
Lehigh University
Lehigh Preserve

Theses and Dissertations

2018

Exploiting Structures in Mixed-Integer Second-
Order Cone Optimization Problems for Branch-
and-Conic-Cut Algorithms
Sertalp Bilal Cay
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Cay, Sertalp Bilal, "Exploiting Structures in Mixed-Integer Second-Order Cone Optimization Problems for Branch-and-Conic-Cut
Algorithms" (2018). Theses and Dissertations. 4224.
https://preserve.lehigh.edu/etd/4224

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4224&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4224&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4224&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F4224&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4224?utm_source=preserve.lehigh.edu%2Fetd%2F4224&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Exploiting Structures in Mixed-Integer

Second-Order Cone Optimization Problems for

Branch-and-Conic-Cut Algorithms

by

Sertalp B. Çay

A Dissertation

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Industrial and Systems Engineering

Lehigh University

May, 2018

© Copyright by Sertalp B. Çay 2018

All Rights Reserved

ii

Approved and recommended for acceptance as a dissertation in partial

fulfillment of the requirements for the degree of Doctor of Philosophy.

Sertalp B. Çay

Exploiting Structures in Mixed-Integer Second-Order Cone Optimization Problems

for Branch-and-Conic-Cut Algorithms

Date

Dr. Tamás Terlaky, Dissertation Director, Chair

Accepted Date

Committee Members

Dr. Julio C. Góez

Dr. Imre Pólik

Dr. Ted K. Ralphs

Dr. Martin Takáč

Dr. Natasha Vermaak

iii

iv

Acknowledgment

First and foremost I would like to thank my advisor Tamás Terlaky for guiding me

through this entire process. I wish to express my sincere gratitude for his

encouragement, inspiration, and support throughout my research.

I would like to thank each of my committee members, Julio C. Góez, Imre Pólik,

Ted K. Ralphs, Martin Takáč, and Natasha Vermaak, for their enthusiasm and

insightful comments to my dissertation. I am sincerely grateful to Imre Pólik, who

provided invaluable insights for my work on warm-start and heuristics for

mixed-integer second-order cone optimization problems.

This work would not have been possible without the support and opportunity I

received from SAS Institute. I would like to express my gratitude to Joshua Griffin,

Imre Pólik, Yan Xu, and Manoj Chari for providing me summer and year-round

internships during my Ph.D. studies. The experience I gained at SAS has greatly

benefited the development of this research.

I am also grateful to many people around me. I would like to thank Frank E.

Curtis for his support and encouragement during though times. I owe a great deal

of gratitude to my officemates, fellow graduate students and good friends for their

emotional support. I thank the Graduate Programs Manager, Brianne Lisk, for her

help during my Ph.D.

I owe a lot of gratitude to my parents, Mustafa Çay and Fatma Çay, my in-laws

H. Barış Diren and Ceyla Diren, and my sister Mehtap Hilal Çabuk. I am grateful

for their love and support. I am also grateful to my dog, Latte, for letting off my

v

steam with countless hours of fetch during last two years of my Ph.D.

Most importantly, my heartfelt and deepest gratitude and thanks go to my dear

wife, Pelin Çay, for her endless love, motivation, support, encouragement and

patience. It is fair to say that without her priceless encouragement and support,

this dissertation would not have been possible.

vi

Contents

List of Tables xi

List of Figures xiii

Abbreviations xv

Notation and symbols xvii

Abstract 1

1 Introduction 3

1.1 Second-order cone optimization (SOCO) 4

1.1.1 Jordan algebra . 5

1.1.2 Primal and dual rounding problems 6

1.2 Mixed-integer second-order cone optimization (MISOCO) 8

1.2.1 Solution algorithms for MISOCO 9

1.2.2 Branch-and-bound algorithms 11

1.3 Structure . 13

2 Background and state of the art 15

2.1 Interior-point methods (IPMs) . 15

2.1.1 IPMs for LO . 15

2.1.2 IPMs for SOCO . 19

vii

2.1.3 Warm-starting of IPMs . 23

2.2 BCC algorithms for MISOCO . 31

2.2.1 Branching . 32

2.2.2 Linear and conic cuts . 36

3 Warm-start of SOCO over Jordan frames 41

3.1 Introduction . 41

3.1.1 Self-dual embedding IPM . 43

3.2 Rounding problems . 44

3.3 Warm-starting . 48

3.3.1 Solving rounding problems . 49

3.3.2 Choosing a convex combination of solutions 51

3.3.3 Initialization . 52

3.3.4 Solution approach . 52

3.4 Numerical experiments . 53

3.4.1 Methodology . 53

3.4.2 Performance of warm-start for various branching variable types 54

3.4.3 Comparison to cold-start and other warm-start methods . . . 59

3.4.4 Effect of warm-starting for infeasible cases 60

3.5 Conclusions and future work . 62

4 The first heuristic specifically for mixed-integer second-order cone

optimization 65

4.1 Introduction . 65

4.2 Conic rounding heuristics . 68

4.2.1 The primal rounding heuristic 68

4.2.2 The dual rounding heuristic 77

4.2.3 The primal-dual rounding heuristic 84

4.2.4 Hybrid strategy . 87

viii

4.2.5 Extending heuristics to convex quadratic optimization 87

4.3 Numerical results . 95

4.3.1 Implementation and test set 95

4.3.2 Efficiency of the heuristics . 96

4.3.3 Quality of the provided solutions 99

4.3.4 Effect of iterations on solution quality 104

4.4 Conclusions and future work . 106

5 Disjunctive conic cuts for asset allocation problems 109

5.1 Introduction . 109

5.2 MISOCO for AAPs . 112

5.2.1 Round-lot-constrained AAP 113

5.2.2 Cardinality and diversification-constrained AAP 115

5.3 Methodology . 118

5.3.1 Branch-and-conic-cut framework 118

5.3.2 Disjunctive conic and cylindrical cut generation 118

5.3.3 Cut management strategies 126

5.3.4 Branching and searching . 128

5.4 Computational results . 130

5.4.1 The effect of DCCs on the objective value and the BCC tree . 131

5.4.2 The effect of branching, cutting, and searching rules on the

BCC tree . 135

5.4.3 Comparison of cut application strategies 136

5.4.4 Comparison of solution approaches 141

5.4.5 Effects of cuts as a preprocessing step 142

5.5 Conclusions and future work . 146

6 Conclusions and future work 149

Appendix 152

ix

A Round-lot-constrained AAP experiments 153

B Cardinality-constrained AAP experiments 159

Bibliography 177

Vita 179

x

List of Tables

3.1 Distribution of instances based on variable type and problem status. 56

3.2 Geometric mean of the ratio of warm-start iterations to cold-start

iterations among only warm-started instances. 57

3.3 Geometric mean of the ratio of warm-start iterations to cold-start

iterations among all instances. 57

3.4 Geometric means for warm-started instances classified by CBLIB

problem type. 58

4.1 Details of the problem test set. 96

4.2 Number of iterations where the first feasible solution to MISOCO is

reported. 98

4.3 Detailed performance of the heuristics on problem types. 100

4.4 Number of instances where an optimal solution is found. 105

5.1 Problem parameters . 130

5.2 Average BCC tree size with various searching strategies over cut

generation strategies for round-lot AAPs. 136

5.3 Comparison of average BCC tree size for branch and cut ordering rules. 137

5.4 Comparison of numerical accuracy of solution without DCCs (B&B)

versus when DCCs are added in the preprocessing (BCC-R). 145

A.1 Performance of cut application strategies on round-lot-constrained AAPs.158

xi

B.1 Performance of cut application strategies on quadratic-cardinality-

constrained AAPs. 164

xii

List of Figures

1.1 Jordan frames in a cone. 6

3.1 Feasibility and duality relationship between original SOCO problems

and rounding LO problems. 45

3.2 Comparison of warm-start IPM iterations versus cold-start IPM

iterations for feasible instances. 60

3.3 Comparison of IPM iterations of our approach versus warm-start of

Skajaa et al. on feasible instances. 61

4.1 Flow of the primal rounding heuristic. 75

4.2 Steps of the primal rounding heuristic on the example problem. . . . 76

4.3 Flow of the dual rounding heuristic. 78

4.4 Steps of the dual rounding heuristic on the sample problem for the

cross-section at x1 = 3. 81

4.5 Flow of the primal-dual rounding heuristic. 85

4.6 Steps of the primal rounding heuristic on a convex quadratic sample

problem. 90

4.7 Bounded and unbounded Jordan frames in a positive semidefinite case. 95

4.8 Comparison of gaps to the true optimal across heuristics. 101

4.9 Gap to the true optimal versus the number of iterations to first feasible

solution for each heuristic. 102

xiii

4.10 Gap to the true optimal versus the number of iterations to best feasible

solution for each heuristic. 103

4.11 Final gap to the true optimal (vertical axis) versus the first gap

(horizontal axis) for each instance. 106

5.1 Illustrative DCyC on the quadric of an instance of a

round-lot-constrained AAP. 122

5.2 Projection of original quadratic and DCyC onto the t−z1 plane. DCyC

cuts off some of non-integer points. 123

5.3 DCC on the quadratic cardinality constraint z2
1 + z2

2 + z2
3 ≤ 2. 124

5.4 DCC for quadratic-bound-constrained AAP. 126

5.5 Improvement on the objective value versus depth of cuts for round-lot-

constrained AAPs. 132

5.6 Improvement on the objective value versus node level of generated cuts

for roundlot constrained AAPs. 133

5.7 Change in solution time and number of nodes for various dimensions

of DCCs. 135

5.8 Performance profile of number of nodes of cut management strategies

on round-lot-constrained AAP. 138

5.9 Performance profile of solution time of cut management strategies on

round-lot-constrained AAP. 139

5.10 Performance profile of number of nodes of cut management strategies

on cardinality-constrained AAP. 140

5.11 Performance profile of solution time of cut management strategies on

cardinality-constrained AAP. 141

5.12 Performance profile of number of nodes on quadratic-cardinality-

constrained AAPs. 143

5.13 Performance profile of solution time on quadratic-cardinality-

constrained AAPs. 144

xiv

Abbreviations

B&B branch-and-bound
B&C branch-and-cut
BCC branch-and-conic-cut
DCC disjunctive conic cut
DCyC disjunctive cylindrical cut
DR dual rounding problem
FR fix-and-relax problem
IPM interior-point method
LO linear optimization
MILO mixed-integer linear optimization
MINLO mixed-integer nonlinear optimization
MISOCO mixed-integer second-order cone optimization
NLO nonlinear optimization
PDIPM primal and dual interior-point method
PR primal rounding problem
SOC second-order cone
SOCO second-order cone optimization

xv

xvi

Notation and symbols

A,B, . . . matrices
a, b, . . . column vectors
x, y, . . . column vectors, variables
d, r, z, . . . scalar values
i, j indices
xi the ith component of x
x(i) the ith iteration of an algorithm
x∗ an optimal solution
α, β, θ, . . . algorithm parameters
κ, λ, µ, ν auxiliary variables
P,D, . . . optimization problems
F ,S, . . . sets
A,B, . . . measures
B,N ,R, T optimal partitions of a SOCO problem
Rn the real n-dimensional Euclidean vector space
Zn the set of integers in Rn

Ln the n-dimensional Lorentz cone, L = {x ∈ Rn : x1 ≥ ‖x2:n‖2}
K the Cartesian product of Lorentz cones
K∗ the dual cone of K
diag(x) the matrix that has x as its diagonal
conv(C) the convex hull of a set C
x ◦ y the Jordan product of vectors x and y
bxc the largest integer less than or equal to x
dxe the smallest integer greater than or equal to x

xvii

Abstract

This thesis studies computational approaches for mixed-integer second-order cone

optimization (MISOCO) problems. MISOCO models appear in many real-world

applications, so MISOCO has gained significant interest in recent years. However,

despite recent advancements, there is a gap between the theoretical developments

and computational practice. Three chapters of this thesis address three areas of

computational methodology for an efficient branch-and-conic-cut (BCC) algorithm

to solve MISOCO problems faster in practice. These chapters include a detailed

discussion on practical work on adding cuts in a BCC algorithm, novel

methodologies for warm-starting second-order cone optimization (SOCO)

subproblems, and heuristics for MISOCO problems.

The first part of this thesis concerns the development of a novel warm-starting

method of interior-point methods (IPM) for SOCO problems. The method exploits

the Jordan frames of an original instance and solves two auxiliary linear optimization

problems. The solutions obtained from these problems are used to identify an ideal

initial point of the IPM. Numerical results on public test sets indicate that the warm-

start method works well in practice and reduces the number of iterations required to

solve related SOCO problems by around 30–40%.

The second part of this thesis presents novel heuristics for MISOCO problems.

These heuristics use the Jordan frames from both continuous relaxations and

penalty problems and present a way of finding feasible solutions for MISOCO

problems. Numerical results on conic and quadratic test sets show significant

1

performance in terms of finding a solution that has a small gap to optimality.

The last part of this thesis presents application of disjunctive conic cuts (DCC) and

disjunctive cylindrical cuts (DCyC) to asset allocation problems (AAP). To maximize

the benefit from these powerful cuts, several decisions regarding the addition of these

cuts are inspected in a practical setting. The analysis in this chapter gives insight

about how these cuts can be added in case-specific settings.

2

Chapter 1

Introduction

MISOCO problems consist of linear and second-order cone constraints with

mixed-integer variables. The aim of this dissertation is to study MISOCO problems

from a BCC algorithm perspective. We are interested in developing the

computational methodology for an efficient BCC algorithm for MISOCO, developing

novel methodologies, and combining the existing literature and establishing

connections among them.

There is a growing interest to solve MISOCO problems, not only because there

are efficient methods to solve the underlying SOCO problems, but also because they

appear in many applications from finance to healthcare and facility location

assignment [5, 13, 32, 62, 88].

MISOCO is a generalization of mixed-integer linear optimization (MILO) and is

a specific area of mixed-integer nonlinear optimization (MINLO). Despite the large

number of studies for MILO and MINLO, only a small portion of the available

literature specifically focuses on MISOCO problems. Recent developments in the

MISOCO area are centered around generating valid inequalities for these problems.

Despite the growing interest and the recent literature, there are only a limited

number of research studies that focus on solution algorithms for MISOCO as a whole.

In her thesis, Drewes [41] discusses many aspects of a branch-and-cut algorithm for

3

MISOCO, and combines some of the existing methodologies in the literature. In

their respective dissertations, Narayanan [84] and Góez [54] provide methodologies

to be used in a branch-and-cut framework, but to the best of our knowledge there

is no work in the literature on practical implementations of these approaches. The

purpose of this dissertation is to experiment with existing approaches and propose

novel methodologies to contribute to building a full BCC framework.

1.1 Second-order cone optimization (SOCO)

We give a brief review on SOCO in this section. One needs to solve the SOCO

relaxations of MISOCO many times in a branch-and-bound type algorithm to solve

MISOCO problems. The aim of a SOCO model is to minimize a linear objective

function over a set of linear and second-order cone constraints. Second-order cone

constraints are also known as Lorentz cones. A second-order cone (SOC) represented

as (x, y) ∈ L ⊂ Rn corresponds to

x ≥

√√√√n−1∑
i=1

y2
i ,

where x ∈ R, y ∈ Rn−1.

SOCO problems are an important subclass of convex nonlinear optimization

problems. SOCO has numerous applications [19, 72], and powerful solvers

[7, 46, 61, 64] have been developed in the last 20 years.

Consider a primal SOCO problem in the standard form

minimize: c>x

subject to: Ax = b,

x ∈ K,
x ∈ Rn,

(P-SOCO)

where A ∈ Rm×n is a matrix with full row rank, and c ∈ Rn and b ∈ Rm are

column vectors. Here, K is a Cartesian product of SOCs of various dimensions. For

4

x =
(
(x1)>, (x2)>, . . . , (xk)>

)>, xi ∈ Lni , it is shown as K = Ln1 × Ln2 × · · · × Lnk ,

Lni = {xi ∈ Rni | xi1 ≥ ‖xi2:ni
‖}, for i = 1, . . . , k, with

∑k
i=1 ni = n. The cone K is

self dual [85]; that is, K∗ =
{
u|u>x ≥ 0 ∀x ∈ K

}
= K.

The associated dual problem of (P-SOCO) is written as

maximize: b>y

subject to: A>y + z = c,

z ∈ K,
(D-SOCO)

where z = ((z1)>, (z2)>, . . . , (zk)>)>, z ∈ Rn, zi ∈ Rni for all i, and y ∈ Rm.

Benson and Sağlam [20] gives a review of solution algorithms for SOCO. They

identify three methodologies to solve SOCO problems in the literature. The first

method is to use IPMs and solve SOCO as a conic problem. The second method

is to solve SOCO problems by using IPMs for NLO. The third approach is to use

a polyhedral relaxation of SOCO problems and solve them approximately as LO

problems. In this thesis, our focus is on solving SOCO by IPMs as a conic problem.

See Section 2.1 for details on this solution algorithm.

1.1.1 Jordan algebra

Relevant concepts of Jordan algebra are reviewed in this subsection [45].

A nonzero vector x ∈ Ln can be decomposed into two components, such as

x = f+λ+ + f−λ−

where

λ+ = x1 + ‖x2:n‖, λ− = x1 − ‖x2:n‖,

f+ = 1
2

(
1
x2:n
‖x2:n‖

)
, f− = 1

2

(
1

− x2:n
‖x2:n‖

)
.

In this system, λ+ and λ− are called the Jordan values, and f+ and f− are called

the Jordan frames of the vector x. They correspond to eigenvalues and eigenvectors

5

of x. Notice that the norm of both of the Jordan frame vectors are 1/2. Moreover,

these Jordan frames are orthogonal, and they are on the rays on the boundary of

the standard SOC which are the intersection of the SOC with the hyperplanes

generated by x and the unit vector [1, 0, . . . , 0]> of the SOC. For the special case of

x = [1, 0, . . . , 0]>, any Jordan frame can be chosen. See Figure 1.1 for a

representation of Jordan frames for the vector x.

x

1
2

f+

f−

Figure 1.1: Jordan frames in a cone.

1.1.2 Primal and dual rounding problems

Terlaky and Pólik [101] and Pólik and Góez [89] presented rounding solutions for

SOCO problems. Their method takes a near-optimal solution of an IPM iteration,

fixes its Jordan frames, and solves the resulting LO problems. These LO problems

are called “rounding problems”.

Suppose we have a conic feasible primal and dual solution x ∈ K, z ∈ K. We derive

primal and dual rounding problems for the given solutions. Denote fP and fD the

6

Jordan frames which correspond to the primal variable x and the dual slack variable

z, respectively. For notational convenience, we merge Jordan frames of all cones into

matrices FP ∈ Rn×2k and FD ∈ Rn×2k for the primal and dual side, respectively,

which consist of two block-diagonal parts. Denote

FP =

f+
P 1 0 . . . 0 f−P 1 0 . . . 0
0 f+

P 2 . . . 0 0 f−P 2 . . . 0
...
0 0 . . . f+

Pk 0 0 . . . f−
Pk

 ,

FD =

f+
D1 0 . . . 0 f−D1 0 . . . 0
0 f+

D2 . . . 0 0 f−D2 . . . 0
...
0 0 . . . f+

Dk 0 0 . . . f−
Dk

 .

Similarly, denote λ ∈ R2k and κ ∈ R2k as the vectors of the primal and dual Jordan

values, respectively:

λ =

λ+
1

λ+
2
...
λ+
k

λ−1

λ−2
...
λ−k

κ =

κ+
1

κ+
2
...
κ+
k

κ−1

κ−2
...
κ−k

.

Now we can write x = FPλ and z = FDκ. To find a lower rank solution, we can fix

the Jordan frames FP and FD at a solution (x, y, z) and approximate the primal and

dual SOCOs as LO problems. The dual variable y and the Jordan values λ and κ are

our decision variables in these rounding problems.

Using the introduced notation, the primal rounding (PR) problem can be written

7

as follows:
minimize: (c>FP)λ
subject to: (AFP)λ = b,

λ ≥ 0.
(PR)

The dual rounding problem is written as follows:

maximize: b>y

subject to: A>y + FDκ = c,

κ ≥ 0.
(DR)

Notice that (PR) and (DR) are not duals of each other. We can write the duals of

both the primal and dual rounding problems. The dual of (PR) is written as follows:

maximize: b>y

subject to: F>P A
>y + u = F>P c,

u ≥ 0.
(D-PR)

Finally, the dual of the (DR) is written as follows:

minimize: c>x

subject to: Ax = b,

F>Dx ≥ 0.
(D-DR)

1.2 Mixed-integer second-order cone

optimization (MISOCO)

MISOCO is a special branch of convex MINLO. A MISOCO problem minimizes a

linear objective function over a set of linear and second-order cone constraints. By

definition, the positive half line R+ is also a Lorentz cone and so Rn
+ is the product of

n one-dimensional Lorentz cones. Thus, MISOCO can be also seen as a generalization

of MILO.

8

MISOCO problems include integer variables on top of SOCO problems (P-SOCO).

A MISOCO in the standard form can be written as follows:

minimize: c>x

subject to: Ax = b,

x ∈ K,
x ∈ Zd × Rn−d.

(MISOCO)

MISOCO is an active research area, and there have been significant advances in

both theoretical and practical aspects of it. An increasing number of studies and the

development of both commercial and open-source SOCO solvers have increased the

interest to the field. Commercial solvers like CPLEX and MOSEK provide

functionality to model and solve MISOCO problems, and they can be seen as a

proof of interest in MISOCO.

Two major reasons drive this rising interest in MISOCO. First, many real-life

applications from various sectors like finance, energy, and healthcare can be

formulated as a MISOCO problem. Certain types of portfolio optimization problems

[20] and option-pricing problems [88] from finance, the turbine balancing problem

[41] from energy, and the problem of sterotactic surgery treatment planning with

isocentre selection [53] from healthcare are some of the applications in which

MISOCO formulations appear. An extensive list of problems are given by Ben-Tal

and Nemirovski [19] and Lobo et al. [72]. The second reason is that there are

efficient IPM-based solution methodologies to the underlying problems that can

solve SOCO problems in polynomial time as mentioned in the previous section.

The following subsection briefly reviews the solution methodologies for MISOCO

problems.

1.2.1 Solution algorithms for MISOCO

In their survey, Benson and Sağlam [20] present solution strategies for MISOCO.

They argue that a very intuitive solution strategy is to use a branch-and-bound

9

algorithm where each node is solved as a SOCO subproblem. These subproblems can

be solved by an IPM, which is described in Section 2.1. An effective implementation,

especially for large-scale problems, must benefit from warm-start, heuristics, and cut

management strategies, which are the main foci of this dissertation.

MISOCO problems can be solved by any MINLO solution algorithms. There are

three main strategies for solving MINLO problems. Duran and Grossmann [42]

present an outer-approximation algorithm to solve MINLO problems. This ad-hoc

adaptive linearization technique can be used to solve MISOCO, since SOC

constraints are convex and thus satisfy assumptions of the given method. Recently,

Bulut [31] covered this solution approach for MISOCO in his dissertation. His

implementation uses adaptive linearization to solve resulting SOCO subproblems in

a BCC framework. Westerlund and Pettersson [105] extend Kelley’s cutting-plane

method for MINLO, while the original method is applicable only to convex MINLO

problems. The proposed method can solve a large convex MINLO problem with a

moderate degree of nonlinearity. A generalized Benders decomposition is presented

by Geoffrion [52].

MISOCO problems can be also solved by approximating the underlying SOCO

problems with LO [19, 104]. Thus, the original MISOCO problem can be solved with

a branch-and-bound algorithm that uses a simplex-based method after a structrual

linearization. Such an approach may also benefit from the warm-starting capabilities

of the simplex-based methods.

In her thesis, Drewes [41] proposes two methods to solve MISOCO problems. The

first is a naive branch-and-cut algorithm that benefits from Chvátal-Gomory cuts for

MISOCO problems. The second is a hybrid approach that combines a branch-and-

bound algorithm with outer-approximation.

10

1.2.2 Branch-and-bound algorithms

B&B is a popular way to solve integer optimization problems. The basic idea behind

the algorithm is to divide a problem into subproblems and then solve the continuous

relaxations at every node. These subproblems can be solved exactly or partially,

depending on the type of the B&B algorithm. Each subproblem provides a lower

bound for its branch, and every integer feasible node provides a global upper bound.

The aim of the algorithm is to close the gap between the lower and upper bounds

to zero when optimality is reached. The structure of a naive branch-and-bound

algorithm is given in Algorithm 1 [70, 71]. Note that B&B is an exact algorithm.

Algorithm 1 Branch-and-bound algorithm framework
Require: A mixed-integer problem P
Ensure: Optimal solution x∗, infeasible flag if x∗ = ∅, or unboundedness flag if x∗ = −∞.

1 L = {P}. Set zU =∞, zPL = −∞, x∗ = ∅. . Initialize
2 if L = ∅ then . Terminate
3 return x∗

4 Choose and delete a problem N from L. . Select
5 Solve linear relaxation of N. . Evaluate
6 if linear relaxation of N is infeasible then
7 Go to Step 2.
8 else
9 Let z be the optimal objective function value and x be the solution of linear relaxation
of N.

10 if z ≥ zU then . Prune
11 Go to Step 2.
12 else if x is integer feasible then
13 Set zU = z, x∗ = x. Delete all problems with zjL ≥ zU from L. Go to Step 2.
14 Divide feasible region of N into smaller regions N1,N2, . . . ,Nk such as

. Branch

∪kj=1Nj = N, zjL = z

and add them to L. Go to step 2.

In Algorithm 1, L denotes the set of active subproblems. Branch-and-cut (B&C)

algorithms combine a B&B algorithm with cutting-plane methods. The basic idea is

to add valid cuts at each subproblem, which improves the bound obtained from the

subproblems. Compared to B&B, B&C algorithms usually generate smaller search

11

trees, if the same rules are applied. On top of the challenges coming from B&B, there

are also other questions to be answered for B&C algorithms. Which types of cuts to

add, when to add, and when to stop cutting and continue with branching are some

of these basic questions, which are also in the interest of this thesis for MISOCO

problems.

BCC algorithm

We are interested in applying branch-and-bound algorithms to solve MISOCO

problems, where the algorithm is enhanced by addition of linear and conic cuts.

This method is called BCC. A general representation of BCC is given in Algorithm

2.

12

Algorithm 2 Branch-and-conic-cut algorithm framework for MISOCO
Require: A MISOCO problem P of the form (4.1)
Ensure: Optimal solution x∗, infeasible flag if x∗ = ∅, or unboundedness flag if x∗ = −∞.

1 L = {P}. Set zU =∞, zPL = −∞, x∗ = ∅. . Initialize
2 if L = ∅ then . Terminate
3 return x∗

4 Choose and delete a problem N from L. . Select
5 Apply solution heuristics on N.
6 Solve continuous relaxation of N with an IPM with warm-starting. . Evaluate
7 if continuous relaxation of N is infeasible then
8 Go to Step 2.
9 else

10 Search for valid linear and conic cuts
11 if valid cuts exist then
12 Add linear and conic cuts to the subproblem N. . Cut generation
13 Go to Step 6.
14 else
15 Let z be the optimal objective function value and x be the solution of continuous

relaxation of N.
16 if z ≥ zU then . Prune
17 Go to Step 2.
18 else if x is integer feasible then
19 Set zU = z, x∗ = x. Delete all problems with zjL ≥ zU from L . Go to Step 2.
20 Divide feasible region of N into smaller regions N1,N2, . . . ,Nk such as

. Branch

∪kj=1Nj = N, zjL = z

and add them to L. Go to step 2.

1.3 Structure

This dissertation consists of four parts. In Chapter 2, background and state-of-the-

art information about related topics are presented. In Chapter 3, we present a novel

warm-start methodology for SOCO problems by using rounding on IPMs. In Chapter

4, we present novel primal heuristics for MISOCO problems using the Jordan frames

of SOCs. In Chapter 5, we present the effects of applying of disjunctive conic and

cylindrical cuts (DCC) on asset allocation problems (AAPs). Finally, in Chapter 6,

we give conclusions and future research directions.

13

14

Chapter 2

Background and state of the art

2.1 Interior-point methods (IPMs)

After Karmarkar’s paper [67], the field of IPMs saw a rapid expansion. IPMs are

considered to be efficient methods for solving large-scale linear and convex

optimization problems. As discussed earlier, IPMs are also efficient methods for

solving SOCO problems. In addition to their polynomial complexity, IPMs are often

faster than simplex-type algorithms in practice. Survey papers, see Terlaky [100] for

example, cover key aspects of IPMs for interested readers. Extensive review on

IPMs can be found in the literature for LO [92, 106, 108] and semi-definite

optimization [40].

In this section, we recall some well-known facts about the primal-dual interior-

point methods (PDIPMs) for LO and SOCO, in that order. We also give a literature

review on warm-starting for IPMs.

2.1.1 IPMs for LO

In this section, we present the key concepts of a PDIPM for LO. The contents of

this section are taken from Roos et al. [92]. Consider an LO problem in the standard

15

form,
minimize: c>x

subject to: Ax = b,

x ≥ 0,
(2.1)

where the vectors c ∈ Rn and x ∈ Rn, the matrix A ∈ Rm×n, and vector b ∈ Rm.

Without loss of generality, we assume that A is a matrix with full row rank.

The associated dual problem can be written as

maximize: b>y

subject to: A>y + z = c,

z ≥ 0,
(2.2)

where vector y ∈ Rm and vector z ∈ Rn are the dual variables and dual slacks,

respectively. These two problems are called the primal-dual pair. The optimality

conditions of the primal-dual pair are as follows.

Theorem 1. The vector x ∈ Rn is an optimal solution of (2.1) if and only if there

exist vectors y ∈ Rm and z ∈ Rn such that

Ax = b, x ≥ 0,

A>y + z = c, z ≥ 0,

xizi = 0, i = 1, . . . , n.

(2.3)

The first and second conditions in (2.3) are called primal feasibility condition and

dual feasibility condition, respectively. The third set of conditions are called

complementarity conditions. A triplet (x, y, z) is called a primal-dual optimal

solution if it satisfies the optimality conditions (2.3). Let F and F0 denote the

primal-dual feasible set and strictly feasible set, respectively, such as

F = {(x, y, z) | Ax = b, A>y + z = c, x ≥ 0, z ≥ 0},

F0 = {(x, y, z) | Ax = b, A>y + z = c, x > 0, z > 0}.
(2.4)

A triplet (x, y, z) ∈ F0 satisfying (2.3) is called a strictly complementary optimal

solution if it satisfies x + z > 0. The existence of a point in the strictly feasible set

16

F0 is referred as the interior-point condition (IPC). Roos et al. [92] present self-dual

embedding, which transforms a given LO problem into another formulation that a

feasible interior point is known for. Here, we assume that a strictly feasible solution

for the primal dual pair exists and is known.

PDIPMs generate a sequence of strictly feasible points of the primal-dual problems

following the so-called central path. The central path is parametrized by a positive

scalar µ. The perturbed system is written as

Ax = b, x ≥ 0,

A>y + s = c, s ≥ 0,

xizi = µ, i = 1, . . . , n.

(2.5)

Each point (x, y, z) is on the central path C if it solves the perturbed system. Note

that the perturbed system (2.5) consists of the optimality conditions of the so-called

primal and dual logarithmic barrier problems. The primal and dual logarithmic barrier

problems are written as follows:

minimize
{
c>x− µ

n∑
i=1

log xi : Ax = b, x > 0
}
,

maximize
{
b>y − µ

n∑
i=1

log zi : A>y + z = c, z > 0
}
.

System (2.5) has a unique solution for each µ > 0. For a given µ > 0, denote

(x(µ), y(µ), z(µ)) as the unique solution of system (2.5). The primal-dual central

path approaches the set of optimal solutions as µ→ 0, and their limit point at µ = 0

is the analytic center of the optimal set.

PDIPMs use Newton steps to follow the central path. For a given feasible (x, y, s)

with x > 0 and z > 0, the Newton step (∆x,∆y,∆z) is the unique solution of the

following system
A∆x = 0,

A>∆y + ∆z = 0,

Z∆x+X∆z = µe−XZe,

(2.6)

17

where X = diag(x1, . . . , xn), Z = diag(z1, . . . , zn), and e = (1, . . . , 1)> ∈ Rn.

PDIPMs often take a damped Newton step that is parameterized by the step length

α, such as the new point becoming (x+ α∆x, y + α∆y, z + α∆z) with x+ α∆x > 0

and z + ∆z > 0. In the implementation of PDIPMs, we need to solve the Newton

system (2.6) for each interior-point iteration.

We can rewrite (2.6) as follows
0 A 0
A> 0 I

0 Z X

∆y
∆x
∆z

 =

0
0

µe−XZe

 . (2.7)

Now, we can eliminate the change in the dual slack variable ∆z from the formulation

by using the third block of equations as

∆z = X−1(µe−XZe− Z∆x).

Let D = Z−1/2X1/2. We can simplify (2.7) to the so-called augmented system; that is[
0 A

A> −D−2

][
∆y
∆x

]
=
[

0
−X−1(µe−XZe)

]
.

We can further eliminate ∆x from the system as

∆x = D2A>∆y +D2X−1(µe−XZe),

and reach the most compact form of the system, which is called normal equations

AD2A>∆y = −AZ−1(µe−XZe).

Inside an IPM, either the augmented system or the normal equation is solved at

every iteration. Normal equations are a popular choice since the sparsity structure

of AD2A> is fixed, and so symbolic sparse Cholesky factorization combined with

numerical factorization can be applied to the matrix AD2A>.

During IPM iterations, we need to measure the distance of the iterates to the

central path. Several measures are available in the literature. One of the

18

neighborhoods defined by the Euclidean norm is the so-called 2-norm neighborhood,

N2(θ), which is defined as

N2(θ) =
{

(x, y, z) ∈ F0 : ‖XZe− µqe‖2 ≤ θµq
}
, (2.8)

where F0 is defined in (2.4), θ < 1 is a given parameter, and the central path

parameter µq related to the duality gap µq = x>z/n. The neighborhood N2(θ)

defines a narrow neighborhood around the central path. The one-sided ∞-norm

neighborhood, N−∞(γ), is defined by

N−∞(γ) = {(x, y, z) ∈ F : xizi ≥ γµq ∀i} , (2.9)

for some 0 < γ < 1. This is a rather large neighborhood definition which prevents

iterates from getting too close to the boundary of Rn
+.

Finally we can write the general scheme of PDIPMs as shown in Algorithm 3.

Algorithm 3 PDIPMs for LO
Require: An LO problem in the form (2.1),

a neighborhood definition N around the central path,
an accuracy parameter ε > 0,
a variable dumping factor α,
a barrier update parameter 0 < θ < 1,
a strictly feasible starting point (x0, y0, z0) ∈ F0 in the neighborhood N of the central
path.

1 x = x0, y = y0, z = z0

2 while nµ ≥ ε do
3 µ = (1− θ)µ . Duality parameter
4 while (x, y, z) 6∈ N (x, z, µ) do
5 Solve the Newton system (2.6) for (∆x,∆y,∆z) . Search direction
6 x = x+ α∆x . Newton step
7 y = y + α∆y
8 z = z + α∆z
9 return (x, y, z)

2.1.2 IPMs for SOCO

IPMs for SOCO differ slightly from IPMs for LO [8]. Consider a SOCO problem

in the form of (P-SOCO) and its associated dual problem (D-SOCO). Assume that

19

we have feasible interior solutions for both the primal and the dual problem. The

primal-dual optimality conditions are written as

Ax = b, x ∈ K,

A>y + z = c, z ∈ K,

xi ◦ zi = 0, i = 1, . . . , k,

where ◦ is a the Jordan product of two vectors defined as

u ◦ v = (u>v;u1v2:n + u1v2:n).

Note that this product can be also represented as

u ◦ v =

u>v

u1v2 + u1v2
...

u1vn + u1vn

 = Arr(u)v = Arr(u)Arr(v)ι,

where ι = (1, 0, . . . , 0) ∈ Rn and Arr(u),Arr(v) are the arrowhead matrices of vectors

u and v, respectively. An arrowhead matrix associated with a vector u ∈ Rn is defined

as

Arr(u) =

u1 u2 . . . un

u2 u1
... . . .
un u1

 .

We perturb the complementarity conditions as we did for LO, and get the central

path as

Ax = b, x ∈ K,

A>y + z = c, z ∈ K,

xi ◦ zi = 2µιi, i = 1, . . . , k,

20

where ιi = (1, 0, . . . , 0) ∈ Rni [6, 90]. The Newton system to find the search direction

is written as
A∆x = 0,

A>∆y + ∆z = 0,

xi ◦∆zi + ∆xi ◦ zi = 2µιi − xi ◦ zi, i = 1, . . . , k,

(2.10)

where ∆x = ((∆x1)>, . . . , (∆xk)>)> and ∆z = ((∆z1)>, . . . , (∆zk)>)>. Let Arr(x)

and Arr(z) be the block-diagonal matrices built by Arr(xi) and Arr(zi), respectively.

We can rewrite system (2.10) by using the arrowhead matrix notation, such as

0 A 0
A> 0 I

0 Arr(z) Arr(x)

∆y
∆x
∆z

 =

0
0

2µι− x ◦ z

 ,
where ι = ((ι1)>, . . . , (ιk)>)>. If we eliminate ∆x and ∆z from the system, we get

the normal equation for the SOCO case, which is

(
AArr−1(z)Arr(x)A>

)
∆y = −AArr−1(z)(2µι− x ◦ z).

In this system, the coefficient matrix is a square matrix; however, it is not symmetric

and in general it can be singular. To prevent such cases, block-diagonal scaling is

usually applied in IPMs for SOCO. See Andersen et al. [8] for computational methods

for implementing IPMs for SOCO in more detail.

Let p be a vector in the interior of K. We define the scaling matrix Qp � 0 as

Qp = 2Arr(p)2 − Arr(p ◦ p).

Let p−1 be the inverse of p, such as p ◦ p−1 = ι. Now, consider the following scaled

problem,
minimize: (Qp−1c)>(Qpx)
subject to: (AQp−1)(Qpx) = b,

Qpx ∈ K,
x ∈ Rn,

(2.11)

21

where QpQp−1 = I and Qp(K) = K. Pólik and Terlaky [90] show that (P-SOCO) and

(2.11) are equivalent. Similarly, the scaled dual problem is written as

maximize: b>y

subject to: (AQp−1)>y +Qp−1z = Qp−1c,

Qp−1z ∈ K,
y ∈ Rm,

z ∈ Rn,

which is equivalent to (D-SOCO). Now the Newton system takes the following form:

(AQp−1)(Qp∆x) = 0,

(AQp−1)>∆y +Qp−1∆z = 0,

(Qpx) ◦ (Qp−1∆z) + (Qp∆x) ◦ (Qp−1z) = 2µι− (Qpx) ◦ (Qp−1z).

(2.12)

The scaling vector p can be specified in many ways. A very popular one is Nesterov-

Todd (NT) scaling [85], where

p =
(
Qx1/2 (Qx1/2z)−1/2

)−1/2
=
(
Qz−1/2 (Qz1/2x)1/2

)−1/2
.

This choice simplifies the variables, such that

Qpx = Qp−1z.

Define u := Qpx = Qp−1z. Then with NT scaling, (2.12) can be rewritten as follows
0 AQp−1 0

(AQp−1)> 0 I

0 Arr(u) Arr(u)

∆y
Qp∆x
Qp−1∆z

 =

0
0

2µι− u ◦ u

 . (2.13)

After eliminating ∆z, system (2.13) reduces to the augmented system for SOCO. That

is, [
0 A

A> −H−1

][
∆y
∆x

]
=
[

0
−QpArr−1(u)(2µι− u ◦ u)

]
,

22

where H = Qp−2 [6]. After eliminating ∆x, we reach the the normal equation

corresponding to this system, which is(
AHA>

)
∆y = −AQp−1Arr−1(u) (2µι− u ◦ u) .

2.1.3 Warm-starting of IPMs

“Warm-start” is the general name of exploiting information obtained from one

problem instance to solve another closely related instance [43]. Warm-starting

techniques often use the solution status and/or optimal solution of the original

instance in the solution process of the new instance. Warm-starting plays an

important role in reducing the solution time and/or number of iterations to reach an

optimal solution. The need for such a mechanism is evident, considering that many

real-life applications have changing parameters and that problems are solved

repeatedly. Similarly, any iteration-based optimization algorithm can benefit from

warm-starting to some extent, which could lead to important savings.

The effect of warm-starting depends heavily on the algorithm itself. It is a known

fact that warm-start approaches are effective for active-set methods when instances

differ only slightly. Due to its efficiency, warm-start is available in many commercial

primal and dual simplex method solvers [39, 61, 81]. Starting simplex iterations from

the optimal solution of the original instance usually means that a new optimum can

be obtained with significantly fewer iterations compared to starting from scratch [36].

If a new constraint is added to the problem, then the user may use the dual simplex

method by starting from the optimal solution of the original instance. If a new

variable is added to the problem and the original solution is feasible for the primal

problem, then the user may use the previous solution to warm-start the primal simplex

method. As mentioned earlier, warm-starting in active-set methods are efficient only

if the problem is slightly changed. If many constraints or variables are added to the

problem at the same time, then the efficiency of warm-start may be lost.

23

Warm-start of IPMs is a rather active research area [65]. It is one of the areas of

IPMs that still needs to be studied further [59]. Note that the efficiency of warm-start

strategies in IPMs is rather limited compared to active-set methods. In their extensive

review of IPMs for LO, Roos et al. [92] point out two main issues with warm-start

of IPMs. First, the optimal solution of the original instance often becomes infeasible

for the new instance. Such cases often occur in B&C methods, where a cut or branch

is generated to tighten the formulation. Second, even if the point stays feasible, it

can be too close to the boundary, which leads a poor warm-start performance. If the

starting point of an IPM is close to the boundary, then the IPM takes a series of

small steps which leads to a slow progress. In such cases, a cold-start could be faster

than warm-start. The research on warm-starting of IPMs focuses on handling these

two issues.

This section presents a brief literature review of the topic. Since the topic is

rather broad, studies are put in two groups. In the first group, results that focus on

warm-starting of IPMs for LO are presented. Papers that also consider SOCO and

semi-definite optimization (SDO) are discussed in the second group.

Warm-starting of IPMs for LO

Due to its importance in practice, warm-starting of IPMs has an extensive literature

for the LO case. Considering the fact that IPMs are successful in terms of solving

very large-scale LO problems, it is appealing to further improve the performance

of the IPMs with warm-start, which can be used effectively in cutting-plane and

B&C algorithms. Indeed, warm-starting is of great importance for solving integer

optimization problems.

There are two lines of research in the literature of warm-starting of IPMs for LO

[57]. The first line considers the perturbations in the problem parameters where the

problem variables and constraints stay the same. The second line studies the addition

of the new constraints or variables to the problem. These two lines are distinctively

24

different; thus, the reviews are presented separately, in that order.

Perturbation-based approaches in warm-starting of IPMs for LO

Perturbation-based approaches are useful in cases of reoptimization where a

sequence of related problems with slightly changing data needs to be solved. Such

problems arise in many engineering and business applications [43] — for example

when solving sequential LO problems, in decomposition-based algorithms, or when

doing a “what if” analysis.

Some early studies focus on warm-start after an LO problem is perturbed. Freund

[49] uses a shifted barrier method, which allows non-negativity of the variables to

satisfy the feasibility requirement of the starting point. Lustig et al. [73] perturb the

problem to move the iterate away from the boundary, whereas Polyak [91] applies a

modified barrier function. A review of more recent studies is given below.

Yildirim and Wright [109] consider a case where the problem parameters are

slightly perturbed. They work on a LO problem in the standard form (2.1). They

develop two warm-start strategies —a least-squares correction and a Newton-step

correction— for the new instance where the problem parameters (A, b, c) are

perturbed by a small amount (∆A,∆b,∆c). They define the size of the

perturbation as the maximum Euclidean norm of these three components,

‖∆d‖ = max(‖∆A‖2, ‖∆b‖2, ‖∆c‖2), where ∆d is used to represent triplet

(∆A,∆b,∆c). After storing interim primal-dual solutions (xk, yk, zk) of the original

instance, they aim to obtain an initial point for the perturbed instance that is inside

a known neighborhood of the central path. They use the same neighborhood

definitions given in (2.8) and (2.9). Among the recorded iterates, they use the one

with the largest k value. Then they find an adjustment (∆x,∆y,∆z) to this iterate

that is based on the perturbation ∆d. This step generates the starting point of the

IPM for the new instance: (x0, y0, z0) = (xk, yk, zk) + (∆x,∆y,∆z). Their methods

differ in terms of how the adjustment is calculated. They emphasize that this

25

adjustment step costs only one iteration of an IPM. Since a large change in

parameters may violate the feasibility of the initial point for the perturbed instance,

they assume that the perturbation is small. Therefore, the performance of the

strategies depends heavily on ∆d. Storing the iterate information could be

expensive, which makes this approach less useful for practical purposes.

Gondzio and Grothey [57] use a well centered solution of the original instance to

generate a good starting point for the perturbed problem. They provide bounds on

the size of perturbations of the problem parameters, where primal and dual feasibility

can be absorbed in merely one Newton step with an infeasible IPM. Their measure

for perturbations is different than Yildirim and Wright [109] and is argued to be

more practical. They also use 2-norm and ∞-norm neighborhood definitions, given

in (2.8) and (2.9), for their short-step and long-step methods, respectively. Their

methods consist of two steps under the assumption that perturbations on the problem

parameters are small. In the first step, they make a step in the Newton direction to

recover primal and dual feasibility. In the second step, quality of proximity to the

central path is restored. They emphasize that primal and dual feasibility is preserved

after the second step only if the perturbation is small. They implemented these

approaches in an object-oriented parallel solver, OOPS. They report that the number

of iterations to reach an optimal solution decreases by 33% on average. Their parallel

implementation is also shown to be efficient by their numerical experiments.

Benson and Shanno [21] consider a case where the objective vector c and the right

hand side vector b are perturbed. They use an infeasible IPM; hence the optimal

solution of the original instance could be used as a starting point. However, they

emphasize that starting from this solution may increase the number of iterations that

IPMs take to solve the perturbed instance. Therefore, they propose a primal-dual

penalty approach to find a good starting point for the perturbed instance. A penalty

term `1 is applied to both the primal and the dual problems. The new LO instances are

solved by an IPM by starting from the optimal solution of the original instance. This

26

method prevents short step lengths and provides an improvement on the performance.

They show that the suggested method provides a decrease around 40-50% in the

number of IPM iterations in their experiment of solving the LO problems of the

Netlib library.

Modification-based approaches in warm-starting of IPMs for LO

Modification-based approaches consider cases when a new constraint or a variable

are added to the problem. Such transformations occur in cutting-plane, column

generation [60], and B&B algorithms.

Mitchell and Todd [78] present one of the earliest discussions on warm-starting of

IPMs after the original problem is modified. They propose an approach to solving

combinatorial optimization problems by applying a cutting plane algorithm, where

the relaxations are solved by using IPMs. They start solving each instance from

an optimal solution of the previous instances. They show that the approach is not

efficient in general by providing numerical experiments. They conclude that to make

IPMs competitive with simplex methods, it is necessary to have warm-start strategies

that limit the number of iterations and reduce time.

Gondzio [55] proposes a warm-start procedure for infeasible primal-dual IPMs

within a cutting plane method. He assumes that the size of the master problem is

very large, so that the use of IPMs is encouraged. Consider an LO problem in the

standard form (2.1) and its dual (2.2). The original problem is solved by using a

PDIPM to moderate accuracy. Let µ be the corresponding duality parameter of the

approximate primal-dual solution (xµ, yµ, sµ). Linear cuts in the form of Ā>y ≤ c̄

are generated for the dual problem based on this approximate solution. Notice that

an optimal solution of the original instance may be too close to the boundary, or

infeasible for the new instance. To overcome the difficulty of having a solution that is

close to the boundary, they classify cuts as deep or shallow based on their impact on

the µ-center system (2.5). This definition of deep cuts is based on the computational

27

experience that the infeasibility of the cut cannot be absorbed easily by an infeasible

PDIPM. On the other hand, infeasibility of a shallow cut can be absorbed usually in

one Newton step. In the next step, these new cuts are added to the problem. They

initialize dual slack variables of the new cuts based on the violations. The primal

feasibility is restored by a change in primal variable x that depends on the scaling

of the problem. Since the old solution xµ was strictly positive, there always exists

an α > 0 such that xµ + α∆x > 0, which satisfies primal feasibility for the new

instance. A fixed value of α is chosen by applying a ratio test. On the other hand,

restoring dual feasibility is a relatively harder problem. Centrality of the initial point

is violated to restore duality. Gondzio [55] tells that the provided method has no

guarantee, especially for large violations. As a numerical example, the method is

applied to solve multi-commodity flow problems, where many deep cuts are needed

to reach an optimal solution. The average number of IPM iterations stays between 6

and 15, whereas cold-start needs 40 to 60 iterations. It is a significant improvement,

considering the fact that many cuts are being added to the problem at the same time.

As a follow-up of [55], a warm-starting approach for a primal-dual column

generation method is presented by Gondzio and González-Brevis [56]. They propose

a new warm-starting technique to be used on a particular class of combinatorial

optimization problems. These problems have some special structures, such as that

coefficients of matrices A and Ā are non-negative. Their approach consists of two

steps. In the first step, they try to find an initial point among the earlier iterations

instead of using an optimal solution of the original instance. They check iterates

that are inside a known neighborhood of the central path. The second step is

finding a direction based on this initial point. In contrast to Gondzio [55], they do

not choose the value of x̄ as a function of s̄. They define and solve an LO problem

to recover dual feasibility. The aim of this problem is minimizing the relative

changes of variables. Similarly, primal feasibility is restored by solving another LO

problem, where the decision variable is ∆x. They keep (∆x,∆s) small by solving

28

these LO problems to avoid large variations. In this way, the user can have control

over the new duality gap that results from the adjustment of the variables. In their

numerical experiments, warm-start saves 30% to 48% in the number of iterations

and 19% to 45% in CPU time.

Roos et al. [92] discuss warm-start strategies for self-dual embedding IPMs.

They propose using a well-centered and almost optimal IPM iteration of the original

instance as an initial point for the new instance. Auxiliary values are redefined to

keep the point well-centered for the new system. This warm-start approach allows

simultaneous perturbations of problem parameters. This approach is argued to be

applicable for cases where new constraints and variables are added to the problem.

Recently, Munari and Gondzio [82] reviewed the challenges of using IPMs in a

branch, price, and cut (BPC) method. They provide strategies for using IPMs more

efficiently in a BPC method and present an overview of the related literature. Their

discussion on the topic ends with an application of the aforementioned methods to

the vehicle routing problem (VRP). By using column generation, cut generation, and

branching procedures, with IPMs in mind, they reach some interesting results. They

apply warm-start procedures of Gondzio [55] and Gondzio and Grothey [57] to these

problems. They store non-optimal and well-centered solutions, which are used after

column and cut generation. Their work is a good example of how warm-starting after

column and cut generation can be applied to IPMs within a BPC algorithm context.

Warm-starting of IPMs for SOCO and SDO

The literature on the warm-starting approaches that focus on SOCO and SDO is

rather limited compared to the literature on warm-starting for LO. Proposed

approaches are usually extensions of the LO methodology. For example, Engau [43]

presents a primal-dual penalty method for SDO by extending the work of Benson

and Shanno [21]. Although SOCO and SDO problems have SOC and semidefinite

constraints on top of the linear ones, existing studies in the warm-starting literature

29

focus only on linear constraints.

Recently, Skajaa et al. [96] present two warm-start approaches for primal-dual

IPM for LO and SOCO problems. Both of their approaches use the final iteration of

the original instance. These approaches are not computationally expensive, which is

argued to be useful in practice by the authors. The first approach uses the primal

optimal solution of the original instance, say x∗, whereas the second approach uses

the optimal solution of the primal-dual pair, (x∗, y∗, s∗). They assume that the conic

constraints are exactly the same both in the original and in the new instance, if any

exists. They consider a case where only linear parameters (A, b, c) are perturbed.

Perturbation on the parameters are limited by the quantities (α, α′, β, γ), where

‖∆A‖ ≤ α‖A‖,

‖∆A>‖ ≤ α′‖A>‖,

‖∆b‖ ≤ β‖b‖,

‖∆c‖ ≤ γ‖c‖.

If any conic constraint is present in the problem, then the proposed method changes

slightly. Authors provide extensive experiment results to demonstrate the gain from

warm-starting. For each warm-start they use the following measure to quantify the

gain from warm-starting:

R = # Iterations to solve new instance by using warm-start
Iterations to solve new instance by using cold-start .

They define a performance measure G as the geometric mean of the measures R such

as

G = K
√
R1 · · ·RK .

They use LO problems in the Netlib test library to test their methods. They use

Markowitz’ portfolio selection problem as their SOCO formulation. The changing

nature of the parameters of the portfolio selection problem makes it a good test bed.

In all these experiments, they show that the performance measure G is in the range

30

of 30—75%. As one expects, the greater the perturbation parameters, the lesser the

reduction in the iterates.

Yonekura and Kanno [111] present an application of warm-start for SOCO. They

propose a warm-starting strategy, which is another extension of [21]. They aim to

enhance the numerical performance of the primal-dual IPM for quasistatic

elastoplastic analysis with the von Mises yield criterion. They solve a sequence of

closely related SOCO problems, due to the change in parameters. They solve SOCO

penalty problems to be able to deploy their warm-start approach for the original

SOCO problems. They show that the average time reduction by using warm-start is

around 66%.

To the best of our knowledge, there are two open research areas on this topic. First,

modification-based approaches for SOCO problems are not yet studied. We introduce

a novel warm-start approach for modifiation-based changes on SOCO problems in

Chapter 3. Second, the development of conic cuts for MISOCO is rather recent;

therefore, there are currently no studies that focus on the warm-starting approaches

after addition of these conic cuts.

2.2 BCC algorithms for MISOCO

The B&C algorithm is a popular choice for solving MILO problems. Therefore, B&C-

based solution techniques have a rich literature especially for the linear case. This

section presents a review of the basic components of a BCCP algorithm for MISOCO.

We extend the discussion to methods that are specific for SOCO.

This section is divided into and presented in three parts: branching rules, searching

rules, and linear and conic cuts.

31

2.2.1 Branching

Branching is the most fundamental component of B&B and B&C algorithms. In

B&C, valid inequalities are added to the problem to improve the solutions of the

subproblems. However, generating too many cuts leads to numerical problems, and

thus branching must be performed at reasonable points in B&C algorithms.

The branching operation basically divides the problem N into subproblems

N1, . . . ,Nk. The union of these subproblems covers all feasible solutions of the

problem, such as
k⋃
j=1

Nj = N.

Bounds obtained from the branching operation can be different from those obtained

by cutting. For that reason, branching may be preferred to cutting inside a B&C

algorithm [66].

There are many strategies to answer the question “How to branch” for MILO

problems.

A popular and simple approach is to branch on variables where the candidate set

consists of fractional variables. We can write subproblem i associated with variable

xi as

Ni
− = N ∩

{
xi ≤

⌊
xN
i

⌋}
, Ni

+ = N ∩
{
xi ≥

⌈
xN
i

⌉}
,

where xN
i is the value of xi in the relaxed solution of N. Alternatively, branching can

be applied on a general disjunction in the form of a>x ≤ a0 and a>x ≥ a0 + 1, where

the subproblems are written as

N− = N ∩
{
a>x ≤ a0

}
, N+ = N ∩

{
a>x ≥ a0 + 1

}
. (2.14)

In general, a candidate set C consists of such subproblems. Then, scoring of these

candidates is performed, and the candidate pair with the highest score is selected and

added to the set of active problems L as shown in Algorithm 1.

32

The following subsection reviews general-purpose branching rules, including both

construction of the candidate set and the scoring methods.

General purpose branching rules

The content of this section is taken from Achterberg et al. [3] and Drewes [41].

1. Index-based branching: This branching rule is one of the simplest methods

in the literature. The candidate set consists of variables that are currently

fractional for the original problem. The variable with the lowest index is selected

for branching.

2. Random branching: This rule does not apply any scoring. A variable is chosen

randomly from the fractional candidates for branching.

3. Most fractional branching: This rule chooses the most fractional variable among

the variables that are fractional for the original problem. Scoring is made based

on the distance to the half, such as

ui = min
{⌈
xN
i

⌉
− xN

i , xi −
⌊
xN
i

⌋}
,

where ui is the score of the candidate pair i. Achterberg et al. [3] show that

the most fractional branching rule does not perform better than the random

branching rule, in general.

4. Pseudocost branching: The pseudocost branching rule applies a more advanced

rule. The idea of pseudocost branching is to keep a history of improvements that

were obtained by branching on variables. We calculate a score for each variable

based on the change in the objective for both directions after branching on

them. A downside of pseudocost branching is that there is no history at the

beginning of the problem. It usually takes time to collect enough observations

for pseudocosts to work as desired.

33

5. Strong branching: The idea of strong branching is to test the candidates before

branching on them. Full strong branching is a variation of the strong branching,

where the constructed subproblems Ni
−,Ni

+ are solved to optimality for each

candidate. Then a decision is made based on biggest improvement. This is a

time-consuming strategy, usually only a partition of candidate subproblems is

solved. Moreover, an iteration bound is applied when solving these problems.

When these subproblems are not solved to optimality, the method is more time-

efficient. Solving the subproblems in this way gives us a rough estimate about

the improvement. Achterberg et al. [3] suggests that the number of dual simplex

iterations in subproblems be limited to two times the number of average simplex

iterations needed so far in the algorithm.

6. Reliability branching: Both pseudocost and strong branching rules have some

advantages and disadvantages. Pseudocost branching starts poor, while the

strong branching is a time-consuming approach. The reliability branching is a

combination of these two branching rules, to benefit from their powerful

features. This rule starts solving the subproblems with strong branching and

then continues with pseudocost at the lower levels in B&B tree. A fixed

reliability parameter is chosen before B&B is applied. Then, if the number of

branchings on a variable is less than the reliability parameter, strong

branching is applied; otherwise, pseudocost branching is applied to create

subproblems.

7. Hybrid branching: Hybrid branching combines reliability branching and strong

branching rules but uses a different measure than the reliability branching rule

uses. Hybrid branching uses the depth of B&B tree as a measure. If a node is

below a pre-selected level, pseudocost branching is applied. Otherwise, strong

branching is applied.

8. General disjunctions: Alternatively, we can branch on general disjunctions in

34

the form given in (2.14). Karamanov and Cornuéjols [66] show that branching

on a disjunction often performs better than branching on variables. As an

example, they use Gomory cuts and show that branching on disjunctions

produces smaller B&C trees compared to full strong branching on variables.

They propose a heuristic to measure the disjunction quality. Although

branching on disjunctions is not novel, their approach is a good indicator of

how such a type of branching would be useful. The basic idea is to find a

violated split disjunction that is used to create an intersection cut and then

used for branching purposes.

A review of these methods can be found in Achterberg et al. [3] and Martin [76].

Achterberg et al. [3] show that there is a direct relation between pseudocost

branching, strong branching, reliability branching, and a hybrid of pseudocost and

strong branching. If we set the depth of the hybrid branching d and the reliability

parameter of the reliability branching to 0, then these methods work exactly as

pseudocost branching works. On the other hand, setting these parameters to infinity

gives strong branching.

A discussion of branching methods for MISOCO

Branching rules from both MILO and MINLO literature are applicable to MISOCO

problems. However, only some of these branching rules were applied to MISOCO

problems in the literature. Drewes [41] uses general branching rules, such as index-

based, random, most fractional, pseudocost, and combined fractional branching rules

in their B&C algorithm to solve MISOCO problems. The same branching rules are

also used by Góez [54] in a BCC framework. Muramatsu and Suzuki [83] use a simple

branching rule in their B&B approach to solve max-cut problems. Vielma et al. [104]

present a B&B algorithm for MISOCO, but they use CPLEX’s default branching

rules which were mainly developed for MILO.

Branching rules for MISOCO is an open research question. There is not a specific

35

branching rule aimed at general MISOCO problems in the literature.

2.2.2 Linear and conic cuts

Cutting plane methods use valid inequalities to improve the relaxation solution of

optimization problems. Generating valid inequalities may improve the lower bound.

B&C methods combine B&B and cutting plane methods. The former method

partitions problems into subproblems, whereas the latter method improves the

bound obtained from these subproblems by using valid inequalities. Generating

efficient cuts may reduce the number of nodes in the B&B tree, which may decrease

the solution time significantly. These kind of cuts are shown to be very powerful in

MILO literature, hence they are available in all state-of-the-art solvers. Due to their

similarities, such cuts are also studied for MISOCO, which is the main discussion of

this section.

Most cuts in the MISOCO literature are extensions of disjunctive cuts for MILO

problem which are developed by Balas [14]. In recent years, there is growing interest

in the topic. Hence, most of the work mentioned in this section is recent. Recently,

Kılınç-Karzan [68] establishes many aspects of improving cutting plane algorithms

for MISOCO problems. A class of K-minimal inequalities are introduced for general

disjunctive conic optimization. The author also argues that these inequalities

together with cone-implied inequalities are sufficient to describe the convex hull of

mixed-integer conic optimization problems. This important result further implies

the importance of cuts in a BCCP algorithm.

Çezik and Iyengar [35] extend valid inequalities for binary MILO to binary conic

optimization problems. Their extension includes a more general cone, incuding the

non-negative orthant, second-order, and semi-definite cones. One of the extensions

presented in this paper is an extension of Chvátal-Gomory cuts to mixed binary conic

optimization. Details of the cut can be found in Çezik and Iyengar [35]. This cut is

a linear cut for MISOCO problems.

36

Atamtürk and Narayanan [10] present conic mixed-integer rounding cuts for

MISOCO. Their approach is based on the reformulation of a SOC constraint with a

polyhedral second-order conic constraint in a higher-dimensional space. By

transformation, they obtain a SOC constraint that can also be written as a linear

constraint. They generate their conic mixed-integer rounding cut on top of this

constraint. Note that mixed-integer rounding cuts are linear in the

higher-dimensional space, but they are nonlinear in the original space. In their

numerical experiments, conic mixed-integer rounding cuts are added at the root

node. They perform their experiments with CPLEX. They observe significant

reduction in both time and number of nodes in the B&B tree after cuts are added to

the problem.

Andersen and Jensen [9] show that split cuts and intersection cuts are the same

in LO, but they are not necessarily equivalent in conic optimization. Split cuts are a

subset of intersection cuts in conic optimization and are obtained from splits.

Intersection cuts, on the other hand, are more general, and any inequality that has

the same intersection with the given region can be an intersection cut.

Modaresi et al. [80] extend the discussion on split disjunctions to cross-sections

of SOCs. They present a generalization of split, k-branch split, and intersection cuts

for MINLO. They present split cuts for paraboloids and cones in their paper. In

their follow-up paper [79], they show the relationship between split cuts and conic

mixed-integer rounding cuts of Atamtürk and Narayanan [10]. They generalize the

result of Atamtürk and Narayanan [10] and show that there is a link between conic

mixed-integer rounding cuts (CMIRs) and split cuts for MISOCO. They also show

that a single CMIR can be weaker than a single nonlinear split cut. Recently, Kılınç-

Karzan and Yıldız [69] generalized split cuts, studied by Andersen and Jensen [9] and

Modaresi et al. [79].

Yıldız and Cornuéjols [110] provide a unified representation of the general two-

term disjunctions on a cross-section of the SOC. This study is an extension of the

37

general two-term disjunctions for the SOCs.

Stubbs and Mehrotra [97] extend the lift and project algorithm of Balas et al. [15]

to mixed-integer convex optimization. Atamtürk and Narayanan [11] generalize the

theory of lifting to conic integer optimization. They show how to derive conic valid

inequalities by using conic inequalities of a mixed-integer conic optimization problem

for its lower dimensional restrictions. A brief review of the methods mentioned in

this section can be found at Benson and Sağlam [20].

Disjunctive conic and cylindrical cuts

Belotti et al. [16] focus on families of quadratic surfaces that have fixed intersections

with two hyperplanes. They show that these families can be described by a single

parameter. They aim to characterize the convex hull of union of the intersections of

an ellipsoid with two half-spaces, when these intersections are disjunctive sets.

In a later paper [17], the same authors identify a procedure for constructing

disjunctive conic (DCC) and cylindrical (DCyC) cuts. They prove that if there

exists a cone K that has the same intersection with the boundary of disjunction E ,

then the convex hull is the intersection of E with K. Moreover, if it exists, such a

cone is shown to be unique. The same conclusion is also obtained for cylinders.

Denote (Q, p, r) as the triplet to define the quadric E = {x|x>Qx+ 2p>x+ r ≤ 0}.

Suppose we have two half-spaces, A = {x ∈ Rn|a>x ≥ a} and B = {x ∈ Rn|b>x ≤ b}.

Let A= and B= denotes the hyperplanes that correspond to boundaries of half-spaces

A and B, respectively. A closed cone K is called disjunctive conic cut for the set E

and the disjunctive set A ∪B if

conv(E ∩ (A ∪ B)) = E ∩ K.

Theorem 2. [54] Consider an ellipsoid E such as

E =
{
x|x>Qx+ 2p>x+ r ≤ 0

}
38

denoted by triplet E = (Q, p, r). Suppose hyperplanes A and B are parallel, such as

b = a. Then a uniparametric family of quadrics Q(τ) that has the same intersection

with A= and B= is given by

Q(τ) = Q+ τaa>,

p(τ) = p− τ a + b
2 a,

r(τ) = r + τab.

The family of quadrics Q(τ) defines a cone if Q(τ) is a non-singular symmetric

matrix with exactly one negative eigenvalue and

p(τ)>Q(τ)−1p(τ)− r(τ) = 0.

Rearranging the values, we reach a quadratic function. Let f be the numerator of

this quadratic function. The quadric Q(τ) can have different shapes based on roots

of f(τ). Unless both roots make the denominator zero, either one of the roots gives

us a cone. Disjunctive conic cuts can be generated in this way. See Góez [54] for a

comparison between disjunctive conic cuts and mixed-integer rounding cuts. Belotti

et al. [17] show some cases where disjunctive conic cuts are sufficient to reach integer

optimal solution, whereas conic mixed-integer rounding cuts produce a non-integral

solution. In Chapter 5, the effects of applying DCCs into asset allocation problems

(AAP) is discussed in detail.

Discussion

Besides the cuts mentioned here, all linear cuts may be applied to linear constraints

in MISOCO problems. See Conforti et al. [37] for a review of valid inequalities of

MILO.

Despite the growing interest to generate valid inequalities to MISOCO problems,

there is a gap between theoretical development and practical applications. Effects of

the linear and conic cuts mentioned here are rather unknown. Although all these cuts

39

can improve the solution process, many aspects of their implementations are not clear.

Open research topics of this subject are the cost of generating the cuts, their effects

on the problem structure and the linear algebra of IPMs, their effects on warm-start

strategies, and their efficiency under various branching rules. This dissertation takes

a step toward closing the gap between theory and practice in this field. In Chapter 5,

we show that carefully adding DCCs into AAPs can significantly reduce the number

of nodes in a BCC tree.

40

Chapter 3

Warm-start of interior-point

methods for second-order cone

optimization via rounding over

optimal Jordan frames

3.1 Introduction

Closely related SOCO problems appear at every node of B&B-based methods when

solving MISOCO problems. Despite the efficiency of solving SOCO problems with

IPMs, IPMs are not clearly dominating other methods as the default methods for

solving subproblems when solving MISOCO problems inside off-the-shelf solvers.

Indeed, polyhedral relaxations are still a prominent opponent of IPMs when solving

such subproblems inside BB and BCC algorithms [31]. A variety of factors are in

play here. First, subproblems obtained from the polyhedral approximation are

linear optimization (LO) problems. Methodologies for solving MILO problems are

well-developed; hence software that use these methodologies benefit from the

well-established literature of MILO, such as cuts and heuristics. Second,

41

preprocessing for LO problems is far better developed than for SOCO. We have yet

to see a significant work on preprocessing techniques for SOCO problems. Most

importantly, warm-starting LO problems usually requires only a few dual simplex

iterations in practice if the problem has changed slightly. This efficiency brings the

total solution time down significantly for MILO problems. Despite recent interest in

MISOCO and the existence of solvers deploying IPM-based MISOCO strategies

[7, 46, 61, 64], there are still a need and considerable opportunities to improve the

efficiency of these methods. Warm-starting is one of the main concerns for

MISOCO, due to lack of efficient warm-starting methods. The issue of

warm-starting has been carried over unsolved for three decades in using IPMs for

solving LO problems.

Warm-starting of IPMs for SOCO is required to solve MISOCO problems more

efficiently, and it remains an open research problem. Most of the previous work

focused on perturbation-based changes [58, 95, 96, 107]. Only methods presented by

Sivaramakrishnan et al. [94], Oskoorouchi and Mitchell [86] and Oskoorouchi et al.

[87] can be considered as warm-starting of IPMs for modification-based changes,

although their motivations are different from ours. Engau et al. [44] give

straightforward extensions of some warm-start approaches that were originally

developed for LO problems. Skajaa et al. [96] presented a simple warm-starting

approach for homogeneous and self-dual IPMs when problems are perturbed by a

limited magnitude. They use the optimal solution of the original problem and take

a convex combination of it with the default initial point of the homogeneous IPM.

The new point is then fed into the self-dual embedding IPM to warm-start the

algorithm for a perturbed instance.

The main purpose of this chapter is to take a step toward filling the gap in the

MISOCO literature to warm-start self-dual embedding IPMs. We present an efficient

warm-start method that exploits the Jordan frame of a related instance, and efficiently

warm-starts IPMs after adding linear cuts or after branching. Our proposed approach

42

is based on solving so-called primal and dual rounding problems for IPMs. This way,

we generate a primal-dual feasible initial point. Then we use a new point, which is

a convex combination of this primal-dual feasible point and an earlier IPM iteration

of the original instance, to warm-start the new instance. Our way of using convex

combinations is similar to Skajaa et al. [96]; however we have an extra step to find

points that are primal and dual feasible, instead of using the previous optimal solution.

We propose using this approach in solving SOCO subproblems inside BB and BCC

trees when solving MISOCO problems. We measure the efficiency of our method by

comparing the number of IPM iterations to solve new instances using our warm-start

approach versus using the default initial point of IPMs, also called cold-start.

This chapter is structured as follows. In Section 3.2, relationships between

rounding problems are presented. In Section 3.3, details of the warm-starting

approach are presented. In Section 3.4, numerical experiments using randomly

generated conic instances and the conic benchmark library (CBLIB) are provided.

We give an overview of the chapter and present our conclusions in Section 3.5.

3.1.1 Self-dual embedding IPM

The warm-start approach we present in this chapter is based on self-dual embedding

IPMs. For this reason, a primal-dual self-dual embedding IPM that uses Mehrotra’s

predictor-corrector method [77] is implemented in MATLAB. The implementation

follows directions of Andersen et al. [8] and Sturm [99] for algorithmic choices.

A self-dual embedding IPM starts with a primal (P-SOCO) and dual (D-SOCO)

pair. We introduce three auxiliary variables x0, y0, z0 and write the following self-dual

43

problem:

minimize: ϑy0

subject to:

Ax −bx0 +rpy0

−A>y +cx0 +rdy0 −z
b>y −c>x +rgy0 −z0

−r>p y −r>d x −rgx0

=
=
=
=

0
0
0
−ϑ

x ∈ K, z ∈ K∗, x0 ∈ R+, y ∈ Rm, z0 ∈ R+,

(3.1)

where

rp := bx0 − Ax(0)

y
(0)
0

, rd := A>y(0) + z(0) − cx0

y
(0)
0

, rg := c>x(0) − b>y(0) + z
(0)
0

y
(0)
0

,

ϑ = x(0)z(0) + x
(0)
0 z

(0)
0

y
(0)
0

.

Default initial values (x(0), y(0), z(0)) for a feasible IPM are

x(0) = ι, y(0) = 0, z(0) = ι, x
(0)
0 = 1, y

(0)
0 = 1, z

(0)
0 = 1,

where ιi = (1, 0, . . . , 0)> ∈ Rni for i = 1, . . . , k and ι = (ι1; . . . ; ιk) ∈ Rn. This initial

solution is feasible for the self-dual embedding problem and is also on the central path

for µ = 1.

Observe that we can initialize the self-dual embedding IPM with any interior

conic feasible solution for (3.1). This observation is key to our warm-start approach

presented in the following section.

3.2 Rounding problems

Rounding problems introduced in Section 1.1.2 play a key role for the proposed warm-

start approach. In this section, we derive relationships between rounding problems

and their duals before presenting the warm-start approach. These relationships are

shown in Figure 3.1 and summarized here.

44

min (c>FP)λ
s.t. (AFP)λ = b, (PR)

λ ≥ 0

dual⇔
max b>y

s.t. F>P A
>y + u = F>P c, (D-PR)

u ≥ 0

[m]× [2k] [2k]× [m+ 2k]

(for x = FPλ)

⊆

⊆

min c>x

s.t. Ax = b, (P-SOCO)
x ∈ K

dual⇔
max b>y

s.t. A>y + z = c, (D-SOCO)
z ∈ K

[m]× [n] [n]× [m+ n]

⊆

(for z = FDκ) ⊆

min c>x

s.t. Ax = b, (D-DR)
F>Dx ≥ 0

dual⇔
max b>y

s.t. A>y + FDκ = c, (DR)
κ ≥ 0

[m+ 2k]× [n] [n]× [m+ 2k]

Figure 3.1: Feasibility and duality relationship between original SOCO problems and

rounding LO problems.

We start with showing that any solution to (PR) is always a feasible solution to

(P-SOCO).

Lemma 3. Let FP be the Jordan frame of a conic feasible solution x ∈ K. Then

x̃ = FPλ is a feasible solution to (P-SOCO) for any λ that is feasible to (PR).

Proof. Any feasible solution λ to (PR) satisfies AFPλ = b and λ ≥ 0. In this case,

x̃ = FPλ satisfies Ax̃ = A (FPλ) = b.

45

For conic feasibility, let us consider a single SOC Lni . We have

x̃i = fPi
λi =

[
f+
P i f−P i

] [λ+
i

λ−i

]

=

 1/2 1/2
xi

2:ni

2‖xi
2:ni
‖ −

xi
2:ni

2‖xi
2:ni
‖

[λ+
i

λ−i

]

=

 λ+
i +λ−i

2
(λ+

i −λ
−
i)xi

2:ni

2‖xi
2:ni
‖

 .
Since λ is feasible to (PR), using λ+

i ≥ 0, λ−i ≥ 0 gives the conic feasibility:

‖x̃2:ni
‖ =

√√√√ ni∑
j=2

(
λ+
i − λ−i

)2
xij

2

4 (‖x2:ni
‖)2 =

√(
λ+
i − λ−i

)2

4 ≤ λ+
i + λ−i

2 = x̃i1.

Therefore, x̃i ∈ Lni . We get x̃i ∈ Lni ∀i = 1, . . . , k, and therefore x̃ ∈ K.

Since x̃ satisfies both Ax̃ = b and x̃ ∈ K, it is a feasible solution to (P-SOCO).

Similarly, we can find a feasible solution to (D-SOCO) from any feasible solution

to (DR). In the following lemma, we show the relationship between (P-SOCO) and

(D-DR).

Lemma 4. Let FD be the Jordan frame of a conic feasible solution z ∈ K that is used

to define (D-DR). Then x is a feasible solution to (D-DR) for any x that is feasible

to (P-SOCO).

Proof. Any feasible solution x to (P-SOCO) satisfies Ax = b. By definition of dual

cones, we have w>x ≥ 0 ∀w ∈ K. Since z ∈ K and hence every column in fD is

in K, we get F>Dx ≥ 0. Since x satisfies both constraints, it is a feasible solution to

(D-DR).

We combine results of these two lemmas in the following theorem, where we show

the weak duality relationship between the primal and dual rounding problems.

46

Theorem 5 (Weak duality). Let FP , andFD be the Jordan frames of a conic feasible

primal and dual solution (x, y, z). Let λ∗ and y∗(DR) be optimal solutions for (PR) and

(DR), respectively. Then c>FPλ∗ ≥ b>y∗(DR).

Proof. Lemma 3 shows that any feasible solution to (PR) corresponds to a feasible

solution to (P-SOCO). Therefore, at optimality, we always have

c>FPλ
∗ ≥ c>x∗(P-SOCO). Lemma 4 shows that any feasible solution to (P-SOCO)

corresponds to a feasible solution to (D-DR). Therefore, at optimality we always

have c>x∗(P-SOCO) ≥ c>x∗(D-DR). Because of strong duality of LO, at optimality for

(DR) and its dual (D-DR) we have

c>x∗(D-DR) = b>y∗(DR).

Combining all these implications gives

c>FPλ
∗ ≥ c>x∗(P-SOCO) ≥ c>x∗(D-DR) = b>y∗(DR). (3.2)

This completes the proof.

Note that if FP is the Jordan frame of an optimal solution x∗(P-SOCO) of (P-SOCO),

then the equality c>FPλ∗ = c>x∗(P-SOCO) holds. Similarly, if fD is the Jordan frame of

an optimal solution z∗(D-SOCO) of (D-SOCO), then the equality c>x∗(P-SOCO) = c>x∗(D-DR)

holds.

Corollary 6. If the objective value of problems (PR) and (DR) are equal to each

other for a feasible solution, then all inequalities in (3.2) hold as equalities. In this

case, an optimal solution of (P-SOCO) and (D-SOCO) can be obtained as (x, y, z) =(
FPλ

∗, y∗(DR), FDκ
∗
)
by solely solving rounding problems.

Corollary 7. If the problem (DR) is dual infeasible, then (P-SOCO) must be

infeasible. This includes the case when (DR) is unbounded.

These results can be also derived for the dual side. Note that we were able to

derive these results while not using anything beyond weak duality about the duality

properties of the original pair of SOCO problems.

47

3.3 Warm-starting

Warm-start for optimization methods plays a critical role in reducing solution time,

especially in B&B and BCCmethods, where related instances are solved consecutively.

In fact, the popularity of the dual simplex method for solving MILO can be attributed

to its efficiency in warm-start. By warm-start, we can think of using any information

obtained from the original instance to solve a related instance. Although warm-

start methods for simplex-like methods are limited only to using a previous optimal

solution, we need to think beyond that for warm-starting IPMs. Using the optimal

solution of the original instance for warm-starting IPMs directly is not a good idea.

Such a point will be most likely be infeasible, which leaves only infeasible IPMs in

play. Moreover, such a point will be on the boundary of the feasible region, which

means IPMs are not directly applicable. Contrary to simplex-like methods, a well-

centered point could work much better in practice, even if it is away from the previous

optimal solution. This is the main reason why warm-starting for IPMs is often seen

as unsuccessful or application-specific.

Researchers have tried various methods to design efficient warm-starting IPMs.

Almost all approaches on this topic use either an optimal solution or a stored IPM

iteration of the original problem and try to generate a good initial point. There

are mainly two ways of approaching warm-starting for IPMs. The first is modifying

the problems to prevent slow progress. These methods are also called shifted barrier

methods, because they shift the boundaries of variables temporarily for faster progress

[43]. The second is to use an intermediate procedure to obtain a relatively well-

centered point and use it as an initial point to the IPM [92]. Researchers have tried

various methods within this category, such as adding slack variables [44], generating

a point by using a feasible point and the previous optimal solution [96], and using an

exact primal-dual penalty method [21].

We present a warm-start approach that uses an intermediate procedure to

formulate the self-dual embedding IPM with an initial point. Our procedure

48

consists of solving two auxiliary LO problems, which help us minimize the primal

and dual infeasibilities, respectively. Then, similar to Skajaa et al. [96] we find a

point as a convex combination of two points, in our case the optimal solution of the

rounding LO problems and an IPM iterate of the original problem.

We present the steps of our proposed warm-start approach in the following

subsections.

3.3.1 Solving rounding problems

Let us recall the primal (P-SOCO) and dual (D-SOCO) SOCO problems:

minimize: c>x

subject to: Ax = b,

x ∈ K,
(P-SOCO)

maximize: b>y

subject to: A>y + z = c,

z ∈ K.
(D-SOCO)

Suppose we have an original problem in the form of (P-SOCO). Let (x∗, y∗, z∗) be a

primal-dual optimal solution for the original problem. Based on the numerical values

of x∗ and z∗, each conic component of the solution can belong to one of the four

classes: B,N ,R, T [102]. A cone i belongs to B if x∗i is inside the cone and z∗i = 0,

and to it belongs N if z∗i is inside the cone and x∗i = 0. For the class R, both x∗i

and z∗i are on the boundary of the cone i and orthogonal to each other. Finally, for

the T case, the sum x∗i + z∗i is on the boundary of the cone i. If T 6= ∅, then the

optimal solution is not strictly complementary.

After identifying the classes of the cones, we derive the Jordan frames for both

the primal and dual problems. If a cone belongs to the set B, then we use the primal

Jordan frame for the dual slack variable z∗i too. Similarly, if a cone belongs to the

set N , we use the dual Jordan frame for the primal variable x∗i too. If a cone is in

R, then the primal and dual Jordan frames are the same. We use this frame for FP
and FD. If a cone is in T , we use an earlier IPM iteration to choose a Jordan frame.

Denote F ∗P and F ∗D as primal and dual Jordan frames at an optimal solution

(x∗, y∗, z∗).

49

Consider that the new instance is obtained after branching on a variable (say, xj)

such that

xj ≤ bx∗jc

is added to the problem. We add a slack variable s to the problem to get the new

constraint in the standard form, such as

xj + s = bx∗jc, s ∈ L1.

Denote

x̄ =
[
x

s

]
, ȳ =

[
y

ys

]
, z̄ =

[
z

zs

]
, Ā =

[
A 0
e>j 1

]
, b̄ =

[
b

bx∗jc

]
, c̄ =

[
c

0

]
, K̄ = K × L1,

where ej is the jth unit vector. The new primal-dual problems are

minimize: c̄>x̄

subject to: Āx̄ = b̄,

x̄ ∈ K̄,

maximize: b̄>ȳ

subject to: Ā>ȳ + z̄ = c̄,

z̄ ∈ K̄.

After adding the slack variable into the primal and dual Jordan frames, F ∗P and F ∗D,

we obtain Jordan frames for rounding problems. Now, we can replace x̄ and z̄ with

their equivalent F̄Pλ and F̄Dκ in the primal and dual problems. This gives us primal

and dual rounding problems for the new system, namely

minimize: (c̄>F̄P)λ
subject to: (ĀF̄P)λ = b̄,

λ ≥ 0.

maximize: b̄>ȳ

subject to: Ā>ȳ + f̄Dκ = c̄,

κ ≥ 0.

We solve these rounding problems for variables (λ, ȳ, κ) to obtain the rounding

solution of the system; that is, (x̄∗, ȳ∗, z̄∗) = (F̄Pλ∗, ȳ∗, f̄Dκ∗). The primal rounding

problem consists of m constraints and 2k variables, and the dual rounding problem

consists of n constraints and m + 2k variables. For a moderately sized MISOCO

problem, sizes of the primal and dual rounding problems are considered to be small

for any commercial off-the-shelf LO solvers. Solving the rounding problems take a

fraction of a second for most cases in practice, so they are negligible compared to

the time required to solve the SOCO problems.

50

3.3.2 Choosing a convex combination of solutions

Notice that our rounding solutions satisfy both Āx̄∗ = b̄ and Ā>ȳ∗ + z̄∗ = c̄ at

optimality. Hence, (x̄∗, ȳ∗, z̄∗) is a feasible primal-dual solution for the new problem,

although it may not satisfy the complementarity condition. This solution is not

suitable to start IPMs, since it is on the boundary of the feasible region.

Instead of using the rounding solution, we define an interior point as the convex

combination of the rounding solution and an earlier IPM iteration of the original

problem. Here, we know that the default initial point (x, y, z) = (ι, 0, ι) is always

interior feasible for the new problem after initializing the extra variables as (s, ys, zs) =

(1, 0, 1) due to the construction of the self-dual embedding model. We can find and

choose a conic feasible IPM iteration `, which is expressed as (x(`), y(`), z(`)), and use

it to generate a new initial solution for the IPM.

From a feasible IPM iteration `, we generate an initial point (x̄(0), ȳ(0), z̄(0)) such

that

x̄0 = αx̄∗ + (1− α)
[
x(`)

1

]
,

ȳ0 = αȳ∗ + (1− α)
[
y(`)

0

]
,

z̄0 = αz̄∗ + (1− α)
[
z(`)

1

]
.

Using an earlier IPM iteration will provide a better centered interior point,

although primal-dual infeasibilities may be large. On the other hand, using a later

IPM iteration is more likely to give us a smaller µ parameter and smaller

primal-dual infeasibility, but it may lead to slow progress due to the risk of being

closer to the boundary. From a practical point of view, one needs to consider the

trade-off between closeness to optimality versus closeness to boundary when

choosing which IPM iteration is used. Based on our numerical experiments,

choosing an iterate from one-fourth to one-half of the original IPM iterations is a

51

safe choice. This choice is usually close to the central path for the new problem and

provides a smaller primal-dual infeasibility for our purposes. A moderate choice of α

usually works well. We observed that α = 0.6 works consistently well across all

tests.

3.3.3 Initialization

After completing the previous steps, now we have reached the point that the self-dual

embedding model can be initiated by (x̄(0), ȳ(0), z̄(0)). Conic infeasibilities can be fixed

by increasing the leading variables with a small magnitude. At the beginning of the

IPM steps, the generated initial point is evaluated for centrality and a corrector step

is taken if needed. Variables inside the self-dual embedding model are initialized as

(x(0)
0 , y

(0)
0 , z

(0)
0) = (1, 1, 1).

3.3.4 Solution approach

Our proposed warm-start method has the ability to frequently detect optimality and

infeasibility right after solving rounding problems. There are four outcomes in total

for each instance in our solution approach:

• Immediately infeasible (II) when the (DR) problem is dual infeasible.

• Immediately optimal (IO) when the objectives of the (PR) and (DR) are the

same.

• Warm-start (WS) applicable when rounding problems are feasible but do not

prove optimality or infeasibility.

• Cold-start (CS) restricted when rounding problems are infeasible.

We use the following steps as our solution approach after solving the original problem

and obtaining the optimal Jordan frames:

52

1. Solve the dual rounding problem.

• If the (DR) problem is dual infeasible, then conclude that the (P-SOCO)

problem is infeasible and return II, see Corollary 7.

• If the (DR) problem is feasible, then continue.

2. Solve the primal rounding problem.

• If the (PR) problem is feasible and the objective values of the rounding

problems are equal to each other, then we can conclude that the rounding

solution is optimal and return IO, see Corollary 6.

• Else, if the (PR) problem is feasible, choose an early iterate of the IPM

iterations based on the number of IPM iterations of the original problem,

and use a pre-defined α value to generate an initial point. We can warm-

start the IPM from the generated point.

• If the (PR) problem is infeasible, then use the default initial point of the

self-dual embedding system with cold-start.

3.4 Numerical experiments

In this section, we provide details of experiments conducted to test our warm-start

approach on a variety of problems. We start with a description of the method, and

then provide numerical results.

3.4.1 Methodology

We use a similar approach to measure efficiency of the proposed warm-start strategy

as Engau et al. [44] and Skajaa et al. [96]. We measure the ratio of warm-start

iterations to cold-start iterations, and then find the geometric mean that covers all

53

test problems. We add one to each metric to be able to include cases where an optimal

solution is obtained after solving rounding problems. The ratio for each problem is

Ri = (# of IPM iterations with warm-start for Problem i) + 1
(# of IPM iterations with cold-start for Problem i) + 1 .

The metric for measuring the efficiency of the method is the geometric mean,

GI = k
√
R1R2 · · ·Rk.

We mainly use the number of IPM iterations to measure the performance of the

warm-start, because solving rounding problems take a negligible amount compared

to solving SOCO instances. The number of IPM iterations yields approximately the

same ratio, which we found sufficient for our purposes here. Any value of GI less

than 1 indicates that warm-start is more efficient than cold-start.

The warm-start approach is implemented in MATLAB on top of a self-dual

embedding SOCO solver that we implemented. We used the primal simplex method

of IBM ILOG CPLEX 12.7.0.0 to solve the rounding problems. The Conic

Benchmark Library (CBLIB) problems and their random fixings are solved at the

root node and then two subproblems are generated. Then both subproblems are

solved with cold-start and warm-start IPMs. We limited time to 2 hours and

memory to 8GB for the tests, and we discarded any results that took more than 50

IPM iterations.

As a rule of thumb, we choose one-fifth of total IPM iterations. We used α = 0.7

for all experiments which worked well in practice.

3.4.2 Performance of warm-start for various branching

variable types

We can categorize variables inside SOCO problems into three types: Non-negative

variables, leading variables, and in-cone variables. By definition, non-negative

variables belong to L1 and do not appear in any other cones. Leading variables are

54

the first index in an SOC that has two or more elements. In-cone variables are the

remaining ones, which appear inside cones that have at least two elements. Only a

few problem in the CBLIB library have integer variables that appear as leading

variables of SOCs. No problems in CBLIB have an integer variable inside SOCs.

For these reasons, we generated some variations of CBLIB test problems where we

branch on leading and in-cone variables, even if they are not originally specified as

integers. We discarded instances that hit the time or the iteration limit from the

results.

Feasibility of the rounding problems depends heavily on which type of variable is

used for branching. See Table 3.1 for the distribution of instances into methods we

followed for warm-start based on variable type. We were able to use our warm-start

approach (either IO, II, or WS) for 1829 out of 2539 problems when we branched

on non-negative variables. This number is 1794 out of 2614 when we branched on

leading variables and 1641 out of 2603 when we branched on in-cone variables. These

results show that our warm-start approach works best for branching on non-negative

variables for feasible cases.

Instances where we branched on leading and in-cone variables often led to

infeasible rounding problems. The reason for this is the nature of our warm-start.

By fixing the optimal Jordan frames, we were assuming that the new optimal

solution would have the same or a similar Jordan frame, so that we could get closer

to the solution by using a convex combination. However, the Jordan frame that

corresponds to the cone in which the branching variable appears will most likely

change after branching, which gives us infeasible rounding problems. Our use of

rounding problems corresponds to outer-approximation for the dual side. Adding a

new Jordan frame to the problem may make the primal rounding problem feasible,

especially for in-cone variable branching, but it is hard to identify which frame will

be feasible.

Table 3.2 shows efficiency of the warm-start approach in terms of geometric mean.

55

Type Status II IO WS CS Total

Non-negative 3 8 1819 709 2539

Feasible - 8 1819 709 2536
Infeasible 3 - - 0 3

Leading 2408 5 177 24 2614

Feasible - 5 177 21 203
Infeasible 2408 - - 3 2411

In-cone 1315 1 638 649 2603

Feasible - 1 638 521 1160
Infeasible 1315 - - 128 1443

Table 3.1: Distribution of instances based on variable type and problem status.

This table includes only cases where the actual warm-start on IPM is applied. The

results show that we solved the instances in about 81% of the iterations compared

to cold-start when we branch on non-negative variables. It means approximately

19% savings in terms of IPM iterations. The geometric mean GI is 51% for leading

variables and 79% for in-cone variables, which corresponds to 49% and 21% reduction

in IPM iterations, respectively. For a warm-start method for modification-based

changes, this is a significant improvement.

When all cases (IO, II, and CS) are included, there is a huge improvement in terms

of IPM iterations because of early detection. Table 3.3 shows the geometric means

after including IO and II cases, and including CS cases. On average, the warm-start

approach that includes early detection reduces the number of IPM iterations by 15%,

88%, and 70% for non-negative, leading, and in-cone branching cases. Note that these

averages are heavily skewed due to infeasible instances. On average, the warm-start

approach reduces the number of IPM iterations needed by 69% when all cases and

56

Type # Prob. GI

Non-negative 1819 0.8124
Leading 177 0.5178
In-cone 638 0.7918

Total 2634 0.7833

Table 3.2: Geometric mean of the ratio of warm-start iterations to cold-start iterations

among only warm-started instances.

all 7756 problems are included.

WS, IO, II All

Type # Prob. GI # Prob. GI

Non-negative 1830 0.8029 2539 0.8536
Leading 2590 0.1224 2614 0.1248
In-cone 1954 0.2046 2603 0.3039

Total 6374 0.2459 7756 0.3157

Table 3.3: Geometric mean of the ratio of warm-start iterations to cold-start iterations

among all instances.

The benefit obtained from warm-starting could be tuned for a problem-specific

class by changing which IPM iteration and α value to use for warm-starting. When

working on specific instances, it is possible to reduce the number of IPM iterations

up to 60% by fine-tuning the warm-start parameters.

Table 3.4 shows geometric means for problem types. It is apparent that problem

type plays a significant role in determining the benefit obtained from the warm-start.

For problem type ck, warm-start reduces the number of IPM iterations by half for

57

leading and in-cone branching. A similar effect can be seen for sssd problems, where

the geometric mean is around 67%. On the other hand, for some instances the number

of IPM iterations are higher compared to cold-start (for example, pp and estein).

This table shows the need for tuning parameters for a specific problem instance. Since

problem shape and behavior plays a major role on the central path, choosing a general

IPM iteration and α is difficult. Despite this, the benefit from the overall warm-start

approach is visible. Moreover, Table 3.4 clearly shows that feasibility of instances

after branching on variable type depends on the problem type. Notice that none of

shortfall instances were feasible after branching on leading variables.

Non-negative Leading In-cone Total

Pr.Type # Prob. GI # Prob. GI # Prob. GI # Prob. GI

ck 158 0.4904 85 0.4797 243 0.4866
classical 555 0.8195 104 0.8263 659 0.8205
estein 14 0.9430 1 1.0000 9 1.0216 24 0.9741
pp 6 1.5309 5 1.3271 11 1.4347
robust 411 0.7747 21 0.9725 432 0.7833
shortfall 797 0.8260 399 0.8625 1196 0.8380
sssd 28 0.6933 10 0.6312 14 0.6674 52 0.6740
turbine 8 0.8256 3 0.7884 6 0.7700 17 0.7990

Total 1819 0.8124 177 0.5178 638 0.7918 0.7833

Table 3.4: Geometric means for warm-started instances classified by CBLIB problem

type.

58

3.4.3 Comparison to cold-start and other warm-start

methods

As shown in Section 3.4.2, our warm-start approach provides two benefits. The first

is when we solve the problem right after solving rounding problems, and the second is

choosing a different initial point for a self-dual embedding system if rounding problems

provide feasible solutions. Figure 3.2 shows comparison of warm-start iterations to

cold-start iterations. As seen from the scatter plot with jitter, we have a significant

advantage when the rounding problems are feasible. The median line indicates that

the number of warm-start IPM iterations is equal to 74.41% of number of IPM cold-

start iterations on average.

We compared our method to the warm-start approach of Skajaa et al. [96].

Their warm-start approach performs better than the cold-start for our test problems

despite being originally developed for perturbation-based changes. They use a ratio

of 0.99 (previous optimal) to 0.01 (default initial point) to find an initial point for

perturbation-based changes, but this choice performs poorly for most test problems

because the problems change more significantly after branching than do small

perturbations on the problem parameters. Therefore, we tried different values and

decided to use parameter values of 0.15 (previous optimal) to 0.75 (default initial)

for comparison. These values prevent initial points being too close to the boundary

of the feasible region. Since we used cold-start for cases where the rounding

problems are infeasible, we compare our method to theirs for only cases where we

used an initial point to warm-start. Figure 3.3 compares the number of IPM

iterations to Skajaa et al.’s warm-start method as a scatter plot with jitter. As

shown in Figure 3.3, our method performs better than the warm-start method of

Skajaa et al. on average. The median line indicates that the number of warm-start

IPM iterations is equal to 82.52% of the number of IPM iterations in Skajaa et al.

on average.

59

0

5

10

15

20

25

0 5 10 15 20 25

R
o

u
n

d
in

g
W

ar
m

-s
ta

rt

Cold-start

Figure 3.2: Comparison of warm-start IPM iterations versus cold-start IPM iterations

for feasible instances.

3.4.4 Effect of warm-starting for infeasible cases

We see a huge benefit of solving rounding problems for infeasible cases. To the best

of our knowledge, there is no warm-start method for infeasible cases in the literature.

Our warm-start procedure is able to identify infeasible cases before solving the new

instance for a majority of instances we looked at. For non-negative variable branching

60

0

4

8

12

16

20

0 4 8 12 16 20

R
o

u
n

d
in

g
W

ar
m

-s
ta

rt

Skajaa et al.'s Warm-start

Figure 3.3: Comparison of IPM iterations of our approach versus warm-start of Skajaa

et al. on feasible instances.

3 out of 3, for leading variable branching 2408 out of 2411, and for in-cone variable

branching 1315 out of 1443 instances are concluded to be infeasible right after solving

the rounding problems, which is approximately 96.60% of all infeasible instances.

This means a huge saving in terms of solution time and IPM iterations.

61

3.5 Conclusions and future work

In this chapter, we introduced a novel warm-start approach for self-dual embedding

IPMs to solve SOCO problems that appear in a BCC tree when solving MISOCO

problems. To our knowledge, this is the first study about warm-starting SOCO

instances after a modification-based change of the problem instance. Moreover, it is

the first study on providing an earlier detection for infeasible cases before starting

IPM iterations. Such an approach is not even available for LO problems.

In our experiments, we demonstrate the performance of our approach on the

CBLIB test set. We are able to solve test problems taken from CBLIB using around

78% of the total IPM iterations that were required to cold-start on feasible instances.

The ability of the warm-start approach to identify optimal and infeasible cases is also

very significant. We are able to identify the new optimal solution in a few instances

when branching on non-negative variables just by solving two LO rounding problems.

In addition, we are able to identify infeasible primal SOCO instances in 96.60% of all

infeasible cases. Improvement of such a magnitude is quite uncommon for a warm-

start approach to IPMs.

Our approach is limited to the cases where rounding problems are feasible or

provide a useful conclusion. Although our approach performs well on infeasible

instances to detect infeasibility, the primal rounding problem gets infeasible for a

significant number of cases. Such cases might be addressed in the future with an

alternative approach of initialization of self-dual embedding IPMs.

There are a few open questions for future studies. First of all, we have yet to

try this warm-start approach in a full BCC framework. Only minor changes are

needed to deploy our proposed warm-start approach after a conic cut is added to the

problem. Moreover, we can use the rounding problems for pruning by bound inside

a B&B tree. If we have a dual feasible solution for (D-SOCO) with an objective

value that is worse than the current incumbent objective in the tree, then we can

prune the node by bound because it cannot yield a better solution due to the weak

62

duality in SOCO. So if the optimal value of the (DR) problem is greater than the

objective of the incumbent solution, we can draw the same conclusion without solving

the node. A final open question is about warm-starting of infeasible instances. The

default initialization of the self-dual embedding framework is biased towards feasible

instances. When infeasibility is suspected, it may be advantageous to initialize the

model differently.

63

64

Chapter 4

The first heuristic specifically for

mixed-integer second-order cone

optimization

4.1 Introduction

Primal heuristics are one of the most important elements of search tree methods.

Despite the fact that primal heuristics are not exact methods, their contribution to

the efficiency of commercial solvers is significant. Therefore, commercial MILO solvers

are packed with heuristics [7, 46, 61, 64].

Development of solution methodologies for MISOCO problems is an active

research area. As MISOCO is a generalization of MILO, researchers mainly focus on

translating existing MILO techniques to MISOCO. The main reason behind the

popularity of MISOCO problems is twofold. The first reason is the availability of

MISOCO formulations for a variety of problems from different sectors, such as

portfolio optimization problems [20, 32] and option pricing problems [88] from

finance, the turbine balancing problem [41] from energy, and the stereotactic

surgery treatment planning with isocenter selection problem [53] from healthcare.

65

Another reason is the existence of efficient solution methodologies to solve

underlying SOCO subproblems.

The ongoing research has been focused on generating valid inequalities for

MISOCO problems [9–11, 16–18, 35, 68, 80, 110]. Despite recent advances in

warm-start of MISOCO problems [33], vital elements of a full BCC framework are

still missing, such as pre-processing and primal heuristics. Notably MILO has a

remarkably rich literature on this topic. Since there is no available study on

heuristics specific to MISOCO, we give a brief review of the MILO and MINLO

literature.

Primal heuristics play an important role in state-of-the-art MILO solvers. Their

main role is to provide an upper bound early in the search tree. This upper bound

proves feasibility of the problem and can help reduce search tree size significantly by

pruning nodes by bound early [4]. There are three types of primal heuristics. The

first set of heuristics is called diving heuristics, which dive inside the search tree with

the aim of finding a feasible MILO solution as quickly as possible. The second set of

heuristics is called rounding heuristics, where the aim is to generate a feasible solution

by rounding a fractional LO solution. The third set of heuristics is called improvement

heuristics, where one or more primal feasible solutions are used to construct a better

feasible solution. For an extensive discussion, see Achterberg [1] and Berthold [23].

Fischetti et al. [48] propose a heuristic called feasibility pump (FP). In simple

terms, FP generates two sets of solutions: the first set consists of points that satisfy

feasibility constraints except integrality, whereas the second set consists of points

that are integer but possibly infeasible. These solutions are generated consecutively

by using rounding and then solving an auxiliary problem. This heuristic is shown to

be effective for binary MILO problems. FP’s efficiency has led to several variations

of the heuristic are discussed in the literature. Bertacco et al. [22] work on improving

the efficiency of FP for general MILO problems. Moreover, they provide a restart

method to prevent cycling. Achterberg and Berthold [2] propose a variation of FP

66

that takes the objective function into consideration when finding solutions. Their aim

is to find a better feasible solution for MILO instead of an arbitrary one, and their

modification is shown to be more effective for the majority of the test problems in

terms of providing a better bound. Bonami et al. [30] and Bonami and Gonçalves

[27] extend FP for convex MINLO problems in different ways. Bonami and Gonçalves

[27] discussed extensions of several primal heuristics for convex MINLO problems and

showed that variants of FP can provide a solution for 93—94% of instances. Primal

heuristics for MINLO problems help them to reduce the total solution time about

11% on average. Finally, Berthold [24] gives an extensive review of heuristics for

MINLO and presents a variation of FP for non-convex MINLO problems.

Berthold et al. [25] extend the SCIP solver to solve mixed-integer quadratic

optimization (MIQO) problems by using two simple primal heuristics. They

compare SCIP against other solvers on MIQO problems, where some of them are

MISOCO instances available in the CBLIB [50] test set.

It is apparent that many of the available MILO heuristics can be used for MISOCO

problems. However, MISOCO formulations allow us to explore further heuristics that

are specific to MISOCO. To our knowledge, there is no research on development of

heuristics for general MISOCO problems.

The purpose of this chapter is to present novel heuristics that are specific to

MISOCO problems to generate feasible solutions in BCC search tree. We consider

a general MISOCO formulation, where the Jordan frames of the SOCO subproblem

can be obtained easily. These Jordan frames are used to create linear constraints that

enforce conic feasibility in a limited feasible region. By solving the rounding MILO

problems, it is possible to generate a feasible solution for many problems in practice.

Then the generated solution can be improved by changing continuous variables. This

way, we can generate a feasible solution even at the root node of a BCC search

tree, which helps prune more nodes, prove feasibility, and provide an upper bound

to estimate the optimality gap throughout the search. Our method consists of two

67

parts: in the first part (rounding), we solve several SOCO problems to construct a

feasible MISOCO solution and in the second part (improvement), we use this solution

to improve the solution.

The rest of the chapter is structured as follows: In Section 4.2, we give

descriptions of conic rounding heuristics and their translation to quadratic

optimization formulations. This is followed by the results of the numerical

experiments on CBLIB test problems in Section 4.3. Finally, summary of the

chapter, implications, and future research directions are discussed in Section 5.5.

4.2 Conic rounding heuristics

The main purpose of conic rounding heuristics is to provide a feasible solution for the

original MISOCO problem. We can write a MISOCO in the standard form of

minimize: c>x

subject to: Ax = b,

x ∈ K,
xj ∈ Z ∀j ∈ J ⊆ N,

(4.1)

where A ∈ Rm×n is a full row rank matrix, c ∈ Rn, b ∈ Rm, N = {1, 2, . . . , n}, K is the

Cartesian product of SOCs of various dimensions — that is, K = Ln1×Ln2×· · ·×Lnk ,

where Lni = {xi ∈ Rni | xi1 ≥ ‖xi2:ni
‖}, for i = 1, . . . , k, with

∑k
i=1 ni = n for x =(

(x1)>, (x2)>, . . . , (xk)>
)> — and xi ∈ Rni . We begin this section with preliminaries

on Jordan algebra and rounding problems. We use these components to describe

four heuristics in the following subsections: the primal rounding heuristic, the dual

rounding heuristic, the primal-dual rounding heuristic, and a hybrid heuristic.

4.2.1 The primal rounding heuristic

The main difficulties of finding a feasible solution for a MISOCO comes from two

sources: integer variables and conic constraints. To deal with the latter source, one

68

can use a restricted problem of the original instance by using a set of feasible Jordan

frames. Primal rounding (PR) with integrality constraints can be used to generate

feasible solutions to the original MISOCO instance. This idea is the underlying

foundation of the primal rounding heuristic, where we solve a series of mixed-integer

primal rounding and auxiliary SOCO problems to generate a feasible solution.

The primal rounding heuristic starts with an optimal solution of the continuous

relaxation of MISOCO. The Jordan frame that corresponds to this solution is stored

for the iterative steps. Then we solve the mixed-integer primal rounding problem

(MIPR), which is written as follows:

minimize: c>x

subject to: Ax = b,

x = F ∗λ,

xi1 ≥ 0, i ∈ 1, . . . , k
xj ∈ Z, j ∈ J ⊆ N

λ ∈ R2k
+ .

(MIPR)

If the (MIPR) problem is feasible, then its solution x∗ is a feasible solution to the

original MISOCO problem as well. This solution can be further improved by fixing

the integer variables and solving the remaining SOCO problem to optimality. This

problem is called fix-and-relax (FR) and is written as follows:

minimize: c>x

subject to: Ax = b,

xj = x∗j ∀j ∈ J ⊆ N,

x ∈ K.

(FR)

After solving (FR), we can update the best known upper bound. Moreover, the

optimal solution x̄ of (FR) is used to obtain a new Jordan frame. This way new

solutions, which are obtained in consecutive iterations, are guaranteed to be bounded

by this solution.

A penalty problem is solved to generate more Jordan frames for the problem in

each iteration regardless of whether (MIPR) is feasible. Denote F̂ = F+ − F− and

69

the penalty problem is written as follows:

minimize: ϕ c>

‖c‖x+ (1− ϕ)
∥∥∥F̂>x∥∥∥

subject to: Ax = b,

x ∈ K,

where ϕ represents the tradeoff between the original objective and the penalty term.

The reason for using the penalty term F̂>x is to obtain a different solution and a

Jordan frame. The term ‖F̂>x‖ reaches its minimum value 0 if x is orthogonal to F̂

and to its maximum value if the solution of the penalty problem xp is equal to the

(MIPR) solution. Because the transformation x = F>P λ and the constraint λ ≥ 0 are

used as a way to enforce conic feasibility and because new Jordan frames could be

added to F , obtaining a larger feasible region is vital by obtaining different Jordan

frames. Minimizing this term enlarges the feasible region for (MIPR) in consecutive

iterations. The penalty term could be 1-norm, 2-norm, or infinity-norm and can

be solved as a SOCO. The objective function of the penalty problem is similar to

the objective proposed in [2], a penalty problem with a tradeoff between maximizing

the feasible region and minimizing the original objective function. After the penalty

problem is solved, (MIPR) is solved again with new Jordan frames, and the loop

continues until a predefined termination criteria is reached, such as iteration or gap.

All Jordan frames obtained in consecutive iterations are collected in a pool. Since the

solution of the penalty problem is requested to be different from existing solutions,

all Jordan frames can be added to the problem. The general form of the penalty

problem (PEN) is written as follows:

minimize: ϕ c>

‖c‖x+ (1− ϕ)
∑
`

∥∥∥F̂>` x∥∥∥
subject to: Ax = b,

x ∈ K,

(PEN)

where F̂` is the penalty term that corresponds to the `th Jordan frame in the pool.

When (MIPR) is infeasible, it means that there are no feasible points in the

restricted region defined by x = F ∗λ. One can add more Jordan frames to F , which

70

is equivalent to expanding the feasible region of (MIPR). In theory, one can add

infinitely many unique Jordan frames to (MIPR) and solve the original MISOCO

problem as a series of (MIPR) problems. Our aim is to keep this number at a

reasonable level and still be able to produce feasible results. As shown in Section

4.3, we rarely need more than a few frames even for larger cones. In fact, three

Jordan frames are enough to obtain a feasible solution for 98% of all test instances,

so the generated Jordan frames are far from being an inner-approximation of SOCs.

An overview of the flow of the primal rounding heuristic is given in Figure 4.1.

In the figure, C represents conic feasible solutions, I represents integer feasible

solutions, and IC represents both integer and conic feasible solutions. Potential

solution outcomes are indicated on the top right corner of blocks. The heuristic steps

are given in Algorithm 4.

Example

We provide a numerical example in this subsection to describe how the primal

rounding heuristic works in practice. Consider the following optimization model:

minimize: 2x1 + x2 − 2x3

subject to: 10 x1 + x2 = 19,
(x1, x2, x3) ∈ L3,

x1, x2 ∈ Z.

Following are the steps of the primal rounding heuristic, which are illustrated in

Figure 4.2. Numerical values are given up to three digits of precision.

1. Solve SOCO subproblem:

minimize: 2x1 + x2 − 2x3

subject to: 10 x1 + x2 = 19,
(x1, x2, x3) ∈ L3.

The solution of the SOCO subproblem is xs = (1.991,−0.907, 1.772). For

illustration, see Figure 4.2a.

71

2. Obtain the Jordan frames. The F matrix is

F =

0.5 0.5
−0.228 0.228
0.445 −0.445

 .

3. Solve the (MIPR) problem:

minimize: 2x1 + x2 − 2x3

subject to: 10 x1 + x2 = 19,
x1 = 0.5λ1 + 0.5λ2,

x2 = −0.228λ1 + 0.228λ2,

x3 = 0.445λ1 − 0.445λ2,

x1 ≥ 0,
x1, x2 ∈ Z,
λ1, λ2 ∈ R+.

(MIPR) is infeasible at this step. Supposing that we have budget for iteration,

we continue. For illustration, see Figure 4.2b.

4. Solve the penalty problem (PEN) for ϕ = 0.5:

minimize: ϕ(x1 − x3) + (1− ϕ)|x3|
subject to: 10 x1 + x2 = 19,

(x1, x2, x3) ∈ L3.

The optimal solution of (PEN) is xp = (1.745, 1.553, 0.795). For illustration,

see Figure 4.2c.

5. Obtain the Jordan frames. The F matrix is updated:

F =
[
F+

(1) F−(1) F+
(2) F−(2)

]
=

0.5 0.5 0.5 0.5
−0.228 0.228 0.445 −0.445
0.445 −0.445 0.228 −0.228

 .
72

6. Solve the (MIPR) problem:

minimize: 2x1 + x2 − 2x3

subject to: 10 x1 + x2 = 19,
x1 = 0.5λ1 + 0.5λ2 + 0.5λ3 + 0.5λ4,

x2 = −0.228λ1 + 0.228λ2 + 0.445λ3 − 0.445λ4,

x3 = 0.445λ1 − 0.445λ2 + 0.228λ3 − 0.228λ4,

x1 ≥ 0,
x1, x2 ∈ Z,

λ1, λ2, λ3, λ4 ∈ R+.

The optimal solution of (MIPR) is x∗ = (2,−1, 1.506), the current upper bound

is –0.012. For illustration, see Figure 4.2d.

7. Solve the (FR) problem:

minimize: 2x1 + x2 − 2x3

subject to: 10 x1 + x2 = 19,
x1 = 2,
x2 = −1,

(x1, x2, x3) ∈ L3,

The (FR) problem improves the solution and provides a feasible MISOCO

solution xr = (2,− − 1,
√

3) with objective value −0.464. For illustration, see

Figure 4.2e.

8. Obtain Jordan frames. The Jordan frame is

F =

0.5 0.5
−0.25 0.25
0.433 −0.433

 .
73

9. Solve the (MIPR) problem:

minimize: 2x1 + x2 − 2x3

subject to: 10 x1 + x2 = 19,
x1 = 0.5λ1 + 0.5λ2,

x2 = −0.25λ1 + 0.25λ2,

x3 = 0.433λ1 − 0.433λ2,

x1 ≥ 0,
x1, x2 ∈ Z,
λ1, λ2 ∈ R+.

(MIPR) gives the same solution x∗ = (2,−1,
√

3).

The relaxation objective for this problem is –0.4697, where the bound generated

by the conic rounding heuristic is –0.4641. Despite the small gap, we cannot guarantee

optimality in general. However, the solution provided by the heuristic is the unique

optimal solution for this example.

Discussion

Despite following a simple logic, the primal rounding heuristic works well in practice.

However, the performance depends highly on the feasible region of the problem. For

problems where feasible solutions appear inside SOC, it is relatively easy to find

Jordan frames where a feasible solution lies inside their convex combinations. On

the other hand, if all the feasible solutions appear on, or close to the boundary of

the SOCs, then we need to find the exact Jordan frame to obtain a feasible solution.

Finding the exact Jordan frame is not always possible. In our experiments with

CBLIB test problems, we observed that the primal rounding heuristic is not able to

produce feasible solutions for stochastic service system design (sssd) problems. To

provide an alternative to the primal rounding heuristic for problems where solutions

are close to the boundary of SOCs, we propose the dual rounding heuristic in the

following subsection.

74

Figure 4.1: Flow of the primal rounding heuristic.

Algorithm 4 The primal rounding heuristic for MISOCO
Require: A MISOCO instance (4.1),

maximum number of iterations t
Ensure: A feasible solution x̃ to MISOCO, if found

1 Set c̃ =∞, ϕ = 0.5
2 Solve the continuous relaxation of MISOCO, obtain its solution xs
3 Add F s to the Jordan frame pool
4 while i ≤ t do
5 Solve (MIPR), obtain its solution x∗ if exists
6 if (MIPR) is feasible then
7 Add F ∗ to the Jordan frame pool
8 Solve (FR) using x∗, obtain its solution xr
9 Add F r to the Jordan frame pool

10 if c>xr ≤ c̃ then
11 c̃ = c>xr, x̃ = xr

12 ϕ = 1+ϕ
2

13 else
14 ϕ = ϕ

2
15 Solve the penalty problem (PEN), obtain its solution xp
16 Add F p to the Jordan frame pool
17 i = i+ 1
18 return x̃

75

(a) Solution of the continuous relaxation,

xs = (1.991,−0.907, 1.772).

(b) Conic feasible region for (MIPR)

(infeasible).

(c) Solution of the penalty problem (PEN),

xp = (1.745, 1.553, 0.795).

(d) Conic feasible region for (MIPR),

x∗ = (2,−1, 1.506).

(e) Solution of (FR), xr = (2,−1,
√

3).

Figure 4.2: Steps of the primal rounding heuristic on the example problem.

76

4.2.2 The dual rounding heuristic

Using the relationship between the rounding problems and the original MISOCO

instances, we can approach the problem of finding a feasible solution from the dual

side. As shown in Figure 3.1, (D-DR) is a relaxation of the original MISOCO instance.

The underlying idea for the dual rounding heuristic is to solve a series of (D-DR)

problems with integrality constraints and (FR) problems.

The dual rounding heuristic starts with the solution of the continuous relaxation

of the original instance. Next, the mixed-integer dual rounding problem (MIDR)

is solved by using the Jordan frame matrix that was obtained from the relaxation

solution, which is written as follows:

minimize: c>x

subject to: Ax = b,

F>x ≥ 0,
xi1 ≥ 0, i ∈ 1, . . . , k
xj ∈ Z, j ∈ J ⊆ N.

(MIDR)

If the solution is conic feasible, then the solution is an optimal solution to the

MISOCO problem, and we terminate. Otherwise, Jordan frames obtained from the

solution are added to the matrix F . Note that we can still obtain the Jordan frame

that corresponds to the projection of the (MIDR) solution onto K. Adding this

Jordan frame to matrix F cuts off the current (MIDR) solution for the next

iteration. By using the conic infeasible solution, we solve an (FR) problem by fixing

integer variables. If the problem is feasible, then we obtained a feasible solution to

MISOCO. We add the corresponding Jordan frame to F , and continue to the next

iteration.

Figure 4.3 shows an overview of the dual rounding heuristic, and Algorithm 5

describes the dual rounding heuristic steps.

In theory, one can keep adding unique Jordan frames until an outer-approximation

of the K to the desired precision is achieved because the second-order cones are self-

dual and the constraint F>x ≥ 0 provides a supporting hyperplane for K. The set

77

Figure 4.3: Flow of the dual rounding heuristic.

Algorithm 5 The dual rounding heuristic for MISOCO
Require: A MISOCO instance (4.1),

maximum number of iterations t
Ensure: A feasible solution x̃ to MISOCO if found, a global lower bound cL

1 Set c̃ =∞
2 Solve the continuous relaxation of MISOCO, obtain its solution xs, set cL = c>xs

3 Add F s to the Jordan frame pool
4 while i ≤ t do
5 Solve (MIDR), obtain solution x∗
6 Add F ∗ to the Jordan frame pool
7 if c>x∗ ≥ cL then
8 cL = c>x∗

9 if x∗ ∈ K then
10 x̃ = x∗, c̃ = c>x∗

11 Terminate with an optimal solution to MISOCO x∗.
12 else
13 Solve (FR) using x∗, obtain its solution xr if exists
14 if (FR) is feasible then
15 Add F r to the Jordan frame pool
16 if c>xr ≤ c̃ then
17 c̃ = c>xr, x̃ = xr

18 if cL = c̃ then
19 Terminate with an optimal solution to MISOCO x̃.
20 i = i+ 1
21 return x̃, cL

78

of Jordan frames provides a rough outer-approximation of the SOCs since we often

have a limited number of Jordan frames as shown in our numerical results.

Because of its relationship to the original MISOCO problem, (MIDR) is feasible at

each iteration of the heuristic for a feasible MISOCO problem. Therefore, if (MIDR)

becomes infeasible at any iteration of the dual rounding heuristic, then the original

MISOCO problem is infeasible. Moreover, if the solution to (MIDR) satisfies conic

feasibility x ∈ K, then it is an optimal solution for MISOCO.

One of the major benefits of the dual rounding heuristic is the detection of

infeasible cases. The other benefit is that the dual rounding heuristic provides a

lower bound for the MISOCO problem, thus providing a better gap for the

optimality information. A lower bound is provided even if the heuristic fails to find

a feasible solution. As shown in our numerical experiments, the dual rounding

heuristic works well for certain problem types and provides a good solution in a few

iterations. The main difference between the dual rounding heuristic and the primal

rounding heuristic is the existence of penalty problems. Since any solution of

(MIDR) cuts off the current solution and effectively decreases the feasible region,

there is no need to solve a separate penalty problem.

Example

In this subsection, we provide a numerical example to illustrate how the dual rounding

heuristic works in practice. The steps of the dual rounding heuristic are illustrated

in Figure 4.4.

Consider the following optimization model:

minimize: −15x2 − 8x3

subject to: x1 = 3,
x2, x3 ≤ 3,

(x1, x2, x3) ∈ L3,

x1, x3 ∈ Z.

79

Following are the steps of the dual rounding heuristic. Numerical values are given up

to three digits precision.

1. Solve the SOCO subproblem:

minimize: −15x2 − 8x3

subject to: x1 = 3,
x2, x3 ≤ 3,

(x1, x2, x3) ∈ L3.

The solution of the SOCO subproblem is x∗ = (3, 2.647, 1.412) with objective

value –51. For illustration, see Figure 4.4a.

2. Obtain the Jordan frames. The F matrix is

F =

0.5 0.5

0.471 −0.471
0.167 −0.167

 .

3. Solve the (MIDR) problem:

minimize: −15x2 − 8x3

subject to: x1 = 3,
x2, x3 ≤ 3,

0.5x1 + 0.471x2 + 0.167x3 ≥ 0,
0.5x1 − 0.471x2 − 0.167x3 ≥ 0,

x1 ≥ 0,
x1, x3 ∈ Z.

(MIDR) provides a solution x̄ = (3, 1.8, 3), which is conic infeasible. We fix the

integer variables x1 = 3, x3 = 3 and solve the (FR) problem. The (FR) problem

provides a conic and integer feasible solution x∗ = (3, 0, 3) with objective value

–24. This is the best feasible solution for the MISOCO problem so far. For

illustration, see Figure 4.4b.

80

Clic
k t

o buy N
OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om Clic

k t
o buy N

OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om

(a) Solution of the original continuous

relaxation, xs = (3, 2.647, 1.412).

Clic
k t

o buy N
OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om Clic

k t
o buy N

OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om

(b) Solutions obtained after the first

iteration, x∗ = (3, 1.8, 3),

xr = (3, 0, 3).
Clic

k t
o buy N

OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om Clic

k t
o buy N

OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om

(c) Solutions obtained after the second

iteration, x∗ = (3, 2.333, 2), xr =

(3, 2.236, 2).

Clic
k t

o buy N
OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om Clic

k t
o buy N

OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om

(d) Solutions obtained after the third

iteration, x∗ = (3, 2.867, 1, 3), xr =

(3, 2.828, 1).

Figure 4.4: Steps of the dual rounding heuristic on the sample problem for the cross-

section at x1 = 3.

81

4. Obtain Jordan frames from both the optimal solution of (MIDR) and the

solution of (FR). The F matrix is

F =

0.5 0.5 0.5 0.5 0.5 0.5

0.471 −0.471 0.257 −0.257 0 0
0.167 −0.167 0.429 −0.429 0.5 −0.5

 .

5. Solve the (MIDR) problem:

minimize: −15x2 − 8x3

subject to: x1 = 3,
x2, x3 ≤ 3,

0.5x1 + 0.471x2 + 0.167x3 ≥ 0,
0.5x1 − 0.471x2 − 0.167x3 ≥ 0,
0.5x1 + 0.257x2 + 0.429x3 ≥ 0,
0.5x1 − 0.257x2 − 0.429x3 ≥ 0,

0.5x1 + 0.5x3 ≥ 0,
0.5x1 − 0.5x3 ≥ 0,

x1 ≥ 0,
x1, x3 ∈ Z.

The solution of (MIDR) is x∗ = (3, 2.333, 2). We fix the integer variables x1 =

3, x3 = 2 and solve (FR). The (FR) provides a feasible solution x∗ = (3, 2.236, 2)

with objective value –49.541. This is the best feasible solution for the MISOCO

problem so far. For illustration see Figure 4.4c.

6. Obtain the Jordan frames.

F =

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.471 −0.471 0.257 −0.257 0 0 0.379 −0.379 0.372 −0.372
0.167 −0.167 0.429 −0.429 0.5 −0.5 0.325 −0.325 0.333 −0.333

 .

82

7. Solve the (MIDR) problem:

minimize: −15x2 − 8x3

subject to: x1 = 3,
x2, x3 ≤ 3,

0.5x1 + 0.471x2 + 0.167x3 ≥ 0,
0.5x1 − 0.471x2 − 0.167x3 ≥ 0,
0.5x1 + 0.257x2 + 0.429x3 ≥ 0,
0.5x1 − 0.257x2 − 0.429x3 ≥ 0,

0.5x1 + 0.5x3 ≥ 0,
0.5x1 − 0.5x3 ≥ 0,

0.5x1 + 0.379x2 + 0.325x3 ≥ 0,
0.5x1 − 0.379x2 − 0.325x3 ≥ 0,
0.5x1 + 0.372x2 + 0.333x3 ≥ 0,
0.5x1 − 0.372x2 − 0.333x3 ≥ 0,

x1 ≥ 0,
x1, x3 ∈ Z.

The solution of (MIDR) is x∗ = (3, 2.867, 1), which violates the conic constraint

slightly. We fix the integer variables x1 = 3, x3 = 1 and solve (FR). The (FR)

produces the solution xr = (3, 2.828, 1) with objective value –50.426. This is

the best feasible solution for the MISOCO so far. For illustration, see Figure

4.4d.

Repeating the heuristic for one more iteration results in an (MIDR) solution of

x∗ = (3, 2, 828, 1), which proves that the solution is the true optimal solution for

the MISOCO. This example demonstrates a good case where only a few iterations

provided the unique optimal solution. In general, there is no guarantee that a feasible

solution can be found in a finite number of iterations.

Discussion

The dual rounding heuristic is useful for finding a feasible solution when the integer

feasible solutions of MISOCO are close to the boundary of the SOCs. A

83

pathological case occurs if there is a continuous region near the both sides of the

boundary. Without (FR), infinitely many iterations are required to find a feasible

solution in this case.

The dual rounding heuristic is similar to the primal rounding heuristic in terms

of utilizing Jordan frames to generate feasible solutions. The main difference lies

in where the solutions of the mixed-integer rounding problems appear. If feasible,

(MIPR) produces a feasible solution to MISOCO. On the other hand, if MISOCO

is feasible, then (MIDR) is always feasible, but its solution is likely to be infeasible

for MISOCO because of violated conic constraints. These two different heuristics are

useful for different cases. The primal rounding heuristic works better when feasible

solutions are inside the SOCs, whereas it fails for cases where the feasible solutions

are close to or lie on the boundary of the SOCs. The dual rounding heuristic works

better when feasible solutions are close to the boundary of SOCs, but fails when there

is a continuous feasible region alongside a cone.

In the next subsection we present the primal-dual rounding heuristic, where the

iteration budget is shared equally between the primal rounding and the dual rounding

without needing penalty problems.

4.2.3 The primal-dual rounding heuristic

As we discussed in previous subsections, the primal rounding heuristic and the dual

rounding heuristic are useful for different types of feasible regions. For a problem with

known structure, one can decide which heuristic to deploy. However, one often does

not have enough knowledge about the feasible region, making the decision of which

heuristic to use. In this subsection, we propose a combination of two heuristics. This

heuristic is called the primal-dual rounding heuristic and consists of components of

both heuristics.

The primal-dual rounding heuristic starts with the solution of the SOCO problem

and its Jordan frames. Then, the (MIPR) problem is solved using the frames available

84

in the pool. If it is feasible, then an (FR) step follows to improve the solution. The

generated solution is fed to the set of Jordan frames, and the best solution is updated.

Then, whether the (MIPR) is feasible or not, the (MIDR) problem is solved. The

(MIDR) problem is guaranteed to be always feasible unless the original problem is

infeasible; hence the solution can be added to the Jordan frame pool. If the solution to

(MIDR) is conic feasible, it means that we found an optimal solution to the original

MISOCO problem. If not, then we use the solution in an (FR) step to see if the

(MIDR) can lead to a feasible solution. If (FR) provides a feasible solution, then we

add the corresponding Jordan frame to the pool. We iterate by solving (MIPR) until

we reach a predefined iteration limit.

Figure 4.5 shows an overview of the primal-dual rounding heuristic, and Algorithm

6 describes the steps of the primal-dual rounding heuristic.

Figure 4.5: Flow of the primal-dual rounding heuristic.

Although the primal-dual rounding heuristic is a combination of both of the primal

and dual rounding heuristics that were introduced earlier, there are some differences

85

Algorithm 6 The primal-dual rounding heuristic for MISOCO
Require: A MISOCO instance (4.1),

maximum number of iterations t
Ensure: A feasible solution x̃ to MISOCO if found, a global lower bound cL

1 Set c̃ =∞
2 Solve the continuous relaxation of MISOCO, obtain its solution xs, set cL = c>xs

3 Add F s to the Jordan frame pool
4 while i ≤ t do
5 Solve (MIPR), obtain its solution x∗ if it exists
6 if (MIPR) feasible then
7 Add F ∗ to the Jordan frame pool
8 Solve (FR) using x∗, obtain its solution xr
9 Add F r to the Jordan frame pool

10 if c>xr ≤ c̃ then
11 c̃ = c>xr, x̃ = xr

12 Solve (MIDR), obtain solution x∗
13 Add F ∗ to the Jordan frame pool
14 if x∗ ∈ K then
15 c̃ = c>x∗, x̃ = x∗

16 Terminate with an optimal solution to MISOCO.
17 if c>x∗ ≥ cL then
18 cL = c>x∗

19 Solve (FR) using x∗, obtain its solution xr if it exists
20 if (FR) feasible then
21 Add F r to the Jordan frame pool
22 if c>xr < c̃ then
23 c̃ = c>xr, x̃ = xr

24 if cL = c̃ then
25 Terminate with an optimal solution to MISOCO
26 i = i+ 1
27 return x̃, cL

in terms of the flow. The most significant difference between the primal rounding and

the primal-dual rounding heuristic is how we generate new Jordan frames. A penalty

problem is solved in every iteration of the primal rounding heuristic to generate new

frames. This means that we need to solve two SOCOs in every iteration if we have a

feasible solution. For the primal-dual rounding heuristic, we benefit from the frames

generated by the (MIDR) solutions. Another advantage is that there is no need to

solve a separate penalty problem to generate new frames. However, whereas the the

primal rounding heuristic does not provide a lower bound, the dual rounding heuristic

provides a lower bound at every iteration. By combining these two heuristics, we aim

to provide a feasible solution and a better lower bound at the same time.

86

4.2.4 Hybrid strategy

The primal-dual rounding heuristic allocates budget equally among primal and dual

rounding heuristics. Moreover, primal rounding uses only Jordan frames that are

generated by the dual rounding heuristic, specifically by (MIDR) and dual (FR)

problems. In our experiments we noticed that the primal rounding heuristic

provides a feasible solution to the majority of the test problems within a few

iterations. Therefore, we present a hybrid strategy (HS) as a combination of two

heuristics, where a few iterations are pure primal rounding heuristic and the

remaining are dual rounding heuristic only. They do not interact, except we carry

Jordan frames obtained in the primal side to the dual rounding heuristic and start

it from the existing Jordan frames. Although this sounds intuitive, the benefit of

carrying existing Jordan frames might be controversial, because it sometimes

changes the frames obtained from the dual side significantly.

4.2.5 Extending heuristics to convex quadratic optimization

It is well known that convex quadratic optimization problems can be written as

equivalent SOCO formulations. By enforcing the integrality, we can write any

mixed-integer quadratically constrained quadratic optimization (MIQCQO) problem

in terms of an equivalent MISOCO formulation and translate the conic rounding

heuristic.

Without loss of generality, suppose we have a convex quadratic constraint in a

MIQCQO formulation of the form

x>Qx+ 2p>x+ r ≤ 0, (4.2)

where Q ∈ Rn×n is a symmetric and positive semidefinite matrix, p ∈ Rn and r ∈

R. Such a constraint can also be obtained after moving a quadratic objective into

constraints and adding an auxiliary variable to x. There are two ways of transforming

87

this constraint into a conic constraint based on positive definiteness of Q, which are

inspected separately in the following subsections.

Q � 0

If Q is a positive definite matrix, then we can transform (4.2) as follows:

x>Qx+ 2p>x ≤ −r

x>Q1/2Q1/2x+ 2(Q−1/2p)>Q1/2x+ p>Q−1p ≤ p>Q−1p− r

(Q1/2x+Q−1/2p)2 ≤ p>Q−1p− r.

Introducing two auxiliary variables u := Q1/2x+Q−1/2p and t :=
√
p>Q−1p− r gives

us the equivalent form of (4.2) as a set of linear and SOC constraints:

x>Qx+ 2p>x+ r ≤ 0 ≡

u = Q1/2x+Q−1/2p

t =
√
p>Q−1p− r

(t, u) ∈ Ln+1

.

For the general MIQCO of the form

minimize: c>x

subject to: Ax = b,

x>Qx+ 2p>x+ r ≤ 0,
xj ∈ Z j ∈ J ⊆ N,

(4.3)

where Q � 0, we can write the corresponding MISOCO as follows:

minimize: c>x

subject to: Ax = b,

Q1/2x− u = −Q−1/2p,

t =
√
p>Q−1p− r,

(t, u) ∈ Ln+1.

For a solution for MIQCO (4.3) x∗, we can find the corresponding values of u∗, t∗,

and Jordan frame corresponds to the solution in MISOCO form:

F ∗ =
[

0.5 0.5
u∗

2‖u∗‖ −
u∗

2‖u∗‖

]
.

88

Using this Jordan frame, now we can write any of the problems defined for our

heuristics below. For example, the (MIPR) problem that corresponds to solution x∗

is
minimize: c>x

subject to: Ax = b,

Qx−Q1/2u = −p,
t =

√
p>Q−1p− r,

t− 0.5λ1 − 0.5λ2 = 0,
u− δλ1 + δλ2 = 0,

λ1, λ2 ≥ 0,
xj ∈ Z j ∈ J ⊆ N,

where δ = u∗/2‖u∗‖. Putting everything together in terms of the original variable x

and solution x∗ gives us the (MIPR) problem without needing an intermediate step:

minimize: c>x

subject to: Ax = b,

λ1 + λ2 = 2
√
p>Q−1p− r,

2(x∗>Qx∗)Qx−Qx∗λ1 +Qx∗λ2 = −2(x∗>Qx∗)p,
λ1, λ2 ≥ 0,

xj ∈ Z j ∈ J ⊆ N.

(4.4)

Here, the second constraint satisfies λ values to change in a convex region, while the

third constraint gives the point x as a convex combination of two end points.

Example Let us show how the heuristic can be applied for MIQCQO problems in

practice on a small example. See Figure 4.6 that accompanies the following steps.

Suppose we have the following MIQCQO problem:

minimize: −x1 − x2

subject to: x2
1 + 3x2

2 − x1x2 − 2x2 − 10 ≤ 0,
x1, x2 ≥ 0,
x1, x2 ∈ Z.

89

Clic
k t

o buy N
OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om Clic

k t
o buy N

OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om

(a) Solution of the continuous relaxation x∗ =

(3.220, 1.666).
Clic

k t
o buy N

OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om Clic

k t
o buy N

OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om

(b) Conic feasible region for (MIPR) (infeasible).
Clic

k t
o buy N

OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om Clic

k t
o buy N

OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om

(c) Conic feasible region for (MIPR), optimal

solution x̄ = (2, 1).

Figure 4.6: Steps of the primal rounding heuristic on a convex quadratic sample

problem.

90

The optimal solution of the continuous relaxation is x = (3.220, 1.666) as shown in

Figure 4.6a. The (MIPR) problem (4.4) at x∗ is

minimize: −x1 − x2

subject to: λ1 + λ2 = 6.438,
0.982x1 − 0.185x2 − 0.426λ1 + 0.426λ2 = 0.111,
−0.185x1 + 1.722x2 − 0.261λ1 + 0.261λ2 = 0.593,

x1, x2 ≥ 0,
λ1, λ2 ≥ 0
x1, x2 ∈ Z.

For λ2 = 0, we obtain the endpoint of the convex combination x = (3.220, 1.666),

which was the solution of the continuous relaxation. For another extreme at λ1 = 0,

we get x = (−2.856,−0.939). See Figure 4.6b. From the earlier solution we have

F ∗ =
[

0.5 0.5
u

2‖u‖ −
u

2‖u‖

]
=

0.5 0.5

0.426 −0.426
0.261 −0.261

If we solve the corresponding penalty problem

minimize: ϕ(−0.707x1 − 0.707x2) + (1− ϕ)|0.852u1 + 0.522u2|
subject to: 0.982x1 − 0.185x2 − u1 = 0.111,

−0.185x1 + 1.722x2 − u2 = 0.593,
t = 3.219,

x1, x2 ≥ 0,
(t, u1, u2) ∈ L3,

for ϕ = 0.5, we get x∗ = (0.545, 0.001) with a Jordan frame of

F ∗ =

0.5 0.5

0.261 −0.261
−0.426 0.426

 .
91

In the second iteration, the (MIPR) problem becomes as follows:

minimize: −x1 − x2

subject to: λ1 + λ2 + λ3 + λ4 = 6.438,
0.982x1 − 0.185x2 − 0.426λ1 + 0.426λ2 − 0.261λ3 + 0.261λ4 = 0.111,
−0.185x1 + 1.722x2 − 0.261λ1 + 0.261λ2 + 0.426λ3 − 0.426λ4 = 0.593,

x1, x2 ≥ 0,
λ1, λ2, λ3, λ4 ≥ 0

x1, x2 ∈ Z,

which gives the feasible solution x̄ = (2, 1). See Figure 4.6c for the feasible region of

the (MIPR). The same trick can also be applied for the dual rounding and primal-dual

rounding heuristics.

Q � 0

We consider a case where Q is positive semidefinite and singular. Since the inverse

Q−1 is not available, we need to derive another set of constraints to convert quadratic

constraint (4.2) into a SOC constraint. We can write

x>Qx ≤ −2p>x− r,

x>Q1/2Q1/2x ≤
(
−2p>x− r + 1

2

)2

−
(
−2p>x− r− 1

2

)2

,∥∥∥∥−2p>x− r− 1
2 Q1/2x

∥∥∥∥ ≤ −2p>x− r + 1
2

Introducing two auxiliary variables u := Q1/2x and t := −2p>x − r gives us the

equivalent form of (4.2) as a set of linear and SOC constraints as

x>Qx+ 2p>x+ r ≤ 0 ≡

u = Q1/2x

t = −2p>x− r

((t+ 1)/2, (t− 1)/2, u) ∈ Ln+2

.

92

For the general MIQCO of the form

minimize: c>x

subject to: Ax = b,

x>Qx+ 2p>x+ r ≤ 0,
xj ∈ Z j ∈ J ⊆ N,

(4.5)

where Q � 0, we can write the corresponding MISOCO as follows:

minimize: c>x

subject to: Ax = b,

Q1/2x− u = 0,
2p>x+ t = −r,

((t+ 1)/2, (t− 1)/2, u) ∈ Ln+2,

xj ∈ Z j ∈ J ⊆ N.

For a solution for MIQCO (4.5) x∗, we can find the values of u∗, t∗ and the Jordan

frame that correspond to the solution in MISOCO form:

F ∗ =

0.5 0.5

(t∗−1)
4‖(t∗−1)/2 u∗‖ −

(t∗−1)
4‖(t∗−1)/2 u∗‖

u∗

2‖(t∗−1)/2 u∗‖ −
u∗

2‖(t∗−1)/2 u∗‖

 .
Using this Jordan frame, now we can write any of the problems defined for our

heuristics below. For example, the (MIPR) problem that corresponds to solution x∗

is
minimize: c>x

subject to: Ax = b,

Q1/2x− u = 0,
2p>x+ t = −r,

t− λ1 − λ2 = −1,
δt− (t∗ − 1)λ1 + (t∗ − 1)λ2 = δ,

δu− u∗λ1 + u∗λ2 = 0,
λ1, λ2 ≥ 0,

xj ∈ Z j ∈ J ⊆ N,

where δ = 2‖(t∗ − 1)/2 u∗‖. Putting everything together in terms of the original

variable x and solution x∗ gives us the (MIPR) problem without needing an

93

intermediate step:

minimize: c>x

subject to: Ax = b,

−2p>x− λ1 − λ2 = r− 1,
−2δp>x− (−2p>x∗ − r− 1)λ1 + (−2p>x∗ − r− 1)λ2 = δ(r + 1),

δQx−Qx∗λ1 +Qx∗λ2 = 0,
λ1, λ2 ≥ 0,

xj ∈ Z j ∈ J ⊆ N.

When Q � 0, there is a risk of having a point where one of the frames cannot be

obtained exactly, such as x = (0, 2) for x2
1 − x2 ≤ 0. In this special case, one of the λ

values gets a fixed value. In our example, λ2 gets value 1 since we have

λ1 + λ2 − x2 = 1,

λ1 − λ2 − x2 = −1,

x1 = 0,

in the (MIPR) problem as constraints. The free Jordan value λ1 is used as a magnitude

to x2; hence we end up with a fixed point (0,0) and an unbounded direction. See Figure

4.7. For a bounded case in the same constraint, consider x = (0.5, 1.2). This gives

us two endpoints on the boundary of the quadric, (1.219, 1.487) and (−0.819, 0.672).

Notice that both frames pass through the focus of the parabola, (0, 1).

94

Figure 4.7: Bounded and unbounded Jordan frames in a positive semidefinite case.

4.3 Numerical results

4.3.1 Implementation and test set

For computational experiments, we implemented all heuristics in MATLAB 2014b.

The SOCO problems are solved with MOSEK 7.1, and the MILO problems are solved

with CPLEX 12.7 via their respective MATLAB API. Problems are solved on an AMD

Opteron 2.0 GHz with 8GB of memory.

One of the most used test sets for MISOCO instances is CBLIB [50]. We tested

our heuristics on all MISOCO instances in this test set; however, because the memory

is limited to 8 GB, only 1322 out of 1754 test problems are included in the numerical

experiments. We also converted 6 convex binary quadratic optimization problems

from the QPLIB test set [51] into MISOCO using MOSEK and applied our heuristics

on these problems as well. The problem types and corresponding cone sizes are shown

in Table 4.1.

95

Variables Integers Cones Cone sizes

Pr. Types #P Min Max Min Max Min Max Min Max

ck 90 611 3271 25 75 10 20 27 77
classical 399 146 356 20 50 1 1 21 51
estein 9 125 246 9 18 9 18 3 3
pp 3 72 702 10 100 10 100 3 3
robust 400 198 468 21 51 2 2 22 52
shortfall 400 194 464 21 51 2 2 21 51
sssd 14 273 785 72 264 12 24 3 3
turbine 7 121 512 11 56 25 119 3 3
QPLIB 6 3033 13538 20 400 1 1 802 4502

Summary 1328 72 13538 9 400 1 119 3 4502

Table 4.1: Details of the problem test set.

Table 4.1 shows a huge variety of problems, where some problems have a few

relatively big cones (QPLIB) and some problems have multiple small cones (pp and

turbine). All problems are converted to the standard MISOCO form using MOSEK.

After conversion, only three problems in the test set (turbine07, turbine07_aniso

and turbine54) have integer variables that appear in multiple-dimensional cones. All

of these problems have 11 integers and all of them are leading variable in their cones.

No problems in the standard form have integer variables as an in-cone variable, but

it is likely that integer variables are related to in-cone variables in some of the test

problems.

4.3.2 Efficiency of the heuristics

First, we experimented with the heuristics to see how often they provide a feasible

solution and how many iterations it takes to produce a feasible solution. Table 4.2

96

shows how many iterations it takes for heuristics to generate the first feasible solution

for MISOCO problems. We limited the number of MILO problems to be solved by

10. For the hybrid strategy, we allocate three out of 10 MILO problem budget to

primal rounding heuristic and the remaining to dual rounding heuristic.

The most spectacular results in Table 4.2 are the percentage of problems where

the primal rounding heuristic provided a solution and the number of iterations to

generate them. The primal rounding heuristic fails to find a feasible solution for only

19 out of 1329 problems. Out of the 98.5% of problems that the primal rounding

heuristic provided a solution for, a feasible solution is obtained for 48% and 96%

problems in only one and two iterations, respectively. This is a remarkable result

for a primal heuristic in general. Moreover, the hybrid strategy fails only for three

problems in total.

In terms of feasibility, the dual rounding heuristic provides a feasible solution for

78% of all test problems, where it provided a solution in one iteration for 33% and

in two iterations for 44% of all test problems. The primal-dual rounding heuristic

provides a feasible solution for 80% of all test problems with 65% feasible in two

iterations. The primal-dual rounding heuristic is expected to perform between the

primal rounding heuristic and the dual rounding heuristic, since the iteration budget

is essentially halved between these two except minor differences.

As discussed after introducing the primal rounding heuristic, an interesting result

can be seen from the Table 4.2 for sssd problems. The primal heuristic fails to find

a feasible solution in 10 iterations for all problems in this set. Coincidentally, the

dual rounding heuristic and also the primal-dual rounding heuristic provide a feasible

solution in only one iteration for all problems in this class.

One can conclude that there is little chance for the primal rounding heuristic to

provide a solution after two iterations. However, the dual rounding and the primal-

dual rounding heuristics may provide a solution in subsequent iterations.

Overall, there is only one problem, robust_50_51, where all four heuristics

97

Iters

Heur P.Type 1 2 3 4 5 6 7 8 9 10 Failed Total

P 647 628 28 2 3 1 1 18 1328

ck 90 90
classical 5 393 1 399
estein 9 9
pp 2 1 3
robust 136 231 24 2 3 1 1 2 400
shortfall 400 400
sssd 14 14
turbine 2 2 2 1 7
QPLIB 5 1 6

D 445 146 73 80 50 57 52 46 50 44 285 1328

ck 10 15 13 8 8 5 6 9 3 13 90
classical 140 42 19 30 15 19 16 9 18 14 77 399
estein 9 9
pp 2 1 3
robust 120 40 24 33 16 16 19 20 17 13 82 400
shortfall 142 45 17 8 11 17 10 8 12 17 113 400
sssd 14 14
turbine 4 2 1 7
QPLIB 6 6

PD 647 230 8 68 36 2 53 1 23 260 1328

ck 90 90
classical 5 138 42 18 30 15 151 399
estein 9 9
pp 3 3
robust 136 73 5 25 18 2 23 1 8 109 400
shortfall 400 400
sssd 14 14
turbine 2 4 1 7
QPLIB 5 1 6

HS 647 629 27 16 2 2 2 3 1328

ck 90 90
classical 5 393 1 399
estein 9 9
pp 3 3
robust 136 231 24 2 2 2 3 400
shortfall 400 400
sssd 13 1 14
turbine 2 2 2 1 7
QPLIB 5 1 6

Table 4.2: Number of iterations where the first feasible solution to MISOCO is

reported.

98

failed to provide a solution with the given iteration limit. The primal rounding

heuristic, the dual rounding heuristic, and the primal-dual rounding heuristic are

able to find a solution for this problem in 12 iterations, 19 iterations, and 19

iterations, respectively. To sum up, all heuristics, especially the primal rounding

heuristic, work well in practice in terms of finding solutions in a few iterations. This

is a remarkable performance for heuristics of this type.

4.3.3 Quality of the provided solutions

In this part, we evaluate the quality of the provided solution at the termination.

Notice that all heuristics may terminate early if the objective value of the generated

solution is equal to the global lower bound, hence proving its optimality. This is more

likely for the dual and the primal-dual rounding heuristics, since they keep generating

new lower bounds for the problem over iterations.

Table 4.3 shows detailed performance of the heuristics over problem types. In the

table, number of problems (#P), number of problems solved (#S), average reported

gap (RG), average true gap (TG), average number of iterations to reach the first

feasible solution (IFS), average number of MILOs solved (#MILO), average number

of SOCOs solved (#SOCO), and the total number of instances where the best solution

is provided by the primal (FR) problem, the dual (FR) problem, and the (MIDR)

problem are presented. It is apparent that the reported gap of the primal rounding

heuristic is significantly higher compared to its true gap from the optimal solution

for some problem types, estein, turbine, and QPLIB. This is mainly due to the gap

between the solution of the continuous relaxation and the solution of the MISOCO

problem.

Another interesting result is that the dual rounding heuristic provides an optimal

solution for ck problems, whenever feasible. Since (FR) fails to find a solution in

most of the cases, it is very likely that integer variables are directly related to in-cone

variables.

99

P.Type Heur #P #S RG TG IFS #MILO #SOCO FR-P FR-D MIDR

ck P 90 90 75.36% 71.67% 1.00 10.00 20.00 90 0 0
D 90 77 0.00% 0.00% 4.18 5.02 4.22 0 5 72
PD 90 90 35.94% 35.90% 1.00 7.36 6.79 37 3 50
HS 90 90 38.59% 38.54% 1.00 8.11 9.57 41 2 47

classical P 399 399 10.28% 8.56% 1.99 9.80 18.43 399 0 0
D 399 322 20.86% 19.52% 3.34 10.00 10.00 0 322 0
PD 399 248 16.44% 15.03% 3.82 9.91 6.84 117 131 0
HS 399 399 15.04% 13.42% 1.99 9.83 10.71 366 33 0

estein P 9 9 99.48% 0.09% 1.00 10.00 20.00 9 0 0
D 9 9 0.15% 0.00% 1.00 9.11 9.11 0 9 0
PD 9 9 1.69% 0.00% 1.00 10.00 10.00 2 7 0
HS 9 9 1.26% 0.04% 1.00 9.56 11.56 3 6 0

pp P 3 3 0.22% 0.13% 2.33 10.00 19.00 3 0 0
D 3 3 1.27% 1.26% 3.67 9.33 9.00 0 2 1
PD 3 3 0.00% 0.00% 3.00 10.00 8.67 2 0 1
HS 3 3 33.33% 33.34% 2.00 10.00 11.00 3 0 0

robust P 400 398 10.84% 10.34% 1.79 7.65 14.19 398 0 0
D 400 318 20.30% 19.91% 3.64 9.97 9.97 0 318 0
PD 400 291 19.43% 19.07% 2.72 8.18 5.92 215 76 0
HS 400 397 11.59% 11.09% 1.78 7.64 8.52 370 27 0

shortfall P 400 400 1.65% 1.49% 1.00 9.72 19.44 400 0 0
D 400 287 1.70% 1.56% 3.08 10.00 10.00 0 287 0
PD 400 400 1.41% 1.25% 1.00 9.76 9.76 340 60 0
HS 400 400 1.44% 1.28% 1.00 9.73 11.71 365 35 0

sssd P 14 0 - - - 10.00 10.00 0 0 0
D 14 14 0.00% 0.00% 1.00 8.29 7.29 0 6 8
PD 14 14 0.22% 0.06% 2.00 10.00 8.86 7 7 0
HS 14 14 3.33% 0.95% 4.14 10.00 8.93 7 7 0

turbine P 7 6 43.79% 4.51% 2.00 10.00 17.43 6 0 0
D 7 7 0.00% 0.00% 1.71 4.00 3.57 0 5 2
PD 7 7 0.00% 0.00% 2.00 4.86 3.57 3 2 2
HS 7 7 0.00% 0.00% 2.57 5.71 5.86 4 1 2

QPLIB P 6 5 90.15% 73.91% 1.00 10.00 18.17 5 0 0
D 6 6 70.40% 46.53% 1.00 10.00 10.00 0 6 0
PD 6 6 70.42% 46.51% 1.17 10.00 8.83 1 5 0
HS 6 6 72.69% 51.02% 1.50 10.00 11.00 1 5 0

Table 4.3: Detailed performance of the heuristics on problem types.

100

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1301

F
in

a
l

g
a

p

Problem instances

P

D

PD

HS

Figure 4.8: Comparison of gaps to the true optimal across heuristics.

See Figure 4.8 for a representation of the gaps to the true optimal solution across

all problems. Problems are sorted based on the gap provided by the heuristic, and the

plots are shifted to show failed problems. Also see Figure 4.9 for a comparison of gap

to the true optimal with the first feasible solutions versus the number of iterations to

first feasible solution. We can conclude that the primal rounding heuristic provides

smaller gaps in fewer steps despite failing to provide a solution for certain problem

types. The dual rounding heuristic usually takes more iterations, but the gap provided

is usually close to the true optimal solution, unlike the primal rounding heuristic

where many solutions provide a gap close to 100% at the first feasible solution. The

optimal strategy is likely a combination of primal and dual heuristics on average, but

it is up to the user’s knowledge to find the best combination. See Figure 4.10 for

a comparison of the gap to the true optimal with the best solution obtained versus

the number of iterations to get the best feasible solution. It is apparent that having

multiple iterations helps reduce the gap significantly. The solution provided by the

heuristic keeps getting better as we keep iterating. The HS dominates other heuristics

in terms of final gaps.

101

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10

G
a

p
 t

o
 T

ru
e

O
p

ti
m

a
l

Iteration to first feasible solution

Primal

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10

G
a

p
 t

o
 T

ru
e

O
p

ti
m

a
l

Iteration to first feasible solution

Dual

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10

G
a

p
 t

o
 T

ru
e

O
p

ti
m

al

Iteration to first feasible solution

Primal-dual

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10

G
a

p
 t

o
 T

ru
e

O
p

ti
m

a
l

Iteration to first feasible solution

Hybrid

Figure 4.9: Gap to the true optimal versus the number of iterations to first feasible

solution for each heuristic.

102

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10

G
a

p
 t

o
 T

ru
e

O
p

ti
m

a
l

Iteration to best feasible solution

Primal

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10

G
a

p
 t

o
 T

ru
e

O
p

ti
m

a
l

Iteration to best feasible solution

Dual

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10

G
a

p
 t

o
 T

ru
e

O
p

ti
m

al

Iteration to best feasible solution

Primal-dual

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10

G
a

p
 t

o
 T

ru
e

O
p

ti
m

al

Iteration to best feasible solution

Hybrid

Figure 4.10: Gap to the true optimal versus the number of iterations to best feasible

solution for each heuristic.

103

In some cases, the heuristic stops early and returns the solution obtained if the

objective value is equal to the best known lower bound. In these cases, we prove the

optimality of the solution. Table 4.4 shows the number of instances and iterations

where the true optimal solution is obtained. Note that there are instances where

an optimal solution is found but cannot be proved because the lower bound is not

sufficient, which is a common case for the primal rounding heuristic. These instances

are not included in this table.

The primal-dual heuristic is capable of finding more optimal solutions because

primal and dual rounding heuristics work together to provide upper and lower bounds,

respectively. This result verifies our intuition about the hybrid strategy.

4.3.4 Effect of iterations on solution quality

One can terminate the heuristics whenever a feasible solution is obtained. However,

taking more iterations often provides a much better solution.

See Figure 4.11 for a scatter plot of the gap of the first feasible solution and the

final solution after a maximum of 10 MILO problems.

These plots show that having more iterations helps the primal rounding heuristic

very significantly, especially for cases where the initial gap is around 100%. The effect

of multiple iterations is very significant for the primal-dual rounding heuristic, where

the gap to true optimality decreases from the 60—100% interval to 0%.

The solutions obtained after having even a few iterations are significantly better.

Even for the problems where the first feasible solution is obtained in the first iteration,

the gap to the true optimal is 33%, 64%, 51%, and 36% better when we obtain the

best known solution in the second iteration for primal, dual, primal-dual rounding

heuristics, and the hybrid strategy, respectively. Having more iterations gradually

improves the gap compared to the first feasible solution. On average, the primal

rounding heuristics provide 54% better gap, while the number is 45% for the dual

rounding and 54% for the primal-dual rounding. Overall, having multiple iterations

104

Iters

Heur P.Type 1 2 3 4 5 6 7 8 9 10 Total

P 107 13 4 3 1 2 2 132

classical 5 2 1 2 2 12
robust 93 8 3 1 2 107
shortfall 9 3 1 13

D 14 19 13 11 9 8 12 13 7 6 112

ck 10 15 13 8 8 5 6 9 3 77
estein 2 2 2 1 7
pp 1 1
robust 1 2 2 5 10
sssd 2 4 3 2 1 12
turbine 2 2 1 5

PD 107 14 13 16 2 12 3 8 9 184

ck 10 15 1 12 8 8 54
classical 5 1 6
estein 2 2
pp 1 1
robust 91 9 1 2 103
shortfall 9 4 13
turbine 2 2 1 5

HS 109 16 3 18 1 13 6 15 2 7 190

ck 15 12 1 15 1 7 51
classical 5 2 1 1 9
estein 1 1 2
robust 93 10 2 4 109
shortfall 9 3 1 1 14
turbine 2 2 1 5

Table 4.4: Number of instances where an optimal solution is found.

105

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Primal

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Dual

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Primal-Dual

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Hybrid

Figure 4.11: Final gap to the true optimal (vertical axis) versus the first gap

(horizontal axis) for each instance.

results in an average of 52% better gap at return. These numbers show the significance

of running the heuristic for a few iterations.

4.4 Conclusions and future work

In this chapter, we presented four novel rounding heuristics for MISOCO problems.

The proposed heuristics are specific to MISOCO and provide major contributions to

the existing body of research. As the first of its kind, the conic rounding heuristics

106

complement the theoretical developments in the MISOCO area and their

implementations provide a cost-efficient and novel strategy for finding feasible

solutions.

Based on our computational results on the CBLIB and QPLIB test sets, HS finds a

feasible solution for almost all test problems. This is a significant result for a heuristic

method, it would be significant even for linear optimization. Overall, using a budget

of 10 MILO problems, at least one of the heuristics found a feasible solution to 1327

out of 1328 total problems.

This study is an important step to open new research directions for future studies.

Due to the close relationship between SOCO and SDO, these heuristics can also be

applied to SDO problems. However, it might be expensive to obtain eigenvectors

for larger and dense matrices for SDO problems. Therefore, more work is needed to

develop efficiently computable versions of these heuristics for SDO problems.

107

108

Chapter 5

Effects of disjunctive conic cuts

within a branch-and-conic-cut

algorithm to solve asset allocation

problems

5.1 Introduction

The interest in MISOCO has been growing recently both in academia and industry.

Undoubtedly, the application-driven community has helped to speed up the

theoretical and computational developments on the MISOCO technology. However,

a gap exists between what the solvers offer today and the methodological advances

that we have recently achieved. To close the gap between theoretical developments

and practical implementations, we studied the effectiveness of recently developed

disjunctive conic cuts (DCC) and disjunctive cylindrical cuts (DCyC) [16–18] for

MISOCO. More specifically, we applied these cuts to the asset allocation problems

(AAPs) in a BCC framework.

The motivation for this chapter comes from the recent methodological

109

developments in the MISOCO field. These developments have shown promising

results to provide faster solutions to MISOCO problems, which are of great interest

for practitioners. Most of the theoretical effort on the MISOCO field has focused on

generating valid inequalities. As mentioned in Section 2.2.2, recent developments

include cuts for binary conic optimization [35], conic mixed-integer rounding cuts

[10], intersection cuts for mixed-integer conic quadratic sets [9], separation for conic

knapsack constraints [12], split cuts for mixed-integer conic quadratic problems [79],

and disjunctive cuts for cross-sections of the second-order cones [110]. Finally, one

of the most significant development for MISOCO solution algorithms is the

discovery of disjunctive conic cuts (DCC) and disjunctive cylindrical cuts (DCyC)

[16–18, 54]. In general, a conic cut is a cone that cuts off some non-integer solutions

but none of the feasible integer solutions. Under mild assumptions, adding DCCs

and DCyCs gives the convex hull of a closed convex set and its intersection with a

linear disjunction. These are shown to be the tightest cuts that can be generated for

such disjunctions.

Beyond the theoretical benefits of DCCs and DCyCs to obtain tighter

formulations, providing strategies for efficient implementation has utmost

importance for research on solution techniques. For this reason, we are interested in

exploring the effect of DCCs and DCyCs on real-life applications. Recent work has

laid down strong methodological foundations for this family of cuts for MISOCO

problems. However, there is much less research on implementation challenges and

the effects of DCCs and DCyCs in practice within a full MISOCO solution

framework. Even for general conic cuts, previous studies do not provide enough

computational results. In these work, cuts are added only at or very close to the

root note [10, 35] or not implemented at all [9, 11]. Turning our interest to DCCs,

Góez [54] provides preliminary results where DCCs are added both at the root node

and inside the BCC tree. Presented by Bonami et al. [29], constrained layout

problems have convex quadratic constraints, which can be written as a SOC. Góez

110

[54] showed that binary variables in these convex quadratic constraints can be used

as a disjunction to generate DCCs, which are tighter than the original constraint.

Generating these DCCs and replacing the original constraints with them as a

preprocessing step reduced the solution time significantly in almost all cases. The

author also presented experiments with randomly generated problems, where DCCs

are added within the BCC tree by using simple decisions. Promising results of these

experiments motivated us to investigate further for a better management of DCCs

within a BCC framework. See Bulut [31] for the implementation of various conic

cuts inside a BCC framework based on polyhedral relaxations.

Our goal in this chapter is to enhance the understanding on how to use the novel

DCC technology. In general, one can generate DCCs and DCyCs by using the

disjunctions obtained by the interim solutions in a BCC algorithm. We demonstrate

the effectiveness of DCCs and DCyCs within a BCC framework. For this purpose,

we revisit the design of most major components of a BCC framework: branching,

cutting, and cut management. Also, we explore different decisions in these elements

to maximize the benefit gained from the DCCs and DCyCs.

Developing a general purpose BCC algorithm that includes DCCs and DCyCs

requires detailed work on the implementation. Therefore, we limit the scope of this

chapter to a specific problem class. We derive DCCs and DCyCs for AAPs, which

are variations of Markowitz’ classical portfolio optimization model [75]. We study

an AAP formulation that minimizes the risk of the portfolio while satisfying a

prescribed return level. The practical setting of this problem for different markets

requires some additional constraints. For instance, in the business market,

companies often buy stocks in large batches for liquidity [28]. Such constraints

require integer variables in the optimization model. Bonami and Lejeune [28] and

Saglam [93] reviewed various similar constraints which arise in portfolio

optimization that require integer and binary variables. In all these cases, the

common denominator is that the resulting optimization models are MISOCO

111

problems. Here, we present results for four of these MISOCO problems. These

results can be extended to other problems formulated as MISOCO. Benefits of using

these cuts in a BCC framework can be observed as lower number of nodes in the

BCC tree, lower total solution time, and higher numerical accuracy in some cases.

The rest of the chapter is structured as follows. In Section 5.2, we provide

background information about mixed-integer AAP models. This is followed by the

description of our BCC framework and the cut generation process in Section 5.3.

Cut addition, branching, and searching strategies for our BCC framework are also

discussed in Section 5.3. We present our experiments, computational results, and

their interpretation in Section 5.4. Finally, we summarize our findings in Section

5.5.

5.2 MISOCO for AAPs

The classical Markowitz mean-variance portfolio optimization problem for n risky

assets is formulated as follows:

minimize: x>Qx

subject to: a0x0 + a>x = r

x0 +
n∑
i=1

xi = 1

xi ≥ 0 i = 1, . . . , n,

(5.1)

where Q ∈ Rn×n is a positive definite variance-covariance matrix, r is the target return

level from the investment, a ∈ Rn is a vector of the expected returns ai for each risky

asset, and x ∈ Rn represents the proportion of the capital invested in each risky asset.

Also, x0 and a0 denote the fraction of capital invested in the money market and its

expected return level, respectively. Money market investment is usually a low-return

but risk-free investment type [28].

The AAP is a variation of the portfolio optimization problem, where one

allocates a given amount of capital into various types of investments, such as

112

equities, bonds, currencies, and cash to achieve a certain return level while

minimizing the risk. Notice that until now there are no discrete variables in the

problem formulation. In the rest of this section, we describe three different AAP

formulations that require discrete variables in the problem formulation, as shown by

Bonami and Lejeune [28], Cornuejols and Tütüncü [38], and Saglam [93].

5.2.1 Round-lot-constrained AAP

Our first type of mixed-integer AAP formulation appears due to a special set of

constraints, called round-lot or minimum transaction lot constraints [28, 74]. In

financial settings, large investors often buy risky assets in large batches, which are

called even lots. In the business market, trading even lots is considered to be easier

than trading small batches.

Before presenting the model, we need to define the relation between the even lots

and the vector x. Denote ci as the fixed batch size and gi as the market value of each

asset i. Let d denote the total capital, and define variable zi as the number of even

lots needed to buy of asset i. Then, the round-lot relationship between xi and zi is

defined as

xi = cigi
d zi, i = 1, . . . , n, (5.2)

which defines the proportion of capital invested in asset i in terms of zi. When

discussing this problem, Bonami and Lejeune [28] simplified the presentation by

considering a common batch size for all assets.

After adding the round-lot restriction (5.2) to the models, the expected return

may not be satisfied as an equality. However, one can still aim at a return level r that

113

is a lower bound for the selected portfolio. As a result, we can write the problem as

minimize: x>Qx

subject to: a0x0 + a>x ≥ r

x0 +
n∑
i=1

xi = 1

xi = cigi
d zi i = 1, . . . , n

0 ≤ xi ≤ 1 i = 1, . . . , n
z ∈ Zn+.

(5.3)

Here the constraints xi ≤ 1, i = 1, . . . , n are redundant, but they are required when

allowing a shorting operation. Shorting is a common practice by which investors can

sell financial instruments that they do not own and purchase them at a later time.

This practice is applied if the investor expects a decrease in value of the investment.

In (5.3) one can allow shorting by dropping the non-negativity on x, the investment

fractions, and on z, the number of batches purchased.

We may simplify the discussion further by using (5.2) to express problem (5.3) all

in terms of z. Let b ∈ Rn be defined as

bi = cigi
d , i = 1, . . . , n,

which is the constant batch size for investment in asset i due to the round-lot

constraint. Let Q̂ = diag(b)> ·Q · diag(b), and allow us to introduce a new variable t

to move the quadratic objective function to the constraints set. Moreover, note that

x0 = 1−
n∑
i=1

xi,

thus x0 can be substituted out from the formulation. Also, let â = −diag(a)b + a0b,

and r̂ = a0 − r; then we obtain the following equivalent formulation of (5.3):

minimize: t

subject to: â>z ≤ r̂
b>z ≤ 1

0 ≤ bizi ≤ 1 i = 1, . . . , n
z>Q̂z ≤ t

z ∈ Zn+.

(5.4)

114

Note that formulation (5.4) may be written as an equivalent MISOCO problem

by replacing the convex quadratic constraint z>Q̂z ≤ t by its conic equivalent. Since

matrices Q and Q̂ are symmetric and positive definite, we can replace Q̂ by Q̂1/2Q̂1/2,

where Q̂1/2 is the symmetric square root of matrix Q̂. If we use the equivalences

z>Q̂z =
∥∥∥Q̂1/2z

∥∥∥2
, t =

(
t+ 1

2

)2

−
(
t− 1

2

)2

;

then constraint z>Q̂z ≤ t can be replaced by its second order conic form of

√∥∥∥Q̂1/2z
∥∥∥2

+
(
t− 1

2

)2

≤ t+ 1
2 .

We use this transformation in the rest of this section whenever we are going to rewrite

a problem as an equivalent MISOCO.

5.2.2 Cardinality and diversification-constrained AAP

Investors may want to limit the number of assets to be invested in for various reasons

such as to avoid costs of monitoring [47] and transactions. In this case, the investor’s

aim is to find the best asset allocation that allows a certain return level to be obtained

while keeping the focus on a fixed number of assets. One’s motivation to restrain from

investing in too many assets at the same time is to avoid situations where a small

amount is invested in an asset. This might bring new costs, such as tracking, that

are often neglected in the portfolio optimization settings. Bienstock [26] shows that

cardinality-constrained quadratic optimization problems are NP-hard.

We model cardinality-constrained AAPs by introducing new binary variables z to

the original model (5.1). We ignore the money market investment for simplicity. After

moving the objective function into the constrains as we did earlier, and requesting a

115

minimum return level as a lower bound, we obtain

minimize: t

subject to: a>x ≥ r
n∑
i=1

xi = 1

xi ≤ zi i = 1, . . . , n
n∑
i=1

zi ≤ k

x>Qx ≤ t

xi ≥ 0 i = 1, . . . , n
zi ∈ {0, 1} i = 1, . . . , n,

(5.5)

where k is the number of assets to invest in.

A refinement on (5.5) may be to limit the number of assets bought that are related

to each other, which is a common practice in AAPs. This is usually done by classifying

assets into sectors or countries and imposing a minimum and maximum number of

stocks to invest in for each of these classes. In this way, an investor can prevent buying

too many stocks from the same sector, which are known to be related beforehand.

This is known as the diversification constraint; it is a general form of the cardinality

constraint that considers various subsets. For a subset N̄j ⊆ N = {1, . . . , n} and

cardinality kj, we represent diversification constraints as

∑
i∈N̄j

zi ≤ kj ∀j, (5.6)

where ∪∀jN̄j = N . Thus, a cardinality constraint is simply a specialized

diversification constraint when N̄j = N .

We now present two alternatives to reformulate (5.5) to take advantage of the

DCCs and DCyCs technology. The first alternative is to replace the linear cardinality

constraint by the convex quadratic constraint:
n∑
i=1

z2
i ≤ k. (5.7)

116

Observe that, since z is a binary vector, this reformulation does not change the feasible

region of the problem, which gives us a variation of the cardinality-constrained AAP.

Hence, we have the following equivalent reformulation for the AAP with a quadratic-

cardinality constraint:

minimize: t

subject to: a>x ≥ r
n∑
i=1

xi = 1

xi ≤ zi i = 1, . . . , n
n∑
i=1

z2
i ≤ k

x>Qx ≤ t

xi ≥ 0 i = 1, . . . , n
zi ∈ {0, 1} i = 1, . . . , n.

(5.8)

Some of the assets in (5.7) can be left linear in the constraint to obtain the following

general form for quadratic-cardinality constraint:∑
i∈U

z2
i +

∑
i∈N\U

zi ≤ k, (5.9)

where U ⊆ N . The same, equivalent quadratic reformulation can be applied to each

of the diversification constraints (5.6).

The second alternative is obtained when any or all of the bound constraints xi ≤ zi

are replaced by x2
i ≤ zi. Hence, we obtain the following reformulation:

minimize: t

subject to: a>x ≥ r
n∑
i=1

xi = 1

x2
i ≤ zi i = 1, . . . , n∑

i∈U

z2
i +

∑
i∈N\U

zi ≤ k

x>Qx ≤ t

xi ≥ 0 i = 1, . . . , n
zi ∈ {0, 1} i = 1, . . . , n.

(5.10)

117

This variation is equivalent to (5.5) due to the constraint that variables zi are binary.

In the next section; we show how one can generate DCCs for the alternative

quadratically-constrained reformulations (5.8) and (5.10).

5.3 Methodology

We present our methodology to solve the AAPs that were introduced in the previous

section. We begin with discussing the components of our BCC framework. Then, we

describe the cut generation procedure that is used within the BCC framework. Next,

we present the cut generation strategies we use for our experiments followed by the

branching and searching strategies we test.

5.3.1 Branch-and-conic-cut framework

There are several options to solve AAPs from both the academic side [98, 103] and the

commercial side [7, 61, 64]. Unfortunately, none of the off-the-shelf commercial solvers

provide a user API to implement nonlinear cuts in their branch-and-cut algorithms.

For these reasons, we developed our own BCC framework.

Our implementation is based on the BCC framework shown in Algorithm 2. In

the current implementation, we use the IPM solver of MOSEK [7] to solve the SOCO

subproblems in the tree formed by the branching process. It is well known that

IPMs solve SOCO relaxations in polynomial time. Our main focus in this work is the

implementation of DCC and DCyCs in the BCC framework, but note that Algorithm

2 allows the use of other types of conic cuts in the literature. As a subset of conic

cuts, linear cuts from the MILO literature can be also used here.

5.3.2 Disjunctive conic and cylindrical cut generation

In this subsection, we show how DCCs and DCyCs may be generated for the problems

introduced in Section 5.2. Our goal is to provide the procedure to generate the cuts

118

for a subproblem in Step 12 of Algorithm 2. We follow the cut generation procedures

described by Belotti et al. [16, 17, 18] and Góez [54].

DCyCs for round-lot-constrained AAP

We focus here on how to generate DCyCs for problem (5.4) by using the quadratic

constraint

z>Q̂z ≤ t. (5.11)

Let z∗, t∗ be the optimal solution to the continuous relaxation of a subproblem. For

any asset i = 1, . . . , n where z∗i 6∈ Z+, we can write the following disjunction:

zi ≤ bz∗i c ∨ zi ≥ dz∗i e . (5.12)

Let us introduce the following notation:

w =
[
t

z

]
, P =

[
0 0
0 Q̂

]
and p =

[
−1/2
0n×1

]
.

Hence, we can rewrite (5.11) in the quadric form as

w>Pw + 2p>w ≤ 0 (5.13)

Inequality (5.13) defines a paraboloid because matrix P has exactly one non-positive

eigenvalue, which is zero. Since the quadratic constraint is a paraboloid, we can

generate disjunctive cylindrical cuts as described in [16–18, 54].

To simplify the DCyC derivation, we transform the quadric into a standard

representation. Using eigenvalue decomposition, the matrix P may be decomposed

into P = V >DV , where D is a diagonal matrix, that is built with the eigenvalues of

P , and V is an orthogonal matrix. Note that D is singular because the first element

in its diagonal is zero. Let

D̄ =
[

1 0
0 D2:n+1

]
and J =

[
0 0
0 I

]
;

119

where D̄ is simply the matrix obtained after the first diagonal element of D is replaced

by 1. By doing that, we obtain a non-singular matrix D̄. Let V = D̄1/2V ; then

inequality (5.13) can be rewritten as

w>V
>
JV w + 2

(
p>V

−1
) (
V w
)
≤ 0.

Let u = V w and p̄ =
(
p>V

−1
)>

, which allows us to rewrite (5.11) as

u>Ju+ 2p̄>u ≤ 0. (5.14)

Now, consider the parallel hyperplanes

A= =
{
w ∈ Rn+1 | e>i w = bz∗i c

}
and B= =

{
w ∈ Rn+1 | e>i w = dz∗i e

}
,

where ei is the (i + 1)th unit vector, taking into account that the first position

belongs to variable t in w. Note that A= and B= are the two hyperplanes that

define the boundaries of disjunction (5.12). To keep A= and B= consistent with the

standardization of (5.11), we may use the equality u = V w. Hence, w = V
−1
u, and

A= and B= may be written in terms of u as

A= =
{
u ∈ Rn+1 | e>i V

−1
u = bz∗i c

}
and B= =

{
u ∈ Rn+1 | e>i V

−1
u = dz∗i e

}
,

where eiV
−1 is the i+ 1th row of V −1. Let h =

(
e>i V

−1
)>

, and

a = bz
∗
i c
‖h‖

and b = dz
∗
i e
‖h‖

.

Our final step is to identify our DCyC in the uniparametric family of quadratics

Q(τ) that have the same intersection with A= ∪B= and quadric (5.14) [16], which is

characterized by

P (τ) = J + τ
h

‖h‖

(
h

‖h‖

)>
, p(τ) = p̄− τ a + b

2
h

‖h‖
, p(τ) = τab.

Note that Pwc = −p is not solvable and that the first element of ei is always zero.

Therefore, by setting τ = −1, we obtain a cylinder in the family of quadrics.

Specifically, the parabolic cylinder

u>P (−1)u+ 2p(−1)>u+ p(−1) ≤ 0, (5.15)

120

which cuts off the solution of the continuous relaxation. The cylinder (5.15) is a

DCyC, and it may be written in terms of original variables as

w>V
>
P (−1)V w + 2p(−1)>V w + p(−1) ≤ 0.

Our round-lot-constrained asset allocation subproblem after a single DCyC is

added becomes

minimize: t

subject to: a>z ≤ r̂
b>z ≤ 1

0 ≤ bizi ≤ 1 i = 1, . . . , n
z>Q̂z ≤ t[

t

z

]>
V
>
P (−1)V

[
t

z

]
+ 2p(−1)>V

[
t

z

]
+ p(−1) ≤ 0

z ∈ Zn+.

Notice that the costly part of this cut generation is the eigenvalue decomposition of

Q̂ at the beginning of the operation. However, the same eigenvalue decomposition

can be used for all cuts that are generated on this constraint. Therefore, in our

implementation, we apply the eigenvalue decomposition only once and use it

everywhere in the BCC tree.

To illustrate DCyCs on round-lot-constrained AAPs, consider the constraint[
z1

z2

]> [
8.529 5.850
5.850 8.805

][
z1

z2

]
≤ t,

which is in the form of (5.11)1. Solving the continuous relaxation of the corresponding

round-lot-constrained AAP, we get the optimal solution z1 = 0.286, z2 = 0. Using the

parallel disjunction

z1 ≤ 0, ∨ z1 ≥ 1

1Approximate numbers up to three digits precision are given here.

121

and following the procedure described in this section, we obtain the following the

DCyC: [
z1

z2

]> [
3.887 5.850
5.850 8.805

][
z1

z2

]
+ 4.642z1 ≤ t.

Adding this DCyC to the problem formulation cuts off the continuous relaxation

solution. A 3D plot of the original constraint and the corresponding DCyC of this

example is given in Figure 5.1. Figure 5.2 shows the projection of the quadratic and

DCC onto the t− z1 plane.

Figure 5.1: Illustrative DCyC on the quadric of an instance of a round-lot-constrained

AAP.

DCC for quadratic-cardinality-constrained AAP

For the AAP with quadratic-cardinality constraint (5.8), we can define the

disjunctions on the binary variables z. Let z∗ be a solution in a subproblem, where

z∗i 6∈ {0, 1}, for some i ∈ {1, . . . , n}. We use here a parallel disjunction that is

122

Figure 5.2: Projection of original quadratic and DCyC onto the t− z1 plane. DCyC

cuts off some of non-integer points.

defined as

zi ≤ 0 ∨ zi ≥ 1.

Let us write the constraint
∑n

i=1 z
2
i ≤ k as

zT z − k ≤ 0.

Notice that this time our quadric is a ball around the origin with radius
√
k. Hence,

we can generate a DCC by using the uniparametric family of quadrics in [16], which

in this case is given by

P (τ) = I + τei(ei)>, p(τ) = −τ2ei, p(τ) = −k,

where ei is a unit vector with 1 at the ith position, and 0 elsewhere.

To find the DCC for this constraint, we need to solve the following equation:

p(τ)>P (τ)p(τ)− p(τ) = 0, (5.16)

123

which is a quadratic equation in terms of τ . There are two cones in this family,

and the root of (5.16) with the larger value gives us the DCyC that tightens the

formulation [16–18, 54]. Using that result we obtain a valid cut for this case when

τ = 2k
(√

1− 1
k
− 1
)
.

Finally, we can write our DCC as follows:

z>z + τz2
j − τzj ≤ k.

Figure 5.3 illustrates the intersection of the quadratic cardinality constraint z2
1 +

z2
2+z2

3 ≤ 2 and the generated DCC, which is based on the disjunction z1 ≤ 0 or z1 ≥ 1.

Note that since the z variables are binary, there are a total of n such DCCs.

Figure 5.3: DCC on the quadratic cardinality constraint z2
1 + z2

2 + z2
3 ≤ 2.

Keeping some of the terms linear in the quadratic cardinality constraint (5.9)

allows us to derive DCCs for cardinality-constrained AAP of various dimensions. An

124

important observation is that if we have only one asset in the portfolio (that is, n = 1)

or if we keep all but one of the assets linear, then the DCC we obtain is simply the

original linear cardinality constraint (5.5).

Diversification constraints are similar to the case of cardinality constraints. This

case is equivalent to having multiple cardinality constraints on smaller subsets. We

follow the DCC generation procedure described by Belotti et al. [16, 17, 18] and Góez

[54] for any asset i that belongs to country `, on the diversification constraint∑
j∈N̄`

z2
j ≤ k`

by using the disjunction zi ≤ 0 or zi ≥ 1. The DCC that corresponds to this case is∑
j∈N̄`

z2
j − 2z2

i + 2zi ≤ k`.

DCCs for quadratic-bound-constrained AAP

The use of quadratic bound constraints allows for a simplified process to derive a DCC.

Similar to the previous sections, we start with a disjunction on a binary variable zi.

We generate our DCC on the quadratic cardinality constraint:[
zj

xj

]> [
0 0
0 1

][
zj

xj

]
+ 2

[
−0.5

0

][
zj

xj

]
≤ 0.

The shape of the quadric is paraboloid, since since the coefficient matrix of the

quadratic term in the constraint has an eigenvalue 0, and the system Pw = p is not

solvable for w where

P =
[

0 0
0 Σ̂

]
and p =

[
−1/2
0n×1

]
.

Since we have a finite intersection with the parallel hyperplanes zj = 0 and zj = 1,

the DCC in this case is

x2
j − z2

j ≤ 0,

which is illusrated in Figure 5.4. This constraint is equivalent to the two linear

constraints xj ≤ zj and xj ≤ −zj.

125

Figure 5.4: DCC for quadratic-bound-constrained AAP.

Note that the DCC makes the quadratic-bound constraints redundant in this

problem formulation. Similar to the previous case, there are total of n such DCCs

that can be generated in this way. In the actual implementation, the redundant

constraints are removed.

5.3.3 Cut management strategies

Adding DCCs and DCyCs requires many decisions inside the BCC algorithm. First,

we need to decide when and how many cuts are inserted to the subproblems. Second,

we need to decide about the order of cut generation.

We consider five different cut application strategies in our BCC framework.

• The first strategy is to disable all cut generation procedures, hence solving the

problem simply with a pure B&B method. This solution strategy is considered

as the base case, and all improvements obtained with DCCs and DCyCs are

126

measured against this strategy. This method is abbreviated as B&B in the

numerical results.

• The second cut application strategy is to add a fixed number of cuts to the

subproblems until a cut limit is reached on a subproblem. In this method,

the order of the cuts that is applied to the subproblem is determined with an

ordering rule. Details of this rules are presented in Section 5.3.4. This method

is abbreviated as BCC-F in the numerical results.

• The third strategy is to keep adding DCCs and DCyCs as long as the

objective is improving sufficiently and then solving the relaxations iteratively.

The improvement in the objective is compared to a predefined parameter ε. In

our experiments, we chose ε = 10−3. If the procedure fails to obtain an

improvement in the objective value, then the framework proceeds with

branching. This method is abbreviated as BCC-I in the numerical results.

• Our fourth method is to add all possible DCCs and DCyCs at the root node. We

use this rule for cardinality-constrained and bound-constrained AAPs, where

all possible DCCs can be easily obtained at the root node. This method is

abbreviated as BCC-R in the numerical results.

• Our final cut application strategy is to produce all the available cuts at a

subproblem and then order them in terms of their depth. We use the violation

in the generated cut as a measure of its depth. This method is abbreviated as

BCC-D in the numerical results.

In the implementation, all the cuts that are generated at a subproblem are inherited

by their children. We limit the total number of DCCs in a subproblem by 10. As

mentioned earlier, an important decision in the implementation is to choose which

DCCs and DCyCs to be added to the subproblem. We ranked variables to branch and

generate a cut using four different rules. These rules are presented in the following

subsection.

127

5.3.4 Branching and searching

Branching is one of the most important decisions inside the BCC algorithm. Here we

list four different rules for selecting the index î of the variable that will be used for

branching. We use these branching decision rules in our implementation.

Our first branching method is most fractional (MF) branching, which is borrowed

from the MILO literature. In this method, one branches using the integer variable

whose fractional part is closest to half [3]. This branching rule may be formulated as

î = arg max
i:zi 6∈Z+

{min {dzie − zi, zi − bzic}} .

Our second branching rule is called highest cost (HC) branching, where the variable

with the highest return rate (a) is chosen. We propose this branching rule due to our

observation that assets with higher return rates have more impact on the solution

when they are fixed. The rule is defined as follows

î = arg max
i:zi 6∈Z+

ai.

The next two branching rules were proposed by Bonami and Lejeune [28] for

portfolio optimization problems that have integer variables. The third branching rule

uses for branching the asset that has the greatest variance Qii. This rule is called

idiosyncratic risk branching (IR), and is defined as

î = arg max
i:zi 6∈Z+

Qii.

The fourth rule is called portfolio risk (PR) branching. The main idea in this

branching rule is to calculate a score for each variable based on the current condition

of the problem. Let us simplify the portfolio optimization problem as

minimize: z>Q̂z

subject to: Az ≤ b

z ≥ 0,
(5.17)

128

where the corresponding Lagrangian of (5.17) is

Lλ(z) = z>Q̂z + λ>(Az − b).

Displacement in z changes the Lagrangian as much as

Lλ(z + ε)− Lλ(z) = (z + ε)>Q̂(z + ε) + λ>(A(z + ε)− b)− z>Q̂z − λ>(Az − b)

= ε>Q̂ε+
(

2z>Q̂+ λ>A
)
ε.

At an optimal solution z∗, Karush-Kuhn-Tucker conditions satisfy

∇Lλ(z∗) = 2(z∗)>Q̂+ λ>A = 0,

and hence

Lλ(z∗ + ε)− Lλ(z∗) = ε>Q̂ε.

Suppose we have a fractional value for a variable zi. Branching on zi creates two

branches and for branches with zi ≤ bz∗i c and zi ≥ dz∗i e, the changes in the Lagrangian

are

δ−j = (z∗i − bz∗i c)e>i Q̂(z∗i − bz∗i c)ei = (z∗i − bzic)2Qii

δ+
i = (dz∗i e − z∗i)e>i Q̂(dz∗i e − z∗i)ei = (dzie − z∗i)2Qii,

respectively, where ei is the ith unit vector. The final score associated with variable

zi is calculated as the combination of these two values, such as

δi = αmin
{
δ−i , δ

+
i

}
+ βmax

{
δ−i , δ

+
i

}
,

where α and β are weights of the minimum and the maximum of δ−i and δ+
i ,

respectively. Finally, we choose the variable with the highest δ:

î = arg max
i:zi 6∈Z+

δi.

We use these same rules both for branching and also for choosing a variable to generate

DCCs and DCyCs.

129

The last component we need is the searching rule. In the BCC algorithm, searching

refers to choosing which subproblem to be processed next. Searching has also strong

implications on the performance of a BCC implementation. We use the following

searching rules, which are based on well-known searching strategies: depth-first with

a priority to upper bound constraints, depth-first with a priority to lower bound

constraints, and best-first.

5.4 Computational results

In this section, we analyze the effects of DCCs on the BCC tree size and the solution

time. For this purpose, we present experiments with various settings to identify the

benefits of the DCCs.

For experiments, we implemented the method described in Hirschberger et al. [63]

to generate random portfolio data sets. These sets have been shown to very close to

realistic instances in the original study. We set the expected value of the covariance

of assets to 2 · 10−3, their standard deviation to 4 · 10−6, and the expected value of

the variance of assets to 0.1 as used in the original paper. An open-source script that

generates random portfolio data sets are available online [34]. Table 5.1 gives a list

of the problem parameters used in these tests.

Data sets N_500_1, N_500_2, N_500_3, N_500_4, N_500_5,
N_500_6, N_500_7, N_500_8, N_500_9, N_500_10

Assets 25, 50
Capital 50000, 100000
Return 2%, 3%, 4%, 5%, 6%

Cardinality 2, 3

Table 5.1: Problem parameters

The discussion of our results is organized as follows. First, we discuss the effects

130

of DCCs on the BCC tree size and the lower bound that was obtained in the nodes.

Then we compare the various branching, cutting, and searching rules in order to

choose the default settings for our BCC solver. Later we compare the cut application

strategies. We close this section with a comparison of a pure B&B, our BCC, and a

commercial solver in terms of tree size.

5.4.1 The effect of DCCs on the objective value and the BCC

tree

Our first set of experiments demonstrates the effects of DCCs on the nodes of the BCC

tree. As discussed earlier, DCCs are used to tighten a given MISOCO formulation.

Therefore, it is expected that adding DCCs to the nodes of the BCC tree will improve

the lower bound in a given node. However, adding cuts to the formulation is an

expensive operation. For that reason, it is crucial to look for a systematic way to

select which cuts to add to the subproblems. The goal of these experiments is to

provide insights on which indicators may be used to identify which DCCs should be

added in the BCC tree.

The first indicator we explored is the depth of the DCCs. In the round-lot AAPs,

we use the constraint (5.11) to derive our DCCs, which are obtained by introducing

an auxiliary variable and moving the objective function to the constraints. In this

case, our results show that the depth of the added DCC is positively correlated to the

improvement on the optimal objective value, as is shown in Figure 5.5. In particular,

Figure shows an almost linear relation between the improvement on the objective

value of a subproblem with the depth of the DCC. It is important to notice that this

is true provided that the constraint (5.11) is active at the optimal solution.

The second indicator of the DCC performance we explored is the level at which

the cut is generated in the BCC tree. Recall from our methodology description in

Section 5.3 that we are using IPMs for solving the node relaxations. As a consequence,

the addition of a DCC or DCyC may increase the solution time for a subproblem as

131

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.005 0.01 0.015 0.02 0.025 0.03

Im
pr

ov
em

en
t i

n
th

e
ob

je
ct

iv
e

Cut depth

Clic
k t

o buy N
OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om Clic

k t
o buy N

OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om

Figure 5.5: Improvement on the objective value versus depth of cuts for round-lot-

constrained AAPs.

explained in the following paragraph. This effect can be observed in our experiments.

In particular, adding DCCs near the root node increases the solution time for all

subproblems, and hence the BCC solution time. Moreover, DCCs added in the lower

levels have often better impact on the improvement in the lower bound. Figure 5.6

shows how improvements in the objective value relates to the node level at which a

DCC is added. In that figure we observe that DCCs added in the upper levels are to

be generally less effective for improving the objective value. This can be explained

132

by that the solution space is usually larger in upper levels, hence the effect of the

cut is usually minimal. For this reason, it is better to add DCCs in the lower levels

of the BCC over adding them in the upper levels. On the other hand, adding cuts

near the root node often decreases BCC tree sizes significantly. Consequently, our

cut generation procedure starts at the root node for the BCC-F method. To lessen

the possible increase of the solution time due to new conic constraints, we limited the

number of DCCs added to the subproblems.

0

0.005

0.01

0.015

0.02

0.025

0.03

0 5 10 15 20 25 30 35 40 45

Im
pr

ov
em

en
t i

n
th

e
ob

je
ct

iv
e

Node level

Clic
k t

o buy N
OW!PD

F-XChange Product

w
w

w.tracker-software
.c

om Clic
k t

o buy N
OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om

Figure 5.6: Improvement on the objective value versus node level of generated cuts

for roundlot constrained AAPs.

The third indicator we need to consider is the dimension of the DCCs. As discussed

earlier, some of the assets in the cardinality-constrained AAPs can be left linear for the

133

quadratic-cardinality constraint. Notice that DCCs for cardinality-constrained AAPs

are full in size; hence the number of quadratic terms in the cardinality constraint

gives the dimension of the DCC, as well. We varied the number of assets that are left

linear in the quadratic-cardinality constraint, which provided us DCyCs with various

dimensions. Figure 5.7 shows that the total solution time increases with the number

of quadratic terms in the cardinality constraint. Although we have a single type of

DCCs for this setting, one must aim to choose lower-dimensional DCCs to minimize its

effects on solution time. As mentioned by Pólik and Terlaky [90], iteration complexity

of IPMs is independent of the dimension of the cones. However, cost per iteration is

significantly affected by the dimension. Although adding a small cone versus adding

a big cone has the same complexity in theory, adding a big cone leads to longer

arithmetic operations, which eventually increases solution time in practice. Since our

approach focuses on practice, we were careful in terms of adding a high number of

large DCCs in the BCC tree. On the other hand, adding small DCCs is generally a

good practice that does not affect IPM solution time significantly.

We may summarize our conclusions from the results presented in this subsection

as follows. First, the depth of a DCC is an important indicator for predicting its effect

on the lower bound for problems where the objective is used for generating DCCs.

Second, DCCs are more effective when they are added at the lower levels of the BCC

tree. However, they often result in smaller tree sizes when they are added closer to

the root node. Hence, to maximize the benefit from the DCCs, one should add them

closer to the root node of a BCC tree when possible. Third, the dimension of a DCC

is an important indicator of its effect on solution time. It is imperative to be more

selective and reluctant when adding big DCCs inside the BCC tree.

134

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So
lu

tio
n

tim
e

N
um

be
r o

f n
od

es

Quadratic terms in cardinality constraint and DCC

Number of nodes

Solution time

Clic
k t

o buy N
OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om Clic

k t
o buy N

OW!PD

F-XChange Product

w
w

w.tracker-software

.c
om

Figure 5.7: Change in solution time and number of nodes for various dimensions of

DCCs.

5.4.2 The effect of branching, cutting, and searching rules

on the BCC tree

For any given subproblem, one can either branch or generate a cut based on an integer

infeasible variable. In the solution of a subproblem, we often get multiple integer

infeasible variables. Hence, we need to decide which variable to use for branching or

cutting. Here we used the variable selection rules presented in Section 5.3.4 and we

are interested on exploring their effects on the solution process.

Before comparing the branching and cutting strategies, we start with identfying

the most effective searching rule for the AAPs. Table 5.2 shows the average tree size

among four different cut generation strategies. Best-first dominates other searcing

rules in terms of average BCC tree size both for B&B and BCCs with various settings.

135

Since depth-first searching rule with lower bound (≥) direction highlights the impact

of DCCs more, we use it as the default searching rule unless otherwise noted.

B&B BCC-F BCC-I BCC-D

Best-first 7421.00 7385.50 6919.75 6911.25
Breadth-first 8364.00 7508.06 7234.38 7217.25
Depth-first (≤ first) 10453.00 9305.63 10755.06 13058.00
Depth-first (≥ first) 14129.50 7626.00 11797.31 7662.75
Depth-first (closest first) 8304.00 7245.75 8698.06 7232.25

Table 5.2: Average BCC tree size with various searching strategies over cut generation

strategies for round-lot AAPs.

We are particularly interested in how branch rules and cut ordering rules affect

the BCC when solving AAPs. In Table 5.3, we compare average BCC tree sizes for all

combinations of branching and cut ordering for round-lot AAPs. For PR branching,

we chose α = 1/3 and β = 2/3 in our implementation. This selection has an empirical

basis and was based on our practical observations. From Table 5.3, we observe that

ordering branching variables with the MF rule and cuts with the HC rule gives us the

minimum tree size in most of the cases for BCC-I strategy.

Based on these results, we use MF as the default branching rule, HC as the default

cut ordering rule, and depth-first as the default searching rule. We use these settings

for the rest of the experiments, unless otherwise noted.

5.4.3 Comparison of cut application strategies

To identify which cut application strategy performs better, we tested our BCC

framework on all data sets for all AAP types. Our aim is to identify the best DCC

application strategy for different problem and DCC structures. For this purpose, we

compare performance of each strategy to a pure B&B. We ran our experiments by

136

Branching

Cutting Strategy MF HC PR IR

MF
BCC-F 3466.63 3373.77 3283.63 1140.45
BCC-I 1849.31 1092.64 3228.60 4599.07

HC
BCC-F 4984.29 3375.92 3285.63 1140.64
BCC-I 1859.00 1023.18 1691.20 1156.23

PR
BCC-F 3405.50 6692.33 2993.40 6036.86
BCC-I 1821.86 1131.17 1139.17 1081.17

IR
BCC-F 3465.50 5079.86 1689.00 3313.50
BCC-I 1849.31 1125.33 1373.31 1119.83

Table 5.3: Comparison of average BCC tree size for branch and cut ordering rules.

using the default options (MF branching, HC cutting, and depth-first searching)

and tested the five cut application strategies presented in Section 5.3.3.

The results for round-lot-constrained AAPs are summarized in Table A.1, where

we show the number of nodes in the B&B and BCC trees of various strategies. The

results show that in general the BCC methods outperform the B&B methods in

terms of the number of nodes. Notice that BCC-I and BCC-F produce similar results

for many problems. This is due to fact that BCC-I stops if there is no sufficient

improvement in the objective value. For round-lot-constrained AAPs, BCC-I and

BCC-F produce the best performance in general. The number of DCCs generated in

these methods is higher than in BCC-D. However, these extra DCCs make a great

difference in terms of tree size. For a better comparison, performance profiles of

number of nodes and solution time are presented in Figure 5.8 and 5.9, respectively.

Our expectation about DCCs reducing the BCC tree size when compared with a pure

B&B is achieved by all cut-management strategies in many of the cases. On the other

hand, an increase in the solution time is often a result of bigger subproblems in the

137

2 4 8 16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Log

2
 Scaled Performance Profile

B&B
BCC-F
BCC-I
BCC-D

Figure 5.8: Performance profile of number of nodes of cut management strategies on

round-lot-constrained AAP.

BCC tree nodes. Note that our BCC solver does not benefit from preprocessing and

warm-starting between iterative solutions. Hence we expect the difference between

solution times to be smaller when a full BCC framework is implemented.

138

2 4 8 16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Log

2
 Scaled Performance Profile

B&B
BCC-F
BCC-I
BCC-D

Figure 5.9: Performance profile of solution time of cut management strategies on

round-lot-constrained AAP.

We provide the number of nodes in Table B.1 for each data instance with all cut

management strategies. Performance profiles for cardinality-constrained AAPs are

shown in Figure 5.10 and 5.11 over two different cardinality parameters, k = 2, 3 for

two different number of assets 10 and 20. The results show that BCC-R, adding all

possible DCCs at the root node, dominates all other methods in terms of number of

nodes in the BCC tree. On the other hand, BCC methods often result worse solution

times. The main reason why solution times increase significantly compared to B&B

can be explained with the increasing number of variables when the quadratically

constrained optimization problems are converted to SOCO inside the solver. Despite

worse solution times of BCC methods compared to B&B, BCC-R works better in

139

2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Log

2
 Scaled Performance Profile

B&B
BCC-F
BCC-I
BCC-R

Figure 5.10: Performance profile of number of nodes of cut management strategies

on cardinality-constrained AAP.

terms of both the number of nodes and the solution time compared to other BCC cut

management methods. Since we have a limited number of variables and all of them

are binary, adding these cuts at the root node decreases the tree size significantly.

The success of BCC-R matches the preliminary results of Góez [54] on constrained

layout problems. Note that DCCs generated for cardinality-constrained AAPs are full

in sizes, indicating that the performance of BCC-R is significant. We conclude that

it is better to add DCCs generated for binary variables at the root of the BCC tree.

The nature of the binary variables enables us even to drop the original constraint

after adding the corresponding DCCs.

We may summarize the conclusion of these results as follows. For decreasing

140

2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Log

2
 Scaled Performance Profile

B&B
BCC-F
BCC-I
BCC-R

Figure 5.11: Performance profile of solution time of cut management strategies on

cardinality-constrained AAP.

the number of nodes, the BCC-I works best for constraints that have general integer

variables and BCC-R works best for constraints with binary variables. In the following

subsection, we compare the suggested methodology against B&B and a commercial

solver.

5.4.4 Comparison of solution approaches

To verify our observations from the previous experiments, we tested our suggested

BCC framework against a pure B&B and against a commercial solver, MOSEK.

Our aim is to show how much we can save in comparison to other methods. We

also implemented a new method, called MOSEK-R, in which DCCs are added as a

141

preprocessing operation for MOSEK. Since MOSEK does not allow conic cuts to be

added in the tree, we add these cuts at the root node. We apply this method only for

quadratic-cardinality and quadratic-bound-constrained AAPs, because of the binary

variables in the formulation.

For quadratic-cardinality-constrained AAPs, we compare B&B, BCC-R, MOSEK

and MOSEK-R, where the latter uses MOSEK after all possible cuts are added at

the root node. Figure 5.12 shows the tree size performance profile for cardinality-

constrained AAPs. These results show that DCCs reduce BCC tree size significantly

for cardinality-constrained AAPs when they are added at the root node for both

our implementation and MOSEK. Comparisons both between B&B and BCC-R and

between MOSEK and MOSEK-R reinforce this claim. BCC-R dominates other rules

in terms of number of nodes and similarly MOSEK-R dominates MOSEK in terms

of number of nodes. This example clearly illustrates the power of DCCs in terms of

decreasing BCC tree size. In terms of solution time, adding DCCs at the root node

results a much bigger problem for both our implementation and MOSEK. Figure 5.13

shows the performance profile of solution times. We observe that despite smaller BCC

tree sizes, adding these cuts increase solution times significantly. We can conclude that

even though adding DCCs at the root node has a positive impact on the number of

nodes, more research is needed for a full implementation of BCC algorithms to match

the time performance of the implementations to those we obtained from number of

nodes.

5.4.5 Effects of cuts as a preprocessing step

DCCs can be added to MISOCO problems as a preprocessing step. As mentioned

earlier, an example of this approach can be seen in Góez [54] on constrained layout

problems. These problems include quadratic constraints that have a single binary

variable. Replacing those quadratic constraints by the generated DCCs based on the

binary variable disjunctions is shown to be effective for these problems. DCCs tighten

142

2 4 8 16 32 64 128 256 512 1024

P
((

lo
g

2
 (

r p
,s

)

: 1

 s

 n
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Log
2
 Scaled Performance Profile

B&B

BCC-R

MOSEK

MOSEK-R

Figure 5.12: Performance profile of number of nodes on quadratic-cardinality-

constrained AAPs.

the formulation and reduce solution time significantly.

As an illustration, consider the oversimplified example of a quadratic-bound

constraint

x2
j ≤ zj.

Generating a DCC for this constraint brings back the original linear constraint xj ≤ zj

into formulation, which provides better numerical accuracy. To compare accuracy, we

solve the instance N_500_2 with B&B and BCC-R for k = 1 for 20 assets. We set our

integer feasibility tolerance to ε = 10−6 and solve the continuous relaxations within

BCC with MOSEK in both strategies. Table 5.4 shows that the total investment

into assets with zj < 10−6 sums up to 0.43% of the total investment when solved

with B&B. This leads to the reported optimal objective value differing by 0.84% of

143

2 4 8 16 32 64 128 256 512

P
((

lo
g

2
 (

r p
,s

)

: 1

 s

 n
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Log
2
 Scaled Performance Profile

B&B

BCC-R

MOSEK

MOSEK-R

Figure 5.13: Performance profile of solution time on quadratic-cardinality-constrained

AAPs.

the true optimal value. Adding DCCs as a preprocessing restores numerical accuracy

and allows solver to produce the true optimal solution when solving with BCC-R.

In general, we can replace the quadratic constraint that has a single binary variable

with the corresponding DCC by using binary disjunction. This preprocessing step at

the root node often decreases the number of nodes in BCC tree significantly.

144

B&B BCC-R

Asset z x z x

1 1.0000 9.9566 · 10−1 1.0000 1.0000
2 7.3701 · 10−8 2.2997 · 10−4 9.4848 · 10−11 7.2813 · 10−11

3 7.1394 · 10−8 2.2454 · 10−4 9.5056 · 10−11 7.3291 · 10−11

4 7.2651 · 10−8 2.2757 · 10−4 9.5115 · 10−11 7.2972 · 10−11

5 7.3406 · 10−8 2.2918 · 10−4 9.2110 · 10−11 7.2070 · 10−11

6 7.2862 · 10−8 2.2798 · 10−4 9.0413 · 10−11 7.1294 · 10−11

7 7.7673 · 10−8 2.3813 · 10−4 9.0883 · 10−11 7.1274 · 10−11

8 7.3302 · 10−8 2.2897 · 10−4 9.4299 · 10−11 7.3213 · 10−11

9 7.4398 · 10−8 2.3137 · 10−4 9.3464 · 10−11 7.2511 · 10−11

10 7.3573 · 10−8 2.2960 · 10−4 9.4311 · 10−11 7.3104 · 10−11

11 7.3541 · 10−8 2.2961 · 10−4 9.4877 · 10−11 7.2862 · 10−11

12 7.3655 · 10−8 2.2987 · 10−4 9.4890 · 10−11 7.2793 · 10−11

13 7.3313 · 10−8 2.2908 · 10−4 9.4824 · 10−11 7.2996 · 10−11

14 7.3843 · 10−8 2.3011 · 10−4 8.8534 · 10−11 7.0139 · 10−11

15 7.3600 · 10−8 2.2963 · 10−4 9.3668 · 10−11 7.2993 · 10−11

16 7.3150 · 10−8 2.2873 · 10−4 9.4997 · 10−11 7.2913 · 10−11

17 7.2638 · 10−8 2.2748 · 10−4 9.1394 · 10−11 7.1981 · 10−11

18 6.5921 · 10−8 2.1212 · 10−4 9.5289 · 10−11 7.3302 · 10−11

19 7.4275 · 10−8 2.3120 · 10−4 9.4550 · 10−11 7.2737 · 10−11

20 7.2710 · 10−8 2.2769 · 10−4 9.4969 · 10−11 7.3088 · 10−11

Objective 2.8764 · 101 2.9007 · 101

Table 5.4: Comparison of numerical accuracy of solution without DCCs (B&B) versus

when DCCs are added in the preprocessing (BCC-R).

145

5.5 Conclusions and future work

In this chapter, we show the effect of DCCs and DCyCs on solving AAPs. We

focused on AAP problems where integer variables appear; more specifically we

consider round-lot-constrained and cardinality-constrained AAPs. We present all

steps of cut generation for these problems, as well as the details on how we

implement DCCs in a complete BCC framework.

Our purpose for studying these problems was to illustrate the positive effect of

conic cuts for an important real-world problem. A key contribution of this chapter is

that it moves the recently developed theory of DCCs from theory to computational

practice. We illustrate how the recent theoretical development of DCCs can be used

in general-purpose MISOCO solvers. We developed a BCC framework around the

recently developed DCCs and DCyCs. The proposed software was able to solve

instances of the AAP in a reasonable amount of time and enables us to compare

various strategies in terms of managing conic and cylindrical cuts within a BCC

framework.

We solved a real-world data set and several randomly generated data sets. By

experimenting with different sized conic and cylindrical cuts, we were able to observe

their effects. We show that adding DCCs and DCyCs help reduce the BCC tree

size significantly for the majority of the experiments, although solution time may

increase in many instances because of the increasing size of the problems. We tested

several strategies for choosing and adding DCCs and DCyCs within a BCC tree. Our

experiments show that BCC-I was the best method for generating DCCs for MISOCO

formulations with general integer variables. On the other hand, BCC-R provides

significant reduction in tree size for MISOCO formulations with binary variables. We

saw significant improvements in the BCC tree size by applying DCCs when they are

ordered with the HC rule. It should be emphasized that solution time can be greatly

reduced within a full BCC framework with warm-starting, preprocessing, and cut

management.

146

Many important questions remain for future research, such as cut pooling, cut

removal, and cut recovery. Note that we have not used any DCCs or DCyCs based

on general disjunctions. The development of warm-start methods after conic cuts

are added and preprocessing techniques also remain for future research. As these

crucial elements are developed, it is possible to develop a comprehensive, efficient,

general-purpose BCC methodology to solve MISOCO problems by integrating DCCs

and DCyCs.

147

148

Chapter 6

Conclusions and future work

This thesis investigated the computational approaches for MISOCO. We presented:

• A novel warm-starting method specifically for SOCO

• Novel heuristics to obtain and improve MISOCO solutions

• Conic cut-management strategies on AAPs

Both theoretical and practical aspects of these topics are discussed in this thesis.

After presenting the basics and state of the art, we introduced a novel

warm-starting method for IPMs for SOCO problems in Chapter 3. Recent

development on generating valid cuts for MISOCO problems has demonstrated the

need for an efficient warm-starting method. We presented detailed numerical results

for the warm-starting method on the CBLIB test set. Our warm-starting method

decreased the number of IPM iterations needed by 20 to 50% based on variable

type, showing that this method is more efficient than available methods in the

literature. Fine-tuning the warm-start parameters can further increase the benefit

gained from the method. This warm-starting method for IPMs will increase

competitiveness of IPMs for MISOCO problems inside BCC frameworks against

outer-approximation methods. Although this thesis describes only warm-starting

149

after branching, it is straightforward to extend the warm-starting method after

linear and conic cuts are introduced to MISOCO problems.

Chapter 4 presented novel rounding heuristics for MISOCO problems. These

heuristics exploit Jordan algebra and provide a means of obtaining integer feasible

solutions in an inexpensive way; they are developed specifically for SOCO and are

the first of their kinds in the literature. Since heuristics are vital parts of any B&B

algorithm, our work here provided an important component of a full BCC framework.

Numerical results showed that not only are our heuristics successful at finding feasible

solutions for MISOCO problems, but they also provide a small gap to an optimal

solution. Within a reasonable time limit, at least one of the heuristics provided

a feasible solution for 1327 out of 1328 test problems that we considered. These

are significant results for a heuristic method, even for LO. We also showed that

the method can be easily translated to MIQO, and we provided the derivations.

Our work here proved that the developments on conic optimization are helpful for

future research on QO as well. Benefits obtained from these heuristics can be further

increased by allocating the budget between primal and dual heuristics based on the

problem structure.

Chapter 5 presented our investigation of applying DCCs and DCyCs for AAPs.

We managed to show that these powerful cuts can be helpful when solving real-world

problems. As expected, we conclude that the benefit obtained from these cuts depends

heavily on the problem and variable structures. We presented results that show DCCs

and DCyCs significantly reducing the number of nodes in BCC search trees for AAPs.

This work highlights the importance of the work on generating valid inequalities for

MISOCO problems. Although a specific problem type is studied here to focus on

cut-management strategies at a micro level, more work is needed to manage such

cuts for general-purpose solvers.

Due to the encouraging results presented in this thesis, we believe that developing

a full BCC framework that includes the methods and strategies presented in this thesis

150

is the next step for future research. Another future research direction is extending

the warm-starting and heuristics methods to SDO. However, more work is needed

to extend these methods to SDO efficiently, since obtaining eigenvectors for large

and dense matrices is expensive for SDO. Regarding the DCCs and DCyCs, many

important elements for developing a full BCC framework remain for future research;

such as cut pooling, cut removal, and cut recovery.

151

152

Appendix A

Round-lot-constrained AAP

experiments

Asset Dataset Capital Return B&B BCC-F BCC-I BCC-D

25 N_500_1 50000 0.02 143 143 143 143
25 N_500_1 50000 0.03 29 37 37 35
25 N_500_1 50000 0.04 2029 2029 2029 2017
25 N_500_1 50000 0.05 441 499 443 495
25 N_500_1 50000 0.06 203 209 207 209
25 N_500_1 100000 0.02 2029 2033 2029 2007
25 N_500_1 100000 0.03 203 205 205 213
25 N_500_1 100000 0.04 1215 1281 1277 1297
25 N_500_1 100000 0.05 77 81 79 69
25 N_500_1 100000 0.06 531 561 529 557
25 N_500_2 50000 0.02 4539 5757 5739 5957
25 N_500_2 50000 0.03 4289 3395 3577 1927
25 N_500_2 50000 0.04 Limit Limit Limit 22421
25 N_500_2 50000 0.05 3483 2331 1791 2215
25 N_500_2 50000 0.06 Limit Limit Limit Limit
25 N_500_2 100000 0.02 11985 Limit 24421 22427
25 N_500_2 100000 0.03 119755 Limit Limit Limit
25 N_500_2 100000 0.04 71651 Limit 41781 Limit
25 N_500_2 100000 0.05 Limit 11725 11403 11043
25 N_500_2 100000 0.06 8707 2821 2799 2539

153

Asset Dataset Capital Return B&B BCC-F BCC-I BCC-D

25 N_500_3 50000 0.02 2439 3031 3043 2733
25 N_500_3 50000 0.03 1795 1765 1755 1777
25 N_500_3 50000 0.04 625 2855 2855 2823
25 N_500_3 50000 0.05 491 145 149 1033
25 N_500_3 50000 0.06 155 151 29 29
25 N_500_3 100000 0.02 625 2855 2821 2825
25 N_500_3 100000 0.03 155 33 31 29
25 N_500_3 100000 0.04 2409 2445 2413 2139
25 N_500_3 100000 0.05 4941 3977 985 3907
25 N_500_3 100000 0.06 955 2017 2003 1301
25 N_500_4 50000 0.02 1193 1045 1059 999
25 N_500_4 50000 0.03 733 929 729 931
25 N_500_4 50000 0.04 813 711 651 739
25 N_500_4 50000 0.05 887 17 15 13
25 N_500_4 50000 0.06 943 59 55 873
25 N_500_4 100000 0.02 813 655 657 739
25 N_500_4 100000 0.03 943 103 53 871
25 N_500_4 100000 0.04 2329 2489 2527 2479
25 N_500_4 100000 0.05 1939 1645 983 937
25 N_500_4 100000 0.06 293 957 941 971
25 N_500_5 50000 0.02 355 377 377 381
25 N_500_5 50000 0.03 297 309 311 297
25 N_500_5 50000 0.04 985 873 771 819
25 N_500_5 50000 0.05 Limit 1035 1029 1005
25 N_500_5 50000 0.06 Limit 1457 1457 1491
25 N_500_5 100000 0.02 985 833 783 819
25 N_500_5 100000 0.03 1567 1453 1601 1491
25 N_500_5 100000 0.04 6093 5419 5469 5291
25 N_500_5 100000 0.05 6617 4559 5897 4401
25 N_500_5 100000 0.06 3461 6107 4947 4929
25 N_500_6 50000 0.02 2463 1143 1141 1093
25 N_500_6 50000 0.03 6705 69 69 5939
25 N_500_6 50000 0.04 Limit 35099 33471 Limit
25 N_500_6 50000 0.05 Limit 2637 3613 4261
25 N_500_6 50000 0.06 19 19 63 19
25 N_500_6 100000 0.02 35191 35139 35173 Limit
25 N_500_6 100000 0.03 19 19 19 19
25 N_500_6 100000 0.04 8823 2717 2699 2631

154

Asset Dataset Capital Return B&B BCC-F BCC-I BCC-D

25 N_500_6 100000 0.05 Limit 17063 22531 22651
25 N_500_6 100000 0.06 271 441 343 403
25 N_500_7 50000 0.02 465 457 457 431
25 N_500_7 50000 0.03 621 717 719 601
25 N_500_7 50000 0.04 77 217 77 77
25 N_500_7 50000 0.05 163 447 161 441
25 N_500_7 50000 0.06 373 479 485 669
25 N_500_7 100000 0.02 77 217 77 77
25 N_500_7 100000 0.03 373 477 281 665
25 N_500_7 100000 0.04 317 317 313 311
25 N_500_7 100000 0.05 185 295 185 183
25 N_500_7 100000 0.06 511 491 427 575
25 N_500_8 50000 0.02 203 177 175 171
25 N_500_8 50000 0.03 1645 1725 939 1705
25 N_500_8 50000 0.04 2007 2593 2589 1457
25 N_500_8 50000 0.05 1915 1573 1701 1327
25 N_500_8 50000 0.06 1531 945 907 899
25 N_500_8 100000 0.02 2007 2591 1845 1451
25 N_500_8 100000 0.03 1531 913 919 899
25 N_500_8 100000 0.04 1043 859 857 1229
25 N_500_8 100000 0.05 67 205 57 205
25 N_500_8 100000 0.06 4667 683 3725 321
25 N_500_9 50000 0.02 21 21 21 21
25 N_500_9 50000 0.03 2289 2391 2291 2229
25 N_500_9 50000 0.04 93 111 111 95
25 N_500_9 50000 0.05 Limit 1591 3081 1597
25 N_500_9 50000 0.06 1143 1805 1147 1807
25 N_500_9 100000 0.02 93 93 93 99
25 N_500_9 100000 0.03 1143 1805 1145 1801
25 N_500_9 100000 0.04 377 349 377 345
25 N_500_9 100000 0.05 1735 1749 1737 1939
25 N_500_9 100000 0.06 1093 1093 1073 1135
25 N_500_10 50000 0.02 645 691 235 445
25 N_500_10 50000 0.03 399 505 501 473
25 N_500_10 50000 0.04 341 347 331 337
25 N_500_10 50000 0.05 421 277 267 259
25 N_500_10 50000 0.06 133 133 133 113
25 N_500_10 100000 0.02 341 343 341 335

155

Asset Dataset Capital Return B&B BCC-F BCC-I BCC-D

25 N_500_10 100000 0.03 133 133 133 113
25 N_500_10 100000 0.04 71 69 69 273
25 N_500_10 100000 0.05 733 415 579 687
25 N_500_10 100000 0.06 1483 1191 1185 935
50 N_500_1 50000 0.02 51709 Limit Limit 13861
50 N_500_1 50000 0.03 16797 17051 16949 Limit
50 N_500_1 50000 0.04 2637 3603 3571 3501
50 N_500_1 50000 0.05 707 753 557 743
50 N_500_1 50000 0.06 Limit Limit 547 Limit
50 N_500_1 100000 0.02 2637 3605 2599 3501
50 N_500_1 100000 0.03 43987 Limit 203 9548
50 N_500_1 100000 0.04 85689 Limit Limit 10322
50 N_500_1 100000 0.05 2885 3971 4233 3637
50 N_500_1 100000 0.06 1323 10867 15117 Limit
50 N_500_2 50000 0.02 70923 Limit 3072 904
50 N_500_2 50000 0.03 4313 3429 4358 1274
50 N_500_2 50000 0.04 1753 Limit 4742 930
50 N_500_2 50000 0.05 Limit Limit 3222 914
50 N_500_2 50000 0.06 Limit Limit 17216 1121
50 N_500_2 100000 0.02 1753 Limit 4789 918
50 N_500_2 100000 0.03 Limit Limit 18643 1129
50 N_500_2 100000 0.04 29615 29103 4933 937
50 N_500_2 100000 0.05 70371 Limit 3187 933
50 N_500_2 100000 0.06 7615 4545 3165 1345
50 N_500_3 50000 0.02 7735 12113 11989 11821
50 N_500_3 50000 0.03 2263 2339 2323 2117
50 N_500_3 50000 0.04 1113 1827 671 1813
50 N_500_3 50000 0.05 177 163 199 161
50 N_500_3 50000 0.06 14953 14809 14581 Limit
50 N_500_3 100000 0.02 1113 1829 667 1813
50 N_500_3 100000 0.03 14953 14827 14013 10750
50 N_500_3 100000 0.04 14677 16069 17219 Limit
50 N_500_3 100000 0.05 421 383 383 809
50 N_500_3 100000 0.06 5315 4125 4107 3637
50 N_500_4 50000 0.02 1219 1225 10011 1745
50 N_500_4 50000 0.03 Limit 2573 2521 2505
50 N_500_4 50000 0.04 17001 Limit 16133 Limit
50 N_500_4 50000 0.05 9151 15117 14049 Limit

156

Asset Dataset Capital Return B&B BCC-F BCC-I BCC-D

50 N_500_4 50000 0.06 Limit 19577 19557 Limit
50 N_500_4 100000 0.02 17001 14857 16239 Limit
50 N_500_4 100000 0.03 10313 19653 19547 Limit
50 N_500_4 100000 0.04 31089 Limit Limit Limit
50 N_500_4 100000 0.05 20805 18625 18617 Limit
50 N_500_4 100000 0.06 21863 16899 16893 14429
50 N_500_5 50000 0.02 195 175 175 179
50 N_500_5 50000 0.03 1379 1495 1445 1263
50 N_500_5 50000 0.04 3119 3041 3029 2691
50 N_500_5 50000 0.05 Limit 6443 6329 5725
50 N_500_5 50000 0.06 Limit 12453 12345 11891
50 N_500_5 100000 0.02 3119 3041 2983 2689
50 N_500_5 100000 0.03 37447 12431 Limit 11891
50 N_500_5 100000 0.04 Limit Limit Limit 13836
50 N_500_5 100000 0.05 Limit Limit Limit Limit
50 N_500_5 100000 0.06 Limit Limit Limit 9753
50 N_500_6 50000 0.02 705 541 633 541
50 N_500_6 50000 0.03 1173 1719 1299 1573
50 N_500_6 50000 0.04 Limit 901 689 879
50 N_500_6 50000 0.05 2981 1351 1631 1415
50 N_500_6 50000 0.06 3175 2473 2483 2253
50 N_500_6 100000 0.02 1985 909 691 879
50 N_500_6 100000 0.03 3175 2491 2463 2251
50 N_500_6 100000 0.04 3319 3879 3871 3289
50 N_500_6 100000 0.05 53321 Limit 22447 Limit
50 N_500_6 100000 0.06 46389 13173 13115 12779
50 N_500_7 50000 0.02 5871 10409 10279 9563
50 N_500_7 50000 0.03 7897 7611 7585 6617
50 N_500_7 50000 0.04 6015 6021 6013 5691
50 N_500_7 50000 0.05 4641 5297 4919 4943
50 N_500_7 50000 0.06 Limit 4189 4175 2987
50 N_500_7 100000 0.02 6015 6017 6893 5693
50 N_500_7 100000 0.03 4447 4197 3373 2985
50 N_500_7 100000 0.04 2635 1469 763 1385
50 N_500_7 100000 0.05 753 535 529 599
50 N_500_7 100000 0.06 1141 1127 1095 1091
50 N_500_8 50000 0.02 20193 Limit Limit 12018
50 N_500_8 50000 0.03 Limit Limit Limit Limit

157

Asset Dataset Capital Return B&B BCC-F BCC-I BCC-D

50 N_500_8 50000 0.04 Limit Limit Limit Limit
50 N_500_8 50000 0.05 6227 6207 6543 6139
50 N_500_8 50000 0.06 Limit 16893 9273 Limit
50 N_500_8 100000 0.02 51047 Limit Limit Limit
50 N_500_8 100000 0.03 15827 16903 9293 14337
50 N_500_8 100000 0.04 2657 7871 13369 10451
50 N_500_8 100000 0.05 Limit Limit Limit 11551
50 N_500_8 100000 0.06 Limit 15805 17689 Limit
50 N_500_9 50000 0.02 15127 14959 14701 Limit
50 N_500_9 50000 0.03 Limit Limit Limit Limit
50 N_500_9 50000 0.04 Limit Limit Limit 10806
50 N_500_9 50000 0.05 Limit Limit Limit 8995
50 N_500_9 50000 0.06 15997 16007 15971 Limit
50 N_500_9 100000 0.02 30041 Limit Limit 10703
50 N_500_9 100000 0.03 15997 16031 17929 Limit
50 N_500_9 100000 0.04 56017 Limit Limit Limit
50 N_500_9 100000 0.05 35437 Limit Limit Limit
50 N_500_9 100000 0.06 Limit Limit Limit Limit
50 N_500_10 50000 0.02 89 2087 2079 87
50 N_500_10 50000 0.03 1583 1605 1593 1715
50 N_500_10 50000 0.04 1059 3427 3407 3375
50 N_500_10 50000 0.05 Limit 12929 12767 10114
50 N_500_10 50000 0.06 1011 15815 15929 Limit
50 N_500_10 100000 0.02 1059 3429 3403 3381
50 N_500_10 100000 0.03 1011 15829 15519 Limit
50 N_500_10 100000 0.04 2721 Limit Limit 8809
50 N_500_10 100000 0.05 2237 2335 2577 2793
50 N_500_10 100000 0.06 2017 2095 19987 1997

Table A.1: Performance of cut application strategies on round-lot-constrained AAPs.

158

Appendix B

Cardinality-constrained AAP

experiments

Asset Dataset Cardinality Return B&B BCC-F BCC-I BCC-R

10 N_500_1 2 0.02 91 93 85 87
10 N_500_1 2 0.03 89 87 79 83
10 N_500_1 2 0.04 69 53 69 49
10 N_500_1 2 0.05 53 37 45 33
10 N_500_1 2 0.06 27 23 29 21
10 N_500_1 3 0.02 272 235 243 233
10 N_500_1 3 0.03 277 235 211 227
10 N_500_1 3 0.04 234 151 173 143
10 N_500_1 3 0.05 201 89 133 83
10 N_500_1 3 0.06 147 51 71 39
10 N_500_2 2 0.02 99 91 91 89
10 N_500_2 2 0.03 91 91 83 89
10 N_500_2 2 0.04 87 89 81 87
10 N_500_2 2 0.05 83 71 75 67
10 N_500_2 2 0.06 69 43 53 41
10 N_500_2 3 0.02 272 239 247 239
10 N_500_2 3 0.03 292 239 235 239
10 N_500_2 3 0.04 280 221 233 227
10 N_500_2 3 0.05 239 169 199 165
10 N_500_2 3 0.06 217 127 147 115

159

Asset Dataset Cardinality Return B&B BCC-F BCC-I BCC-R

10 N_500_3 2 0.02 89 91 85 89
10 N_500_3 2 0.03 83 67 83 73
10 N_500_3 2 0.04 59 49 73 47
10 N_500_3 2 0.05 57 39 63 37
10 N_500_3 2 0.06 51 17 23 15
10 N_500_3 3 0.02 249 241 229 239
10 N_500_3 3 0.03 237 183 203 193
10 N_500_3 3 0.04 233 135 157 123
10 N_500_3 3 0.05 216 77 111 67
10 N_500_3 3 0.06 190 31 57 27
10 N_500_4 2 0.02 91 87 91 85
10 N_500_4 2 0.03 81 71 75 69
10 N_500_4 2 0.04 73 65 69 59
10 N_500_4 2 0.05 65 51 67 49
10 N_500_4 2 0.06 51 29 45 27
10 N_500_4 3 0.02 260 239 235 237
10 N_500_4 3 0.03 251 209 223 207
10 N_500_4 3 0.04 230 167 191 166
10 N_500_4 3 0.05 206 103 157 103
10 N_500_4 3 0.06 195 61 115 55
10 N_500_5 2 0.02 95 91 89 89
10 N_500_5 2 0.03 89 91 87 89
10 N_500_5 2 0.04 93 85 79 89
10 N_500_5 2 0.05 87 69 79 67
10 N_500_5 2 0.06 81 51 57 49
10 N_500_5 3 0.02 258 241 253 239
10 N_500_5 3 0.03 283 241 237 239
10 N_500_5 3 0.04 257 237 237 239
10 N_500_5 3 0.05 269 179 219 179
10 N_500_5 3 0.06 242 125 167 125
10 N_500_6 2 0.02 89 93 95 89
10 N_500_6 2 0.03 89 91 91 89
10 N_500_6 2 0.04 89 87 91 89
10 N_500_6 2 0.05 93 79 81 81
10 N_500_6 2 0.06 79 55 63 53
10 N_500_6 3 0.02 260 241 249 239
10 N_500_6 3 0.03 256 241 251 239
10 N_500_6 3 0.04 275 239 245 239

160

Asset Dataset Cardinality Return B&B BCC-F BCC-I BCC-R

10 N_500_6 3 0.05 267 215 225 223
10 N_500_6 3 0.06 251 155 187 147
10 N_500_7 2 0.02 89 91 91 89
10 N_500_7 2 0.03 89 91 89 89
10 N_500_7 2 0.04 82 73 79 61
10 N_500_7 2 0.05 97 53 77 45
10 N_500_7 2 0.06 43 27 41 25
10 N_500_7 3 0.02 272 239 243 239
10 N_500_7 3 0.03 271 237 233 237
10 N_500_7 3 0.04 257 176 203 175
10 N_500_7 3 0.05 232 119 171 111
10 N_500_7 3 0.06 229 51 103 43
10 N_500_8 2 0.02 89 91 87 89
10 N_500_8 2 0.03 87 91 83 89
10 N_500_8 2 0.04 88 63 63 61
10 N_500_8 2 0.05 71 51 65 47
10 N_500_8 2 0.06 59 33 49 31
10 N_500_8 3 0.02 274 241 241 239
10 N_500_8 3 0.03 265 241 215 239
10 N_500_8 3 0.04 234 165 195 155
10 N_500_8 3 0.05 218 115 157 115
10 N_500_8 3 0.06 204 89 97 65
10 N_500_9 2 0.02 89 91 97 89
10 N_500_9 2 0.03 89 91 91 89
10 N_500_9 2 0.04 77 63 77 61
10 N_500_9 2 0.05 65 47 65 45
10 N_500_9 2 0.06 51 35 51 33
10 N_500_9 3 0.02 285 241 245 239
10 N_500_9 3 0.03 266 241 227 239
10 N_500_9 3 0.04 249 183 205 181
10 N_500_9 3 0.05 242 147 185 145
10 N_500_9 3 0.06 207 107 141 99
10 N_500_10 2 0.02 29 31 41 29
10 N_500_10 2 0.03 19 21 27 19
10 N_500_10 2 0.04 19 21 29 19
10 N_500_10 2 0.05 45 21 25 19
10 N_500_10 2 0.06 47 33 45 17
10 N_500_10 3 0.02 203 91 127 83

161

Asset Dataset Cardinality Return B&B BCC-F BCC-I BCC-R

10 N_500_10 3 0.03 103 91 97 73
10 N_500_10 3 0.04 153 89 97 69
10 N_500_10 3 0.05 208 41 80 37
10 N_500_10 3 0.06 127 9 13 7
20 N_500_1 2 0.02 371 365 345 363
20 N_500_1 2 0.03 231 247 289 233
20 N_500_1 2 0.04 173 177 177 163
20 N_500_1 2 0.05 115 119 143 111
20 N_500_1 2 0.06 77 77 99 71
20 N_500_1 3 0.02 2211 2189 1981 2167
20 N_500_1 3 0.03 1613 1465 1551 1495
20 N_500_1 3 0.04 1035 1025 1057 999
20 N_500_1 3 0.05 667 607 683 597
20 N_500_1 3 0.06 303 287 359 279
20 N_500_2 2 0.02 381 389 401 379
20 N_500_2 2 0.03 373 383 377 373
20 N_500_2 2 0.04 321 353 359 321
20 N_500_2 2 0.05 261 275 303 255
20 N_500_2 2 0.06 191 195 243 185
20 N_500_2 3 0.02 2289 2285 2261 2279
20 N_500_2 3 0.03 2257 2251 2173 2233
20 N_500_2 3 0.04 2107 1955 1955 1937
20 N_500_2 3 0.05 1827 1551 1669 1541
20 N_500_2 3 0.06 1125 1057 1209 1039
20 N_500_3 2 0.02 367 367 341 363
20 N_500_3 2 0.03 243 281 289 241
20 N_500_3 2 0.04 171 185 207 171
20 N_500_3 2 0.05 133 149 187 127
20 N_500_3 2 0.06 65 85 99 63
20 N_500_3 3 0.02 2175 2143 2019 2151
20 N_500_3 3 0.03 1647 1497 1593 1531
20 N_500_3 3 0.04 1143 1077 1143 1067
20 N_500_3 3 0.05 615 597 675 587
20 N_500_3 3 0.06 237 227 327 217
20 N_500_4 2 0.02 379 391 377 379
20 N_500_4 2 0.03 353 375 343 363
20 N_500_4 2 0.04 279 283 299 275
20 N_500_4 2 0.05 219 249 247 219

162

Asset Dataset Cardinality Return B&B BCC-F BCC-I BCC-R

20 N_500_4 2 0.06 145 181 171 145
20 N_500_4 3 0.02 2267 2277 2189 2275
20 N_500_4 3 0.03 2175 2149 2057 2141
20 N_500_4 3 0.04 1921 1739 1757 1727
20 N_500_4 3 0.05 1415 1305 1327 1291
20 N_500_4 3 0.06 785 789 819 771
20 N_500_5 2 0.02 381 377 379 371
20 N_500_5 2 0.03 369 357 349 353
20 N_500_5 2 0.04 321 317 291 315
20 N_500_5 2 0.05 215 221 217 195
20 N_500_5 2 0.06 149 163 171 139
20 N_500_5 3 0.02 2281 2265 2161 2257
20 N_500_5 3 0.03 2211 2127 1929 2129
20 N_500_5 3 0.04 1943 1567 1671 1853
20 N_500_5 3 0.05 1317 1201 1263 1183
20 N_500_5 3 0.06 783 793 785 733
20 N_500_6 2 0.02 381 383 399 379
20 N_500_6 2 0.03 377 385 363 379
20 N_500_6 2 0.04 333 347 333 315
20 N_500_6 2 0.05 241 251 291 233
20 N_500_6 2 0.06 191 193 239 173
20 N_500_6 3 0.02 2255 2291 2217 2279
20 N_500_6 3 0.03 2191 2277 2117 2267
20 N_500_6 3 0.04 2059 1883 1891 1955
20 N_500_6 3 0.05 1829 1489 1539 1465
20 N_500_6 3 0.06 1129 943 1031 927
20 N_500_7 2 0.02 379 379 387 379
20 N_500_7 2 0.03 379 373 367 373
20 N_500_7 2 0.04 357 365 331 341
20 N_500_7 2 0.05 207 223 295 191
20 N_500_7 2 0.06 129 143 199 119
20 N_500_7 3 0.02 2281 2287 2237 2277
20 N_500_7 3 0.03 2265 2247 2071 2237
20 N_500_7 3 0.04 2057 1615 1797 1991
20 N_500_7 3 0.05 1255 1111 1241 1089
20 N_500_7 3 0.06 697 621 777 581
20 N_500_8 2 0.02 379 371 401 359
20 N_500_8 2 0.03 279 327 335 291

163

Asset Dataset Cardinality Return B&B BCC-F BCC-I BCC-R

20 N_500_8 2 0.04 245 235 287 221
20 N_500_8 2 0.05 167 189 317 163
20 N_500_8 2 0.06 131 151 215 125
20 N_500_8 3 0.02 2275 2237 1999 2193
20 N_500_8 3 0.03 1877 1873 1877 1845
20 N_500_8 3 0.04 1425 1373 1555 1367
20 N_500_8 3 0.05 1105 1001 1271 995
20 N_500_8 3 0.06 633 609 859 589
20 N_500_9 2 0.02 379 387 367 379
20 N_500_9 2 0.03 231 245 323 229
20 N_500_9 2 0.04 135 147 183 131
20 N_500_9 2 0.05 105 115 165 97
20 N_500_9 2 0.06 69 85 119 67
20 N_500_9 3 0.02 2265 2231 1973 2273
20 N_500_9 3 0.03 1595 1431 1503 1423
20 N_500_9 3 0.04 936 895 967 883
20 N_500_9 3 0.05 675 629 735 619
20 N_500_9 3 0.06 381 385 435 373
20 N_500_10 2 0.02 243 233 293 331
20 N_500_10 2 0.03 181 187 217 177
20 N_500_10 2 0.04 151 157 215 149
20 N_500_10 2 0.05 119 129 163 111
20 N_500_10 2 0.06 81 93 73 67
20 N_500_10 3 0.02 1587 1481 1585 1921
20 N_500_10 3 0.03 1257 1243 1347 1213
20 N_500_10 3 0.04 887 859 915 823
20 N_500_10 3 0.05 479 479 505 447
20 N_500_10 3 0.06 263 243 307 223

Table B.1: Performance of cut application strategies on quadratic-cardinality-

constrained AAPs.

164

Bibliography

[1] Tobias Achterberg. Constraint Integer Programming. PhD thesis, Technische

Universität Berlin, 2008.

[2] Tobias Achterberg and Timo Berthold. Improving the feasibility pump. Discrete

Optimization, 4(1):77–86, 2007.

[3] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules

revisited. Operations Research Letters, 33(1):42–54, 2005.

[4] Tobias Achterberg, Timo Berthold, Thorsten Koch, and Kati Wolter.

Constraint integer programming: A new approach to integrate CP and MIP.

In Laurent Perron and Michael A. Trick, editors, Integration of AI and

OR Techniques in Constraint Programming for Combinatorial Optimization

Problems, pages 6–20. Springer, 2008.

[5] M. Selim Aktürk, Alper Atamtürk, and Sinan Gürel. A strong conic quadratic

reformulation for machine-job assignment with controllable processing times.

Operations Research Letters, 37(3):187–191, 2009.

[6] Farid Alizadeh and Donald Goldfarb. Second-order cone programming.

Mathematical Programming, 95(1):3–51, 2003.

[7] Erling D. Andersen and Knud D. Andersen. The MOSEK optimization software.

EKA Consulting ApS, Denmark, 2000.

165

[8] Erling D. Andersen, Cornelis Roos, and Tamás Terlaky. On implementing

a primal-dual interior-point method for conic quadratic optimization.

Mathematical Programming, 95(2):249–277, 2003.

[9] Kent Andersen and Anders Nedergaard Jensen. Intersection cuts for mixed

integer conic quadratic sets. In Michel Goemans and José Correa, editors,

Integer Programming and Combinatorial Optimization, pages 37–48. Springer,

2013.

[10] Alper Atamtürk and Vishnu Narayanan. Conic mixed-integer rounding cuts.

Mathematical Programming, 122(1):1–20, 2010.

[11] Alper Atamtürk and Vishnu Narayanan. Lifting for conic mixed-integer

programming. Mathematical Programming, 126(2):351–363, 2011.

[12] Alper Atamtürk, Laurent Flindt Muller, and David Pisinger. Separation and

extension of cover inequalities for secondorder conic knapsack constraints with

generalized upper bounds. Technical report, Technical report, Department of

Management Engineering, Technical University of Denmark, Denmark, 2011.

[13] Alper Atamtürk, Gemma Berenguer, and Zuo-Jun Shen. A conic integer

programming approach to stochastic joint location-inventory problems.

Operations Research, 60(2):366–381, 2012.

[14] Egon Balas. Intersection cuts—a new type of cutting planes for integer

programming. Operations Research, 19(1):19–39, 1971.

[15] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. A lift-and-project cutting

plane algorithm for mixed 0–1 programs. Mathematical programming, 58(1-3):

295–324, 1993.

[16] Pietro Belotti, Julio C. Góez, Imre Pólik, Ted K. Ralphs, and Tamás

166

Terlaky. On families of quadratic surfaces having fixed intersections with two

hyperplanes. Discrete Applied Mathematics, 161(16):2778–2793, 2013.

[17] Pietro Belotti, Julio C. Góez, Imre Pólik, Ted K. Ralphs, and Tamás

Terlaky. A conic representation of the convex hull of disjunctive sets and

conic cuts for integer second order cone optimization. In Mehiddin Al-Baali,

Lucio Grandinetti, and Anton Purnama, editors, Numerical Analysis and

Optimization, pages 1–35. Springer, 2015.

[18] Pietro Belotti, Julio C. Góez, Imre Pólik, Ted K. Ralphs, and Tamás Terlaky.

A complete characterization of disjunctive conic cuts for mixed integer second

order cone optimization. Discrete Optimization, 2016. ISSN 1572-5286. doi:

http://dx.doi.org/10.1016/j.disopt.2016.10.001.

[19] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on Modern Convex

Optimization: Analysis, Algorithms, and Engineering Applications. SIAM,

2001.

[20] Hande Y. Benson and Ümit Sağlam. Mixed-integer second-order cone

programming: A survey. In Huseyin Topaloglu, J. Cole Smith, and Harvey J.

Greenberg, editors, Theory Driven by Influential Applications, pages 13–36.

INFORMS, 2013.

[21] Hande Y. Benson and David F. Shanno. An exact primal–dual penalty method

approach to warmstarting interior-point methods for linear programming.

Computational Optimization and Applications, 38(3):371–399, 2007.

[22] Livio Bertacco, Matteo Fischetti, and Andrea Lodi. A feasibility pump heuristic

for general mixed-integer problems. Discrete Optimization, 4(1):63–76, 2007.

[23] Timo Berthold. Primal Heuristics for Mixed Integer Programs. Master’s thesis,

Technische Universität Berlin, 2006.

167

[24] Timo Berthold. Heuristic Algorithms in Global MINLP Solvers. PhD thesis,

Technische Universität Berlin, 2014.

[25] Timo Berthold, Stefan Heinz, and Stefan Vigerske. Extending a CIP framework

to solve MIQCPs. In Jon Lee and Sven Leyffer, editors, Mixed Integer Nonlinear

Programming, pages 427–444. Springer, 2012.

[26] Daniel Bienstock. Computational study of a family of mixed-integer quadratic

programming problems. Mathematical Programming, 74(2):121–140, 1996.

[27] Pierre Bonami and João P.M. Gonçalves. Heuristics for convex mixed integer

nonlinear programs. Computational Optimization and Applications, 51(2):729–

747, 2012.

[28] Pierre Bonami and Miguel A. Lejeune. An exact solution approach for portfolio

optimization problems under stochastic and integer constraints. Operations

Research, 57(3):650–670, 2009.

[29] Pierre Bonami, Lorenz T. Biegler, Andrew R. Conn, Gérard Cornuéjols,

Ignacio E. Grossmann, Carl D. Laird, Jon Lee, Andrea Lodi, François Margot,

Nicolas Sawaya, and Andreas Wächter. An algorithmic framework for convex

mixed integer nonlinear programs. Discrete Optimization, 5(2):186–204, 2008.

[30] Pierre Bonami, Mustafa Kilinç, and Jeff Linderoth. Algorithms and software

for convex mixed integer nonlinear programs. In Jon Lee and Sven Leyffer,

editors, Mixed Integer Nonlinear Programming, pages 1–39. Springer, 2012.

[31] Aykut Bulut. Computational Approaches to Mixed Integer Second Order Cone

Optimization. PhD thesis, Lehigh University, 2017.

[32] Sertalp B. Çay, Julio C. Góez, and Tamás Terlaky. Effects of disjunctive conic

cuts within a branch and conic cut algorithm to solve asset allocation problems.

Technical Report 16T-005, Lehigh University, 2016.

168

[33] Sertalp B. Çay, Imre Pólik, and Tamás Terlaky. Warm-start of interior point

methods for second order cone optimization via rounding over optimal Jordan

frames. Technical Report 17T-006, Lehigh University, 2017.

[34] Sertalp B. Çay. Random portfolio dataset generator. http://sertalpbilal.

github.io/randomportfolio/, 2016. URL http://dx.doi.org/10.5281/

zenodo.53204. Accessed: 04/25/2016.

[35] Mehmet Tolga Çezik and Garud Iyengar. Cuts for mixed 0-1 conic

programming. Mathematical Programming, 104(1):179–202, 2005.

[36] John W. Chinneck. Practical optimization: a gentle introduction. Systems

and Computer Engineering), Carleton University, Ottawa. http://www. sce.

carleton. ca/faculty/chinneck/po. html, 2006.

[37] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Polyhedral

Approaches to Mixed Integer Linear Programming. Springer, 2010.

[38] Gerard Cornuejols and Reha H. Tütüncü. Optimization Methods in Finance,

volume 5. Cambridge University Press, 2006.

[39] ILOG CPLEX. High-performance software for mathematical programming and

optimization, 2005.

[40] Etienne De Klerk. Aspects of Semidefinite Programming: Interior Point

Algorithms and Selected Applications, volume 65. Springer Science & Business

Media, 2006.

[41] Sarah Drewes. Mixed Integer Second Order Cone Programming. PhD thesis,

Technische Universität Darmstadt, 2009.

[42] Marco A. Duran and Ignacio E. Grossmann. An outer-approximation algorithm

for a class of mixed-integer nonlinear programs. Mathematical Programming,

36(3):307–339, 1986.

169

http://sertalpbilal.github.io/randomportfolio/
http://sertalpbilal.github.io/randomportfolio/
http://dx.doi.org/10.5281/zenodo.53204
http://dx.doi.org/10.5281/zenodo.53204

[43] Alexander Engau. Recent progress in interior-point methods: Cutting-plane

algorithms and warm starts. In Miguel F. Anjos and Jean B. Lasserre, editors,

Handbook on Semidefinite, Conic and Polynomial Optimization, pages 471–498.

Springer, 2012.

[44] Alexander Engau, Miguel F. Anjos, and Anthony Vannelli. On interior-

point warmstarts for linear and combinatorial optimization. SIAM Journal

on Optimization, 20(4):1828–1861, 2010.

[45] Jacques Faraut and Adam Korányi. Analysis on Symmetric Cones. Oxford

Science Publications, 1994.

[46] FICO™ Xpress Optimization Suite. Xpress-Optimizer, Reference manual, Fair

Isaac Corporation, 2009.

[47] Jonathan E. Fieldsend, John Matatko, and Ming Peng. Cardinality constrained

portfolio optimisation. In Zheng Rong Yang, Hujun Yin, and Richard M.

Everson, editors, IDEAL, volume 4, pages 788–793. Springer, 2004.

[48] Matteo Fischetti, Fred Glover, and Andrea Lodi. The feasibility pump.

Mathematical Programming, 104(1):91–104, 2005.

[49] Robert M. Freund. A potential-function reduction algorithm for solving a linear

program directly from an infeasible “warm start”. Mathematical Programming,

52(1-3):441–466, 1991.

[50] Henrik A. Friberg. CBLIB 2014: a benchmark library for conic mixed-integer

and continuous optimization. Mathematical Programming Computation, 8(2):

191–214, 2016.

[51] Fabio Furini, Emiliano Traversi, Pietro Belotti, Antonio Frangioni, Ambros

Gleixner, Nick Gould, Leo Liberti, Andrea Lodi, Ruth Misener, Hans

Mittelmann, Nikolaos Sahinidis, Stefan Vigerske, and Angelika Wiegele.

170

QPLIB: A library of quadratic programming instances. Technical report,

February 2017. URL http://www.optimization-online.org/DB_HTML/2017/

02/5846.html.

[52] Arthur M. Geoffrion. Generalized benders decomposition. Journal of

Optimization Theory and Applications, 10(4):237–260, 1972.

[53] Kimia Ghobadi, Hamid R. Ghaffari, Dionne M. Aleman, David A. Jaffray, and

Mark Ruschin. Automated treatment planning for a dedicated multi-source

intracranial radiosurgery treatment unit using projected gradient and grassfire

algorithms. Medical Physics, 39(6):3134–3141, 2012.

[54] Julio C. Góez. Mixed Integer Second Order Cone Optimization - Disjunctive

Conic Cuts: Theory and Experiments. PhD thesis, Department of Industrial

and Systems Engineering, Lehigh University, 2013.

[55] Jacek Gondzio. Warm start of the primal-dual method applied in the cutting-

plane scheme. Mathematical Programming, 83(1):125–144, 1998.

[56] Jacek Gondzio and Pablo González-Brevis. A new warmstarting strategy for

the primal-dual column generation method. Mathematical Programming, pages

1–34, 2012.

[57] Jacek Gondzio and Andreas Grothey. Reoptimization with the primal-dual

interior point method. SIAM Journal on Optimization, 13(3):842–864, 2002.

[58] Jacek Gondzio and Andreas Grothey. A new unblocking technique to warmstart

interior point methods based on sensitivity analysis. SIAM Journal on

Optimization, 19(3):1184–1210, 2008.

[59] Jacek Gondzio and Tamás Terlaky. A computational view of interior point

methods. Advances in Linear and Integer Programming, Oxford University

Press: Oxford, pages 103–144, 1996.

171

http://www.optimization-online.org/DB_HTML/2017/02/5846.html
http://www.optimization-online.org/DB_HTML/2017/02/5846.html

[60] Jacek Gondzio, Pablo González-Brevis, and Pedro Munari. New developments

in the primal–dual column generation technique. European Journal of

Operational Research, 224(1):41–51, 2013.

[61] Zonghao Gu, Edward Rothberg, and Robert E. Bixby. Gurobi optimizer

reference manual, version 6.0. Gurobi Optimization Inc., Houston, USA, 2014.

[62] Hassan Hijazi, Pierre Bonami, and Adam Ouorou. Robust delay-constrained

routing in telecommunications. Annals of Operations Research, 206(1):163–181,

2013.

[63] Markus Hirschberger, Yue Qi, and Ralph E. Steuer. Randomly

generating portfolio-selection covariance matrices with specified distributional

characteristics. European Journal of Operational Research, 177(3):1610–1625,

2007.

[64] IBM ILOG CPLEX. V12. 1: Users manual for CPLEX. International Business

Machines Corporation, 46(53):157, 2009.

[65] Elizabeth John and E. Alper Yıldırım. Implementation of warm-start

strategies in interior-point methods for linear programming in fixed dimension.

Computational Optimization and Applications, 41(2):151–183, 2008.

[66] Miroslav Karamanov and Gérard Cornuéjols. Branching on general disjunctions.

Mathematical Programming, 128(1-2):403–436, 2011.

[67] Narendra Karmarkar. A new polynomial-time algorithm for linear

programming. Combinatorica, 4(4):373–395, 1984.

[68] Fatma Kılınç-Karzan. On minimal valid inequalities for mixed integer conic

programs. Mathematics of Operations Research, 41(2):477–510, 2015.

172

[69] Fatma Kılınç-Karzan and Sercan Yıldız. Two-term disjunctions on the second-

order cone. In Jon Lee and Jens Vygen, editors, Integer Programming and

Combinatorial Optimization, pages 345–356. Springer, 2014.

[70] Eva K. Lee and John E. Mitchell. Integer programming: branch and

bound methods integer programming: Branch and bound methods. In

Christodoulos A. Floudas and Panos M. Pardalos, editors, Encyclopedia of

Optimization, pages 1634–1643. Springer, 2009.

[71] Jeff T. Linderoth and Martin W. P. Savelsbergh. A computational study

of search strategies for mixed integer programming. INFORMS Journal on

Computing, 11(2):173–187, 1999.

[72] Miguel Sousa Lobo, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret.

Applications of second-order cone programming. Linear Algebra and Its

Applications, 284(1):193–228, 1998.

[73] Irvin J. Lustig, Roy E. Marsten, and David F. Shanno. Interior point methods

for linear programming: Computational state of the art. ORSA Journal on

Computing, 6(1):1–14, 1994.

[74] Renata Mansini and Maria Grazia Speranza. Heuristic algorithms for the

portfolio selection problem with minimum transaction lots. European Journal

of Operational Research, 114(2):219–233, 1999.

[75] Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.

[76] Alexander Martin. General mixed integer programming: Computational issues

for branch-and-cut algorithms. In Michael Jünger and Denis Naddef, editors,

Computational Combinatorial Optimization, pages 1–25. Springer, 2001.

[77] Sanjay Mehrotra. On the implementation of a primal-dual interior point

method. SIAM Journal on Optimization, 2(4):575–601, 1992.

173

[78] John E. Mitchell and Michael J. Todd. Solving combinatorial optimization

problems using Karmarkar’s algorithm. Mathematical Programming, 56(1-3):

245–284, 1992.

[79] Sina Modaresi, Mustafa R. Kılınç, and Juan Pablo Vielma. Split cuts

and extended formulations for mixed integer conic quadratic programming.

Operations Research Letters, 43(1):10–15, 2015.

[80] Sina Modaresi, Mustafa R. Kılınç, and Juan Pablo Vielma. Intersection cuts

for nonlinear integer programming: Convexification techniques for structured

sets. Mathematical Programming, 155(1-2):575–611, 2016.

[81] APS MOSEK. The MOSEK optimization software, 2010.

[82] Pedro Munari and Jacek Gondzio. Using the primal-dual interior point

algorithm within the branch-price-and-cut method. Computers & Operations

Research, 40(8):2026–2036, 2013.

[83] Masakazu Muramatsu and Tsunehiro Suzuki. A new second-order cone

programming relaxation for max-cut problems. Journal of Operations Research

of Japan, 43:164–177, 2003.

[84] Vishnu Bhama Narayanan. Branch-and-Cut Algorithms for Conic Mixed-

Integer Programming. PhD thesis, University of California, Berkeley, 2008.

[85] Yurii E. Nesterov and Michael J. Todd. Self-scaled barriers and interior-point

methods for convex programming. Mathematics of Operations Research, 22(1):

1–42, 1997.

[86] Mohammad R. Oskoorouchi and John E. Mitchell. A second-order cone cutting

surface method: complexity and application. Computational Optimization and

Applications, 43(3):379–409, 2009.

174

[87] Mohammad R. Oskoorouchi, Hamid R. Ghaffari, Tamás Terlaky, and Dionne M.

Aleman. An interior point constraint generation algorithm for semi-infinite

optimization with health-care application. Operations Research, 59(5):1184–

1197, 2011.

[88] Mustafa Ç. Pınar. Mixed-integer second-order cone programming for lower

hedging of American contingent claims in incomplete markets. Optimization

Letters, 7(1):63–78, 2013.

[89] Imre Pólik and Julio C. Góez. Rounding solutions in SOCP. ICCOPT, Lisbon,

Portugal, 2013.

[90] Imre Pólik and Tamás Terlaky. Interior point methods for nonlinear

optimization. In Gianni Di Pillo and Fabio Schoen, editors, Nonlinear

Optimization, pages 215–276. Springer, 2010.

[91] Roman Polyak. Modified barrier functions (theory and methods). Mathematical

Programming, 54(1-3):177–222, 1992.

[92] Cornelis Roos, Tamás Terlaky, and Jean-Philiipe Vial. Interior Point Methods

for Linear Optimization. Springer, 2006.

[93] Ümit Saglam. Advanced Optimization and Statistical Methods in Portfolio

Optimization and Supply Chain Management. PhD thesis, Drexel University,

2014.

[94] Kartik Krishnan Sivaramakrishnan, Gema Plaza, and Tamás Terlaky. A conic

interior point decomposition approach for large scale semidefinite programming.

Technical report, Technical report, Department of Mathematics, North Carolina

State University, Raleigh, NC 27695-8205, 2005.

[95] Anders Skajaa. The Homogeneous Interior-Point Algorithm: Nonsymmetric

175

Cones, Warmstarting, and Applications. PhD thesis, Technical University of

Denmark, Department of Informatics and Mathematical Modeling, 2013.

[96] Anders Skajaa, Erling D. Andersen, and Yinyu Ye. Warmstarting the

homogeneous and self-dual interior point method for linear and conic quadratic

problems. Mathematical Programming Computation, 5(1):1–25, 2013.

[97] Robert A. Stubbs and Sanjay Mehrotra. A branch-and-cut method for 0-1

mixed convex programming. Mathematical Programming, 86(3):515–532, 1999.

[98] Jos F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over

symmetric cones. Optimization Methods and Software, 11(1-4):625–653, 1999.

[99] Jos F. Sturm. Implementation of interior point methods for mixed semidefinite

and second order cone optimization problems. Optimization Methods and

Software, 17(6):1105–1154, 2002.

[100] Tamás Terlaky, editor. Interior Point Methods of Mathematical Programming,

volume 5. Springer Science & Business Media, 1996.

[101] Tamás Terlaky and Imre Pólik. Parametric second order cone optimization

and its applications: Challenges and perspectives. NSF Grant Proposal, 2010.

Lehigh University.

[102] Tamás Terlaky and Zhouhong Wang. On the identification of the optimal

partition of second order cone optimization problems. SIAM Journal on

Optimization, 24(1):385–414, 2014.

[103] Kim-Chuan Toh, Michael J. Todd, and Reha H. Tütüncü. SDPT3 – a MATLAB

software package for semidefinite programming. Optimization Methods and

Software, 11(1-4):545–581, 1999.

176

[104] Juan Pablo Vielma, Shabbir Ahmed, and George L. Nemhauser. A lifted linear

programming branch-and-bound algorithm for mixed-integer conic quadratic

programs. INFORMS Journal on Computing, 20(3):438–450, 2008.

[105] Tapio Westerlund and Frank Pettersson. An extended cutting plane method

for solving convex MINLP problems. Computers & Chemical Engineering, 19:

131–136, 1995.

[106] Stephen J. Wright. Primal-Dual Interior-Point Methods, volume 54. SIAM,

1997.

[107] Yu Xia. A Newton’s method for perturbed second-order cone programs.

Computational Optimization and Applications, 37(3):371–408, 2007.

[108] Yinyu Ye. Interior-Point Algorithm: Theory and Analysis. Wiley, 1997.

[109] E. Alper Yildirim and Stephen J. Wright. Warm-start strategies in interior-

point methods for linear programming. SIAM Journal on Optimization, 12(3):

782–810, 2002.

[110] Sercan Yıldız and Gérard Cornuéjols. Disjunctive cuts for cross-sections of the

second-order cone. Operations Research Letters, 43(4):432–437, 2015.

[111] Kazuo Yonekura and Yoshihiro Kanno. Second-order cone programming with

warm start for elastoplastic analysis with von Mises yield criterion. Optimization

and Engineering, 13(2):181–218, 2012.

177

178

Vita

Sertalp B. Çay was born in Ankara, Turkey in 1988 to Mustafa Çay and Fatma Çay.

He received his Bachelors degree in Industrial Engineering from Bilkent University,

Turkey in 2010. He received his Masters degree in Industrial Engineering from Bilkent

University, Turkey in 2013. He obtained high honor standings for his successes in both

B.S. and M.S studies. He entered the Ph.D. program at Lehigh University in 2012.

During his Ph.D., he focused on developing cutting-edge optimization algorithms and

software, optimization modeling and algebraic languages. From 2014 to 2018, he

worked as summer and year-round intern positions at SAS Institute under Advanced

Analytics R&D division. He will be joining SAS Institute as an Operations Research

Specialist after his Ph.D.

179

	Lehigh University
	Lehigh Preserve
	2018

	Exploiting Structures in Mixed-Integer Second-Order Cone Optimization Problems for Branch-and-Conic-Cut Algorithms
	Sertalp Bilal Cay
	Recommended Citation

	List of Tables
	List of Figures
	Abbreviations
	Notation and symbols
	Abstract
	Introduction
	Second-order cone optimization (SOCO)
	Jordan algebra
	Primal and dual rounding problems

	Mixed-integer second-order cone optimization (MISOCO)
	Solution algorithms for MISOCO
	Branch-and-bound algorithms

	Structure

	Background and state of the art
	Interior-point methods (IPMs)
	IPMs for LO
	IPMs for SOCO
	Warm-starting of IPMs

	BCC algorithms for MISOCO
	Branching
	Linear and conic cuts

	Warm-start of SOCO over Jordan frames
	Introduction
	Self-dual embedding IPM

	Rounding problems
	Warm-starting
	Solving rounding problems
	Choosing a convex combination of solutions
	Initialization
	Solution approach

	Numerical experiments
	Methodology
	Performance of warm-start for various branching variable types
	Comparison to cold-start and other warm-start methods
	Effect of warm-starting for infeasible cases

	Conclusions and future work

	The first heuristic specifically for mixed-integer second-order cone optimization
	Introduction
	Conic rounding heuristics
	The primal rounding heuristic
	The dual rounding heuristic
	The primal-dual rounding heuristic
	Hybrid strategy
	Extending heuristics to convex quadratic optimization

	Numerical results
	Implementation and test set
	Efficiency of the heuristics
	Quality of the provided solutions
	Effect of iterations on solution quality

	Conclusions and future work

	Disjunctive conic cuts for asset allocation problems
	Introduction
	MISOCO for AAPs
	Round-lot-constrained AAP
	Cardinality and diversification-constrained AAP

	Methodology
	Branch-and-conic-cut framework
	Disjunctive conic and cylindrical cut generation
	Cut management strategies
	Branching and searching

	Computational results
	The effect of DCCs on the objective value and the BCC tree
	The effect of branching, cutting, and searching rules on the BCC tree
	Comparison of cut application strategies
	Comparison of solution approaches
	Effects of cuts as a preprocessing step

	Conclusions and future work

	Conclusions and future work
	Appendix
	Round-lot-constrained AAP experiments
	Cardinality-constrained AAP experiments
	Bibliography
	Vita

