plasma.

The target q profile and target βN at the target time of 3.0 s are chosen from an
experimental discharge, DIII-D shot 147634. Results of the optimization are shown
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Figure 4.5: Optimized control sequence for Target 2 of Figure 4.3, where tF = 1.30 s. The
black dots represent the optimized control parameterization. The optimized
150R and 330L neutral beam injection powers are 0 MW (not shown). The
L-H transition limit (4.29) is shown in the plot of total auxiliary power.

in Figure 4.7. To reach the target βN value of 3.5, almost all of the auxiliary power
available is required. A preference to off-axis (150L and 150R) power over on-axis
(330L and 330R) is found to help obtain the target q profile in the center. Again,
similar to the results of the L-mode discharges, the auxiliary power is ramped late,
not only to obtain the target βN , but also to help freeze in the target q profile2.

2Tests of the feedforward control results in real tokamak experiments will be presented in
Chapter 5
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Figure 4.6: Optimized control sequence for Target 3 of Figure 4.3, where tF = 1.0 s.
The black dots represent the optimized control parameterization. The 30L
neutral beam injection power is at a constant 1.1 MW for diagnostic purposes
and the optimized 330L neutral beam injection power is 0 MW (not shown).
The L-H transition limit (4.29) is shown in the plot of total auxiliary power.

4.6 Conclusions

This chapter considered numerical optimization to synthesize feedforward control
solutions for the available actuators, in order to steer the plasma through the toka-
mak operating space to reach a target q profile and βN value. The optimization was
carried out subject to constraints associated with actuator limits, plasma state, and
operating scenario constraints for both L-mode and H-mode discharges.

While results showed that the desired targets could successfully be achieved
in simulations, it is anticipated that a feedforward control approach alone will be
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Figure 4.7: Optimized control sequence for an H-mode discharge. The time parameter-
ization of the control sequence is tPi = [0.5, 1.0, ..., 3.0]. The density is ob-
tained from a reference discharge (DIII-D shot 147634). The gyroton power
(not shown) comes on full at 2.5 s.

insufficient to reliably reach the target due to mismatch between the model and
real system. The next chapter will focus on combining the feedforward control with
various feedback strategies.
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Chapter 5

Feedback Control Design for the

Current Profile Evolution via Linear

Quadratic Integral

The following two chapters consider feedback control design for the current profile
evolution. The first focuses on state feedback via a linear quadratic integral ap-
proach, and the second focuses on real-time model predictive control. In both cases,
the feedback controller is designed so as to be combined with the feedforward con-
trol approach of the previous chapter. The state feedback control approach is easier
to implement, since the primary control function is computed by a single matrix
multiplication. The model predictive control approach allows for improved control
performance, but involves substantial online computation. However, with efficient
optimization techniques, the computation involved is shown to be fast enough to
allow real-time applicability of the control approach.

5.1 Introduction

The first-principles-based model of the current profile evolution described in Chap-
ter 3 was used in Chapter 4 to develop a feedforward (open-loop) control strategy
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to reach a target current profile at a specified time during the discharge. If the
initial conditions assumed in the feedforward control development could be guaran-
teed and the model fully and accurately described all of the underlying dynamics,
we could simply apply the feedforward control strategy blindly and expect to see
reliable achievement of the target current profile. However, reproducing the initial
conditions assumed for the feedforward control problem is often difficult during real
tokamak experiments. Residue in the tokamak walls, which can cause unexpected
impurity concentrations, or actuator faults can often lead to different conditions dur-
ing the plasma formation phase. Despite the difficulty in reproducing the desired
initial conditions, imperfections in the system model due to un-modeled dynamics
and unavoidable errors in the estimation of the various model parameters make it
necessary to complement the feedforward control approach with feedback to correct
for disturbances from the target trajectory.

In this chapter we explore several options for feedback control of the current
profile evolution with each step increasing the complexity of the design approach.
Throughout this chapter we consider only optimal control approaches based on linear
quadratic formulations, i.e. linearized dynamics and quadratic cost functions. We
begin with a control formulation that can be solved in closed form – the standard
linear quadratic regulator (LQR) formulation. This approach produces an optimal
feedback policy, which minimizes a quadratic penalty of the tracking error subject
only to constraints associated with the system dynamics. In the next chapter,
the control approach will be extended and refined with a numerical optimal control
approach, which incorporates hard constraints on control actions to maintain plasma
stability (model predictive control).

Each of the feedback control approaches developed in this chapter and the next
were tested experimentally in the DIII-D tokamak. In some cases the experiments in-
volved substantial development of newly coded control algorithms introduced to the
DIII-D plasma control system (PCS)1. Some tests were performed in L-mode (low
confinement) and some in H-mode (high confinement) discharges (see Section 1.4).

1The plasma control system (PCS) developed and maintained by General Atomics, San Diego,
California is used to control the plasma during day-to-day operation of many tokamaks.
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We begin with control of H-mode discharges with the objective of regulating the pro-
file only during the flattop phase. The main purpose of these initial control tests is
aimed at getting the profile control components of the PCS functioning properly and
show some promise towards achieving control of the current profile experimentally.

While initial tests did show some success, the real intention of this work is
to design profile controllers for the aid of tokamak experiments. The objective
is to improve shot-to-shot reproducibility of the tokamak operating conditions in
order to aid other plasma physics studies. Therefore the work progressed onto
the goal of improving reproducibility of a target current profile at a specified time
during the discharge. Starting first with more easy to control L-mode discharges,
then extending the combined feedforward and feedback control approach to H-mode
discharges. For each control test, we compare the results obtained with the combined
feedback+feedforward approach to that of feedforward control alone. In general,
we find that the addition of feedback control on top of the feedforward control is
necessary for good profile tracking.

This chapter is organized as follows. In Section 5.2, we consider linear quadratic
integral (LQI) feedback control of the plasma current profile through the flattop
phase in H-mode discharges. In Section 5.3, the LQI control approach is considered
again with the goal of obtaining a particular target at a specified time during both
L-mode and H-mode discharges. Finally, conclusions are given in Section 5.4.

5.2 LQI Feedback for Current Profile Control

In this section, a multi-input-multi-output (MIMO) feedback controller based on the
first-principles-driven model (4.11) is proposed for the regulation of the evolution of
the poloidal magnetic flux profile and thus the current profile at DIII-D. For control
design, we consider the poloidal stream function relative to the boundary value, i.e.
ψ̄ = ψ − ψb.
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5.2.1 Model Order Reduction and Linearization

To facilitate control design, the model governing the evolution of ψ̄ is reduced to a
finite set of ordinary differential equations (ODEs) by using finite difference approx-
imations to the spatial derivatives as mentioned in the previous section. Consider
the reduced-order model (4.11), where the model state is ψ̄ = [ψ̄2, ψ̄3, ..., ψ̄l−1]T

and the model input includes the nonlinear input functions of (4.4), u = [uη, uBS,
uonCO, uoffCO, uEC, Ip]T . The NBI have been grouped together as on-axis co-current
NBI (330L and 330R) and off-axis co-current NBI (150L and 150R) to obtain the
nonlinear input functions

uonCO =

(
1

Ip(t)
√
Ptot(t)

)1/2 (
P 330L
NBI + P 330R

NBI

)
, (5.1)

uoffCO =

(
1

Ip(t)
√
Ptot(t)

)1/2 (
P 150L
NBI + P 150R

NBI

)
, (5.2)

and the remaining input functions are given by (4.4). Let ψ̄FF and uFF represent
the feedforward trajectories of the states and inputs that satisfy

˙̄ψFF = f(ψ̄FF,uFF), (5.3)

and let the variables x = ψ̄−ψ̄FF and uFB = u−uFF represent perturbations around
the feedforward trajectory. Inserting the perturbation variables into a Taylor series
approximation of (4.11) and ignoring second and higher order terms results in

˙̄ψ = f(ψ̄FF,uFF) +
∂f

∂ψ̄
(ψ̄FF,uFF)x +

∂f

∂u
(ψ̄FF,uFF)uFB, (5.4)

from which we obtain the linear dynamics around the feedforward trajectory

ẋ = AFPD(t)x(t) + BFPD(t)uFB(t), (5.5)

where
AFPD =

∂f

∂ψ̄
(ψ̄FF,uFF), BFPD =

∂f

∂u
(ψ̄FF,uFF). (5.6)

While it is possible to design an optimal state feedback controller for the time varying
linear model (5.5), we choose to further approximate the model by linearizing around
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a constant feedforward state and input, which is a reasonable approximation during
the flattop current phase of the discharge. We can further simply the system to a
time-invariant system, assuming that the profile is controlled without transitioning
back to L-mode,

ẋ = Ax + BuFB, (5.7)

where A and B are taken as AFPD(tflattop) and BFPD(tflattop) and tflattop at the
beginning of the current flattop of the discharge.

5.2.2 Singular Value Decomposition

For a requested target state, xtarg, let xss∞ represent the closest stationary state2

achievable according to the model. This can be determined from the pseudo-inverse,
K†sg, of the model static gain matrix Ksg = −A−1B. The symbol † represents the
Moore-Penrose pseudoinverse determined by singular value decomposition (SVD),
i.e.

Ksg = WΣVT , K†sg = VΣ†WT , (5.8)

where W and V are unitary matrices, i.e. WWT = WTW = I and VTV =

VVT = I. The pseudoinverse of the diagonal matrix Σ is obtained by taking its
transpose, ΣT , and then replacing each nonzero element with its reciprocal.

The input associated with the desired target is determined from the pseudo-
inverse of the static gain matrix

ussFB,∞ = K†sgxtarg (5.9)

which is used to determine the closest achievable stationary state given by

xss∞ = Ksgu
ss
FB,∞ = KsgK

†
sgxtarg. (5.10)

2The term stationary state is used to refer to an equilibrium state in which the plasma param-
eters are no longer evolving, but some of the plasma current may be driven inductively. In the
plasma physics community the term “steady state” is reserved to describe a plasma state that can
be sustained without the need for an inductive current drive source.

W.P. Wehner 83 Lehigh U.



5.2. LQI Feedback for Current Profile Control

Because several of the actuators have similar effects on the profile, the matrix Ksg =

WΣVT is ill-conditioned, i.e. the ratio of the largest singular value to the smallest
one is much larger than one. Therefore small deviations in the profile associated
with the directions of the smaller singular values can result in unreasonably large
control requests. Thus, we use a truncated (Tr) singular value expansion of the
static gain matrix given by,

Ksg,Tr = WTrΣTrV
T
Tr, (5.11)

where the matrices WTr, ΣTr, and VTr are the components of the SVD associated
with the nSV largest singular values,

W =
[
WTr Wn

]
, Σ =

[
ΣTr 0

0 Σn

]
, V =

[
VTr Vn

]
, (5.12)

and Wn, Σn, and Vn are the components associated with the smaller, neglected
singular values. Therefore,

ussFB,∞
∼= uFB,∞ = K†sg,Trxtarg, xss∞

∼= x∞ = Ksg,TrK
†
sg,Trxtarg. (5.13)

We use the theory of linear quadratic optimal control to obtain a control law
which regulates the system to the closest achievable stationary state while minimiz-
ing the cost function

J =

∫ ∞
0

[
x̄T (t) ζT (t)

]
Q

[
x̄(t)

ζ(t)

]
+ ūT (t)Rū(t)dt, (5.14)

where x̄ = x−x∞, ū = uFB−uFB,∞, Q positive semidefinite, R positive definite, and
ζ represents the integral states introduced for integral control. The added integral
states are expressed as

ζ = Kζ

∫ t

0

x̄(τ)dτ, (5.15)

where Kζ is a design matrix.
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Choice of Matrix Kζ

We can note that with the choice

Kζ = WT
Tr (5.16)

we have KζKsg,TrK
†
sg,Tr = Kζ , since[

WT
Tr

]
·
[
WTrΣTrV

T
Tr

]
·
[
VTrΣ

−1
Tr WT

Tr

]
= WT

Tr = Kζ . (5.17)

This ensures
Kζxtarg = Kζx∞, (5.18)

since
x∞ = Ksg,TruFB,∞ = Ksg,TrK

†
sg,Trxtarg. (5.19)

Here, we have made use of the fact that WT
TrWTr = I, and VT

TrVTr = I, but
WTrW

T
Tr 6= I.

5.2.3 Proportional Plus Integral Control

Written in terms of the requested target (x̄(t) = x(t) − Ksg,TrK
†
sg,Trxtarg(t)), the

control law that minimizes (5.14) reduces to a proportional plus integral controller
of the form

uFB(t) = uFB,∞ −Kp

[
x(t)−Ksg,TrK

†
sg,Trxtarg(t)

]
−KiKζ

∫ t

0

[
x(τ)−Ksg,TrK

†
sg,Trxtarg(τ)

]
dτ,

(5.20)

where the proportional gain, Kp, and integral gain, Ki, are given by[
Kp Ki

]
= R−1B̂S,

where S = ST is the unique positive semi-definite solution to the algebraic Ricatti
equation,

ÂTS + SÂ− SB̂R−1B̂TS + Q = 0,
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and the system (Â, B̂) is constructed by augmenting the model (5.7) with the
integrator states, i.e. [

˙̄x

ζ̇

]
=

[
A 0

Kζ 0

]
︸ ︷︷ ︸

Â

[
x̄

ζ

]
+

[
B

0

]
︸︷︷︸

B̂

ū. (5.21)

The design parameters include Kζ = WT
Tr, Q and R. The state weighting matrix,

Q, is chosen as

Q =

[
Q̂ 0

0 α2
ζInSV

]
, (5.22)

where αζ is a constant that weights the integrator states relative to the model states,
Q̂ is the weighting on the model states and R is chosen diagonal.

Anti-windup Compensator

Given the limited power of the available actuators and the aggressive control goals,
actuator saturation is expected to be unavoidable. During the time when one or
more actuators are saturated, the error signals between the current plasma state
and the target state may not decrease causing the integral term of the controller to
wind-up the errors and make ever larger requests on the actuators. When the error
signals finally do reverse it may take a long time for the control request to reset to
a value below the saturation. An anti-windup scheme, as shown in Figure 5.1, is
therefore incorporated into the control architecture to avoid the integral wind-up

uaw = Gwindup

∫ t

0

usat(τ)− ureq(τ)dτ. (5.23)

When the actuators are not saturated, the anti-windup compensator becomes inac-
tive and the value of uaw remains constant.

Control Signal Transformation

During experiments and simulations, the outputs of the profile controller u = [uη,
uBS, uonCO, uoffCO, uEC, Ip]T need to be converted to the physical actuators, n̄e, P on

CO,
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Figure 5.1: Anti-windup scheme: uFB is the feedback control signal, uFF is the feedfor-
ward, ud is an added input disturbance, ureq is the requested control, usat is
the saturated request, and uaw is the anti-windup compensation.

P off
CO, PEC, and Ip. Inverting the nonlinear transformations (4.4), we can obtain

expressions for the physical actuators

n̄e =
uBS

u
1/3
η

, (5.24)

P̂ on
CO =

uonCOuBS

u
2/3
η

, P̂ on
CO =

uoffCOuBS

u
2/3
η

, (5.25)

P̂EC =
uECuBS

u
2/3
η

, and P̂tot =

(
uBS
uηIp

)2

. (5.26)

However, the inverse transformations (5.25)-(5.26) along with the constraint P̂tot =

P̂ on
CO + P̂ on

CO + P̂EC form a set of over-constrained equations, all of which cannot be
satisfied simultaneously. We desire to find the best approximation to the overdeter-
mined system

XLS

[
P on
CO P off

CO PEC

]T
︸ ︷︷ ︸

Preq

=
[
P̂ on
CO P̂ on

CO P̂EC P̂tot

]T
︸ ︷︷ ︸

P̂

, (5.27)

where Preq represents the actuator power requests to be determined, XLS is the
(4× 3) matrix

XLS =


1

1

1

1 1 1

 , (5.28)
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We choose a weighted least squares approach to determine the actuator power re-
quests,

Preq = arg min
Preq

(P̂−XLSPreq)
TQLS(P̂−XLSPreq), (5.29)

where QLS is a diagonal weighting matrix and the solution can be written as

Preq = (QLSXLS)†QLSP̂. (5.30)

In order to calculate the actuator saturation of Figure 5.1, the control signal ureq

is first converted to the physical actuator requests by (5.29), the physical requests
are saturated, and then the saturated values are used to calculate usat according
to (4.4).

Augmenting with energy control

During simulations it was discovered that the profile tracking performance could be
improved by augmenting the controller with energy control. The energy control is
incorporated by adding the energy equation (3.5) to the linearized model (5.7)[

ẋ

Ė

]
=

[
A 0

0 −1/τE

][
x

E

]
+

[
B 0

0 1

][
uFB

Ptot,kin

]
, (5.31)

and then proceeding with the control design as before in Section 5.2.3. Here we have
introduced an additional control request on the total power, labeled Ptot,kin. Thus,
we choose the physical actuator requests as the best least squares approximation to
the overdetermined system

XLS,kin

[
P on
CO P off

CO PEC

]T
=[

P̂ on
CO P̂ on

CO P̂EC P̂tot P̂tot,kin

]T
,

(5.32)

where XLS,kin is a matrix of the form

XLS,kin =



1

1

1

1 1 1

1 1 1


. (5.33)
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5.2.4 Experimental Results

In this section, simulations and experimental results are presented to test the effec-
tiveness of the feedback approach described above. To simplify matters the feed-
forward control design of Chapter 4 is not used in these initial tests. Instead the
target profile is selected as the achieved profile from a previous DIII-D experiment
(shot 154358). The feedforward inputs for the neutral beam groups and the plasma
current are identical to the actuator commands of the target shot. However, a dis-
turbance is introduced to the feedforward control by freezing the control commands
of the target shot at 1.5 s, and reducing the EC power by 1/2. This is done in order
to ensure that feedback control action is necessary to reproduce the target shot. In
short, the objective is to show repeatability of previous shots.

The tuning problem consists of the selection of the diagonal elements of Q and R

and the constant αζ of (5.22) to regulate the profile as close as possible to the target.
An experiment carried out at DIII-D (shot 154691) is shown in Figure 5.2, where we
have attempted to control only the current profile (ψ̄ profile) without using energy
control. The feedforward and requested actuator powers are plotted in Figure 5.2(b),
the measured and target ψ̄ profiles, together with the internal energy, are plotted in
Figure 5.2(a), and the measured and target q profiles are plotted in Figure 5.2(c).
During the experiment good profile regulation was maintained up to about 3.5 s.
The profile controller attempted to correct the q profile in the plasma center after
3.5 s by saturating the CO-off NBI and EC powers while turning off the CO-on
power with the goal of modifying the current distribution away from the center.
Recall from Figure 3.1 that the CO-on NBI drives current at the plasma center
while the CO-off NBI and EC drive current away from the plasma center. Thus,
assuming the total plasma current remains constant, decreasing CO-on NBI power
while increasing CO-off NBI and EC power should modify the current distribution
away from the plasma center resulting in an increase of q at the center. However,
the failure to maintain high energy in the the plasma (see Figure 5.2(a)), which is
not feedback controlled, may have deteriorated the off-axis bootstrap current drive
effect to a level that made the q at the center remarkably more difficult to regulate in
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spite of the efforts by the feedback controller. It is important to point out that the
the oscillations in the delivered Ip starting around 3.5 s (green line in Figure 5.2(b))
are not due to the profile control algorithm, as shown by the controller requested Ip
(red line in Figure 5.2(b)). The cause of these oscillations remains unclear but they
may have contributed to a loss in energy confinement.

Anticipating that plasma energy regulation may be critical to maintain tight
control of q at the plasma center, closed-loop simulations were carried out combin-
ing current-profile and internal-energy control, the results of which are presented
in Figure 5.3. The feedforward and requested actuator powers are plotted in Fig-
ure 5.3(b), the simulated and target ψ̄ profiles and internal energy are plotted in
Figure 5.3(a), and the measured and target q profiles are plotted in Figure 5.3(c).
The target profile is determined from the response of the nonlinear model (4.11) to
the input values of shot 154358. Here, we are able to maintain good profile tracking
throughout the simulation despite large input disturbances caused by holding the
feedforward inputs constant after 1.5 s. The controller increases CO-on power start-
ing around 1.5 s to push q down towards the target at the plasma center. While the
CO-on NBI group acts to regulate q, the CO-off power decreases between t = 2 s
and t = 2.5 s to balance the internal energy at the target value of 0.8 MJ. After
2.5 s the CO-off and EC powers begin to increase to raise the internal energy up to
the desired final value of approximately 1 MJ. The total plasma current is reduced
slightly from its FF value to maintain tight control of q at the plasma edge. Note
that in both the experiment and the simulation the control design parameters are
the same.
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Figure 5.2: DIII-D shot 154619: Current profile control experiment.
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Figure 5.3: Simulation: Combined current profile and energy control.
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5.3 LQI Feedback for Shot-to-Shot Reproducibility

of Current Profiles

In this section we consider feedback control design based on linear quadratic inte-
grator techniques for current profile control during L-mode discharges. The control
approach is similar to that of Section 5.2 except the feedforward control will be
based on the optimal feedforward control design of Chapter 4 rather than the actu-
ator waveform of a previous shot. Also, we consider the control objective of reaching
a particular target at a specified time, as opposed to regulating the current profile
through the flattop phase as in the previous section. Since the bootstrap contribu-
tion is small in L-mode discharges, the main motivation for designing the control
law in terms of the nonlinear input functions (4.4) is lost, so, instead we take the
physical actuators as the system inputs. For convenience, the system considered for
control is rewritten here,

θ̇ = f θ(θ,u), ι = Cθ, (5.34)

where the input is the set of physical actuators including the total plasma current,
the line averaged density, the total ECCD power, and the individual NBI powers,
i.e., u = [Ip, n̄e, PEC, PNBI,1, . . . , ], the system state is θ = [θ2, θ3, . . . , θl−1]T , and
the system output is ι = [ι2, ι3, . . . , ιl−1]T , where l represents an index over the
discretized spatial domain as described in Appendix A.1.

The main purpose of the feedback controller described in this section is to aid
the feedforward control of Chapter 4 to mitigate disturbances from the desired pro-
file evolution, and, therefore, improve shot-to-shot repeatability of the feedforward
control solution.

5.3.1 Model Linearization

Let uFF, θFF, and ιFF represent the feedforward control sequence and corresponding
state and output trajectories determined from the trajectory optimization approach
described in Chapter 4. This set of feedforward controls and state and output trajec-
tories necessarily satisfy the system dynamics, i.e. θ̇FF = f θ(θFF,uFF), ιFF = CθFF,

W.P. Wehner 93 Lehigh U.



5.3. LQI Feedback for Shot-to-Shot Reproducibility of Current Profiles

and let the variables θ̃ = θ − θFF, ι̃ = ι − ιFF, and uFB = u − uFF represent per-
turbations around the feedforward trajectory. In a neighborhood of the feedforward
trajectory we can approximate the dynamics of the system (5.34), with the linear
system

˙̃θ ≈ f θ(θFF(t),uFF(t)) +
∂f θ
∂θ

∣∣∣∣θFF(t)
uFF(t)

θ̃ +
∂f θ
∂u

∣∣∣∣θFF(t)
uFF(t)

uFB,

from which we obtain the time-varying linear dynamical system around the feedfor-
ward trajectory

˙̃θ = AFPD(t)θ̃ + BFPD(t)uFB, ι̃ = Cθ̃, (5.35)

where AFPD = ∇θf θ|θFF,uFF
and BFPD = ∇uf θ|θFF,uFF

. Given that we have full
state measurement and the outputs have a direct one-to-one correspondence with
the states, we can eliminate the output function for simplicity of control design to
write, ẋ = ĀFPD(t)x + B̄FPD(t)uFB, wher x = ι̃, ĀFPD(t) = CAFPD(t)C−1 and
B̄FPD(t) = CBFPD(t). For feedback design purposes we can further simply the
system to a time-invariant system, which is an acceptable approximation assuming
that the plasma remains in a single confinement regime,

ẋ = Ax + BuFB, (5.36)

where A and B are taken as ĀFPD(ttarg) and B̄FPD(ttarg) and ttarg is the target time.

5.3.2 LQI Control Design

We begin the control design following the same strategy described in sections 5.2.2-
5.2.3. However, of the available actuators only the NBI and total plasma current are
controlled in feedback, and the remaining are controlled in feedforward only. The
variables xtarg, xss∞, ũFB are defined in the same way.

5.3.3 Two-Loop LQI Controller

Via a two-loop feedback controller, the total plasma current is used to regulate the
profile at the plasma edge and the NBI are used to regulate the interior profile.
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This approach of focusing the total plasma current on edge regulation and NBI
on interior regulation is well conceived when combined with optimized feedforward
control, which provides not only a feedforward control action but also an optimal
trajectory (path) to the target profile. The feedback controller simply has to follow
the desired trajectory produced by the optimized trajectory design. To construct the
two-loop controller, the feedback controlled inputs (NBI and total plasma current)
of the system (5.36) are separated into the NBI powers, ũNBI, and the total plasma
current, ũIp ,

˙̃x = Ax̃ +
[
BNBI BIp

] [ũNBI

ũIp

]
. (5.37)

For the inner loop controller, we consider only the response of the edge value, to
the total plasma current,

˙̃x =Ax̃ + BIpũIp ,

x̃b =CIpx̃,
(5.38)

where CIp = [0, 0, ..., 1], and x̃b is the value of x̃ at the edge3. The controller is
constructed by first augmenting the system (5.38) with the integrator state, xc =

CIp

∫
x̃dt, [

˙̃x

ẋc

]
=

[
A 0

CIp 0

][
x̃

xc

]
+

[
BIp

0

]
ũIp , (5.39)

and then by solving for the linear control policy, ũIp = −KLQI[x̃
T xc]

T , following
the approach explained in sections 5.2.2-5.2.3. The gain matrix can be partitioned
into KLQI = [KP,x̃ KI,xc ], where KP,x̃ are gains on the x̃ and KI,xc is the gain on the
integrator state xc. For a state space description of the controller, we have

ẋc =0xc + CIpx̃,

ũIp =−KP,x̃x̃−KI,xcxc.
(5.40)

3The edge in this case is the flux surface at ρ̂ = 0.95.
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Combining (5.40) with the plant (5.37), we close the inner loop to obtain,[
˙̃x

ẋc

]
=

[
A−BIpKP,x̃ −BIpKI,xc

CIp 0

][
x̃

xc

]
+

[
BNBI

0

]
ũNBI. (5.41)

For the outer loop controller, again we proceed with LQI design, but now applied
to the system (5.41). In this case, the inputs, which are solely the NBI, are used
to control the interior profile shape. First, the system (5.41) is augmented with
the integrator states, ζ = K̂ζ

∫
x̃dt. Then, the open loop system augmented with

integrator states can be written as
˙̃x

ẋc

ζ̇




A−BIpKP,x̃ −BIpKI,xc 0

CIp 0 0

K̂ζ 0 0




x̃

xc

ζ

+


BNBI

0

0

 ũNBI, (5.42)

for which, the LQI gains are given by K̂LQI =
[
K̂Px̃ K̂P,xc K̂I,ζ

]
. Then the outer

loop controller can be written as

ζ̇ =0ζ + K̂ζx̃,

ũNBI =− K̂P,x̃x̃− K̂P,xcxc − K̂I,ζζ,
(5.43)

which can be combined with the inner loop controller (5.40). The final feedback
controller can be written in terms of the measurement x and the target xtarg (x̃ =

x−Ksg,TrK
†
sg,Trxtarg) as[

ζ̇

ẋc

]
=

[
0 0

0 0

][
ζ

xc

]
+

[
K̂ζ

CIp

]
x̃,[

ũNBI

ũIp

]
=

[
−K̂I,ζ −K̂P,xc

0 −KI,xc

][
ζ

xc

]
+

[
−K̂P,x̃

−KP,x̃

]
x̃.

(5.44)

A SVD analysis of the linearized system’s response to the NBI is shown in Fig-
ure 5.4. The analysis shows the directions in which the profile can be significantly
manipulated by the NBI in steady state. The columns of input singular matrix, Fig-
ure 5.4(a), represent linear combinations of the NBI powers and the output singular
vectors scaled by the singular values, UΣ, represent the response to those input
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Figure 5.4: SVD analysis of the linearized model including only the effects of the NBI.
(a.) Input singular vectors, i.e. columns of V, which represent combinations
of the NBI powers. (b.) Output singular vectors, i.e. columns of U, which
represent deviations from the nominal profile associated with the input com-
binations. (c.) Output singular vectors scaled by the singular values.

combinations, Figure 5.4(c). Only the first three directions are plotted since the
remaining singular values are very small. Based on the output directions shown in
Figure 5.4(c), the NBI can only significantly influence the profile in two directions.
Therefore two singular values are used in the truncated singular value decomposi-
tion.

5.3.4 Experimental Setup and Results

Goal of the Experiment

The goal of the experiments in this section is to obtain a certain target q profile at a
certain time while maintaining the plasma in a single confinement regime throughout
the discharge, either L-mode or H-mode depending on the experiment. This implies
the total auxiliary power must be limited from above during L-mode discharges to
prevent transitions to H-mode, and limited from below during H-mode discharges
to prevent back transitions to L-mode.

The primary goal of the experiments is to demonstrate reproducibility between
tokamak discharges by reliably obtaining the desired q target in the plasma early
flattop phase or coming as close as possible. If and when the target is obtained,
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control of the remainder of the discharge would be assumed by a physics studies
experiment. Therefore, the goal of the experiment does not require maintaing the
target in steady state. For the control tests during L-mode discharges, three target
q profiles were tested, each with increasing difficulty to achieve. The targets are all
monotonically increasing (in ρ̂) with varying levels of q at the plasma center and
plasma edge (see Figure 4.3). Essentially, it is desired to obtain a large total plasma
current while also maintaining q high at the center, which translates to a flat current
profile or one that is not too peaked at the center and a large total plasma current.
Only a few shots were available for control testing during H-mode discharges, so
only one target was tested consisting of a monotonically increasing q profile with a
large central q value and a broad flat profile at the plasma center.

Implementation of Power Limits

To avoid L-H transitions, an upper bound on total auxiliary power was imposed
during the experiments. This was accomplished by saturating the total power re-
quested by the combined feedforward + feedback controller as follows. First, the
total power requested by the controller, P req

aux, is computed

P req
aux = P req

EC +

nNBI∑
ξ=1

P req
NBI,ξ, (5.45)

and if it exceeds the L-H transition power, P lim
LH , then a scale factor is computed

P scale
LH (t) =

P lim
LH − [P30L + P30R]

P req
aux − [P30L + P30R]

. (5.46)

where the 30L and 30R NBI are not included in the scale factor because they are
dedicated to diagnostics. Each of the controlled NBI and ECCD are scaled down
according to

PNBI,ξ = P scale
LH P req

NBI,ξ and PEC = P scale
LH P req

EC . (5.47)

In this fashion the total requested power is alwasys limited to prevent L-H transitions
without disrupting the relative distribution of power requested by the controller for
each of the controlled actuators.
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For H-mode discharges a similar total auxiliary power limit is applied from below
to prevent back transitions, i.e. transitions from H-mode back to L-mode. Again,
the total auxiliary requested power is first computed as in (5.45), and if it is below
the H-L power limit, P lim

HL , then a scale factor is computed

P scale
HL = P lim

HL − P req
aux. (5.48)

Finally, each of the feedback controlled NBI are scaled-up additively as follows

PNBI,ξ = PNBI,ξ +
P scale
HL

nNBIcontrolled
, (5.49)

where nNBIcontrolled is the number of controlled NBI. This method does not preserve the
distribution of powers requested by the controller like that of the LH power scaling,
but this is not very alarming since the controller is expected to very rarely request
a total auxiliary power below the HL limit. In fact, generally the cases in which the
HL power limit is breached only happen momentarily in practice.

Summary of Experimental Results

First, a feedforward control solution is synthesized offline by the method described
in Chapter 4. This provides an open-loop actuator waveform and an associated state
evolution that evolves to the target q profile at the desired time. The role of the
feedback controller is to mitigate disturbances of the plasma from the optimal state
evolution; it makes small updates to the feedforward control in real-time so that the
q profile evolves appropriately. In each case, the feedforward optimization is carried
out over the time interval t ∈ [0.4s, tF ], where tF is the time when the desired q

profile and βN value must be achieved and is employed as a design parameter (see
Section 4.5).
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Figure 5.5: Target 1 tests: shot 156806 (left) and 156811 (right). The obtained q profile
for each shot is shown in the top plot. The red circles mark the target q
profile (tF = 1.5 s for Target 1). Initial and final (best-matching) profiles are
shown both for FF-only and FF+FB control shots. The middle plot shows
q at center (ρ̂ = 0.05). The black line (“Optimal Trajectory”) represents
the time evolution of the target profile at ρ̂ = 0.05 obtained by feedforward
optimization. The bottom plot shows the total auxiliary power during the
experiment including the predicted L-H power transition threshold, 2[n̄e]

3/4,
the imposed power limit (green stars), the feedforward auxiliary power (solid
black), and the feedforward + feedback auxiliary power (dashed green).
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Figure 5.6: Target 2 tests: shot 157953 (left) and 157954 (right). The plots are configured
the same as in Figure 5.5. The target time tF = 1.25.
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Figure 5.7: Target 3 tests: shot 157955 (left) and 158056 (right). The plots are configured
the same as in Figure 5.5. The target time tF = 1.25.
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Beginning with Target 1, two control tests are shown in Figure 5.5. In the
top plots are shown the obtained q profile with feedforward (FF) control alone
and combined feedforward and feedback (FF+FB) control at the initial and best-
matching time. The target profile is shown in red dots. In the middle plots, the
evolution of q at the center (ρ̂ = 0.05) is shown, where the final target is plotted in
red dots and the optimal evolution of q at the center is plotted in black. For both
shots, we can see the q profile with feedforward control alone falls to one before the
target time4. This unfortunate result is primarily due to slight modeling errors in
the current diffusion rate, which lead to a nonsatisfactory feedforward control policy.
This emphasizes the importance of feedback control, which is able to account for
the modeling errors and to bring the q profile back as close as possible to the target.

The bottom plots of Figure 5.5 show the total auxiliary power for the feedforward
and feedforward+feedback cases. The imposed power limit to prevent transitions
to H-mode is plotted in green stars. The experiments began with a simple power
limit of PLH = 5 MW. During testing of Target 1, the H-mode transition power was
observed to approximately scale with the electron density according to

PLH = 2n̄3/4
e . (5.50)

During subsequent experiments, testing of Targets 2 and 3, the total injected power
was constrained by this limit, and this limit (5.50) was also used as a constraint in
the feedforward optimization as discussed in Section 4.4.

With a similar presentation of the Target 1 tests, tests of Targets 2 and 3 are
plotted in Figures 5.6 and 5.7, respectively. For Target 2, tF = 1.25, and for Target
3, tF = 1.0. Generally, the initial conditions vary significantly from shot to shot.
Again, in Figures 5.6 and 5.7, both the obtained q profile with feedforward control
alone and combined feedforward and feedback control at the best-matching time are
shown. In all cases, feedback control improves the obtained q-profile matching error
by about 50%, even with wildly different initial conditions.

4The q profile is physically limited to a value greater than one; if it falls to one, an undesirable
phenomenon known as saw-teeth will prevent it from falling further, essentially resetting it above
one.
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For both Targets 2 and 3 tests, the NBI power is almost always at the H-mode
transition limit. Additional experiments involving a different type of controller
showed that it was indeed possible to achieve Target 2 and Target 3 by slightly
relaxing the L-H transition power limit [56]. Also, note that the obtained q profiles
between feedforward+feedback shots (left vs right in the top plots of Figures 5.5,
5.6, and 5.7) are nearly identical, proving to some extent the repeatability of the
control approach.

The same control approach was also applied to a small number of shots dur-
ing H-mode discharges. Similar results were obtained for H-mode shots as shown
in Figure 5.8. The control design process is identical in both L-mode and H-mode
discharges; the only differences are that the model parameters are adjusted appropri-
ately for each case and the optimization constraints include minimum power limits
to avoid the possibility of back transitions to L-mode.

5.4 Conclusions

Careful control of the q profile evolution will be necessary to access high performance
tokamak scenarios characterized by high energy confinement and high bootstrap
current fraction. In practice, the desired q profile cannot be reliably obtained with
preprogrammed actuator waveforms alone due to variability of the plasma impu-
rity concentration, variable wall conditions, actuator faults, and plasma drifts from
external sources. This necessitates the design of a feedback control approach to
actively regulate the q profile evolution.

By combining feedforward optimization via nonlinear programming and lin-
earized feedback control, target q profiles were attained in both L-mode and H-
mode DIII-D discharges. While results are promising, they show the sensitivity of
the feedforward control solution to model mismatches. Since this solution is com-
puted offline, the feedforward design can however be improved by increasing the
complexity of the model. Feedback control remains necessary, due not only to the
lack of a perfect model, but also to the existence of plasma disturbances. In the next
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Figure 5.8: Obtained q profiles during H-mode discharges. The results of feedforward
control (shot 163224) and feedforward + feedback control (shots 163828 and
163833) at the desired target time are plotted. The red circles mark the
target q profiles, the dash lines mark the initial conditions and the solid lines
mark the obtained q profiles. Only one target tested in H-mode involving
a monotonic q profile with high qmin = 2.0 and broad, flat q at the plasma
center.

chapter, the feedback control approach is improved with a numerical optimal con-
trol approach, which incorporates hard constraints on control actions to maintain
plasma stability.
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Chapter 6

Feedback Control Design for the

Current Profile Evolution via Model

Predictive Control

6.1 Introduction

Model predictive control of the tokamak q profile has already been considered in
simulations [76, 77]. By “model predictive control” we mean an explicit model of
the system dynamics is used to predict the effect of present and future control
actions on the system output [78]. As pointed out in [77], it is typically desired
to operate tokamaks near stability limits in order to explore interesting physical
phenomenon, thus, the optimal control solution for q profile control often lies at the
intersection of various constraints, including constraints associated with actuator
limits and parameter limits to avoid deleterious MHD activity. The most effective
control approach is then naturally one that anticipates constraint violations and
corrects for them in a systematic way. While we do not yet include state constraints
in our control implementation, we have laid the ground work in building a suitable
model predictive control framework for q profile control at the DIII-D tokamak that
could later be expanded to include state constraints associated with the avoidance
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of deleterious MHD activity.
Model predictive control has developed significantly over the last few decades [79],

while originally only applicable to problems with slow time scales due to the intense
computational requirements of MPC, improvements in optimization algorithms that
exploit the problem structure have made MPC applicable to medium sized prob-
lems requiring fast update times between 1-5 ms [80]. We use a simple active set
method [81], which combined with warm-starting of the optimization problem as
described in Appendix D.2 allows for sufficiently fast control computation times of
1 ms. This implies the control updates can be computed sufficiently fast to allow
real-time applicability for current profile control, and this is confirmed by experi-
mental tests presented in this chapter.

This chapter is organized as follows. In Section 6.2, the feedback control ap-
proach by model predictive reference tracking is described, and in Section 6.3, the
details for incorporating state constraints are described. The control system is em-
bedded into the DIII-D plasma control system (PCS) for experimental testing, and
initial tests of the proposed control method are presented in Sections 6.4 and 6.5.
Initial experimental results did not consider state constraints, i.e. those constraints
associated with obtaining stationary conditions in the plasma and avoidance of βN
limits. In Section 6.6, simulations demonstrating the effect of these constraints are
presented. Finally, a statement of conclusions is made in Section 6.7.

6.2 Current Profile Reference Tracking via Model

Predictive Control

As in the previous chapter, the control objective is to reach a specified target profile
shape at a specified time. Again, the control strategy involves, first, computing an
open-loop control problem, which is formulated as a trajectory optimization problem
to find a feasible path from the expected initial condition to the desired target. The
problem involves the minimization of a scalar objective over a set of constraints as-
sociated with the dynamics of the system (model of the q profile evolution), actuator
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Figure 6.1: Model predictive control framework. The system evolution is predicted over
a short horizon (T ) in response to an applied control sequence. An optimal
control sequence is determined and the first change to the control sequence
is applied to the system. Then, on the next time step, the system state
is sampled again and a new control sequence is computed over a receding
horizon.

constraints (physical limits such as max NBI power), and bounds on the acceptable
current profile shape through the ramp-up phase (see Section 4 for details). The
result of the optimization procedure is an open-loop sequence of NBI powers, ECCD
powers, and total plasma current and a corresponding state trajectory that reaches
the target. The role of the feedback controller is to track the optimal state trajectory
(desired current profile evolution).

6.2.1 Overview of Model Predictive Control

Upon the initial sampling time, the predicted behavior of the system in response to
the control variable is considered over a short horizon, T . A sequence of controlled
variables is selected such that the predicted response is as close as possible to some
set of desired characteristics. Only the first computed change to the control variable
is applied, and this process repeats at each time step.

If the model completely and accurately described all of the underlying dynamics
of the system, we could simply apply the entire control sequence computed on the
first time step and expect to see the same results as predicted by the model. However,
since the model is only approximate, we expect to see some discrepancy between the
predicted and measured state at the subsequent time step. Therefore, the common
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practice is to apply the first step of the sequence, then sample the state again, and
repeat the optimization procedure, which introduces feedback to the control.

6.2.2 Linearized Error Dynamics

Let uFF(t) represent the feedforward control sequence, and let θFF(t) and ιFF(t)

represent, respectively, the corresponding feedforward state and output trajectory
obtained from the feedforward control optimization. In a neighborhood of the feed-
forward trajectory we can approximate the dynamics (4.10) with the truncated
Taylor series,

θ̇ ≈f θ(θFF(t),uFF(t)) +
∂fθ
∂θ

∣∣∣∣θFF(t)
uFF(t)

(
θ − θFF(t)

)
+
∂fθ
∂u

∣∣∣∣θFF(t)
uFF(t)

(
u− uFF(t)

)
.

(6.1)

Introducing the term ũ = u−uFF and discretizing time derivative of the system (6.1)
with a semi-implicit scheme, we can obtain the affine time-varying model,

θk+1 = Akθk + Bkũk + ak, ιk = Cθk, (6.2)

where

Ak =

I − Ts ∂fθ
∂θ

∣∣∣∣θFF
k+1

uFF
k

−1

, Bk = AkTs
∂fθ
∂u

∣∣∣∣θFF
k+1

uFF
k

,

ak = AkTs

fθ(θFFk+1,u
FF
k )− ∂fθ

∂θ

∣∣∣∣θFF
k+1

uFF
k

θFFk+1

 ,

(see Figure 6.2(a)) and Ts is the time step. The affine term ak arises due to the
fact that we are writing the model in terms of the full state rather than the more
common error state, i.e. the state relative to the feedforward value, for reasons
discussed in the next section. Given that there is a one-to-one relationship between
θ and ι, we can eliminate θ for simplicity of control design,

ιk+1 = Akιk + Bkũk + ak, (6.3)

W.P. Wehner 109 Lehigh U.



6.2. Current Profile Reference Tracking via Model Predictive Control

(Ak,Bk)	

(Ak+1,Bk+1)	
(Ak+2,Bk+2)	

t	=	k	 k+1	 ….	 k+N	k+2	

(Ak+N,Bk+N)	

Reference	

Predicted	
State	ιk	

ιFF,k	

t	

t	=	k	 k+1	 ….	 k+N	k+2	

t	

(a) Linearizations around feedforward trajec-
tory.

(Ak,Bk)	

(Ak+1,Bk+1)	
(Ak+2,Bk+2)	

t	=	k	 k+1	 ….	 k+N	k+2	

(Ak+N,Bk+N)	

Reference	

Predicted	
State	ιk	

ιFF,k	

t	

t	=	k	 k+1	 ….	 k+N	k+2	

t	

(b) Finite horizon reference tracking problem.

Figure 6.2: Diagrams for linearization around the feedforward trajectory and reference
tracking around the feedforward trajectory.

where we have overwritten Ak, Bk, and ak with Ak ← CAkC
−1, Bk ← CBk, ak ←

Cak.

This affine formulation has two main advantages: i) it allows direct inclusion of
the reference value ιFF in the objective function, allowing the controller to anticipate
future reference changes, and ii) it becomes more convenient to include constraints
on the state variables.

6.2.3 Model Predictive Reference Tracking Control Structure

We use the total plasma current to regulate the q profile at the edge with a classical
linear quadratic integral (LQI) controller, in the same way as Section 5.3.3. This
ensures that the controller will hit the target q value at the plasma edge. In the con-
trol design approach that follows, including Ip as a control variable is problematic
because the target q profile is expected to be difficult to achieve. If Ip were included
as an actuator, the controller might attempt to reduce Ip to undesirably low values
to minimize overall profile matching across the profile interior. While it can be ad-
vantageous to use Ip to control the profile shape as a boundary actuator, we elect to
dedicate Ip towards control of the profile edge to avoid the possibility of undesirably
low Ip values. The following design could potentially be modified to include Ip as
an actuator with added constraints to prevent Ip from falling undesirably low.

W.P. Wehner 110 Lehigh U.



6.2. Current Profile Reference Tracking via Model Predictive Control

To control the q profile interior, we consider the trajectory tracking problem for-
mulated as a finite-horizon, optimal control problem. As illustrated in Figure 6.2(b),
the feedback controller predicts ι profile evolution over a short horizon and updates
the control action to maintain ι on the feedforward evolution. At time k, we consider
the quadratic optimization problem

minimize
{∆ũc

k+t}
Hu
t=0

Jk =

Hp∑
t=1

∥∥ιk+t − ιFFk+t

∥∥
Q

+
Hu∑
t=0

∥∥∆ũc
k+t

∥∥
R
,

subject to ιk+t+1 = Ak+tιk+t + Bcũc
k+t + Bncũnc

k+t + ak+t,

ιk = ι[k] : initial condition,

∆ũc
k+t = ũc

k+t − ũc
k+t−1,

ũc
k−1 = previously applied control,

ũnc
k+t = ũnc

k for t = 0, 1, . . . Hu,

uk+t ∈ Uk+t for t = 0, 1, . . . Hu,

ιk+t ∈ Ik+t for t = 1, 2 . . . Hp.

(6.4)

The cost function Jk includes an instantaneous cost on deviations of the ι profile
from the desired feedforward trajectory (ιFF) over the prediction horizon, Hp. Also,
an instantaneous cost is applied to deviations in the control, ∆ũc

k+t = ũc
k+t− ũc

k+t−1,
implying no cost for the control sequence to be away from the value associated with
feedforward trajectory, uFF, but there is a cost for fast rate changes. The actuators
have been split into controlled uc

k = [PNB,3, . . . , PNB,nNBI ] and uncontrolled unc
k =

[PNB,1, PNB,2, PEC,1, . . . , PEC,nEC , Ip]. The first two NBI are dedicated to diagnostics,
the total plasma current is controlled via LQI control, and the ECCD are only
controlled via feedforward. We allow the prediction horizon associated with the
control, Hu, to be less than the prediction horizon associated with the state, to
reduce the complexity of the problem. We assume no further update in the control
beyond the control horizon, i.e. uck+t+1 = uck+t for t ≥ Hu and we replace the future
uncontrolled actuators (which are yet unknown) with their current values. Because
the density is difficult to control with real accuracy in tokamaks, future density
values are taken as unknown. The terms {uk+t ∈ Uk+t}Hut=0 and {ιk+t ∈ Ik+t}Hpt=1
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Figure 6.3: MPC for profile tracking with total power constraint to satisfy desired plasma
stored energy.

describe linear constraints on the actuators and states to be described.
The optimal control problem (6.4) consists of the minimum of a quadratic func-

tion over a set of linear constraints. This type of quadratic optimization problem
involving a positive definite cost function (R > 0 and Q ≥ 0) can be solved effi-
ciently using active set techniques, which take advantage of the fact that the set of
active constraints on sequential control updates does not change dramatically, and
thus the active set information from the previous control update can be used to
warm start the solution on the next control update (see Appendix D.2).

6.2.4 Plasma Stored Energy Control

For control design purposes, the plasma stored energy evolution is approximated by
the linear system,

dE

dt
= − E

τEeq

+ Paux(t), (6.5)

where the contributions of ohmic power and radiative power are dropped since they
are relatively small compared to the auxiliary power, and we have assumed a con-
stant energy confinement time τEeq , which is associated with the operating point
of the target q profile. The approximate energy dynamics (6.5) describe a linear
first order system, therefore with a simple proportional-integral (PI) controller we
can obtain acceptable closed loop performance. For a target energy Etarg, the PI
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controller,

P req
aux(t) = kp(E

targ(t)− E(t)) + ki

∫ t

0

Etarg(τ)− E(τ)dτ, (6.6)

provides a request for total auxiliary input power, P req
aux(t), which can enter into the

MPC problem (6.4) as an equality constraint on total auxiliary input power. The
control design knobs kp and ki represent the proportional and integral control gains,
respectively. A block diagram of the combined controller, MPC q profile reference
tracking plus energy control constraint, is shown in Figure 6.3. The constraint on
total auxiliary input power can be written as

nNBI∑
ξ=1

P̃NBI,ξ + P̃EC = P req
aux(t)−

nNBI∑
ξ=1

PFF
NBI,ξ − PFF

EC , (6.7)

where the NBI and EC powers have been separated into feedback components de-
noted by ·̃ and feedforward components. Note that (6.7) represents a linear con-
straint on the control variables, therefore it can be incorporated without modification
into problem (6.4) over the control horizon, Hu. In this manner we can obtain the
desired plasma stored energy, and then allow the MPC controller to find the best
combination of individual NBI powers satisfying the total power constraint1, which
tracks the desired q profile evolution.

6.2.5 Relaxing the Energy Control Constraint

The inclusion of the energy control as an input constraint is an effective strategy
when the energy target is well chosen, i.e. it is consistent with the desired q profile
evolution. Essentially what the controller does is first specify the total NBI power
necessary to maintain the desired plasma stored energy target, then selects the best
combination of on-axis (330L and 330R) and off-axis (150L and 150R) NBI powers to
best reach target q profile. However, the possibility remains that the energy control
constraint could limit the controller’s freedom to obtain the desired q profile target

1ECCD power is controlled in feedforward only for this work.
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if the energy target is inappropriately selected. To address this potential outcome,
we can replace the energy control constraint (6.7) with the inequalities,

nNBI∑
ξ=1

P̃NBI,ξ + P̃EC ≤ P req
aux(t)−

nNBI∑
ξ=1

PFF
NBI,ξ − PFF

EC + εwin,L,

nNBI∑
ξ=1

P̃NBI,ξ + P̃EC ≥ P req
aux(t)−

nNBI∑
ξ=1

PFF
NBI,ξ − PFF

EC − εwin,H ,
(6.8)

where εwin represents a window on forgiveness of satisfying the energy control con-
straint. It should be made clear, εwinL and εwinH are included as a control knobs to
be selected during experiments not as optimization variables.

6.3 Additional Constraints for q Profile Tracking

MPC

Any constraint that can be written as a linear function of the optimization vari-
ables can be added to the problem (6.4). In this section, constraints to prevent
the controller from exceeding a βN limit, maintenance of q > 1, and a constraint
for achievement of stationary conditions are added to the MPC q profile tracking
problem.

Enforcement of βN Limit

Deleterious MHD activity can be avoided by maintaining βN below a specified limit,
βmax
N . To help ensure stable plasma conditions during the discharge, we can predict

changes to βN over the prediction horizon and enforce a constraint in the total
auxiliary power to maintain βN below an acceptable limit. Recall from (3.18), the
normalized β can be expressed as βN = kβN

E
Ip
, where kβN is a constant depending

on the plasma volume, plasma minor radius, and toroidal magnetic field.
At time k, we can take the approximate value of the energy confinement time

(τE,k ∝ I0.93
p,k n̄

0.41
e,k P

−0.69
tot,k ) and measured energy Ek, to estimate the forward evolution
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of βN according to

βN,k+t = kβN
Ek+t

Ip,k+t

,

Ek+1 = AEEk +BEPaux,k,

Ek+2 = A2
EEk + AEBEPaux,k +BEPaux,k+1,

Ek+3 = A3
EEk + A2

EBEPaux,k + AEBEPaux,k+1

+BEPaux,k+2,

Ek+Hp = A
Hp
E Ek +

Hp−1∑
i=0

AiEBEPaux,k+Hp−1−i,

(6.9)

where AE =
(

1 + 1
τE,k

Ts

)−1

and BE = AETs. Since the plasma current is not in-
cluded as an actuator in the MPC problem (6.4), we can assume the evolution of
Ip is prescribed over the prediction horizon according to Ip,k+t = Ip,FF,k+t + Ip,FB,k,
i.e. the feedforward value over the prediction horizon plus the last feedback update.
Thus, the constraint on βN reduces to a maximum bound on total requested auxil-
iary power. With the prediction equations (6.9), we can transform the βN limit over
the prediction horizon, βN,k+t|t=0,1,...,Hp

≤ βmax
N into a constraint on maximum aux-

iliary power input. In order to ensure the MPC problem remains feasible, potential
conflicts between the βN limit and the energy control constraint (6.7) are alleviated
by softening the energy control constraint with a forgiveness parameter,

P req
aux(t)− εE ≤


[
nNBI∑
ξ=1

PNBI,ξ + PEC

]
k+t


Hu

t=0

≤ P req
aux(t) + εE, (6.10)

where εE ≥ 0 represents a window on forgiveness of satisfying the energy control
constraint. The forgiveness parameter is included as an optimization variable in the
MPC problem (6.4) by replacing the optimization objective with

Jk +WEε
2
E, (6.11)

the MPC problem will minimize violation of the energy control constraint, where
WE is introduced as a weight.
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Constraint for Maintenance of q > 1

The lower bound on q (4.25) can be equivalently written as the constraint ι < 1

over the prediction horizon, i.e. ιk+t < 1 for t = 1, 2, . . . , Hp. Given the limitations
in achievable current profile shapes it is sufficient, for control purposes, to apply the
constraint at only two points on ρ̂ (= 0.05, 0.4), we have

Cqιk+t ≤ 1.0 for t = 1, 2, . . . , Hp, (6.12)

where (Cqι)
T =

[
ι|ρ̂=0.05 , ι|ρ̂=0.4

]
. Finally, to ensure feasibility, the above constraint

can be softened with the inclusion of a forgiveness parameter, εq > 0,

Cqιk ≤ 1 + εq, (6.13)

where, again, εq is incorporated into the cost function, Jk of the MPC problem (6.4),

Jk ← Jk +WEε
2
E +Wqε

2
q, (6.14)

so that the control will minimize violation of the constraint.

Constraint for Achievement of Stationarity

We can attempt to control for steady-state conditions or more precisely stationarity
of the plasma by applying an additional set of constraints. A stationary2 plasma is
typically described by a flat loop voltage profile, where the loop voltage is given by

Up = 2π
∂ψ

∂t
. (6.15)

We can recognize a flat loop voltage profile when the spatial gradient of the loop
voltage is identically zero,

∂Up

∂ρ̂
≡ 0. (6.16)

Since the spatial derivative of the loop voltage profile is proportional to the time
derivative of the ι profile (from (4.5)), we can control for stationarity by applying
the constraint ∂ι/∂t = 0, or equivalently

ιk+t+1 = ιk+t for t = 1, 2, . . . , Hp − 1. (6.17)
2The term stationarity is used to avoid confusion with the term “steady-state” which is often

used to described a loop voltage profile identically equal to zero.
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Figure 6.4: Each q profile control test discharge is partitioned as follows: 1) EC-heated
start-up and ramp-up to 0.4 kA, 2) q profile control phase, 3) uncontrolled
flattop phase.

in the MPC problem (6.4). However, it certainly does not make sense to apply this
constraint throughout the entire control phase. Instead there should be a trigger
event or a specific time during the control phase at which this constraint is applied.
Again the constraint is applied only at certain points in ρ̂ and softened with the
introduction of another forgiveness parameter,

−εss ≤ Cssιk+t+1 −Cssιk+t ≤ εss, εss ≥ 0. (6.18)

All of the constraint forgiveness parameters are included as optimization vari-
ables in the MPC problem (6.4), and the optimization objective is replaced by,

Jk ← Jk +WEε
2
E +Wqε

2
q +Wssε

2
ss, (6.19)

where Wss is introduced as a weight.

6.4 Experimental Setup

In this section we consider multiple q profile control tests conducted at DIII-D
demonstrating the effectiveness of the proposed control approach. As shown in
Figure 6.4, the discharges were partitioned into three phases involving: an EC-
heated start-up and ramp-up phase, where the plasma current is ramped to 0.4 kA,
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followed by a q profile control phase from time t = 0.4 s until t = t2 (the target
time), and, finally, a fixed power flattop phase for t ≥ t2. The first phase involved an
experimental method using ECCD power to assist the plasma breakdown for more
reliable access to H-mode [82]. Because the EC-assisted start-up was experimental,
it created a significant degree of variability in the plasma state at the start of
the q profile control phase, which is useful for testing the robustness of the profile
controller. After the q profile control phase, the remainder of the discharge was
carried out with fixed NBI power, allowing the q profile to relax uncontrolled. The
idea is to test different q profiles for accessibility to steady-state and robustness
against the development of MHD activity during the third phase, where the intent
of the q profile controller is to achieve the target q profile.

The MPC optimization problem (6.4) combined with the constraint (6.7), is
composed of the minimization of a quadratic function over a set of linear constraints,
a quadratic program (QP). Defining the optimization variables as the sequence of
controls and constraint relaxation parameters of (6.19), z = [Ũc

k, εE, εq, εss] (see
Appendix B.4.1), the problem can be converted to a standard form,

minimize
z

1

2
zTHkz + hTk z,

subject to Aeq,kz = beq,k,

Ain,kz ≤ bin,k,

(6.20)

and solved according to the active set method described in Appendix D.2. The ma-
trices of problem (6.20) are time-varying on account of the time-varying dynamics,
non-constant reference, and feedforward control. The controller work flow is sum-
marized in Algorithm 1. First, control updates for the total plasma current and the
total auxiliary power (6.6) are computed, then the QP problem (6.20) is constructed
and solved. A new control update is computed every 20 ms, however, we apply a
zero-order-hold on updates to the model matrices (6.3) of 100 ms, reducing the set
of QP matrices to 24 for the entire tokamak discharge (control phase extends from
t = 0.4 to t2 = 3.0 s).

The controller was implemented in C and compiled with the optimized intel
compiler (icc). On average, the computation time was just above 1 ms (and worst
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Algorithm 1: q profile MPC workflow

1 Compute and store the pre-computable components of Hk, fk, Aeq,k, beq,k,
Ain,k, bin,k of problem (6.20) (see Appendix B.4)

2 for all k do
3 Update Ip control request to regulate q95 with LQI controller (see

Section 5.3.3)
4 Update the total auxiliary power control request (P req

aux) to regulate the
plasma stored energy (see Section 6.2.4)

5 Load the precomputed components of the QP problem matrices
associated with the current time step k

6 Get latest state measurement xk =

[
ιk
Ek

]
and last applied control uc

k−1

7 Construct the QP problem (6.20) with xk and uk−1 (see Appendix B.4.1)
8 Solve QP to compute next control update uk (see Appendix D.2)
9 end

case of 4ms) during the experiments with a 3.5 Ghz processor. The efficiency of
the algorithm is primarily due to the fact that the number of active constraints on
sequential control updates does not change dramatically, and thus the active set
information from the previous control update can be used to warm start the QP on
the next control update. This allows for a significant reduction in the number of
iterations, and therefore linear system solves, necessary to solve the QP. For more
than 90% of control updates, the QP is solved in fewer than 3 iterations as shown
in Figure 6.5.

1 2 3 4
0

50

100

Iterations to Solve QP

C
on

tr
ol

 U
pd

at
es Shot: 163743

Figure 6.5: Number of QP solver iterations required for each control update. Results
from feedback control test shot 163743.
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Of the eight NBI sources available, two (30L and 30R) are dedicated to diagnos-
tics associated with the Motional Stark Effect (MSE), which is used in the real time
EFIT calculation to obtain measurements of the q profile ([83]). Therefore, 30L and
30R are not available for control. Instead these two NBI contribute a constant 1 MW
of power each. The two counter-current NBI (210L and 210R) were not used in past
experiments because of the tendency of counter-current NBI to destabilize NTMs.
This leaves four NBI sources available for control, the two on-axis, co-current NBI
(330L and 330R) and the two off-axis, co-current NBI (150L and 150R) (see Fig-
ure 1.10(a)). Finally, the ECCD is only included as a feedforward control actuator,
it turns on full just before the target time in an attempt to help freeze in the target
profile by heating the plasma and therefore slowing the diffusion rate.

6.5 Experimental Results

To begin, we consider a zero shear target profile with qmin = 1.6 and q95 = 5. A
control test involving only control of the q profile, i.e. no energy control constraint,
is shown in Figure 6.6, and tests involving q profile plus energy control are shown
in Figure 6.7, where the energy control is incorporated via a constraint to the MPC
problem as described in Section 6.2.4 (Figure 6.3). In all cases, the obtained q

profile is plotted in the upper left of the respective figures in comparison to the
q profile obtained with feedforward control alone. The failure of the feedforward
control action to reach the target is primarily due to slight modeling errors in the
resistive diffusion rate. This emphasizes the importance of feedback control, which
is able to account for the modeling errors and bring the q profile back on target.

In the upper right of the figures, the plasma stored energy is plotted, comparing
the target value with that obtained with feedforward control only and feedforward
+ feedback control. Considering Figure 6.6 vs Figure 6.7, we see that controlling
the q profile alone leads to rather aggressive control action and therefore a choppy
undesirable response in the plasma stored energy when compared to that obtained
with q + energy control. Note, that in Figure 6.6, the effects of the aggressive
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control action are observed in the response of βN (β normalized to the total plasma
current), which can be problematic. If βN is allowed to go too high too early this
can potentially seed magnetic islands that can grow and corrupt the confinement of
the plasma.

Similar results are obtained for other q profile targets with increased levels of
qmin during with q + energy control experiments. In Figure 6.8, targets of qmin = 1.9

and q95 = 5 (shot 163832) qmin = 1.7 and q95 = 5 (shot 163836) are tested.
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Figure 6.6: Shot 163738: q control only. Target: qmin = 1.6 and q95 = 5. In the left
column the achieved q profile at the target time for both feedforward control
and feedforward + feedback control cases is displayed followed by the qmin
value. In the right column starting from the top the plots include the plasma
stored energy, βN , and achieved q95 for both feedforward and feedforward +
feedback cases.

6.5.1 Experimental Results with Relaxed Energy Control Con-

straint

Some experiments testing the relaxed energy control constraint strategy defined
by (6.8) are shown in Figure 6.9, and Figure 6.10. In the first case, Figure 6.9, the
forgiveness window is chosen as εwinL = 1.5 and εwinH = 0.5 and in the second case,
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Figure 6.7: (Top) shot 163743: q + energy control with target: qmin = 1.6 and q95 = 5.
(Bottom) shot 163832: q + energy control and target: qmin = 1.6 and q95 = 5.

Figure 6.10, the control window is chosen as εwinL = 1.5 and εwinH = 0.5. These
shots also incorporate a hard lower bound on total NBI to prevent back transitions
to L-mode (1.0 MW for shot 165917 in Figure 6.9 and 1.5 MW for shot 165922
in Figure 6.10). In both cases, the total injected power is usually at the limits of
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Figure 6.8: (Top) shot 163832: q + energy control with target: qmin = 1.9 and q95 = 5.
(Bottom) shot 163836: q + energy control with target: qmin = 1.7 and
q95 = 5.

window. This leads to an offset in the energy and target energy but aids control of
the current profile.
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Figure 6.9: Shot 165917: q + energy control. Target: qmin = 1.6 and q95 = 5. A lower
bound on total NBI power of 1 MW is applied to prevent back transitions to
L-mode. In the left column the achieved q profile at the target time for both
feedforward control and feedforward + feedback control cases is displayed
followed by the qmin and q95 value. In the right column starting from the
top the plots include the plasma stored energy, βN , and the NBI power. The
final plot includes the power requested by the energy control constraint (red),
the total power window bounds (magenta) and NBI power requested by the
profile controller (blue).

6.6 Simulations Results of MPC Tracking with Ad-

ditional Constraints

In this section, simulation tests of the MPC tracking method with the additional
constraints of Section 6.3 are presented. The simulations are carried out with the
same setup, described in Section 6.4, of the experimental tests. To test the con-
troller, we consider two simulations. The first, shown in Figure 6.11, includes all
the constraints discussed in Section 6.3 except for the constraint associated with
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Figure 6.10: Shot 165922: q + energy control. Target: qmin = 1.8 and q95 = 5. A lower
bound on total NBI power of 1.5 MW is applied to prevent back transitions
to L-mode. In the left column the achieved q profile at the target time
for both feedforward control and feedforward + feedback control cases is
displayed followed by the qmin and q95 value. In the right column starting
from the top the plots include the plasma stored energy, βN , and the NBI
power. The final plot includes the power requested by the energy control
constraint (red), the total power window bounds (magenta) and NBI power
requested by the profile controller (blue).

the maximum βN limit, and the second, shown in Figure 6.12, includes all the con-
straints without exception. In both simulations, the feedforward control (blue dash
in the upper right plot of Figure 6.11 and Figure 6.12) is essentially deactivated by
freezing the feedforward control value at 1 second. This is done to add a signifi-
cant input disturbance with the objective of testing the feedback controller. Ideally,
the simulations should recover the target q profile at the target time of 3 seconds
and hold it there. The trigger event to apply the stationarity constraint, is simply
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Figure 6.11: Simulation 1: The upper left plot shows the ι profile tracking during the
closed-loop simulation. Below the upper left plot, the plasma stored energy
response in closed-loop is plotted and below that the βN value is plotted.
The βN constraint is not included in this simulation and as can be seen
in lower left plot, the βN limit is violated. On the right, the controlled
actuators powers plotted, showing both feedforward value and the feedfor-
ward+feedback (Req) value, and in the lower right the obtained q profile is
plotted at the target time of 3 s and at 5 s.

chosen as a particular time during the discharge. To aid the controller, the sta-
tionarity constraint is applied at 2.5 seconds, somewhat earlier than the target time
(t2 = 3.0 s).

In the first simulation, without the βN limit constraint, the controller is able
to obtain the target q profile and hold it there, but the βN limit is violated. The
feedforward reference was designed with different model parameters than those used
during the feedback simulations so as to make the target profile not achievable pre-
cisely. This is done to more closely simulate experiment conditions and explains
the slight error in the profile matching at the center in the upper left plot of Fig-
ure 6.11. In the second simulation, the βN limit is met, but the profile begins to
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Figure 6.12: Simulation 2: Same as Figure 6.11 except we include the βN limit as a
constraint. To satisfy the βN limit, the controller makes a trade-off in favor
of off-axis NBI power (150L and 150R) over on-axis NBI (330L and 330R).

diverge slightly from the target after the target time of 3 seconds (see the red time
trace of ι profile, upper left plot Figure 6.12). The βN limit forces the controller
to make a trade-off in favor of off-axis NBI (150L and 150R) power over on-axis
NBI (330L and 330R) power to meet the target q profile as closely as possible while
satisfying βN limit, which equates to an upper bound on total NBI power.

6.7 Conclusions

Since the high performance regimes of tokamaks operate near stability limits, active
feedback controllers needs to be sufficiently sophisticated to make judicial control
actions that avoid violating stability limits. The control approach developed in this
chapter involves combining optimized feedforward control with constrained, predic-
tive feedback to improve repeatability of q profile target shapes. An explicit model
of the underlying dynamics of the plasma is embedded into a numerical optimization
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scheme to solve for the control commands. Solving the feedback control problem
numerically allows for the explicit incorporation of constraints associated with actu-
ator and plasma stability limits. This allows for the design of an aggressive profile
tracking controller while maintaining avoidance of hard limits for stable plasmas
such as the βN limit. Experiments have demonstrated the effectiveness of this ap-
proach in reaching desired q profile targets as well as the real-time applicability of
the numerical computation involved. With minor extensions the approach has been
modified to include constraints to aid steady state achievement as opposed to the
more typical control objective of profile matching. This demonstrates the flexibility
of the approach which makes it a valuable physics-studies support tool.
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Chapter 7

Feedback Control Design for the

Rotation Profile Evolution

7.1 Introduction

This chapter describes strategies for feedback control of the rotation profile in toka-
mak plasmas with the purpose of building a suitable tool for aiding rotation-related
physics studies. We focus specifically on the DIII-D tokamak during H-mode dis-
charges. However, the model-based control approaches described are generally ap-
plicable, since the model can be adapted to a variety of tokamaks and scenarios
only by tailoring the model parameters and not changing the model structure. We
consider the first-principles-based model described in Section 3.3 for the evolution
of the plasma toroidal rotation, which was simplified for applicability to real-time
control design by combining the model with scenario specific correlations for the
temperature, density, and torque sources.

Control of the bulk rotation with the use of neutral beam injection (NBI) is
well established. Exploiting the availability of both co- and counter-current NBI
at DIII-D, simultaneous control of the bulk rotation and plasma stored energy has
been accomplished experimentally [84, 85], and a similar approach was considered
at JET [86]. However, little work has been done to develop strategies for control of
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the rotation profile shape, which will be the objective of this chapter.
We begin with a linear quadratic regulator (LQR) type control formulation for

the combined regulation of the rotation profile and plasma stored energy, which is
shown to be robust against the characteristically anomalous behavior of the momen-
tum diffusivity. An LQR controller is essentially the solution to an optimal control
problem, which seeks to minimize a quadratic function penalizing the discrepancy
between the predicted system evolution (assuming linear dynamics) and the desired
reference. In general, the optimal control sequence cannot be followed due to con-
straints imposed by the real plasma dynamics. For example, actuator constraints
and MHD stability limits. This motivates consideration of a model-predictive control
(MPC) approach, which allows for the explicit incorporation of actuator constraints
into the design, and also provides the capability to avoid operation limits such as
the βN limit. While the MPC approach is in fact much more computationally de-
manding because it involves solving a numerical optimization problem on every time
step, it is possible to perform the computation in real-time by limiting the problem
size (short prediction horizon), and employing efficient optimization techniques.

This chapter is organized as follows. In Section 7.2 the infinite dimensional
PDE describing the rotation profile evolution is reduced to a finite dimensional set
of ODEs by the finite element method to facilitate the design of optimal feedback
controllers. In Section 7.3 simultaneous feedback control of the rotation profile
and plasma stored energy evolution via LQI is considered. In Section 7.4 model
predictive control of the rotation profile is considered with constraints for avoidance
of unstable plasmas. Finally, conclusions are stated in Section 7.5.
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7.2 Model Order Reduction

For convenience of control design, we can rewrite the control-oriented model (3.27)
by separating the time-varying and spatially-varying parameters to obtain,

∂Ωφ

∂t
=

1

ρ̂
f1
∂

∂ρ̂

(
ρ̂f2χφ

∂Ωφ

∂ρ̂

)
+

nNBI∑
ξ=1

fNBI,ξuNBI,ξ

+ (Ωφ − Ω?
φ)fNRMFuNRMF − Ωφun̄i ,

(7.1)

where the functions f(·)(ρ̂) incorporate constant profile shapes,

f1 =
1

min
prof
i 〈R2〉Ĥ

,

f2 = Ĥmin
prof
i 〈R2(∇ρ̂)2〉,

fNBI,ξ =
kprofNBI,ξ η

prof
NBI,ξ

mi〈R2〉

(
nprofi

)αn−αT−1 (
kprofTi

T prof
i

)αT
,

fNRMF =
kprofNRMF η

prof
NRMF

mi〈R2〉

(
nprofi

)βn−βT−1 (
kprofTi

T prof
i

)βT
(ωprof

E )βω ,

(7.2)

u(·)(t) are a set of nonlinear input functions,

un̄i =
˙̄ni
n̄i
, uNBI,ξ =

1

n̄i

(
Ip
√
Ptot

n̄i

)αT
n̄αni PNBI,ξ,

uNRMF =
1

n̄i

(
Ip
√
Ptot

n̄i

)βT
n̄βni I

2
NRMF,

(7.3)

and the boundary conditions (3.28) remain unchanged,

∂Ωφ

∂ρ̂
(0, t) = 0, Ωφ(1, t) = 0. (7.4)

7.2.1 Discretization by Finite Element Method

The infinite-dimensional model (7.1) in ρ̂ is transformed into a finite-dimensional
model using the finite-element method. First, the rotation profile is approximated
as

Ωφ(ρ̂, t) ≈
lω∑
k=1

ωk(t)φk(ρ̂) (7.5)
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Figure 7.1: Cubic splines for finite element discretization of the rotation profile, Ωφ.

where the basis {φk | k = 1, 2, . . . , lω}, is chosen as a set of cubic splines (Fig-
ure 7.1) on a finite support that satisfy the boundary conditions (7.4). Similarly,
the diffusivity profile is approximated as

χφ(ρ̂, t) ≈
lχ∑
α=1

γαϕα(ρ̂), (7.6)

where the basis {ϕα | α = 1, 2, . . . , lχ} is obtained by the proper orthogonal decom-
position (POD) method [87], summarized in Appendix A.3. The basis obtained for
χφ based on DIII-D shot 147634 is shown in Figure 7.2(a), as well as the expected
range modeled as a linear combination of the modes in Figure 7.2(b). The POD
method has the capability of obtaining a basis with relatively lower dimension than
a spline basis.

Substituting (7.5) and (7.6) into (7.1), then projecting onto a set of trial basis
functions as described in Appendix A.2, the PDE model is recast into a set of
ordinary differential equations (ODE), which can be written as the matrix–vector
equation,

M
dω

dt
= −Mωun̄i − Sω

+

nNBI∑
ξ=1

BNB,ξuNBI,ξ + BNRωuNRMF −B?
NRuNRMF,

(7.7)
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Figure 7.2: (a) POD modes that serve as a basis for χφ. (b) The time average of χφ
(black line) based on DIII-D shot 147634 over the time period t = 2−5 s, i.e.
the current flattop phase. The lines show snapshots of χφ during the current
flattop phase and grey area shows the range covered by the uncertainty model.

where ω = [ω1, ω2, . . . , ωlω ]T , and the matrices are defined in Appendix A.2. From (7.7),
we can see that the rotation dynamics are approximately linear, with bilinear terms
associated with the density and NRMF controls.

7.2.2 Uncertainty Modeling for Momentum Diffusivity (χφ)

Since the effective diffusivity, χφ, is assumed to include contributions of turbulent
effects which are not sufficiently understood to obtain a reliable model, we chose
to represent it as an uncertainty. The parameter γ = (γ1, ..., γlχ) of (7.6) is the
uncertainty vector representing a finite dimensional approximation of χφ(ρ̂, t) with
respect to the basis {ϕα | α = 1, . . . , lχ}. Each γα has the form γα = γ0

α + γ1
αδα,

where γ0
α and γ1

α are constants and |δα| ≤ 1 for all α. The nominal model of χφ
(black line of Figure 7.2(b)) is defined by γ0

α, and the uncertainty term allows the
modeled value of χφ to vary in the range plotted by the grey area of Figure 7.2(b).

To make the uncertainty in the state-space system explicit, the matrix S of (7.7)
can be

S(δ) = Ŝ0 +

lχ∑
α=1

δαŜ
α, (7.8)
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where δ = (δ1, . . . , δlχ) (see Appendix A.2.1). Combining (7.7) and (7.8), we obtain
a nonlinear, finite-dimensional, ordinary differential equation, uncertain model of
the form

ω̇ = F (ω,u, δ) (7.9)

where the input u = ( ˙̄ni, n̄i, PEC, PNB,1 , . . . , PNB,nNBI , INRMF) consists of the physical
actuators.

7.3 Feedback Control via Linear Quadratic Integra-

tor (LQI)

In this section, we follow a linear quadratic integrator [88] approach for the simul-
taneous regulation of the toroidal angular rotation profile and plasma stored energy
in the DIII-D tokamak during H-mode scenarios.

To begin, we separate the actuators of the system (7.9) into controlled and
uncontrolled. The plasma density in tokamaks is extremely difficult to control
with any real precision in large tokamaks such as DIII-D, therefore deviations of
the density from the desired operating point will be treated as an input distur-
bance. Moreover, the first two NBI (30L and 30R) are often required for di-
agnostics. To account for this we split the actuators u into the controlled in-
puts uc = (PEC, PNBI,3, . . . , PNBI,nNBI , INRMF) and the uncontrolled inputs unc =

(PNBI,1, PNBI,2, ˙̄ni, n̄i).
By linearizing the system (7.9) with respect to the state and control around a

nominal equilibrium point (ωeq,ueq) for δ = 0, we obtain the linear time-invariant
model given by

ẋω = Aωxω + BωuFB + Bω,dud, (7.10)

where xω = ω − ωeq, ũ(t) = uc(t)− uc
eq, d(t) = unc(t)− unc

eq, and the matrices are
Aω = ∇ωF |ωeq ,ueq , Bω = ∇ucF |ωeq ,ueq , and Bω,d = ∇uncF |ωeq ,ueq .

Since DIII-D includes NBI aligned in both the co-current and counter-current
directions as well as heating from RF waves, it provides for a partial decoupling of
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the injected energy and rotation drive, enabling sufficient actuation for combined
rotation and stored energy control. For control design purposes, the stored energy
evolution (3.5) is approximated by

dE

dt
= − E

τEeq

+ Paux(t), (7.11)

where the contributions of ohmic power and radiative power are dropped since they
are relatively small compared to the auxiliary power for H-mode plasmas, and τEeq is
the global energy confinement time associated with the equilibrium point (ωeq,ueq).
An augmented state-space system, x = (E,xω), is obtained by lumping the energy
evolution together with the linearized rotation evolution,

d

dt

[
E

xω

]
=

[
−1/τEeq 0

0 Aω

]
︸ ︷︷ ︸

A

[
E

xω

]
+

[
1T 0

Bω

]
︸ ︷︷ ︸

B

uFB
, (7.12)

where 1 = [1, 1, . . . , 1]T is a column of ones1.

Singular Value Decomposition

For a requested target state, xt, let xss
∞ represent the closest stationary state achiev-

able according to the model. This can be determined from the pseudo-inverse, K†sg,
of the model static gain matrix Ksg = −A−1B. The symbol † represents the Moore-
Penrose pseudo-inverse determined by singular value decomposition (SVD), i.e.

Ksg = WΣVT , K†sg = VΣ†WT , (7.13)

where W and V are unitary matrices, i.e. WWT = WTW = I and VTV =

VVT = I. The pseudoinverse of the diagonal matrix Σ is obtained by taking its
transpose, ΣT , and then replacing each nonzero element with its reciprocal. The
input associated with the desired target is determined from the pseudo-inverse of
the static gain matrix, uss

FB,∞ = K†sgxt, which is used to determine the closest

1Of the controls, the ECCD and NBI contribute to the total plasma stored energy, but not the
NRMF current.
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achievable stationary state given by xss∞ = Ksgu
ss
FB,∞ = KsgK

†
sgxt. Because several

of the actuators have similar effects on the profile, the matrix Ksg = WΣV T is
ill-conditioned, i.e. the ratio of the largest singular value to the smallest one is
much larger than one. Therefore small deviations in the profile associated with the
directions of the smaller singular values can result in unreasonably large control
requests. Thus, we use a truncated (Tr) singular value expansion of the static gain
matrix given by, Ksg,Tr = WTrΣTrV

T
Tr, where the matrices WTr, ΣTr, and VTr are

the components of the SVD associated with the nSV largest singular values,

W =
[
WTr Wn

]
, Σ =

[
ΣTr 0

0 Σn

]
, V =

[
VTr Vn

]
, (7.14)

and Wn, Σn, and Vn are the components associated with the smaller, neglected
singular values. Therefore,

uss
FB,∞

∼= uFB,∞ = K†sg,Trxt, x
ss
∞
∼= x∞ = Ksg,TrK

†
sg,Trxt. (7.15)

We use the theory of linear quadratic optimal control to obtain a control law
which regulates the system to the closest achievable stationary state while minimiz-
ing the cost function

J =

∫ ∞
0

[
x̃T (t) ζT (t)

]
Q

[
x̃(t)

ζ(t)

]
+ ũT (t)Rũ(t)dt, (7.16)

where x̃ = x− x∞, ũ = uFB − uFB,∞, Q positive semidefinite, R positive definite,
and ζ represents the integral states introduced for integral control. The added
integral states are expressed as ζ = Kζ

∫ t
0
x̃(τ)dτ , where Kζ functions as a design

matrix.

Choice of Matrix Kζ

With the choice Kζ = WT
Tr, we have KζKsg,TrK

†
sg,Tr = Kζ , since[

WT
Tr

]
·
[
WTrΣTrV

T
Tr

]
·
[
VTrΣ

−1
Tr WT

Tr

]
= WT

Tr = Kζ , (7.17)

which ensures Kζxt → Kζx∞, since x∞ = Ksg,TruFB,∞ = Ksg,TrK
†
sg,Trxt. Here, we

have made use of the fact that WT
TrWTr = I, and VT

TrVTr = I, but WTrW
T
Tr 6= I.
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Proportional Plus Integral Control

Written in terms of the requested target (x̃(t) = x(t)−Ksg,TrK
†
sg,Trxt(t)), the control

law that minimizes (7.16) reduces to a proportional plus integral controller of the
form

ũ(t) = −Kp

[
x(t)−Ksg,TrK

†
sg,Trxt(t)

]
−KiKζ

∫ t

0

dτ
[
x(τ)−Ksg,TrK

†
sg,Trxt(τ)

]
,

(7.18)

where the proportional gain, Kp, and integral gain, Ki, are given by
[
Kp Ki

]
=

R−1B̂Z, where Z = ZT is the unique positive semi-definite solution to the algebraic
Ricatti equation, ÂTZ + ZÂ − ZB̂R−1B̂TZ + Q = 0, and the system (Â, B̂) is
constructed by augmenting the model (7.10) with the integrator states, i.e.[

˙̃x

ζ̇

]
=

[
A 0

Kζ 0

]
︸ ︷︷ ︸

Â

[
x̃

ζ

]
+

[
B

0

]
︸︷︷︸

B̂

ũ. (7.19)

The design parameters include Kζ = WT
Tr, Q and R. The state weighting matrix,

Q, is chosen as Q =

[
Q̂ 0

0 α2
ζInSV

]
, where αζ is a constant that weights the integrator

states relative to the model states, Q̂ is the weighting on the model states and R is
chosen diagonal.

7.3.1 Model in Robust Control Framework

The transfer function of a linear state-space system with representation A, B, C,
D can be written as an upper linear fractional transformation (LFT), G(s) =

FU(Ma,
1
s
I) = D + C(sI − A−1)B, where FU denotes the upper LFT, s is com-

plex variable, and the matrix Ma is defined as

Ma =

[
A B

C D

]
. (7.20)
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Figure 7.3: (a) The ∆− P ∗ −Ktf robust control design framework. (b) The structured
singular value µ. (c) The Range of χφ for which robust stability criterion is
satisfied.

For robustness analysis, the linearized state space system (7.10) can be written as
the general linear state-space uncertainty

Ma =

[
A0 +

∑lχ
α=1 δαAα B0 +

∑lχ
α=1 δαBα

C0 +
∑lχ

α=1 δαCα D0 +
∑lχ

α=1 δαDα

]
, (7.21)

where
A0 = diag

{
− 1

τEeq

, −un̄i −M−1(Ŝ0 + BNRMFuNRMF)
∣∣∣
ωeq ,ueq

}
,

B0 = B, C0 = I, D0 = 0, Aα = diag{0,−M−1Ŝα}, and Bα = Cα = Dα = 0.
Let Ktf represent the transfer function of the controller obtained in Section 7.3

and let ∆ = diag{δ}, then we can form the standard ∆ − P −Ktf configuration
(Figure 7.3(a)) by employing the method outlined in [89], which exploits the struc-
ture of the state matrices in (7.21). See [90] for an example of this technique. If the
generalized plant is partitioned as

P? =

[
P̄?

11 P̄?
12

P̄?
21 P̄?

22

]
(7.22)

where

y∆ = P̄?
11u∆ + P̄?

12u,

e = P̄?
21u∆ + P̄?

22u,
(7.23)
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the system can be written in the N −∆ form by using the definition of lower LFT
between P? and Ktf ,

N = FL(P?,Ktf ) = P̄?
11 + P̄?

12Ktf (I − P̄?
22Ktf )

−1P̄?
21. (7.24)

We can compute the structured singular value µ(N11(jω)) to determine the robust
stability of the closed-loop system, where N11 is the transfer function between y∆

and u∆. The closed-loop system is robustly stable for all allowable perturbations if
and only if µ(N11(jω)) < 1, ∀ω [91]. To analyze the robust stability of the closed-
loop system, a plot of µ versus frequency is shown in Figure 7.3(b). To obtain this µ
value, the value of χφ is allowed to vary throughout the range shown in Figure 7.3(c)
with profile shapes equal to a linear combination of the POD modes in Figure 7.2(b).
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Figure 7.4: Feedback control simulation. (a.) Ωφ and E, where the solid line is the
target and the achieved profile is marked by circles. The stored energy set
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Figure 7.5: Feedback control simulation. Same as in Figure 7.4 except the χφ profile is
allowed to vary randomly as a linear combination of the POD modes.

7.3.2 Simulation Results of the LQI Approach

In this section, we present a simulation study of the controller’s effectiveness. The
target for Ωφ is obtained from (7.9) with the input values and parameter profiles of
DIII-D shot 147634, and the stored energy target is simply set to 1 MW, a typical
value for H-mode plasmas. Constant feedforward values are used for the NBI, and
the feedforward value of the NRMF coil current is set to a ramping function. The
selected feedforward input values constitute a large input disturbance from the input
values of DIII-D shot 147634 used to determine the target profile shape.

The tuning problem consists of the selection of the diagonal elements of Q and
R and the constant αζ to regulate the profile as close as possible to the target while
maintaining constant stored energy. In Figure 7.4, we test the controller’s tracking
performance with feedback ON throughout the simulation. The target profile and
simulated closed-loop profile response are plotted in 7.4(a), and the feedforward and
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requested actuator powers are plotted in Figure 7.4(b). The controller performs well,
enabling tight profile regulation while maintaining a nearly flat stored energy. At
t = 4 s, the rotation profile target switches discretely to a lower target value. Note,
the controller obtains the second, lower rotation target by increasing the counter
NBI power (P210L and P210R) while reducing the co NBI power (P330L and P150L) to
maintain the stored energy around the set point of 1 MW. The additional power
from the ECRH is quite advantageous in maintaining the stored energy value and
the NRMF provides some advantage over NBI in regulating the rotation at the
plasma edge.

In the second simulation, Figure 7.5, the conditions are the same as the first ex-
cept we allow for random perturbations in the value of χφ over the range depicted in
Figure 7.2(b). This simulation provides a check of robustness against the anomalous
properties of χφ.

7.4 Feedback Control via Model Predictive Control

(MPC)

In this section, we follow a model predictive control (MPC) [78, 79] approach for the
simultaneous regulation of the toroidal angular rotation profile and plasma stored
energy in the DIII-D tokamak during H-mode scenarios. The previous section con-
sidered LQI control of the combined rotation and and plasma stored energy evo-
lution. Both control approaches are based on the first-principles-based model of
sections 3.3 and 7.2, therefore a comparison will be made between the MPC ap-
proach and the LQI approach based on simulations. As will be shown, the profile
control performance is similar in both cases, but the MPC approach provides an
important advantage for tokamak plasma control. Because the control commands
are obtained by solving a numerical optimization problem, explicit constraints for
the avoidance of plasma stability limits can be incorporated.
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Model Linearization for MPC

For control design purposes, the model (7.9) is linearized with respect to the state
and actuators are discretized in time. The control technique considered in this
section involves solving a numerical optimization problem on each time step. It
is necessary to linearize the model so that the optimal control problem is con-
vex, which is necessary in order to ensure a solution is always attainable (see
Appendix D.2). Like in Section 7.3, we split the control u into the controlled
input uc = (PEC, PNBI,3, . . . , PNBI,nNBI , INRMF) and the uncontrolled input unc =

(PNBI,1, PNBI,2, ˙̄ni, n̄i), and linearize the system (7.9) with respect to the state and
control around a nominal equilibrium point (ωeq,ueq) for δ = 0, to obtain the linear
time-invariant model given by

ω̇ ≈F
∣∣∣ωeq
ueq

+
∂F

∂ω

∣∣∣∣ωeq
ueq

(ω − ωeq) +
∂F

∂uc

∣∣∣∣ωeq
ueq

ũ +
∂F

∂unc

∣∣∣∣ωeq
ueq

d, (7.25)

where ũ(t) = uc(t) − uc
eq, d(t) = unc(t) − unc

eq. After discretizing the linearized
system with a semi-implicit scheme in time, we obtain the model,

ωk+1 = Aωk + Bũk + Bddk + fω, (7.26)

where

A =

I − Ts ∂F
∂ω

∣∣∣∣ωeq
ueq
δ=0

−1

, B = TsA
∂F

∂uc

∣∣∣∣ωeq
ueq
δ=0

,

Bd = TsA
∂F

∂unc

∣∣∣∣ωeq
ueq
δ=0

, fω = TsA

F ∣∣∣ωeq
ueq
δ=0

− ∂F

∂ω

∣∣∣∣ωeq
ueq
δ=0

ωeq

 ,

and Ts is the time step. The affine term fω arises due to the fact that we are writing
the model in terms of the full state rather than the more common error state, i.e.
the state relative to the equilibrium value, for reasons discussed in the next section.

7.4.1 Reference Tracking Problem via MPC

The reference tracking problem is formulated as a finite-horizon, optimal tracking
control problem. At time k, consider the quadratic optimization problem
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minimize
{∆ũk+t}Hut=0

Jk =

Hp∑
t=1

‖ωk+t − rk+t‖Q +
Hu∑
t=0

‖∆ũk+t‖R ,

subject to ωk+t+1 = Aωk+t + Bũk+t + Bddk+t + fω,

ωk = ω(k) : estimated state at time k,

∆ũk = ũk+1 − ũk,

ũk−1 = previously applied control,

dk+t = dk for t = 0, 1, . . . Hu,

ũk+t ∈ Ũk+t for t = 0, 1, . . . Hu.

(7.27)

The cost function Jk includes an instantaneous cost on deviations of the measured
outputs from the desired reference, rk, over the prediction horizon, Hp. Also, an
instantaneous cost is applied to deviations in the control, ∆ũ = ũk+1− ũk, implying
no cost for the control sequence to be away from the value associated with equilib-
rium operating point, ueq, but there is a cost for fast rate changes. Predicting the
state evolution in terms of the actual state with the use of the affine model (7.26)
instead of a deviation term (error state) allows the controller to anticipate future
reference changes. We allow the horizon associated with the control, Hu, to be less
than the prediction horizon associated with the state, to reduce the complexity of
the problem. We assume no further update in the control beyond the control hori-
zon, i.e. ũk+t = ũk+t−1 for t ≥ Hu and we assume the uncontrolled actuators are
constant (dk+t = dk). The term {ũk+t ∈ Ũk+t}Hut=0 describes linear constraints on
the actuators to be described. The solution to this optimization problem,

∆Ũk =


∆ũk

∆ũk+1
...

∆ũk+Hu

 , (7.28)

is a sequence of control decisions. Of course, we cannot simply apply the resulting
control sequence because the model used to predict the future states is not perfectly
accurate. Therefore, the common practice is to apply the first step of the sequence,
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then sample the state again, and repeat the optimization procedure, which intro-
duces feedback to the control.

7.4.2 Converting the Rotation Control Problem to a Stan-

dard Form Quadratic Program (QP)

The optimal control problem (7.27) consists of the minimum of a quadratic function
over a set of linear constraints, i.e. a quadratic optimization problem (also known
as a quadratic program (QP)). Using the shooting method transcription approach
described in Appendix B.1.1, the state evolution of the MPC problem (7.27) can be
written as a function of the optimization variables (7.28). Noting the model (7.26),
the predicted state evolution, at time k, can be written in terms of the control
variables and the current state estimate,

ωk+1 = Aω[k] + Bũk + Bddk + fω,

ωk+2 = A2ω[k] + ABũk + Bũk+1 + ABddk + Bddk + Afω + fω,

...

ωk+Hp = AHpω[k] + AHp−1Bũk + AHp−2Bũk+1 + · · ·+
Hp−1−Hu∑

i=0

AiBũk+Hu

+

Hp−1∑
i=0

AiBddk +

Hp−1∑
i=0

Aifω,
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which can be written more compactly as
ωk+1

ωk+2

...
ωk+Hp


︸ ︷︷ ︸

Xk

=


A

A2

...
AHp


︸ ︷︷ ︸

Φ

ω[k] +


B

AB B
... . . .

AHp−1B AHp−2B . . .
∑Hp−1−Hu

i=0 AiB


︸ ︷︷ ︸

Γu


ũk

ũk+1

...
ũk+Hu


︸ ︷︷ ︸

Ũk

+


Bd

ABd + Bd
...∑Hp−1

i=0 AiBd


︸ ︷︷ ︸

Γd

dk +


fω

Afω + fω
...∑Hp−1

i=0 Aifω


︸ ︷︷ ︸

Γf

,

or equivalently

Xk = Φω[k] + ΓuΓ−1
∆

(
∆Ũk + Γlastũk−1

)
+ Γddk + Γf , (7.29)

where Γ∆ and Γ∆,k−1 are difference operators such that ∆Ũk = Γ∆Ũk − Γlastũk−1

(see Section B.4). The system outputs can be obtained by

Yk =


Yk+1

Yk+2

...
Yk+Hp

 =


C

C
. . .

C


︸ ︷︷ ︸

C̄

Xk, (7.30)

where C can be chosen so as to control ω at certain points in ρ̂. With the use of
the matrices defined above, we can recast the optimal control problem (7.27) into
the standard quadratic programming form. Introducing the notation

Tk =


rk+1

rk+2

...
rk+Hp

 (7.31)
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we can rewrite the optimal control problem (7.27) in the form

minimize
∆Ũk

J = (Yk −Tk)
T Q̄(Yk −Tk) + ∆ŨT

k R̄∆Ũk

subject to ∆Ũ ∈ ∆Ũ
(7.32)

where Q̄ = IHp ⊗Q, R̄ = IHu ⊗R, and the actuator constraints, ∆Ũ ∈ ∆Ũ are
easily transformed to linear inequality constraints.

Since the objective function is positive definite (R̄ > 0 and Q̄ ≥ 0)2 it can
be solved efficiently using active set techniques (see Appendix D.2), which take
advantage of the fact that the set of active constraints on sequential control updates
does not change dramatically, and thus the active set information from the previous
control update can be used to warm start the solution on the next control update.

Because of imperfections in the model due to linearization the MPC solution will
not show perfect tracking. However, the model matrices of the dynamics constraints
in problem (7.27) are augmented as in Appendix B.5 to allow for offset free control.

7.4.3 Plasma Stored Energy Control

For control design purposes the stored energy evolution is approximated by its lin-
earized dynamics,

dE

dt
= − E

τEeq

+ Paux(t), (7.33)

where the contributions of ohmic power and radiative power are dropped since they
are relatively small compared to the auxiliary power, and τEeq is the global energy
confinement time associated with the equilibrium point (ωeq,ueq). The approxi-
mate energy dynamics (7.33) describe a linear first order system, therefore with a
simple proportional-integral (PI) controller we can obtain acceptable closed loop
performance. With the PI controller,

P req
aux(t) = kp(E

d(t)− E(t)) + ki

∫ t

0

Ed(τ)− E(τ)dτ, (7.34)

2Strictly speaking the objective is not positive definite, since Q is not positive definite, but it is
positive definite within the null space of the equality constraints (dynamics constraints of (7.27)).
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Plant	
(Plasma)	
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Controller	
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PID		

Energy		
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req (t)

ωk	

Ek	

Figure 7.6: Rotation profile MPC with total power constraint to satisfy desired plasma
stored energy.

we can obtain a request for total auxiliary input power, P req
aux(t), which can en-

ter into the MPC problem as an equality constraint on the total auxiliary power.
The combination of rotation profile MPC with energy control constraint is depicted
in Figure 7.6. The constraint on total auxiliary power can be written as

nNBI∑
ξ=1

PNBI,ξ + PEC = P req
aux(t), (7.35)

which represents a linear constraint on the control variables, therefore it can be
incorporated without modification into problem (B.4) over the control horizon, Hu.
In this manner we can obtain the desired plasma stored energy, and then allow the
MPC controller to find the best combination of torque sources, NBI and NRMF,
satisfying the total power constraint to match the desired rotation profile. The
ECRH does not contribute any significant torque to the plasma, so it can essentially
vary freely within its limits to satisfy the constraint (7.35).

7.4.4 Normalized Pressure Ratio (βN) Limit

Deleterious MHD activity can be avoided by maintaing normalized βN , β normal-
ized to the plasma current, below βmax

N . To help ensure stable plasma conditions
during the discharge, we can predict changes to βN over the prediction horizon and
enforce a constraint in the total auxiliary power to maintain βN below an acceptable
limit. The normalized β can be expressed as βN = kβN

E
Ip
, where kβN is a constant

depending on the plasma volume, plasma minor radius, and toroidal magnetic field.
At time k, we can take the current value of τE,k (τE,k ∝ I0.93

p,k n̄
0.41
e,k P

−0.69
tot,k ) and
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current energy Ek, to estimate the forward evolution of βN according to

Ek+1 = AEEk +BEPaux,k,

Ek+2 = A2
EEk + AEBEPaux,k +BEPaux,k+1,

Ek+3 = A3
EEk + A2

EBEPaux,k + AEBEPaux,k+1

+BEPaux,k+2,

Ek+t = AtEEk +
t−1∑
i=0

AiEBEPaux,k+t−i,

(7.36)

βN,k+t = kβN
Ek+t

Ip,k+t

, (7.37)

where AE =
(

1 + 1
τE,k

Ts

)−1

and BE = AETs. In this work Ip is assumed either
constant or preprogrammed therefore the future Ip evolution is known and the con-
straint on βN reduces to a maximum bound on requested auxiliary power. Combin-
ing (7.36) and (7.37), we can transform the βN limit over the prediction horizon,
βN,k+t|t=0,1,...,Hp

≤ βmax
N into a constraint on maximum auxiliary power input. In

order to ensure the MPC problem remains feasible, potential conflicts between the
βN limit and the energy control constraint (7.35) are alleviated by softening the
energy control constraint with a forgiveness parameter,

P req
aux(t)− εE ≤

nNBI∑
ξ=1

PNBI,ξ + PEC ≤ P req
aux(t) + εE, (7.38)

where εE ≥ 0 represents a window on forgiveness of satisfying the energy control
constraint. The forgiveness parameter is included as an optimization variable in the
MPC problem (B.4) by replacing the optimization objective with

Jk +WEε
2
E, (7.39)

where WE is introduced as a weight.

7.4.5 Simulation Results of MPC Approach

In this section, we consider a simulation study of the controller’s effectiveness. The
target for Ωφ is obtained by simulating the rotation profile evolution with the model
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Figure 7.7: Feedback control simulation. (a) Ωφ, where the solid line is the target and
the achieved profile is marked by circles. (b) Input values and E, where
the controller requested power is in green (MPC) and red (LQI), the blue
dashed line marks the feedforward power, and the pink dashed line marks the
actuators limits. The stored energy set point is marked by the blue dashed
line.

using the input values and parameter profiles of DIII-D shot 147634, and the stored
energy set-point is simply set to 1 MJ, a typical value for H-mode plasmas. We use
no feedforward control and allow the feedback controller alone to recover the target
profile. The rotation evolution is modeled with equations (7.1)-(7.4).

The control-design problem consists of the selection of the diagonal elements of
Q and R, the prediction horizons Hp, and the control horizon Hu of the quadratic
program (QP) (7.27). To solve the QP, we use an active set algorithm, and take
advantage of warm-starting (see Appendix D.2). Active set algorithms are essentially
efficient methods for searching through the possible combinations of active inequality
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Figure 7.8: Same simulation as in Figure 7.7 with βN limit imposed. The line and color
configuration is also the same as in Figure 7.7.

constraints, i.e. the inequality constraints that are satisfied as equalities at the
optimal solution. Once the active set is known, the solution to a strictly convex
quadratic program reduces to the solution of a linear system. Therefore most of
the work of an active set algorithm is associated with determining the active set.
Noting the active set does not change much from one control update to the next, we
can use the active set from the previous MPC solution to warm-start the next MPC
solution. We use a short horizon time of Hp = 10 and Hu = 5, which combined with
warm-starting allows for an average computation time less than 3 ms.

In Figure 7.7, we test the controller’s tracking performance with feedback ON
throughout the simulation. The target profile and simulated closed-loop profile re-
sponse are plotted in 7.7(a), and the requested actuator powers3 and plasma energy
are plotted in Figure 7.7(b). For comparison the results of both the MPC approach

3P330L and P330R are co-current on-axis, P150L and P150R are co-current off-axis and P210L and
P210R are counter-current on axis NBI.
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Figure 7.9: Same simulation as Figure 7.7, except we allow χφ to vary randomly in the
range shown in Figure 7.2(b).

and the linear quadratic integral (LQI) approach of Section 7.3.2 are both plotted
in Figure 7.7 under the same conditions (no βN limit). The MPC profile controller
performs well, enabling tight profile regulation while maintaining a nearly flat stored
energy. At t = 4 s, the rotation profile target switches discretely to a lower target
value. Note that the controller obtains the second, lower rotation target by increas-
ing the counter-Ip NBI power (P210L and P210R) while reducing the co-Ip NBI power
(P330L and P150L) to maintain the stored energy around the set point of 1 MW. The
additional power from the ECRH is quite advantageous in maintaining the stored
energy value and the NRMF provides some advantage over NBI in regulating the
rotation at the plasma edge. The LQI controller performs similarly to the MPC;
it lags the time changing target slightly due to the fact that the MPC anticipates
future target changes.

The main advantage of the MPC approach is the handling of actuator constraints,
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in particular the ability to impose the βN limit as a variable total auxiliary power
limit. In the second simulation, Figure 7.8, we consider the MPC control approach
again with the βN limit imposed arbitrarily at βmax

N = 2.7 for testing purposes.
The target energy and rotation profile are met as closely possible while satisfying
the βN limit. Comparing the simulation with βN limit imposed (Figure 7.8) to
the simulation without the imposed βN limit (Figure 7.7), we can see a notable
differences in the actuation. The total ECCD power is constrained in the early
phase (2-3 s) of the simulation with imposed βN limit. After 3 s, the controller uses
significantly less NBI power to maintain the βN limit, and a trade-off is found that
exchanges NBI power for INRMF actuation to maintain the target profile in the outer
region (ρ̂ > 0.5).

In the third simulation, Figure 7.9, the conditions are the same as the first
except we allow for random perturbations in the value of χφ over the range depicted
in Figure 7.2(b). It is very challenging to develop stability and robustness guarantees
for numerical optimal control problems of the type defined by (7.27). This simulation
provides a check of robustness against the anomalous properties of χφ.

7.5 Conclusion

Two approaches for regulation of the toroidal rotation profile and simultaneous
plasma stored energy control were considered and compared. First, an LQI approach
in which the rotation and plasma energy were lumped together into a single state,
and, second, an MPC approach in which the energy control was incorporated via
a constraint on total auxiliary power. Similar performance was found for both
cases, however, the MPC controller was designed to respect limits in the kinetic
to magnetic pressure ratio to improve stability against deleterious MHD activity.
The simulations show promise of an effective controller for the combined control of
rotation and energy using NBI, ECRH, and NRMF coils as actuators.
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Chapter 8

TRANSP-Based Optimization for

the Design of Non-inductive

Ramp-up in NSTX-U

8.1 Introduction

One of the primary research goals of NSTX-U is to advance the spherical torus
concept for a fusion nuclear science facility (FNSF), which requires developing
non-inductive start-up, ramp-up, and sustainment techniques since a large scale
spherical torus will have little to no room for a central solenoid1. Under certain
plasma conditions, NSTX has been shown to sustain about 70% of the current
non-inductively [92]. With recent upgrades including an additional high tangency
neutral beam set and high frequency fast wave (HHFW) antenna (see Section 1.7.2),
exhaustive simulations anticipate that NSTX-U [93] will be able to sustain fully non-
inductive current in the flattop phase of the discharge. However, much research is
still required to develop a successful approach for non-inductive start-up and ramp-
up in NSTX-U.

The provisional strategy for fully non-inductive operation in NSTX-U is shown
1The central solenoid coil serves as the inductive current drive.
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Figure 8.1: Non-inductive ramp-up strategy for NSTX-U.

in Figure 8.1 [94]. First, the plasma is initiated with coaxial helicity injection (CHI),
and ramped to about 400 kA. The CHI initiated plasma can be heated by ECH up
to several hundred eV, which is necessary in order to prime the plasma for proper
coupling with the HHFW. Following the start-up and initial ramp-up from CHI, a
combination of HHFW and NBI with a high bootstrap fraction can be used to ramp
the plasma to a full current of around 900-1000 kA. Current drive from HHFW is
necessary since the plasma density is too low to safely apply NBI in the initial phase
of the discharge on account of high shine-through losses. Finally, neutral beam and
a substantial bootstrap current will sustain the plasma current through the flattop
phase of the discharge.

A predictive TRANSP study of the proposed non-inductive ramp-up strategy has
been explored in a systematic way [40]. However, the simulations anticipate various
difficulties with the start-up/ramp-up strategy. There are inherent limitations to the
non-inductive current sources and their effectiveness depends strongly on the plasma
conditions which change dramatically through the ramp-up. Also, without careful
optimization of the plasma target, the non-inductive sources have the potential of
making the plasma unstable to various undesirable magneto-hydro-dynamic (MHD)
activity. During the ramp-up, the necessary contributions from NBI and HHFW
were shown to cause poor plasma shape (poor elongation), large plasma-wall gap
causing problems with coupling to RF sources, and low shear q profiles with central
q falling below 1 [40].
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This chapter considers an optimization-based control approach to improve on
the non-inductive ramp-up strategy2. We combine the TRANSP code with an op-
timization algorithm based on sequential quadratic programming to search for time
evolutions of the NBI powers that define an open-loop control strategy that max-
imizes the non-inductive current. This technique has the potential of playing a
critical role in aiding the development of a stable non-inductive ramp-up, which will
ultimately be necessary to demonstrate applicability of the spherical torus concept
to larger devices without sufficient room for a central coil. Since this work is in
its infancy, the chapter is brief, containing only two sections. First, in Section 8.2,
the optimization approach is described, and conclusions and directions for further
development are stated in Section 8.3.

8.2 TRANSP-Based Optimization

To begin, it is assumed that the plasma can be successfully initiated and ramped
to 300 kA with CHI, therefore this work focuses only on the ramp-up phase. The
objective is to obtain an open-loop control strategy, i.e. sequence of control requests
parameterized by time, that could sustain the target plasma current non-inductively
through the ramp-up phase while maintaining the q profile within acceptable bounds
for stability against deleterious MHD effects. Similar to the feedforward control
design of Chapter 4, the problem is formulated as an optimal control problem,
which can be passed to a numerical optimization algorithm.

Let α represent the optimization variables, which could be parameterized in a
variety of ways depending on the optimization goal. For example, we may consider
a parameterization consisting of the turn-ON time and injected power of each NBI

2This work was carried out at the Princeton Plasma Physics Laboratory under the DOE Office
of Science Graduate Student Research (SCGSR) Program award.
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Figure 8.2: Parameterization of NBI power for TRANSP-based optimization. The pa-
rameters include the turn-ON time and the injected energy of each NBI.

as shown in Figure 8.2, in which case

α =



tONNBI,1

PNBI,1

tONNBI,2

PNBI,2
...

tONNBI,N

PNBI,N


(8.1)

where N is the number of NBI to be optimized. Now, consider the optimal control
problem,

minimize
α

Jα(Ip), (8.2)

subject to: βN(t) ≤ βNmax , (8.3)

q ≥ 1, (8.4)

αmin ≤ α ≤ αmax. (8.5)

The problem involves the minimization of a scalar objective over a set of constraints
including actuator constraints (physical limits such as max NBI power or earliest
turn-ON time), the βN limit, and bounds on the acceptable current profile shape
through the ramp-up phase. The cost function (8.2) penalizes the difference between

W.P. Wehner 156 Lehigh U.



8.2. TRANSP-Based Optimization

Configure 
TRANSP Run 

 Parameterized                 
 by 

Evaluate Objective, 
Constraints and 

Compute 
Gradients 

αk+1αk

Compute Control 
Updates         with 

Optimization 
Algorithm 

Δαk

Predictive-
TRANSP  

Simulations 

∇J

Δαk

I p
q
βN

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

αk+1

Figure 8.3: TRANSP-based optimization loop.

total non-inductive current drive and the current target,

Jα(Ip) =

∫ tf

ti

(
Itargetp (τ)− INI(τ)

)2
dτ =

∫ tf

ti

(IOHM(τ))2 dτ. (8.6)

The TRANSP code is combined with an optimization algorithm embedded in
OMFIT [95], where OMFIT acts primarily as an accessory code to automate the
issuing of TRANSP runs3. The combined TRANSP + OMFIT routine, performs the
same type of open-loop control optimization of Chapter 4, but the plasma evolution
is simulated by the TRANSP code instead of a control oriented model.

This process involves coding a numerical optimization solver into the OMFIT
code. We use sequential quadratic programming (SQP), which is the most widely
used approach to solving constrained optimal control problems of this form (see
Appendix D.1 for a description of the algorithm). Essentially, the algorithm searches
for a solution by first starting with an approximate solution, call it α0, and works to
improve on the solution by taking steps, ∆α. Sequential iterates, αk+1 = αk+∆αk,
are found with the use of gradient information of the cost function and constraints.

The optimization approach treats TRANSP as a black box, as such it is impos-
sible obtain analytic gradients as was done in Chapter 4, so instead the gradients
are calculated by forward finite difference (see Section 4.3). Therefore each itera-
tion of the optimization requires n + 1 TRANSP runs in order to obtain gradient
information, where n is the dimension of α.

3OMFIT, developed and maintained by General Atomics, San Diego, is a python-based tool
designed to standardize and manage the data of many plasma transport codes such as TRANSP.
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The automated TRANSP + OMFIT optimization procedure is outlined in Fig-
ure 8.3. In summary, the optimization procedure works as follows:

• Choose initial, approximate solution α0

• Repeat k = 0, 1, . . . , kmax

– Configure the input files and initiate a TRANSP run parameterized by
current iterate αk

– Configure and initiate n TRANSP runs parameterized by αk + εei for
i = 1, 2, . . . , n to obtain gradients, where ei is the ith coordinate vector,
i.e. e1 = [1, 0, . . . , 0]T , e2 = [0, 1, 0, . . . , 0]T , etc. (see equation (4.20))

– Evaluate function and constraint values and compute gradients

– Determine search direction dk (descent direction determined by SQP
step)

– Determine step length γk (linesearch), ∆αk = γdk

– Check convergence, i.e. ∆αk ≤ tolerance

– Obtain new iterate αk+1 = αk + ∆αk

As a test case, we consider reproduction of the some of the work presented in [40]
via the TRANSP + OMFIT optimization routine. In Figure 8.4, Figure 9 of [40]
has been reproduced, in which NBI powers are optimized (by hand) to design a non-
inductive ramp-up strategy. The figure shows both the results of the optimization
performed by hand (figure 9 of [40]) and by the TRANSP + OMFIT optimization
routine. In this case we consider optimization of the cost function (8.6) with no
constraints other than NBI power bounds. Notable improvements in meeting the
current target are realized, and secondarily the routine saves time associated with
manually initiating TRANSP runs; the entire procedure is automatic.

W.P. Wehner 158 Lehigh U.



8.3. Conclusions and Future Work

0 0.1 0.2 0.3
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time (s)

C
ur

re
nt

 (
M

A
)

 

 

Current Target
Bootstrap
ICRH
NBI
Total NI−Current

(a) By hand tuning.

0 0.1 0.2 0.3
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time (s)

C
ur

re
nt

 (
M

A
)

 

 

Current Target
Bootstrap
ICRH
NBI
Total NI−Current

(b) TRANSP-based optimization.

0 0.1 0.2 0.3
0

2

4

6

T
ot

al
 N

B
I (

M
W

)

0 0.1 0.2 0.3
0

1

2

time (s)

N
B

I (
M

W
)

(c) NBI power tuned by hand.

0 0.1 0.2 0.3
0

2

4

6

T
ot

al
 (

M
W

)
 

 

Hand Opt
Transp Opt

0 0.1 0.2 0.3
0

1

2

time (s)

N
B

I (
M

W
)

(d) NBI power tuned by TRANSP-based
optimization.

Figure 8.4: TRANSP-based optimization test case. (Left) NBI powers are selected by
hand to best achieved the non-inductive ramp-up in NSTX-U. (Right) a re-
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is used to obtain the NBI powers.
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8.3 Conclusions and Future Work

The TRANSP + OMFIT optimization routine presented in this chapter represents
a valuable tool for developing control strategies of varying objectives. The opti-
mization algorithm written in OMFIT can accept arbitrary objective and constraint
functions, and the optimization variables can include either the NBI or HHFW pow-
ers or both. It is a straight forward process to introduce other optimization variables

W.P. Wehner 159 Lehigh U.



8.3. Conclusions and Future Work

such as the plasma wall gap, the NBI tangency radius, or the plasma current ramp
rate, to name a few relevant to current profile control in NSTX-U. Presently the code
has been developed only for NSTX-U, but could be extended to other tokamaks such
as DIII-D or any other device that is supported by the TRANSP code.

It is not uncommon for plasma physics researchers to use transport codes to
solve engineering design problems. For example, a study considering the optimal
launch location of high frequency fast waves for maximum current drive efficiency
at DIII-D was carried out using GENRAY simulations [96]. These types of studies,
often involving “optimization” by-hand could be aided by the tool described in this
chapter. Not only does the tool provide a truly optimized result, but also automates
the process, saving many hours of work.

Future work would involve addressing some shortcomings of the optimization
algorithm. For example, the algorithm currently requires the iterates to remain
feasible at all times during the optimization, which can be troublesome if the problem
is to find a feasible point. Alternatively, we could replace the optimization algorithm
altogether with a more robust commercial solver. Additionally, the code should be
configured to work with other transport codes other than TRANSP, such as the
previously mentioned GENRAY code.
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Chapter 9

Conclusions and Future Work

The primary contribution of this dissertation has been the development of control
algorithms to be used as tools for experimental physics studies. Control of the
current profile and rotation profile enable not only improved efficiency in carrying
out tokamak experiments by reducing the number of shots required to obtain the
desired operating conditions in the plasma, but also enable studies designed at
exploring various profile shapes in search of interesting plasma properties. In this
final chapter, the contributions of the work are summarized and possible directions
for further research are discussed.

9.1 Contributions

1. A linear plasma-response model for the combined evolution of the current
profile and βN evolution around a reference plasma equilibrium was developed
using data-driven modeling techniques. Additional simplified physics-based
models were developed for the separate evolution of the current profile and
rotation profile. These models, which were intended for applicability to real-
time control strategies, combined first-principles laws with scenario specific
correlations of the plasma temperature, density, and current drive or torque
sources.
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2. Feedforward control of the current profile dynamics during the ramp-up phase
was formulated as a finite time optimal control problem, and solved using
numerical optimization techniques. Anticipating that the un-augmented feed-
forward control would be insufficient to reliably obtain target current profiles
due to mismatch between the model and real system, the feedforward control
was combined with feedback control.

3. Numerous feedback control strategies were developed for regulation of both the
current profile and rotation profile. In both cases, a focus was made on model
predictive control approaches, so as to embed constraints for the avoidance of
unstable plasmas. The MPC approach was combined with efficient quadratic
programming techniques to enable real-time implementations. In the case
of current profile control, numerous experimental tests were carried out in
the DIII-D tokamak, which successfully demonstrated the effectiveness of the
control approach.

4. To facilitate the development of non-inductive ramp-up strategies in NSTX-
U, the TRANSP code was combined with an optimization algorithm based on
sequential quadratic programming to search for time evolutions of the auxiliary
current drive sources defining an open-loop control strategy that maximizes
the non-inductive current fraction.

9.2 Future Work

One short coming to the current profile control approaches described in this work is
that they are based on a control-oriented model, which lacks any spatial evolution of
the electron temperature profile. Given the plasma resistivity is primarily a function
of electron temperature, the model-based control approaches could be greatly ben-
efited by incorporating, at least in some primitive form, a local model for electron
energy transport. This would provide the possibility to model local changes to the
resistivity profile, and thereby improve the current profile control.
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For the most part, control research for tokamaks has focused on individual ob-
jectives. In reality, high-performance operation of tokamak plasmas will require a
multitude of plasma control problems to be addressed simultaneously. For example,
the controls associated with the suppression of NTMs, which may include local-
ized injection of ECCD, or suppression of RWMs, which may include application
of non-axisymmetric magnetic fields, introduces actuation that may conflict with
the desired actuation for current profile control or rotation profile control. This
necessitates the development of a supervisory control architecture that can make
judicial trade-offs for the control of multiple objectives that rely on a shared actu-
ator set. The MPC approaches that are the primary contribution of this work are
well suited to be extended towards the design of a supervisory control architecture
because the requirements for actuator sharing can be incorporated into the MPC
profile controller as explicit actuator constraints.
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Appendix A

Computations

A.1 Finite Difference Discretization of the Magnetic

Diffusion Equation

A.1.1 Finite Differences Discretization for the ψ model

The dynamic system describing the evolution of the poloidal magnetic flux (ψ)
profile can be written as

∂ψ

∂t
(ρ̂, t) =

fηuη
ρ̂

∂

∂ρ̂

(
ρ̂Dψ

∂ψ

∂ρ̂

)
+

nEC∑
i=1

fECuEC +

nNBI∑
i=1

fNBIuNBI +

(
∂ψ

∂ρ̂

)−1

fBSuBS,

(A.1)
where the boundary conditions are given by

∂ψ(t, 0)

∂ρ̂
= 0,

∂ψ(t, 1)

∂ρ̂
= −kIpIp(t), (A.2)

the parameters f(·) are all time-constant functions of ρ̂, and the parameters u(·) are
a set of input functions of the form

uη(t) = Ip(t)aηPtot(t)
bη n̄e(t)

cη ,

uEC,i(t) = Ip(t)aecPtot(t)
becn̄e(t)

cηPEC,i(t),

uNBI,i(t) = Ip(t)anbPtot(t)
bnbn̄e(t)

cnbPNBI,i(t),

uBS(t) = Ip(t)absPtot(t)
bbsn̄e(t)

cbs .

(A.3)
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Equation

Discretization in Space

To discretize the system (A.1) in space, let us divide the spatial domain (ρ̂ ∈ [0, 1])
into l evenly spaced nodes, and let n represent the index of the nodes, i.e. n =

0, 1, . . . , l− 1. The distance between grid points (nodes) is given by ∆ρ̂ = 1/(l− 1).
For convenience, let ρ̂n be the value ρ̂ at node n, i.e. ρ̂n = n∆ρ̂, and, similarly, let
ψn be the value of ψ at node n, i.e. ψn(t) = ψ(ρ̂n, t).

At the interior nodes, the spatial derivatives of (A.1) can be approximated by
the central difference formulae

dψm
dρ̂

=
ψm+1 − ψm−1

2∆ρ̂
+O(∆ρ̂2),

d2ψm
dρ̂2

=
ψm+1 − 2ψm + ψm−1

∆ρ̂2
+O(∆ρ̂2).

(A.4)
First, expand the spatial derivatives of (A.1) to obtain

ψ̇ =
fηuη
ρ̂

(
(ρ̂
dDψ

dρ̂
+Dψ)

∂ψ

∂ρ̂
+ ρ̂Dψ

∂2ψ

∂ρ̂2

)
+

nEC∑
i=1

fECuEC

+

nNBI∑
i=1

fNBIuNBI +

(
∂ψ

∂ρ̂

)−1

fBSuBS,

(A.5)

and then replace the spatial derivatives with finite difference formulae (A.4) to obtain

ψ̇m =
fη(ρ̂m)uη

ρ̂m

[(
ρ̂m

dDψ

dρ̂
(ρ̂m) +Dψ(ρ̂m)

)(
ψm+1 − ψm−1

2∆ρ̂

)
+ρ̂mDψ(ρ̂m)

(
ψm+1 − 2ψm + ψm−1

(∆ρ̂)2

)]
+

NEC∑
i=1

fEC(ρ̂m)uEC

+

NNBI∑
i=1

fNBI(ρ̂m)uNBI +

(
2∆ρ̂

ψm+1 − ψm−1

)
fBS(ρ̂m)uBS,

(A.6)

for m = 1, . . . , l − 2. To simplify notation we can introduce the terms

βm = fη(ρ̂m)
Dψ(ρ̂m)

(∆ρ̂)2
, αm = fη(ρ̂m)

ρ̂m
dDψ(ρ̂m)

dρ̂
+Dψ(ρ̂m)

ρ̂m(2∆ρ̂)
, (A.7)

W.P. Wehner 165 Lehigh U.



A.1. Finite Difference Discretization of the Magnetic Diffusion
Equation

so that (A.6) can be written as

ψ̇m = (ψm−1(βm − αm) + ψm(−2βm) + ψm+1(αm + βm))uη +

nEC∑
i=1

fEC(ρ̂m)uEC

+

nNBI∑
i=1

fNBI(ρ̂m)uNBI + 2∆ρ̂fBS(ρ̂m)uBS

(
1

ψm+1 − ψm−1

)
,

(A.8)

for m = 1, . . . , l−2. Using the following finite difference formula for the first spatial
derivative at the boundary nodes

dψ0

dρ̂
=
−3ψ0 + 4ψ1 − ψ2

2∆ρ̂
+O(∆ρ̂2), (A.9)

the boundary conditions (A.2) can be used to obtain expressions for ψ at the bound-
ary nodes, i.e.

ψ0 =
1

3
(4ψ1 − ψ2), ψl−1 =

1

3
(4ψl−2 − ψl−3 − (2∆ρ̂)kIpIp). (A.10)

Finally, combining the expression for interior nodes (A.6) with those for the bound-
ary nodes (A.10), the discretized system can be written in state space form

ψ = f(ψ,u), (A.11)

where ψ = [ψ1, ψ2, ..., ψl−2]T , u can be taken as either the input functions (A.3)
or the physical actuators (n̄e, PEC,1 . . . , PEC,nEC , PNBI,1, . . . , PNBI,nNBI , Ip), and the
nonlinear function f can be expressed as

f(ψ,u) = F1ψuη + F2



uEC,1
...

uEC,nEC

uNBI,1
...

uNBI,nNBI


+ F3



1/(4
3
ψ2 − 4

3
ψ1)

1/(ψ3 − ψ1)
...

1/(ψl−2 − ψl−3)

1/
(

4
3
(ψN−1 − ψN−2)

− (2∆ρ̂)
3
kIpIp

)


uBS + F4uηIp,

(A.12)
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where the newly introduced matrices are given by

F1 =



−2
3
β1 − 4

3
α1

2
3
β1 + 4

3
α1

β2 − α2 −2β2 α2 + β2

. . .

βl−3 − αl−3 −2βl−3 αl−3 + βl−3

7
3
βl − 2 + 4

3
αl−2 −7

3
βl−2 − 1

3
αl−2


,

F2 =
[
fEC,1(:), . . . , fEC,nEC(:), fNBI,1(:), . . . , fNBI,nNBI(:)

]
,

F3 = diag
[
fBS(ρ̂1), fBS(ρ̂2), . . . , fBS(ρ̂l−2)

]
,

F4 =
[
0, 0, . . . , 0,

1

3
(2∆ρ̂)(αl−2 + βl−2)kIp

]T
.

In the matrix F2, the notation fEC,1(:) has been introduced to denote the column
vector [fEC,1(ρ̂1), fEC,1(ρ̂2), . . . , fEC,1(ρ̂l−2)]T , and similarly for fEC,2(:), etc.

A.1.2 Finite Differences Discretization for the θ model

Similarly the dynamics describing the θ (= ∂ψ̂/∂ρ̂) profile evolution can be reduced
to a finite dimensional model. To begin, the infinite dimensional PDE describing
the θ evolution can be written as

∂θ

∂t
(ρ̂, t) =

(
h11(ρ̂)

∂2θ

∂ρ̂2
+ h12(ρ̂)

∂θ

∂ρ̂
+ h13(ρ̂)θ

)
uη(t) +

nEC∑
i=1

hEC,i(ρ̂)uEC,i(t)

+

nNBI∑
i=1

hNBI,i(ρ̂)uNBI,i(t) +

(
1

θ

dhBS(ρ̂)

dρ̂
− hBS(ρ̂)

θ2

∂θ

∂ρ̂

)
uBS(t),

(A.13)

where the boundary conditions are given by

θ(0, t) = 0, θ(1, t) = −kIpIp(t), (A.14)

where the parameters h(·) are functions of ρ̂, and the parameters u(·) are given
by (A.3).

Following the same procedure as in Section A.1, we obtain the finite dimensional
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model describing the θ evolution,

θ̇ = g(θ,u) =

G1θuη + G2



uEC,1
...

uEC,nEC

uNBI,1
...

uNBI,nNBI


+ G3



1/θ1

1/θ2

...
1/θm
...

1/θN−1


uBS + G4



(θ2 − θ0)/θ2
1

(θ3 − θ1)/θ2
2

...
(θm+1 − θm−1)/θ2

m
...

(−θN−2)/θ2
N−1


uBS

+ G5uηIp + G6
1

θ2
N−1

uBSIp,

(A.15)

where θ = [θ1, θ2, ..., θl−2]T , and the matrices Gi are given by

G1 =



γ1 β1

α2 γ2 β2

. . .

αm γm βm
. . .

αN−1 βN−1


,

G2 =
[
hEC,1(:), . . . , hEC,nEC(:), hNBI,1(:), . . . , hNBI,nNBI(:)

]
,

G3 = diag
[
h′BS(ρ̂1), h′BS(ρ̂2), . . . , h′BS(ρ̂l−2)

]
,

G4 = diag
[
− hBS(1)/2∆ρ̂,−hBS(2)/2∆ρ̂, . . . ,−hBS(l − 2)/2∆ρ̂

]
,

G5 =
[
0, 0, . . . , 0, −kIpβN−1

]T
,

G6 =
[
0, 0, . . . , 0,

kIphBS(N − 1)

2∆ρ̂

]T
.

where the terms αm, βm, γm given by

αm =

(
h11(m)

(∆ρ̂)2
− h12(m)

2∆ρ̂

)
, βm =

(
h11(m)

(∆ρ̂)2
+
h12(m)

2∆ρ̂

)
,

γm =

(
h13(m)− 2h11(m)

(∆ρ̂)2

)
,

(A.16)
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A.1. Finite Difference Discretization of the Magnetic Diffusion
Equation

have been introduced for notation convenience.

A.1.3 Model Jacobians

After discretizing the systems (A.1) and (A.13) in space and reconstructing into
the forms (A.12) and (A.15), respectively, it becomes straight forward to calculate
the model Jacobians, which are required to construct linear approximations to the
system dynamics and to compute function gradients for optimal feedforward control
design of Chapter 4 (Section 4.3). For example, the model Jacobians ∂f(ψ,u)

∂ψ
and

∂f(ψ,u)
∂u

required to compute the state sensitivity equation (4.22) can be obtained by
taking first derivative of (A.12),

∂f(ψ,u)

∂ψ
= F1uη

+



1
4
3

(ψ2−ψ1)2
−1

4
3

(ψ2−ψ1)2

. . .
1

4
3

(ψl−2−ψl−3)2
−1

4
3

(ψl−2−ψl−3)2

4/3(
4
3

(ψN−1−ψN−2)

−4/3(
4
3

(ψN−1−ψN−2)

−(2∆ρ̂)3kIpIp

)2

−(2∆ρ̂)3kIpIp

)2


uBS,

∂f(ψ,u)

∂u
= F1ψ

duη
du

+ F2



duEC,1
du
...

duEC,nEC
du

duNBI,1
du
...

duNBI,nNBI
du


+ F3



1/(4
3
ψ2 − 4

3
ψ1)

1/(ψ3 − ψ1)
...

1/(ψl−2 − ψl−3)

1/
(

4
3
(ψN−1 − ψN−2)

− (2∆ρ̂)
3
kIpIp

)


duBS
du

+ fBS(ρ̂l−2)
(2∆ρ̂)

3
kIp(

4
3
(ψN−1 − ψN−2)− (2∆ρ̂)

3
kIpIp

)2uBS
dIp
du

+ F4Ip
duη
du

+ F4uη
dIp
du

.

(A.17)
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A.2. Finite Element Discretization of the Momentum Diffusion
Equation

A.2 Finite Element Discretization of the Momen-

tum Diffusion Equation

Substituting the approximations (7.5) and (7.6) into the evolution for Ωφ (7.1), we
have

lω∑
k=1

dωk
dt

φk =−
lω∑
k=1

ωkφkun̄i +
lω∑
k=1

lχ∑
α=1

ωkγα
f1

ρ̂

∂

∂ρ̂

[
ρ̂f2ϕα

∂φk
∂ρ̂

]

+

nNBI∑
ξ=1

fNBI,ξuNBI,ξ +

(
lω∑
k=1

ωkφk − Ω?
φ

)
fNRMFuNRMF,

(A.18)

where the dependencies on ρ̂ and t have been dropped for notational convenience.
Next, we construct the weak form by multiplying both sides by ρ̂, projecting onto
the basis functions φj, j = 1, . . . , lω and integrating over the domain (0 ≤ ρ̂ ≤ 1),
to obtain

lω∑
k=1

dωk
dt

∫ 1

0

ρ̂φjφkdρ̂ = −
lω∑
k=1

ωk

∫ 1

0

ρ̂φjφkdρ̂un̄i

+
lω∑
k=1

lχ∑
α=1

ωkγα

∫ 1

0

f1φj
∂

∂ρ̂

[
ρ̂f2ϕα

∂φk
∂ρ̂

]
dρ̂+

nNBI∑
ξ=1

(∫ 1

0

ρ̂φjfNBI,ξdρ̂

)
uNBI,ξ

+
lω∑
k=1

ωk

(∫ 1

0

ρ̂φjφkfNRMFdρ̂

)
uNRMF −

(∫ 1

0

ρ̂φjΩ
?
φfNRMFdρ̂

)
uNRMF,

(A.19)
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A.2. Finite Element Discretization of the Momentum Diffusion
Equation

then integrating by parts the second part of (A.19), and taking into account the
boundary conditions, we can obtain

lω∑
k=1

dωk
dt

∫ 1

0

ρ̂φjφkdρ̂︸ ︷︷ ︸
(M)jk

= −
lω∑
k=1

ωk

∫ 1

0

ρ̂φjφkdρ̂︸ ︷︷ ︸
(M)jk

un̄i +

nNBI∑
ξ=1

[∫ 1

0

ρ̂φjfNB,ξdρ̂

]
︸ ︷︷ ︸

(BNB,ξ)j

uNB,ξ

−
lω∑
k=1

ωk

lχ∑
α=1

γα

[∫ 1

0

(
φ′jf1 + φjf

′
1

)(
ρ̂f2ϕαφ

′
k − ρ̂f3ϕαφk

)
dρ̂

]
︸ ︷︷ ︸

(S)jk

+
lω∑
k=1

ωk

[∫ 1

0

ρ̂φjφkfNRdρ̂

]
︸ ︷︷ ︸

(BNR)jk

uNRMF +

∫ 1

0

ρ̂φjΩ
?
φfNRdρ̂︸ ︷︷ ︸

(B?
NR)j

uNR,

(A.20)

where (·)′ denotes derivatives with respect to ρ̂, i.e., ∂
∂ρ̂
. Introducing the notation

〈〈g1, . . . , gN〉〉 ,
∫ 1

0
g1(ρ̂) . . . gN(ρ̂)ρ̂dρ̂, the matrices introduced in (A.20) can be

written as

(M)jk = 〈〈φj, φk〉〉, (A.21)

(BNB,ξ)j = 〈〈φj, fNBI,ξ〉〉, (A.22)

(S)jk =

lχ∑
α=1

γα
(
〈〈f1φ

′
j, φ
′
k, f2ϕα〉〉+ 〈〈f ′1φj, φ′k, f2ϕα〉〉

)
, (A.23)

(BNR)jk = 〈〈φj, φk, fNRMF〉〉, (B?
NR)j = 〈〈φj,Ω?

φ, fNRMF〉〉. (A.24)

With the above matrices the system (A.20) can be written in the matrix-vector form

M
dω

dt
= −Mωun̄i − Sω

+

nNBI∑
ξ=1

BNB,ξuNBI,ξ + BNRωuNRMF −B?
NRuNRMF,

(A.25)

where ω = [ω1, ω2, . . . , ωlω ]T . From (A.25), we can see that the rotation dynamics
are approximately linear, with bilinear terms associated with the density and NRMF
controls.
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A.3. Proper Orthogonal Decomposition (POD)

A.2.1 Incorporating Uncertainty

The uncertainty associated with the diffusivity parameter χφ can be embedded into
the system (A.25) by writing the multiplier γα of the approximation χφ(ρ̂, t) ≈∑lχ

α=1 γαϕα(ρ̂), as an uncertainty value. Let each γα take the form γα = γ0
α + γ1

αδα,
where γ0

α is associated with the nominal χφ profile (see Figure 7.2(b)) and γ1
αδα

(|δα| ≤ 1) quantifies the uncertainty in the value γα. To make the uncertainty in
the state-space system explicit, the matrix S (A.25) can be decomposed as

S(δ) = Ŝ0 +

lχ∑
α=1

δαŜ
α, (A.26)

where

Ŝ0
jk =

lχ∑
α=1

γ0
α

(
〈〈f1φ

′
j, φ
′
k, f2ϕα〉〉+ 〈〈f ′1φj, φ′k, f2ϕα〉〉

)
,

Ŝαjk = γ1
α

(
〈〈f1φ

′
j, φ
′
k, f2ϕα〉〉+ 〈〈f ′1φj, φ′k, f2ϕα〉〉

)
.

A.3 Proper Orthogonal Decomposition (POD)

Let the matrix A comprise a data ensemble of the parameter χφ discretized onto
the grid (ρ̂m, tn), i.e. Amn = χφ(ρ̂m, tn), for integers m and n, 1 ≤ m ≤ M and
1 ≤ n ≤ N . The set V = span{An | n = 1, 2, . . . , N} ⊂ RM refers to a data
ensemble consisting of snapshots of χφ obtained at N different instants of time
from the experiment. The goal of the POD method is to find an orthonormal basis
{φk | k = 1, . . . , lω} such that for some predefined 1 ≤ lω ≤ d, where d = dim V ≤
M , the reconstruction error for the snapshots is minimized, i.e.

min
{φk| k=1,...,lω}

N∑
n=1

∥∥∥∥∥An −
lω∑
k=1

〈An, φk〉φk

∥∥∥∥∥
2

2

, (A.27)

subject to
〈φj, φk〉 = δjk, 1 ≤ j ≤ lω, 1 ≤ k ≤ lω (A.28)

where ‖x‖2 =
√
xTx and 〈·, ·〉 denotes the inner product

〈f, g〉 =

∫ 1

0

fgρ̂dρ̂. (A.29)
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A.4. Converting ∂V/∂ρ̂ to Ĥ

Let λ1 > . . . > λl > . . . > λd > 0 denote the eigenvalues of the correlation
matrix K, defined as Kij = 〈Aj, Ai〉, for i, j = 1, . . . , N , and Λ1, . . . ,Λlω , . . . ,Λd the
associated eigenvectors, where d = rank(K). Then, the POD basis functions take
the form [87]

(φk)i =
1√
λk

N∑
n=1

(Λk)nAin, (k = 1, . . . , d) , (A.30)

where (·)i is the i-th component of the vector or simply

φk =
1√
λk
AΛk. (A.31)

A.4 Converting ∂V/∂ρ̂ to Ĥ

The spatial derivative of volume can be expressed in terms of Ĥ in the following
manner. First, express ∂V/∂ρ as a function of toroidal magnetic field strength,

∂V

∂ρ
=
∂V

∂Φ

∂Φ

∂ρ
= 2πBφ,0ρ

(
2πR

Bφ

)
, (A.32)

rewriting in terms of ρ̂

∂V

∂ρ̂
=
∂V

∂ρ

ρ

ρ̂
= 2πBφ,0ρ̂ρ

2
b

(
2πR

Bφ

)
(A.33)

The plasma geometric factors F̂ , Ĝ, Ĥ are given by

F̂ (ρ̂) =
R0Bφ,0

RBφ

Ĝ(ρ̂) =

〈
R2

0

R2
|∇ρ|2

〉
Ĥ(ρ̂) =

F̂

〈R2
0/R

2〉
(A.34)

rewriting Ĥ as a function of toroidal magnetic field strength

Ĥ =
R0Bφ,0

RBφ〈R2
0/R

2〉
=
Bφ,0

R0

1

〈Bφ/R〉
(A.35)

since RBφ is constant on a flux surface RBφ = 〈RBφ〉, thus

∂V

∂ρ̂
= 4π2ρ2

b ρ̂R0Ĥ(ρ̂). (A.36)
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A.5. Model Identification by Prediction Error Method (PEM)

A.5 Model Identification by Prediction Error Method

(PEM)

After this discretization has been made, we seek a least squares fit of the discrete
system to the experimental data to obtain the lumped parameter version of the state
space model ignoring error signals reads:

M : Ẋ(t) = AX(t) +Bu(t), Y (t) = CX(t). (A.37)

where u(t) are the inputs, i.e., neutral beam injection power, total gyrotron power,
and plasma current, X(t) are the model states in discretized form and Y (t) are the
model outputs. Equation (A.37) represents the candidate model to be identifiedM.

A.5.1 Identification by Prediction Error Method

Once the candidate model has been selected it can be parameterized by some pa-
rameter vector θ. Then the search for the best model within the constrictions of
the candidate model (A.37) becomes a problem of determining or estimating θ. We
use the prediction error method [41]. Given a certain model structureM, the ob-
jective is to find a parameter vector θ and particular model M(θ) that minimizes
the prediction error ε, given by

ε(t, θ) = y(t)− ŷ(t|θ), (A.38)

where y(t) is the measured output and ŷ(t|θ) is the model predicted output. The
set of possible models is thus defined, for parameter vector θ ∈ DM ⊂ Rd, as

M∗ = {M(θ) | θ ∈ DM} . (A.39)

Considering the collected batch of data,

ZN = [y(1), u(1), y(2), u(2), ..., y(N), u(N)] , (A.40)

the problem is to select a proper value θ̂N and hence a proper memberM in the set
M∗, i.e. find the mapping

ZN → θ̂N ∈ DM. (A.41)
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A.5. Model Identification by Prediction Error Method (PEM)

Such a mapping is called a parameter estimation method. The best model is the
one that minimizes ε. Thus we require a scalar-valued norm or criterion function
that measures the size of ε. For the case of a least squares criterion function (1

2
ε2)

the norm is expressed as

VN(θ, ZN) =
1

N

N∑
t=1

1

2
ε(t, θ)2, (A.42)

which can be extended to a multi-output system with p outputs by rewriting the
criterion function as 1

2
εTΛ−1ε for some symmetric, positive semidefinite p×p weight-

ing matrix Λ that gives relative importance of the components of ε. In this case the
scalar valued norm would be

VN(θ, ZN) = tr

(
1

N

N∑
t=1

1

2
ε(t, θ)TΛ−1ε(t, θ)

)
. (A.43)
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Appendix B

Model Predictive Control:

Definitions and Derivations

B.1 MPC Prediction Matrices

Let X = [x0,x1, . . . ,xN ] and U = [u0,u1, . . . ,uN−1] be, respectively, a state se-
quence and an input sequence. Consider Finite Horizon Optimal Control Problem
(FHOCP) with quadratic cost,

minimize
X, U

J = xTNPxN +
N−1∑
n=1

xTnQxn +
N−1∑
n=0

uTnRun,

subject to x0 = x(0),

xn+1 = Axn + Bun for n = 1, 2 . . . N

(B.1)

In order to convert the FHOCP into a standard Quadratic Program of the form

minimize
z

J = zTHz + fTz

subject to Aeqz = Beq

we need to construct prediction matrices, that is write the future states as a function
of the initial condition and control sequence. The choice of decision variables z

falls into one of two classes “shooting” and “direct transcription”. In the shooting
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B.1. MPC Prediction Matrices

method formulation, the decision variables consist only of the controls, and the
dynamic constraints are removed from the problem by solving for the future states
in terms of the controls and initial condition. In the direct transcription method
formulation, the problem is over parameterized by including in the set of decision
variables both the system states and controls and the system dynamics are enforced
by constraints. Each of the formulations had computational advantages depending
on the particular structure and size of the optimization problem (B.1). For example,
the direct transcription formulation can be beneficial because it allows for a diagonal
hessian matrix. The following two sections briefly introduce each approach, and then
more complete descriptions follow.

B.1.1 FHOCP via Shooting Approach

Assuming linear dynamics, xk+1 = Axk + Buk, future states can be predicted in
terms of the initial state x0 and the control sequence according to

x0 = x(0),

x1 = Ax0 + Bu0,

x2 = A2x0 + ABu0 + Bu1,

x3 = A3x0 + A2Bu0 + ABu1 + Bu2,

...

xN = ANx0 + AN−1Bu0 + AN−2Bu1 + · · ·+ BuN−1,

which can be rewritten as
x1

x2

...
xN


︸ ︷︷ ︸

X

=


A

A2

...
AN


︸ ︷︷ ︸

Φ

x0 +


B

AB B
... . . .

AN−1B AN−2B . . . B


︸ ︷︷ ︸

Γ


u0

u1

...
uN


︸ ︷︷ ︸

U

,

or equivalently
X = Φx0 + ΓU. (B.2)
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B.1. MPC Prediction Matrices

In this case Φ and Γ represent the prediction matrices, which can be used to express
all future states in terms of the control sequence U and initial state x0. We take as
the optimization variables z = U, in which case the cost function of (B.1), can be
written as

J = (Φx0 + ΓU)T Q̄(Φx0 + ΓU) + UT R̄U

where Q̄ = diag(Q,Q, . . . ,Q,P) and R̄ = diag(R,R, . . . ,R). In this way the
dynamics constraints are implicitly satisfied by the prediction equation (B.2), and
the constrained optimization problem (B.1) has been reduced to an unconstrained
problem.

B.1.2 FHOCP via Direct Transcription Approach

In the direct transcription approach we include all the future states and controls as
optimization variables, i.e.

z = [u0,u1, . . . ,uN−1,x1,x2, . . . ,xN ],

in which case the cost function can be written as

J = zT

[
R̄

Q̄

]
z,

and the dynamics constraints, xk+1 = Axk + Buk for k = 0, 1, . . . , N , can be listed
as

x0 = x(0),

x1 −Bu0 = Ax0,

x2 −Ax1 −Bu1 = 0,

x3 −Ax2 −Bu2 = 0,

...

xN −AxN−1 −BuN−1 = 0.
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B.2. Blocking (Incidence Points)

In matrix form the dynamics constraints can be written as


−B I

−B −A I

−B −A I


︸ ︷︷ ︸

Θ


u0

u1

...
xN


︸ ︷︷ ︸

z

=


A

0

0


︸ ︷︷ ︸

Φ

x(0)

or equivalently
Θz = Φx0. (B.3)

In this case Θ and Φ represent the prediction matrices, and the optimization prob-
lem (B.1) can be written as

minimize
z

J = zT

[
R̄

Q̄

]
z

subject to Θz = Φx0

(B.4)

This formulation has the convenient feature that additional constraints on the con-
trols or states can be directly applied to the optimization variables. It can sometimes
be more efficient to use the direct transcription formulation depending on the par-
ticular form of the optimal control problem, i.e. the size of the state, control and
length of prediction horizon.

B.2 Blocking (Incidence Points)

In some cases it can be desirable to extend the horizon time while limiting the
number of the control and state variables. For example, suppose that the horizon
has to be increased in order to satisfy desired closed-loop performance requirements.
If the horizon time is increased, the size of the optimization problem and therefore
the computation time will necessarily increase as well. To reduce computation time
while maintaining the horizon length, one approach might be to update the control
variable on every other time step. Additionally, it can be desirable to impose state
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B.2. Blocking (Incidence Points)

Figure B.1: Model predictive control with blocking.

constraints and matching between output and reference only at a reduced set of time
points. This can be accomplished by introducing incident points, i.e. a set of future
times where output and reference matching is desired. For example in Figure B.1,
the control variable is updated every time step for the first two updates and then
every other time step thereafter. The state incidence points occur at the first,
second, and third future time steps and at the prediction horizon (8th time step).
Let the update times for the control and incidence points be defined, respectively,
by Iu and Ip. In this case, the FHOCP (B.1) becomes

minimize
{xn}n∈Ip
{un}n∈Iu

J =
∑
n∈Ip

xTnQxn +
∑
n∈Iu

∆uTnR∆un,

subject to x0 = x(0),

xn+1 = Axn + Bun for n ∈ Ip
xn ∈ Xn for n ∈ Ip
un ∈ Un for n ∈ Iu

(B.5)

where the cost on control has been replaced with deviations in the control term,
∆un = un − un−1.
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B.3. Shooting Formulation with Time-Varying Dynamics and Blocking

B.3 Shooting Formulation with Time-Varying Dy-

namics and Blocking
n∏

t=m

Ak+t ≡

{
Ak+nAk+n−1 . . .Ak+m if m ≤ n

I if m > n
(B.6)

Let Hu be the control horizon, where Hu ≤ Hp implies uk+t = uk+Hu for t ≥ Hu,
i.e. the control variable is only updated over the first Hu time steps. Starting at
time k, the future state trajectory can be predicted in terms of the time varying
dynamics as

xk+1

xk+2

...
xk+Hp


︸ ︷︷ ︸

Xk

=


Ak

Ak+1Ak

...∏Hp−1
t=0 Ak+t


︸ ︷︷ ︸

Φk

xk +


Bk

Ak+1Bk Bk+1

... . . .∏Hp−1
t=1 Ak+tBk

∏Hp−1
t=2 Ak+tBk+1 . . .

∑Hp−1
i=Hu

∏Hp−1
t=i+1 Ak+tBk+i


︸ ︷︷ ︸

Γk


uk

uk+1

...
uk+Hu


︸ ︷︷ ︸

Uk

.

(B.7)

As an alternative to the control sequence Uk we can take as the optimization vari-
ables

∆Uk = [∆uk,∆uk+1, . . . ,∆uk+Hu ] ,

where ∆uk = u(k)− u(k− 1). Now the prediction system (B.11) can be written as
xk+1

xk+2

...
xk+Hp


︸ ︷︷ ︸

Xk

=


Ak

Ak+1Ak

...∏Hp−1
t=0 Ak+t


︸ ︷︷ ︸

Φk

xk +


Bk

Ak+1Bk + Bk+1

...∑Hp
i=0

∏Hp
t=i+1 Ak+tBk+i


︸ ︷︷ ︸

Γ−1
k

uk−1 + ...
(B.8)
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B.4. Converting the Current Control Problem to Standard Form
Quadratic Program (QP)

We can convert between the prediction systems (B.11) and (B.8) with

∆Uk = Γ∆Uk − Γ−1
∆ uk−1,

where difference matrix operators are given by

Γ∆ =


I

−I I
. . .

−I I

 , Γ−1
∆ =


I

0
...
0

 . (B.9)

The state and control blocking defined by Ip and Iu can be implemented by
simply removing the rows of the system (B.8) that correspond to indices not present
in Ip and removing the columns that correspond to indices not present in Iu. In
summation the future states predicted at time k are given by

Xk = Φkxk + Γ−1
k uk−1 + Γk∆Uk,

and with the use of this expression, the cost function and state constraints of (B.5)
can be written in terms of the optimization variables z = ∆Uk and the parameters
xk (the initial state) and uk−1 (the previously applied control).

B.4 Converting the Current Control Problem to Stan-

dard Form Quadratic Program (QP)

With the linearized model (6.3), the predicted state evolution at time k can be
written in terms of the control variables and the current state estimate. Let ιk by
the state measured at time k, i.e. ιk = ι[k], then the future states predicted at time
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k can be computed in terms of the control variables in the following fashion

ιk+1 = Akιk + Bc
kũ

c
k + Bnc

k ũnc
k + ak,

ιk+2 = Ak+1 (Akιk + Bc
kũ

c
k + Bnc

k ũnc
k + ak)

+ Bc
k+1ũ

c
k+1 + Bnc

k+1ũ
nc
k+1 + ak+1,

ιk+3 = Ak+2Ak+1 (Akιk + Bc
kũ

c
k + Bnc

k ũnc
k + ak)

+ Ak+2

(
Bc
k+1ũ

c
k+1 + Bnc

k+1ũ
nc
k+1 + ak+1

)
+ Bc

k+2ũ
c
k+2 + Bnc

k+2ũ
nc
k+2 + ak+2.

Defining the operator
n∏

t=m

Ak+t ≡

{
Ak+nAk+n−1 . . .Ak+m if m ≤ n

I if m > n
(B.10)

the future state evolution predicted at time k can be written as a matrix equation.
Let Hu be the control horizon, where Hu ≤ Hp implies uk+t = uk+Hu for t ≥ Hu,
i.e. the control variable is only updated over the first Hu time steps. At time k, the
predicted state trajectory can be written as
ιk+1

ιk+2

...
ιk+Hp


︸ ︷︷ ︸

Xk

=


Ak

Ak+1Ak

...
Hp−1∏
t=0

Ak+t


︸ ︷︷ ︸

Φk

ιk +


Bnc
k

Ak+1B
nc
k + Bnc

k+1
...

Hp−1∑
i=0

Hp−1∏
t=i+1

Ak+tB
nc
k+i


︸ ︷︷ ︸

Γnc
k

ũnc
k +


ak

Ak+1ak + ak+1

...
Hp−1∑
i=0

Hp−1∏
t=i+1

Ak+tak+i


︸ ︷︷ ︸

Γa
k

+


Bc
k

Ak+1B
c
k Bc

k+1
... . . .

Hp−1∏
t=1

Ak+tB
c
k

Hp−1∏
t=2

Ak+tB
c
k+1 . . .

Hp−1∑
i=Hu

Hp−1∏
t=i+1

Ak+tB
c
k+i


︸ ︷︷ ︸

Γc
k


ũc
k

ũc
k+1
...

ũc
k+Hu


︸ ︷︷ ︸

Ũc
k

.

(B.11)

or equivalently
Xk = Φkιk + Γc

kŨ
c
k + Γnc

k ũnc
k + Γa

k. (B.12)
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As an alternative to the control sequence Ũk, we can take as the optimization
variables

∆Ũc
k =

[
∆ũc

k,∆ũc
k+1, . . . ,∆ũc

k+Hu

]
,

where ∆ũc
k = ũc

k − ũc
k−1 and

∆Ũc
k = Γ∆Ũc

k − Γlastũ
c
k−1, (B.13)

where the difference matrix operators are given by

Γ∆ =


I

−I I
. . .

−I I

 , Γlast =


I

0
...
0

 . (B.14)

B.4.1 Converting the Optimal Control Problem

With the use of the prediction matrices of (B.12), we can recast the optimal control
problem (6.4) into a standard form. Introducing the notation

Tk =


ιFFk+1

ιFFk+2
...

ιFFk+Hp


to represent the target profile over the prediction horizon, the optimal control prob-
lem (6.4) can be written as

minimize
∆Ũc

k, εE , εq , εss

J = (Xk −Tk)
T Q̄(Xk −Tk) + (∆Ũc

k)
T R̄∆Ũc

k

+WEε
2
E +Wqε

2
q +Wssε

2
ss (B.15)

subject to ∆Ũc
k ∈ ∆Ũk (B.16)

Xk ∈ Xk (B.17)

where Q̄ = IHp ⊗Q, R̄ = IHu ⊗R. Defining the entire set of optimization variables
as z = (∆Ũc

k, εE, εq, εss), and utilizing the prediction equations (B.12), it is straight-
forward to write the objective (B.15) and constraints (B.16)-(B.17) as functions of
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the optimization variables. The standard form quadratic program (QP) is written
as

minimize
z

1

2
zTHkz + hTk z

subject to Aeq,kz = beq,k

Ain,kz ≤ bin,k

(B.18)

where

Hk =


(
Γc
kΓ
−1
∆

)T
Q̄Γc

kΓ
−1
∆ + R̄

WE

Wq

Wss

 , (B.19)

hk = 2 (Ek −Tk)
T Q̄Γc

kΓ
−1
∆ , (B.20)

and Ek defines the unforced dynamic evolution given by

Ek = Φkιk + Γc
kΓlastũ

c
k−1 + Γnc

k ũnc
k + Γa

k. (B.21)

B.5 MPC with Offset Free Tracking

Model predictive control uses a nominal model to predict the future state trajectory
of the controlled process. If the nominal model represents perfectly the actual
process and no disturbances are present, the MPC feedback scheme can be made to
track reachable targets without offset. If, however, model mismatch or disturbances
are present, some modifications must be made to the standard MPC algorithm to
ensure offset free tracking. The most common offset free tracking methods fall into
one of two categories. The disturbance model approach augments the nominal model
with integrating states (called disturbances), which are estimated with an observer.
Various forms of disturbance models haven been proposed, see [97] for a summary,
and equivalence of the various disturbance models has been demonstrated in [98]. An
alternative approach involves the so called velocity form representation [99], in which
the control and state are replaced with their increment values. This formulation
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permits offset free tracking by essentially correcting the target, since the target
of state increments is always zero even if the plant and model are not equal. In
fact, both the various disturbance and velocity form approaches have been shown
to be equivalent as they are specific instances of a more general disturbance model
approach [100].

In the case of full state measurement, which is the basic assumption for all
the control problems considered in this thesis, the velocity form approach has the
advantage that it does not require any estimator.

B.5.1 Velocity Form Approach

Let the plant, i.e. actual system, be defined by

x+ = Ax + Bu + w,

y = Cx + v,
(B.22)

where x+ is the successor state, w is the state disturbance, and v is the output
disturbance. The nominal model is defined by

x̂+ = Ax̂ + Bu,

ŷ = Cx̂.
(B.23)

Define the incremental state and control, respectively, as δx = x(k)− x(k + 1) and
δu = u(k)−u(k−1). The velocity form representation, in which both the state and
control are replaced by their incremental counterparts, can be obtained from (B.23)
as

δx̂+ = Aδx̂ + Bδu,

ê = ŷ+ − r = ŷ + CAδx̂ + CBδu− r.

Take the augmented state, ξ̂ =

[
δx̂

ŷ − r

]
=

[
δx̂

ê

]
, as the velocity model state and

the model tracking error, ê, as the velocity model output, then

ξ̂+ = Aδ ξ̂ + Bδδu,

ê = Cδ ξ̂,
(B.24)
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defines the velocity model, where

Aδ =

[
A 0

CA I

]
, Bδ =

[
B

CB

]
, Cδ =

[
0 I

]
.

Letting ξ =

[
δx

e

]
, the actual system (B.22) can also be written in velocity form as

ξ+ = Aδξ + Bδδu +

[
δw

δw + δv+

]
,

ê = Cδξ.

(B.25)

Therefore the velocity form model is exact in the presence of constant state and
output disturbances, i.e. δw = 0 and δv = 0. For this reason if we replace the
prediction model of the standard MPC optimization problem with the velocity form
model we can obtain offset free tracking in steady state. If full state measurement
is not available, i.e. C 6= I, the augmented state of the velocity form model can
be obtained from the measured tracking error by means of an observer. Note that

velocity form model remains exact even if the augmented state is take as ξ =

[
δx

y

]
,

in which case the desired reference becomes a parameter of the optimization problem.
This is useful for instances in which the reference is time changing it is desired for
the controller to anticipate future reference changes.
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Appendix C

Optimal Control Derivations

C.1 Calculus of Variations

Consider a general additive cost function of the form

J = h(x(tf ), tf ) +

∫ tf

0

g(x(t),u(t), t)dt, (C.1)

and a set of constraints consisting of the system dynamics, fixed initial condition,
either fixed or free final state, and either fixed or free final time,

ẋ = f(x,u, t), (C.2)

x(0) = x0, (C.3)

x(tf ) = xf (optional). (C.4)

The necessary conditions for an optimal control policy can be obtained from calculus
of variations [69]. The process involves taking the variational of J , i.e. the partial
derivative of J with respect to each of the variables of the final cost and integrand,
and setting it to zero. From the variational, the necessary conditions optimality,
equivalently the conditions for the variational of J to be zero, can be obtained.
Defining the Hamiltonian

H(x,u,p, t) = g(x(t),u(t), t) + p(t)T f(x,u, t), (C.5)
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where p is a Lagrange multiplier (see chapter 2 of [69]), the necessary conditions for
optimality can be summarized as

ẋ = f(x,u, t), (C.6)

ṗ = −HT
x , (C.7)

Hu = 0, (C.8)

along with the boundary conditions

ht(tf ) +H(tf ) = 0, (C.9)

x(0) = x0, (C.10)

and depending on whether the final state is fixed of free we have the additional
boundary conditions,

[x(tf )]i = [xF ]i (for fixed final state element i), (C.11)

[p(tf )]i =
∂h

∂[x]i
(tf ) (for free final state element i). (C.12)

C.1.1 Example Problem: Double Integrator

Consider a brick of unit mass sliding on frictionless ice subject to a force, u, as
shown in Figure C.1. Let y be the spatial coordinate, then the dynamic evolution

ice	

u

y

unit	
mass	

Figure C.1: Brick of unit mass sliding on frictionless ice.

of the brick can be described by ÿ = u. The position of the brick is a double integral
of the input over time, hence the name “double integrator”. The states of the system
consist of the position and velocity of the brick, i.e. x1 = y and x2 = ẏ. Writing the
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state as x =

[
x1

x2

]
, a state space description of the dynamics can be obtained

ẋ = f(x, u) =

[
x2

u

]
. (C.13)

Optimal Control Solution by Calculus of Variations

Consider the control objective of driving the brick to the origin, x(tf ) = 0, from an
arbitrary initial condition, x(0) = [x10, x20]T , in such a way as to minimize the cost

J =
1

2
Wtf t

2
f

h(x(tf ),tf )

+

∫ tf

0

1

2
Wuu

2

g(x(t),u(t),t)

dt (C.14)

where the final time tf is free, and Wtf > 0, Wu > 0 are design weights. From the
method of calculus of variations [69], we know that the optimality conditions of this
problem are associated with the Hamiltonian function,

H =
1

2
Wuu

2 + pT f(x, u), (C.15)

where p is a Lagrange multiplier. The necessary conditions for optimality (see
Section C.1) are given by

ṗ = −HT
x , (C.16)

0 = Hu. (C.17)

and the boundary conditions include

x(0) = [x10, x20]T , (C.18)

x(tf ) = 0, (C.19)

ht(tf ) +H(tf ) = 0. (C.20)

From (C.16), we can obtain an expressions for each pi:

ṗ1 = −∂H
∂x1

→ ṗ1 = 0 → p1 = c1, (C.21)
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ṗ2 = −∂H
∂x2

→ ṗ2 = −p1 → p2 = −c1t+ c2, (C.22)

and from (C.17), we can obtain an expression for u:

Hu = 0 → Wuu+ p2 = 0 → u = − c2

Wu

+
c1

Wu

t. (C.23)

Imposing the boundary condition (C.20) we can obtain an expression for tf :

H(tf ) + ht(tf ) = 0 → 1

2
Wuu(tf )

2 +
[
p1(tf ), p2(tf )

] [x2(tf )

u(tf )

]
+Wtf tf = 0

−1

2
Wuu(tf )

2+Wtf tf = 0 → tf =
1

2

1

WtfWu

(−c2 + c1tf )
2 ,

(C.24)
where we have used the final state constraint x2(tf ) = 0 and the expression p2 =

−Wuu(tf ) from (C.23) to obtain the third equation. Returning to the state equa-
tions, we can obtain expressions for the optimal state evolution,

ẋ2 = u → x2 = c3 −
c2

Wu

t+
c1

2Wu

t2, (C.25)

ẋ1 = x2 → x1 = c4 + c3t−
c2

2Wu

t2 +
c1

6Wu

tt. (C.26)

Now, using with the boundary conditions, x(0) = [x10, x20]T and x(tf ) = 0, we can
solve for the integration constants,

c1 =
12Wu

t3f

(
x10 +

1

2
x20tf

)
, (C.27)

c2 =
6Wu

t2f

(
x10 +

2

3
x20tf

)
, (C.28)

c3 = x20, (C.29)

c4 = x10. (C.30)

Combining the expressions for c1 and c2, we can obtain an expression for the optimal
final time, t∗f , in terms of the initial condition,

t∗f =
18Wu

Wtf (t
∗
f )

4

(
x10 +

1

3
x20t

∗
f

)2

, (C.31)
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(a) Zero initial velocity: x0 = [1, 0]T .
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(b) Non-zero initial velocity: x0 = [1, 1]T .

Figure C.2: Optimal state (position) and control for the brick sliding problem. Two cases
shown: (a) zero initial velocity and (b) non-zero initial velocity.

which can be solved numerically by a standard Newton’s method. The optimal
trajectory and control policy is shown in Figure C.2 for two initial conditions, one
with zero initial velocity and one with an non-zero initial velocity. Note that the
control policy varies smoothly over the control time, this is a consequence of the
quadratic cost applied to the control value (C.14). Also, the brick reaches the final
state in finite time, which is required given the fixed final state constraint. Naturally,
as the cost weight on control effort relative to cost weight on final time, Wu/Wtf ,
increases, the time to reach the final state also increases. This example will be used
for comparison of numerical optimization approaches described in the later sections.
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C.1.2 Derivation of Linear Quadratic Regulator (LQR) Con-

trol Policy by Calculus of Variations

While it is typically difficult to solve the optimality conditions of Section C.1 in
general, there is a class of problems for which analytic solutions are very accessible,
those involving linear dynamics, quadratic costs, and no other constraints. The
simplest case, called the linear quadratic regulator (LQR), is derived in this section
using calculus of variations. It can also be derived from dynamic programming
techniques (the Hamilton Jacobi Bellman equation) [101].

LQR Derivation by Calculus of Variations

Consider a linear time-variant system with specified initial condition

ẋ = Ax + Bu, x(0) = x0, (C.32)

and a finite-time-horizon quadratic cost function

JLQR =
1

2
x(tf )

TQfx(tf ) +

∫ tf

0

[
xTQx + uTRu

]
dt,

Qf = QT
f ≤ 0, Q = QT ≤ 0, R = RT > 0.

(C.33)

To solve for the control that optimizes the cost (u?), we can use the equations
defining the necessary conditions for optimality, which stem from calculus of varia-
tions. The Hamiltonian associated with this problem is obtained by augmenting the
constraints (the system dynamics in this case) to the instantaneous cost (integrand),

H =
1

2

(
xTQx + uTRu

)
+ pT (Ax + Bu) , (C.34)

where p(t) is the Lagrange multiplier, which is often referred to as the costate.
Working from the necessary conditions for optimality, we obtain

ẋ =
∂H

∂p

T

= Ax + Bu with x(0) = x0, (C.35)

(C.36)

W.P. Wehner 193 Lehigh U.



C.1. Calculus of Variations

ṗ = −∂H
∂x

T

= −Qx−ATp with p(tf ) = Qfx(tf ), (C.37)

∂H

∂u
= 0 =⇒ Ru + BTp = 0 =⇒ u? = −R−1BTp. (C.38)

These conditions become sufficient for optimality if ∂2H
∂u2 ≥ 0, which is ensured for

R ≥ 0.
Using the expression for u? (C.38), we can describe the optimal evolution for the

state and costate by the linear system[
ẋ(t)

ṗ(t)

]
=

[
A −BR−1BT

−Q −AT

][
x(t)

p(t)

]
. (C.39)

The dynamics of x(t) and p(t) are coupled, where the initial state x(0) = x0 is known
and final costate p(tf ) = Qf is known. This represents a two point boundary value
problem, which is typically difficult to solve. But in this case, the system is linear,
and we can related [x(t),p(t)] to [x(tf ),p(tf )] by a state transition matrix1,[

ẋ(t)

ṗ(t)

]
=

[
Φ11(t, tf ) Φ12(t, tf )

Φ21(t, tf ) Φ22(t, tf )

][
x(t)

p(t)

]
. (C.40)

Now solve for p(t) in terms of x(t) to obtain

p(t) = [Φ21(t, tf ) + Φ22(t, tf )] [Φ11(t, tf ) + Φ12(t, tf )]
−1 .x(t)

, S(t)x(t)
(C.41)

Differentiating (C.41) with respect to time and equating with the second equation
of (C.40), we obtain

ṗ = Ṡx + Sẋ = −Qx−ATp, (C.42)

which can be combined with the dynamics (C.32) and the optimal control (C.38),

−Ṡx = Qx + ATp + S (Ax + Bu) ,

1Consider the linear homogenous system ż(t) = F (t)z(t) with initial condition z(0) = z0. The
solution is given by z(t) = Φ(t, t0)z0, and the state transition matrix has the following properties:
Φ(t, t) = I, Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0), and Φ(t1, t2) = Φ(t2, t1)−1.
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= Qx + ATp + S
(
Ax−BR−1BTp

)
,

= (Q + SA) x +
(
AT − SBR−1BT

)
p,

= (Q + SA) x +
(
AT − SBR−1BT

)
Sx,

=
(
ATS + SAT + Q− SBR−1BTS

)
x.

Since this expression must be true for all x, S must satisfy

− Ṡ = ATS + SAT + Q− SBR−1BTS, (C.43)

which is matrix differential Riccati equation. The optimal value of S is found by
solving backwards in time from S(tf ) = Qf . Taking Qf = 0, the infinite horizon
case is found by the steady state solution

0 = ATS + SAT + Q− SBR−1BTS, (C.44)

which is an algebraic Riccati equation. The solution to this equation defines the
optimal control, u? = R−1BTSx, which is known as the LQR control law. It is
well known that the equation has a single positive-definite solution if and only if the
system is controllable.

The Optimal LQR Cost

To obtain the optimal cost, we can rewrite the cost function (C.33) as

JLQR =
1

2
x(tf )

TQfx(tf ) +

∫ tf

0

[
xTQx + uTRu + pT (Ax + Bu− ẋ)

]
dt (C.45)

and substitute the necessary conditions for optimality (C.35)-(C.38) to obtain

JLQR =
1

2
x(tf )

TQfx(tf )−
1

2

∫ tf

0

[
ẋTx + pT ẋ

]
dt,

=
1

2
x(tf )

TQfx(tf )−
1

2

∫ tf

0

[
d

dt
(pTx)

]
dt,

=
1

2
x(tf )

TQfx(tf )−
1

2

[
p(tf )

Tx(tf )− p(0)Tx(0)
]
,

=
1

2
x(tf )

TQfx(tf )−
1

2

[
x(tf )

TS(tf )x(tf )− x(0)TS(0)x(0)
]
,
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JLQR =
1

2
x(0)TS(0)x(0), (C.46)

which describes the cost to drive the system to zero starting from the initial condi-
tion at the initial time. The control action u? actuates the system so as to minimize
the cost as quickly as possible. From (C.46), we can see the direction −Sx in fact
represents the steepest descent of the cost function. However, not all directions
are possible as the system is constrained by the available actuation. The direction
−BTSx is a projection of the steepest descent onto the controllable directions. Fi-
nally, the optimal control is scaled by the matrix R−1, u? = R−1BTS, to account for
design choices which weight different control inputs. A variety of useful extensions
to the LQR problem are possible [69]. For example, the results above apply even if
dynamics and cost matrices are time varying A = A(t), B = B(t), Q = Q(t), and
R = R(t).

C.2 Formulating the Optimal Control Problem as

Numerical Optimization Problem

Usually optimal control problems like the example of Section C.1.1 can only be
solved in closed form for linear dynamical systems. For nonlinear system dynamics
it is most often necessary to solve the problem numerically. There are numerous
ways to transcribe an optimal control problem into a numerical optimization prob-
lem [70]. For example, in the single shooting approach described in Section 4.3, the
optimization variables consist only of the controls, and the dynamic constraints are
removed from the problem by solving for the future states in terms of the controls
and initial condition.

Once formulated as a standard optimization problem, the optimal control prob-
lem can be solved by a commercial solver. While it is not strictly necessary, a
numerical solver can benefit immensely from having the gradients of the objective
and constraints computed analytically. Not only will explicit gradient calculations
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greatly reduce the time necessary to solve the optimization problem, but also ad-
dresses issues associated with inaccurate finite difference approximations that creep
in as the dynamics become more complicated.

As will be described in the following section, the gradient of the cost function
with respect to the optimization variables depends on the sensitivity of the state
evolution to the control variables. In this section, equations for the sensitivity
along a trajectory are developed for various integration schemes. We consider, first,
the forward Euler (explicit) integration type, then the backward Euler (implicit)
integration type, and then extend the technique to general explicit and implicit
Runge-Kutta integration schemes.

C.2.1 Sensitivity

Consider the additive cost function,

Jα = h(t0, tF ,x(t0),x(tF )) +

∫ tF

t0

g(t,x(t),u(t))dt, (C.47)

for which we would like to find the gradient of Jα with respect to some set of
parameters α. The cost function Jα is a function of the trajectory (t,x(t),u(t)),
which is constrained by the dynamics,

ẋ = f(t,x,u), x(t0) = x0, t ∈ [t0, tF ]. (C.48)

The vector of free parameters, α, could represent a variety of things, for example
it could be the initial condition α = x0 or it could be a control policy of the form,
u = uα(t,x).

Forward Euler Integration (Explicit Integration)

In the case of explicit Euler integration of the dynamics (C.48), we have

x[n+ 1] = x[n] + dtf(tn,x[n],u[n]), dt =
tF − t0
N

, tn = t0 + ndt,

where we have defined the time step dt as the difference between final time and
initial time divided by a fixed number of time steps N , and n represents the discrete
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x[0]=x0	

u[1]	u[0]	

u[3]	
u[2]	

u[4]	

Figure C.3: Control parameterization for single shooting with explicit Euler integration.

time variable. Integrating the cost function (C.47) as well with the explicit Euler
integration scheme, we have

Jα = h(t0, tF ,x[0],x[N ]) + dt
N−1∑
n=0

g(tn,x[n],u[n]).

Consider a set of optimization variables including the initial and final time and a
set of open-loop control updates along the trajectory as shown in Figure C.3, i.e.
α = [t0, tF , xT0 ,u

T
0 ,u

T
1 , . . . ,u

T
N ]. Taking the partial derivative of Jα with respect to

each optimization variable the gradient of the cost function can be obtained,

∂Jα

∂α
=
∂h(t0, tF ,x[0],x[N ])

∂t0

∂t0
∂α

+
∂h(t0, tF ,x[0],x[N ])

∂tF

∂tF
∂α

+
∂h(t0, tF ,x[0],x[N ])

∂x[0]

∂x[0]

∂α
+
∂h(t0, tF ,x[0],x[N ])

∂x[N ]

∂x[N ]

∂α
+
∂dt

∂α

N−1∑
n=0

g(tn,x[n],u[n])

+
N−1∑
n=0

dt

(
∂g(tn,x[n],u[n])

∂tn

∂tn
∂α

+
∂g(tn,x[n],u[n])

∂x

∂x[n]

∂α
+
∂g(tn,x[n],u[n])

∂u

∂u[n]

∂α

)
The sensitivity terms, Sn = ∂x[n]/∂α, can be obtained while integrating the

dynamics forward, we have,

∂x[n+ 1]

∂α
=
∂x[n]

∂α
+dt

(
∂f(tn,x[n],u[n])

∂t

∂tn
∂α

+
∂f(tn,x[n],u[n])

∂x

∂x[n]

∂α

+
∂f(tn,x[n],u[n])

∂u

∂u[n]

∂α

)
+
∂dt

∂α
f(tn,x[n],u[n]).

(C.49)
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where the initial sensitivity, S0 = ∂x[0]/∂α, is either zero if x0 is fixed, or given by

∂x[0]

∂α
=
[
0 0 I 0 . . . 0

]
, (C.50)

if x0 is taken as an optimization variable. The remaining terms, ∂u[n]/∂α, ∂t0/∂α,
etc. are given by

∂u[0]

∂α
=
[
0 0 0 I 0 . . . 0

]
,

∂t0
∂α

=
[
1 0 . . . 0

]
, etc.

Backward Euler Integration

Consider a cost function including only a time independent path cost,

Jα =

∫ tF

t0

g(x(t),u(t))dt. (C.51)

The boundary cost and time dependency of the dynamics which was included in the
previous section has been omitted for simplicity. Employ a backward Euler (implicit
Euler) scheme for integration of both the dynamics and cost function2,

Jα =dt
N−1∑
n=0

g(x[n+ 1],u[n]), x[n+ 1] = x[n] + dtf(x[n+ 1],u[n]).

In this case, the gradient of the cost function can be written as

∂Jα

∂α
= dt

N−1∑
n=0

(
∂g(x[n+ 1],u[n])

∂x

∂x[n+ 1]

∂α
+
∂g(x[n],u[n])

∂u

∂u[n]

∂α

)

+
∂dt

∂α

N−1∑
n=0

g(x[n+ 1],u[n])

(C.52)

and the sensitivity, Sn = ∂x[n]/∂α, is given by

∂x[n+ 1]

∂α
=

(
Inx − dt

∂f(x[n+ 1],u[n])

∂x

)−1(
∂x[n]

∂α
+ dt

∂f(x[n+ 1],u[n])

∂u

∂u[n]

∂α

)
.

(C.53)
If the dynamics or cost are also a function time or the cost function Jα includes a
boundary cost, the additional terms can be easily incorporated in the same fashion
as the explicit Euler integration scheme.

2It is important for the cost to be integrated under the same integration scheme as the dynamics
in order to minimize noise in the calculation of gradients [70].
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C.3 General Runge-Kutta Methods

The explicit and implicit Euler integration schemes described above are particular
forms of the Runge-Kutta methods. For a general dynamical system, ẋ = f(t,x,u),
the general s-stage explicit Runge-Kutta (ERK) [70, 102] method is given by

xn+1 = xn + dt
s∑
i=1

biki (C.54)

where

k1 = f(tn,xn,u1),

k2 = f(tn + c2dt,xn + a21dtk1,u2),

k3 = f(tn + c3dt,xn + a31dtk1 + a32dtk2,u3),

...

ks = f(tn + csdt,xn + as1dtk1 + as2dtk2 + · · ·+ as,s−1dtks−1,us).

(C.55)

Independent control values, ui, have been included for each unique value ci. For
example, a four-stage ERK method with uniformly spaced ci is shown in Figure C.4
The particular ERK method is specified by the number of stages, s, the Runge-Kutta
matrix given by aij, and the weights ci and bi. Typically, this data is tabulated in
the convenient form called a Butcher Tableau as shown in Figure C.5(a) for the
ERK methods, which are characterized by a strictly lower triangular Runge-Kutta
matrix, ARK = {aij} for i, j = 1, 2, . . . , s. Implicit Runge-Kutta (IRK) methods
differ from explicit methods in that the Runge-Kutta matrix may contain nonzero
terms in or above the main diagonal (see Figures C.5(b) and C.5(c)). For implicit
methods the ki terms of (C.54) are given by

k1 = f(tn,xn + a11dtk1 + a12dtk2 + · · ·+ a1,sdtks,u1),

k2 = f(tn + c2dt,xn + a21dtk1 + a22dtk2 + . . . a2,sdtks,u2),

k3 = f(tn + c3dt,xn + a31dtk1 + a32dtk2 + . . . a3,sdtks,u3),

...

ks = f(tn + csdt,xn + as1dtk1 + as2dtk2 + . . . as,sdtks,us).

(C.56)
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Note that ki of earlier stages may be functions of ki at later stages for implicit
methods implying they must be solved numerically if the dynamics are nonlinear.

x[1]	
x[2]	

x[0]	=	
x0	

u[1]	
u[0]	

u[2]	

dt	

xn	

xn+1	

us2	
us3	 us4		

tn	

us1		

tn
+c2dt	

tn
+c3dt	

tn
+c4dt	

4-stage	ERK	

Figure C.4: Four-stage ERK method. The control value is allowed to be independent at
each Runge-Kutta stage.

0
c2 a21

c3 a31 a32
...

... . . .
cs as,1 as,2 . . . as,s−1

b1 b2 . . . bs−1 bs

(a) ERK Butcher Tableau

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s

c3 a31 a32 . . . a3s
...

... . . .
cs as,1 as,2 . . . as,s

b1 b2 . . . bs

(b) IRK Butcher Tableau

ERK	 IRK	

0	

(c) ARK for ERK vs. IRK.

Figure C.5: Butcher Tableau for explicit (ERK) and implicit (IRK) methods.
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The Butcher Tableau provides a convenient way to program the sensitivity equa-
tions for arbitrary Runge-Kutta methods as described in the following sections.

C.3.1 Sensitivity for General Explicit Runge-Kutta (ERK)

Methods

Let Sn be the sensitivity of the state xn, i.e. Sn = ∂xn/∂α, and for simplicity
assume t0 and tF are fixed and the dynamics are not time dependent, then an
update equation for the sensitivity can be obtained by differentiating (C.54) with
respect to the optimization variables, which gives

Sn+1 = Sn + dt
s∑
i=1

bik
′
i (C.57)

where k′i = ∂ki/∂α are given by

k′1 = k1,u
∂u1

∂α
+ k1,xSn, (C.58)

k′2 = k2,u
∂u2

∂α
+ k2,x (Sn + a21dtk

′
1) , (C.59)

k′3 = k3,u
∂u3

∂α
+ k3,x (Sn + a31dtk

′
1 + a32dtk

′
2) , (C.60)

... (C.61)

k′s = ks,u
∂us
∂α

+ ks,x
(
Sn + as1dtk

′
1 + as2dtk

′
2 + · · ·+ as,s−1dtk

′
s−1

)
, (C.62)

where the terms ki,u and ki,x, which have been introduced for notational simplicity
are given by

ki,u =
∂ki
∂ui

, ki,x =
∂ki
∂x

. (C.63)

The recursive characteristics of the 2nd term on right side of (C.58)-(C.62) allows
Sn to be written as

Sn+1 = SSn + dt

s∑
i=1

biki,u
∂ui
∂α

(C.64)
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where S is a matrix given by

S = I + dt {b1k1,x + b2k2,x (I + a21dtk1,x)

+ b3k3,x [I + a31dtk1,x + a32dtk2,x (I + a21dtk1,x)] + . . .

+ bsks,x [I + as1dtk1,x + as2dtk2,x (I + a21dtk1,x) + . . .

+as,s−1dtks−1,x (I + as−1,1dtk1,x + · · ·+ as−1,s−2dtks−2,x (I + . . . ))]}
(C.65)

C.3.2 Sensitivity for General Implicit Runge-Kutta (IRK)

Methods

In the implicit Runge-Kutta schemes, we can consider a two stage scheme, and
straightforward extensions can be made to extend the method for the two stage
scheme to general implicit Runge-Kutta schemes defined by the Butcher Tableau of
Table C.5(b). The two stage implicit scheme Butcher Tableau is given by

c1 a11 a12

c2 a21 a22

b1 b2

from which k1 and k2 can be obtained

k1 = f(tn + c1dt,xn + dt(a11k1 + a12k2)),

k2 = f(tn + c2dt,xn + dt(a21k1 + a22k2)).
(C.66)

Like the explicit Runge-Kutta case, Sn is again defined by (C.57), where k′1 and k′2

can be written as

k′1 = k1,x (I + dta11k
′
1 + dta12k

′
2) + k1,u,

k′2 = k2,x (I + dta21k
′
1 + dta22k

′
2) + k2,u,

(C.67)

where ki,x = ∂ki/∂x and ki,u = ∂ki/∂u. In the implicit case the k terms at earlier
stages depend on k terms at later stages, therefore we must solve the system[

I− a11dtk1,x −a12dtk1,x

−a21dtk2,x −a22dtk2,x

][
k′1

k′2

]
=

[
k1,x + k1,u

k2,x + k2,u

]
(C.68)

to obtain each k′i.
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C.4 Multiple-Shooting Formulation

So far we have only considered only the single shooting approach, in which the
entire state trajectory is expressed as an integral function of the controls and initial
state (see Section 4.3). However, the single shooting approach will break down for
long trajectories with complicated dynamics because the gradients of the objective
and constraints will become highly sensitive to small changes in the inputs. In
the multiple shooting approach, the trajectory is divided into multiple segments
as shown in Figure C.6. Discrepancies between the endpoints of the segments are
accounted for by defect constraints. While the multiple shooting approach does
increase the size of the optimization problem it becomes easier to solve because the
sensitivity, Sn, becomes more linear [70].

If the trajectory is divided into NS segments, this requires the introduction of
the optimization parameters x1, x2, . . . , xNS−1, and the addition of Ns − 1 defect
constraints to the optimization problem. The sensitivity, Sn, can be calculated
separately for each shooting segment in the same fashion as Section C.2.1.

The multiple shooting approach can also speed up the optimization process be-
cause the shooting segments can be integrated simultaneously. This can be valuable
for dynamics that require implicit integrations schemes.

!me	

xN	

xtarget	

x0	

Add	constraint	or	cost	
on	(xN	–	xtarget)	

st
at
e	

(a) Single shooting.

xN	
xtarget	

x0	

defects	
0	=	(x0+	–	x1)	
0	=	(x1+	–	x2)	

x1+	x1	

x0+	
x2	

!me	

st
at
e	

(b) Multiple shooting with three shooting seg-
ments.

Figure C.6: Single shooting vs. multiple shooting.
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Appendix D

General Nonlinear Optimization

Problem

Consider the general optimization problem

minimize
x

f(x)

subject to ceq(x) = 0

cin(x) ≤ 0

(D.1)

where f : Rn → R, ceq : Rn → Rneq , and cin : Rn → Rnin are smooth functions which
may be nonlinear and non convex. First-order necessary conditions for optimality
require solutions to the problem (D.1) to be feasible, i.e. to satisfy all the constraints,
and to be a stationary point to the Lagrangian

L(x, λeq, λin) = f(x)− λTeqceq(x)− λTincin(x). (D.2)

Potential solutions, labeled (x?, λ?), must satisfy the Karush-Kuhn-Tucker (KKT)
conditions, which are essentially first-order necessary conditions for optimality1,

∇xL(x?, λ?eq, λ
?
in) = 0, (D.3)

ceq(x
?) = 0, (D.4)

1In all cases vector inequalities denote component-wise comparisons
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cin(x?) ≤ 0, (D.5)

λ?in ≥ 0, (D.6)

λ?in,icin,i(x
?) = 0, for i = 1, 2, . . . , nin. (D.7)

where ∇ represents ∂/∂x. The conditions (D.7) are known as complimentarily
conditions, they imply that either constraint i is active (cin,i(x?) = 0) or λ?in,i = 0, or
possibly both. Typically, algorithms search for a solution to problems of this type
by first starting with an approximate solution, call it x0, and work to improve on
the solution by taking steps, ∆x, resulting in a sequence of iterates x0,x1,x2, . . . ,
which converges to a solution. The general procedure is outlined in Algorithm 2.

Algorithm 2: General Optimization
Choose initial approximate solution x0

Evaluate f0 = f(x0), ∇f0, initial constraints and constraint gradients
for k = 0, 1, . . . , kmax do

Check convergence criteria
Determine search direction pk (descent in some sense)
Determine step length / step acceptance (αk)
Set new iterate xk+1 = xk + αkpk
Set fk+1 = f(xk+1), ∇fk+1 = ∇f(xk+1), etc.

end for

D.1 Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is a numerical optimization approach
that has proven successful at solving medium scale problems such as those asso-
ciated with optimal control. The SQP method generates a sequence of quadratic
programming subproblems which are to be solved successively, hence the nomencla-
ture sequential quadratic programming. Originally proposed in the doctoral work
by Wilson [103], SQP was further developed into a globally convergent method by
Han [104] and Powell [105]. The basic SQP algorithm described below is the same
as that implemented in Matlab’s method for constrained optimization [74].
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D.1.1 Computing the SQP Search Direction

Sequential quadratic programming is essentially based on Newton’s method. Con-
sider the general equality constrained optimization problem

minimize
x

f(x)

subject to ceq(x) = 0
(D.8)

SQP arises by applying Newton’s method to the KKT conditions relevant to this
problem (D.3)-(D.4), i.e. [

∇xL(x?,λ?)

ceq(x
?)

]
= 0. (D.9)

We can proceed to search for a minimizer to the problem (D.8) by searching for
points that solve the system (D.9). The natural approach is to solve the root finding
problem with Newton’s method. Roughly speaking, we start with an initial “guess”
solution, linearize the system (D.9) around the guess solution, and solve the linear
system to improve on the guess.

Assume we have an approximate solution, (xk,λk). Linearizing (D.9), around
(xk,λk), we obtain

∇xL(xk,λk) +∇2
xL(xk, λk)∆xk −∇ceq(xk)∆λk =0,

ceq(xk) +∇ceq(xk)
T∆xk =0,

where ∆xk and ∆λk represent steps away from xk and λk. Noting that∇xL(xk,λk) =

∇f(xk)−∇ceq(xk)λk and introducing the shorthand λ+ = λk+∆λk, we can rewrite
the linearized system as[

∇2
xL(xk) −∇ceq(xk)

−∇ceq(xk)
T 0

][
∆xk

λ+

]
=

[
−∇f(xk)

−ceq(xk)

]
. (D.10)

It can be shown that the conditions (D.10) are precisely the optimality conditions
of the following quadratic program (QP) [74],

minimize
∆xk

∇f(xk)
T∆xk +

1

2
∆xTk

(
∇2

xL(xk,λk)
)

∆xk,

subject to ceq(xk) +∇ceq
T (xk)∆xk = 0.

(D.11)
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A full step Newton’s method solves QPs of the form (D.11) on each iteration and
updates the approximate solution according to

xk+1 = xk + ∆xk,

λk+1 = λk + ∆λk = λ+.

While it is not possible to apply Newton’s method to the KKT conditions as-
sociated with inequality constrained problems because the complimentarily con-
ditions (D.4) are non smooth, we can incorporate inequality constraints into QP
subproblem (D.11) in the same fashion as the equality constraints. For the mixed
constraint problem (D.1), the QP subproblem becomes

minimize
∆xk

∇f(xk)
T∆xk +

1

2
∆xTkBk∆xk,

subject to ceq(xk) +∇ceq
T (xk)∆xk = 0,

cin(xk) +∇cin
T (xk)∆xk = 0,

(D.12)

which has a solution (∆xk+1,λ
+
eq,λ

+
in) and the Hessian matrix is

Bk = ∇2
xL(xk,λeq,k,λin,k). (D.13)

Methods for solving the QP subproblem are described in Appendix D.2.

D.1.2 Computing the SQP Step Size

The SQP method described above (Section D.1.1) is only locally convergent. When
starting far from a solution, it can generate an erratic sequence of iterates that may
by chance enter the neighborhood of a solution and then converge, but more likely
the sequence will not converge. The two main approaches to globalizing the SQP
method, i.e. modifying the algorithm so that it is convergent from any starting
point, include trust region and line search. The latter is considered in this work.

The line search method adapts a change in the iterate by a step size αk ∈ [0, 1],
i.e.

xk+1 = xk + αkpk
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µ = 0.8 µ = 1.2 µ = 2.0

Figure D.1: Exactness of the merit function. As µ is increased, the search direction
goes from an ascent direction of the merit function (µ = 0.8) to a descent
direction (µ = 1.2) to exact (µ ≥ 2.0).

where pk is the step direction computed by the method in the previous section. The
step size parameter is important because it forces convergence from poor starting
approximations. However, the choice of step size is complicated by the necessary
trade off between reducing the objective function and moving towards feasibility.
The issue of balancing both goals with the preference towards satisfying constraints
can be addressed with a “merit-function”. The most common general merit function
is of the form:

φ(x;µ) = f(x) + µ (‖c(x)‖1 + max{0, h(x)}) , (D.14)

where the positive scalar µ is the penalty parameter which weights constraint satis-
faction relative to minimization of the objective. This merit function is not differen-
tiable but it has the important property of being exact meaning there is a positive
scalar µ? such that for any µ > µ? any local solution of the original nonlinear
optimization problem is a local minimizer of φ(x;µ).

An example of exactness is depicted in Figure D.1. The thin lines draw the
contours of the merit function (D.14) and the dark black line draws feasible points.
The blue star denotes minimizer of the merit function and red star denotes minimizer
of the optimization problem. As µ is increased, the search direction computed from
the QP subproblem denoted by the blue arrow becomes a descent direction for the
merit function. For µ ≥ 2 the merit function is exact.
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Ideally we would like choose αk such that

αk = arg min
αk∈[0,1]

φ(xk + αkpk, ;µ)

but in general this is expensive to calculate and instead it is more common to accept
a step if it produces a sufficient decrease in the merit function. While the above
merit function is not differentiable because of the 1-norm and max terms, it does
have a direction derivative. Let D(φ(x;µ) : p) represent the directional derivative of
φ(x;µ) in the direction p. In a line search method, the sufficient decrease condition
requires the step size parameter α > 0 be small enough that the inequality

φ(x + αp;µ) ≤ φ(x;µ) + ηα(φ(x;µ) : p),

is satisfied for some η ∈ (0, 1). The next two sections discuss how to compute the
directional derivative and how to choose the penalty parameter µ.

Directional Derivative of the Composite Merit Function

While the merit function discussed in Section D.1.2 is not differentiable, it does have
a directional derivative. Consider the the function

v(x) = ‖c(x)‖1 + max{0, h(x)} (D.15)

where c(x) and h(x) are scalar functions. The directional derivative of the function
f(x) in direction p is defined as

D(f(x); p) ≡ lim
ε→0

f(x + εp)− f(x)

ε
(D.16)

To obtain the directional derivative of ‖c(x)‖, first consider the the function c(x) =

x. We have from the definition (D.16)

D(‖x‖1; p) = lim
ε→0

‖x + εp‖1 − ‖x‖1

ε
= lim

ε→0

∑n
i=1 |xi + εpi| −

∑n
i=1 |xi|

ε
(D.17)

If xi > 0, we have |xi + εpi| = |xi| + εpi for all ε sufficiently small. If xi < 0,
we have |xi + εpi| = |xi| − εpi for all ε sufficiently small, while if xi = 0, we have
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|xi + εpi| = εpi. Thus,

D(‖x‖1; p) =
∑
i|xi<0

−pi +
∑
i|xi>0

pi +
∑
i|xi=0

|pi|. (D.18)

In summation, for the scalar x, the directional derivative depends on the sign of x
and the direction p

1. If x < 0, then D = p

2. If x > 0, then D = −p

3. If x = 0, then D = |d| (Note, it’s always positive, which makes sense since
x = 0 is a minimizer of |x|.)

More generally, for ‖c(x)‖1, the result is the same except x is replaced by c(x) and
d is replaced by ∇c(x)Td

1. If c(x) < 0, then D = ∇c(x)Td

2. If c(x) > 0, then D = −∇c(x)Td

3. If c(x) = 0, then D = |∇c(x)Td|

For the function max{0, h(x)}, the only differences is that now the directional deriva-
tive is always zero when h(x) < 0 because the max function will remain zero for
small deviations in x.

1. If h(x) < 0, then D = ∇h(x)Td

2. If h(x) > 0, then D = 0

3. If h(x) = 0, then D = max{0, h(x)Td}

Here, we’ve used the property of directional derivatives

D(max{f1, f2},d) = max{∇fT1 d,∇fT2 d}. (D.19)
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D.1.3 Approximating the Hessian

The Hessian of the Lagrangian ∇2
xL(xk, λk) required in the QP subproblem (D.12)

is made of up of second derivatives of the objective function and constraints. For op-
timal control applications, this information is not easy to compute so it is necessary
to replace the exact Hessian by some approximation. Various formulae have been
developed for generating Hessian approximations based solely on the first derivative
information of pervious iterates (D.12). The most popular form of Hessian approx-
imation for SQP methods is the BFGS method [74] because it ensures superlinear
convergence when near a solution. The BFGS update for constrained problems is
given by

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+

yky
T
k

yTk sk
,

where sk = xk+1 − xk and yk = ∇xL(xk+1, λk+1)−∇xL(xk, λk+1).

D.1.4 The SQP Algorithm

In summation the general SQP framework can be broken down into the following
steps:

Step 1: Initial Guess. Obtain some working guess solution, xk and multipliers
λeq,k and λin,k

Step 2: Construct QP Subproblem. Use xk, λeq,k, and λin,k to construct the
QP subproblem as in (D.12).

Step 3: Solve QP Subproblem. Solve the QP subproblem to obtain the search
direction, pk = ∆xk and new multipliers λ+

eq, and λ
+
in. Set ∆λin,k =

λ+
in − λin,k and ∆λeq,k = λ+

eq − λeq,k.

Step 4: Compute Step-size and Update. Compute the step size

αk := arg min
α∈[0,1]

φ(xk + αk∆xk).

Update iterates (xk+1,λeq,k+1) ← (xk,λeq,k) + αk(∆xk+1,∆λeq,k) and
return to Step 2.
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The line search SQP algorithm is formally written in Algorithm 3.

Algorithm 3: SQP line search algorithm
Choose initial approximate solution x0 and initial multipliers λeq,0 and λin,0;
Evaluate f0, ∇f0, ceq,0, ∇ceq,0, cin,0, and ∇cin,0;
Choose an initial Hessian approximation B0 > 0;
for k = 0, 1, . . . , kmax do

Check convergence criteria: ‖pk‖ ≤ tol or ‖∇xL‖ ≤ tol;
Compute the search direction pk = ∆xk and updated multipliers λ+

eq,
and λ+

in by solving the QP subproblem (D.12);
Set step size αk ← 1;
while φ1(xk + αkpk;µk) > φ1(xk;µk) + ηαkD1(φ(xk;µk)pk) do

Reset αk ← τααk for some τα ∈ (0, τ ];
end while
Set xk+1 ← xk + αkpk
Evaluate fk+1, ∇fk+1, etc.
Set sk ← αkpk and yk ← ∇xL(xk+1, λk+1)−∇xL(xk, λk+1)
Compute Bk+1 by updating Bk according to BFGS formula

end for

D.2 Quadratic Programming Solutions

A quadratic program is defined as the optimization of a quadratic objective func-
tion over a polytope, i.e. the intersection of a finite number of linear equality and
inequality constraints [74], for example see Figure D.2.

D.2.1 Quadratic Program Reduced to General Form

Consider an equality and inequality constrained QP written in the standard form,

minimize
z

1

2
zTHz + gTz

subject to Az = b

Cz ≤ d

(D.20)

for which we want to find the optimizer z?.
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Figure D.2: Example QP problem: the purple area represents the feasible set and the
red dot represents the optimal point.

At the optimal solution, some of the inequalities will be active, i.e. the solution
resides at the boundary of the inequality. If the set of active inequalities at the
optimal solution, the active set, were known apriori, the remaining inactive inequal-
ities could be dropped from the problem and the optimal solution could be found
by solving the equality constrained problem

minimize
z

1

2
zTHz + gTz

subject to Az = b

cTi z = di ∀i ∈ A

(D.21)

where A is set of indices representing the active inequalities. Assuming H is positive
definite, i.e. the problem is strictly convex then there is a unique optimizer which
can be found from the single stationary point of the Lagrangian

L(z, α, λ) =
1

2
zTHz + gTz +αT (Az− b) +

∑
i∈A

λi(c
T
i z − di) (D.22)

where α and λ have been introduced as Lagrange multipliers. The stationarity point
of D.22 can be found by solution of the linear system

H AT CT
act

A 0 0

Cact 0 0




z

α

λ

 =


−g

b

dact

 . (D.23)
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An efficient approach to finding the solution to the equality constrained problem is
discussed below. An active set algorithm is a procedure to determine the active set
A. Numerous possibilities exists for finding A, one such possibility is described in
the next subsection [81].

D.2.2 Simple Active Set Algorithm For Solving Inequality

Constrained Quadratic Program

Consider the general equality constrained problem

minimize
z

1

2
zTHz + gTz

subject to Az = b

Cz ≤ d

and let W represent a guess of the optimal active set A. For a strictly convex
QP, there is a single optimizer that must satisfy the KKT conditions (equivalent to
stationary point of , which can be summarized as follows

Hz +αTA +
∑
i∈W

λici = −g

Az = b

∀i ∈ W ci
Tz = di

KKT(1)

Cz ≤ d

∀i ∈ W λi ≥ 0

KKT(2)

With a guess of the active set W the solution to the problem determined by solv-
ing (D.23) will satisfy KKT(1), but will not necessarily satisfy KKT(2) unless W
is equal to the optimal active set A. The procedure to determine the active set
starts by first taking a guess to the active set, call it the working set W . From
the working set, we construct an equality constrained QP and obtain a candidate
solution, ẑ. With the candidate solution, we can check the conditions KKT(2), any
violated inequality constraints are added to the working set and any constraint i for
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λi < 0 currently in the working set is removed.2 The process is repeated until no
constraints are added or removed from the working set. The active set algorithm is
formally summarized in Algorithm 1 [81].

Algorithm 4: Active Set Method for Quadratic Programming
iter ← 0
repeat

Compute z satisfying KKT(1)
if ciTz > di

∣∣
i/∈W then

add i to W
end if
if λi < 0|i∈W then

remove i from W
end if
iter ← iter + 1
if iter > MAXITER then
return Fail

end if
until z satisfies KKT(2)
A ←W
return A, z

D.2.3 Efficient solution of equality constrained problem

If H is positive definite, the solution to the equality constrained QP (D.21) can be
efficiently solved via the Schur complement method [74]. Let Ā =

[
AT CT

act

]T and
b̄ = [bT dTact]

T , then a solution to the system (D.23) rewritten here as[
H ĀT

Ā 0

]
z[
α

λ

] =

[
−g

b̄

]

can be found by first solving for α and λ(
ĀH−1ĀT

) [α
λ

]
=
(
ĀH−1g − b̄

)
.

2A negative multiplier implies the optimal solution lies within this inequality constraint.
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After obtaining α and λ, recover z

z = −H−1

(
g + ĀT

[
α

λ

])

This method requires H−1 and factorization of matrix ĀTH−1Ā, therefore it is most
efficient when the inverse of H−1 can be easily computed, i.e. is diagonal, or can be
precomputed, which is the case in the MPC approaches described in this document.
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