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ABSTRACT

Implicit in the classical techniques of smoothing and forecast-
ing of discrete time series is the restriction that the data spans
equal intervals of time. There exists a need to make forecasts at

unequal time intervals for the transaction eor event oriented business

LS

activity.

In the thesis a formal - method of smoothing and forecasting is
formulated for data that occurS'infarmallvaith time; that is, the
information 1s given at aperiodic review intervals. The model is

of the recursive nature so thaf’sugh,useful,characteristics as sim-

2

plicity of.cbmputatiQn, accuracy, and ease of data storage can be
maintained. The modei represents avgeneralizatioh of classical-ex—ﬁ
ponential'smobthingwéith.theaforementionedadeparture from standard
theory, and it logically reduces to the familiar exponential smoothing
model for the’SpeQiai case of .equal time intervals. The theory has
been extended to inCIUde.the Sméothing and forecasting of data that
éxhibitsmeither simple or higher order polynomial underlyingAprocesses.
Following the derivation, the statistical and dynamic properties

are explored analytically so that the characteristic§ ofAthe model

%

can be appraised. The study Suggests that the model as formulated

s

in the thesis behaves, for-fhe irregular review intervals, similar to

that of classical exponential smoothing which in its original form is

only applicable to periodic reviews. Finally, an example is included
that will serve to demonstrate the behavior of the model under actual

‘appliCatidn and help lend support to the mathematical donsiderations.
. o . - . % :

he -
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I. INTRODUCTION

¢ e

In this chapter of the thesis the purpose, the intended coverage,

and the nature of the utility of the proposed model is introduced.
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.....

Then, the mathematical formulation“upon which the derivétion will

rest is summarized. Finally, a discussion covering the background . . |

oo

upon which thé argument to accomplish the‘generaliZation will be
presented. - | - 'd

wPugpose and Scope

The forecastingjpf a discrete time series is a smoothiﬁg processh
for which one conéidérs known-observations in @ sequence of numbers
and applies a method to extrapolate this time series into the future.
There is a large class of problems that arises in industry for which

it is economically appropriate to smooth and forecast discrete time

series data on a short-term basis. For example, it may}bégfinancially

advantageous to anticipate the demand for specific goods in the form

of inventories. The forecasting methods are usually isolated'from the
| | agtual control process and studied by themselves. Thus, the fore=-
cast is madétby:a;smoothing technique based only‘on.the time3sériés

data.

- [ R . [

LEUEE S o T

The traditional treatment is applied toidatafthat'arise in the
: | . form of a succession of observations that occur at equidistant points
in time or coveriﬁg equal intervals of time. However, there‘exists'

transaction oriented control systems'that'arise in' industry that

generate time series data that occur at irregular time intervals.
The basic data for this subclass are iqherently discrete. but are only |

Cu . . et TELE T O TP |
o . Pk WAL i
[ — 3 . . ] ) . 3 : .




available at varying finite i;tervals of time. If a forecast of this 1%
particular non-périodic time series'is considered’valuable; it would .
be useful to generalize a representative forecasting method to in- ;

, -

-,

- clude this type of problem. Necessarily the_demands_will aécumulate B |

“_ N E |
~during the irregular time interval. Then at some event clued point

{ of time, a smoothing pfocéésWill be applied and a forecast rendered.

! Exponential smoothing is a forecasting technique that has gained
wide acceptance since its exposition by Robert Goodell Brown (1). One
of its advanfages is its relative ease‘iheCETrying 6ut the computatims.

Further, a recursive relationship alleviates the need for an exorbi-

\

tant amount of storage capacity for historical data. Itf?s intuitively

satisfying in that thefparameters;ofithe:fitting_m0d613,such §s the
v :extimate.of-the average leével or the slope of a'trend,tare based oﬁ

3 |

a geometric discounting of the'past data w;th the greatest weight'given
to the most recent.ébservéfion. ‘Thus it;is'particﬁlarly applicable
to the situation in which the.parametgrs of thé=modei are slowly
varying in time. vThe=fitfing;funé§ion reduceés a time-sefies thét is
enctfétrictlyistafionaty to a pseudoigtationary series’suitable'for “
short—term fbrecasting; Its finai charaéterisﬁiCiis that a parameter

o,

in the smoothing function can be adjustéd"fq,régulate the rate of

_respénse of the system versus the stability-of*the~system. .However,
‘the fundamental theorem of exponential Smoothing'iﬁ-its presenf form
‘fsserts that the observatiohs occur atequa11y spaced infer&als.‘ The
advantages of exponential.smooth%ng suggests that it would be valuable
to;generalizé thebtechnique to unequéllyspaced iﬁtervals; and the-re{

sponse;stabiliﬁy parameter characteristic_Suggests the method by which




'such a generalization may be incorporated.

The purpose of this thesis is to propose a formal model for
smoothing and forecasting discrete time series data that occur in=

formally with time. The data are triggered by an event or trans-

S

action oriented”business activity;-andftherefore, the information from

thich the decisions~and forecasts are made is considered at irregular
time intervals. The iormulation Qf'%he~prop¢3ed model follows from
a set of’reaéonable-criteria, and an exiénSive analysis of the major
:charagteristiééiof the m2thod wiil be inciuded.ih?thisxpaper. .The
inéture of the formulatior of the model represents a generalization of
theﬂwidely:appliedféXponential smodthingmgthOGtO'ihclude the afore-
mentionedydepartu;e ffom;standﬁrd théory.

Mathematical Background - A Summary of the Fundamental Theorem of Ex-=
ponential Smoothing i

Since the'formuiationtofftﬁe proposed model follows directiy
,fromban-extension<oﬁ:exponential.smOOthinga’a brief summary.of'the
germane equations and philosophy will be presented.

An internal memorandum of the A. D. Little Co. was issued by
Brown and Meyer in January, 1960 (3). The théorem proVeSd given an.
‘equally spacéd'time series {Xt},"that‘it.is possible. to estimate the.

n+l coefficients in an nthzgﬁher polynomial model of the form:

Xt = a0 + gajlt; + %azt + ... + T ant (I"'l)_‘_

An estimate of the coefficients are expressed as a linear com-

th order reéurSiVbOperatorsudefined‘by the_fdllqwing

bination of n

equation:

. e
.....
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where:

-0 .

S X) =X

O ® =x, A
Sgn)(X) = The current utl

(n)
Si-1

sV = asP V@ 4 (-0 5

(1I-2)

order operator

(X) = The previouS_nth order Operétor

S:-I(X)w= The curreﬁt'(n-i)th order operator

w

Lo = A smoothing parameter used to adjust the degree of

the ‘system stability - response; 05 @ <1,

In the: process of Smbothing and forecasting {Xt} , one hYPQ“

thesizes an underlying process. The observations are .said to include

this process plus random noise { et} that has zero mean and variance

%2. The constant; linear, and quadratic

2, respectively are summarized as follows:

Hypothesized Model

X

I
AV
+
(4,
2
s ?

H

t ~ %07 %%

Y.

e
|

o e l‘ .v ,2'57.:: 3
= a8 + ayt + datt + e

ay.

N
]

/a\ .

a5

A)
a —

2

1 | .

processes with n = 0, 1,.

;Estimate of Coefficients

ael1) L (2) 3)
35y - 3s{®) 4 5(3)

(0 4
2(1-a)

(6-5 a)s{1)

-2(5-4 «a )S1(:2)' + (4-3 « )S.§3)

2
2 s _ 6D | (B

(1_a)2 t t | t
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equally spaced data observations.

6

One merit of multiple smoothing is that one can recover the exact

coefficients of the'model\when there is no noise in the data. Fur-
ther, it is statistically an unbiased estimate. Finally, D'Esopo (8)

has proved that for ahy sequence of obéervations, the polynomial of

A .
! 8

degree n obtained by appropriate multiple exponential smoothing is

the solution that minimizes the discounted %quare error criterion.
It is again reiterated that‘the above development strictly requires -

A Comment on the Stability-Response Parameter and The SamB}igglnterval

The basic unit of time is the sampling‘interval which is de-

%

noted by a subscript t. The next observation in a sequenée will be
denoted t#l. The problem of choosing some'Optimum sampling interval
is not a trivial one. In practice the interval is usually selected

by some arbitrarily convenient periodic reporting business ébtivity

-

and is not related to the interval being an optimum in some forecast

error sense. The choice of the sampling interval will not be of

- concern to this thesis since we are considering an event triggered

method of clueiﬁg the forecast; the intervals will be irregular.
However, the notions surrounding the sampling interval are concept-

ually relevant. A long sampling interval tends to have a damping'

hod
=

effect on the system. That is, a change in the data in the form of

-

a high frequehcy contribution will not be reflected in the computa-

~tions. Conversely, a short interval will be sensitive to random

noise fluctuations. .- - .

Let us now observe the parameter a in the basic first order

equation:




(1) 0y _ (1= aya(1)
| St (X) = aXx, + (1~ a)s 7 (X)

Clearly a higher o weights the latest observations more'heavily and
discounts the older.data. Thus, the resﬁonse to a changing pattgrn
improﬁgs with a higher'smodthing constant. However, it would also
reSpond rapidly td any random noise'fluctﬁations. Theaﬁili?y to

- smooth out random noise fluctuatibnéiis decreased by a higher smoothing
constant; that is,Lthe smoothingwis;leSé stable in the presence of
‘random variations for a higher constant a. The converse is true
for a smaller @.,. Brown has more rigorously demonstrated the property -
in reference (2), p. 57. He relates the variance of the output to
the variance of the noise data for some a . For first order smooth=

ing with random data, the output variance is given as:

2 .

If one interprets the variance of the output as a measure of sta-
bility,;then the smaller the value of a , the more stable the esti-.
mate. Necessarily then, the less responsive to.a true signal change.

One can observethat the;same compromise bétween the degree of

- - & gm

stéhilityaﬁd'the response raté”eXisfs for both the sampling inter-

val length and for the choice of the smoothing constant a . It is
# .

obvious that a close relationship éxists, and that the smoothing con-
stant « couid be a function of the interval léngth. We can relate

these two ideas for the class of problems that requiring irregular

P}

sampling rates. For this relationship the smoothing ¢onstant a is

- _better interpreted as a time depéndent smoothing coefficient. It is

i
‘
Iy
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. to this formulation of the time dependent smoothing coefficient to

. g ” X \-‘J - -
which the next chapter ﬁ&ll be directed. 3 *
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‘II. THE FIRST-ORDER RANDOM REVIEW INTERVAL SMOOTHING MODEL

The formulation that will follow will build.upon the mathematical
Summarizations and the concepts of the previous chapter, AThe mathéma- 
fical approach will be ﬁarmulated, and thenhitslproper?ieSECritically
exam;nediat various informativeaboundary conditipns. The model will 5§
related‘§9 the standard periodic form of exponential~sm60thing and
shown to reduce to the standard form under thé special condition. of

periodic reviews. In this chapter the discussion will be limited to a

- process in'whichma constant ﬂbdél,is felt to}befthe'underlying}pnocess;

- The observations are given by the general expressions:

Xe =a + € | (I1-1)

wifh,thé-eétimate_given by:s v .

~ (1) . o (1 |
ao = St (X) = Ct'Xt + _.(l.-a)St_l (x) (II—Z)

Derivation of a First Order Smoothing Function

1
The pictorial illustration to follow will serve as én example tg_
depict both the natunevqf the problem and the applicable notation. Let
Xi'denote the accumulated demands during an irregular interval“efntime:
from i-lﬂto;i; Also, count the nﬁmber‘of afbitréry unifé of tiﬁe,
zft, betwéen the 1ast,reviéQ a;d the respective interval, and call

this number Ki‘
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Demand Level Xi

—t—ptt ' =t ime

g
L o
<+

-
-
T
o

— ith analysis

- Increasing Time

where:
i = ith analysis

At = arbitrary unit of time on t' axis

K{ = number of At units between i and i-1

X, = accumulated demand during interval i and i-=1.

Make: the fbllowing~definitioﬁi”

X; = — = the average demand for each At during the ith

HI

id

analysis.

Under the above definition, the example can-be'replacedfﬁy'fhe system
ﬁ to follow. Effectively-the irregular review interval system is approxi-
mated by a pseudo periodic review interval system that is period{é on

At time units.
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iﬁterpretatiohof ay after the following discussion,

t

I

-2 i-317%  gtart

~d 1

< Incrqgslpg_Tlme

Since the above system is now equally spaced, the fundamental theorems

5

of GXDQnentiai,smoothiﬁg'can be applied tQ“it; waeveriféertain ad-
justments will nave to be made so that-fhe pseudo system;isgﬁepreseh—
tativevof‘the~51tuation under‘consideration. It is immediéteiy

apparent ‘that in4£he example, 15 reviews are characterized in a length

of time in which only 5 reviews were originally specifiedg, Therefore,

the;”stability-response” interplay is altered. This suggests that the:
smoothing constant « Shou1d befappropriate1y adjusted. For now, let.-
@, denote a smoothing constant different in value but the same in

form from that characterized in Brown's model. We shall return.to an

-~
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The pseudo system can be smdothed'by:

St(:}-) (X)) = aX, + 0 ‘0‘1)51(;}21 (x,) “ (1I-3)

where: t' = the arbitrary time scale for pseudo period At.

T

However, it would be ianhvenient to smooth - the process every At.
Instead, expan& equation (II-3) back in ‘tie by repeatedvsubstitutiont
lfrom the present. time to exactly Ki-l units of At to the last review

| K.-1- K, (1) o |
" 1

But by definition within the i interval, iﬁ can be factored.

(1) 54y _ e | N2 |
Stv (Xl) = [0(1 + al(l 0(13 + al(l 0(1) + “ v -+

- Q1 _
0(1(1- cxl)Ki 1] X, +[(1— al)Ki}sé,zKi X;) (1I-5)

One -can recognize the coefficient of ii as a finite geqmetric.series
oi:Ki'terms. This can be shown to be identically*eXprGSSéd'in'the
following closed form:

(1) < R - K.l (1) - |
5., (X)) = [1 - (- @) 1] X, +[(1—a1) 1Jst,_Ki )| (11-6)

—————————— — ’ —

The pseudo system can be smoothed by the above equation each time

there is a review. Thus, there is one smoothing operation each

e
L
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review. Note that the ,C;"O'.e‘f'ffi?c-iv.e__n-,t. of theé current piece of data, 21

y

is time dépéndent Qn:the number, Ki,zbf‘ZSt.unitS'sincé the 1aS£
review. The one remaining undefinedparametér iSifai. One could
~meré1y suggest equation (II-6) as the.methbdrte smooth,thé irregularly
reviewed time senieé data. The practitioner wculdfhavé té seleét an

@y by dbserving‘past data to giVe'himiareasonable-balance.Between
stability and response. It is possible;'however, fo give an inter-
;pretation‘ofﬂgxl in terms of the morefamiliar a . Theéadvantagés of
‘doing this are obvious ;, and the discussio‘n. to ‘fofilow' in the next two.

ey

sections will develop such an interpretation.

A Useful PrOpertygof<thebGeneral Exponentia1 Smoothing‘Form
The'first'step toward an interpretation of a, is to makeiaq
important observation about the general smoothing equation as given by

(II-2). Expand equation (II-2) back in time to the initial value:

Sé b (X) = QX+ 0(1- OC'f)f'X-t-_,ﬁ_ll v o(l- o)’ Xpeg + oon +

IS0 L R ¢ B DL S - ar-7)

The»notationst has been given to meah an interval period. Let us
choose some ia'rrb"'i_ﬁt%rarr‘_y smaller unit of 'time, At, where uAt = t.

| That is, there are u units of At in the interval t

Divide equation (II-7) by u

(11I-8)




Define:

interval t

X

t
H

Substitute it

......

. " o 13
g - ;
4R - ;

i
'

.it = The average:demandfper At uhité_ﬂf time in

in equation (II-8)

~;0‘<.L:"<t,‘ +-  X (1-oc)it_1 " q;(_'i._io'c)z- if--:z;. .

n _ 3 _ .
O(1-00) X o+ ... H1-00F X - (1I1-9)

Recollect terms in a recursive manner.

e

(X)

M

R

= 2%+ -ys @ =P ® (11-10)

If is actually easier to expand (II-10) and to note that it is identi-

cal to (II-9).

Therefore, the useful property:

(1) -
sy (x _
5t (%) = sél) (X) | (II-11)

H

Because the smoothing function is a linear combination of all past

observations and therefore equation (II—ll) holds, dnewcah~smocth for

the average demahd per Ayy“units in the *interval t. Alfhoughgthis;is 

of no practical use for‘equaliy‘spaced.déta, this f&étﬁWill prove

useful in the following development . Brown's equation (II-2) can be

“modified by equation (II-11) to smooth the average demand per unit of

At within-th§-interval t; i.e.,

(1)
5S¢

T —

——_

(X)

- a X+ -a)s) @ o (11-12)
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Formulation of al

It seems réasonable to suggest that the degree of response
(stability) be equal in the two systems described by equations (II-6)
and (II-12). The response is clearly related to the number of reviews

made over a length of time. Under the irregular review condition, one

-

Brown in reference (1) p. 107, has indicated a convenient measure @ -
of response; the average agevofdata.v He uses\this measure to compare
the exponential smoothing a to the N of moviﬂg average theory. He
discusses the relationship that concerns the rate of resbonse to a
chahging pattern increésing with'higher_smoothiqg constant or with
smaller values of N: Conversely, he mentions that the higher a or
sﬁaller N'decreases the ability to smooth.random fluctuations, Finally,
=hé-defines an exponential smoothing system thaf is equivalent to an N
period moving average by equating the‘average aée of the data.

The average age of the data is then a convenient method of

{

hmeasuring'response (stability). The average age of the data will be

compared in the two systems that are described by (II-12) and (II-6).
The age of the current observation is O; the age of the previous ob-

servation is presently 1; and the one before is 2, The average age

- 1s the age of each piece of data used in the average, weighted as the

data of that age would be weighted. This formulation is like that of

measuring the distance in time back to the centroid of the data.

- v .
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Thé approa‘ch to formulate a, is t'hen“—t.:o lé.t tﬁe da(ta_behe;qually
spaced at u units of At for both sys'tems and to set the average age
of both systems to be equal. This insﬁres for an avérage number. of
reviews in a le‘ngth‘of time that the response rate (ﬂstability) w’ili be

equal, The' mathematics of the preceding discussion will now be formu-

) latéd. It will be shown that &1 can be expressed as a function of

4

a and " : @, ='f(a,#)_,.-

By using the weights assigned to the data, which can be seen from

equation (II-9), and the -age of the data concept, the average of the

age data can be calculated for Brown's modified system of (II-12).

A, =00 +1&(1-6) + 2 & (1-)2 + ...

* - Qo 0y
Aa Z ja (l_a)..]
=0

[ 4

It can be shown that the summation for -'Ka in'a closed form is:

- 1- o : \
_ Ay = = | (II-13)

Now consider the system represented by equation (II-6)."

Let K; = 4 , for all i, then,

)

(D) = T e PRl B R
scv (X)) = [1 -V('..t—al) ] X, +[(1 ) ]st,_“ (X)  (1I-14)

Expand (II-14) back in time. | |
(1) B . - - | hoo
¢ (@) = [1 - (1- o) ] X; + [1 - (1-«1)"] [ 1- & ] X, ;

. [1 = (1- al)ﬂ’ ] [ 1- a.]_ ]zp. il_z + ... _
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Associating the above weights with the'age of the data:

: | X . ju G
k A o = Zo 3(1- ay) [ 1- (1-a,) ]
: Fa ‘

s

The summation ¢an be expressed in closed form as:

v

— - (1- ay)
A al - » o )
| 1 - (- ayf (11-15)
: Equating (II-13) to (II-15):
Aa = Aal
o | "
l-Q/ (1"0(1)
* o[- a-apf]
Solving for a,
(1I-16)
The Proposed' Model
Substitute equation (II-16)
1 | | a =1 - (1- a) /H : (I1I-16)

into equation (II-6)

vy - T i | | . (1). _ |
o Sgr (X)) = ll - al’Kl] X +[( g “1’K1]St'-xi X;) (1I-6)

If the above substitution i1s made, the following proposed model

is expressed as follows:




a5

Current Smoothed demand in .iﬁth* irregular interval

Wn
ct

)

P4
H.

-
I

Dl
I

i Average demand fof At in the ith inferval
S‘E}-)-Ki (ii) = Last Smoothed demand Ki un;.ts of .A t ago.
Ki = Number of units of A ¢ since thelh_last review
Moo= Avéragé number of At units in an intervalt
a = Brown's Smoothing Constant ,0< ac<l.

It is convenient to define:

" al = 1 - (1'(! )Ki/“ , (11_18)
Then,‘
1) - — W - |
. _Sév) X;) = a; X5 + (1- a.;) sé_l)(i (X)) (I1-19)

This expression is similar in form to Brown's Model with a time

-
dependent smoothing coefficient:

a; = T(Kj: a,u) - "

K

The time dependent smoothing coefficient is expressed as a function

-

of a»‘_'number of irregular time lengths, K; of At and the response |

(stability) is controlled by two. pafameters. One parameter is the
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- familiar parameter as éiven by Brown. The .other is the'avefage nﬁmber !
of At ‘units in an interval. It is believed that equafi;q (I1-17), i
.although a two parameter system, is more convenient than equation %
(II-6). The « parameter of (II-17) is given explicit»mééning in
terms of existing writiﬁgs. All work that has»beén done tb help inter- '%
'pret that paraméter (1; 2, 3, 39) or the.writiné on adaptive exponen- §

tial smoothing (4, 25, 33) for a non-stationary time series logically
. follow. The other parameter u is rather easily ascertained from past

~history. The relative sensitivity of these two parameters with respect

to each other will be studied later in the thesis, §
There is one modification of the original form that may be com- L

putationally simpler, Rather than calculate X; from the definition

X; = X, substitute this back in the equations and express it in the

csesivme )
K.
=1

following alternate form:

. K, . S
S'S) &) = 1 - (1-a) i/ M X, + (1 _ayKisu (1) &)

S,
. | Kj_ t _-Ki |
o . (II-17-A)
or _
() - a; (1 -
S (Xy) = _K_E Xj + (1- « )s.t._Ki X;) '- (II-19-A)
_ i o
where as before:
a, =1~ (1-)fisu (I1-18)

Properties of the Model

These are some immediate observations that can be made about the

”préposed model.

N

3
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If: Ki = M for all intervals; i.e., this case is the one where

we have equally spaced data.

————

Then ﬁ%\:\:{ in equation (II-18).

M
Therefore: a; = a .
| 2

and 1- a i = 1- a

Then equation (II-17) becomes

) = - e
St' (Xin) = « Xi + (1-a) St,_“ (Xi)

which is Brown's modified model given in equation (I1-12).

If: Ky > # in the interval from i-1 to i
then K_l_ =1+ 39

_u |
with 6 > 0

and o = 1 - (l-a.)l+5

Since 0 L a £

 then (1-a) € 1

(1-a)1 + 6

<(1-a)l
then

1

a = [1 - (1-a)l +6];.>_ [1 -~ (l-az)l']= a

o
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For intervals greater than the average, the last observation
is weighted more heavily than one occurring at the average interval
length. This is intuitively the direction we would hope.

3. Conversely for K; < wu

For intervals less than the average, thg current observation is

weighted less than that occurring at the average interval length,

T

g

4. If: a =0

R
1)
=)

independent Qf_Ki/¥‘

| K.
1= (1-1) i/p =1

R
1

 au = 1 independent of Ki/“
6. From 4 and 5 and since (II-18) is monotonic

0 a,<1
i j

\:7.”,There is no systematic bias; i.e., the sum of the coefficients

A

(II-17) or (II-19) equals 1,

@

- a, + (1- a;) =1
i i

8. As Ki-———> o ; the interval is getting very iong

LA —
i

- e

suggests using current data as can be seen from

B 3

(I1-19); i.e., °

é
k18
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i
Q. e ()
i .

We are going back to the last smoothing operation; i.e.,.
(1) (1)
10, From the formulation of the derivation; the geometric discounting
of the data is implied.
The family of curves as illustrated in Figure (II-1) clearly shows

. =SS ) :
the relationship of @; as a function of K for parameters o and u .

K |
In the figure, a; 1s plotted against the ratio U with Brown's a as a

parameter, Obviously when K/;; is i,'%he interval is equal to the
average interval length and therefore a; = o .. If the ratio is
greater than 1, the inte;val is larger than the averége interval length
and ai is appropriately'larger than @« . The converse is true for an

‘ interval less fhan the average; that is, a.ratiohless than 1.

Interpretation of the Forecast

One point that has been tacitly implied. throughout the develop-
ment of the .smoothing function is the forecast. Actually, the hypo-

thesized constant model is:

Xy =2y + €5
with the estimate
| s (D) - -
ao_ = St 't (X 1) ,

AV SRR :

PR RN
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I11. HIGHER-ORDER RANDOM REVIEW INTERVAL SMOOTHING MODELS

The formulation of the modals in this chapter will be similar to
that of the'firat-order model. Although the concepts will be the
same, the mathematics will be more tedious. Unfoftunately, the final
model is not easily expresaad in closed form. For the practitioner,
approximations to the theory are suggeated so that the equations re-

P

main simple for actual use.

.Derivation of a Second-Order Smoothing Function

For the second order smOothing function;fit is felt that the
underlying process is linear. The .observations are given by the

general expression:

X =a, +at+ e, (I1I-1)

with the estimates given by:

&, = 2s{Dx) - St(:l)(X) _ | S am-2

a7 = -l-:cfa_ sii?(x) - s (x) ’ | | (111-3)
where:

sil)(x) ; ax, + {1 ) 59 (p

su(z’(X) = asWx) + (1-a) 52 @)

t St .

The same phllosophy is alluded to in this chapter as that of

-—

the case in the previous chapter. - The 1rregu1ar rev1ew interval system

is approximated by a pseudo periodic“féview interval-sYstem; where

——
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S
N

as before: ii = The smoothing constant is denoted as «

2;

and again, it must be stability-response altered. Thus, the equations

N Fﬂ
e .

for the second order system are:

- . -
L e S T A S H L T i e T R A e i, S N P LR

(2) (1)

(2)
t-1

(£,)

(X) *(1-0) s (Xl) o (I11-4)

R T TR TR TRy
o

(1) = (1)

(X,) = XXy + (1- X)) 8, (x) _ (111-5)
| t'™-

s

-Substituting back in time for one unit of At and using §1 within

that interval.

%2— | 2 -
) = o2% +20 (1-0(2) X, +

200 (1- py2 §Y ,E) + (1-00) s(Z) )
'o(z 2’ Sy * t- (X

(z)

Substituting back in time for one more unit of At.

(2) 2 — 2 — 2 2 —
X - -
( ) 0{2 xi + 20(2 (1 o<2) xi + 30(2 (1 0(2) X

(1), (2)
+3a<1-or> 8, (X)) 4 - ’2) Sgr1og (X.)

N

Now express this for K, units of A t. That is, expand back in time

for exactly K;-1 units of At. This is the number of At units
back to the last review. By definition, )_{i can be factored out: >
(2) - [ 2. 2 2 2 ~ K-1
S X.) = C o+ 2 1- + 1- +...+K.(1-
¢ X5 l-Oiz 0( (“0(2) 30(2( 0{2) i ¢ 0(2) X
(2)

. 3 . | ig(1) (1= Ky X
_ . ,, B +K % 2(1- 0(2 V t' -K; Fp +a | ¥2) St,"Ki(Xi) (1I11-6)

i
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It can be shown t,ha.t the coefficient of ii can be expressed

'in closed form,

Thus, |
C e . ) ,
(2) _ K; | =
S (X,) = [ 1-(1- a,) (1+ a,K,) ] X, |
&, K (D K. (2) _— .
- 1 - i
+[Ki a2(1 az) ]St,_Ki(Xi)OEI az) ]St’-Ki(xi) 111-7)

.‘%-,J

Thus the second order smoothing function is smoothed each irregular
review interval. The coefficient of the current piece of data is
time dependent. Equation (III-7) could be used to smooth the data.

However, an interpretation of @_ is presented in the next session.

2

Formulation of « .

_2

——

As in;the case of the first-order smoothing function, the
linear combinatorial property allows us to note the following:

o | ()

s (2 _
t s

¢ X | | | - (1I1-8)

T

e &
From this, Brown's equa:ti;onss‘_q?'aj‘ie mbdifiﬁfé‘d' as follows:

-

sV - «X. + (1-0) s ' | T (111-9)
t t t-1 ~

(2 —. (V) _ (2) _

.0 =oas (D + Q-0 5 (D : (11I-10)

4

Expressing (III-9) and (III-10) in a similar form to (III-7):

W

. ~. _ 2 _ 2
s(z)(X\. = & X

| (1) — (2) _ RN
. Lt X (1-e) st_l(x)_ +’(1-0.<) 5, (X (II’I-l.l)
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Once again, the response (stability).will'be set equal in
equations (III-7) and (III-11) by equating the average age data,
Taking equation (II11-11) and expanding it back in time yields

the following:

2 2 2 2

- — 2 — . 2 2
S¢ X) = O X, + 2K (1-&) Xp-1 + 3K (1-00) X, _,

2/4_ n-1 3y :
+ ...+ nA9(1-X) xt-(n-l) + ...

If we assign the weights to the data:

o0)

Ay = L 3G a?(l-a)
j=0 |

This can be shown to be equal to:

ey
A === L (I1I-12)

i

Now expanding (III-7) back in time for Ki = u

2 < w N 07 ) S

v 2 o h - . —
+ 3 [1-(1- ) ][1- 042] “ o [1‘2(1' O(z)}‘] [ KoM (1- 0‘2’-*2” X1

L]

+ { [1-(1- 0(2)}"] ['1- 0<2]2M+ [2-3(1- 0(2)’*][0(2 K(1- “z)zﬂ]}ii_z

Using the age of the data:

EXTRD) ; 3= o I* [1f(1-‘012>"] : '

e
b

ZO{ T P G R e TE S T I IR Vol Lol

+ ’ H
h
I
d
- ~ .

. . | - (I1I-13)

........
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- (1- a )[ Ba, +1-(1- )“]
fag = [1-(1-ax)F ] I (I11-14)
'Equatling Ka = Kaz‘ - | |

Unfortunately, a, is not gasily expressed as a function of u and

" a . However a can be expressed as a function of @, and u as
follows:
¢ ' _ “ 2
-(1- «
a = 2 [1-(-ap)" ] (I11-15)

2 [1-(1- az)“ ]z + (1~ azf[ pa, +1 - (1- az)

With the aid of Figure (III-1), one can find a, for a parti-
cular a and y . This value can be substituted back in equation
(II11-7). Since this is less convenient to the practitioner, the

next two sections suggést possible approximations so that a final

closed form can be used.

An Amroximat ion

As’ a first step towards expressing a second-order model in

closed form, one can make an approximation.

% B  For small a,,

. K,
i ' 1~ a ® 1-K
| \ - ) ( 2) | i 2

Equation (III-‘-7£) becomes:

2 -~ , 2 - | | (1)
BAX) T (oK) X4 + K, &, (1-K, o‘z?‘sf-xi(xi)
T +'(1-K, 062) s:,zi‘ (x) . (111-18)
. . 'v : - i ' ‘ - ' H | - .
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Equation (III-14) becomes:

- - po) [ 2pe, ] -' S
A 2 2 | - (111-17

A

M

Equating (III-17) to (III-12)

2 o, (1- 1) =2 (1-0)
(p ) o

(I11-18) °

Equation

(III-18) is thus a closed form approximation_for smoothing

the second order function.

Another Approximation

If the same approximation is made in another matter, a more

convenient form can be used.

’

For small «

(1 O()Ki"‘le
2 - i 2

then,

o K. c
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If the above approxi'nation is made toi' all li~-a , then

equation (III-7) becomes:

\»_\é .

(D) ) 1o1on V¥ (o1 oK =
|g, x) ’1(1 az) [z (1’ ay) 1] ;“‘1

o™ Thoy ) Bl =y
+ [1 (1- ) JP w,) .Jt’-li(xi)

] |
+(1-0) 1s :,2) (x,) | - (111-19)
Ky | |

-Also equation (III-14) becomes:

}

y P o1 M-
Y (1-0,) 2 [1 (; Xo) ]
2 [1-(2- 0o ]

> |

Equating Aa = Aaz

2(1-4X) ~ 2(1- 0(2)“' |
X - 1-(1- 0, )™

(II11-20)

Note that @, is the same as @,. Substituting the approximation

for az"into equation (III-7).

& ' ) x“

K. /12 _
(2)(1() 11-(1-0) I/’EJZ X

i

+ [1-(1-0&)1{1/"][1- OL] i/M s(l) (X )

s [1_ OL]Ki/’“ 82 (1,
. t/..xi

Using the same definition for a; i.e.,

/

‘ | \ _ e ' : ___ .
: ai = l1-(1- a) 1/# - B |

e e A R A e LA Do b T R R s Y AR W RS P 5 bt o G e W i
. P‘ .

.
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2

(2)
S, {

(XD = X)X, + o (1~ Ot)sm (x)

tK

- (2)
+ (1-0() St-K (x )

but this is the same as:

(2) — v _ (2) _
S’ (X)) S (X)) +{i-a ) S (%, (I11-21
o (xi) a; S (x) + (- i;,otl_Kimi ¢ )

1

Under this approximation,ai is the same for both models.

"Further the equations are identical to Brown's with @, replécing

-

a@. Obviously all characteristics of a that were listed in the
| i |
last chapter follow.
Theré is a further satiéfying reason for Suggesting (III-21) as
a good approximation. Divide Brown's basic equation for the

second-order function by u and use a, as the response (stability)

parameéeter.

(2)
St(f)(xl) - X1 ( )(xi) +(1-0,) Sy (5)
w n M-
then,
(2) (1) (2) -

()—O(S,(x)+(10£1)s xl)

(1)

If we substitute- St (Xi) for each At back in time for exactly

K, units, we have an exactly analogous situation as in the first-

’ : : Ly - . : .

order model.

o )

T R R g L
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(D) (D) o S ,
8 , (X,) replaces S:,l)(xi) and Si,l) ('ii) replaces X,. Under this

argument,

This is the same as the approximation (III-21) which followed from
a slightl’y different philosophy. Further this second approach can
be generalized for all higher order models. It is felt then that

‘Brown's equations can be used in general for the irregular review

interval with «a replacing « .

Interpretation of the Forecasts

The second order hypothesized model is it = -50 + ;1 t' + €
| - | t

with the estimates

- (1) — (2) —

a =28 -

o o (x,) St' (x.)

A (1) _ (2) _

al = | a- (S , (Xl) = S '“‘ (x ))

- 1- o t teo
where:

¢ S (1) -

S /X)) = X, + (1- 8, - . 1

b
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@ 'i‘> w5 s a0y 52 @

8 (X)) = & s, (XD _+ (1- &) St’-xi(xi
- K | | “ o | o | '*f
oy = 1-(1- ) 1k S | ,. |

However, for the forecast of'it, one has a problem as to what

©

t to use since we are not*forecasting regular intervalé. This was

no problem in the constant model case since xt was nof a function

3

of time. It is felt that the best approximation is to use t = K,

~the average interval length.

e

Then, the forecast is given by:

- 2 A
= +
Xi aO alu

In the chapter to follow some of the statistical and dynamic

~ properties of the derived models will be explored.
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IV. ANALYSIS OF THE CHARACTERISTICS OF THE MODELS

Having completed the derivation of the-mbdels, it seems anpfo-
priate to summarize prior to furthér~study of these models. In the
first chapter the~need for a transaction triggered, formal smoothing
and forecasting model was suggested. The second chapter was devoted
to the formulation of a first order model, given by equation (II-17),
that.evidently performs the intended function fof a constant under-
1ying process. Particularly encouraging were the list of ten pfo-
perties under all boundary conditions that further tended
toward the intuitively proper magnifudes in the intervals between»the
boundary conditions. Finally the third“chapter extended the'basic
arguments and notions tn higher order models;‘ The conclusion to this

point "is to suggest that the a in Brown's models be replaced by a

time dependent smoothing coefficient for each interval given by:

o .
a, =f(K; : a, » ) =1-(A-a) i/M

It is the purpose of this chapter to further study the models (Lo
that one can gain a better understanding of their behavior. The
characteristics explored in this chapter should further support the

derivations and properties that have been discussed in the previous

y

chapters. First it will be shown that the estimafé, Eo "in the first

portion of this chapter will be devoted to the'resppnse of the model to

standard input signals. The résponse-stability interplay will be

/

demonstrated for different magnitudes of a . Finally, the sensitivity

| . 3

.lerr‘:‘
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of the coefficients @, or some mathematically convenient funct ion of

@ will be given with respect to the two parameters of the system

@ and

S%[ii) As An Estimate of the Average of the Data

If the expected value of the function Si})(ii) is equal to the

, one is justified in calling
1 ]

2 (1) — ' .
it an average and a = S (X,). Recall that the model given by

t’ i

. equation (II-17) is the closed form expression for equation (II-3)

over a»finite interval lehgth.with al given by equation (II-16).
The closed‘form expression was derived so that one need only perform
the computation once for each review rather than Ki times in the
interval i. We can then equivalently use equation (II-3) with equation
(II-16) to prove.the'various propertiés.

Expanding equation (I1-3) back in timefisubstitﬁtion (II-16), -

and takihg the expected value:

oo

' w-1 _ [ L/m B |
E [St, (xi)] = JZ___:O 1 -(1- %) ](1 R) E(Xt'-a')'
E[si,l)('ii):) = [1 - (1-0()1/}*].‘13(1?1), Z ',(l-oz)‘j/p“
- J=

B

&

v ' |
but the summation is an infinite geometric series -

2 (-0 o 1
j=o -

1 - (1-p)t/m

E(X,)

(1) =
E [st, (xi)]
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Response to Standard Signals

In this section the'way in which the proposed modél responds to
several typical standard time series generating functions will‘be‘
studied,» Further the effect on the model of the choice Of'the para-
meters, gx and u , will be éxplored. The basic approach will bé
- through the technique of linegr systems analysis. More Specificaily

the methods of the z-transform will be employed. The output response
of the system will be characterized for a specific input to the
system.

The state of the mathemayical art to treat this type of analysis,
lthe z-transform, imposes implicit restrictions relevant to this thesis.
The theory limits the analysis to linear, discrete, time invariant

o . |
systems. The model as propoged ;n the form given by (I1I-17) vio-
lates thése restrictions. We‘can again.go back to (II-3) where the
basic interval is periodic on the t' scale. The approach will be to
apply‘the z-transform theory on equation (I1I-3) and tovapply the same
definitions to the input.signal and the parametera1 as were employed
in deriving (II-17).

&8

Representing equation (II-3):

(1) (%)

s () = @) X+ (- st 1

t' i

the smallest convenient interval of time A t.

€
B
2]
®
-
"

_—_— | ~ |  th
X. = Ky = the average demand for each At during the i

interval.

e, ‘ 1 :
1= -t

R
I
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The time series given,by'ii will have to be interpreted as a
modifigd'étandar& signal which is a statistic of the standard con-

tinuous function Xf. The average demahd'i, for each At is used for
i

each At in the interval i. By the definition of X all inputs will

i
be pulses or combinations of pulses. The pulses will vary in magnitude
and length. For exémple if the input of the time series Xt:is a ramp
‘funcﬁion, it is put into this system as'gi which would be a stair-
case of equal "step heights' and varying Zstep lehgths". A parabolic
.generating furc tion will be a staircase of monotonically inéreasing
"step heights" with varying "step lengths". A time series function
that is a step input will also be a step in this system. 'Noisy"

data will tend to be somewhat averaged out and will be randomly varying
up and down pulses. Clearly then, it is important to study the pulse

in some depth.

A pulse can be constructed from two unit step functions. The

unit step is defined as: f(n)
fn) =4 1 B20 €00 0 0 —>
n<o
n
| 01234 ...
This expression is generalized as: | |
f(n) | N
: l1 n>n ‘
iin-gl) = =1 N o - o
0 nc« n 14 o 0o 00

The pulse may be constructed fram: 0 }' 23 45356 7_

"

£(i-n)) - £(n-n,)

’

e R R S R O
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" The use of ‘the unit step functions with the definition as illus-
trated in the example is all that is needed to represent the typical

‘nature of the signal enteriqg this s&stem. The unit step function

¥

can in this manner be used’ as the basic building blocks to represent

the pulse or pulses. The magnitude of the pulse is merely set by a

X. _
constant multiple given by —1 over the ith interval.
i
Having represented the nature of the incoming signal in the

discrete time domain, let us build the‘nécessary z-transform theory

that is required. The_z-transfovm Sf&;(%) which takes on values
J

at points n =0, 1, 2... is defined as:
oo N
tT(z) = Fz) = 22  £(n) z"
' n=o

;CbﬁSidér the unit step:

y | ﬁJ\aw}
1 n2>0 4
f(n) = ]
0 n< o
o
N m | ‘ I';‘:Q - —_— - i
L n ) ~
F(z) = Z 'z =142z +2z +.

oy
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Cleérly for f(n) = C n20

0 n<o

]
Q

F(z) (Iv-2)

I

The general transform of delay for any function f(n-K) is

zK-fT(z). Thus for the delayed unit step:

f(n -K) =¢C n > K

'F(Z)

]

(1IV-3)

Another function that will be useful is the impulse function.

This is defined by:

6(n) for n =0 <
0 ' n#£0

and the transform:L
F(z) =1
The transform of a delayed.impulse for K units is clearly:

F(z) = zK | : | | | (IV"4).

Consider for example the following time pulse function:

£f(t)
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F(z) =

]

F(z) 1 -z
By long division:-

F(z) =1 + 2 +EZZI$WZQT

The inverse of this is then 4 lmpulses which can be seen from (1v-4),
Frequently, this long division %echnique is the quickest way to ex-
press the function,

A final necessary transform 1s that of the exponential decay

ThlS will be used to 1nterpret the output response after the input

pass through the exponentially smoothed system.

£(n) = (I-0)" - -

o

(68,

5 eyt n

F(z) ,
n=0 | “ '

i

~

This is a geometric series equivalent to:

1 T e e - -
F - IV-5
(2) = 1 (1 ~X )z ( )

-

"Brown in (1) has shown that the z-transform for simple exponential

smoothing is: | ' oy

o |
LA . B -
e A

H(z) (1V-6)

N 1-(1~o )z
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R g

e
O

Relating this to equation (II-3) with time interval t'

- ax |
H(z) = 1-(1- ocl)E
| where (Xl =1-(1-x )' | )

@ | | - Also recall that all time series'ii are a collection of pulses.

function ht‘ The impulse response h

t 1s a description of the output

of the system t periods aftérkéhwimpulse is applied at the input. zThe

.convolutlon of the impulse response with any arbitrary signal X

gives the output response Yt to that s1gna1

In transform theory, convolution can. be interpreted as multl—

1 _ -0y
(1-2) 1-(1-0L1)z , o

Y(2)

b

then y(t') = . [1 - (1- o) (1- 0yt )

/
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y(t') =1 - (1-oal>t'*1

| . 1/n
substituting (yl =1 -(1- o)

y(t') =

rd

4

1 - (1- )

1

(t'+1)/ 0

Z

K

In general then the delayed step:

Y(z) = 1

finally reduc

y(t') =

Let us. now study inAsome depth the basic unit pulse of arbitrary

the nature of the

-(1- a,l)Z

es to

(t'+1-K) /.

1 - (1- o)

=
|

1

Z

Ki time units in the interval i.

M

length since it is the heart of the model .
example ‘which is constructed from two unit steps and represents

signal during an interval. Notice that there are

(IV-7)

Consider the following
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X;(t") = £(t') - £(t'-8)

F(z)

Passing this through the exponential smoothing system:

Y(z) = F(vz) + H(z)
From (IV-7)

Therefore:

l‘f‘-i\ ! 1 ;
y(t') =1 - (1- )(t )/

y(tt)

' ' 41— |
y(t') = { 1 - (1-g§t +1)/;A}_ {1 - (- (t'+ 8_)/),4_}

SUMMARIZ ING

x:“\ .. ] t': =

(1- ) (E=D /e (1-qu) (M for t' > 8

_y(ty -

8 + K

1 - (1-q) "™
1 - (1-p0% M
1 —'(lfIX)34%k

r- (1-agWE

| 9/,
(- oM (1- 00"

(1_0()(1+K)/;»_ (1'_“) (9+K) /io
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For this example:

Let W =35

3

>

(X = .3 and .5
The results for this input are plotted for the 4 combinations of
the parameters in Figure (IV-1). Clearly, the higher the a , the

faster the response. The lower the M » the faster the response.

The interpretation of the parameters, however, should follow their

definitions. The parameter u is the average interval length. The
closer this is estimated the closer « can be interpreted as
Brown's a .

Let us consider an example of a string of pulses and observe
the way in which this signal is traéked. The input and output is

plotted in Figure (IV-2). The signal is given as:

2(t") = Cf(t') - C £(t'-3) + C,£(t'-3)
- C(t'-8) + Cy(t'-8) - C5(t'-10)
+ C4(t'-10) - C,(t'-15)

+ C_(t'-15) + ...
- 5( ‘)A
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%
x
3
X
x
b ¢
X

1.0 «
Pulse Input | -# 

a_’_~< &
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C =2.5
4
c

5 .15

The first three intervals represent a ramp generating function.

{

Substituting:

£(t') = 1 £(t') + 1-£(t'-3) + £(t'-8)

- .5 £(t'-10) - 1.75 £(t'-15) # ...

3 8
F(z) = + Z + Z
l -2z l-z 1-2
10 15
7 Z
9 1 - =z ;'1'%5 I -2z

Passing the above signal through the exponential smoothing system

and taking the inverse, as given by (IV-7)

1 - (1- “OL)(t' +1) /1x

y(t')

"y = p - (1_0[/.)(1: 1)/ (1-0L>(f""2>/% 1<t 7

B y(t') = 3 - (1-@)(t'+1)4~_ (1- o) (' =2) e
- (1- 00 (T ' - o< s
y(t') = 2.5 S -y Dy (D
- -0 T (1 00 (O 10< t'< 14
JEY = .75 = (1-p) $EF D _ (1-oy (& "2
TP O s 1t M

t'215
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Although these. equations describe the response to the signal A
. ' 4

on the t' scale, let us recall that the formula suggested by equation

(II-17) only generates a smoothed value at the irregular review in-

SR SR Ty

Ei e s T

terval. The only value calculated for each interval is the final

AR

one. Thus, the above calculations are given at: y(2), y(7), y(9),

s

FRtiis

'and y(14). The response to this inpUt:signal is pldtted on Figure

T s e -
o S G Y SIS SR T Y

IV-2. The final valﬁes are shown as a circled dot.

A careful study of Figuré IV-2 should demonstrate how the
smoothing function follows the signal. The lag of the response to
the signal is quite obvious for a deterministic signa}, This is

the pric§ that must.be:paid_for'smoothing "nOisy" data. It is a

demohstration~of‘the.response'? stability trade-off. That is, a
system that responds. faster to the deterministic system would

also respond to random noise. ;Further,vthe "ramp"tportion of the
signal is buildiﬁgzup a steady state bias. This is the reason a

ramp signal suggeéts a second order model to follow the signal.

The models under study evidently behave in a manner similar to the
equally-spaced models suggested by Brown. Let us now take a look

at the sensitivity of the parameters.

- Sensitivity Analysis - -

The models that have been formulated express a time dependent
smoothing coefficient with two parameters. Sinée the user must.
set these twd parameters either by experience or past data, the
optimal fesult méy deviate from thé nominal values chosen.

Brown ('1“, PP. 106-107)_ has asserted without proof that the results

Rl | are not very sensitive to the exact choice of @« . The coefficient

g
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as a ratio of the percentage change in the function to the percentage

change in the parameter. In this manner Weé can interpret the
s;;Iative importance of the effects of errors or changes in the
functions parameters on the function itself, By definition (see

"reference 9, p. 633) the percentagé change in G with respect to a

parameter b is given by:

oG L
SG -G _ ding
b ob dln b
B

Let us interpret a measure OI'the sensitivity of the function:
o with respect to the parameter a . It will becopme apparent,
however, that the mathematical relationship is such that g related

function of ai 1s more convenient. Writing the relationship

- K./
oy = 1-(1-o) 1 g

I
~
-
I
154
o’
=

~ then (1-&%)

all past data.

R
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Taking the natural log of both sides:

In(1-0¢;) = ~i 1n(1-(¢) o N
/A i

Ki ...
dln(1- ;) =~ 3 1n(1- &)
//L

d In(1-X) M

therefore:

3 (1- O) | C
(1- (04) K |

9 (1-oX) ol
(1-X)

Thus the percent change in the function kl- O(i) with respect to
an error in (1-_0() is directly proportional to the ratio of the inter-
val length to the average interval 1engfh. For an average interval
‘length, a percent error in (1-(X) gives the same percent error in (1‘OL1)

>

Consider the parameter LA :
K./

(1- O(i) = (1-&) /M4

for small 10('

- =1 - Ky

-

i = f_(_l_ &
=
: a al ?‘:- 5-1- Y a M : ' | '- 7
o, . , 1 2 a N
OOC i _1_ ON . |
/. 0ﬁ~i o ‘




Therefore:

o X i
(i ~ o - o
b - '. § -

; | A percentage error in the parameter (L gives the same percentage :

error in 0(.1.-

e R S R e

Up-t% this point in the thesis, the properties have been ana-

1ytically prlored. In the next chapter a demonstration of the model
using real data is studied.
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CHAPTER V. AN APPLICATION OF THE PROPOSED MODEL

In the f1rst four chapters of the thes1s, a model was formu-

lated and the characterlstlcs studied in an analytical fashion.
It is the purpose of this chapter to observe the behav1or of the

proposed model for a typical example time series for which the model

was formulated; that is, data that has been accumulated over random

interval lengths of time. It is felt that a demonstration of the

model on some data would help bridge the gap between the theoretical
investigation of the Characteristics and the behavior of the model as
it might respond to a real-life application.

The interaction between the model, the data, and the parameters

are extremely complex. Although the mathematical analysis has given

insight to the behavior, it'isﬂlogical that an exhaustive simulation
using real-life data would help make the application of the model
more complete. Unfortunately, such a study is beyond the scope of
this thesis. Further, it is suggested that such a study is needed

for both the model as proposed in this thesis and the model for

equally spaced data as given by Brown. It was the intent of this

'thesis to bring the formulation of the random review interval model

to a‘Similarwposition of study as that of Brown's model. The models
appear to bevready for application-but théy are ripe for some
generalized conciusions for a variety of classes of data that repre-
sent real-life application.

‘The model that has been formulated;cannot-be compared to any'hodel

/

'performing the aforementioned function. No model exists for this‘type
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of fofecast. However, throughout this paper, every_aftempt has
been hade to relate the proposed model to the traditiohal expenential
smoothing model. The smoothing coefficient ®; 1s expressed as a
function of the a given by Brown. ,Further, the proposed model
identically reduces to Brown's model under themspecial case of
‘equally spaced data. Every indication of the analytical treatment :
suggests similar type behavior. Thus, a relative comparison woﬁld
be appropfiate.and informative. EXample time series will be ex-
-plained in the next section so that such a comparison can be demon-

strated.

‘Time Series Data

Recall that the model is used on demand that accumulates over
the interval length; In order thex the eomparison discussed in
.the-previOUS section can be made, two sets of data will be generated.
The sets will be generated.from the same popﬁ{ation.4 One set will
sum fhe demand over equal interval lengths ef time. The other set
will sum the demand'ovef‘uneqdai i¥erval lengths of time that are
generaeed from a Poiesoh distribution. Tﬁe mean of the Poisson dig-
fribution.is set equal to the interval-length'of“the equally- spaced
data,

The Poisson distribution was arbitrarily selected since it’does
not‘allow time less than zero and because it is a one parameter
distributien. The interval 1engths were generated ffom the assumed
theoretical popﬁlation by a. random number table. The common

population selected was the .first one hundred points of Warmdot

Business Conditions given in Reference. (1) page 434. The equal
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interval length and the mean of the Poisson istribution was arbi-

trarily selected to be four units of time. The two generated time

series, each with 25 points, are given in Table V-1, The number of

time units over which the demand was accumuiéted and their res-

pective demands are illustrated.

Evaluation of Forecast Error

One way of measuring the behavior of the models 13 to évaluate
the standard deviation of thé errors. The errors are defined as
‘the difference-between.the demand which was forecast and fhat which
actually occurred. The standard-deViation is a measure of the ac-
curacy of the forécast. The average will be very close to zero.
The:standard deviation is g measure of how much the érrors cluster

+«

around the mean. If the errors are small, the standard deviation

will be small.

:the'next piece of data. For the evaluation of the forecaSt error,

lated during that interval,

Evaluation Qf Results

There are actually two comparisqns that can be made. One is

TR by S
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Equally Spaced

No. of Time Units

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

o7

)

TABLE V-1

Sample Time Series*

Demahd

1081
2028
1927
1479
1968
2005
2219
1993
1977
1928
1997
1820
2419
12997
2611
2510
2087
1767
1948
2146
1705
1916
1778
2076

2280

Unequally Spaced

No. of Time Units

4
5]
6
6
2
7
2
6
3
2
6
4
6
5]
5]
4
3
5]
3
3
2
2
4
1
4

Demand

1081
2549
2485
2817
1056
3719

993
2883
1570
1013
2804
2561
4344

- 3184

2506
1858
1438

2605
1246

1487
832
839

2140

472
2280

e A T 5 A T A T B T TR T T ok s

AR




o8

error should be about the same. Another approach is to apply the

unequally spaced data to Brown's model; we recognize that this was

not the intended functidn. If the models given in this thesis do

not significally improve on this application, it would be g waste of

computation time to use them. ‘ |
The first comparison was made using first drder exponential ﬁ
smoothing. The time series data es given in Table V-1 was applied %
to their respective models; the equally spaced data to Brown's, - §
the unequally spaced data to equation (II-17-A). The variance of ' §
the forecast errors (square of the standard deviation) was calcu- §
lated for different a's, The results are summarized on Table V-2, ?
The ratio of the unbiased estimates of the population variances are | | ?
.alse listed. Thielratio has the F-distribution, and we can therefore §
test whether or not the two sete of errors come from the same normal g
population. At a significance level of € = .01 for 24 degrees of é
- freedom for each sample, the F value is 2.66. .Sidce the ratio for é
all a's are less than 2.66 (they renge from 1.15 to 1.25) there is ;
no reason to reject the hypothesis that the two samples came from
the same normal populetion. o : S ;
\ There_are two more facts worth notimg. The minimum forecast é
. : |
error occurred at about the same a for both types of application. | é
Since the value of H was set equal to four, thevmeen of the'Poisson B §

D
;
1
kA
3
3
£
i
a
H
i
i
1
é
&
|
¥
e
%
3
i
0
et
A
3
i

distribution that we assumed, one was led to believe from the mathe-
matical ana1y51s that the «a of the recommended model should be the

same as that of ‘the « g1ven by Brown S model.. The fact that the
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TABLE V-2
I

L ~ Brown's Model Modified Model
Equally Spaced Data Unequally Spaced Pata - Ratio
o o Variance 1 Variance 2 var 2/var 1

0.00 103347.67 B 121640.89 1.18
- 0.05 98046.79 114134.15 | 1.16
0.10 | 93450.53 " " 107932.55 1.15
0.15 89558.92 102985.03 : 1.15
0.20 86371.89 99240.29 1.15
0.25 83889.49 96646. 59 1.15
0.30  82111.70 - 95151.79 1.16
0.35 81038.53 | 94903.27 min. 1.17

0.40 min. 80669.97 95247.88 1.18 _

0.45 81006 . 02 96731.85 1.19 &

0.50 82046 .69 99100,73 . 1.21 *
0.55 83791.97 - 102299.29 1.22
0.60 86241 .86 106271.48 1.23
0.65 89396 . 38 110960.29 1.24
0.70 93255, 50 116307.77 1.25
0.75 97819.23 122255,26 1.25
0.80 103087.57 128744 .56 1.25
) 0.85 109060. 55 135719.99 1.24
0.90 115738.11 143140.05 1.24
0.95 123120.32 151032.98 1.23
1.00 131207.17 161962.20 1,23

L PR
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(!'s,using two separate sets of data (geherated from the same parent
population) on two smoothing equations respectively, were about the
same is encoﬁraging. Finally, the sensitivity of the a so far as
forecast error is doncerned is félatively minimal. A pictoriai
illustration of forecast error is given 6n Figure V-1. The standard
deviation of the forecast errors are plotted as a function of « .
The standard deviations are normalized by the minimumnm standard de-
viationlof the unequaily spaced’data for convenience,

Let us now take a lodk at the second comparison that caﬁ be
made. That is, the unequally spaced data w111 be used for both
Brown's model and the model that was formulated in the thesis. The
forecast error variances are summarized on Table V-S for a range of
values for 0< a < 1. The i'atio of the variances are taken so thét

the F-test can be made. The calculated value significantly exceeds

w~

-thq,value F =2.66 for e==.01 and 24 degrees of freedom for each

Sample. we can reJect the hypothesis that the samples came from the

same normal population. Thig comparison clearly shows the superiority

of using the formulated model for this application.’ A pictorial i1-
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TABLE V-3

Brown's Model Modified Model
- Unequally Spaced Data Unequally Spaced Data Ratio
| o Variance 1. Variance 2 Var 1/Var 2

‘min. 966612.30 | 121640.89 7.95
968752.01 . © 114134.15 8.49
975912.93 | 107932.55 9,04
988094. 58 102985.03 . 9.59

1005297.40 99240.,29 10.13
1027521.20 96646 . 59 - 10.63
1054765.70 ~ 95151.79 11.09
1087031.20 © 94703.27 min. 11.48
1124317.60 95247 .88 11.80
1166625.10 | . 96731.85 12.06
1213953.70 - 99100.73 © 12.25
1266302.60 102299.29 | 12.38
1323673.00 106271.48 12.46
1386064.20 110960.29 12.49
1453476.30 116307.77 12.50
1525909. 50 122255.36 | L 12.48
1603363.40 128744. 56 ‘ | 12.45
1685838.30 . 135719.99 12.45
1773334.10 143140.05 | 12.39
1865851. 00 “ 151032.98 - 12.35
1963389.10 161962.20 12.12
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(MULTIPLES OF UN)
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spaced data to Brown's model.

Sensitivity of Parameters

| Since the'practitionermmust select u , it is i@portaht to in-
vestigate the sensitivity. ;Let us use the unequally spaced data and
apply it»tO'the model as'given‘by equation (II-17-A). ﬁ

Thé$ndfmaliied forecast variances are calculated and tabulated

in Table V-4 for a range of values ofl¢x and for u equélfto‘B, 4,
and 5. The variances are normalized with respect to the value given
at u =4 ahd fa-= ;35; the minimum: From the table, it is seen that
‘the forecast variance is relatively insensitive fo the-paraméters.
It is seen from the table that if u increases, then tﬁe value of
théf.gives the minimum variance error ié increased. Converse1§ if
B 1is estimated low, then the &élue of cx)that gives the minimum

variance error is decreased.

summary of Chapter V

It is to be emphasized that this chapter was only intended to
serve as a demonstration of the model that has been recommended. It
is included to help support fhe indications that were given by the

~analytical procedures.

o w -

&

Although only one set of dafaﬁhas:been inCludéd for this demon-
stration,'other_sets have been run; .and they all give comparable

results. The behavior of the model both from the analytical study and

from the examples tends to act in-a;manner like that of Brown's model.




k

-
64

TABLE V-4

" Normalized Forecast Error Variances for Modified Mbdel,
| Unequally Spaced Data

@ 0.00 1.285 1.285 1.285
& 0.05 1.182 1.205 1.220
, 0.10 1.106 | 1.140 - 1.164
- 0.15 1.051 | 1.088 - 1.115
§ S 0.20 | 1.017 © 1.048 - 1.076
- 0.25 1.002 ﬂ 1.020 | | 1.044
0.30 min. 1,000 I 1.005 | 1.021
% 0.35 1.016 *1.,000 1.007
§ ~0.40 | 1.043 1.006 min., 1.000
% o 0.45 1.080 ‘ 1.021 1.003
: - 0.50 1.125 1.046 . «1.013
_ 0.55 ‘ 1.177 1.080 | -. 1.032
| | 0.60 1.234 1.122 | © 1.059
0.65 - | 1.296 1.171 1.095
0.70 | 1.359 o 1.228 s 1.140
. 0.75 1.422 | 1.290 1.193
¢ » 0.80 1.485 | 1.363 1.257
. 0.85 o 1.544 1.433 ; 1.332
? 0.90 | - 1.601 . 1.511 1.420
0.95 1.653 1.595 1.526
1.00 " 1.710 1.710 1.710

* Normalizing Value, Variance - 94703.27
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CHAPTER VI _SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR EURTHER STUDY

vals of time from a set of logical arguments., The model suggested is

S D R e g e e T T e IR e e T R LR A PO ——
R R R R S R PR e AR I e T TR »

a time dependent: smoothing coefficient formulation that is directly
analogus to the tradltlonal €Xponential smoothing constant That is,;

% - a smoothing coefficient, functional With the irregular time interval,

sy e, AR e tareye,
L R B L SR R AT DR B T A) 5

replaces_the exponential smoothing cOnstant; The model recommended
is a two pParameter model. One parameter'fs~eqniva1ent‘to'the @ smooth-
ing conStant; The other parameter'u'istequal to the average interval

- ¢
? 1ength.-fThe-advantagesgof exponential smoothing still hold. The com-

% | putation is simple and accurate; and the file of historical data is
.

% small.

? Following the derivation, the model was analytically explored

g The smoothing function was shown to be an estimate of the average of
s the data. Then usingyzetransform'theory, the response to standard

§ signals was investigated. The glgnals were tracked by the model in

the same manner as the equally spaced models. The response stab111ty

trade -off is set by the parameter- a in the model, Finally the

smoothing coeff1c1ent was shown to be approx1mately linearly sen51t1ve

J

- ,
to the two parameters. -

Following the derivation and analytical study, ‘the model was

tried on some data, Two sets of data were generated from the same

parent population. One set accumulated demand over unequal 1ntervals.




4
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‘another attack would have to be made.
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| Thé other set accUmulated,demand over equal intervals.of time.

The forecast error was calculated for the unequally spaced daté using
the model of this thesis. This was compared to the‘forecast error of
the equally spaced‘détawas applied to Byown'é model. There was no
significant forecast error difference. This demonstrates that the -
mddél behaves for the irregular interval similar'fouthaf of Brown's
model as applied to equally spaéed data. A second comparison was
made. Thé unequally spacéd data was épplied both to the model @f this

t?ffiixand to Brown's model. The model of this thesis was shown to

Ny

be significantly superior to Biawnfs'model. This justifies its use

for such ‘an application. | .

It”iS'recbmmended that the model be applied to an exhaustive test

.

dnd épplication using either simulated or real-life data. Hopefully,

L4

such a study, which would be a formidable task, would give some gene-

&

ralized insight to the nature of the data where‘thengdel might best

be applied.

There is one other area in whiéh.no method exists for smoothing

data. Recall thap in the model formulated in this thesis that de-

-mand was accumulated over the irregular review interval. However,

there is another class of problems that involves irregular reviews.

These are problems that sample a level at irregular intervals. For

L]

example, it.may be desirable to sample the stock market level at

. . g ¥ | i
irregular intervals of time. Clearly, the demands are not being

accuﬁulated over time for this case. For this class of problems

-
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