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Abstract

The design of high-performance low-noise bandpass filtering systems has been
studied from several aspects: (1) applying the synchronous filtering idea to the
development of externally linear, time-invariant filters which can be internally nonlinear
and/or time-varying, (2) seeking solutions to improve the noise performance of these
filters, from parameter configuration to architecture design, and (3) implementing the
systems of interest as transistor level circuits and verifying their function.

Particularly, the state space representations for a biquad AM mode synchronous
bandpass filter and a biquad FM mode synchronous complex filter have been proposed
and realized with ideal Gm-C networks and log-domain circuits. Both systems utilize
the modulator-core filter-modulator architecture to synchronize the internal signal
processing. The core filter in an AM mode synchronous filter has constant center
frequency and time-variant bandwidth, and the terminal modulators perform amplitude
modulation to maintain the system’s external linearity and input/output characteristics.
An FM mode synchronous filter typically has time-invariant bandwidth and performs
frequency modulation before and after the signal filtering. Depending on whether the
center frequency and terminal modulating frequency vary with time, there are static and
dynamic types of FM mode synchronous filters. They both have the advantage of being
able to filter the high frequency input signals in a low frequency range, which greatly
alleviates the design and integration challenge due to the high frequency limitation of
active components. Moreover, some dynamic filters effectively suppress the injected
single-tone noise and generate an output with much higher SNR in comparison to the

output from a static filter that implements the same transfer function.



As a variation of an AM mode synchronous bandpass filter, the system derived
by removing its back end modulator has been verified to have impressive noise reduction
capability when processing noisy AM signals. Furthermore, it inspired the development
of a feedback filtering system, the effective bandwidth of which could be tuned by
scaling the feedback signal that time varies the core filter’s instantaneous bandwidth. It
further provides an innovative approach to the design of a high-Q filter with superior
immunity to internal noise, using a filter with very low Q factor. Finally, a design that
combines the feedback architecture and the biqguad FM mode synchronous complex filter
is proposed and implemented as a log-domain filtering circuit. Appealing features of this
system include wide dynamic range, flexible bandwidth and center frequency tunability.
Since there is a low requirement for the high-frequency performance of active
components, these filters make a good fit for monolithic integration, and greatly
improved immunity to in-filter noise in comparison to that of an open loop complex filter

with similar external filtering capability.



Chapter 1 Introduction to Synchronous Filtering

1.1 General Description

Motivated by the desire to create integrated circuits that have certain filtering
functions, analog circuit designers have successfully developed basic filter blocks during
the past several decades, such as operational amplifiers and transconductance amplifiers.
They have also introduced and improved some new filtering paradigms, such as switched
capacitor filters, delta sigma converters, etc. In recent years, the integration of high-
frequency tunable filters has drawn more attention. For example, an electronically
tunable anti-aliasing filter for use in digital video was reported in [1], [2-4] discussed
the topologies of high-frequency filters in both bipolar and CMOS technology. However,
they all suffer from the high-frequency limitations of the active elements. To alleviate
this issue, researchers have focused their effort mainly on two aspects: incorporating
current-mode elements into the design[5-10] and developing new filtering system
architectures. We leave the design methodology and implementation detail of log-
domain filters, a pure current-mode filtering paradigm, to Chapter 2 and introduce the
synchronous filtering technique in this chapter, which is associated with the architecture
design and has yielded many high performance filters for RF receivers, transmission and
audio recording.

Take high-Q high-center frequency bandpass filters for instance, due to the high-
frequency limitations of available active components, monolithic implementation of
these filters is barely acceptable as it generally suffers from poor selectivity, narrow
dynamic range and low noise immunity at high frequencies. To tackle this problem, a

classic architecture, which introduces modulators to work in conjunction with a lower-



frequency core filter, has been devised and widely adopted in modern radio receivers. A
desirable point of this solution is utilizing modulators to lower the frequency range of
signals to be processed so that the high-Q high-frequency filter is no longer required by
an RF receiver. In practice, such an architecture is widely employed in the so-called high
intermediate frequency (IF), low-1F, and zero-IF systems. Inspired by this prevalent
architecture, Frey proposed the concept and mathematics regarding synchronous
filtering in 2006[11], which provided an elegant guideline for the development of a
variety of synchronous filters. The paper articulated how a given time invariant filter can
be implemented using the combination of modulators and a core filter, proved that the
developed system has identical zero-input response as the original filter does, and
introduced for the first time a companding complex filter as an instance of synchronous
filters.

It is straightforward to demonstrate the synchronous filtering idea with the block
diagram of a synchronous filter. In general, the system incorporates a core filter and a
pair of modulators set up at the front end and back end respectively, which are abstracted
as multipliers in Fig. 1.1. They work in a matching mode to implement a system that is
functionally equivalent to a standalone filter (with no modulators). As an example that
will be verified later, a high-center frequency high-Q filter could be realised with this
architecture where the core filter is only required to have a much lower center frequency
and a much smaller quality factor. The main purpose of the front end modulator is to
down convert the received RF signal so that the core filter could process it in a lower
frequency range. The back end modulator is utilized to apply another frequency-domain

shifting on the output of the core filter, which is an indispensable piece for drawing the



function equivalence. The core filter in a synchronous filtering system could even have
time-variant center frequency, which will not change the system’s external linearity and
overall function as long as the front end and back end modulators are synchronized
accordingly. There is a potential that certain variation patterns for the core filter center
frequency and terminal modulating frequencies could make the synchronous filter
superior to its standalone-filter counterpart in noise suppression. Furthermore, a
synchronous filter could have time-variant bandwidth too, as will be shown in Chapter
2, a system derived from such a filter is capable of heavily suppressing the input noise

while maintaining the useful information signals.

Oscillators

Core

Input -
iy Filter

Qutput

Figure 1.1 Generic block diagram of a synchronous filter.

1.2 State Space Representation of LTI Systems

The mathematical model of synchronous filtering to be introduced is developed
in the context of a system state space representation, as the state-space-based filter design
has been studied rigorously and employed to yield many modern filter topologies [12].
A brief review on the state space representation of linear time-invariant (LTI) systems

is given below[13] before the derivation of the synchronous filtering models.



1.2.1 Formulation of the State Space Model

In general, state variables, state equations and output equations are three
important elements in the state-space model. The state variables of a dynamical system
refer to a minimum set of variables that could be used to fully describe the system and
its response to any given set of inputs. It is asserted that the mathematical model of a
state-determined system in terms of a minimum set of state variables x;(t),i = 1, ..., n,
together with knowledge of those variables at an initial time t, and the system inputs for
time t > t,, are sufficient to predict the future system state and outputs for all time ¢t >
to. Many electrical networks may be represented by state-determined system models,
where the number of state variables, n, is equal to the number of independent energy
storage elements in the system, such as capacitors and inductors. A variety of different
state variable sets may be selected to yield a complete system description, and it could
be formulated in terms of physical and measureable variables, or in terms of variables
that are not directly measurable. The crucial point is that any set of state variables must
provide a complete description of the system with the possible minimum size. In
electrical networks, capacitor voltage and inductor current are the natural choices for
state variables. The state equations for an LTI system of order n and with r inputs are a
set of n coupled first-order linear differential equations with constant coefficients. This
set of n equations defines the derivatives of the state variables to be a weighted sum of
the state variables and the system input. A compact expression for the state equations in

a matrix form is:
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which may be abstracted as

X = AX + Bl (1.2)
where the state vector X is a column vector of length n, the input vector u is a column
vector of length r, Ais an n>n square matrix of the constant coefficients aj;; and it is
known as the system state matrix, B is an n>r matrix of the coefficients b;; that weight
the inputs. The system state at any instant may be interpreted as a point in an n-
dimensional state space, and the dynamic state response X(t) can be interpreted as a path
or trajectory traced out in the state space.

The system output is defined as any system variable of interest. An important
property of the linear state equation description is that all system variables may be
represented by a linear combination of the state variables x; and the system inputs u;.
An arbitrary output variable in a system of order n with r inputs may be formulated as:

y(t) = ¢1X1 + Xy + -+ Xy + dyug + oo+ dpu, (1.3)

where c; and d; are constants. If a total of m system variables are defined as outputs, the

output equations could be expressed in the following matrix form:

Y1 Ci11 Ci2 . Cin][X1 di; . dyy Uy
Y:2 _ C?1 C?z C?n X:2 4 d:21 dzzr [ : ] (1.4)
: : : : : : : : : U,
an le sz Cmn Xn dm1 dmr
which is also written as:
y = Cx+ Du (15)



where y is a column vector of the output variables y;(t), C is an m>n matrix of the
constant coefficients c;; that weight the state variables, and D is an m>r matrix of the
constant coefficients d;; that weight the system inputs. For many physical systems the
matrix D is the null matrix, and the output equation reduces to a linear combination of
the weighted state variables:

¥ = CX (16)
The complete system model for a LTI system consists of a set of n state equations,
defined in terms of the matrices A and B, plus a set of output equations that relate any
output variables of interest to the state variables and input, and expressed in terms of C
and D matrices. The matrices A and B are properties of the system and are determined
by the system structure and elements. The output equation matrices C and D are
determined by the particular choice of output variables. Fig.1.2 provides an explicit
demonstration on the idea of state space representation. It shows the matrix operation
from input to output in terms of the matrices A, B, C and D, without the specific path of

individual state variables.

> D

x (t) x(t)
_J> B j::l: C
u(t) y(t)

A

Figure 1.2 Vector block diagram for a LTI system described by state-space system dynamics.



1.2.2 Complete System Response

Egn. (1.2) and eqgn. (1.5) together provide a system state space representation.
Given sufficient initial conditions, it is possible to predict the future system state and
outputs for all time. A very straightforward approach to solving these equations is using
Laplace and inverse Laplace transforms. Suppose the Laplace transform of the state
vector x(t) is X(s), by utilizing the time-differentiation property of Laplace transform,
the frequency-domain representation of X(s) is derived as:

X(s) = ®(s)X(0) + ®(s)BU(s) (1.7)

where @(s) = (sl — A)~1. Then the time domain representation of eqn. (1.7) is the
solution to eqgn. (1.2), which could be derived by applying inverse Laplace transform to

each term in egn. (1.7). Specifically,
X(0) = @(OR(0) + f @(t— DBU(Dd, (18)
where ¢(t) is the inverse Laplace transform of @(s). Substitute x(t) in egn. (1.5), the

system complete response is naturally developed to be:

§(t) = Co(HR(0) + [, Co(t — DBU(T)d, + Du(t) (1.9)

Derivation of the system transfer function from a state space representation is

straightforward. As a transfer function is associated with the zero state system response,

initial condition of the selected set of state variables is not of our concern here. In
particular, setting X(0) = 0 in egn. (1.7):

X(s) = ®(s)BU(s) (1.10)

Writing egn. (1.5) in S domain and substituting X (s) with the above expression, the

system transfer function is derived as:



Y(s) = CX(s) + DU(s) (1.11)

Deriving State Space Description from the Transfer Function

H(s) = C&(s)B+D (1.12)

As the state space model of a LTI system is not unique, the mapping of any given
transfer function to the time domain yields a variety of different dynamical equation sets.
A convenient state-space model formulation technique that is widely used in control
theory is presented here. Suppose without loss of generality the system is of order n and

has a transfer function:

bps™+bp_1s"" 1 +-+b bp+bp_15 14 4bys™™
H(s) = 2o —ont? P Rt (113)

Ans™+an—1S" 1+ +ag  aptap—1S1+4ags™

Define a dummy variable Z(s) and split the transfer function into two equations:

1
ap+ap—1Ss~1+-+ags™0

Z(s) = U(s) (1.14)

Y(s) = (by + bp_1s™ 1+ - + bys™™)Z(s) (1.15)
Rearranging eqn. (1.14) to specify Z(s) in terms of the system input and a weighted sum
of successive integrations of itself, an equation associated with a system that includes a
feedback structure is derived as eqn. (1.16). The resulting block diagram of the system
is shown in Fig. 1.3, where a string of n cascaded integrators together with Z(s) defined

at the input of the first integrator is used to generate the feedback terms in the equation.

Moreover, egn. (1.15) is implemented easily by combining the output of each integrator.

an-11 dp 1

+ =2 )Z(s) (1.16)

ap st

= 1 = 1
2(s) =0 — oo+ 4 5

an s
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Figure 1.3 Block diagram of the system corresponding to egn. (1.15) and egn. (1.16).

Due to the direct cascade of each integrator, the state equations of the system
take a very simple form if we assign the state variables x;(t) to the output of the n

integrators. By inspection, a set of state equations may be formulated as follows:

(X117 1 O 1 0 0 IrXt1 1 0 7
Xy 0 0 0 0 X2 0
| =] 0 0 1 0 ||xaz|T| 0 ['®
%oy 0 0 - 0 1 Xn—1 0
L Xp l—ag/a, —a;/ap -+ —ap-p/an —ap-i/aplt Xn I 11/a,l
(1.17)

This version of the state equations are known as the phase variable or companion form,
where the each row of the state matrix A, except the bottom one, is filled of zeroes except
for one entry in the position just above the leading diagonal. The corresponding output
equation could be derived by noting that X;(s) = Z(s)/s®™**~) and applying the inverse
Laplace transform. In particular, eqn. (1.15) and eqgn. (1.16) are converted into the time
domain as:

}_l(t) = b0X1 + b1X2 + b2X3 + -+ bn_lxn + bHZ(t) ( 118)

a

7)) = — Z—le +2—;x2 ok ) +iﬁ(t) (1.19)
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Expressing z(t) in egn. (18) in terms of x; and u(t), the output equation is derived as:

X1
b,a b, a b,a,_111x b
(O = [bo——— by ——— = by ="+ =)
n dp dp : n
Xn

(1.20)
1.2.3 State Space Transformation

Egn. (1.17) and egn. (1.20) give a state space description derived from the given
transfer function. Since any linear transformation on the state space preserves the
transfer function, a transfer function could in principle be realized by infinite electrical
networks. However, some might have highly complicated schematics, some have poor
dynamic range or high noise sensitivity, etc. Therefore, a smart state space
transformation plays a critical role in deriving a state space model that leads to the design
of a compact and high performance circuit. For example, diagonalization of the state
matrix is one of the most provocative transformation approaches. It generates a state-
space model that has a greatly simplified state transition matrix and could be
implemented by an electrical network of low complexity. Recall the relationship
between a matrix, its eigenvalues and its eigenvectors:
Al[vy ¥, - U] = AV =AU, A0, o ANUn] = Vdiag(Ag, Ay, -, Ay) = VA (1.21)
where v; is the eigenvector corresponding to 2;, ‘diag()’ denotes a diagonal matrix,

V=[v, v, - Uy, A=diag(Aq,45,,y)

The diagonal matrix A could be taken as a transformed version of A, as shown in eqn.
(1.22), which indicates that A could be easily diagonalized by determining its

eigenvectors.

A=V1AV (1.22)
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Based on the above example, a generic state space transformation is presented below.
Suppose the originally derived system state space representation is given by eqgn. (1.2)
and egn. (1.5). Because any new set of state variables is able to be expressed as a linear
combination of the original state variables and the input, let w = Mx + Qu, where both
M and Q are nonsingular N X N matrices, and M is known as the transformation matrix.

Substitute x in egn. (1.2) and egn. (1.5) with M~1(w — Qu) according to the definition:

W = AW + Bu + L(1, 1) (1.23)

y =Cw+ (D - CQ)u (1.24)
where A = MAM~%, B = MB, L(T, ) = Qi — MAM~'Qu, C = CM~.
Note that although the derivative of the input exists in the state equation, the transfer
function derived from eqn. (1.23) and eqn. (1.24) is exactly the same as shown in eqn.
(1.12). To get rid of the derivative term, Q is typically set to be a null matrix and the
resulting state space description is simplified as:

w+ B

Il
=)

= MAM~'w + MBu (1.25)

<l

W

y + Du =CM~ 1w+ Du (1.26)

Il
()
=

An example is now provided to show the beauty of state space transformation in

filter design. Consider the transfer function for a standard second order bandpass filter:

_ Wo
H(s) =& = @ (1.27)

Us) sz+%s+w02
One particular state-space representation of the above filter is in given by eqn. (1.28):
- T ™
e 0

X

- u, y=N 0||2| (1.28)

X Wo
el + e
X2 0
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Suppose that the state variables x; and x, are associated with the capacitor voltage and
the inductor current, respectively. The state equations, after appropriate scaling, could
be taken as a nodal equation and a loop equation of an RLC circuit. Accordingly, the
output equation could be translated to mean that the circuit output is given by the
capacitor voltage. Fig. 1.4 shows the RLC implementation of egn. (1.28) with state

variables labeled, and the constraints on the component are: R =1/Q,L. = C = 1/w, .

%
Input L C X, Output

T2

Figure 1.4 RLC circuit implementation of egn. (1.28)

After state space transformation with the transformation matrix M in egn. (1.30), the
original state space model finds an equivalent new version of eqgn. (30). Fig. 1.5 gives a
common circuit realisation for the new state-space representation that contains a pair of
lossy integrators built with op amps and necessary surrounding circuitry. The choosing
of resistors and capacitors needs to follow the equations below the schematic so as to

implement the expected center frequency and quality factor.

1 y+a
M—[_l Y (1.29)
_Wo _
Xl | 2@ . X1|+m 1|u
X.z Wy _\;V_(; X2 Q-1
1 X1
y=5lCv+0 @ +0l| | (130)

where y = 1/20Q; 1 = /1 — (1/2Q)%; w, = 1 — (1/20Q)2w,.
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Figure 1.5 Op-amp circuit implementation of egn. (1.30).

1.3 State Space Representation of Synchronous Filters
1.3.1 FM Mode Synchronous Filtering

A state space transformation yields a new state space description, which almost
certainly leads to an alternate electrical network that implements the target transfer
function. However, if the transfer function is very difficult to implement due to
component limitations, a random state space transformation barely alleviates the design
challenge. This is because the resulting circuit, although it has a different schematic, still
processes signals in the same frequency range. For instance, the transfer function of a
second-order bandpass filter is implemented by two completely different circuits, as
shown in Fig. 1.4 and Fig. 1.5, but neither of them is a good candidate for implementing
a high-center frequency high-Q filter, due to the performance degradation of the
electronic components in a very high frequency range. To tackle the challenge in
developing a generally acceptable monolithic bandpass filter with very high center
frequency and very high Q factor, the modulator-core filter-modulator architecture has

been widely employed in RF systems, where the core filter has a much lower center
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frequency and a much smaller Q factor. We now introduce how to utilize a state space
transformation to develop the mathematical model of such an architecture from the state
space representation of the target high-center frequency high-Q filter[11].

Suppose that a time-varying matrix, M(t), were used in the state space
transformation of the original dynamical equations specifying the target filter, which are
abstracted as egn. (1.2) and eqn. (1.5). The resulting equation set is derived as:

X=AX+Bu - w=Aw+G(t)u (1.31)

y=C+Du - y=H({t)w+ Du
where A = M(t)AM~1(t) + M()M~(t), G(t) = M(t)B, H(t) = CM~1(t). In general,
A is a time-varying matrix. However, since eqn. (1.31) represents a system where the
core filter has time-invariant center frequency and Q factor, it is appropriate to assume
A as a constant matrix in this particular case. This assumption actually sets some implicit
constraints on the choice of M(t) and the original state matrix A. Namely, the expected
constant state matrix A exists only if eqn. (1.32) has a solution for M(t).

M(t) = AM(t) — M(t)A (1.32)
It is not within the scope of our research to seek for the analytical solution of egn. (1.32),
but if 4,4 and M(t) commute, the solution could easily be formulated as:

M(t) = Ke@-At = geAtg-At (1.33)
where K is a constant matrix that commutes with A. Note that the core filter in the
resulting system differs from the target filter only in the center frequency and quality
factor, A and A should share the same matrix format and be different in some entries.

Based on the above constraints, one possible formation of 4 and 4 is:

16



(1.34)

A:[all a12]’A:[6f1\1 Cfl\z]

—Qiz  Qyg —ay; dpy
where all the entries are real, the diagonal entries are identical and the off-diagonal
entries are opposite in sign. It could then be derived with the Cayley-Hamilton theorem:

cos(ast)  sin(aq,t)

eAt — eallt [ .
—sin(aq,t) cos(aqyt)

== ealltcb(alzt) ( 135)

cos()) sin(Q)

where &(Q) = [—sin(Q) cos({1)

]. Note that function ®() has some interesting

properties:
P(01) ®(02) = P(02)P(01) = (01 + 67) (1.36)
®1(9) = dT(F) = d(-6)
Accordingly, the transformation matrix defined in egn. (1.33) is derived as:

i — cos((aiz — ax)t)  sin((a;; — apR)t)
M(t) = Ke(an ait ) o e
© —sin((a;z — ag)t) cos((az — agz)t)
= Kel@1~a)td((ay; — ap3)) (1.37)
And a possible choice for K is a unitary matrix in the same format as A:

cos(fk) sin(8g)
—sin(8k) cos(Ok)

= ®(8y) (1.38)

Therefore,

cos((ajz — dpz)t +6g) sin((ap — ag)t + Og)

M(t) = e(a/l\l_all)t ) T e
© sin((a;2 — dx)t + 0g) cos((a;z — ag)t + Ox)

(1.39)

To minimize clutter in the mathematics, assume a;; = a;4, 0 = 0 and define a,, —
a1, = wy. Egn. (1.39) is simplified to yield

cos(wyt)  sin(wyt)

M(t) = —sin(wyt) cos(wyt)

= d(wyt) (1.40)
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Applying M(t) to the transformation defined in eqn. (1.31), the synchronous filtering
system is now specified by a new set of matrices:

A=MU®AM(t) + M(OM1(t) = P(wyt) AD L (wyt) + D(wyt) P~ (wyt)

A4 [—sin(wMt) cos(wyt) ] [COS(WMt) —sin(wy,t)

- WM _cos(wyt) —sin(wyt)] Lsin(wyt)  cos(wyt)

_[Q11 Q12 0 WM] _ [ aiy Az + WM]

B [—a12 all] * [_WM 0] [—(a;2+wy) aiq (1.412)
N = | cos(wyt)  sin(wyt)||bs| _ sin(wyt + )
g(t) =Mt)b = —sin(wyt) cos(wyt)| bl — "% |cos(wyt + B)

where b, = /bl2 + b,?, B = tan~(by/b,); (1.41b)

cos(wyt) —sin(wyt)

W ="M Y ()=, ¢
h O sin(wyt) cos(wyt)

= ¢o|sin(wyt + @) cos(wyt + a)|.
where ¢, = +/c12 + ¢,2, a = tan~(c, /c;) (1.41c)
To prove that the derived system and the target filter have same zero input
response, we reproduce the expression for zero input response of the target filter:
yz(0) =cTp(t)x(0), where ¢(t) = e4t (1.42)
Using the property M~1(t)M(t) = I, rewrite egn. (1.42) as:
Yz1(®) = TMTHOMB P ()M~ (0)M(0)x(0) = hT(£)(M(t)p(t)M~1(0))w(0)
(1.43)
Note that M(t) = KeAte=At | the three matrices commute and M(0) = K, so
eAt = M(De4'K~1 = M(t)e4tM~1(0) (1.44)
Therefore, the zero input response of the synchronous filtering system is:

921(0) = BT (e w(0) = AT (OM(DeA M~ (0)W(0) = yz ()  (1.45)
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Eqgn. (1.45) suggests that the zero input response of the synchronous filtering system is
completely determined by the initial conditions of the core filter, and it is exactly the
same as that of the target filter. Furthermore, the phase offset « and 8 of the modulating
signals could be removed without affecting the system zero input response.

FM Mode Synchronous Complex Filters

Complex filters, also called polyphase filters, are generally multiple input-
multiple output blocks widely used in RF circuits. Besides the bandpass filtering
function, a complex filter is able to reject the image of an RF signal[14-17]. Due to the
employment of complex-domain signal processing[18], it has the ability to distinguish a
positive frequency component from its negative counterpart by attenuating one of them
to a negligible level when both are present. Potential realizations for a monolithic
complex filter are passive RC networks or active networks. Passive RC complex filters
have a high-image rejection ratio but limited selectivity, which means they suffer from
strong adjacent channel interference, hence requiring extra filtering[14]. Although active
complex filters can achieve both good adjacent channel interference rejection and image
rejection, it’s extremely hard to find an acceptable monolithic realization for the transfer
function of a very high-frequency very high-Q complex filter. Utilizing the derived
model above, we develop in this section the state space model of a biquad high-
frequency high-Q complex filter in the FM mode synchronous filtering architecture[11].

One possible state space description of a second-order complex filter, given in
eqn. (1.46), is almost identical to that of a second-order bandpass filter as defined by eqgn.

(2.30). Inspection of the state space models reveals that the intrinsic difference between
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a standard biquad bandpass filter and a biquad complex filter is that their output is

created via slightly different combinations of the state variables.

Wo
. —— —Wjy
ol =] R i 1 |
S| = +— u , == — 1.46
Xy Wa —;"—(‘2’ X2l Q-1 y 2|1 1 X, ( )

where w, is the center frequency, Q is the quality factor,w, = Wwo.
Suppose the equation set above represents a high-frequency high-Q factor complex filter.
Note that the state matrix has the same format as matrix A specified in eqn. (1.34):
identical diagonal entries and opposite off-diagonal entries. It suggests that the state
space transformation developed above could be applied to egn. (1.46) to derive a system
in the modulator-core filter-modulator architecture that is functionally equivalent to the
target complex filter.

To find out a proper transformation matrix M (t), we need to define a proper state
matrix, A, for the core filter in the derived system first. As the core filter is expected to
have low center frequency and low Q factor so that the signal filtering does not have to
take place in a high frequency band, it is natural to write 4 in the same format as A but
with different entry values, as eqn. (1.47). Constructing 4 in this form also makes the

implementation of the core filter straightforward, as will be shown in Chapter 3.

Wy _

——= —W,

i=| ¢
_ Wy

A 2@

where W, is the core filter center frequency, Q is the core filter quality factor

Wy =1 - (1/2Q)*w, (1.47)
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As A corresponds to a lower-frequency lower-Q core filter, wa <w, and Q < Q.
Assume the two filters have same bandwidth, then % = %. Define wp — W, = wy,, the

transformation matrix M(t) is derived as:

cos(wyt) sin(wyt)
—sin(wyt) cos(wyt)

M(t) = [ ] = @ (wyt) (1.48)

According to eqn. (1.41a),

A=MOAMTI () + MOM(1) = |_WV312Q o) | o

-wy/2Q -wy 0
—Wwo/2Q  —(Wa — Wy)
wa—wy  —Wwo/2Q

N = cos(wyt) sin(wyt)] 1
g(®) = MD)b = (wo/Q [— sin(wy,t) COS(WMt)] |—1|

(1.49)

cos(wyt) — sin(wy,t)

—sin(wyt) — cos(wyt) (1.49b)

= (Wo/Q)|

cos(wyt) —sin(wyt)

T _ =Tns—1 _ 1
ht =c"M™(¢) = <§)|1 _1|[sin(wMt) cos(wyt)

= (1/2)|cos(wyt) — sin(wyt) —sin(wyt) — cos(wyt)| (1.49c)
Now, simplify g(t) and h” and formulate the derived state-space equations in eqn.

(1.50), where the phase offset of %” could be removed without affecting the system

performance.

W s —wy) . ( t+3n>

. ~ A M sin|w —

2 w = M
xz = ¢ Wy |W;| +V2(wo/Q) 347T u

Wq —W ——= cos|(w t+—)

A M 20 ( M 4

, 3m 3m\| W1
y=v2 |sm (wMt+T) cos (WMt+T)| |W2| (1.50)

The physical meaning of the above equation set is obvious: the state matrix A specifies
the core filter; vectors g(t) and h”, respectively, represent the front end and back end

modulators with modulating frequency approximately equals to the difference of w, and
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Wwy. Because M(t) is consistently non-singular, the state space transformation from eqn.
(1.46) to egn. (1.50) is linear, and the derived synchronous filtering system is
functionally equivalent to the target high-frequency high-Q complex filter. Due to the
introduction of both end modulators, the core filter works in a comparatively lower
frequency range so the required quality factor and center frequency are accordingly
scaled down, and the high frequency limitations of the active components have less
influence on the core filter’s performance.

In the system specified by egn. (1.50), the modulating frequency w,, is lower
than w,, so the front end modulation is subheterodyne. It has been proven in [11] that
the front end modulation could also be superheterodyne. To develop the corresponding

system model, matrix T was introduced to generate the transpose of A.

_[0 1
T = [ Lo (151)
Note that this matrix has some interesting properties:
T =Tand T'T=TT ' =1 (1.52)
Moreover,
TAT =TAT '+ TT ' = AT (1.53)

Suppose that AT specifies the lower-Q lower-frequency core filter in the synchronous

system, then

o |-We/20  -wa

AT ~ —w,/2Q (Wa —wy)
Wa —Wo/2Q

= S>wy =wy,+w,; (154
—(ua— ) —wo/2Q | MM T WAt EA (154)

Therefore, modulating frequency w,, in the new system approximately equals the sum
of the center frequencies of the target filter and the system’s core filter, which suggests

superheterodyne front end modulation in the resulting synchronous filter.
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Define matrices and state variable vector that specify the superheterodyne-mode
system as Ay, gr(t), iy and ¥ to distinguish from 4, g(¢), RT(t) and w in the
subheterodyne-mode system. According to eqgn. (1.53), the generic formulation for the
former set could be easily derived from the latter, using the T in eqn. (1.51) as the

transformation matrix. Specifically,

Ap = A" =TAT ' +TTY, §o(t) = TG(®), By =h (OT L=k (OT, 7 = Tw
(1.55)

Substitute the expression for 4, g(t), AT (t) given in eqn. (1.41a) to eqgn. (1.41c):

A a1y —(a;z + WM)]
Ar = [ 1.56a
r (a12 + WM) aiq ( )
G () = 0 17| cos(wyt) sin(wyt)||by| _, |cos(wyt+ B)
9t =11 o —sin(wyt) cos(wyt)| byl ~ O |sin(wyt + B

where by = [b? +b,%, B = tan™'(2). (1.56b)

cos(wyt) —sin(wyt)|10 1

hf =, ¢
h & cl sin(wyt)  cos(wyt)Ill 0

= cplcos(wyt + @) sin(wyt + a)|

where ¢, = +/c12 + 2, a = tan™ (¢, /c3) . (1.56¢)
Referring to the state space representation of the target complex filter in egn. (1.46), the
state space model of the superheterodyne FM-mode synchronous complex filter is
derived as eqn. (1.57), by replacing a,, a;2, by, by, ¢4, ¢, ineqgn. (1.56a) to egn. (1.56¢)

with —w,/2Q, —wy, 1, -1, 1, -1, respectively.
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3
vi| _ | —wo/2Q  —(wy —Wa) cos (WMt + T)

ol T lwy —wa)  —wy/2Q ¢

U1
| | +V2(w0/@ sin (wyt + )
(1.57)
31

3 . v .
y = \/§|cos (WMt + Tn) sin (wMt +T)| |v;| where wy, = wy + wy.

Similar to the subheterodyne system, the phase offset of‘%1T in the modulating signals
could be removed without affecting the system performance.
1.3.2 AM Mode Synchronous Filtering
Consider a second-order system and its transformed version given in egn. (1.58):
X=AX+bu - Ww=Aw+gt)u
y=tTR+du - y=Fhw+du

by
b,

= ,€T =|c;  C2|,d = 0 are all constant matrices and

)
)

ajq
WMWA=|
a; dz;

A =M{AMI(D) + MOM~L(Y), g(t) = M(H)b, hT =™ 1(t) (1.58)

With the transformation matrix in egn. (1.59) [19], we derive A, g(t) and h” as

egn. (1.60):
t 0
M(t) = P1(t |, pi(t) is either always positive or always negative
0 p2(t)
(1.59)
i@  pi®
aiq + iz
- t t _ Dby +
A| 0 TmO O | Pr(OD1) pr 1 pi®) co/a(D)] (160)
p2(t) a a p2(t) p,(t)b,
p1(t) 21 22 p2(t)

When p, (t) = p,(t) = p(t), the above matrices are simplified as:

40)
a;; +5=
A _ 11 p(0) 12 | HT 1

= c c 1.61
p(t)ll 2| (1.61)

o b,
sl EO=pO|}

a a
21 22 p(t)
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In the resulting system, the front end stage modulates the input signal by
c1p1(t), cop2(t); the modulation results are then fed through a time-varying core filter

specified by A; to draw the external equivalence between this system and the original

C1 C2

@' 7o B8

time-invariant system, another block that scales the core filter output with

to be included. As the derived system performs amplitude modulation at both ends to
match the time-varying properties of the core filter, it could be taken as an AM mode
synchronous filter. Such a technique finds prevalent application in companding
(compressing and expanding) systems to improve signal integrity[20, 21], which have
been used for many years in transmission and audio magnetic recording[22, 23]. A
companding system typically consists of compressing the dynamic range of a signal to
be transmitted or recorded, before noise and/or distortion in the transmission or
recording medium gets a chance to corrupt it. At the receiving or playback end, the
dynamic range is expanded again, so the output SNR could get improved. The need for
companding in signal processing and its merit is now briefly introduced as follows[19].
Suppose the output of an analog signal processor consists of three types of components:
useful signal, noise (internally generated noise and external interference) and distortion
(harmonics, intermodulation, etc.). Denote the rms value of the signal, the noise and the
distortion with S, N and D respectively. For a linear system, S is proportional to the input
rms value, N is independent of the input. For large enough input signals, nonlinearities
of the system components would result in output distortion, and the output signal might
not be proportional to the input anymore, as shown in Fig. 1.6(a). For demonstration

simplicity, we utilize the ratio of signal to noise-plus-distortion in decibel, given by
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Fig.1.6(b), to represent the system input dynamic range: denote the minimum acceptable

S . . . . S
(m)dB with which the input signal could be successfully processed as (m)accept,d,g,

then the usable dynamic range of the input signals is the quantity shown as DR in the

same figure.

o s

3 S /\

[ N+D accept, dB

=

[10]

= |

8 [

g N+D'9B

=1

=%

=

o ‘
_ “DbRrR

Input level (dB) Input level (dB)

) (b)

Figure 1.6 (a) Three typical types of output components from a conventional signal processor:
signal (S), noise (N), distortion (D), and noise-plus-distortion (N+D), represented as power in
dB. (b) S/(N+D) in dB and the usable dynamic range (DR) for a specified minimum acceptable
S/(N+D).

To widen the system’s dynamic range, assuming the maximum signal level
cannot be raised due to the limited supply voltage, then the noise floor should be reduced
below the level shown in Fig. 1.6(a). This gives rise to the S/(N+D) curve in the solid line
in Fig. 1.7, where the broken line is a replica of the curve in Fig. 1.6(b). Apparently, the
new usable dynamic range is wider than the original one due to the lowered noise floor.
However, lowering the noise floor usually causes some undesired issues for an integrated
signal processor in practice. Take for instance a system where the main noise source of
interest is thermal noise which is contributed by resistors or transconductors that along
with some capacitors determine the critical frequencies of the filter. As the mean square

value of the noise is inversely proportional to the total capacitance, large capacitances
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should be used to keep the system noise low, which results in a much larger chip area.
Moreover, as the associated transconductantors need to be scaled up by the same factor
in order to maintain the system’s original frequency response, the system dynamic power
dissipation would increase by the same factor[24-26]. Note that the solid curve in Fig.
1.7 displays some amount of wasted value around its peak compared to the broken-line

curve, which is resulted from the lowered system noise floor.

s
(=)

N+ Bccept, dB

DR’
Input level (dB)

Figure 1.7  Solid line: the raised % by lowering the system noise floor; broken line: the

original system %. The dynamic range gets widened from DR to DR’.

The companding technique greatly relaxes the above limitations by operating on
the dynamic range in a way shown in Fig. 1.8(a), where the center portion represents the
level of the signal at a point inside the signal processor. It is also assumed that the noise
generated in the processor itself is much higher than the input noise and is the dominant
noise source, which is a very practical assumption for a high-Q design[27-29]. As the
overload level inside a signal processor can be lower than the external overload level in
some designs, the companded input signal leads to a flattened S/(N+D) curve, shown by
the solid line in Fig. 1.8(b). The corresponding dynamic range, DR is much larger than

the original dynamic range DR; compared to the solid curve in Fig. 1.7 which is achieved

27



by lowering the system noise level, the S/(N+D) curve resulted by companding has lower
peak value while yields a greatly enlarged usable dynamic range.

The input/output signal and its companded version could either be of the same
type (e.g., both are voltage signals) or of different types. An interesting and popular
application of the latter case is some current-mode companding filtering systems, where
the input and output signals are current, while the core filter processes voltages signals
across its capacitors. In these systems, the overload levels of input/output signals are not
directly related to the supply-imposed voltage limitations, and the input/output dynamic
ranges can be very different from what’s attainable within the filter. Fig. 1.8 depicts the
distinction between the original signal and its companded versions, as well as the
associated dynamic range. When the companding technique is applied to a filtering
system, the core filter’s signal levels may be no longer proportional to the input, so the
system is internally nonlinear, however, its overall input-output behavior remains linear
if the system is implemented with appropriately synchronized circuits. Companding is
accomplished by monitoring signal(s), either inside or outside the signal processor, and
then accordingly modifying some gain-related quantities. Based on the gain controlling
signals utilized, there are two main types of companding systems: instantaneous and
syllabic. If the value of the gain-related quantities depends only on the value of signals
in the signal path at the same instant, the companding action is called instantaneous. If a
measure of the average strength of a signal, such as its rms value or envelope, is used as
a gain control, then the resulting companding is syllabic. Syllabic companding was first
used in speech transmission[20, 21], and it also finds application in audio recording and

reproduction[22, 23]. It typically relies on an appropriately designed dynamical system
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to evaluate the control signal’s average strength and adjust the specific gain to compand

related signals in the system.

Input 1 i Signal i i Output
domain | | processor | ! domain
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Figure 1.8 (a) Schematic representation of companding. (b) Solid line: S/(N+D) curve of a
companding system, broken line: S/(N+D) curve without companding.

' Signal '
] ! processar : ™y
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(e.g., current domain) (e.g., curent domain)

Figure 1.9 A companding system with the core signal processor being internally voltage-limited
while having current signals as input and output. Typically, the system has an external dynamic
range much larger than the dynamic range of the signal processor.

1.3.3 Combinational Synchronous Filtering
The framework of synchronous filtering systems allows us to go beyond what
has already been developed[11]. Another transformation matrix, M, (t), is now

defined as the product of M(t) and a time-varying scalar, p(t).

Miew(t) = p()M(t) = p()P(wyt + k) (1.62)
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where p(t) has to be a strictly positive time function to guarantee M, (t) is

nonsingular. Transforming the state matrix with the M,,,.,, (t), we have

Anew(®) = pOMOAM™(0) =1 + 2 [POMOIM(0) 7

= M(D)AM™ + [p(t)M(E) + p(O)M ()M~ (£) —

p(t)
=M®AM™ T+ M(OOM~1(t) + %I
— A4 P0
= A+ (1.63)
The complete system is now represented as:
d _ A — _
2t Wnew = Apew () Wnew + Gpew (DU (1.64)

Yy = Hnew(t)wnew + Du
where Gnew(t) = p(t)G(t)a Hnew(t) = %H(t), Wnew = p(t)w-
The system specified by eqgn. (1.64) actually adds to the FM-mode synchronous filter a

network that performs signal companding, represented by p(t) in G, (t) and % in

H,.,, (t). So the front end and back end stages of the system perform both amplitude

modulation and frequency modulation. In practice, p(t) could be adjusted continuously

to implement some automatic gain control that helps maximize the system’s dynamic

range. It has been reported in literature[30, 31] that one issue about the time-varying gain

is that it might change the system signals and produce distortion when the core filtering

block is involved in the companding process. Inspection reveals that the introduced time-
p(t)

varying diagonal terms in the state matrix, o0 amount to a time-varying Q factor of the

system core filter. Electronically tuning the Q factor in most integrated filters is
relatively easy, so this change does not pose a challenging implementation problem. The

benefits resulting from the companding nature of the system will almost certainly

30



outweigh the cost of the increased circuit complexity. A conceptual representation of a

companding synchronous filtering system is given in Fig. 1.10.

Oscillators

Core

fit) Filter 1/t

L1

Level Detection
Gain Adjust

Input —> Output

Figure 1.10 Block diagram for a companding synchronous filter system.

Taking the above second-order subheterodyne synchronous filter for instance,

the specific expression of the matrices for the new model is derived as below:

wo  P(®)

- —(Wa —wWnm)

R 2Q t)

Ape () = 7 S (1.65a)
(Wa — W) ~22 0

_ _ sin(wyt + 0 + )
Gnow(®) = boPO | o0t 4 g0 1 )

where b, = /bl2 + b,%, B = tan~(by/b,); (1.65b)

hl,.,(t) = CO% [sin(wyt + 0 + @) cos(wyt + 0 + )|
where ¢y = \/c12 + ¢,2, a = tan~'(c, /cy). (1.65¢)
1.4 Overview of this Dissertation
In Chapter 1 we have given a brief introduction to the architecture and
mathematical model of a few synchronous filtering systems. The objective of our
research is to search for effective approaches or architectures related to synchronous

filtering to improve the noise performance of analog filters. The subjects of our research
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are a biquad bandpass filter and a biquad complex filter, the state space descriptions of
which are given by eqgn. (1.30) and eqn. (1.46) respectively.

In Chapter 2, log-domain filters and a particular technique to design log filters
are introduced. A log-domain biquad bandpass filter is then designed and tested, based
on which an AM mode synchronous bandpass filter is proposed and modified. The
ideally modified filter, according to mathematical analysis, has superior capability in
suppressing the input noise while maintaining the useful input components. It leads to
the creation of a feedback filtering system capable of producing signals very similar to
what is produced by the ideally modified filter under certain circumstances. What is
more important, the feedback system provides a foundation for the development of a
novel high noise performance feedback filter with tunable Q factor as will be articulated
in Chapter 5.

Chapter 3 discusses a log-domain biquad complex filter and related synchronous
filtering systems. Following a detailed implementation process, we verify the input-
output function of the resulting FM mode static synchronous complex filter. We then
transform it into a dynamic synchronous system with time-varying core filter center
frequency and modulating frequencies. Two specific patterns for the center frequency
variation are introduced and tested, to show that the overall dynamic system externally
maintains the function of a standard complex filter.

In Chapter 4, after a brief review on the developed systems in previous chapters,
we test their performance in dealing with the input noise and the injected in-filter noise,
to explore approaches or architectures that might lead to the design of a filter with

improved noise performance.
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Inspired by some discoveries made in Chapter 4, we devised a novel method of
utilizing feedback signals to tune the Q factor of a bandpass filter, which could be used
to alter a low-Q bandpass filter into a much sharper one that has superior immunity to
the in-filter noise. Mathematical analysis is provided to explain the Q-factor tuning
mechanism. In Chapter 5, we detail the development of such a feedback filter, test its
function and noise performance, and give a transistor-level design solution for a log-
domain feedback complex filtering system. Important research discoveries are
summarized in Chapter 6, followed by suggestions regarding future work that could be

done.
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Chapter 2 AM mode-synchronous-filtering Related Bandpass Filters

This chapter focuses on the transistor-level realization of an AM mode
synchronous bandpass filter. A particular class of circuits known as log-domain filters
are introduced first, as their unique features make them a good implementation solution
for synchronous filters. A classic realization technique is then articulated, followed by a
specific design case of applying the synchronous filtering approach to a biquad log-
domain bandpass filter. Moreover, a feedback filtering system will be derived from the
resulting synchronous filter.

2.1 Introduction to Log-domain Filters

The idea of ‘log-domain filtering’ was initially proposed by Adams in 1979[32].
It was motivated by the need from electronic music applications for filters that have
tunable gain and cut-off or center frequency, wider tuning range and lower signal
distortion. Adams claimed that a linear transfer function could be implemented by an
internally nonlinear system with properly designed log-domain circuits. In general, a log
filter takes a current signal as input and converts it into a voltage signal, which is its
natural logarithm version, for the following processing. The processed voltage signal
will be converted back into current signal so that the final output is a linearly filtered
version of input. Adams’ log-filter is illustrated in Fig. 2.1 and could be divided into
three parts: front end, back end converting circuit and the filtering stage. Assuming ideal

components are used in the filter implementation, we formulate the following equations:

1 Lin dv - k
Vi = K In (K)' Cd_tc =l = Isek(Vl Ve) — lo, Iout = Ise (VetVpg) = IOekVC (2.1)

34



where I is the reverse bias saturation current of an ideal diode,and k is the inverse of
thermal voltage V; of a PN junction. Based on the equations above, I,,; and I;, are

correlated:

dlour Ko | Ky o

dt < out:T in (2.2)

Eqgn. (2.2) indicates that the system in Fig. 2.1 is a one-pole low-pass filter with unity

low-frequency gain and a cutoff frequency of w, = kl,/C. The transfer function is

derived as:
Iout(s) Wo
Y( ) N Iin () S"‘Wo (2.3)
|
v
lin | b2 lia
o1 i

[
|
| C_t_ '
T

= [ — 2|
I |

converting ! ' — converting
stage log filter stage

Figure 2.1 Adam's basic log-domain filter.

Another perspective on the ‘log-filter’ is to picture the input as an ac signal riding on a
constant DC current I,. In this sense, diode D, contributes a resistance equal to the
dynamic impedance of a diode with I, flowing in it. Then the log-filter is equivalent to
a first-order RC filter with R = V. /I, and the cutoff frequency w, = I,/V,C. Adams
therefore suggested that any active RC filter should have a log-domain counterpart where
all the original resistors are replaced with an appropriate network of diodes and current

sources.
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Features of a log-domain filter include convenient tunability, accurate wide
tuning range and current operational mode. In Adams’ low pass filter, the cutoff
frequency is proportional to dc current I,, so it could be tuned with great ease by simply
adjusting the magnitude of the current source. The relation between I, and wy, is claimed
to hold accurate over a range wider than three decades for I, in the literature [32]. On
the other hand, since the log filter incorporates an electrical network designed upon the
constitutive law for a forward-biased diode and Kirchhoff’s current law (KCL), it’s
categorized as a current-mode filter. Therefore, it provides a potential solution to the
high frequency limitation of many voltage-mode filters. A major shortcoming of Adams’
design is the use of op-amps in signal processing such as logging, level shifting and
exponentiation. Due to non-idealities of the op-amps, such as input offset voltage, bias
current, input noise, etc., the filter would face serious performance degradation in
practice. Another drawback of the design approach proposed by Adams is that it yields
distortion when applied to the realization of filters of second or higher order. The defect
manifests itself as some unwanted term(s) in the differential equation that specifies the
implemented filter.

2.2 Implementation Technique

Inspired by Adam’s log-domain filtering idea, Frey proposed in 1993[33] a
distortionless synthesis procedure which provides an elegant guideline for the generation
of many modern filter topologies. The technique uses a particular state-space
representation derived from the system transfer function. After applying an exponential
mapping and giving physical meaning for the state variables, the dynamical equations

become explicitly implementable as each term is associated with some parameter in an
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electrical network. To make this point clearer, the specific mathematical operation and
a design example related to the synthesis technique will be introduced. Start with the
generic dynamical equations:

X=AX+bu, y=c'x+du (2.4)
where X = (x4,X,, ..., X,) 7 is the state vector, u is the input scalar and y the output scalar;
Alis an n X n matrix, b is an n x 1 vector, T is a 1 x n vector, and d is a scalar. Next,
define the change of variables using exponential mapping:

=ekVi |y =4V (25)

X
where Kk is a positive real number, V; is a nodal voltage associated with the state variable
X, and I, is the value for a nominal dc current. Substitute the specific expression of X

and u back into the state equation, then multiply both sides with (C;/k)e Vi :

n
dv. Ci C;
Ci— = E 2 a XV | 2 g, ek(Vo-Vi)
ldt L Kk ij€ k ildc€

= |21 Ly 7| 4 pyelVo) (26)
where 1 < i < n, constants C; are arbitrary, A;; denotes the entry in the it row and the
™ column of matrix A,b; is the i" element of vector b, Lij = %Aij, i = %bildc. The
physical meaning of the above equation set is explicit if we take it as a series of nodal
equations associated with the electrical parameters in a circuit. Defining V; as the it
node voltage, the left-hand side could be interpreted as the current flowing into a
capacitor C;, which has one end grounded and the other tied to the i*" node. This current

is contributed by the variation of the capacitor variation. The right-hand side could be

taken as the sum of currents entering or leaving the same capacitor, contributed by
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surrounding circuitry. Using the same mapping method, the system input-output
equation is rewritten as:

Y = (X, ¢e™o) + dlg e’V (2.7)
where ¢; denotes the it element in €T. Due to the introduced exponential mapping, it is
now possible to implement a log filter with much less effort, using only current sources,
capacitors and BJTs in active region or MOSFETS in subthreshold region.

Take the implementation of a first-order, unity gain lowpass filter which is
specified by the transfer function below for instance:

Wo

H(s) =

(2.8)

s+wg
A possible set of dynamical equations that corresponds the transfer function is:
X = —woX + wyU, Y=X (2.9)
where X is the state-variable, U is the input signal, Y is the system output and wy, is the

cutoff frequency of the filter. Apply the exponential mapping and define
— ny = Yo
X =1, exp (VT) =Y, U=Ilexp (VT) (2.10)
Note in eqgn. (2.9) the input vector U is strictly positive, which indicates that the input
current has to be appropriately offset for the system to work as expected. Substitute the

definition in egn. (2.10) into the dynamical equations and multiply both sides with e,

CVr = —woCVy + woCVpexp (Vov_vl) =—Iy+ I;exp (W) (2.11)
T T

where I, = woCVrp, V4. = VTln(%). At this point, the system dynamical equations have

been transformed into a form which is very straightforward to implement. Fig. 2.2 shows

the resulting log filter. An unobvious issue in the design is the necessity of forcing a
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proper operating point for the system so that small signals get processed as expected and
the dc component in the output is predictable. In this case, the solution is to set the bias
current of Q2 to be I,. By doing this, the dc level of the output should be the same as

that of the input signal.

vCC

2
u "1:+"3QE CE .y
a aal’
I Q
]GCJ T © ],JCI’>
|

Figure 2.2 A first-order low pass log filter with cutoff frequency wy = 1,/CV7.

Simulation was run in PSpice for design verification. As a prototype design, ideal
components are used and the transistors are with B=10k so their base current is negligible.
The particular filter designed is expected to have a cutoff frequency at 1kHz. Other
related parameters are set up accordingly as: I, = 500u4, C = 3.084uF. Test results are
shown below. The Bode plot verifies the filter’s low-frequency unity gain, cutoff
frequency and roll-off slope rate. In the transient test, the input signal is a sine wave
current:  Ij, os = 500ud + 400uA - sin(2 - 1000t) . No distortion is observed in the
output waveform at steady state, and the amplitude and phase change matches what is

specified by the transfer function of a first-order low pass filter.
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Figure 2.3 Bode plot of the log filter in Fig. 2.2.
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Figure 2.4 Input and output signals from the transient test. Upper graph: time-domain plots.
Lower graph: Corresponding FFT spectra.
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2.3 A Biquad Log-domain Bandpass Filter
2.3.1 Circuit Realization
As has been mentioned in Chapter 1, the state-space equation set below

implements the transfer function of a standard second-order bandpass filter given by eqgn.

(2.13).
al_|=g v ] + ofu, y=11 ol [ (2.12)
X0 Wy 0 X2 0 ’ X2
Y(s) s
H(s) = —2 = —w2—— (2.13)

Us) sz+%s+w02

Wo

where w,, is the center frequency, o = R and Q is the quality factor. According to the

synthesis technique, an exponential mapping is first applied to the state equation set to
transform it into a new form which is explicitly associated with a BJT transistor-level

electrical network. Define the state variables as:

U1 _UIfC

x1=ISexp( )=y1, Xy =Isexp(1;—j) (2.14)

where v, is a voltage of two-diode drop while v, is a one-diode drop voltage, v,

represents the base-emitter voltage of a BJT carrying dc current I4.. The state equations

are correspondingly transformed into:

+ + - A% +Vi,—V
t

Vi

(2.16)

V1 —V[fc +VIfC —V2)

Vit

Cv, = Igexp (
Related current and voltage notations are explained below:

I
IfC = Wocvt, IQ = %,
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Uy, = veln (Ilf—:) = v, =vln (Ild—:),le =v;ln (u;:“) +veln (%), Uy, = Ut In (Il_f)
Physical meaning of the yielded equations is obvious. For both equations, the left hand
side represents a current flowing into a capacitor which is contributed by the variation
of the voltage across the capacitor, and the right hand side terms are current flows
generated by surrounding circuitry to balance out the current on the left hand side. Fig.
2.5 shows a possible circuit realization of the filter which incorporates two interacting
capacitors. The input to the circuit, I, o5, IS a current with offset I.. The circuitry in the
broken-line box implements a negative transconductance with a translinear loop. The

operating point of each capacitor voltage is forced by circuitry enclosed by the solid line.

Specifically, Ve 105 = Vire F Viger Verigne = Viy, - The collector currents labeled as

Y_BPF and Y_LPF are possible circuit outputs: the former provides a band-pass filtered
version and the latter is a low-pass filtered version of the input current. This result could

be derived from the state-space representation of egn. (2.12):

wo?
X2(5) _ Wo 0
Us) s H(s) = 75 2 (2.17)

The design in Fig. 2.5 could be modified into another bandpass filter whose peak gain is
proportional to the quality factor. As shown in Fig. 2.6, the new circuit has a much
simpler schematic. Since no circuitry is designed to balance I, for the left capacitor, it
is required I, to be much smaller than I¢., which indicates that the bandpass filter needs
to be set with a high Q to avoid performance degradation. On the other hand, because
the filter’s mid-band gain is proportional to Q, the amplitude of input current needs to

be adjusted properly to ensure a distortionless output. The transfer functions realized by
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the circuit are given by eqn.(2.18). Different from the bandpass filtered output, the low-
pass filtering output has a unity passband gain that is independent of Q. Both filters in
Fig. 2.5 and Fig. 2.6 are electronically tunable: varying the amplitude of current sources

labeled with Ifc or IQ, we can easily adjust the filter’s center frequency or quality factor.

2
Hi(9) =02 = oty Ho(s) = 502 = oot (218)

U(Gs)  s2+ Qos+w02 U(s) 52+%s+w02

—

L oif 4# milE
-

| Y.LPF —
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| e )Y
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lde T C Iui Lﬁ E:: ftCD

Figure 2.6 A non-unity gain, electronically tunable second-order log-domain bandpass filter.
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2.3.2 Simulation Results

Both ac test and transient test are run under PSpice to verify the function and
performance of our design. The purpose of the ac test was to generate the system’s Bode
plot and verify the filter’s tunability, and the transient test was mainly for checking out
the integrity of output current signals. Ideal sources and capacitors were used in the
design. Unless otherwise mentioned, all the NPN transistors take the QbreakN model (in
Cadence) with g set to 10k. Other parameters are: I;. = 0.5mA4, C = 3.076nF.
ac test

According to the design technique, I, is proportional to the bandpass filter

b

center frequency. Therefore, adjusting current sources “Ir.” easily tunes the center

frequency. Also, the Q factor is determined by the ratio of I;. to I, so if I, stays the
same while I is tuned, both the center frequency and the Q factor will be scaled by the
same factor and the filter bandwidth would remain unchanged. On the other hand, if I
is fixed and I, is tuned, then the center frequency will remain the same while the Q
factor and the bandwidth will be scaled together. The above expected properties need to
be verified by Bode plots and related measurement data from the ac test. The lowpass
filtering function of the filter can be verified with Bode plot too.
1. Tests on the unity-gain filter in Fig. 2.5
1) Center frequency tunability
Setup

Input: ac=1, dc offset = 500u. Output: I,,; = Y_BPF

Current sources setup: 1Q=10u, Ifc sweeping: 320u, 410u, 500u, 660u, 720u
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Simulation Results

-10

-20

(gp)uten

200KH2

400KHL 600KH2 B00KHI 1.0MH2 1.2MH:

Frequency

2.0MHz

4.0MHz 6.0MHz 8.0MHz 10MH2

100d

sod

aseyd

-50d

-100d
100KHz

|

200KHz

400KHz

500KHz 800KHz 1.0MHz1.2MHz

Frequency

2.0MHz 4.0MHz

6.0MHz 8.0MHz 10MHz

Figure 2.7 Bode plots of the bandpass filter in Fig. 2.5 under the center frequency tunability test.

Test Ifc (A) 320u 410u 500u 660U 720u
Setup IQ (A) 10u 10u 10u 10u 10u
Center 640.143k | 820.183k | 1.000M | 1.320M | 1.440M
Frequency (Hz)
Quality Factor | 32026 | 41.025 | 50.029 | 6598 | 71972
i Barde";’)'dth 19.987k | 19.992k | 19.997k | 20.007k | 20.012k
Peak Gain (dB) | -0.013 | -0.015 | -0.017 -0.022 -0.024
Phase Angle
Zero Cross (Hz) | 640.143K | 820.183k | 1000.440K | 1320.290k | 1440.330k

Table 2-1 Measurement data from the center frequency tunability test on the filter in Fig. 2.5.
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Observation

Varying Ir. and keeping the I, scales the center frequency and Q factor of the
bandpass filter simultaneously with the same factor, while the bandwidth is almost
unaffected. The peak gain of this filter is unity and is barely influenced by the tuning of
I¢c. In each test case, the phase change starts to drop from 90 degrees as the input
frequency increases, approximately hitting 0 when the input frequency equals the filter’s
center frequency and asymptotically approaches -90 degrees as the input frequency
becomes extremely high.
2) Quality factor tunability
Setup

Input: ac=1, dc offset = 500u.

Current sources setup: Ifc =500u, 1Q sweeping: 2u, 5u, 10u, 20u, 50u.

Simulation Results
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Figure 2.8 Bode plots of the bandpass filter in Fig. 2.5 under the Q factor tunability test.

Test Ifc (A) 500u 500u 500u 500u 500u
Setup
10 (A) 2u 5u 10u 20u 50u
Center

Frequency (Hz) | 1.000M | 1.000M | 1.000M | 1.000M | 1.000M

Quality Factor 248.085 99.832 49.973 25.012 10.019
Rgsejrts Bandwidth (Hz) 4.031k 10.019k 20.015k 39.989k 99.830k
Peak Gain (dB) -0.087 -0.035 -0.017 -0.009 -0.003
Phase Angle

Zero Cross (Hz) | 1000.220k | 1000.220k | 1000.220k | 1000.220k | 1000.220k
Table 2-2 Measurement data from the Q factor tunability test on the filter in Fig. 2.5.

Observation

Varying I, while keeping the value of Ir. changes the quality factor and
bandwidth of the filter, but the center frequency is almost unaffected. Also, the peak gain
of this filter is barely affected during the tuning of quality factor. Comparing the
measured Q factors to the target values, it’s discovered that the tuning for a higher Q is
less accurate, which might because it requires a very low I, current. But even in the
tuning for Q=250, the error is measured to be smaller than 1%. The phase spectrum again

verifies that the filter center frequency does not change during the tuning of I, as long
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as Iz is fixed. The test results from 1) and 2) suggest that Ir, and I, can be adjusted
together to set up the bandpass filter with any random combination of fc and Q within
certain range.
3) Low-pass filtering function
Setup

Input: ac=1, dc offset = 500u. Output: I,,; = Y_LPF

Current sources: Iz, =500u, I, sweeping: 2u, 5u, 10u, 20u, 50u

Simulation Results
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Figure 2.9 Gain spectra of the filter in Fig. 2.5 under the low-pass filtering and damping factor
tunability test.

Test Ifc (A) 500u | 500u 500u 500u 500u
Setup 1Q (A) 2u 5u 10u 20u 50u

Test Passband gain 0.004 0.010 0.020 0.040 0.100
Results | Overshooting peak | 0.990 0.996 0.998 0.999 1.001

Table 2-3 Measurement data from the low-pass filtering and damping factor tuning test on the
filter in Fig. 2.5.
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Observation
The gain spectra above explicitly verify the low-pass filtering function of the

filter. According to the particular current source setup, the low-pass filter damping factor
is expected to be 1/500, 1/200, 1/100, 1/50 and 1/20 during the sweep of I,. The
measured passhand gain is proportional to the ratio of I, to Ir., which agrees well with
what is suggested by the transfer function in egn. (2.17). As the damping factor of the
lowpass filter is smaller than unity in each case, overshoot is expected before the roll-
off of the gain spectra. The location and value of the overshooting peak remain
approximately the same during the tuning of I, as long as Ir. is unchanged.
Measurement shows that the peak is consistently located at the center frequency of the
bandpass filter, with a constant gain close to unity.
2. Test on the non-unity gain filter in Fig. 2.6
1) Tunability of the peak gain
Setup

Input: ac=1, dc offset = 500u. Output: I,, = Y_bp

Current sources setup: Ifc=500u. 1Q sweeping: 2u, 5u, 10u, 20u, 50u.

Simulation Results
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Figure 2.10 Gain spectra of the bandpass filter in Fig. 2.6 under the Q factor tunability test

Ifc (A)

Test 500u 500u 500u 500u 500u
Setup
IQ(A) 2u 5u 10u 20u 50u
Center
rest | Frequency(Hz) | 1000.22k | 1000.22k | 1000.22k | 1000.22k | 1000.23k
Results | qality Factor | 248.083 | 99.836 50.018 25.034 10.019
Peak Gain 247.497 | 99.599 | 49.899 24.974 9.996

Table 2-4 Measurement data from the Q factor tunability test on the filter in Fig. 2.6.

Observation

This particular design implements a bandpass filter whose peak gain equals the
quality factor Q ideally, as indicated by eqn. (2.18). When I, is tuned with I, fixed, the
quality factor Q is expected to be inversely proportional to I, while the center frequency
fc stays the same. In the test above, fc was set and fixed at LMHz, and Q is expected to
be 250, 100, 50, 25 and 10 as 1Q gets swept from 2uA to 50uA. The measured data agrees

well with our expectations: a constant center frequency, a tunable quality factor, and a

peak gain that tracks Q and inversely proportional to I,.
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Transient test

A transient test was run on both designs to test the integrity of the output current
signals. Related parameters are as: I = 0.5mA, Ig. = 0.5mA, I = 10uA, C=3.076nF.
Based on the setup, the center frequency of the bandpass filter is 1MHz and the quality
factor is 50, so the bandwidth of the filter is 20kHz.
1. Test on the unity-gain filter in Fig. 2.5
AM input: I, = Iz + I,s = (0.1m) sin(2m - 1Meg - t) [1 + 0.5sin(27 - 10K - t)] + 0.5m
A more explicit expression of the input, in the form of the sum of sinusoids of different

frequencies, could be derived by applying a trig identity to the equation above:
Iin = (100w) sin(2m - 1Meg - t) + (25u)cos(2m - 0.99Meg - t) — (25u)cos(2m - 1.01Meg - t) + 0.5m

Note that the carrier is at 1MHz and the sideband signals are at 0.99MHz and 1.01MHz
respectively. As the bandwidth of the filter is 20kHz, we can expect that the amplitude
of both input sideband signals experiences an attenuation of approximately 3dB during

the signal processing.

Simulation results
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Figure 2.11 Transient plots of the unity-gain bandpass filter input (upper) and output (lower)
current signals.

51



1oma

apnydury

1.0nA

1oma

apnyduy

1.0nA

080 ©0B2 084 0B6 0B 050 0592 054 056 098 100 102 104 106 108 110 112 1314 116 118 120

Frequency {MHz)

Figure 2.12 FFT spectra of the unity-gain bandpass filter input (upper) and output (lower) current
signals.

The above plots show that the designed circuit is capable of generating a distortionless
bandpass filtered version of the input current signal. The quality factor of the bandpass
filter could be verified by the FFT spectrum of the output signal. Moreover, the output
is measured to have the same level of dc offset as the input, which is not labeled out in
the figure.
2. Test on the non-unity gain filter in Fig. 2.6

The transient test on the second design is mainly to verify the realization of the
non-unity peak gain of the bandpass filter that tracks the filter’s quality factor. The same
parameter setup for current sources and capacitors was used, which suggests that a peak
gain of 50 should be implemented. The amplitude of ac components in the original AM
input is scaled by 1/50 to avoid distortion in the process of small signal filtering and
amplification. With this setup, the successful implementation of a bandpass filter whose
peak gain equals the quality factor is easily verified if the output signal from this test is

close to that from the above test.
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Input: lin = Qu) sin(2m - 1Meg - t) + (0.5u)cos(2m - 0.99Meg - t) — (0.5u)cos(2m - 1.01Meg - t) + 0.5m

Simulation results
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Figure 2.13 Transient plots of the non-unity gain bandpass filter input (upper) and output (lower)
current signals.
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Figure 2.14 FFT spectra of the non-unity gain bandpass filter input (upper) and output (lower)
current signals.

As shown in Fig. 2.14 and Fig. 2.15, the simulation results perfectly agree with our

expectation.
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2.4 AM mode Synchronous Bandpass Filter and Related Feedback Filtering System
2.4.1 The Mathematical Model

It has been introduced in Chapter 1 the derivation and generic state space
representation of AM mode synchronous filtering, we now modify the unity-gain
bandpass filter discussed above into a synchronous filter of this mode. First, we utilize
the transformation approach introduced in Chapter 1 to transform the mathematical
model of the standard biquad bandpass filter, given by egn. (2.19), into a new version
that corresponds to a companding system.

W) 0

. o
X,

Wo
Xy Q

w,oy=l ol (219)

Define the new set of state variables as w = p(t)X, where p(t) is always positive, then
an alternate state space representation of the bandpass filter is derived as:

Wo 4 PO

. +
Wil _| Q' pm

W

= 1 w
|+‘8‘p(t)u’ y=-=I1 ol|,| (220)

p(H] 1wz G,

0 p(t)

The above dynamical equation set could be associated with a system that has a core filter
with time-varying Q factor and amplitude modulators at both ends. Although internally
time variant, the system is externally time invariant and it implements a transfer function
identical to that of the original bandpass filter. So if the impulse response of the bandpass
filter is h(t), then the output of the derived system to input u(t) could also be expressed
as:

y(®) = u(t) *h(t) (221)
where symbol “*” denotes convolution. The block diagram of the derived synchronous

filter is shown in Fig. 2.15.
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Figure 2.15 Block diagram of an AM mode synchronous BPF specified by egn. (2.20).

Interestingly, if we take the modified core filter as an independent system and u(t) -

p(t) its input, as shown in Fig. 2.16, then the system output could be expressed as y(t) -

p(t) or [u(t) = h(t)] - p(t), which is the product of a bandpass filtered u(t) and the

original p(t). Suppose u(t) is a carrier and p(t) a properly offset baseband information
p(t)

signal that is always positive, also suppose we were able to generate the ideal 20 and

alter the core filter into one that corresponds to the state matrix in egn. (2.20). According
to the analysis above, when receiving an AM signal u(t) - p(t) , the derived system
would apply the bandpass filtering specified by h(t) only to the carrier u(t) and
produce the product of the processed carrier and the original information signal as output.
If the center frequency of the core filter has been tuned to the carrier frequency wy, then
the frequency component w, in the carrier could pass through the modified filter
unchanged while other components in the carrier will be attenuated. Therefore, the useful
sideband signals in the AM input would ideally stay intact during the signal processing.
It leads to an appealing advantage of the system when processing noisy AM input signals:
the original time-invariant bandpass filter centered at w, could in principle be tuned as
sharp as needed to suppress the undesired components near wy, and the useful input

sideband signals would be maintained regardless of the core filter’s original Q factor. In
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this sense, the system in Fig. 2.16 is capable of producing an output with noticeably
improved SNR compared to a standard second-order bandpass filter with the same Q
factor. The noise performance of such a system will be discussed in detail in Chapter 4.

Biquad Filter with time-varying Q
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Figure 2.16 Another perspective of the AM mode synchronous BPF: a filter with time-varying
Q factor processing an AM input signal, which has the potential of producing an output with
very high SNR.

2.4.2 The Filter with a Time-varying Q Factor
In this section, we will implement the filtering block in Fig. 2.16 that has a time-
varying Q factor by modifying the log domain unity-gain bandpass filter in Fig. 2.5. The
input AM current is particularly set up as:
Iin = u(®p(t) + Ios (2.22)

where u(t) = sin(2m-1Meg - t) , p(t) = (0.1m)[1 + 0.5sin(2m - 10K - t)], I,s =

(O
i ; —5 Wo p(t)
0.5m. Note that the state matrix in eqn. (2.20) isthe sumof | Q and ol
_WO O —_
p(t)

where the former matrix is the state matrix for the original time-invariant bandpass filter
and the latter specifies the Q factor variation, so the new filter could be realized by

respectively injecting the current corresponding to %wl and %wz to the associated

capacitors in the original filter. As p(t) is always positive, it could be realized by the

collector current of a BJT and be expressed as p(t) = Isexp(‘;—p), where v, is the base-
t
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p(t) _

emitter voltage difference of the BJT with collector current p(t), and it follows that — vt

i—p. To realize %Wl(l 1 or 2), we first transform the term the same way as we transform
t

the state equations of the bandpass filter, namely, multiplying it with C The product
could then be simplified as Cv,,, where C is the capacitance of the capacitors in the core
filter. The physical meaning of &w, has become explicit at this point: the current
flowing in the capacitor C when it’s applied with voltage v, . The conceptual
implementation of p( Wi is given in Fig. 2.17, where an ideal current source kp(t), an

ideal npn transistor and two ideal CCCSs are used. The two branches of output current
are respectively injected into the capacitors in the core filer to implement the filter with

a time-varying Q factor in Fig. 2.16.

é kp(t)

O
P,

Injectto capacitor C inthe core filterwhich isrelated towy

Injectto capacitor C inthe core filter which isrelated tow,
—_—

il GAIN = 1 @Wz

=0 p(t)

Figure 2.17 Schematic for implementing the time-variant quality factor.

A transient test was run on the resulting time-variant filter to test its performance.
For comparison, the output of the original time-invariant bandpass filter corresponding
to the same input was also plotted. The core filter was centered at LMHz and its original
Q factor was set to be 50. The input signal is the amplitude modulation result of an offset

10kHz sine wave and a carrier at IMHz. It’s expected that the original bandpass filter
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produces an output with sideband signals attenuated by approximately 3dB while the
modified filter produces an output almost identical to the intput. Simulation results in
Fig. 2.18 demonstrate that the sideband signals of the AM input sent to the modified
filter experience very little phase shift or ampitude attenuation, expect that some
intermodulation noise components of negligible size were observed. Besides the
particular test presented here, simulation was also run on the system set up with other
original Q factors and p(t) frequencies, it was consistently observed that the modified
system is always able to produce an output signal very similar to the input. Therefore,
the function of the filtering block in Fig. 2.16 does agree with our expectation developed

from the system mathematical model.
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Figure 2.18 Transient plots and corresponding FFT spectra of the input and output signals in the
test on the original bandpass filter with a constant Q factor and the ideally modified filter with a
time-variant Q factor, where the core filter was centered at 1LMHz and the original Q factor was
tuned to 50.

2.4.3 A Feedback Bandpass Filter Inspired by AM Mode Synchronous Filtering

In practice, generating the Q factor control signal %Wi is very challenging, as

we usually do not have the baseband information signal p(t) at the receiver end and have
to recover it from the received AM signal. As any demodulator inevitably introduces
phase shift to the received AM signal, the recovered baseband signal p(t) always lags
the original p(t) hence doesn’t seem to be a proper source for generating the Q factor
control signal. In this section, we will explore the possibility of constructing a feedback
filtering system with the demodulated input AM signal, shown in Fig. 2.19, and compare

its performance to that of the ideally modified filter in Fig. 2.16.
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The first task is to design a special demodulator, or envelope detector, to recover
p(t) from the core filter output with as little introduced phase shift as possible,
considering that the ideal p(t) is expected to be in phase with the original p(t). Recall
that in a conventional AM receiver, as shown in Fig. 2.20, the output of the bandpass
filter is mixed with a local oscillator output and the resulting signal is lowpass filtered
to recover the useful information, so the phase of the recovered signal is mainly
influenced by two blocks: the bandpass filter and the lowpass filter. Since the phase shift
results from the bandpass filtering is typically inevitable, we can focus on developing a
demodulation module that recovers the information signal with possible minimum phase

shift.

Processed

_Biquad Filter with time-varying Q“ AM Signal
i ]
} | Biquad BandpassFilter || Envelo
L] | | pe
u(®- p(t) >i with time-invariant Q.and fc E " etector
| ]
' ; g 0
T Q) - ,
e Control
! p®) Signal

Generator

Figure 2.19 Block diagram of the proposed feedback AM-mode filtering system

Time-invariant R Lowpass
AM signal | bandpass filter B Filter ) Recovered signal

Local
oscillator

A

Figure 2.20 Block diagram of a basic conventional AM receiver.

Based on the above analysis, we devised a demodulator that employs a sample-and-hold

block (S/H), instead of the mixer-lowpass filter module, to recover the information signal
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from the bandpass filtered AM input. The switch of the S/H block is controlled by a
pulse train at the carrier frequency and with extremely small duty cycle. According to
the sampling theory, the frequency-domain representation of an ideally sampled signal
is:

Fideally sampled (W) = €71%5T% - 5inc(0.5Tw) - ¥AZ*S F(w —nw,) (2.23)
where F(w) is the Fourier transform of the signal to be sampled, which in our case is the
bandpass filtered AM signal, w,is the sampling frequency, T is the sampling period, and
n is a integer. For a sampling rate that equals the carrier frequency of the AM input, the

phase shift introduced to the baseband components in the S/H output, i.e. —Win (w
0

wy), would be very small. And since the repeating patterns of F(w) over the frequency
axis are weighed by function sinc(0.5Tw), the patterns that are not in the baseband
(corresponding to n # +1 ) would be scaled to a negligible level compared to those in
the baseband (corresponding to n = +1). Some analysis would convince readers that the
S/H block is able to extract the input signal’s envelope with very small error.

Although the phase shift introduced in the lowpass filtering stage in a traditional
demodulator could be avoided by utilizing the S/H block, the reconstructed baseband
signal p(t) still lags the original p(t), due to the preceding bandpass filtering. Therefore,
it’s still unclear whether p(t) could be used to generate the Q-factor control signal. To
answer this question and evaluate the performance of the feedback filtering system in
Fig. 2.19, a Gm-C system model has been implemented and simulated in PSpice, as
shown in Fig. 2.21, where all the sources and blocks are ideal. The system could be

divided into two parts: the voltage-mode bandpass filter with a time-invariant Q factor
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and the feedback path that consists of an S/H demodulator and a Q-factor control signal
generator. The core filter implementation becomes very straightforward after we
transform the state space equations in egn. (2.21) into the following form:

p(® C

- e Sl Bon s P00 I

0]

w,C
w,C

st alfy)

(2.24)

Wo

where g, = _%C, 912 = —WoC, g21 = WoC, Gus = ?C.

The original bandpass filter with time-invariant Q factor is explicitly associated with the
Gm-C network in Fig. 2.21, where the input is a voltage signal and all the
transconductors are modeled by ideal voltage-controlled-current-sources (VCCSs). The
core filter is followed by an envelope detector which is modeled as a switch in series
with a capacitor. The on and off status of the switch is controlled by an impulse train.
Notate the recovered voltage signal as p(t) and apply it to a capacitor with one end
grounded, then the capacitor current equals Cp(t). A feedback connection control
circuitry is included to prevent the Q-factor control signal being sent back before p(t)

steps into steady state, in order to avoid convergence problem in the simulation.
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To test the performance of the above system, we set up a simulation as follows:
Input AM voltage signal:
p(t) -u(t) = [1m + (O.Sm)sin(wpt)]sin(wcamert), wp = 21+ 10K, Wearrier = 2T 1Meg;
Capacitors and VCCSs:

C=3.075n, Cs=100n, g10=g11=386.416u, g12=¢21=19.321m;
S/H impulse train:

TD=250ns, PW=1ns, PER=1000n; Switch: RON=1e6, ROFF=1e-3;
Feedback connection control:

From t=0 to 1.5ms, the loop is open; from t=1.5ms to 2ms, the switch is partially on
and starting from t=2ms, the switch is completely turned on, 100% of the feedback current is
injected into the core filter.

The setup for the filtering capacitors C and the VCCSs implements a center

frequency of 1MHz and an original Q factor of 50 for the core filter. So it is easy to
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predict that before the loop is closed, the reconstructed baseband signal p(t) is 3dB
lower than p(t) and 45 degrees lagging in phase. A transient test was run on the feedback

bandpass filtering system and the system with a core filter modified by the ideal %.

The blue plot in Fig. 2.22 shows the recovered signal p(t) from the system in
Fig. 2.21 in the open-loop stage (Oms to 1.5ms), partially closed-loop stage (1.5ms to
2ms) and completely closed-loop stage (2ms to 3ms). It’s apparent that the phase and

O]

amplitude of p(t) in the three stages are different, and with higher percentage of 50

sending back to the core filter, the recovered signal p(t) from the feedback system bears

stronger resemblance to the original p(t), and when 100% of % feeds back, p(t)

almost overlaps with p(t). The corresponding FFT spectra quantitatively verifies that
p(t) from the feedback system has most of its energy concentrating at dc and 10kHz,
and the respective signal size is very close to its counterpart in the original p(t).
Moreover, the size of the undesired harmonics in p(t) is at a negligible level compared
to that of the information component. The simulation results suggest that it is possible
to replace p(t) with p(t) to generate a Q-factor control signal for the standard biquad
bandpass filter and further develop it into a feedback filtering system. When processing
ideal AM signals, the feedback filtering system is capable of recovering a baseband
signal that bears remarkable resemblance to the original information signal p(t) in both
amplitude and phase.

Finally, it was discovered through varying the AM input bandwidth that to ensure

the given feedback system to produce negligible output harmonic distortion, the
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bandwidth of the input AM signal needs to be limited in a range which is constraint by
the original sharpness of the core filter, while the filter modified by the ideal p(t)/p(t)
is not subject to such an issue. Table 2.5 provides some measurement data to demonstrate
this observation. The discovery could also be interpretted as that unlike the ideally
modified filter in Fig. 2.17 of which the original Q factor could in principle be tuned
extremely high, the highest original Q factor for the feedback filtering system to generate
an output with negligible harmonic distortion is constraint by the bandwidth of the input
signal. To better demonstrate this observation, we stuck with the same AM signal tested
above (bandwidth of 20kHz) and swept the origianl Q factor of the core filter (centering
at IMHz) over 80, 100, 200, 500 for both systems to compare their performance. Spectra
of the steady state recovered signals from the two systems are plotted on the same graph

for each Q factor tested, as shown in Fig. 2.23.

CoreFilter  Input Feedback Filtering System Ideally Modified Filter
Static BW fp(t) ‘q_l'umfﬁmenfm' AZM_mdsr_harmuntc Afundamenta! Aanwdﬁ‘harmonw
(KHz) (KHz) (uv) (uv) (uv) (uv)
1 500.019 0.009 499.966 <0.001
20 10 502.737 0.803 499,88 <0.01
20 511.012 3.496 499.63 ~0.01

Table 2-5 Measurement on the fundamental and 2"-order harmonic in the recovered signals
from the feedback filtering system and the ideally modified filtering system when they process
noiseless AM signals with different bandwidths.

65



1.50mvV

1.Z25mV =

0. 75mV -

i
i
1
i

0.50mv i e i b — - , T
1.0m= 1.Sm= Z.0m= Z.5m= 3. 0m=
“ original plt) “ () fromthe ¥ (t) from the
ideally medified feedback
filbaring system filtering systerm

(a) Transient plots

1.0mv

{0,000,1,0000m} (10, 000K, 200,000u)

N\
1.0pV ———

7

o Original p(t)

1.0mv

(0.000,0.9959m) (10.000K,459.880u)

1.0pv

O (1) from the ideally modified filtering system
1.0mv

(0.000,1.0008m) (10,0008, 502, 737u) (20 000K 803 689n)

1.0pv i AP a AT S VT ] VWW&\V‘H]Aw' T'A"l""wwlvﬂwnw “"y‘,,’d\w", A

T 1 T I
0Hz 10KHz 20KHz 30KHz 40KHz S0KHz
©  {i(t) from the feedback filtering system

(b) FFT spectra of the plots in (a)

Figure 2.22 The original p(t) and the recovered signal p(t) from the feedback filtering system
(blue plot) and the system with a core filter modified by the ideal p(t)/p(t) (red plot).
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Figure 2.23 FFT spectra of the steady state recovered signals from the ideally modified filter and
the feedback filtering system with same original bandwidth, under the Q factor sweeping test.

The above test result suggests: 1. For the ideally modified bandpass filter, raising
its original Q factor does not result in any undesired harmonic distortion. 2. For the
feedback bandpass filter, as the original Q factor increases, the output harmonic
distortion rises too. 3. If the original bandwidth of the feedback filter is too narrow
compared to the bandwidth of the input signal, large-sized harmonic distortion will be
generated so the output SNR is noticeably degraded. 4. Suppose the input signal has a
bandwidth of BW;,, to ensure the second order harmonic distortion in the feedback
bandpass filter output to be lower than 1/300 of the fundamental component size, it’s
recommended that the minimum original bandwidth of the core filter to be 0.5BW,,,
which sets an upper limit for the feedback system’s original Q factor. Therefore, it’s only
under certain circumstances that the feedback bandpass filter produces an output similar

to its ideally modified bandpass filter counterpart.
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2.5 Summary

Log-domain biquad bandpass filters, with unity peak gain or peak gain
proportional to the Q factor have been implemented at the transistor level. Upon
verifying their tunability and function, we proposed in Fig. 2.15 an AM mode
synchronous filtering system based on the transformed state space representation of a
standard biquad bandpass filter. Moreover, we deleted the back end modulator and
turned the system into a new one which could be viewed as a double-sideband AM signal
being processed by a bandpass filter with time-variant Q factor, shown in Fig. 2.16.
Mathematical analysis suggests that in principle the ideal system is able to suppress the
input noise as hard as desired while keeping the phase and amplitude of the useful input
sideband signals unchanged. It, hence, provides a compromising approach to improving
the SNR of a biquad bandpass filter when dealing with noisy AM signals. The
implementation of such a system with log-domain circuitries has been discussed and
tested. Considering the challenge in generating the ideal Q-factor control signal, a novel
feedback AM mode bandpass filter inspired by the system in Fig. 2.16 was proposed and
implemented as the ideal Gm-C network model in Fig. 2.21. Surprisingly, when the
bandwidth of the AM input is no wider than two times the original core filter bandwidth,
the filter modified by the feedback Q-factor control signal is able to maintain the size
and phase of the AM input. As the input bandwidth increases, however, harmonic
distortion of noticeable size emerges in the output. Therefore, the performance of the
feedback system is dependent on the match between the bandwidth of the input and the
original bandwidth of the system core filter, while the ideally modified system does not

have this issue. The noise performance of both systems will be discussed in Chapter 4.
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Chapter 3 FM mode-synchronous-filtering Related Complex Filters

In Chapter 2, the synchronous filtering approach that includes amplitude
modulation as part of the signal processing was applied to the implementation of a
biquad bandpass filtering system. In this chapter, we will focus on the application of
another type of synchronous filtering that performs frequency modulation in some stages
of the signal processing and could be viewed as FM mode synchronous filtering.
Specifically, we will implement a biquad high-Q high-center frequency complex filter
with both static and dynamic synchronous filtering approaches. In the static FM mode
synchronous complex filter, the core filter center frequency and the terminal modulating
frequencies are time invariant. Due to the front end modulation, the input signal is shifted
into a much lower frequency band, so the following signal processing only requires a
filter with lower center frequency and Q factor. The back end modulation brings the
processed signal back into the original frequency band; hence, the overall system
maintains the input-output function of the target filter. Such an architecture relieves the
challenge posed by the performance limitation of available components at high
frequencies, and makes possible the monolithic realization of a high-center frequency
high-Q complex filter. The dynamic FM mode synchronous complex filter, besides
making use of the above advantageous architecture, has a time-varying core filter center
frequency and end modulating frequencies. The internally time-variant externally time-
invariant system is capable of suppressing noise components in a certain frequency range
and producing an output of higher SNR, which will be demonstrated in Chapter 4.

3.1 Design of a Static FM Mode Synchronous Complex Filter

Take the design of a subheterodyne synchronous complex filter for instance.
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First of all, we reproduce the state space equations specifying the filter and the system
block diagram introduced in Chapter 1, by egn. (3.1) and Fig.3.1. In this section, we will
utilize the mathematical model given by eqgn. (3.1) and the technique for synthesizing
log-domain filters to design a current mode high-center frequency high-Q factor
complex filter that incorporates front end and back end modulators and a low-center
frequency low-Q factor core filter. The system will be realized with BJTs of high B value,
ideal current sources and capacitors. The design and implementation detail of each block

will be discussed, followed by functional verification with PSpice simulation.

Wo
. —— W3 i
Wy 20 4 |W1| |sm(wMt)
= _ 2 3.1
W2 w; _‘;V_Qg W2 +V2(wo/Q) cos(wyt) (31)

w
y =/2/2|sin(wyt) cos(wyt)| |W;|
where wz = wp — wy, W, is the carrier frequency of the received AM signal u,wy, is

the front/back end modulating frequency; W, = wz/+/1 — (1/2Q)2, W, is the center

frequency and Q is the quality factor of the core filter. Note that for a high Q , wi ~ Wp.

Oscillators

—
| |
Core & D
Input | Filter >§ Output
|

Quadrature Mixer 1 Quadrature Mixer 2

Figure 3.1 Embodiment of a FM mode synchronous complex filter.

3.1.1 The Front End Mixer

Design detail
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Note that since the front end and back end modulators have similar block
diagrams, they could be implemented together with similar circuitry. Start with the
design of the front end quadrature mixer which modifies the frequency spectrum of the
input signal. Specifically, the received RF signal is mixed with two channels of
quadrature sinusoids generated by a local oscillator, and the mixer outputs are two
channels of modulated signal that have the same magnitude spectrum but quadrature
phase angle. Synthesis of this block is based on the translinear loop theory, which is
commonly utilized in monolithic four-quadrant multipliers to achieve small error over a
wide frequency range. The principle is briefly explained with the circuit shown in Fig.
3.2 where all the transistors are assumed to be perfectly matched and have negligible
base current, and the current flow in each branch doesn’t change direction. Using KVL
and the constitutive law of a forward biased ideal PN junction, it is straightforward to
formulate:

Veez = Vpea = Vpg1 — Va2 (32)

i3/iy = i1/1; (3.3)

where Vgg; represents the base-emitter voltage difference of transistor Q;. It follows that
(i3 — i) /ia = (iy — i2) /12 (34)

(i3 +i4)/is = (i1 + 12) /1y (35)

Divide (3.4) with (3.5) and multiply both sides of the resulted equation with “(i; +i,)”:
i3 =iy = (iy —ix)(I3 + i) /(i1 +i2) (3.6)

Eqn. (3.6) suggests that the circuit in Fig. 3.2 could be used in the design of a multiplier.
Strictly speaking, the difference between collector current i; and i, is a scaled product

of the sum of i3, i, and the difference between collector current iy, i,. Typically, i; + i,
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and i; + i, are constants and they are realized as two current sources in the circuit. Note
that a proper dc offset is required to ensure all the transistors are consistently working in

active region.

o (o] (o)
- lil+i2 - \‘
o1 Q2 i3 14
._{) ;,
L ‘
4 O Q3+i4

Figure 3.2 A translinear circuit example.

Circuit realization of the front end mixer is shown in Figure 3.3, where all the ac
current sources are offset with 1. In the circuitry enclosed by the broken line, a three-
diode drop bias is generated for the transistor pair hosting the received RF current and
its differential signal. The circuit configuration in the two solid-line boxes is identical
and the circuitry implements two parallel four-quadrant multipliers. Each multiplier
consists of two differential pairs connected to a current mirror, a dc current source and
an output transistor. The greyish part in the mixer could be taken as a one-stage
operational amplifier, which is employed to improve the accuracy of the current mirror
by reducing Early effect. The output signals of this block are collector currents labeled
as I, and I ,,,;. They are a scaled product of ac component in I, and ac component
in the quadrature pair 1,4, I* 101 respectively. Both output signals are offset with I, in
the design to guarantee a consistent direction of the current flows, and they can be

formulated as:

Iout — Z(IRF_IdCI?i(CIOLl—IdC) + Idc , I*Out — —Z(IRF—Id;()iEI OLl_IdC) + Idc (37)
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Figure 3.3 Schematic of the front-end mixer. The notation Idc, IRF, ILO1 and lout represents
the system dc offset current, the received RF current offset with Idc, the local oscillator output
offset with Idc and the block output. Symbols ‘~’ and ‘*’, respectively, stand for the differential
and quadrature counterpart of a signal.

Simulation setup and results

Unless otherwise mentioned, ideal sources and transistors with f = 10k are
used in PSpice simulation for all designed circuits in this chapter. The particular set of
current sources used in the test is listed below:

Iqc = 500u, Iy = 50u
Igxr = 500u + 400u X sin(2m- 5Meg - t), g = 500u — 400u X sin(2m - 5Meg - t)

I o; = 500u + 200u X sin(2m - 4Meg - t), I 5; = 500u — 200u X sin(2m - 4Meg - t)
ILo1" = 500u— 200u X cos(21 - 4Meg - t), 11:51* = 500u + 200u X cos(2m - 4Meg - t)
Therefore, the two channels of output currents are expected to be:

Iout = 160u X cos(2m - 1Meg - t) — 160u X cos(2m-9Meg - t) + 500u
[out” = 160u X sin(2m - 1Meg - t) + 160u X sin(2m - 9Meg - t) + 500u
In the derived output signals, frequency component IMHz in I,,." lags that in I, by

90°, while frequency component 9MHz in I,,." leads that in I, by 90°. The phase
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angle relationship is well verified by Fig. 3.4. On the other hand, by measuring the
magnitude of 1MHz and 9MHz components in the output FFT spectra (as labeled in Fig.
3.5) and comparing the data to the ideal values above, we are further convinced that the

modulator in Fig. 3.3 implements a quadrature mixer as expected.

*
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Figure 3.4 Transient plots of I, and I,
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Figure 3.5 FFT spectra of 1, and I
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3.1.2 The Core Filter

Design detail

For the sake of argument, we made a little modification to the system dynamical

equations given by (3.1) and focused on the input-output characteristic of the core filter:

Wo
. —— —w; N
wi| _ | 20 A W1| W UM1| y = W1| (38)
wy w, —Mollwy Q luppl’ w; '
A 20

where wz = wy — wy, Wy IS the carrier frequency of the input AM signal,wy is the

front end modulating frequency; wy = WA/\/W, Wy, is the center frequency
and Q is the quality factor of the core filter. Note that for a high Q , wz = Wp. uy, and
Uy, are input signals to the filter. In the synchronous complex filtering system they are
generated by the preceding mixer and are two channels of quadrature modulated current
with the same dc offset. We started the design with the development of an ideal Gm-C
filter that only deals with small signals and provides a block-level perspective of the core
filer. First, define w; = voy =y, , Wy = v, = y,, Where both state variables are ac
voltages without offset. Egn. (3.8) is now rewritten as:

CVc1 = (—CWy/2Q)ve1 — Cwavez + (Cwo/Q)uyy (39)

CVcy = Cwavey + (— CWy/2Q)ves + (Cwo/Qupy (3.10)
We then make another definition to introduce the transconductors:

g11 =—C V/VT)/ZQ: 812 = —CWy, gu1 = Cwy/Q, 821 = —CWy, g2, = _CW\O/ZQ guz = Cwy/Q

It follows that the electrical network in Fig. 3.6 provides a straightforward
implementation of the core filter, of which both input and output are voltage signals. The
schematic suggests that the core filter can be realized with a pair of capacitors and

circuits demonstrating positive or negative transconductance.
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Figure 3.6 An ideal Gm-C model of the core filter.

GND

To design a transistor-level log-domain filter, exponential mapping was first
applied to the state-space description in egn. (3.8) to derive an equation set that could be
associated with an electrical network. Utilizing the synthesis technique introduced in

Chapter 2, we define the system state variables as:

Vqi—

VIC V_VIC
W1=Isexp(1th)=yl, w2=ISeXp(2v—td)=y2 (3.11)

where v, and v, are two-diode drop voltages, vy, _representing the base-emitter voltage

drop of a BJT carrying current I4..The state equations are correspondingly converted

into:
. — I£ _ VZ_V1+VIfC vuMl_V1+VIQ
Cvy = 2q _ Is€xp (—Vt ) + I exp (—Vt ) (3.12)
. V1—Vy+V] Ic Vup, —V21VI
CVZ = IS exp (V—tfc) - i) + Is exp (%) (313 )

where related definitions are listed as follows:

— o — — Ifc _
lfe = WoCve = I, Vige = thn(z) = Vige

u I u
VM, = V¢In (%) + v¢In (Il:), VM, = Vi ln( :\;lz

) + v ln (lf‘—:), Iq = %, Vig = Vi In (11_3)
The resulting equation set could be taken as nodal equations for a pair of interconnected

capacitors, with one end grounded and the other end connected to a node of v; (i =
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1 or 2) volts. The left-hand side of each equation represents a current flowing into the
related capacitor, generated by the variation in v;, and the right-hand side is the sum of
other current flows from surrounding circuitry to balance the left-hand side current.
From this perspective, the core filter is implemented as shown in Fig. 3.7. For the circuit
to work properly, a stable dc operating point of two-diode drop across both capacitors
has to be forced. The circuitry enclosed with a dotted line is designed for this purpose.

Moreover, for design simplicity, terms “v;,” in eqn. (3.12) and (3.13) were actually
implemented as vy 5, = v In(0.51,/I5). This modification only lowers the gain of the
core filter by 0.5 and has no other influence on the transfer function.

The current sources in the circuit could be categorized based on their function:
1) Current sources "I¢." that in conjunction with the capacitors set the filter’s center
frequency to be W, = Ir./cv,. 2) Current sources that influence the quality factor are
labeled as Iy, and Q = Ir./21,. 3) Auxiliary current sources "I,." that help generate a
proper dc operating point for the circuit. 4) Input currents u,,; and -u,,, that are both
offset with I;.. 5) If the circuit works properly, both output currents y; and y,would
have the same offset 1.

Tuning Wy and Q of this filter is simple. For example, by changing the value of
all the current sources labeled as "I¢.", the filter’s center frequency will be tuned while
its bandwidth remains the same. Similarly, varying the value of all the “I,” sources will

change the bandwidth of the filter without affecting the filter’s center frequency.
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Figure 3.7 A log-domain complex filter implemented with the state-space exponential mapping
technique.

Simulation setup and results

We simulated the transistor level log-domain complex filter above with PSpice
to test its function and properties. The tests include: 1) Generating Bode plots to verify
the bandpass filtering function and the electronic tunability in both center frequency and
quality factor. 2) Transient test on the combination of the filter and its preceding
modulator, to check out signal integrity and verify the image rejection capability of the
filter.

Test 1: Transfer function verification

The state space equation set corresponding to the design in Fig. 3.7 is a little

different from eqgn. (3.8) in the input matrix, which only halves the gain of the resulting

filter. The equation set is formulated as below:

W
wi| | 20 Alywy | Wy |UM1 _ M1
= .y - , y= ( 3.14 )
Wy wi — Yol Wy 2Q lup Wy
A 22(?
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To estimate the performance of the core filter, all the transfer functions relevant to eqgn.

(3.14) were derived and listed below:

Wo,Wo —(0y
(s+ GPVa

— W1 _ 2Q°2Q — — W2 _ —
Hiy Tumt 2490 w24 (W02 (umz = 0), Hzy T umr | 524900 w24 (W02 (umz = 0)
s24gstwy (ZQ) s+ stwy (ZQ)

W0y w5 Wo Wo
Hy, === e (upy = 0), Hyp = == = S i M (up1 = 0)
u 2,W0 . 2. Woy2 ! u 2, W0 o 2, W0y
Mz stHEstwRt+(E) Mz sP+istwa+(5E)

(3.15)

To verify the above transfer functions are successfully implemented, the core filter

center frequency was tuned to 1LMHz and the quality factor was tuned to be 50. Therefore,

2’—5 is two orders of magnitude lower than Wy, and w; would be very close to w,. The

setup also suggests that the magnitude spectra of H,; and H,, would be similar to that
of a bandpass filter whose center frequency is close to 1IMHz and peak gain is about -
6dB. Also, H,; and H,,are expected to have magnitude spectra similar to that of a
second-order lowpass filter, with a pass-band gain of -40dB, an overshoot peak at 1IMHz
and a rolloff slope of -40dB/dec, approximately. To plot H;; and H,, uy, was set up
as Idc and uy;; was an ac current offset with Idc. We switched the setup for u,,; and
Uy, to generate the Bode plot of H,, and H,,. All the plots generated, as shown in Fig.
3.8 and Fig. 3.9, agree with our expectation. Note that the minus sign in H;, indicates

an introduced phase shift of 180 degrees, which is verified by the phase spectrum of Hy,.
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Figure 3.8 Magnitude spectra of Hy4, H,¢, Hy,, H,, for a complex filter with fc=1MHz, Q=50.
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Figure 3.9 Phase spectra of Hy4, Hy4, Hy2, Hy, for a complex filter with fc=1MHz, Q=50.

Frequency

Test 2: Image rejection capability

Typically, a complex filter takes a pair of quadrature signals as input and it is
capable of distinguishing one frequency component from its image with respect to the
center frequency. Therefore, the core filter should be able to attenuate the input
quadrature signal pair in certain phase relationship (u,,, leads/lags u,,, by 90 degrees)
to a negligible level while letting the quadrature pair in the opposite phase relationship
(upyq lags/leads uy,, by 90 degrees) pass through. Dual-channel ac input was set up in

the following simulation to test the image rejection capability of the designed filter.
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Specifically, u,,; was set up to lead and lag u,,, by 90 degrees respectively. As shown
in Fig. 3.10, the magnitude and phase spectra suggest that input quadrature pairs with
uy; lagging uy, by 90 degrees will be attenuated heavily, while the input quadrature
pairs in the opposite phase relationship will be bandpass filtered in the frequency range
near 1MHz. The magnitude spectra also indicate that the peak image rejection ratio of

the filter about -50dB.
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Figure 3.10 Gain and phase spectra of the quadrature input signals corresponding to (a) w4
leading u,,, by 90 degrees and (b) w4 lagging uy, by 90 degrees.

Test 3: Center frequency and quality factor tunability

Due to the particular implementation technique we used, the resulting filter is
supposed to be electronically tunable in both center frequency and quality factor with
great convenience. In this section, we generated gain and phase spectra of the input

quadrature signals while sweeping either I;. or I, over certain range.
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Test 3.1 Center frequency tunability
Current sources setup: 1Q=5u (Q=50), Ifc: 320u, 410u, 500u, 660u, 720u.

Test results:
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Figure 3.11 Gain and phase spectra of (a) the leading input and (b) the lagging input in the center
frequency tunability test.

Current Setup Ifc 320u 410u 500u 660u 720u
1Q 5u 5u 5u 5u 5u
Center Frequency ul | 640.279k | 820.396k 1.001meg 1.321meg | 1.441meg
(Hz) u2 | 640.279k | 820.396k 1.001meg 1.321meg | 1.441meg
Quality Factor ul 32.031 41.024 50.024 65.979 71.962
u2 32.031 41.024 50.024 65.979 71.962

ul | 19.990k 19.998k 20.005k 20.017k 20.021k
u2 | 19.990k 19.998k 20.005k 20.017k 20.021k
ul -0.011 -0.014 -0.018 -0.023 -0.025
u2 -0.011 -0.014 -0.018 -0.023 -0.025
Table 3-1 Measurement result from Test 3.1 (ul: the leading input; u2: the lagging input).

Bandwidth (Hz)

Peak Gain (dB)

The test results above explicitly verify that the filter’s center frequency is proportional

to /¢, the bandwidth is proportional to I, and the Q factor is determined by the ratio of
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I¢c 10 1y. Varying I while maintaining I, changes the filter’s center frequency and Q
factor but barely affects its bandwidth.

Test 3.2 Quality factor tunability

Current sources setup: Ifc =500u (fc=1MHz), 1Q sweeping: 1u, 2u, 5u, 10u, 20u.

Test results:
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Figure 3.12 Gain and phase spectra of (a) the leading input and (b) the lagging input in the Q
factor tunability test.

y

Y1ys sseyd

Current Ifc 500u 500u 500u 500u 500u
Setup 10 1u 2 5u 100 20u
Center ul | 1.001meg 1.001meg 1.001meg 1.000meg 1.000meg

Frequency
(H2) u2 | 1.001meg 1.001meg 1.001meg 1.000meg 1.000meg

Quality ul | 247538 124.489 50.009 25.006 12.502

Factor u2 | 247.538 124.489 50.009 25.006 12.502
Bandwidth | ul 4.042k 8.037k 20.006k 40.004k 79.966k
(Hz) w2 | 4042k 8.037k 20,006k 40.004K 79.966k
Peak Gain | 1 -0.096 -0.046 -0.018 -0.009 -0.004
(dB) u2 -0.096 -0.045 -0.018 -0.009 -0.004

Table 3-2 Measurement result from Test 3.2 (ul: the leading input; u2: the lagging input).
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According to measurement results, Q factor of the filter is inversely proportional to 1Q.
In the tuning of the Q factor, the center frequency stays at 1IMHz and the filter’s peak
gain is consistently close to unity.
Test 4: Transient tests

The first transient test run on the combination of the front end modulator and the
complex filter was to evaluate the signal integrity during the modulation and filtering
process. In the following image rejection test, another AM signal was generated, which
is the image of the input signal used in the first test with respect to the core filter’s center
frequency. The specific test setup, important plots and observation are given below.
Test 4.1 Front end modulation and complex filtering

The transient plots and corresponding FFT spectra of the original AM signal,
modulator output and filter output are plotted. The system input is an AM current signal
generated by mixing an offset 10kHz sine wave with a 5MHz carrier, plus a dc offset.
Main components of the input include dc, 4.99MHz, 5MHz and 5.01MHz, as shown in
Fig. 3.13. The front end modulating frequency was set to be 4MHz, as the designed
modulator performs sub-heterodyning and the following filter is centered at LIMHz. After
the modulation, ac components in the received AM signal will be shifted to the sum and
difference of 5MHz and 4MHz and the dc component will be shifted to 4MHz. Fig. 3.14
and Fig. 3.15 respectively show the left channel input/output and right channel
input/output signals of the core filter. According to the core filter setup (fc=1MHz,
Q=50), it is expected that the filter attenuates frequency components far away from
1MHz to a negligible level, suppresses the sideband signals at 0.99MHz and 1.01MHz

by approximately 3dB and provides unity gain to the components at 1MHz.
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Figure 3.15 Transient plots and FFT spectra of the right channel input u,,, and corresponding
output w,.
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The figures above show that the modulator generates a pair of quadrature signals from
the AM input and the filter processes the quadrature signals exactly as expected. No
distortion is observed in the transient plots. Comparing the spectra of the input and
corresponding output, the average noise level is a little higher after filtering. The
introduced noise is of a negligible size and mainly distributes near harmonics of 1IMHz,
which might be the computation noise generated by the simulator.
Test 4.2 Image rejection

To generate the image counterpart of the above input AM signal, the carrier was
switched from 5MHz to 3MHz, which is the image of the original carrier with respect to
4MHz. The new system input is represented by the FFT spectrum below. The AM signal
is then processed by the front end modulator, which yields two channels of quadrature
signal, both containing components at dc, 0.99MHz, 1IMHz, 1.01MHz, 6.99MHz, 7TMHz
and 7.01MHz. 1t’s expected that the bandpass filtering function of the complex filter
(centering at 1MHz) attenuates the components at 6.99MHz, 7MHz and 7.01MHz to a
negligible level. On the other hand, due to the particular respective phase relationship
between the components at 0.99MHz, 1MHz and 1.01MHz in the the two channels, all
of them are supposed to be attenuated heavily. Therefore, both output channels of the
filter should ideally have no ac component. Fig. 3.17 and Fig. 3.18 respectively show
the left channel and right channel input, and their corresponding output from the filter.
The image rejection capability is verified by comparing the output signals in Fig. 3.17

and Fig. 3.18 to that in Fig. 3.14 and Fig. 3.15.
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Figure 3.16 FFT spectrum of the input AM signal for the image rejection test, which is the image
of the input AM signal in Fig. 3.13 about 4MHz.
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Figure 3.18 Transient plots and FFT spectra of u,, -, the image of u,;, and its corresponding
core filter output.
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3.1.3 The Back End Modulator
Design detail

This block applies frequency shifting to the core filter output. It consists of an
interface circuit, a pair of mixers and a current subtractor. The interface acts as both a
voltage-current converter and a differential signal generator. Connecting the base of the
output transistors in Fig. 3.7(the two circled transistors) to the base of the two input
transistors of the interface circuit, the output currents of the core filter are directly
‘copied’ to the interface circuit. As both input currents have the same dc offset I, two
current sources of 214, are used to generate the differential of the input, which is needed
in the subsequent modulation. The following circuitry is similar to the front end
modulator and it is able to perform either up conversion or down conversion, depending
on the setup of local oscillators. Specifically, if I;,, has the same frequency as I, in
the front end modulator, the backend modulator would generate an up-converted output
signal, so the system is equivalent to a complex filter. If I, oscillates at a frequency
that equals the core filter’s center frequency, then the system is capable of recovering
the baseband information carried by the received AM signal. Note that the quadrature
and differential current sources eed to be carefully set up in order to implement the
expected conversion. Schematic of the modulator is shown in Fig. 3.19, where the output
is labeled as IOUT and could be expressed as:

_ 2ly02.acV1ac 2 ILOZ*iaC'YZ_ac
lour = N - N + Igc (3.16)
dc dc

— % . . — %
where I;0z acs Y1acr [Loz 401 Yz_ac @re ac components in signal Io, y1, ILoz 5 V-
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Figure 3.19 Schematic of the back end modulator. The notation yland y2, ILO2, IOUT means
the two channels of input current, the current generated by local oscillator and offset with Idc,
and the block output. The symbols ‘~’ and ‘*’, respectively, stand for the differential and
quadrature counterpart of a signal.

Simulation setup and results

Transient simulation was run to test both up-conversion and down-conversion
performance of the modulator. In the up conversion test, the back end modulating
frequency was set to be 4MHz, and 1oy IS expected to be a bandpass filtered version of
the input AM signal. Fig. 3.20 shows the transient plots and FFT spectra of the system’s
input and output. Comparison between the transient plots shows that the introduced
phase shift to the input sideband signals is approximately 45 degrees. Also, according to
the parameter setup, the gain contributed by the front end and back end modulators
together is 0.64. Measurement results labeled on the spectra suggest that the core filter
in the system provides a peak gain of unity to the components equal or very close to
5MHz, the gain drops by 3dB at 4.99MHz and 5.01MHz. That is to say, the center
frequency of the overall system is approximately 5MHz and the quality factor is about
250. Simulation results from the down conversion test are shown in Fig. 3.21, in which

the back end modulating frequency was tuned to 1MHz and the phase of all the back end
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modulating signals was accordingly adjusted. In the spectrum of the recovered baseband

signal, most energy concentrates at dc and 10kHz, harmonic distortion at a negligible

level is observed.
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Figure 3.20 Transient plots and FFT spectra of the input and output current signals of the static
synchronous complex filtering system in the up conversion test.
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Figure 3.21 Transient plots and FFT spectra of the original modulating signal and the output
signal from the synchronous complex filtering system in the down conversion test.
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3.1.4 Overall System Test
Gain spectrum

To verify that the synchronous filtering system designed above, when performing
up conversion in the back end, implements the input-output function of a complex filter,
we plotted its gain spectrum over certain frequency range. Specifically, the system core
filter was set up with f. = 1MHz and Q = 50, whose gain spectrum is plotted in Fig.
3.22(a); the carrier frequency of the system’s AM input was 5SMHz and a series of
baseband signals ranging from dc to 50kHz were used as the information signal. In the
superheterodyne mode, both the front end and back end modulating frequencies were set
to be 6MHz; in the subheterodyne mode, they were tuned to 4MHz. The gain spectra
generated in both modes were plotted in Fig. 3.22(b), and they almost overlap. Compared
to the spectrum in Fig. 3.22(a), it’s obvious that the synchronous complex filter has
higher center frequency and higher Q factor. Moreover, the magnitude spectrum of the
transfer function of a biquad complex filter with f. = 5MHz and Q=250 was plotted too.
The strong resemblance between the three plots in Fig. 3.22(b) clearly proves the
functional equivalence between the synchronous filtering system with a low-Q low-
center frequency core filter (f. = 1MHz and Q = 50) and a complex filter with high-Q

high-center frequency(f. = 5MHz and Q=250).
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Figure 3.22 The gain spectrum of (a) a biquad complex filter with f. = 1MHz and Q = 50, (b)
a static synchronous complex filter developed with the core filter specified by (a), in both
subheterodyne mode and superheterodyne mode. The magnitude spectrum of the transfer
function of a complex filter given by Hy, (H,3) in egn. 3.15, with wg = w; = 5SMHz and Q =
250, is also plotted in (b) as a reference.

Image rejection

A synchronous complex filter in the subheterodyne mode was tested first. The
front end and back end modulating frequency was set to be 4MHz. The input currents
were generated by mixing a baseband information signal at 10kHz with carriers at 5SMHz
and 3MHz respectively, so that they form an image pair with respect to 4MHz. Plots in
Fig. 3.23(a) and (b) suggest that the synchronous filtering system is able to suppress the

input signal carried by 3MHz to approximately 45dB lower than the filtered version of
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the input carried by 5SMHz. The filter was then modified into superheterodyne mode and
its end modulating frequency was still 4MHz. Simulation results in Fig. 3.23 (c) and (d)
show that the new filter lets the input signal carried by 3MHz pass through while heavily
suppresses the signal carried by 5MHz, which is excatly opposite to the performance of
the subheterodyne mode system. Therefore, a synchronous complex filter in either mode
maintains the image rejection capability, and the subheterodyne synchronous complex

filter shows slightly stronger image suppression capability.
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Figure 3.23 Results from the image rejection test on a static synchronous complex filter with
front end and back end modulating frequency at 4MHz, in either subheterodyne or
superheterodyne mode.

3.2 Design of a Dynamic FM Mode Synchronous Complex Filter

3.2.1 The Mathematical Model

In this section, we develop a more sophisticated FM mode synchronous filter,

which is in the same architecture as the system implemented above but with time-varying
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core filter center frequency and both end modulating frequencies. A dynamic
synchronous complex filter could be represented by either egn. (3.17) or egn. (3.18),

depending on the front end modulation mode.

Wil _ |—®o/2Q  —wz(®) | (Wi __|sin(d(1)
W, “—wﬂo —W5/2Q oy |+ V2(570/ Q)|cos<<|>(t>) u
y = V2/2lsin(@(©®)  cos(d®) || (3.17)
Wil |-W/2Q  —wa(®) |ws - jeos(h (D)
W “ () —ay2g) wel T V2D G ey ¥

y = V2/2lcos(d(®) sin(d®)I |y, (3.18)

where W, is the dc offset of the time-varying core filter center frequency, Q is the dc
offset of the time-varying quality factor, while W,/Q is time invariant; wy(t) is the
time-varying center frequency of the core filter; eqn. (3.17) represents a subheterodyne
mode system, where dd¢(t)/dt = wy —w;z(t) ; eqgn. (3.18) represents a
superheterodyne mode system, and dd¢(t)/dt = wy + w;i(t) ; wy is the carrier
frequency of system input u. In principle, a dynamic synchronous complex filter
maintains the function of the targeted complex filter as long as d¢(t)/dt = wy —
w3z (t) (subheterodyne) or do(t)/dt = wy + wz(t) (superheterodyne), but some
particular variation patterns for w;z(t) are preferable if they have the following
properties: 1) the associated phase angle ¢(t) in the modulating signals is simple,
implementable and conveniently tunable; 2) the synchronized variation of the core filter
center frequency and the modulating frequencies makes the system superior to its static

counterpart in noise performance. Taking these concerns into consideration, two types
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of wz(t) are proposed here. One pattern of our interest is the sinusoidal waveform.
Recall that the core filter center frequency is proportional to the center frequency control
current “I¢.”, SO to realize the sinusoidal center frequency specified by eqn. (3.19), we
only need to set up the control currents as given by eqn. (3.20). The phase angle ¢ (t) of

the modulating signals is accordingly derived as eqgn. (3.21).

w3 (t) = wy + Awgsin(Wy,,t) (3.19)
AWO .
Ifc(t) = Ios + (W_O)Ios Sln(wvart) (3-20)
AWO
d(t) = wyt — (anr)COS(anrt) (3.21)

where w,, is the offset component in the time-varying center frequency, Aw, represents
the center frequency variation range, w,, is the variation rate; I, = CVyrw, and C is the
value of the capacitors in the filter.

The other proposed pattern of wz(t) is the square waveform. Suppose that the
dc offset of the core filter’s time-varying center frequency is wy, the variation range is

w, + Aw, and the switching rate is w,,,, then the control current I (t) should be a

square waveform at frequency wy.,,, with peak value of (%)Ios and an offset of 1.
0

The phase angle ¢(t) in synchronization with w; (t) is derived as the sum of wyt and a

triangle waveform at frequency wy,,. with peak-to-peak value of (mAwg)/Wyar -

Moreover, an offset component, ¢,, may be added to ¢(t) to specify the phase angel

initial condition.
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Figure 3.24 Graphical representation of the modulating signal phase angle and the core filter
center frequency in a dynamic synchronous complex filter. (a) The sinusoidal variation pattern.
(b) The square waveform variation pattern.

3.2.2 Overall System Test
Dynamic synchronous complex filters with core filter center frequency varying

in both patterns were set up in Pspice, where ideal programmable blocks were used to
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implement the time-varying center frequency for the core filter and the time-varying
modulating frequencies. The following tests were run to evaluate the system up/down
conversion performance, image rejection capability and input-output function in certain
frequency range.
Up/down conversion

Take a dynamic synchronous complex filtering system in subheterodyne mode
for instance. The system was tested with different center frequency variation rate and
variation range. Table 3.3 lists the specific test setup. Fig. 3.25 shows the output signal
spectra from the up conversion test and Fig. 3.26 gives both transient plots and FFT
spectra of the down conversion system output. A static subheterodyne synchronous
complex filtering system was simulated too, to provide a reference to evaluate the

performance of the dynamic systems.

AM input carrier frequency 5MHz (0.1A) AM input modulating frequency de(ImA)+10KHz (0.5mA)
Front end modulating frequency offset 4MH:z Core filter center frequency variation rate 16KHz,80KHz,200KHz
Core filter center frequency offset IMHz Core filter Q-factor offset 50
. AMHz (up conversion) , - IMHz2400KHz
Core filter center frequency variation range
Back end modulating frequency offset IHa{down convesin) i quency variation rang MHB0KH
Gain of the front end modulator 16 Gain of the back end modulator 0.8 (up conv.) /1.6(down conv.)

Table 3-3 Parameter setup for the up/down conversion test on a dynamic synchronous complex
filtering system.

Simulation results suggest: 1) Regardless of the variation rate and variation range,
the amplitude of useful signals in the dynamic system output is very close to its static
system counterpart, but the dynamic system output contains more spurious noise due
mainly to the intermodulation between the modulated input signal and the time-varying
core filter center frequency. 2) When set up with the same variation rate and variation

range, a square waveform center frequency variation pattern produces higher
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intermodulation distortion than a sinusoidal variation pattern does, which might be due
to the periodic instantaneous level transitions in the former pattern. 3) The size of the
noise components is related to the variation rate, and it was discovered through sweeping
the variation rate that if the core filter’s static time constant is T, then a variation rate
lower than 1/t typically produces an output with higher intermodulation distortion. For
example, comparing Fig. 3.25 (b) and Fig. 3.25(c), we found that the intermodulation
noise corresponding to the center frequency varying in a sinusoidal waveform at 16kHz
is about four times higher than its counterpart corresponding to a rate of 80kHz, which
is slightly higher than 1/t of the system under test; the 200kHz variation rate further
lowers the intermodulation distortion, as shown in Fig. 3.25(d). 4) Widening the
variation range from 1MHz + 400KHz to 1MHz + 800KHz doubles the size of the
intermodulation distortion, so a proper variation range is also critical for the dynamic

system to produce a cleaner output.
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(b) Up conversion output signals from a dynamic system with different center frequency variation patterns
but the same variation rate and variation range: f,,, = 16KHz and f4., = 400KHz.
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(d) Up conversion output signals from a dynamic system with different center frequency variation
patterns but the same variation rate and variation range: f,,. = 200KHz and f4e, = 400KHz.
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(e) Up conversion output signals from a dynamic system with different center frequency variation
patterns but the same variation rate and variation range: f,,. = 200KHz and f4, = 800KHz.

Figure 3.25 FFT spectra of output signals from the dynamic synchronous complex filters under test.
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For the down conversion test, only the output signals from the dynamic systems
with f,,. = 16KHz and f4., = 400KHz are shown in Fig. 3.26, as this setup yields the
noisiest output in the up conversion test. The transient plot of the recovered signal from
the dynamic synchronous system employing either center frequency variation pattern is
almost identical to its static system counterpart. FFT spectra show some intermodulation

distortion in the dynamic system output, which is at a negligible level.
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Figure 3.26 Down conversion test output signals from a static complex filter and a dynamic filter
with different center frequency variation patterns.

Image rejection

If a subheterodyne mode complex filter has the front end and back end
modulating frequency at 4MHz, then any input signal carried by 3MHz will be
attenuated heavily due to the filter’s image rejection property. To verify that the
developed dynamic complex filter also possesses such a capability, a transient test was
set up as Table 3.4. We ran the test on both the subheterodyne and superheterodyne mode
dynamic synchronous complex filters, with the core filter center frequency varying in

sinusoid/square waveform pattern and at different rates. According to the simulation
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results in Fig. 3.27, a properly synchronized dynamic complex filter of either mode
maintains the capability of suppressing image signals, and a subheterodyne filter has

slightly stronger image rejection capability.

AM input carrier frequency 3MHz AM input modulating frequency 10KHz
Front end modulating frequency offset  4AMHz(subht)/2MHz(superht)  Core filter center frequency variation rate 16KHz,200KHz
Core filter center frequency offset IMHz Core filter Q-factor offset 50
Back end modulating frequency offset ~ 4MHz(subht)/2MHz(superht) Core filter center frequency variation range IMHz#400KHz

Table 3-4 Parameter setup for the image rejection capability test on the dynamic synchronous
complex filtering systems.
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(a) Up conversion result from dynamic complex filters with sinusoid or square waveform center frequency
variation pattern both of f,,, = 16KHz and f4., = 400KHz. The output plots in the upper group
correspond to a subheterodyne system and those in the lower group correspond to a superheterodyne
system. In each group, the blue plot corresponds to the sinusoidal center frequency variation pattern and
the red one corresponds to the square waveform center frequency variation pattern.
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(b) Up conversion result from dynamic complex filters with sinusoid or square waveform center
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Figure 3.27 Results from the image rejection test on the dynamic synchronous complex filters.
The input is the image of the signal shown in Fig. 3.25 (a), about the modulating frequency of
4AMHz.

The gain spectra

To show the frequency response of the impelemented dynamic synchronous
complex filter, gain spectra of the system in both superheterodyne mode and
subheterodyne mode were generated. In each mode, both the sinusoidal center frequency

variation pattern and the squae waveform center frequency variation pattern were tested.
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Related parameter setup is listed in Table 3.5, where the variation rate and variation

range were randomly picked.

Input carrier frequency MHz AM input modulating frequency 0 ~50KHz
Front endmodulatingfrequencyoffset  4MHz(subhtY6MHz(superlt)  Core filter center frequency variationrate 120KHz
Core filter center frequency offSet IMHz Core filter Q-actor offset 50
Back end modulafing frequency offset ~ 4MHz(subht)6MHz(superht) Core filter center frequency variationrange IMHz£500KHz

Table 3-5 Parameter setup for the frequency test on dynamic synchronous complex filters in
different modulation modes and with different center frequency variation patterns.

According to Fig. 3.28, dynamic complex filters of the same mode have almost
identical frequency responses regardless of their different center frequency variation
patterns. However, when set up with the same variation pattern, the gain spectrum of a
superheterodyne mode dynamic filter is a little different from its subheterodyne
counterpart, which might be due to the non-ideal synchronization between the
modulating frequency and the core filter center frequency. The magnitude spectrum of
the transfer function for the target complex filter (fc=5MHz, Q=250) was plotted out as
a reference. Interestingly, in lower frequency range, the gain spectra of the
subheterodyne systems almost overlap with the reference plot and their superheterodyne
counterpart are slightly off; as the frequency approaches 5MHz and gets higher, the
opposite scenario is observed. It’s possible that the equivalent center frequency of the
dynamic complex filter under test was slighly lower than 5MHz when it’s in the
subheterodyne mode and a little higher than 5MHz when it’s in the superheterodyne

mode.
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Figure 3.28 Frequency response of the dynamic synchronous complex filters under test

3.3 Summary

This chapter discusses in detail the state space representation, log-domain
implementation and function verification of both static and dynamic FM mode
synchronous complex filters. An FM mode synchronous filter is either superheterodyne
or subheterodyne, depending on the relationship between the input carrier frequency and

the system front end modulating frequency. The two types of filters have quadrature
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modulating pairs with different relative phase angels as well as frequencies. Table 3.6
lists the ideal modulating signal pairs for FM mode synchronous filters of both types to

perform up/down conversion.

Input: p(t)-carrier p(t) =1+ 0.5cos(Wg;t + B;) carrier = coSWegrriert + Bearrier)
Front end modulator Back end modulator
Superheterodyne sin(wyt) Up SM(Wyt = Dearrier)  Down  sin(Wot = O gprier)
Wy = Wegrrier TWp) —coS(Wyt) Conversion —cos(Wyt = @yqrrier) COMVISION —cos(Wyt — B ogrrier)
Front end modulator Back end modulator
Subheterodyne sin(wyt) Up SIWyt =B rgrrier)  DOWN  =Sin(Wot + O grrier)
(WM = Wearrier ~ WO) COS(WM t) Conversion COS(WMt - Q)carrier) Conwersion COS(WOt + Q)carrier)
Wy, : System front end modulating frequency w,: Center frequency of the core filter

Table 3-6 Ideal front end and back end quadrature modulating signal setup for an FM mode
synchronous complex filter to perform up/down conversion.

While the architecture of a static FM mode synchronous complex filter relieves
the challenge of implementing complex filters with high Q factor and high center
frequency, the dynamic filters in the same architecture and with a time-varying center
frequency synchronized by both end modulating frequencies provide a potential solution
to reducing the in-filter single-tone noise in a certain frequency range. Both sinusoid and
square waveform center frequency patterns of different variation rates and ranges have
been tested on a noiseless filtering system in this chapter. It was discovered that a
dynamic synchronous complex filter tends to generate some intermodulation distortion
due to the periodic variation in the center frequency, so it’s a little noisier than its static
counterpart in general. Such distortion, fortunately, could be lowered to a negligible
level by properly setting up the time-variant center frequency. For a noiseless system,
it’s preferable to vary the center frequency in a sinusoidal pattern, at variation rates

higher than the inverse of the core filter’s static time constant and in a range no larger
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than one half of the core filter’s static center frequency. Take the test results in section
3.2.2 for instance, for the dynamic synchronous complex filter with original center
frequency at 1MHz and original Q factor of 50, a sinusoidal center frequency variation
pattern at 200KHz and in the range of 1MHz+400KHz enables the system to generate
the lowest intermodulation distortion. Systems with the core filter center frequency
varying as a square waveform consistently generate larger intermodulation distortion
and the noise size is much less sensitive to the change of the variation rate and range.
Noise performance tests on the FM mode synchronous complex filters will be

demonstrated in Chapter 4.
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Chapter 4 Noise Performance of the Developed Filtering Systems

Previous chapters have discussed the basic idea, state-space representation,
circuit implementation and functional verification of synchronous filtering systems in
both AM mode and FM mode. Although a synchronous filter is more complicated and
harder to implement, it has higher flexibility in the system parameter configuration. For
example, there are in principle infinite ways for an AM mode synchronous bandpass
filter to vary its core filter Q factor while maintaining its external transfer function and
linearity. An FM mode synchronous complex filter could perform either subheterodyne
or superheterodyne modulation, with a dynamic FM mode synchronous complex filter
having its time dependent core filter center frequency varying in any waveform. Given
these freedoms, it’s expected that some variation patterns would effectively improve the
noise performance of the filtering system. In this chapter, we will focus on exploring
noise reduction methodologies in the context of synchronous filtering, utilizing the
filters introduced in Chapter 2 and Chapter 3 as research objects. Ideal Gm-C system
models will be simulated in the preliminary tests to exclude all the non-idealities in the
transistor-level circuits and help us develop a better understanding on the effectiveness
of the designs under test. Systems related to AM mode synchronous filtering will be
tested first, followed by the tests on the FM mode synchronous complex filters that have
higher circuit complexity and more degrees of freedom in the parameter setup.

4.1 Noise Tests on the AM mode Filtering Systems
4.1.1A Review on the Systems under Test
The idea of AM mode synchronous filtering could be generalized as follows: a system

specified by eqn. (4.1) implements the same transfer function as the system represented
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by eqn. (4.2) does, as long as p(t) is always non-zero.

aW=(A+§I)v—v+Bpu, y =

cTw (4.1)
X=AX+bu, y=c'x+du (4.2)
Applying egn. (4.1) to a standard second-order bandpass filter that is represented by eqn.

(4.3), we come up with the state space equations in eqgn. (4.4).

. Wo

X - Wyl |X1 — Xy

x’l =| Q |X|+ Qlu,y=|1 O||X| (43)

wo , p(D)
R R W,
Wy Q p(H) _
w it [ |+ p(u, y = =Sl ol a0
2 —w, 0
p(t)

The block diagrams of the systems corresponding to eqn. (4.3) and eqn. (4.4) are given
in Fig. 4.1. In the second block diagram, the core filter modified by% has a time-

variant Q factor. Amplitude modulators that scales the signal at the front end and back

end, respectively with p(t) and ﬁ, work in a synchronized mode with the time-varying

Q factor and ensure the overall system to be equivalent to System 1 in the input-output
characteristics.

Based on the AM mode synchronous filter functionally equivalent to System 1,
we developed System 2 by redefining the system input and output. Specifically, suppose
u(t) is a carrier and p(t) a properly offset baseband signal that is consistently positive,
then the front end modulator output u(t)p(t) in the synchronous filter could be viewed

as an AM signal, which we take as the input of System 2; also, suppose we were able to

generate the ideal % to continuously vary the Q factor of the core filter; moreover, if
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we intentionally get rid of the back end modulating block and directly take the core filter
output as the output of System 2, then according to eqn. (4.4), it could be expressed as
y - p(t), which is the product of the bandpass filtered carrier u(t) and the original
baseband signal p(t). It reveals an appealing property of System 2: as long as the core
filter is centered at the input carrier frequency, regardless of its Q factor, the sideband
signals in the system output would always have amplitude and phase very close to that
of the input sideband signals.

However, it’s almost impossible to generate the ideal Q-factor control signal %
at the receiver end, as we typically have to reconstruct the information signal from the
received AM signal. The recovered information signal, call it p(t), always lags the
original p(t) due to the bandpass filtering and lowpass filtering in a conventional AM
receiver. In the novel demodulator proposed in Chapter 2, an S/H block performing ideal
sampling was utilized to extract the envelope of the bandpass filter output, so as to
minimize the phase difference between p(t) and p(t). Although p(t) still lags p(t) due
to the bandpass filtering, simulation results have shown that when processing a noiseless
AM signal, System 3 in Fig. 4.3, of which the core filter bandwidth is controlled by the

)

feedback signal 50’

could produce an output very similar to what is produced by System

2. The noise performance of such a feedback filtering system is of our great interest.
Considering the challenge in implementing the S/H block that performs ideal

sampling in System 3, we created System 4 that provides a much easier way to recover

the information signal. Recall that the FM mode complex filtering system discussed in

Chapter 3 comprises a core filter and two terminal modulators, of which the back end

112



modulator could perform either up conversion or down conversion without introducing
extra phase shift if the local oscillators were properly set up. As the transfer function of
a second-order complex filter is very similar to that of a standard biquad bandpass filter,
we believe that a synchronous complex filter could easily be modified into a feedback
filtering system as an alternate of System 3, shown in Fig. 4.4. System 4 might have
improved noise performance because of its particular demodulator that produces less

high-frequency noise components than the S/H block.
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System 1 An AM mode synchronous bandpass filter functionally
equivalent to System 1 (p(t)>0 or p(t) <0)

Figure 4.1 Block diagrams of the systems specified by eqn. (4.3) and eqn. (4.4).
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Figure 4.2 A biquad bandpass filter with time-variant Q factor processing an AM input signal.
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Figure 4.3 Block diagram of a feedback filtering system inspired by System 2.
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Figure 4.4 Block diagram of a feedback filtering system developed with a synchronous complex

filtering system.

At this point, we have finished reviewing the block diagrams of all the systems

related to AM mode synchronous filtering. Their ideal Gm-C models are now produced
as follows. Fig. 2.21 in Chapter 2 has given a Gm-C network realization of System 3
based on transforming the modified state space representation of the AM mode

synchronous bandpass filter represented by eqn. (4.4). Models for System 1 and System
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2 are easily developed by trimming and modifying the design in Fig. 2.21. Fig. 4.5

illustrates the ideal models for System 1, 2 and 3.
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Figure 4.5 Ideal voltage-mode models for System 1 ~ System 3 with the core filter implemented
by a Gm-C network.
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The same approach used in implementing System 3 was used to develop the Gm-
C model for System 4. Taking a complex filtering system in the superheterodyne mode
for instance, the modified core filter is specified in egn. (4.5). A back end down converter

is required so that the output could be taken as the source to generate the Q-factor control

signal.
Wo , D
e+t —w .
X X sin(wyq t
=l T ]+ Gwor | Sinee) (45)
X, w _wo , p|IX2 —cos(wy1t)
0 2Q ' p

: X1
yupconversion = |Sln(WM1t) _COS(WMlt)l |X2|

Yaown.conversion = 1c05(Wot)  sin(wo Ol || = BV

where v is the system input and could be represented as v = u(t) - p(t) in our test, with
u(t) being the carrier and p(t) the useful information signal; wy; is the front end
modulating frequency which is higher than the input carrier frequency for the
superheterodyne modulator; wy is the center frequency of the core filter which equals
the difference between w,,, and the input carrier frequency. The reconstruction of the
information signal p(t) is performed by the down converter specified by the last
equation above. Now let us rewrite the state space equations and make relevant definition
to associate the core filter with a Gm-C network:

sin(wy;t)
—cos(wy;t)

CX,
CX,

_ 1811 812||X1|
821 82211X3

u

Wo

where gy = C(= 30 +5), 812 = C(=Wo), 821 = CWo, 822 = C(— 35 +2). 8u =
A possible implementation of the system is given in Fig. 4.6 where all the components

and blocks are ideal. For demonstration simplicity, only the back end down converter is
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shown in the figure. The ‘Feedback On/Off Control’ block models a switch that allows
us to determine when to send back the Q-factor control signal. When turned off, the
system models an open-loop complex filter. Moreover, to implement System 2 with a
complex filter, we only need to break the feedback loop at the demodulator output and

apply the ideal voltage signal p(t) across the capacitor C.

s
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BIr 04T
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T m
ENULT
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|
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B

Figure 4.6 Ideal voltage-mode model for System 4 with the core filter implemented by a Gm-C
network.

4.1.2 Noise Performance Test

The noise performance of System 1 to System 4 are evaluated by stimulating
them with two types of noise sources: the input noise and the in-filter noise.
1. Noisy input and noiseless system

We started off with testing the response of all the systems to a noisy AM input,
which was generated by superimposing a white noise voltage signal onto an ideal AM
voltage signal. MATLAB was used to generate the data file of the noise, which could be

read and converted by PSpice. Test parameters are listed in Table 4-1.
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u(t)=p(t)ym(t)+noise

p(t)=1m+(0.5m) sin(2x(10K) t)
Input (V)

m(t)=sin(2n(1Meg) t)

White noise: zero mean, 0.2mV RMS

Biquad Bandpass Filter Q=50 or 500, fc=1MHz

Switching rate=1MHz, ON time=1ns
S/H Block

ON resistance=1m€2, OFF resistance=1MegQ

Table 4-1 Parameter setup for the noise test on the bandpass filters and related AM mode filtering
systems.

1) Test on System 1 and System 2
According to the state space representation of System 2, if the center frequency

of the core filter is tuned to equal the input carrier frequency, then the ideal Q-factor
control signal % will enable System 2 to suppress the input noise to the same level as

System 1 does while maintaining the size and phase of the input sideband signals. To
verify this feature of System 2, a noisy AM signal was fed through System 1 and System
2, the core filter output and the S/H output were plotted in Fig. 4.7 and Fig. 4.8.
Comparison shows that the noise floor of the core filter output from System 2 almost
overlaps that from System 1, while the sideband signals in System 2 output are
approximately 3dB higher than their System 1 counterpart. Also, Fig. 4.8 shows that the
S/H demodulator output from System 2 nearly overlaps with the original modulating
signal p(t). The simulation results suggest that System 2 is capable of suppressing the
input noise like a standard biquad bandpass filter while letting the input sideband signals
pass through with little attenuation or phase shift, so System 2 yields an output with

higher SNR than System 1 does when processing a noisy AM signal. By comparing the
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core filter output to the S/H block output, we are convinced that the S/H block is able to

reconstruct the baseband signal without introducing extra phase shift or undesired noise,

therefore, the baseband noise level of the recovered signal is also a good representation

of the core filter output noise level near the center frequency.

(990. 000K, 250. 574u) (1.0100M,250.317u)
1.0uv , ,
\ |
Wn‘-'"fﬂ“*v/‘*w.‘“ Wi T M?W'ﬁﬂMMWW‘W*
1.0nv
Q@ The nolsy AM input
1.0mv:
(990.UUEK,175.{5 u) (1.0100M,176.981u)
1.00v L'r v '\1!»4;4
) o) w 1“ rhu”“' &!‘P"ﬂ' “J‘Wr\‘f"ﬂ“ﬂ fﬂ"‘”n'\“ Aol B
F\“..NM Sinimnt ‘ LI L L "w*’ 4
| T
1.3?-'-"
O SystemLovtput
1.0mv
(990.000K, 2497930u) (1.0100,249. 621u)
1w =5 -
e S o g W,'ﬂr'hl“”d'ﬂ“wm\h' vV anoml o \
T ' { i
T
1.0V T T T T
0. !EI!HZ 0. Bﬂﬂz 0.98MEz 1.00mMHz 1.02ME2 1.04MHz
© System2 output G System 2 output
Frequency

Figure 4.7 Transient plots and FFT spectra of the noisy AM input and the core filter output of
System 1 and System2. (Q=50, f.enter = 1MHz for both core filters)

\ f
\

\

swmmmmumw-w

TN

2.0ms

smmm»dumuwmuuwwm)
i

{0.000,0.9981m)

(10.000K,353.782u)

A1

'WWL’HFJ ‘\"‘ld: 'W%] J}\Ww S ,,TL T

T »wj ww&v'ﬁ WW WNWW T

o System1demodulater output

10.000,0.9980m|

(10.000K,499.456u)

WWV I‘I‘WW} W\WMW I M

v il

)\ " ‘k‘ n'p‘“Vjﬂ‘;'ﬂjUhHl\‘ i "‘ ‘WJ\W‘ “‘l, XMNLIMEMW

OHz

T T
20KHz 20KH2

o System 1 demodulator output

T
60KHz

Frequency

T
B0KHz 100KH2

Figure 4.8 Transient plots and FFT spectra of the recovered information signal from System 1
and System2 corresponding to a noisy AM input. (Q=50 for both core filters)
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Moreover, according to the derived expression for the output of System 2, the
system is expected to have another appealing noise performance: after getting centered
at the carrier frequency, the core filter could in principle be tuned as sharp as needed, so
that the undesired input noise components will be heavily suppressed; since the
amplitude and phase of the useful input sideband signals will be maintained regardless
of the core filter’s original Q factor, the output SNR will be greatly improved. To verify
this expectation, we raised the original Q factor to 500 for the core filters in both systems
and drove them with the same noisy AM input. Because of the sharpened core filter, the
output noise floors in Fig. 4.9 and Fig. 4.10 are obviously lower than that in Fig. 4.7 and
Fig. 4.8. While the useful input sideband signals get heavily attenuated by System 1,
they magically pass through System 2 almost unchanged. Therefore, if an ideal Q-factor

control signal were available, System 2 could produce an output with very high SNR.
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Figure 4.9 Transient plots and FFT spectra of the noisy AM input and the core filter output of
System 1 and System2. (Q=500 for both core filters)
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Figure 4.10 Transient plots and FFT spectra of the recovered information signal from System 1
and System2 corresponding to a noisy AM input. (Q=500 for both core filters)

2) Test on System 3

It has been verified in Chapter 2 through simulation that when the AM input is

noiseless, System 3 reconstructs a baseband signal which is very similar to the original

information signal in both amplitude and phase. However, when receiving a noisy AM

signal, the recovered information signal, p(t), is noisy too, it is hence unobvious whether

the Q-factor control signal generated with the noisy p(t) is still capable of yielding a

feedback filter which has the noise reduction capability comparable to that of System 2.

System 3 with the original Q factor of 50 and 500 was tested with the above noisy AM

signal, and related output signals were plotted in Fig. 4.11 and Fig. 4.12.
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Figure 4.11 Transient plots and FFT spectra of the noisy AM input and the core filter output
from System 3. (Q=50 and Q=500)
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Figure 4.12 Transient plots and FFT spectra of the S/H output from System 3 (Q=50 and Q=500).
FFT spectra of the core filter output suggest: 1) The input noise is not suppressed

by System 3 as hard as it is by System 1 and System 2. 2) Noise peaks are observed
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appearing in pairs in the core filter output, symmetric about the filter’s center frequency.
Moreover, the system with a higher original Q factor generates more distortion and
higher noise peaks that distribute closer to the center frequency. The noise components
near 1MHz in the core filter output are shifted into the base band after demodulation, as
shown in Fig. 4.12, which results in a noisy recovered information signal. 3) The core
filter in System 3 produces larger-sized sideband signals than the core filter in System 2
does, which might be caused by the noisy feedback signal. The recovered information
signal from System 3 has larger amplitude than its System 2 counterpart too. However,
due to the introduced large-sized distortion, the output SNR of System 3 is much lower
than that of System 2. Moreover, when processing a noisy AM signal, the noise
performance of System 3 is even inferior to that of System 1, and a sharper core filter
tends to result in more noise in the frequency range of our interest hence further lowers
the system output SNR.

As the cause to the noise components in the core filter output is obscure, we did
a set of trial-and-error simulation in an effort to search for some solutions to alleviate
this situation. Specific setup and test results are given below. The same noise source
used above was added to the input signals in all the tests.
Sweeping the frequency of p(t)

In this test, we set up the core filter with original Q factor of 500 and center
frequency of 1MHz. The input modulating frequencies under test were 500Hz, 1kHz,
5kHz and 15kHz. The FFT spectra in Fig. 4.13 suggest that the noise level and noise

peak of the core filter output have very little dependence on the bandwidth of the input
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signal. As the modulating frequency increases, the intermodulation noise becomes

higher and more noticeable, degrading the output SNR.
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Figure 4.13 FFT spectra of the core filter output from System 3 corresponding to AM input
signals of different bandwidths. ( Original Q=500)

Varying the original Q factor of the core filter

Having excluded the effect of the input signal bandwidth, we swept the original
Q factor of the core filter in this test. The core filter was still centered at 1IMHz and the
Q factor was tuned to 20, 100 and 200 respectively. The modulating signal of the AM
input was set to be 10kHz, so Fig. 4.11 could also be used in the output comparison. The
spectra in Fig. 4.14 and Fig. 4.11 reveal that System 3 with a smaller original Q factor
produces lower noise peaks that are further away from the center frequency while a high
Q factor raises the distortion components and pushes them toward the center frequency.

The recovered signal from the system with a sharper original core filter usually has a
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higher baseband noise floor hence lower SNR. The test results again indicate that when
dealing with a noisy AM input, System 3 does not possess the appealing input noise
suppression capability as System 2 does, due mainly to the noisy feedback Q-factor

control signal.

1.0mv

(990.000K,247.210u) (1.0100M,247.064u)

U A ALY o o ik

' o

10uv

10nv

O Output of the core filter with original Q factor of 20.
1.0mv

(990.000K,254.895u) (1.0100M,256.487u)

10uv

Lo == —
WWM ~’“W'**\m’*~‘?*mww"?*wﬁ "‘1f‘*"\“}iﬂvv’@mmﬂ‘#Wr"’"“*"”—i'* Rl

I['

10nv

©  Output of the core filter with original Q factor of 100.

. .000K,25“8‘.726u) (l‘l-":lOOM, 260.811u)
B LT I R L T |
et ittt o g

O Output of the core filter with original Q factor of 200.
Frequency

Figure 4.14 FFT spectra of System 3 core filter output (original Q=20, 100, 200).

Adding a lowpass filter behind the S/H block

Furthermore, we tried adding a lowpass filter between the S/H block and the
control signal generator, expecting it to attenuate the noise in the recovered signal and
make the feedback Q-factor control signal less noisy. The system centering at 1MHz
with an original Q factor of 100 followed by a first-order lowpass filter was tested. The

filter’s cutoff frequency was set to be 20kHz, 50kHz, 100kHz and 500kHz in the test.
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Figure 4.15 FFT spectra of the core filter output from the modified System 3 where a first-order
LPF is put behind the demodulator. Cutoff frequencies under test are 20kHz, 50kHz, 100kHz
and 500kHz. (Original Q=100)

Comparing the spectra in Fig. 4.15 to the second spectrum in Fig. 4.14, we
discovered that the inserted lowpass filter suppresses the core filter output noise floor at
the cost of introducing undesired harmonic distortion of large size, and the filter with
lower cutoff frequency yields higher in-band noise floor and larger sideband information
signals in the core filter output. It might because the Q-factor control signal is very
sensitive to the phase change in the baseband signal with which it’s generated, any phase
shift caused by the lowpass filter deforms the Q-factor control signal and degrades the
output SNR. As it is very hard to determine the cutoff frequency to make a good tradeoff
between the reduction of output noise and the rise of output harmonic distortion,
inserting a lowpass filter in the feedback path does not seem to be an effective way to

improve the system noise performance.

126



Utilizing an assistant bandpass filter

In this experiment, another bandpass filter of the same type as the core filter is
employed to help produce a less noisy Q-factor control signal for the core filter. Block
diagram and circuit model of the proposed design are given in Fig. 4.16 and Fig. 4.17.
In the first test, we utilized a noiseless AM signal as input to explore a proper setup for
Qcore and Q.+ SO the sideband signals in the core filter output have amplitude close to
that of the input sideband signals. As shown in the table below, the system input was an
AM signal carried by 1MHz and has a bandwidth of 20kHz, the two filters are both
centered at 1MHz. We stuck with Q... = 50 while swept the assistant filter’s Q factor,

and plotted related output signals from each case.

u®=pt)m(t)
Input (v) p(t)=1m+(0.5m)sin(2x(10k) t)

m(t)=sin(2n(1Meg) t)

Core Bandpass Filter Qcore=50, fc=1MHz
Assistant Bandpass Filter Q.++1=5, 20, 50, 100, 200, fc=1MHz
) . L . Processed
, Biguad Filter with time-varying Q_\ AM Signal
| 1
u(t)- p) ~+§ Biquad Bandpass Filter | ! Ervelope | 5
w/noise | 1 ithtime-invariant Q. and fc| | Detector
' J
t i
Pl
N Biquad Bandpass Filter N Envelope Bt Control Signal
with time-invariant Q,,,; and fc Detector Generator

Figure 4.16 A two-filter system derived from the feedback system for processing noisy AM
signals.
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Figure 4.17 Ideal Gm-C model for the two-filter system in Fig. 4.16.

Shown in Fig. 4.18 (a), as the ratio of Q. 10 Q.+ decreases from 10 to 0.25,
the harmonic distortion in the core filter output consistently drops, however, the
amplitude of the output sideband signals increases at first, hitting a peak value even
higher than that of the input sideband signals when the ratio is around 2.5, and then
consistently decreases. Fig. 4.18(b) suggests that the recovered signal from the two-filter
system always lags the original modulating signal regardless of the ratio, and a lower
ratio results in a larger phase shift. We screened out the combination of Q... = 50 and
Q.++1 = 200 as it yields an output with sideband signals lower than the input sideband
signals. For the rest combinations, the lower the ratio of Q... t0 Q.+, the higher the
core filter output SNR is. In the following noisy input test where the AM signal was
added with white voltage noise of 0.2mVrms, the system was set up with Q.pre =
50 and Q.+ = 5,20,50,100 respectively, and the output signals in Fig. 4.19 were

compared to evaluate the system noise performance.
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According to Fig. 4.19(a), the core filter output from the two-filter system does
not contain any undesired additional noise components as the feedback filter output does
(Fig. 4.12). Different combinations of Q.oreand Q. Yield a filtering system with
different noise suppression capability, and a rough comparison suggests that the system
with higher Q_.,; applies stronger attenuation to the out-band noise. To better evaluate
the noise performance of the system, we normalized the 10kHz component in the
recovered signals to 0.5m, as shown in Fig. 4.19(b). Comparison between the resulting
FFT spectra reveals that the system’s capability in suppressing the input white noise
depends mainly on the smaller one in Qcore @Nd Qctrp: When Qi IS lower than Qcore, @
higher Q. Yields a lower output noise floor; if Q. IS already higher than Qcqre,
tuning Q¢ too high would raise the in-band noise floor while only slightly lower the
out-band noise floor. To demonstrate this property more clearly, Fig. 4.19(c) gives the
FFT spectra of the normalized recovered signal from the systems set up with Q.qpe =
50 and Q¢ = 10,50,200,500. Fig. 4.19(d) is a zoomed-in version of the spectra in
Fig. 4.19(c) (without the one corresponding to Q. = 10) and the FFT spectrum of the
normalized recovered signal from an open loop biquad bandpass filter with Q =50. It
indicates that a higher Q. makes the two-filter system with the out-band noise
suppression capability closer to that of an open loop biquad bandpass filter with Q factor
equals Qcqre; ON the other hand, as Q. increases, the amplitude of the useful signals in
the system output decreases. Considering this tradeoff, setting Qctr1 = Qcore IS

appropriate for improving the system output SNR when processing a noisy AM signal.
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(b) Transient plots and FFT spectra of the recovered signal from the two-filter system set up with different
Q factor combinations, with the 10kHz component normalized to 500uV.
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(c) FFT spectra of the recovered signals from the two-filter system set up with different Q factor
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(d) A zoom-in version of the FFT spectra of the recovered signals from the two-filter system set up with
Qcore = 50, Qq7y = 50,200,500 and an open loop biquad bandpass filter with Q = 50.

Figure 4.19 Results from the noisy input test on the two-filter system in Fig. 4.17.
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Finally, we set up the two-filter system with Q.,re = Qctr1 = 50, and Q. pre =
Q.++1 = 500, respectively, and compared its noise performance to that of the reference
system, the ideally modified bandpass filter shown in System 2. The test results below
suggest: 1) Unlike the ideally modified bandpass filter, the two-filter system cannot
maintain the amplitude of the useful input components when the filter bandwidth is tuned
too narrow compared to the input bandwidth, as shown in Fig. 4.20(a) where the input

bandwidth is 20kHz and the bandwidth of all the filters is 2KHz.
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© The core fiiter output from the two-filter system set up with Qcore=500, Qctri=500

(a) Noisy input test on the two-filter system with Q.ore = Qcer = 500 and System 2 with Q = 500

2) When there is a good match between the filter bandwidth and the input bandwidth,
the useful components in the two-filter system output have an amplitude close to or even
higher than that of the original information components. Take the test where the
bandwidth of the all the filters and the input signal was 20kHz for instance, the sideband
signals in the two-filter system’s core filter output have an amplitude of 281uV, while
both the input sidebands and the output sidebands from the reference ideally modified
filter have an amplitude of 250uV, as shown in Fig. 4.20(b). After normalizing the output

sideband components from both systems to 250uV, it’s observed in Fig. 4.20(c) that the
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output SNR of the two systems are comparable, while the ideally modified bandpass

filter demonstrates slightly stronger out-band noise reduction.
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(b) Noisy input test on the two-filter system with Q.ore = Qcir1 = 50 and System 2 with Q = 50.
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(c) A zoomed-in version of the above output FFT spectra with the sideband components normalized to
250uV.

Trial and error simulation results not shown here suggest that for the core filter
output to have sideband signals not smaller than the original input sideband signals, the

upper limit for Q. is about 1.4f,/BW;,, where f; is the core filter center frequency
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and BW;,, is the input bandwidth. Take the AM signal of 20kHz bandwidth and carried
by 1MHz for instance, when the two-filter system is set up with Qe = Qctr = 70 and
fo = 1MHz, the core filter output sideband signals have an amplitude very close to that
of the input sideband signals. It was also discovered that the two-filter system with
Q:tr1 = Qcore has the input-noise-suppression capability comparable to that of an open
loop biquad bandpass filter with Q factor equals 0.7Q.,,.. As long as the system filter
bandwidth is not narrower than 0.7BW;,, the input sideband signals will not be
attenuated, although they will always get some negative phase shift.

Based on the above discoveries, we predicted that for noisy AM input signals,
the output noise floor of a two-filter bandpass filtering system with Qi = Qcore Would
be very close to that of an ideally modified bandpass filter (System 2) with Q factor
equals 0.7Q,,.. Therefore, for input AM signals with comparatively narrow bandwidths,
the two-filter system is capable of producing an output with very high SNR. The noise
performance of the two-filter system and System 2, tested with different Q factors and

input bandwidths as shown in Fig. 4.20 (d), agrees well with our expectation.
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Figure 4.20 Noise performance test and comparison of the two-filter system with Qcore =
and the ideally modified bandpass filter with Q factor equals Qcore OF 0.7Qcore in dealing with
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noisy AM input signals.

136

1.04mHz 1.08mnz



3) Test on System 4

Note that System 3 utilizes a sample-and-hold block to recover the baseband
signal, which has the following drawbacks: 1) In order to minimize the introduced phase
shift and noise in the recovered signal, the S/H block is expected to perform ideal
sampling at a rate that equals the carrier frequency of the input AM signal. The
implementation of such a block is very challenging in practice. For example, the ON
resistance of the switch has to be extremely small, SNR of the sampling result is very
sensitive to the parasitic resistance of the sampling capacitor, etc. 2) According to the
math, the output signal of the S/H block, p(t), has components near harmonics of the
sampling rate. Although their amplitude is negligible compared to the size of the
information signal, they will be responsible for the undesirable high frequency

p®

components in the Q-factor control signal 0

and may lower the output SNR of the

feedback system. Recall that a synchronous complex filtering system utilizes a mixer
module for down conversion, and the recovered signal doesn’t contain as many high
frequency components as the S/H block output does, System 4 might be superior to
System 3 in noise performance.

The test on System 4 is set up as follows: the input is the same noisy AM signal
used in the tests on System 1~System 3; the system front end modulating frequency is
2MHz; the core filter center frequency is 1MHz and the original Q factor is 50 or 500;

the back end modulating frequency is 1MHz. Moreover, a complex filtering system with

P®

its core filter modified by the ideal o

and an open-loop complex filtering system were

also tested for comparison.
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with the original Q factor of 500.
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In both Fig. 4.21 and Fig. 4.22, the ideally modified complex filtering system
produces a recovered signal as if the input noise was processed by an open-loop complex
filter with the same Q factor while the input information signal was almost intact.
However, the output noise floor of System 4 is obviously higher, and large-sized noise
components are observed in a higher frequency range. When the original Q factor is
increased to 500, the output noise floor from the feedback complex filtering system does
not get further reduction while the noise peak rises and moves into a lower frequency
range, which causes the baseband noise floor even higher than it is in the case where
Q=50. We tried to alleviate this problem by resetting the input carrier frequency and the
front end modulating frequency, to separate their sum and difference further apart,
expecting the unwanted high frequency components in front end modulator output to get
harder attenuation. Specifically, the carrier frequency was raised to 4MHz from the
original 1IMHz, and the front end modulating frequency was accordingly increased to
5MHz. Then the front end modulator generates components near 1IMHz and 9MHz
instead of near 1MHz and 2MHz. Unfortunately, simulation results (not shown here)
suggest that although this method lowers the high frequency noise in the output, it barely
affects the baseband noise level. Therefore, System 4 is not able to suppress the input
noise either, due mainly to the noisy feedback Q-factor control signal.

Finally, we compared the demodulator output of System 3 and System 4 by
plotting them on the same graph. Both systems under test have a core filter with an
original Q factor of 50 and center frequency of 1MHz. The transient plots in Fig. 4.23
suggest that both systems are able to reconstruct the information component to be in

phase with the original modulating signal. According to the FFT spectra, the output noise
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floors of both systems are at a similar level in the baseband, and large output noise
components are observed near 130KHz for both systems. The recovered signal from
System 4 has much less high frequency components due to its signal mixing
demodulation approach. As a summary, when dealing with a noisy AM input signal,
System 3 and System 4 produce output signals of comparable SNR, and both are noisier

than their open loop filter counterpart.
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Figure 4.23 Transient plots and wide-range FFT spectra of the recovered signal from System 3
and System 4 when the input is a noisy AM signal. The core filter in both systems has a quality
factor of 50.
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2. Noiseless input and noisy system

In this section, we focus on the performance of the noisy feedback AM mode
filtering systems. Two uncorrelated white noise currents were respectively injected into
the capacitors of the core filter to model the in-filter noise.
1) Input-referred noise

First, we verify with simulation that for the open loop counterpart of System 3
and System 4, the same amount of injected noise is equivalent to higher input-referred
noise if the core filter has a higher Q factor. The systems were tested with a noisy core
filter and the recovered signals were plotted. Since a typical method for evaluating the
input-referred noise of an open loop system is to measure the output noise and divide it
with the open loop gain, the noise level of the recovered signal could be a good

representation of the system’s input-referred noise.

Filter in the systems under test | 2nd Order Bandpass Filter | 2nd Order Complex filter

Filter Q value 50, 200 50, 200
Filter Center Frequency 1MHz
RMS value of the injected noise 0.1uArms for both uncorrelated currents

u®=p®m(o)

Input AM signal p(®=1m+(0.5m)sin(2x(10K) 1),  m(t)=sin(2n(1Meg)

Table 4-2 Parameter setup for the input-referred noise test
As a bandpass filter with Q of 200 has a much narrower bandwidth than the one with Q

of 50, it is supposed to apply more attenuation to the input-referred noise in the frequency
range of our interest. However, in Fig. 4.24, the recovered signal from the system with
Q=200 has even higher baseband noise floor, which suggests that with the same amount
of injected noise, a sharper filter tends to have higher input-referred noise. Similar

situation was observed in the demodulator output from the open loop complex filtering
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systems, which indicates that a complex filter deals with the in-device noise the same

way as a standard biquad bandpass filter does.
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system and the complex filtering system with a noisy core filter of different Q values.
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2) Test on System 3 and System 4

This part focuses on the performance of noisy feedback systems, namely, System
3 and System 4 with a noisy core filter. Reference systems with their core filter modified
by the ideal Q-factor control signal were tested too. The spectra in Fig. 4.25 correspond

to the recovered signals from the systems under test, all with an original Q factor of 50.

o)

0 is still

The noise suppression capability of the systems controlled by the ideal

comparable to their open loop counterpart, and the recovered information signals are
very similar to the original p(t). Unfortunately, both feedback systems again fail to
suppress the injected noise as hard as their related open loop filtering systems do, and
they generate undesirable noise components in a higher frequency range, hence
producing a noisier recovered signal. The recovered information component itself has
similar size and phase as that of the original p(t) though. A closer inspection shows that
the noise peak appears in a lower frequency range in the output of System 3 while System
4 has a slightly higher output noise floor in the in-band frequency range, so the baseband
output noise of System 3 and System 4 has comparable strength.

When raising the original Q factor for both systems to 200, convergence problem
was encountered in the simulation, which might be because the input-referred noise was
scaled up to a too high level compared to the size of the input AM signal. We hence
multiplied the original AM input by 5 and reran the simulation. The demodulator output
from the systems under test were shown in Fig. 4.26. Both the noise peak and the
baseband noise floor in the demodulator output from System 3 and System 4 became

much higher than they were in the case where Q=50. This is due to the scaled up input-
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referred noise and the noisier feedback Q factor control signal. Comparing Fig. 4.25 to
Fig. 4.26, it was revealed that System 3 and System 4 with a lower original Q factor

produce an output with higher SNR when the core filter is noisy.
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Figure 4.25 Transient plots and FFT spectra of the recovered signals from the noisy System 3,
noisy System 4 and the noisy reference systems modified by the ideal Q-factor control signal.
(Original Q=50 for all the systems)
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Figure 4.26 Transient plots and FFT spectra of the recovered signals from the noisy System 3,
noisy System 4 and the noisy reference systems modified by the ideal Q-factor control signal

(Original Q=200 for all the systems) The input AM signal was set five times larger than it was
in the above test to avoid convergence problem in the simulation.

4.2 Noise Tests on the FM Mode Synchronous Filtering Systems
4.2.1 System Review

Dynamic FM mode synchronous filtering systems have been introduced in the
last section of Chapter 3. An ideal dynamic synchronous complex filter has external

function almost identical to that of its static counterpart, although it has a time-varying
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center frequency and accordingly synchronized terminal modulating frequencies. The
block diagram below gives a conceptual description on such a system. Two typical
variation patterns of the core filter center frequency are sinusoidal waveform and square
waveform, as they make the synchronization more straightforward and implementable.
An appealing advantage of the dynamic filtering systems is their potential noise
suppression capability. Consider a dynamic synchronous complex filter adopts the
square waveform pattern, although the overall system performs like a complex filter with
a constant center frequency, the core filter center frequency switches between f, + Af,
at the rate of f,,,. and barely stays at f, (f, is the dc offset of the core filter center
frequency, Af, is the maximum difference between the time-varying center frequency
and f,). Suppose Af, is large and the core filter is sharp enough (the core filter’s
bandwidth is a constant independent of the center frequency variation), then from
intuitive point of view, the system will be able to effectively filter out the noise near f,
without further attenuating the input sideband signals, hence it is superior to its static

counterpart in suppressing the internal noise in a certain frequency range.

Complex
Filter w/
constant fc

Core filter w/

frequency f.(t)

Quadrature Modulators with
time-variant oscillating frequency

Figure 4.27 The block diagram of a dynamic FM mode sychronous filtering system.
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4.2.2 Noise Performance Test
1. Noiseless Input and In-filter Single-tone Noise

Based on the qualitative analysis above, we started off with the test where single-
tone noise currents were injected into the core filter while the input signal was noiseless.

According to the parameter setup in Table 4-3, the time constant for the complex filter

in the static system is about 16us (t = VZV—Q), so we swept the switching rate from 80kHz
0

to higher frequencies, as 80kHz corresponds to a switching period a little shorter than

the filter’s time constant. While sweeping the center frequency variation rate, the

variation range was kept to be 1MHz + 400KHz for most tests.

Baseband signal
and carrier fsig = 10KHz (amplitude: 0.5mA), fearrier = 5SMHz( amplitude: 1mA)
ftront ena = 6MHz (superheterodyne mode)
Modulating
fhack end = 1MHz (down conversion for signal reconstruction)
frequencies
(amplitude of 0.4mA for both ends)
Complex filter setup Q =50, f, = 1MHz
Test List fo Afy fyar In-filter noise
Test1 80kHz
Test 2 100kHz
Test 3 125kHz
400kHz 1.003MHz,988kHz
Test 4 160kHz
1MHz (amplitude of 0.5uA for
Test5 200kHz
both noise currents)
Test 6 300kHz
200kHz,

Test 7 800kHz 100kHz

Table 4-3 Parameter setup for the in-filter noise immunity test on the FM mode synchronous
complex filters.
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Plots in Fig. 4.28 to Fig.4.33 represent the demodulated signals from the
synchronous complex filtering systems under test. Both sinusoidal and square waveform
variation patterns were tested to explore the most effective approach to suppressing the
injected single-tone noise. In Fig. 4.28, the demodulator output from a static complex
filtering system injected with the same noise is plotted to provide a reference to evaluate

the noise performance of the dynamic systems.
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Figure 4.28 Test 1 results: Transient plots and FFT spectra of the down conversion results from
a static complex filtering system and dynamic systems of which the core filter center frequency
varies in a sinusoidal or square waveform with f,,. = 80KHz and f4e, = 400KHz.
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Figure 4.29 Test 2 results: Transient plots and FFT spectra of the down conversion results from
a static complex filtering system and dynamic systems of which the core filter center frequency
varies in a sinusoidal or square waveform with f,,. = 100KHz, f4., = 400KHz.
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Figure 4.30 Test 3 results: Transient plots and FFT spectra of the down conversion results from
a static complex filtering system and dynamic systems of which the core filter center frequency
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Figure 4.31 Test 4 results: Transient plots and FFT spectra of the down conversion results from
a static complex filtering system and dynamic systems of which the core filter center frequency
varies in a sinusoidal or square waveform with f,,. = 160KHz and fge, = 400KHz.
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Figure 4.32 Test 5 results: Transient plots and FFT spectra of the down conversion results from
a static complex filtering system and dynamic systems of which the core filter center frequency
varies in a sinusoidal or square waveform with f,,. = 200KHz and fge, = 400KHz.
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Figure 4.34 Test 7 results: FFT spectra of the down conversion result from a dynamic complex
filtering system of which the core filter center frequency varies in a square waveform with f,,,. =
100KHz, fgey = 200KHz (upper) and 800KHz (lower).
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The simulation results suggest: 1) A dynamic system does possess improved
capability in suppressing the in-filter noise near the core filter’s static center frequency.
2) Square waveform variation patterns are typically superior to sinusoidal patterns in
suppressing the in-filter noise, which agrees with the qualitative analysis. 3) Some
particular combinations of the variation rate and variation range effectively improve the
system noise performance. For example, sticking with the 1MHz+400kHz variation
range, when the center frequency is varied at 100kHz as a square waveform, the system
produces an output in which the undesired single-tone noises get suppressed to be more
than three orders of magnitude lower than the useful signal (Fig. 4.29). Although noise
components of noticeable size are observed near 100kHz in the recovered signal, they
could easily be attenuated by the subsequent low pass filtering. Unfortunately, as shown
in Fig. 4.28, Fig. 4.30 and Fig. 4.31, a random variation rate other than integer multiples
of 100kHz, such as 80kHz, 125kHz and 160kHz, could not suppress the single-tone
noises as hard as it could when set to be 100kHz. Not only are the baseband noise
components less attenuated, undesired low frequency spurious noise also rises due
mainly to the intermodulation and high-frequency noise folding back. 4) A too high
variation rate also degrades the system noise performance even it is an integer multiple
of 100kHz. Comparing Fig. 4.33 to Fig. 4.28, a variation rate of 300kHz produces an
output even noisier than the 80kHz variation rate does; also, comparing Fig. 4.32 to Fig.
4.29, the output baseband intermodulation components corresponding to the square
waveform varying at 200kHz are about 50 times higher than those generated by the
100kHz variation rate. 5) Sticking with the square waveform pattern at 100kHz and

adjusting the variation range doesn’t obviously affect the output baseband spectrum,
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while the intermodulation noise components around 100kHz become smaller as the
variation range gets wider, comparing the spectra in Fig. 4.34 to the corresponding
spectrum in Fig. 4.29. It could be summarized from the above simulation results that for
a complex filtering system with original center frequency of 1IMHz and Q factor of 50,
when the center frequncy varies as a square waveform at 100kHz and in the range of
1MHz + 800kHz, the resulting dynamic synchronous system is able to effectively
suppress the in-filter single-tone noise without further attenuating the input sidebands.
We continued to test this particular system with AM input of different
bandwidths and the injected noise at different frequencies, the test setup is given in Table
4.4. It turned out that in both cases the dynamic system manifests improved performance

in suppressing the injected single-tone noise, as shown in Fig. 4.35.

Q =50, f, = 1MHz
Core Filter Center frequency variation pattern:

square waveform, Af, = 800kHz, f,,,, = 100kHz

Test List fsignal Injected noise to the core filter
Test 1 1.5kHz 1.013MHz, 999kHz
Test 2 19.5kHz (both have amplitude of 0.5uA)

Table 4-4 Parameter setup for the in-filter noise suppression capability tests on a dynamic FM
mode synchronous complex filter with a particular center frequency variation pattern.

153



{1.0000K, 39_828u

(1.5000K, 63.274u)

(13.000F, 24.269)

~ Bl

1l 1.0p
Il

o Starlesystem output

{1.0000K,13.318n)
(13.000%,2.4528n)

(87.000%, 458.164p)
(85.000K, 256.5360)

(1.5000K, 63.218u)

(101.000K, 266.076}

(113.000%, 371.39%

mm—f*wmWﬁ.wwwmwmw.w%ww Mm 'H“M%w el it

S0uh 1

| J
A T T T T T T
1,0ms 2,0ms 3.0ms 4, 0ms 5. 0ms 6,0ms T.0ns 2.0ms 9,0ms L T T T T T T T
" 06z 20KHZ 40EHZ 60KHz BOKHz 100KHZ 120KHZ 140FHz
O Static system output o N
R X Dynamicsystem output
Dynemic system outpit

(87.000R,458.224n)
(1.0000K, 12.933n) {99.000%,257.013n)

80uA k s
U 10ua: iln}
(13.000K,2 +2100n )l (19.500K,29.204u) (113.000K, 371.504n)
20uh

o
1. 0ms 1.2m8 1.4ms 1.6ms 1.8ma 2.0m8

o Slatic system outpit
° Dynamlesystem outpit

Figure 4.35 Transient plots and corresponding FFT spectra of the demodulation result from a
static complex filtering system and the particular dynamic synchronous filtering system in (a)
Test 1 and (b) Test 2.

2. In-filter White Noise and Noiseless Input

Unfortunately, when white noise is injected into the particular dynamic filtering
system above, the output noise floor is not lower than that of the reference static filtering
system, as shown in Fig. 4.36. This is because the spectrum of white noise determines
that no matter where the core filter center frequency is during the variation, there is

always same amount of white noise in the frequency range of the instant bandpass
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filtering. So an FM mode dynamic synchronous complex filter is not a good candidate

to suppress the in-filter white noise.
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Figure 4.36 Transient plots and corresponding FFT spectra of the demodulation result from both
static and dynamic synchronous filtering systems under in-filter white noise test.

3. Noisy Input and Noiseless Filtering System

Finally, a single-tone noise component near 5MHz was added to the original AM
input signal and the core filter was set up noiseless for both the static and dynamic
sychronous filtering systems under test. The center frequency of the dynamic system
was varied as a square waveform at 100KHz in the range of IMHz+800KHz . However,
according to the test result(not shown here), such a dynamic system is not superior to its
static counterpart in suppressing the input noise.
4.3 Summary

Noise performance of some second order filtering systems related to AM mode
or FM mode synchronous filtering is tested and compared in this chapter. The two types

of noise environment set up for the tests include: an AM signal with white noise
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stimulating a noiseless system and a noiseless AM signal driving a system with injected
white noise or single-tone noise.

AM mode synchronous filtering related systems

The AM mode synchronous filtering idea is described by eqn. (4.1), and its
application in the biquad bandpass filter design is specified by eqn. (4.4) and Fig. 4.1.
Eliminating the back end modulator of the AM mode synchronous filter in Fig. 4.1, we
discovered an attractive behavior of the yielded system when processing noisy AM
signals: according to the derived mathematical expression, the ideal system is able to
suppress the undesired input noise as hard as needed while keeping the amplitude and
phase of the useful sideband signals. Such a system is illustrated as System 2 in Fig. 4.2.
Due to the challenge in generating the ideal Q-factor control signal for System 2, we
proposed a feedback filtering system that time varies its Q factor with the signal
generated from the system’s down conversion result. When dealing with noiseless AM
input, the output from this feedback system could be very similar to the output from
System 2. System 3 and System 4 are application examples of the feedback system,
respectively developed with a standard biquad bandpass filter and a biquad complex
filter. Besides the difference in the core filter, they utilize different methods to recover
the baseband signal for generating the Q-factor control signal.

Test results

Section 1: Noisy input signal and noiseless filtering systems

System 2 and a standard biquad bandpass filter with Q=50 and Q=500 were
tested first. The simulation results agree with our expectation very well and verify that

System 2 is capable of suppressing the input noise like a standard biquad bandpass filter

156



with the same Q factor while letting the input sideband signals pass through with little
attenuation or phase shift. Moreover, getting centered at the carrier frequency, the core
filter in System 2 could in principle be tuned as sharp as needed to heavily suppress the
undesired input white noise without affecting the amplitude and phase of the input
sideband signals. Comparing the output of System 2 in Fig. 4.9 and Fig. 4.7, due to the
sharpened core filter, the output noise level is apparently suppressed lower but the
sideband signals are barely changed. Therefore, System 2 with a sharp core filter could
produce an output with very high SNR when processing a noisy AM input signal, as long
as the ideal Q-factor control signal is available and the core filter is centered at the carrier
frequency.

It has been discovered in Chapter 2 that System 3 could generate an output very
similar to the output of System 2 when processing a noiseless AM signal. However, it
does not possess the appealing noise performance as System 2 does when processing a
noisy AM signal, under any circumstances. The output of System 3 is even noisier than
its standard biquad bandpass filter counterpart. Moreover, System 3 with a sharper core
filter results in more output noise components of larger size and distributing closer to
the center frequency, which further degrades the output SNR. This might be due to the
mismatch between the bandwidths of the input white noise and the system core filter
introducing new noise with frequency-dependent amplitude through the feedback
modulation, which greatly outweighs the filtering capability of the system.

In an effort to improve the noise performance of System 3, we did a few
experiments, such as adjusting the input bandwidth, sweeping the system core filter Q

factor and inserting a lowpass filter in the feedback path, but didn’t observe anything
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exciting. Some interesting discoveries were made through tests on the proposed two-
filter design in Fig. 4.17, which is inspired by System 3 and utilizes an auxiliary filtering
system of the same type as the main system. We first explored how the setup of Q.qre
and Q..., the respective Q factor for the main filter and the auxiliary filter, affects the system
noise performance. Sticking with Q.yre = 50 and sweeping Q. from 5 to 200, it was
discovered that the system’s capability in suppressing the input white noise mainly
depends on the smaller one in the two quality factors: when Q.. is smaller than Q.qre,
a higher Q.1 produces a lower output noise floor; if Q. is already higher than Q.qre,
tuning Q.1 to very high does not suppress the out-band noise floor lower than an open
loop bandpass filter with Q... does, moreover, the in-band noise floor gets lifted up and
the amplitude of sideband signals drops. Considering this tradeoff, setting Q.1 = Qcore
is appropriate for improving the two-filter system output SNR when processing a noisy
AM signal. Next, we tested whether the system noise performance is constrained by the
input bandwidth, or whether the Q factors could be set as high as needed without
obviously affecting the output sideband signals. It has been observed: 1) Unlike System
2, the two-filter system cannot maintain the amplitude of the sidebands when the filter
bandwidth is tuned too narrow compared to the input bandwidth. 2) For the core filter
output to have sidebands with amplitude no smaller than their input level, the upper limit
for Q.ore and Q.4 is about 1.4f, /BW;,, where f, is the core filter center frequency and
BW,, is the input bandwidth. 3) The two-filter system with Q.¢; = Q.ore has the input-
noise-suppression capability comparable to that of a biquad open loop bandpass filter
with a quality factor of 0.7Q.,.. Also, as long as the system filters’ bandwidth is not

narrower than 0.7BW,, , the input sidebands will not get attenuated, albeit some
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inevitable negative phase shift. 4) We hence predicted and verified through simulation
that the noise performance of the two-filter bandpass filtering system with Q. =
Q.ore = Q could be very close to that of System 2 with a quality factor of 0.7Q, when Q
is not higher than 1.4f,/BW;,. Therefore, when driven with noisy narrow-banded AM
input signals, the proposed two-filter system is capable of producing an output with very
high SNR.

The last test in this section was run on System 4, the feedback system developed
with a biquad complex filter. Compared to System 3, the advantage of System 4 lies in
its back end down converter which is easier to implement and generates less high
frequency components in the recovered signal. Unfortunately, due to the same reason,
System 4 is not able to suppress the input noise as the ideally modified system does
either. Comparison of the output FFT spectra suggests that when dealing with a noisy
AM input signal, System 3 and System 4 have outputs of comparable SNR, and both are
noisier than their open loop filter counterpart.

Section 2: Noiseless input and noisy filtering systems

We firstly showed that for both standard biquad bandpass filter and biquad
complex filter, the same amount of injected noise generates higher input-referred noise
if the filter has a higher Q factor. Next, we tested System 3 and System 4 with Q=50,
their ideally modified counterpart and original open loop counterpart. It was observed
that the noise suppression capability of the noisy systems controlled by ideal % is still

comparable to that of their open loop counterpart filters, and the recovered information

signals from them are very similar to the original p(t). Unfortunately, the feedback
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systems, System 3 and System 4, fail to suppress the noise near the center frequency as
hard as the reference systems do, and they even generate some undesired components in
the output. The recovered information component itself has similar size and phase as
that of the original p(t) though. Despite the different spectra, the output baseband noise
of System 3 and System 4 has similar strength.

When raising the Q factor for both systems to 200, convergence problem was
encountered and it was fixed by scaling up the AM input by a factor of 5. Both the noise
peak and the baseband noise floor in the demodulator output from System 3 and System
4 are much higher than they are in the case where Q=50. This is due to the increased
input-referred noise and the noisier feedback Q-factor control signal. So when the core
filter is noisy, System 3 and System 4 with a lower Q factor would have better noise
performance, but still inferior to their open loop counterpart.

FM mode synchronous filtering related systems

The goal of this section is to explore if there are any center frequency variation
patterns that would enable a dynamic FM mode synchronous complex filter to
effectively suppress the in-filter noise or the input noise. We focused on the sinusoid and
square waveform patterns proposed in Fig. 3.24 and sought for a proper setup for the
variation rate and range.

Simulation results suggest: 1) A dynamic system does possess improved
capability in suppressing the in-filter single-tone noise if it’s near the core filter’s static
center frequency. 2) Square waveform variation patterns are typically superior to
sinusoidal patterns in suppressing the in-filter noise, which agrees with the qualitative

analysis. 3) Some particular combinations of the variation rate and variation range could
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effectively improve the system noise performance. For example, sticking with the
1MHz +400kHz variation range, when the core filter center frequency is varied at
100kHz in a square waveform, the system produces an output in which the undesired
single-tone components get suppressed to be more than three orders of magnitude lower
than the useful signal (Fig. 4.29). 4) Unfortunately, when white noise is injected into this
particular dynamic filtering system, the output noise floor is not lower than that of the
reference static system, as shown in Fig. 4.36. This is because the spectrum of white
noise determines that no matter where the core filter center frequency is during the
variation, there is always same amount of noise in the frequency range of the instant
bandpass filtering. So a dynamic synchronous complex filter is not a good candidate to
reduce the in-filter white noise.5) Moreover, a dynamic synchronous complex filter is

not superior to its static counterpart in suppressing the input noise of any form.
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Chapter 5 A Novel Feedback Filtering System with Improved Noise
Performance

5.1 A Q-factor Tuning Approach utilizing the Scaled Feedback Signal

In the exploration of approaches to improving the noise performance of the AM
mode feedback filtering system in Fig. 4.3, an interesting discovery was made through
varying the feedback scale factor k and a new system is developed as shown in Fig. 5.1.
Consider a noiseless system at first: when the feedback loop is open, i.e. k=0, the filter

output could be expressed as h(t) * [u(t) - p(t)], where h(t) is the impulse response of

the core bandpass filter; with 100% feedback of %, i.e. k=1, as long as the core filter

bandwidth is not too narrow compared to the system input bandwidth, the filter output
is very similar to [h(t) *u(t)] - p(t), except that it contains some intermodulation
distortion of negligible size. Comparing the sideband signals in the filter output in the
above two cases, we could qualitatively say that a scale factor k in the range of 0 to 1

flattens the feedback filter as it approaches 1.

Processed

Biquad Filter with time-varying Q I AM Signal
I" *
1
1 - -
"i Biquad Bandpass Filter y| Envelope
l

\,
[

with time-invariant Q and fc Detector
E B,
(£
| ] Contral
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Generator

Figure 5.1 A modified version of System 3 in Fig. 4.3 for tuning the filter’s equivalent Q factor.

To verify and demonstrate such a property, we ran a sweep simulation on the

feedback scale factor k, with a noiseless AM input signal and a feedback filtering system
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whose core filter is a standard biquad bandpass filter. Related parameters are listed in
Table 5.1. All the demodulation results as shown in Fig. 5.2 contain some undesired
harmonic distortion components, which are of negligible size compared to the useful
information signal. A larger k consistently yields a larger recovered information signal,
which suggests that the resulting feedback filter does become flatter. The dc offset of the
demodulated signal in each case remains the same, indicating that the center frequency
of the resulting system is independent of the amount of the feedback.

When k = 0.5, the recovered 5kHz component is about 3dB lower than the 5kHz
component in the original modulating signal, indicating that the equivalent Q factor of
the developed filter approximately equals 100. We hence roughly relate the original Q
factor of the system’s core filter, Q.o e, the feedback scale factor k and the equivalent Q

factor of the feedback system, Q.q, with eqn. (5.1).

Qeq ~ (1 - k)Qcore (5-1)

p(Bu(t)
AM Input (v) p(t)=1m+(0.5m)sin(2-5K- t)

u(t)y=sin(2r-1M-t)

Biquad Bandpass Filter Q=200, fc=1MHz
Switching rate=1MHz, ON time=1ns
S/H Block
ON resistance=1m£2, OFF resistance=1MQ
Feedback scale factor k 0,0.2,0.5,0.75,1

Table 5-1 Parameter setup for the sweep test on the feedback scale factor k.
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Figure 5.2 Transient plots and FFT spectra of the recovered signal from a feedback bandpass
filtering system with different feedback scale factors.
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To test the accuracy of eqgn. (5.1), we accordingly set up three standard open-
loop bandpass filtering systems respectively with Q factor of 160, 100 and 50 and drove
them with the same AM input signal used above. The demodulation outputs from the
open-loop system and its related feedback system were plotted on the same graph in each
test. Shown in Fig. 5.3, the transient plots of the output signals from the open loop system
and the feedback system are almost identical, their slight difference is the negligible
harmonic distortion that exists in the feedback system output. Therefore, for k in the
range of (0,1), eqn. (5.1) provides a proper first order evaluation on the equivalent

sharpness of the yielded feedback filtering system for AM input signals.
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Figure 5.3 Transient plots and FFT spectra of the recovered signal from both feedback system
and the corresponding open-loop filtering system for evaluating the accuracy of egn. 5.1.

Based on the above discovery, we started to question: what would happen if k is

Bl

negative? Is it possible to sharpen the filter with a negatively scaled feedback signal L

A test set up as below was run to figure out the answer.
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Input voltage: p(t)-u(t) = [1m + (O.Sm)sin(wpt)]sin(wcarriert )
where wy, = 21 - 10k , Wegrrier = 27 - 1Meg

Core filter: Wo = Wegrrier = 2T - 1Meg, Q@ =50

Feedback scale factor: k =0,—-0.5,—1,—2,—5

Simulation results in Fig. 5.4 show that the envelope of the core filter output becomes
smaller as the feedback scale factor k gets more negative, indicating that a negatively
scaled feedback signal indeed sharpens the filtering system. Measurement data provides
some quantitative description on the recovered information signal and its 2"%-order
harmonic: their ratio gets smaller as k becomes more negative, which is undesirable; but
even the smallest value approximately hits 300, so the harmonic distortion is at a
negligible level. Therefore, setting the scale factor k in the feedback system in Fig. 5.1
with negative values provides an approach to implementing a bandpass filter of high

equivalent Q factor with a time-invariant low-Q bandpass filter.
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Figure 5.4 Feedback system demodulator output corresponding to different negative k values.
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To check out if eqn. (5.1) still holds true for a negative k, for each negative k
above, we swept the frequency of the input modulating signal p(t) over a certain range,
maintaining its amplitude and seek for a point at which the recovered modulating
frequency component in the demodulator output drops by approximately 3dB from the
original amplitude of 0.5mV. Then the equivalent bandwidth of the resulting feedback
system is about twice as much that input frequency. Data from Table 5.2 suggests that

eqn. (5.1) suits the feedback filtering system with negative k values in the range of [-5,

0) very well.
Core Filter:  fcenter=1MHz,  Qstat=50

Parameter k fp_tuned (Hz) Afund_measured(V) Qeval  Qeval/Qstat

Reference 0 10k 353.5u 50 1
Test1 -0.5 6.6k 353.4u 76 1.52
Test 2 -1 4.9k 354.4u 102 2.04
Test 3 -2 3.3k 353.1u 152 3.04
Test4 -5 1.7k 354.2u 294 5.88

Table 5-2 Data from the tests for evaluating the equivalent Q factor of the feedback filter with
time-variant bandwidth.

Moreover, the gain spectra of two feedback filtering systems were plotted, as
shown in Fig.5.5 (a) and Fig. 5.5 (b). The feedback scale factor for both systems is -9,
both core filters are centered at LMHz and the original Q factors were set to be 5 and 20
respectively. It’s clear that both feedback systems are much sharper than the original
filters from which they are developed, and they both have an equivalent Q factor
comparable to what is estimated by egn. (5.1), while the equivalent Q factor of the
system developed from a sharper core filter fits the equation better. The gain spectra of
the feedback filter and its related open-loop filter have strong resemblance but are not

identical, so the input-output functions of the two systems are not exactly the same. One
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obvious difference, for instance, is manifested by the harmonic distortion generated by

the feedback filtering system.
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Figure 5.5 Gain spectra of two feedback filters developed from a core filter with different
original Q factors.
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Another simulation on the feedback systems with different original Q factors and
feedback scale factors shows that the system developed from a sharper original core filter
and a less negative feedback scale factor produces an output with higher SNR and
behaves more similarly to the open-loop bandpass filter with a Q factor derived by eqgn.
(5.1) does. In this test, the reference open loop system incorporates a bandpass filter with
Q=100, and the feedback systems are set up with Q=50, 20, 10, 5 and k=-1, -4, -9, -19,
respectively. Fig. 5.6(a) and (b) show transient plots and FFT spectra of all the system
outputs corresponding to the same AM input which is modulated by a sine wave at 5kHz.
The output harmonic distortion consistently increases and the amplitude of recovered
signal consistently drops as the system’s original Q factor decreases. For the systems
with Q=10, k=-9 and Q=5, k=-19, the size of harmonic distortion exceeds 1% of the

information signal amplitude and the output SNR has been greatly degraded.
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Figure 5.6 (a), (b) Transient plots and FFT spectra of output signals and (c) gain spectra of the
systems under test.

Recall that the FM mode synchronous complex filtering system, System 4 in Fig.
4.4, has very similar function as that of System 3 in Fig. 4.3. One advantage of System

4 over System 3 is its simpler demodulator. As has been introduced in Chapter 3,
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implemented only with mixers and a current mirror, the demodulator is able to recover
the information signal from the core filter output without introducing additional phase
shift. Comparing to the S/H block output from System 3, the recovered signal from
System 4 contains less high frequency components. Therefore, it’s of our interest if the
method discussed above could be used to sharpen the filtering system in Fig. 5.7, a
modified version of System 4. In the test where k=-9 and the feedback system was set
up with Q... = 5, the system steady state output almost overlaps with the output of the
open loop complex filtering system with Q=50, and no harmonic distortion is seen in the
FFT spectrum, as shown in Fig. 5.8 (a) and (b). Moreover, the gain spectra of the two
systems are plotted in Fig. 5.8(c) and they demonstrate higher resemblance in bandwidth
and shape than the spectra in Fig. 5.5(a) do. Therefore, the feedback system developed
from a low-Q complex filter has input-output function very similar to an open-loop high-
Q complex filter, and it produces a less noisy output than the system in Fig. 5.1

developed with a bandpass filter of the same Q.,,. and feedback scale factor k.

oscillator 1
Quadrature Modulator Quadrature Modulator
(Up Conversion)
4 Core filter w/
'® time-variant Q
u(t) '® g Biquad
1 »@ . Complex
Filter
p(®
p()
k B() Control Quadrature Modulator

(Down Conversion)

Signal
Generator

oscillator 2

Figure 5.7 A modified version of System 4 in Fig. 4.4 for tuning the complex filter’s equivalent
Q factor.
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To check out if the equivalent Q factor of the system in Fig. 5.7 could also be
evaluated by egn. (5.1), the gain spectra of a set of feedback systems with Q=50, 20, 10,
5 and feedback scale factors of k=-1, -4, -9, -19 were plotted in Fig. 5.9, together with
that of the reference open loop system in which the complex filter Q factor equals 100.
According to the measurement data, all the feedback systems have similar bandwidths
close to that of the reference complex filter, indicating that the relationship between Q.,
of a feedback complex filtering system and the original Q... fits eqn (5.1) better than

its bandpass filtering system counterpart does.
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Figure 5.8 (a), (b) Transient plots and FFT spectra of the output signals from a feedback complex
filtering system with Q... = 5 and k=-9 and an open-loop complex filtering system with Q=50;
(c) Gain spectra of both systems.
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Figure 5.9 Gain spectra of all the feedback complex filtering systems and the reference system
under test.
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The explanation to the above discoveries is now given as follows. First, consider
a simple first order lowpass filter specified by the following differential equation:

Y = —Wwyy + wou (5.2)
where wy, is the cutoff frequency. Now suppose u is an always non-zero input signal and
the gain on the output, y, is modulated in the following way:

y=(—w0+k§)y+wou (5.3)
Rearranging the equation to yield the following:
1-k)y=-wyy+wu = y=—w—y+Tu (5.4)
The net result of the modulation of the gain on y in the differential equation is to scale
the cutoff frequency of the filter. For k < 0, the resulting cutoff frequency is lower than
wy; for0 < k <1, it is equal to or larger than w,. For eqgn. (5.4) to have physical
meaning, k should not exceed 1.

Now consider a pair of lowpass filters of the above type, constituting a second

order system that can be written as:

w =700 Swl el #wol Hlwy=31 i)
B =10 —wllx + wy _1u,y—2|1 1] X, (5.5)
It’s easy to derive:
X.l Xz y .
X{ ==X, =y, —=—===, y=—wWyy+ Wyl
1 2=y 5 %y y oY 0

Apply the modulation of state variable(s) as introduced in eqn. (5.3):

—-W +kZ 0
_ 0T Ny ‘ |X1|
0 _W0+k§ XZ

w0|_11|u, y =21 —1||§2| (5.6)
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It follows that both lowpass filters get their original cutoff frequencies scaled by a same
factor, ﬁ and the system output remains the same as represented by eqn. (5.4). Utilize

a time varying matrix, M(t), to transform the above second-order system:

cos(wyt) —sin(wyt)

x(t) » M(Dx(t), where M(t) = sin(wyt)  cos(wyt)

(5.7)

Since any state-space transformation with a nonsingular M(t) keeps the system’s
original input-output characteristics, the system represented by eqn. (5.8) corresponds to
the same transfer function as the first order lowpass filter with a scaled cutoff frequency

specified by eqn. (5.4) does. The " % " phase angle in all the modulating sinusoids could
be removed together without affecting the system’s transfer function.

y . T
% —wo + k; —wy sin(wyt +7) (5:58)
Xy '

—cos(wyt + g)

y = g |sin(wMt + %) —cos(wyt + %)l |2|
Such a system incorporates a frontend modulator, a second-order core filter and a
backend modulator. The input baseband signal is modulated by a pair of quadrature
signals at w,,, and the two channels of up converted signals are processed by a biquad
core filter that has multiple input and multiple output, the two channels of the filter
output are modulated again and summed up to produce the lowpass filtered version of
the input. Since the overall system performs like a first order lowpass filter cuts off at

% and the terminal modulators don’t have filtering capability, the biquad core filter

could be taken as the lowpass filter being up converted into a higher frequency range,
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and it has a bandwidth of % if wy, > wy. The non-zero off-diagonal entries in the state

matrix could be interpreted as the up conversion of the lowpass filter, and the bandwidth
of the core filter depends only on the diagonal entries.

The above analysis leads to a promising point: when a biquad bandpass filter is
processing an AM signal, we might be able to tune its bandwidth (or Q factor) with the
approach specified by eqgn. (5.8), as long as the filter meets some requirements. First, the
biquad bandpass filter could find a state space representation in which the state matrix
has identical diagonal entries and opposite off-diagonal entries just like the state matrix
in eqn. (5.8). Second, the bandpass filter’s magnitude and phase responses to signals at
Wo, Wo + Wgig and wy — wg;q (W is the filter’s center frequency, wy;, is the baseband
information signal frequency, and usually wg;, < wy) are very similar to that of some
first order lowpass filter to signals at dc, wg;, and —wg; ;. Third, the bandpass filter has
a demodulator which is able to recover the information signal without introducing
additional phase shift.

Recall that the state space representations of a standard biquad bandpass filter
and a biquad complex filter, respectively given in eqn. (1.30) and eqgn. (1.46) (reproduced
in egn. (5.13) and eqgn. (5.17)), both have a state matrix in the particular formation. For
each bandpass filter, we have proposed and verified an approach to the reconstruction of
the information signal from the core filter output, which introduces negligible phase shift
in the demodulation process. Therefore, if the magnitude and phase responses of the two

bandpass filters meet the second requirement above, when we time vary their bandwidths

with ’kg’, where ‘B’ is the properly reconstructed baseband signal from their core filter

176



output, both systems would have a time-varying bandwidth equivalent to le times their

original core filter bandwidth.

The review below, through egn. (5.9) to eqgn. (5.21), formulates the transfer
function, the particular state space representation and the frequency response of a
standard biquad bandpass filter, a biquad complex filter and a correlated first order
lowpass filter.

The first-order lowpass filter cuts off at =2

0
4%

Wwo
»  Transfer function: HLPF(s)=S:—§V_0 (5.9)
2Q

«  State space representation with the state matrix in the particular formation:

Wo
o |20 M| sin(wy, t)
X2l _Wo |X2| V2w, —cos(wyt)
M 20
V2
y= -5 [sin(wyt) —cos(wyt)] |2|
where wy, is the front end and back end modulating frequency. (5.10)

= Magnitude and phase responses:

1

. . —_ 2QWsi
|HLPF(i]Wsig)| = ) Z$HL1>1~"(i]Wsz'g) = +arctan(w—og) (5.11)

2Qwg;
1+(W—Og)2

The standard biguad bandpass filter centered at w, with a bandwidth of %

Wo

= Transfer function: Hggpp(s) = SZQ—S (5.12)

Wo 2
+—2s+w
0 0

= State space representation with the state matrix in the particular formation:

Wo
. - A~ —WA 1
ol = WZAQ Cwol bt e y=gier e —ae i)

2Q
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where y = 1/2Q; 1 =1 —(1/2Q)2; w, = /1 — (1/2Q)%w,
= Magnitude and phase responses:

% (WO t Wsig) %

(5.13)

|HSBPF(j(W0 + Wsig))| = |

W, _ =
] ?0 (WO t Wsig) + Wsig (+2W0_Wsig)| Wy
Q) +w
(F2wo—wsig)?  @wotwsig)?  (2wg)?
Assum : i)’ _ @wotwsig)® | @wo? _ o
SSUME Wo >> Wsig, (Wotwsig)? — (wotwsig)?  (wo)?
It follows that
wo wo
Q 2Q 1

|HSBPF(j(W0 + wg ))| ~ = =
B R )

Wo

Forw = wy + wgg,

Wo Wo
. T ?W T ?W
AHSBPF(]W) = E — |arctan m + | =— E + arctan m

WZ—W 2 2Wei
=— arctan< — ) ~ — arctan< e )
" Q

Similarly, for w = wy — wg; 4, 8Hgppr(jw) ~ arctan <2‘"2%>
Q

The biguad complex filter centered at w, with a bandwidth of %

WO)WO
2Q°Q

Wo 24 (W0y2
Q S+wa +(2Q)

(s+

= Transfer function: Heypre(s) = o

=  State space representation with the state matrix in the particular formation:

w,
% 2 _i ) |X1|+ﬂ ! u, y=2h —1||X1|
X, W _‘;V_((; X2 Ql-1 2 X3

where wy = /1 — (1/2Q)2wy,.

= Magnitude and phase responses:

Assume Q is high enough so that w,? =~ w,?,
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2 ($2W0 - Vvsig)2
g (WO t Wsig)2

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)



2o |j(Wo twgg) + \2/v_(3|

|] 0 (W(J + wSlg) + wSlg(+2w0 Wslg) + ( Q)2|

|HCMPLF (J(Wo * stg))|

Wo \?

Wo 2Q

- ——— | +1

Q Wo t Wsig

WO WO 2
2y g

Wy 2 4 2 2wy iWsig) 2Q (T . 2Q
( ) Wsig ( wo T Wiig + (WO T WSlg)Z + 2W51g(+2W0 Wstg) wo T Weig

Wo Wo 2 Wo 4
Since —%¢—« 1, [—22— ) +1=1 and — 20« (292,
sig 2Q

0+ WotWgig stg)z
Wo 2 2
—_ Q ~ —_ 1 ~ — WgigWo
Assume ;g K Wo, 2w, (F2wo — wyyg) <W0:W5ig> ~ 2wy (F2wy — wgiy) (E) ~ +5q+.
It follows that
w,
®
|HCMPLF (j(Wo + Wsig))| ~
G _wygw
2 2 - sig"’o
( ) +2w Slg + (wo Wsig)z + Q?
( ) 1 1
- B 2Wg; 1 1., — Wg - 2
Woy2 2 WsigWo 1+( mg)z + GG+ . (ZWSng)
+ 22w T W 273 1+ (—2e<
\/( ) stg (2Q)4 Qz \/ ?0 Q Wy + Wo
(5.19)
w Qw
Forw=wg + Wsig, #Hempr(jw) = arctan <w—0) — [ + arctan + ]
2Q wA2+(2—8) -w?
2 wo)? 2
Assume w,“ + (ﬁ) X Wy°,
Yoy
w w w
4Heypr W) = arctan Wy |~ + arctan # ~ arctanE — 1 + arctan ZQM? :
ZQ 0 ZQ sig
SO AHypr(jw) ~ (arctan X — T) — arctan —2¢ 2sig js little less than —arctan —=42 2Qw o9,
Wo 2 Wo Wo
(5.20)
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For w = wy — w, still assume w,? + (;V—(g)z ~ w2,

w
. w FOW w wo
ZHcyprr(jw) = arctan ( wy | — arctan | —— | = arctan | wg | — arctan( )
20 Wos—w ETe) 2Qwsig

2Qwg; 2Qws;
= arctan (ZQ—W) — T 4 arctan 225~ arctan ~2sid (5.21)
Wo 2 Wo Wo
2Qwsig

#HcyprGw) IN this case is a little less than arctan

Wo

As a summary, the derived magnitude and phase responses suggest:

|HSBPFU(W0 + Wsig))| ~ |HCMPLF (j(Wo t Wsig))' ~ |HLPF(istig)| = ﬁ (5-22)
+{(50)

&Hsppr (J(Wo £ Waig)) = #Hewprr (J(Wo £ Wiig)) & [Hupr (2jweig)| = Farctan(=219) (5.23)
At this point, the discoveries we made with the two feedback bandpass filtering
systems through sweeping the feedback scale factor 'k’, as well as eqgn. (5.1), get clearly
explained. Neglecting the influence of all the undesired high frequency components in
the recovered signal, we could formulate rough transfer functions for the two feedback

filters when they are processing AM input signals.

Wo

—=S
_ (1-K)Q
HSBPFfb(S)_ S Wo ... .. wo? (5.24)
S T(l—k)Q°+WA T4(1_k)2Q2
q _ [S +z(1vz(1J<)Q (1‘2,12)(1 p
CMPLFfb(S) = S w — woZ (5.25)
- TWAT anze?

where w, =./1—(1/2(1 —k)Q)?w, , as in the original transfer functions w, =
V1 —(1/2Q)2w,. When setting w, = w, for analysis and simulation simplicity, w, = w,

still holds true for the above feedback system transfer functions.
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5.2 Noise Performance Test

In this section, we focus on the noise performance of both feedback bandpass
filtering systems in Fig. 5.1 and Fig. 5.7, with negative k values. Output signals from the
feedback systems and related open loop systems are plotted together for comparison.
5.2.1 The Feedback Bandpass Filtering System

Noiseless input and noisy core filter

The test set up below was run to evaluate the capability of the feedback system
in suppressing the white noise injected into its core filter. Demodulated signals from the
systems under test were plotted, as their noise floor is a good representation of the core
filter output noise level.

Input voltage: p(t) -u(t) = [1m + (0.5m)sin(wpt)]sin(wcamert),
where wy, = 21 - 10K ,Weaprier = 27 1Meg

Feedback system: Qcore =50, k = —4,-9,—-19

Open-loop bandpass filter system: Q = 250,500,1000

Injected noise: two uncorrelated white noise current sources, the RMS value for both is 0.1uA.
U —]

o
LE* X,y — X5
T T

h noise current \ d

Figure 5.10 A biquad bandpass filter with injected current noise
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According to the plots in Fig. 5.11 (a) to Fig. 5.11(c), as the open-loop bandpass
filter becomes sharper, the same amount of injected noise yields higher output noise
floor. This is due mainly to the transconductance notated by g, providing a gain of g;*
to the injected noise, which is proportional to the filter’s Q factor and cannot be counter
balanced by the system’s filtering capability. Therefore, a sharper bandpass filter tends
to have higher output noise floor, hence less dynamic range. For all the k values under
test, the 10kHz component in the recovered signals from the feedback system and its
open-loop reference system is very close in amplitude while the output noise floor of the
former is consistently lower. A close inspection reveals that as k becomes more negative,
or the equivalent Q factor becomes higher, the feedback filtering system’s output noise
floor is suppressed to an even lower level, which is in contrast to what was observed in
the noise test on the open-loop bandpass filters. This advantageous noise performance
of the feedback filtering system is the result of two mechanisms: the input-referred noise
of the feedback system depends mainly on the amount of injected noise and the original
sharpness of the core filter, and it barely varies with the feedback scale factor k; on the
other hand, when k is tuned more negative, the filtering system becomes sharper. When
the same amount of input-referred noise gets filtered harder, the output noise floor surely
drops to a lower level. Moreover, Fig. 5.11 (d) compares the output signals from two
feedback systems set up to implement the same equivalent Q factors. Their original Q
factors are 50 and 10, and k values are -3 and -19, respectively. The system with a flatter
original core filter produces an output noise level about 1/5 as much as the other system
does, but large harmonic distortion and slightly smaller recovered information signal

drastically lowers the output SNR. Therefore, the tradeoff between the output noise level,
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harmonic distortion and Q.,,. Value is an issue worth consideration in tuning a feedback
bandpass filter.

As a summary, setting the feedback scale factor k with negative values for the
system in Fig. 5.1 provides an approach to implementing with a low-Q bandpass filter a
new filtering system that has a time-variant Q factor and equivalent bandwidth
comparable to that of a higher-Q bandpass filter; the feedback bandpass filter has
improved performance in suppressing the in-filter noise hence a wider dynamic range
compared to the open loop bandpass filter of comparable sharpness. Low requirement
for the core filter Q factor and the superior in-filter noise suppression capability are two
attractive features of the feedback filtering system. However, there is a tradeoff between

the output noise level and output harmonic distortion.
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Figure 5.11 Transient plots and FFT spectra of the recovered signals from systems under the
injecting white noise test. (a) Feedback system: Q=50, k=-4. Open-loop bandpass filter Q=250;
(b) Feedback system: Q=50, k=-9. Open-loop bandpass filter Q=500; (c) Feedback system:
Q=50, k=-19. Open-loop bandpass filter Q=1000; (d) Feedback systems: Q=50, k=-3 and Q=10,

k=-19.
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Noisy input and noiseless feedback system

Similar setup was used in this test, but the injected current noise was removed
and white voltage noise was superimposed onto the system input AM signal:
Input voltage: p(t) - u(t) = [Im + (O.Sm)sin(wpt)]sin(wcarriert) + noise,
where wy, = 21 - 10k ,Wgrrier = 27 1Meg, noise = 0.1mVrms
Feedback system: Qcore = 50, k = —1,—4,-9
Open-loop bandpass filter system: ¢ = 100,250,500

As shown in Fig. 5.12, for each k value under test, the noise floor in the output of both
the feedback filtering system and the reference open loop system almost overlap, and
the recovered information signals have very similar amplitude, except that the feedback
system output contains noticeable harmonic distortion in the baseband. Therefore, the
feedback bandpass filtering system is not superior to the open-loop bandpass filter with

comparable sharpness in suppressing the input noise.
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Figure 5.12 FFT spectra of the recovered signals from the feedback system with different k
values and from the reference open-loop system in the noisy input test.

5.2.2 The Feedback Complex Filtering System

From the above test, we discovered that when the core filter is noisy, the feedback
bandpass filtering system with negative k values produces a less noisy output than the
open loop bandpass filtering system of comparable sharpness does, but it fails to more

effectively suppress the input noise. We hence only focused on the in-filter noise
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suppression capability of the feedback complex filtering systems here. Large amount of
simulation in Chapter 4 has shown that a synchronous complex filter behaves similarly
to a synchronous bandpass filter, so it’s predicted that a feedback complex filtering
system with negative k also has improved immunity to the injected noise.

Both the feedback system and the reference open-loop system under test were
injected with white noise current of 0.1uArms. The original Q factor of the feedback
system was set to be 50 and the scale factor k was -9. As shown in Fig. 5.13(a), the noise
floor in the recovered signal from the reference open-loop system is consistently higher
than that from the feedback system in the frequency range of our interest. Lowering k
value from -9 to -19 and raising the open-loop complex filter’s Q factor from 500 to
1000 accordingly, it’s clearly shown by the FFT spectra in Fig. 5.13(b) that a sharper
complex filter produces higher output noise floor while the feedback system with higher
equivalent Q factor applies stronger attenuation to the injected noise. Finally, to compare
the performance of the feedback systems with comparable equivalent bandwidth but
different original Q... values, same amount of noise was injected into two systems, with
Qcore=50, k=-3 and Q,..=10, k=-19 respectively. Shown in Fig. 5.13(c), the recovered
information signals from both systems have similar amplitude compared to the size of
the recovered signal from an open loop complex filter with Q factor of 200, while the
feedback system with smaller Q... produces a much lower output noise floor. Moreover,
no noticeable harmonic distortion is seen in the output spectra of either feedback system,
therefore, the feedback complex filtering systems are superior to the feedback bandpass

filtering systems in dealing with the in-filter noise.
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Figure 5.13 Transient plots and FFT spectra of the recovered signals from systems under the
noisy core filter test. (a) Feedback complex filtering system with core filter of Q=50 and k=-9,
and the reference open-loop complex filtering system with core filter of Q=500 and 50. (b)
Feedback system with core filter of Q=50 and k=-19, and the reference open-loop system with
core filter of Q=1000. (c) Feedback systems with Q=50, k=-3 and Q=10, k=-19, and the reference
open loop system with Q=200.

5.2.3 A Noisy Feedback Complex Filtering System Model

In this section, we propose and test a more practical Gm-C network model for
the feedback complex filtering system where all the transconductors are noisy. In such a
situation, the recovered signal p(t) is noisier than its ideal model counterpart, and it’s of
our interest whether the noisy feedback filtering system still has the improved noise
performance compared to the reference open loop filtering system.

A brief review on the noisy transconductor model is given as follows. The block
schematic shown in Fig. 5.14 illustrates a generic transconduator’s noise model [34-36].
Regardless of its type (with differential pair or with second generation current conveyor)
and technology realization (bipolar, CMOS), any transconductor may be represented by

an active noiseless device with the equivalent noise sources. In the model from Fig.5.14,
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erq Is the mean squared value of the equivalent input noise voltage source and dl—%eq
is the mean squared value of the input noise current source. Depending on the resistance
of the circuitry that drives a transconductor, the dominating noise source is different.
When the source resistance is comparatively low (Rs < Rgm in), the transconductor
could barely divide any current from the input-referred noise current generator, so the
equivalent input noise voltage source is dominant. If the source resistance is high (R >
R¢m in), then the transconductor takes most of the current from the input-referred noise
current generator and almost no voltage from the input-referred noise voltage generator,
so it’s the input current noise source mainly contributes to the transconductor output
noise in this situation. For finite and not-null values of R, both input noise generators

need to be taken into consideration.

Moiseless
transconductor

Figure 5.14 Noise model of a transconductor.
Power density of the equivalent input noise current and voltage of a

transconductor stage (in bipolar or CMOS technology) can be expressed as follows [37]:

K%m gw (5.26)

TGm

dvlzeq = Vvadwa dllzeq =Y
where y, and y; coefficients are the noise voltage and current factors of the

transconductor, G,,—the transconductance value of the circuit, k — Boltzmann’s constant,

and T — absolute temperature. An important difference between a CMOS and a bipolar

190



transistor is that usually the base current flows in a BJT cannot be neglected. Shot noise
is associated with this current, which gives rise to the equivalent input noise current
generator that is not present in a MOSFET. As a result, each BJT virtually has two input
noise generators.

To simplify the modeling of the noisy transconductors in our system, we assume
that each transconductor has only the input-referred noise voltage source as its dominant
noise source while the input-referred noise current source is of little importance. The
BIJT “tanh” transconductor in Fig. 5.15 for instance, has such a noise property. As

analyzed in the literature [38], it has an input-referred noise voltage power density of:

dvZ, = 4dv? = 4:Tfndw (5.27)

o Vec
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ait, © a2} 1—)—
- Q© d_;;

Ibias(; ]
Vee

Figure 5.15 “Tanh” transconductor noise sources.
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We utilized eqn. (5.27) to determine the amount of white noise voltage to insert
in front of each VCCS and developed a noisy system as shown in Fig. 5.16. The specific
test setup is listed in Table 5. 3, where the feedback filter has an original Q factor of 50
and a feedback scale factor of -9, and the reference open loop filter has a Q factor of 500.
Using filtering capacitors of 3.07nF and a 3.07uF capacitor for generating the feedback

signal, we could determine all the transconductors in the system. Take g;; = g2, =
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—192.89uS which corresponds to a core filter with center frequency of 1IMHz and Q

factor of 50 for instance, using eqn. (5.27), the input noise power density is:

8kT

- -19
2 _ __ 8x25.85mVx1.602x1071%A4's
dvleq_QSO - Gm df -

192.89uAV -1

df (5.28)

As all the white noise sources (uncorrelated) were generated in MATLAB at the rate of

1sample/20ns, the flat noise spectrum has a bandwidth of ;_gz 25MHz .
20X1077X%x2

Therefore, the rms value of the transconductor’s input noise voltage is:

——— 8x2585x1.602x107" x 25x 10°
Vieq_gso_rms = |20MHz - dvleq_Qso = 019289 V = 65.527ulV

(5.29)

Similarly, the input noise voltage for g,, and g,; (19.289mS) has an rms value of
6.553uV . For the transconductor in the feedback path (9mS or 1mS), the input noise rms

value is about 9.593uV or 30uV.
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Figure 5.16 A noisy model for the feedback complex filtering system.
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Input and modulating plt) 1m+0.5msin(2m10K-t)
signals(V) uft) sin(2m-4M+) m1=2sin{2m-5M-1), m2=-2cos{2n5M-t), m3=cos(2m-1M-t), md=sin{2m-1M-1)
The feedback system core filter (f0=1MHz, Q=50, k=9 or -1): | g11|=| 222 |=|gu1|=|gu2|=192.89y, |g12|=|g21|=19.289m, |gfb]|=9m/1m

Transconductors (S
g The openloop system core filter{f0=1MHz, Q=500 or 100): |g11|=|g22|=|gul]=|gu2|=19.289u or 96.445u, |g12 |=|g21|=19.289m

Capacitance (f) Thefeedback system: Ccore=3.07n, Cfh=3.07u  The openloop system: Ccore=3.07n
Test] The feadback system({k=-9): Vin_g11=Vin_g22=Vin_gul=Vin gu2=655u, Vin_g12=Vin g21=5.55v, Vin_gfh=10u
(]
. The openloop system: Vin_g11=Vin g22=Vin_gul=Vin gu2=65.5u, Vin_g12=Vin_g21=6.55u
Noise sources(Vrms)

Test2 The feedback system{k=-1): Vin_g11=Vin_g22=Vin_gul=Vin gu2=655u, Vin_g12=Vin g21=5.55u, Vin_gfh=29u
The openloop system: Vin_g11=Vin g22=Vin_gul=Vin gu2=65.5u, Vin_g12=Vin_g21=6.55u

Table 5-3 Test setup for comparing the performance of the noisy feedback complex filtering
system and the reference noisy open-loop complex filtering system.

For both tests, we intentionally set up the core filter in the open loop system with
the same set of input noise voltage sources derived for the core filter with Q=50 in the
feedback system, which actually makes the open loop filter less noisy than it is supposed
to be. The up conversion and down conversion output signals from the systems under
test were plotted in Fig. 5.17. The noisy feedback filter and the noisy reference open
loop filter still have comparable sharpness, as their recovered information signals are
very close in amplitude. Moreover, the output noise floor of the feedback system is
obviously lower than its open loop counterpart. Comparing the results of Test 1 and Test
2, the in-band output noise is apparently higher for the open loop filter with a larger Q
factor, while there is barely difference between the in-band output noise levels for the
feedback filters with different k value. Therefore, even the transconductors in the Gm-C
model are noisy, the feedback complex filter is still able to produce an output with higher
SNR than the output from an open loop complex filter of comparable sharpness.
Considering that a noisy filter with smaller Q factor usually outputs lower in-band noise
but it has very limited filtering capability, the feedback complex filtering system
provides an innovative method to effectively sharpen a filter without raising the output

noise floor in the interested frequency range.
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5.3 The Implementation of a Log-domain Feedback Complex Filtering System

Finally, we propose a transistor-level implementation solution for the feedback
complex filtering system that utilizes log-domain filtering circuitries and related
technique. We have implemented in Chapter 3 a log-domain open loop synchronous
complex filtering system that is able to perform both up conversion and down

conversion at the back end stage, and we have verified that the down conversion result,
p(t), could be used to generate the Q-factor control signal k%. We now discuss in

detail the implementation of the feedback path. The state-space representation of a

superheterodyne feedback complex filtering system is reproduced in egn. (5.30), where

k gxm corresponds to the feedback Q-factor control signal.

W b

Xi| | 20Q p X1 | sin(wyt)

X2l Wy p |x2|+(W°/Q) —cos(wyt)
wo Ry

20 p
Yup_conversion = |sin(wy1t) —cos(wpy,t)]
. X1 A
Ydown_conversion = |COS(WOt) Sln(WOt)l |x2| =p(t) (5.30)

In the log-domain complex filtering system, p(t) is an always positive current signal
which is realized as the current flowing in the output transistor of the back end down
converter. For demonstration sake, we express

p(t) = Isexp(Vpe,/vr) (5.31)

where v, is the base-emitter voltage difference of the output transistor. It follows that

= Yheo P _ Ve
p=—P>5="" (5.32)
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Recall that to associate the state space representation with a log-domain circuit, both

sides of the state equations are multiplied with iﬂ Terms kng2 are correspondingly

1,2
transformed into:

kng2 i kngT = kCvy,, (5.33)

X1,2
Eqn. (5.33) reveals the explicit physical meaning of the feedback signal: k times the
current flowing in a capacitor of C farads when applied with voltage vy, . Based on the
analysis above, we designed the circuitry in Fig. 5.18 to generate a current signal that
approximately equals kCvy,, with some offset, using the complex filtering system’s
down converter output current p(t). The design consists of two log-domain first-order
lowpass filters connected by a current mirror. p(t) is sent to LPF1 by connecting the
base of the output transistor in the down converter to the emitter of the filter’s input

transistor. The transfer function of LPF1 is:

loyr(s) _ wq _ Iup1
GERETTA where w,; = Vo (5.34)

When w; is tuned to be far away from the input information component, the baseband
of the filter output current is very similar to that of p(t), so the log version of the output

current, i.e. the voltage across the capacitor C notated as vy, , has very similar baseband
as that of vy, . Therefore, the current flowing in C approximately equals Cvy,,. TO

scale this current, another low-pass filter, LPF2, with tunable peak gain is included, the

transfer function of which is:

lour®) _ W2 \rhere w, = 122 (5.35)
IIN(S) S+wy A%y
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Figure 5.18 Implementation of kCvy, with dc offset.

Note that the dc component in the input current of LPF2 will be scaled by k too, it’s
preferable to adjust it to a low level before the signal processing so that the output dc
offset will not be too high. This issue can be fixed by adding a tunable source I, to
pull away some dc current from the current mirror output, so the offset could be tuned
conveniently without affecting the cutoff frequency of LPF1. The output current of the
overall circuitry, call it 15,4, is an offset, low-pass filtered version of kCvy,_. If w; and
w,, are high enough, very few phase shift would be introduced to the useful components,
so the baseband spectrum of I,,,.; would be very similar to that of kCvy,, (k > 0). The
circuitry in Fig. 5.19 gets rid of the dc component in I,,;; and reverses the ac
components to implement the negative k. The output current I,,,;, approximately equals
—kCvy,, and could be sent back to the core filter to time vary its Q factor. Switches not
shown here are used as an interface, with which we could prevent the Q-factor control
signal being immediately sent back when it’s just generated but close the loop at some
point when the transient part in the signal fades to a negligible level. The switches are

indispensable for avoiding convergence problem in the simulation.
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Tas1

Figure 5.19 Implementation of —kCv,

The trickiest part in the feedback path design lies in eliminating the undesired
signals resulted from the interaction between the Q-factor control signal and the
quiescent signals in the core filter. Qualitatively, for the feedback system to work as
expected, the Q-factor control signal should only interact with the ac components in the
core filter and generate signals in the frequency range near the filter’s center frequency.
However, the log-domain core filter incorporates circuitry that helps establish the dc
operating point, which inevitably generates dc signals at some nodes that will be
modulated by the feedback signal. Such an undesirable modulation results in ac
components in the baseband, which is far away from the filter’s center frequency.
Considering that the filter output contains ac components near its center frequency and
in the baseband as well, the down conversion result is much noisier than expected due
to the baseband components being shifted into a higher frequency range. The high
frequency noise would lower the SNR of the feedback Q-factor control signal and
degrades the performance of the feedback system, which is manifested by the large
output harmonic distortion. Lowpass filtering is not an effective solution because the
high frequency noise has comparable size as that of the baseband signals, and the

feedback system is very sensitive to the phase change in the recovered baseband signal.
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To fix the issue, we introduced another core filter, which is exactly the same as the core
filter but with no ac input. It’s used to model the quiescent part of the original core filter,
so when the same Q-factor control signal is injected, it would produce baseband ac
components almost identical to the baseband components produced by the modified
core filter. Subtracting the output of the modified auxiliary filter from that of the
modified core filter, we would be able to get rid of most of the undesired baseband
components and recover p(t) with much less noise near the back end modulating

frequency. The design is illustrated in Fig. 5.20.

oscillator 1

(' Core filter w/ $ 4 A Core filter w,
time-variant Q ® time-variant Q

Biquad & iqua
Complex ®

~
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Complex
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Filter
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Quadrature Modulator Quadrature Modulator

(Up Conversion)
oscillator 2

e ™ s R

kﬁ‘(t) Control p(t) ®
500 Signal b
Pt Generator ®
J A J

Quadrature Modulator
(Down Conversion)

Figure 5.20 Embodiment of the log-domain feedback complex filtering system

The interface between the core filter and the back end modulator in the feedback
system is accordingly redesigned to perform current subtraction. Related circuitry is
shown in Fig. 5.21. The schematic of the feedback log-domain complex filtering system
is shown in Fig. 5.22, where the up converter is omitted. All the BJTs are ideal and have
B = 100K, MbreakN and MbreakP models from the PSpice Breakout library were used
to implement the switches. A transient test was run on both the feedback system and its
related open loop system. Furthermore, the gain spectra of the particular systems under
test were plotted to show their frequency response in a generic way. The specific setup

for the transient test is listed in Table 5.4.
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Inputand frontend | pit) m+(0.2m)[sin(2m-2K- t)+ sin(2m-10K- )+ sin(2r-16K- thsin(2m-25K- )]
modulator (A) carrier(t)  0.2sin(2m-4M-+) ‘ I 500u m_1(t)=L6sin(2m5M: t) m_2(t)=-1.6cos(2m-5M- 1)
. Lic=Ip 500uA € 30750F | Iolfeedbacksystem)  50uA |l (openloopsystem)  5yA 3 5uA
Core filter f, = 1My (05) (=50, 100
Down Converter m_1(t)=1.6cos{2m-1M- 1) m_2(t)=L.6sin(2m-1M- 1) lout_os=0A
Back end modulator{A Up Converter m_1(t)=1.6sin(2m-5M- 1) m_2(t)=1.6cos{2m-5M-t]  lout_0s=500uA
Feedback signal Iipt 250uA C  30mF | lost 200uA Ipp  S00IA Q@ 0.6nF
generator (fyp,= 0.5MHz) Kljp; 45004, 950uA (k=-9-19 fip, =0.5MHz)

Table 5-4 Circuit parameters for the feedback log-domain complex filter.

The first set of systems under the transient test include: a feedback complex
filtering system with Q=5, k=-9, an open loop system with Q=5 and an open loop system
with Q=50. The down conversion results from all the systems are plotted in Fig. 5.23(a).
According to the simulation setup, the feedback loop is not closed until t=2ms, so the
output signal of the feedback system (k=0) perfectly overlaps with the output from the
open loop filter with Q=5 till 2ms, then becomes smaller when the loop is closed and
gets in phase with the output of the open loop system with Q=50. FFT spectra of the
steady state output signals from the two systems are given in Fig. 5.23(b), measurement
results show that they have baseband components of similar respective sizes, but the
amplitude difference is a little higher for dc component. It might be due to the feedback
filter’s peak gain is slightly higher and its actual center frequency is a little off.

In the second set of systems tested, the feedback system is set up with Q=5, k=-
19 and the reference open loop system has Q=100. Down converter output signals from
the two systems are plotted in Fig. 5.24. Their dc levels have even larger difference,
while for the rest components the amplitude difference is at a negligible level. It
indicates that a feedback filter with more negative k has a higher peak gain. Moreover,

the feedback system output is noisier than its open-loop system counterpart, which is
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due to the high frequency components inevitably generated in the down conversion
process. As the output noise is in a higher frequency range and at a comparatively low
level, it could be attenuated by an additional low-pass filter without affecting the useful
baseband components.

SHbiR: Feedback loop NOT closed(k=0) Feedback loop closed (k=-9)

| W - .
S A

oA -
The open-loop system(Q=5) down converter output v The feedback system(Q=5, k) down converter output
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\’, AW ‘f',"
\ \
250un/,’ \} \ \ | ’ \ \f \ ,‘ /
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100uA
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A h I\ (2.0000K, 50.415u) (16.000K, 26.592u)
I (10.000K, 35.734u) (25.000K, 18.553u)
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|
10na J vA Vﬂ }\W"Uh"vﬁ.’\h A A
100pA
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(b)
Figure 5.23 Transient plots and FFT spectra of the recovered signals from the first set of systems
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Figure 5.24 Transient plots and FFT spectra of the recovered signals from the second set of
systems

Gain spectra of all the filtering systems under test above are plotted, together
with gain spectra of the transfer functions for biquad complex filters with Q=200,

fo=4MHz and Q=400, f,=4MHz, as shown in Fig. 5.25. High similarity between the

205



bandwidths of the filters in the same set verifies that the log-domain feedback system
with a low-Q core filter is capable of implementing a high Q filtering system when the
current sources varying the core filter bandwidth are properly set up. The peak gain of
the feedback filter is closer to the ideal value, while the gain spectrum of the open loop

filter bears stronger resemblance to the Bode plot of the target transfer function.

&5 ~#—Faedack complex fiter (=5, k= 8)

== Olpaniop complex flte (01250}

GainidB)

&5 —a—A reference biquad complex filter with Q=400,
0=AMHz (transfer fucntion)
~a—Feedback complex filter (Q=5, k=-19)

~8—Openioop complex filter (Q=100)

Gain(dB)

Figure 5.25 Gain spectra of all the log-domain filtering systems under test and the transfer
functions of two reference biquad complex filters.
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Finally, to compare the capability of the log-domain feedback complex filter in
suppressing the internal noise to that of its reference open loop complex filter, white
noise currents of LUArms were injected into the filtering capacitors in the core filter in
both systems. The feedback system was set up with Q... = 5 and k = —19 and the
reference open loop complex filter had Q.. Of 100. Simulation results in Fig. 5.26

explicitly verify the improved noise performance of the feedback filtering system in

dealing with the in-filter noise. Moreover, it was observed that even when the assistant
filter in the feedback system is injected with noise currents of the same RMS value, its
output SNR is still about one order of magnitude higher than that of the open loop filter

in the frequency range of interested. (The test results are not plotted here)
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Figure 5.26 Transient plots and FFT spectra of the interested output signals from the log-domain
feedback complex filter (Q=5, k=-19) and the reference open loop complex filter (Q=100) in
the in-filter noise test.

5.4 Summary
An innovative approach to tuning the Q factor of a biquad bandpass filter
processing AM signals was discovered and mathematically proved. The idea is inspired

by the AM mode synchronous filtering and is illustrated in Fig. 5.1. Simply put, by

scaling the feedback signal with k (k < 1), we would be able to turn the original

p(t)
()
bandpass filter with quality factor Q... into one with time-variant bandwidth and an
equivalent quality factor of (1 —K) Qcore-

Simulation results suggest that the AM mode feedback system developed from
a biquad bandpass filter would always produce some output harmonic distortion. For

any positive k, the distortion is at a negligible level; while for negative k values, the

output distortion gets higher as k becomes more negative. When implementing a
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feedback bandpass filter with some target Q factor, the combination of a sharper core
filter and less negative k would have higher output SNR and frequency response more
similar to that of the reference open loop bandpass filter. This might be due to the
reconstructed p(t) contains a lot of high frequency harmonics of the down conversion
sampling rate. An alternate system realization is shown in Fig. 5.7, which utilizes a
biquad complex filter as the core filter. When set up with same Q... and k, the
feedback complex filtering system produces much less harmonic distortion and has an
equivalent Q factor fits eqn. (5.1) better. Moreover, the gain spectrum of the feedback
complex filter bears stronger resemblance to that of the reference open loop complex
filter.

Mathematical explanation to the Q-factor tuning approach was inspired by

noticing that when a first order lowpass filter cuts off at w, gets it output modulated by

Wy + k%, where y is the modified filter’s instant output, the yielded system would

have a new cutoff frequency of K—"k Moreover, transformation on the state space

description of the modified first order lowpass filter suggests that it could be realized
by a second-order system that incorporates two terminal modulators and a biquad core
filter. The state matrix specifying the biquad core filter has a formation identical to that
of the state matrix in some state space representation of a biquad bandpass/complex
filter. Furthermore, we proved that both the biquad bandpass filter and complex filter
have the expected frequency response so as to generate a proper bandwidth control

signal. Based on all the similarities, it becomes obvious that the mechanism the feedback
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modulation scales the Q factor of a biquad bandpass/complex filter is exactly the same
as that of the gain modulation scales the cutoff frequency of a first-order lowpass filter.

Observation made through the noise performance test is summarized as follows:

1) The feedback AM mode filtering system with a negative k is superior to its
reference open loop filter in suppressing the in-filter noise. The advantage manifests
itself in two aspects: First, when dealing with same amount of noise currents injecting
to the filtering capacitors, the feedback filter always produces an output with lower noise
floor than the open loop filter of comparable sharpness does. Second, to sharpen an open
loop filter, we have to directly increase its Q factor, which amps up the input-referred
noise and usually raises the output noise floor because the enhanced filtering capability
could not counter balance the gain in the noise. For the feedback system, we could stick
with the original core filter and simply tune the feedback scale factor kK more negative.
As the injected noise is not additionally amplified while the filter gets tuned sharper, the
system output noise floor gets suppressed to a lower level.

2) Comparing the output spectra from feedback systems of comparable
equivalent bandwidths, injected with same amount of noise, but developed with core
filters of different Q factors, we discovered that the output noise level is consistently
proportional to Q.,,., S0 the feedback system with smaller Q... always produces lower
output noise floor. However, for feedback bandpass filters with very low Q... and too
negative scale factor k (e.9. Q.0-=10, k=-19), large second-order harmonic distortion
appears in the output (about 1.7% of the information signal size) and the recovered
information signal is obviously lower than expected (about 10% lower), which greatly

degrades the output SNR (Fig. 5.11(d)). So there is a tradeoff between the output noise
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level, output harmonic distortion and Q.,,. value in implementing a feedback bandpass
filter. Excitingly, the feedback complex filter is not subject to this issue, as shown in
Fig. 5.13(c), no harmonic distortion is seen in the output from the system with Q_,,.=10
and k=-19, and the information component has larger amplitude. Therefore, the
feedback complex filter demonstrates better performance than the feedback bandpass
filter in dealing with in-filter noise.

3) For the feedback complex filtering system, we proposed a noisier Gm-C
network model where all the transconductors are added with an input voltage noise
source. The reference open loop filter models were accordingly set up noisy too. Test
results in Fig. 5.17 suggest that even with noisy transconductors, the feedback complex
filter and the reference open loop filter still have comparable sharpness, and the output
noise floor from the feedback filter is still lower than its open loop filter counterpart.
Moreover, the in-band output noise is apparently higher for the open loop filter with
larger Q factor, while there is barely difference between the in-band output noise levels
of the feedback filters with different sharpness, as long as they have the same Q...
factor. Therefore, the feedback complex filtering system provides an innovative
approach to effectively sharpening a filter without raising the output noise floor in the
interested frequency range.

4) Unfortunately, both the feedback bandpass filter and the feedback complex
filter fail to more effectively suppress the input noise, compared to their reference open
loop filters.

In the last section, a possible implementation of a biquad log-domain feedback

complex filter is proposed. The schematic for the overall system is given Fig. 5.22.
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Transient test, frequency response test and in-filter noise suppression test were run on
the transistor-level feedback filter and its reference open loop filter. Specific test setup
is given in Table 5.4, the filtering function and noise performance of the circuit is
verified by simulation results in Fig. 5.23 to Fig. 5.26. Note that the proposed design
has to include an assistant core filter to eliminate some undesired frequency components
so as to implement the expected time-variant Q factor, which makes the circuit more
power consuming and subject to more noise, further effort could be put into modifying

the design and simplifying the schematic.

212



Chapter 6 Conclusion and Future Work

In the context of synchronous filtering, we focused on developing analog filters
with improved noise performance. Specifically, a second-order bandpass filter and a
second-order complex filter were implemented and modified utilizing AM mode or FM
mode synchronous filtering techniques. Important discoveries and designs are
summarized as follows:

1. The FM mode synchronous filtering, either static or dynamic, provides a
modulator-core filter-modulator architecture that could be used to implement a high-
center frequency high-Q factor complex filter with a low-center frequency low-Q filter.
A dynamic synchronous complex filter, of which the core filter center frequency and
both end modulating frequencies vary with time in a synchronized way, is capable of
suppressing the injected in-filter single-tone noise in a certain frequency range.
Consider the particular dynamic complex filter we studied that has a center frequency
offset at 1IMHz and a constant bandwidth of 20kHz for instance. When the center
frequency varies as a square waveform at 100kHz in the range of 1MHz + 800kHz, the
system suppresses the single-tone noise components near 1MHz injected to the core
filter to about three orders of magnitude lower than their levels in the static system
output, without additionally attenuating the useful information signals.

2. We developed a few filtering systems with time-varying Q factor based on
the architecture of an AM mode synchronous filter. The related block diagrams are
given below. System 1 could be taken as an AM mode synchronous bandpass filter

without the back end modulator, receiving input signal u(t); it could also be viewed as
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a filter with time-varying Q factor receiving an AM signal u(t)p(t). Taking the second
perspective, if System 1 has a very sharp original time-invariant core filter, then it would
be able to heavily suppress the input noise while maintaining the amplitude and phase

of the useful information components. Unfortunately, as it’s almost impossible to

pM®

enerate the ideal —=
g p(®)

with the AM input u(t)p(t), System 1 might not be

implementable in practice.

Biguad Filter with time-varying Q

‘\

Biquad Bandpass Filter
with time-invariant Q and fc

T
0]
p(t)

u(t)- p(t) —» > y(®)-pM

PRSI, S —
N,

o SO

Figure 6.1  System 1: A bandpass filter with time-variant Q factor processing an AM input
signal, derived by deleting the back end modulator of an AM mode synchronous bandpass filter.

Interestingly, we discovered that if we demodulate the core filter output with very

little introduced phase shift to recover the information signal p(t) and generate % to

time vary the core filter’s Q factor, as long as the input AM signal is noiseless, the
resulting system is able to produce an output very similar to what is produced by System
1. Such a feedback system is represented by System 2 with k=1, where the demodulator
could be realized with a sample-and-hold block performing ideal sampling at the rate
equal to the input carrier frequency. However, when dealing with a noisy AM signal, as
the feedback Q-factor control signal becomes noisy, the system output SNR drastically

drops and is even lower than that of an open loop bandpass filter with the same Q factor.
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In an effort to improve the feedback system performance in processing a noisy
input, we tried out several methods and came up with a system that incorporates two
bandpass filters. The purpose is to generate a less noisy Q-factor control signal with the
second filter. It has been shown by simulation results that for input signals with narrow
bandwidths, the system is able to heavily suppress the input noise while almost
maintaining the original amplitude of the useful components. The downside of this
system is that the achievable highest output SNR is constrained by the bandwidth of the
input signal. Namely, as the input bandwidth gets wider, the system output SNR

gradually drops.

, Biguad Filter with time-varying Q_‘ mc;;j
H 1
1 i
t|  Biquad Bandpass Filter || Envelope
. = < 1 — ’
u() - p(t) 1 with time-invariant Q.and fc | Detector
\ " J N
" (),
B
| B(t) Contrel
Signal
Generator

Figure 6.2  System 2: An implementable feedback system inspired by System 1. When k=1
and the input AM signal is noiseless, it is capable of producing an output very similar to what
is produced by System 1. When k is negative, the equivalent Q factor of the system becomes
higher than the original Q factor of the core filter.

R . o . Pracessed
, Biquad Filter with time-varying Q.‘ AM Signal
i
u(®)-p(t) | Biquad Bandpass Filter Ervelope. |
w/noise | ! withtime-invariant .., and fc Detector P
L ,
t 10
EQ
Biquad Bandpass Filter N Envelope p_(t)’ Control Signal
with time-invariant Q,and fe Detector Generator

Figure 6.3  System 3: The two-filter system inspired by System 2 with k =1, for processing
noisy input.
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Quadrature Modulator Quadrature Modulator
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>@ Complex
Filter
p(t) AN -

Quadrature Modulator

k p(D) Control
(Down Conversion)

Signal
Generator

oscillator 2

Figure 6.4 System 4: A feedback complex filtering system: an advanced version of System 2
which is easier to implement and has better noise performance.

3. It has been discovered with System 2 that the equivalent Q factor of the
filtering system could be tuned by adjusting the amount of the feedback signal, denoted
as k%. The equivalent Q factor could roughly be evaluated with eqn. (5.1): Qeq =
(1 — K)Qcore for k smaller than 1. It suggests that System 2 provides an approach to the
design of high-Q filters with a low-Q filter by making k < 1. Moreover, the resulting
feedback filter with time-varying Q factor is superior in suppressing the in-filter white
noise to an open loop filter that has comparable bandwidth.

4. A static FM mode synchronous complex filter was modified to implement a
feedback complex filter with time-varying Q factor, represented by System 4. Compared
to System 2, System 4 provides a more implementable way to recover the information
signal from the core filter output for generating the Q-factor control signal. Simulation

on both the ideal Gm-C model and the noisier Gm-C model has verified the function

and the improved noise performance of System 4. Finally, we implemented the system
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as a log-domain filter and verified the frequency response and in-filter noise reduction
capability of the ideal BJT-level design.

Proposals for future work include:

1. Set up a more practical Gm-C model for the feedback complex filtering
system by including noise sources associated with multipliers in the demodulator and in
the feedback path, checking out the performance and noise suppression capability of the
model. For the transistor-level design, add noise sources in the feedback path and check
out how they affect the system performance.

2. Develop a simpler transistor-level design solution to implement the feedback
complex filter.

3. Derive an analytical solution for the complete response of the feedback
bandpass filtering system with k=1. Determine a mathematical explanation to the
emergence of the output noise peak(s) shown in Fig. 4.11, which is the result of the
input white noise being processed by the feedback system.

4. Derive an analytical solution for the complete response of a dynamic FM
mode synchronous complex filter. Solve it for the system where the core filter center
frequency varies as a sinusoid waveform first, then as a square waveform.

5. Utilize the analytical solutions to develop new methods or architectures that
lead to filtering systems with improved capability in reducing both the injected noise

and the input noise.
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