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Abstract 

The design of high-performance low-noise bandpass filtering systems has been 

studied from several aspects: (1) applying the synchronous filtering idea to the 

development of externally linear, time-invariant filters which can be internally nonlinear 

and/or time-varying, (2) seeking solutions to improve the noise performance of these 

filters, from parameter configuration to architecture design, and (3) implementing the 

systems of interest as transistor level circuits and verifying their function. 

Particularly, the state space representations for a biquad AM mode synchronous 

bandpass filter and a biquad FM mode synchronous complex filter have been proposed 

and realized with ideal Gm-C networks and log-domain circuits. Both systems utilize 

the modulator-core filter-modulator architecture to synchronize the internal signal 

processing. The core filter in an AM mode synchronous filter has constant center 

frequency and time-variant bandwidth, and the terminal modulators perform amplitude 

modulation to maintain the system’s external linearity and input/output characteristics. 

An FM mode synchronous filter typically has time-invariant bandwidth and performs 

frequency modulation before and after the signal filtering. Depending on whether the 

center frequency and terminal modulating frequency vary with time, there are static and 

dynamic types of FM mode synchronous filters. They both have the advantage of being 

able to filter the high frequency input signals in a low frequency range, which greatly 

alleviates the design and integration challenge due to the high frequency limitation of 

active components. Moreover, some dynamic filters effectively suppress the injected 

single-tone noise and generate an output with much higher SNR in comparison to the 

output from a static filter that implements the same transfer function. 
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As a variation of an AM mode synchronous bandpass filter, the system derived 

by removing its back end modulator has been verified to have impressive noise reduction 

capability when processing noisy AM signals. Furthermore, it inspired the development 

of a feedback filtering system, the effective bandwidth of which could be tuned by 

scaling the feedback signal that time varies the core filter’s instantaneous bandwidth. It 

further provides an innovative approach to the design of a high-Q filter with superior 

immunity to internal noise, using a filter with very low Q factor. Finally, a design that 

combines the feedback architecture and the biquad FM mode synchronous complex filter 

is proposed and implemented as a log-domain filtering circuit. Appealing features of this 

system include wide dynamic range, flexible bandwidth and center frequency tunability. 

Since there is a low requirement for the high-frequency performance of active 

components, these filters make a good fit for monolithic integration, and greatly 

improved immunity to in-filter noise in comparison to that of an open loop complex filter 

with similar external filtering capability. 
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 Introduction to Synchronous Filtering 

 General Description  

Motivated by the desire to create integrated circuits that have certain filtering 

functions, analog circuit designers have successfully developed basic filter blocks during 

the past several decades, such as operational amplifiers and transconductance amplifiers. 

They have also introduced and improved some new filtering paradigms, such as switched 

capacitor filters, delta sigma converters, etc. In recent years, the integration of high-

frequency tunable filters has drawn more attention. For example, an electronically 

tunable anti-aliasing filter for use in digital video was reported in [1],  [2-4] discussed 

the topologies of high-frequency filters in both bipolar and CMOS technology. However, 

they all suffer from the high-frequency limitations of the active elements. To alleviate 

this issue, researchers have focused their effort mainly on two aspects: incorporating 

current-mode elements into the design[5-10] and developing new filtering system 

architectures. We leave the design methodology and implementation detail of log-

domain filters, a pure current-mode filtering paradigm, to Chapter 2 and introduce the 

synchronous filtering technique in this chapter, which is associated with the architecture 

design and has yielded many high performance filters for RF receivers, transmission and 

audio recording. 

Take high-Q high-center frequency bandpass filters for instance, due to the high-

frequency limitations of available active components, monolithic implementation of 

these filters is barely acceptable as it generally suffers from poor selectivity, narrow 

dynamic range and low noise immunity at high frequencies. To tackle this problem, a 

classic architecture, which introduces modulators to work in conjunction with a lower-
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frequency core filter, has been devised and widely adopted in modern radio receivers. A 

desirable point of this solution is utilizing modulators to lower the frequency range of 

signals to be processed so that the high-Q high-frequency filter is no longer required by 

an RF receiver. In practice, such an architecture is widely employed in the so-called high 

intermediate frequency (IF), low-IF, and zero-IF systems. Inspired by this prevalent 

architecture, Frey proposed the concept and mathematics regarding synchronous 

filtering in 2006[11], which provided an elegant guideline for the development of a 

variety of synchronous filters. The paper articulated how a given time invariant filter can 

be implemented using the combination of modulators and a core filter, proved that the 

developed system has identical zero-input response as the original filter does, and 

introduced for the first time a companding complex filter as an instance of synchronous 

filters.  

It is straightforward to demonstrate the synchronous filtering idea with the block 

diagram of a synchronous filter. In general, the system incorporates a core filter and a 

pair of modulators set up at the front end and back end respectively, which are abstracted 

as multipliers in Fig. 1.1. They work in a matching mode to implement a system that is 

functionally equivalent to a standalone filter (with no modulators). As an example that 

will be verified later, a high-center frequency high-Q filter could be realised with this 

architecture where the core filter is only required to have a much lower center frequency 

and a much smaller quality factor. The main purpose of the front end modulator is to 

down convert the received RF signal so that the core filter could process it in a lower 

frequency range. The back end modulator is utilized to apply another frequency-domain 

shifting on the output of the core filter, which is an indispensable piece for drawing the 
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function equivalence. The core filter in a synchronous filtering system could even have 

time-variant center frequency, which will not change the system’s external linearity and 

overall function as long as the front end and back end modulators are synchronized 

accordingly. There is a potential that certain variation patterns for the core filter center 

frequency and terminal modulating frequencies could make the synchronous filter 

superior to its standalone-filter counterpart in noise suppression. Furthermore, a 

synchronous filter could have time-variant bandwidth too, as will be shown in Chapter 

2, a system derived from such a filter is capable of heavily suppressing the input noise 

while maintaining the useful information signals. 

 

Figure 1.1 Generic block diagram of a synchronous filter. 

 

 State Space Representation of LTI Systems 

The mathematical model of synchronous filtering to be introduced is developed 

in the context of a system state space representation, as the state-space-based filter design 

has been studied rigorously and employed to yield many modern filter topologies [12]. 

A brief review on the state space representation of linear time-invariant (LTI) systems 

is given below[13] before the derivation of the synchronous filtering models. 
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 Formulation of the State Space Model 

In general, state variables, state equations and output equations are three 

important elements in the state-space model.  The state variables of a dynamical system 

refer to a minimum set of variables that could be used to fully describe the system and 

its response to any given set of inputs. It is asserted that the mathematical model of a 

state-determined system in terms of a minimum set of state variables 𝑥𝑖(𝑡), 𝑖 = 1, … , 𝑛, 

together with knowledge of those variables at an initial time 𝑡0 and the system inputs for 

time 𝑡 > 𝑡0, are sufficient to predict the future system state and outputs for all time 𝑡 >

𝑡0. Many electrical networks may be represented by state-determined system models, 

where the number of state variables, n, is equal to the number of independent energy 

storage elements in the system, such as capacitors and inductors. A variety of different 

state variable sets may be selected to yield a complete system description, and it could 

be formulated in terms of physical and measureable variables, or in terms of variables 

that are not directly measurable. The crucial point is that any set of state variables must 

provide a complete description of the system with the possible minimum size. In 

electrical networks, capacitor voltage and inductor current are the natural choices for 

state variables.  The state equations for an LTI system of order n and with r inputs are a 

set of n coupled first-order linear differential equations with constant coefficients. This 

set of n equations defines the derivatives of the state variables to be a weighted sum of 

the state variables and the system input. A compact expression for the state equations in 

a matrix form is: 
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d

dt
[

x1

x2

⋮
xn

] = [

a11 a12 … a1n

a21 a22 … a2n

⋮ ⋮ ⋮ ⋮
an1 an2 … ann

] [

x1

x2

⋮
xn

] + [

b11 … b1r

b21 … b2r

⋮ ⋮ ⋮
bn1 … bnr

] [

u1

⋮
ur

]         ( 1.1 ) 

 

which may be abstracted as   

 ẋ̅ = Ax̅ + Bu̅                                                ( 1.2 ) 

where the state vector x̅ is a column vector of length n, the input vector u̅ is a column 

vector of length r, A is an n×n square matrix of the constant coefficients aij and it is 

known as the system state matrix, B is an n×r matrix of the coefficients bij that weight 

the inputs. The system state at any instant may be interpreted as a point in an n-

dimensional state space, and the dynamic state response x̅(t) can be interpreted as a path 

or trajectory traced out in the state space. 

The system output is defined as any system variable of interest. An important 

property of the linear state equation description is that all system variables may be 

represented by a linear combination of the state variables 𝑥𝑖 and the system inputs 𝑢𝑖. 

An arbitrary output variable in a system of order n with r inputs may be formulated as:  

y(t) = c1x1 + c2x2 + ⋯+ cnxn + d1u1 + ⋯+ drur   ( 1.3 ) 

 

where 𝑐𝑖 and 𝑑𝑖 are constants. If a total of m system variables are defined as outputs, the 

output equations could be expressed in the following matrix form: 

  [

y1

y2

⋮
ym

] = [

c11 c12 … c1n

c21 c22 … c2n

⋮ ⋮ ⋮ ⋮
cm1 cm2 … cmn

] [

x1

x2

⋮
xn

] + [

d11 … d1r

d21 … d2r

⋮ ⋮ ⋮
dm1 … dmr

] [

u1

⋮
ur

]  ( 1.4 ) 

which is also written as: 

y̅ = Cx̅ + Du̅                                 ( 1.5 ) 
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where y̅ is a column vector of the output variables 𝑦𝑖(𝑡), 𝐶 is an m×n matrix of the 

constant coefficients 𝑐𝑖𝑗 that weight the state variables, and 𝐷 is an m×r matrix of the 

constant coefficients 𝑑𝑖𝑗 that weight the system inputs. For many physical systems the 

matrix 𝐷 is the null matrix, and the output equation reduces to a linear combination of 

the weighted state variables: 

y̅ = Cx̅                      ( 1.6 ) 

The complete system model for a LTI system consists of a set of n state equations, 

defined in terms of the matrices A and B, plus a set of output equations that relate any 

output variables of interest to the state variables and input, and expressed in terms of C 

and D matrices. The matrices A and B are properties of the system and are determined 

by the system structure and elements. The output equation matrices C  and D  are 

determined by the particular choice of output variables. Fig.1.2 provides an explicit 

demonstration on the idea of state space representation. It shows the matrix operation 

from input to output in terms of the matrices A, B, C and D, without the specific path of 

individual state variables.  

 

Figure 1.2 Vector block diagram for a LTI system described by state-space system dynamics. 
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 Complete System Response 

Eqn. (1.2) and eqn. (1.5) together provide a system state space representation. 

Given sufficient initial conditions, it is possible to predict the future system state and 

outputs for all time. A very straightforward approach to solving these equations is using 

Laplace and inverse Laplace transforms. Suppose the Laplace transform of the state 

vector x̅(𝑡) is X̅(𝑠), by utilizing the time-differentiation property of Laplace transform, 

the frequency-domain representation of X̅(𝑠) is derived as: 

X̅(s) = Φ(s)x̅(0) + Φ(s)BU̅(s)                            ( 1.7 ) 

 

where 𝛷(𝑠) = (𝑠𝐼 − 𝐴)−1. Then the time domain representation of eqn. (1.7) is the 

solution to eqn. (1.2), which could be derived by applying inverse Laplace transform to 

each term in eqn. (1.7). Specifically,  

x̅(t) = φ(t)x̅(0) + ∫ φ(t − τ)Bu̅(τ)dτ
t

0
                 ( 1.8 ) 

where 𝜑(𝑡) is the inverse Laplace transform of 𝛷(𝑠). Substitute 𝑥̅(𝑡) in eqn. (1.5), the 

system complete response is naturally developed to be: 

y̅(t) = Cφ(t)x̅(0) + ∫ Cφ(t − τ)Bu̅(τ)dτ
t

0
+ Du̅(t)                  ( 1.9 ) 

Derivation of the system transfer function from a state space representation is 

straightforward. As a transfer function is associated with the zero state system response, 

initial condition of the selected set of state variables is not of our concern here. In 

particular, setting x̅(0) = 0 in eqn. (1.7): 

X̅(s) = Φ(s)BU̅(s)                    ( 1.10 ) 

Writing eqn. (1.5) in S domain and substituting 𝑋(𝑠) with the above expression, the 

system transfer function is derived as: 
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Y̅(s) = CX̅(s) + DU̅(s)     ( 1.11 ) 

Deriving State Space Description from the Transfer Function 

H(s) = CΦ(s)B + D                 ( 1.12 ) 

As the state space model of a LTI system is not unique, the mapping of any given 

transfer function to the time domain yields a variety of different dynamical equation sets. 

A convenient state-space model formulation technique that is widely used in control 

theory is presented here. Suppose without loss of generality the system is of order n and 

has a transfer function: 

𝐻(𝑠) =
𝑏𝑛𝑠𝑛+𝑏𝑛−1𝑠𝑛−1+⋯+𝑏0

𝑎𝑛𝑠𝑛+𝑎𝑛−1𝑠𝑛−1+⋯+𝑎0
=

𝑏𝑛+𝑏𝑛−1𝑠−1+⋯+𝑏0𝑠−𝑛

𝑎𝑛+𝑎𝑛−1𝑠−1+⋯+𝑎0𝑠−𝑛   ( 1.13 ) 

Define a dummy variable Z(s) and split the transfer function into two equations: 

Z̅(s) =
1

an+an−1s−1+⋯+a0s−n U̅(s)     ( 1.14 ) 

Y̅(s) = (bn + bn−1s
−1 + ⋯+ b0s

−n)Z̅(s)                  ( 1.15 ) 

Rearranging eqn. (1.14) to specify Z(s) in terms of the system input and a weighted sum 

of successive integrations of itself, an equation associated with a system that includes a 

feedback structure is derived as eqn. (1.16). The resulting block diagram of the system 

is shown in Fig. 1.3, where a string of n cascaded integrators together with Z(s) defined 

at the input of the first integrator is used to generate the feedback terms in the equation. 

Moreover, eqn. (1.15) is implemented easily by combining the output of each integrator.   

Z̅(s)  =
1

an
U̅(s) − (

an−1

an

1

s
+ ⋯+

a1

an

1

sn−1 +
a0

an

1

sn)Z̅(s)         ( 1.16 ) 
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Figure 1.3 Block diagram of the system corresponding to eqn. (1.15) and eqn. (1.16). 

 

Due to the direct cascade of each integrator, the state equations of the system 

take a very simple form if we assign the state variables 𝑥𝑖(𝑡) to the output of the n 

integrators. By inspection, a set of state equations may be formulated as follows: 

 

[
 
 
 
 
 

x1̇

x2̇

⋮
ẋn−2

ẋn−1

ẋn ]
 
 
 
 
 

=

[
 
 
 
 
 

0 1 ⋯ 0 0
0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 0
0 0 ⋯ 0 1

−a0/an −a1/an ⋯ −an−2/an −an−1/an]
 
 
 
 
 

[
 
 
 
 
 

x1

x2

⋮
xn−2

xn−1

xn ]
 
 
 
 
 

+

[
 
 
 
 
 

0
0
⋮
0
0

1/an]
 
 
 
 
 

u̅(t)   

( 1.17 ) 

This version of the state equations are known as the phase variable or companion form, 

where the each row of the state matrix A, except the bottom one, is filled of zeroes except 

for one entry in the position just above the leading diagonal. The corresponding output 

equation could be derived by noting that Xi(s) = Z̅(s)/s(n+1−i) and applying the inverse 

Laplace transform. In particular, eqn. (1.15) and eqn. (1.16) are converted into the time 

domain as: 

y̅(t) = b0x1 + b1x2 + b2x3 + ⋯+ bn−1xn + bnz̅(t)   ( 1.18 ) 

𝑧̅(t) = −(
a0

an
x1 +

a1

an
x2 + ⋯+

an−1

an
xn) +

1

an
u̅(t)               ( 1.19 ) 
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Expressing 𝑧(𝑡) in eqn. (18) in terms of  𝑥𝑖 and u(t), the output equation is derived as: 

y̅(t) = [b0 −
bna0

an
b1 −

bna1

an
⋯ bn−1 −

bnan−1

an
] [

x1

x2

⋮
xn

] +
bn

an
u̅(t) 

( 1.20 ) 

 

 State Space Transformation 

Eqn. (1.17) and eqn. (1.20) give a state space description derived from the given 

transfer function. Since any linear transformation on the state space preserves the 

transfer function, a transfer function could in principle be realized by infinite electrical 

networks. However, some might have highly complicated schematics, some have poor 

dynamic range or high noise sensitivity, etc. Therefore, a smart state space 

transformation plays a critical role in deriving a state space model that leads to the design 

of a compact and high performance circuit. For example, diagonalization of the state 

matrix is one of the most provocative transformation approaches. It generates a state-

space model that has a greatly simplified state transition matrix and could be 

implemented by an electrical network of low complexity. Recall the relationship 

between a matrix, its eigenvalues and its eigenvectors: 

A[v̅1 v̅2 ⋯ v̅N] = AV = [λ1v̅1 λ2v̅2 ⋯ λNv̅N] = Vdiag(λ1, λ2,⋯ , λN) = VΛ ( 1.21 ) 

where v̅i is the eigenvector corresponding to λi, ‘diag()’ denotes a diagonal matrix, 

V ≡ [𝑣̅1 𝑣̅2 ⋯ 𝑣̅𝑁],  Λ ≡ 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2,⋯ , 𝜆𝑁) 

The diagonal matrix 𝛬 could be taken as a transformed version of 𝐴, as shown in eqn. 

(1.22), which indicates that 𝐴  could be easily diagonalized by determining its 

eigenvectors.  

 Λ = V−1AV       ( 1.22 ) 



13 

 

Based on the above example, a generic state space transformation is presented below. 

Suppose the originally derived system state space representation is given by eqn. (1.2) 

and eqn. (1.5). Because any new set of state variables is able to be expressed as a linear 

combination of the original state variables and the input, let 𝑤̅ = 𝑀𝑥̅ + Q𝑢̅, where both 

M and Q are nonsingular 𝑁 × 𝑁 matrices, and M is known as the transformation matrix. 

Substitute 𝑥̅ in eqn. (1.2) and eqn. (1.5) with  𝑀−1(𝑤̅ − Q𝑢̅) according to the definition: 

ẇ̅ = Âw̅ + B̂u̅ + L(u̅, u̇̅)    ( 1.23 ) 

 𝑦̅ = Ĉw̅ + (D − Ĉ𝑄)u̅     ( 1.24 ) 

where Â = MAM−1, B̂ = MB, L(u̅, u̇̅) = Qu̇̅ − MAM−1Qu̅, Ĉ = CM−1. 

Note that although the derivative of the input exists in the state equation, the transfer 

function derived from eqn. (1.23) and eqn. (1.24) is exactly the same as shown in eqn. 

(1.12). To get rid of the derivative term, Q is typically set to be a null matrix and the 

resulting state space description is simplified as: 

ẇ̅ = Âw̅ + B̂u̅ = MAM−1w̅ + MBu̅                  ( 1.25 ) 

    𝑦̅ = Ĉw̅ + Du̅ = 𝐶M−1w̅ + Du̅        ( 1.26 ) 

An example is now provided to show the beauty of state space transformation in 

filter design. Consider the transfer function for a standard second order bandpass filter: 

H(s) =
Y̅(s)

U̅(s)
=

w0
Q

s

s2+
w0
Q

s+w0
2
     ( 1.27 ) 

One particular state-space representation of the above filter is in given by eqn. (1.28): 

|
x1̇

x2̇
| = |

−
w0

Q
−w0

w0 0
| |

x1

x2
| + |

w0

Q

0
| u ,  y = |1 0| |

x1

x2
|      ( 1.28 ) 
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Suppose that the state variables x1 and x2 are associated with the capacitor voltage and 

the inductor current, respectively. The state equations, after appropriate scaling, could 

be taken as a nodal equation and a loop equation of an RLC circuit. Accordingly, the 

output equation could be translated to mean that the circuit output is given by the 

capacitor voltage. Fig. 1.4 shows the RLC implementation of eqn. (1.28) with state 

variables labeled, and the constraints on the component are: R =1/Q, L = C = 1/w0 . 

 

Figure 1.4 RLC circuit implementation of eqn. (1.28) 

 

After state space transformation with the transformation matrix 𝑀 in eqn. (1.30), the 

original state space model finds an equivalent new version of eqn. (30). Fig. 1.5 gives a 

common circuit realisation for the new state-space representation that contains a pair of 

lossy integrators built with op amps and necessary surrounding circuitry. The choosing 

of resistors and capacitors needs to follow the equations below the schematic so as to 

implement the expected center frequency and quality factor. 

M = [
1 γ + λ

−1 −γ + λ
]     ( 1.29 ) 

 

                      |
x1̇

x2̇
| = |

−
w0

2Q
−wA

wA −
w0

2Q

| |
x1

x2
| +

w0

Q
|
1

−1
| u                

 

y =
1

2λ
|(−γ + λ) −(γ + λ)| |

x1

x2
|                               ( 1.30 ) 

where 𝛾 = 1/2𝑄;  𝜆 = √1 − (1/2𝑄)2;  𝑤𝐴 = √1 − (1/2𝑄)2𝑤0.                     
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 𝑅1 = 𝑄/(𝑤0𝐶), 𝑅2 = 1/(𝜆𝑤0𝐶), 𝑅3 = 2𝑄/(𝑤0𝐶), 𝑅4 = 2𝑅𝜆/(𝜆 − 𝛾), 𝑅5 = 2𝑅𝜆/(𝜆 + 𝛾) 

Figure 1.5 Op-amp circuit implementation of eqn. (1.30). 

 

 State Space Representation of Synchronous Filters 

 FM Mode Synchronous Filtering 

 A state space transformation yields a new state space description, which almost 

certainly leads to an alternate electrical network that implements the target transfer 

function. However, if the transfer function is very difficult to implement due to 

component limitations, a random state space transformation barely alleviates the design 

challenge. This is because the resulting circuit, although it has a different schematic, still 

processes signals in the same frequency range. For instance, the transfer function of a 

second-order bandpass filter is implemented by two completely different circuits, as 

shown in Fig. 1.4 and Fig. 1.5, but neither of them is a good candidate for implementing 

a high-center frequency high-Q filter, due to the performance degradation of the 

electronic components in a very high frequency range. To tackle the challenge in 

developing a generally acceptable monolithic bandpass filter with very high center 

frequency and very high Q factor, the modulator-core filter-modulator architecture has 

been widely employed in RF systems, where the core filter has a much lower center 
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frequency and a much smaller Q factor. We now introduce how to utilize a state space 

transformation to develop the mathematical model of such an architecture from the state 

space representation of the target high-center frequency high-Q filter[11].  

Suppose that a time-varying matrix, 𝑀(𝑡) , were used in the state space 

transformation of the original dynamical equations specifying the target filter, which are 

abstracted as eqn. (1.2) and eqn. (1.5). The resulting equation set is derived as: 

ẋ̅ = Ax̅ + B𝑢̅     →       𝑤̇̅ = 𝐴̂𝑤̅ + 𝐺(𝑡)𝑢̅                    ( 1.31 ) 

                                             y = Cx̅ + D𝑢̅    →         𝑦 = 𝐻(𝑡)𝑤̅ + 𝐷𝑢̅  

where Â = M(t)AM−1(t) + Ṁ(t)M−1(t), G(t) = M(t)B, H(t) = CM−1(t). In general, 

𝐴̂ is a time-varying matrix. However, since eqn. (1.31) represents a system where the 

core filter has time-invariant center frequency and Q factor, it is appropriate to assume 

𝐴̂ as a constant matrix in this particular case. This assumption actually sets some implicit 

constraints on the choice of 𝑀(𝑡) and the original state matrix 𝐴. Namely, the expected 

constant state matrix 𝐴̂ exists only if eqn. (1.32) has a solution for 𝑀(𝑡).  

𝑀̇(𝑡) = 𝐴̂𝑀(𝑡) − 𝑀(𝑡)𝐴                                              ( 1.32 ) 

It is not within the scope of our research to seek for the analytical solution of eqn. (1.32), 

but if 𝐴,𝐴̂ and 𝑀(𝑡) commute, the solution could easily be formulated as: 

 𝑀(𝑡) = 𝐾𝑒(𝐴̂−𝐴)𝑡 = 𝐾𝑒 𝐴̂𝑡𝑒−𝐴𝑡                                ( 1.33 ) 

where K is a constant matrix that commutes with Â. Note that the core filter in the 

resulting system differs from the target filter only in the center frequency and quality 

factor, 𝐴 and 𝐴̂ should share the same matrix format and be different in some entries. 

Based on the above constraints, one possible formation of 𝐴 and 𝐴̂ is: 
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𝐴 = [
𝑎11 𝑎12

−𝑎12 𝑎11
],   𝐴̂ = [

𝑎11̂ 𝑎12̂

−𝑎12̂ 𝑎11̂
]  ( 1.34 ) 

where all the entries are real, the diagonal entries are identical and the off-diagonal 

entries are opposite in sign. It could then be derived with the Cayley-Hamilton theorem:  

𝑒𝐴𝑡 = 𝑒𝑎11𝑡 [
cos (𝑎12𝑡) sin (𝑎12𝑡)
−sin (𝑎12𝑡) cos (𝑎12𝑡)

] = 𝑒𝑎11𝑡Φ(𝑎12𝑡)   ( 1.35 ) 

where Φ(Ω) = [
cos (Ω) sin (Ω)
−sin (Ω) cos (Ω)

] . Note that function Φ( )  has some interesting 

properties: 

Φ(𝜃1) Φ(𝜃2) =  Φ(𝜃2)Φ(𝜃1) = Φ(𝜃1 + 𝜃2)                  ( 1.36 ) 

 Φ−1(𝜃) = Φ𝑇(𝜃) = Φ(−𝜃) 

Accordingly, the transformation matrix defined in eqn. (1.33) is derived as: 

𝑀(𝑡) = 𝐾𝑒(𝑎11̂−𝑎11)𝑡 |
cos ((𝑎12 − 𝑎12̂)𝑡) sin ((𝑎12 − 𝑎12̂)𝑡)
−sin ((𝑎12 − 𝑎12̂)𝑡) cos ((𝑎12 − 𝑎12̂)𝑡)

| 

                                   = 𝐾𝑒(𝑎11̂−𝑎11)𝑡Φ((𝑎12 −𝑎12̂))                                                            ( 1.37 )                                                                  

And a possible choice for 𝐾 is a unitary matrix in the same format as A: 

𝐾 = |
cos (𝜃𝐾) sin (𝜃𝐾)
−sin (𝜃𝐾) cos (𝜃𝐾)

| = Φ(𝜃𝐾)                            ( 1.38 ) 

Therefore, 

𝑀(𝑡) = 𝑒(𝑎11̂−𝑎11)𝑡 |
cos ((𝑎12 − 𝑎12̂)𝑡 + 𝜃𝐾) sin ((𝑎12 − 𝑎12̂)𝑡 + 𝜃𝐾)
sin ((𝑎12 − 𝑎12̂)𝑡 + 𝜃𝐾) cos ((𝑎12 − 𝑎12̂)𝑡 + 𝜃𝐾)

| ( 1.39 ) 

To minimize clutter in the mathematics, assume 𝑎11̂ = 𝑎11, 𝜃𝐾 = 0 and define 𝑎12 −

𝑎12̂ = 𝑤𝑀. Eqn. (1.39) is simplified to yield 

𝑀(𝑡) = |
cos (𝑤𝑀𝑡) sin (𝑤𝑀𝑡)
−sin (𝑤𝑀𝑡) cos (𝑤𝑀𝑡)

| = Φ(𝑤𝑀𝑡)                  ( 1.40 ) 
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Applying 𝑀(𝑡) to the transformation defined in eqn. (1.31), the synchronous filtering 

system is now specified by a new set of matrices: 

𝐴̂ = 𝑀(𝑡)𝐴𝑀−1(𝑡) + 𝑀̇(𝑡)𝑀−1(𝑡) = Φ(𝑤𝑀𝑡)𝐴Φ−1(𝑤𝑀𝑡) + Φ̇(𝑤𝑀𝑡)Φ−1(𝑤𝑀𝑡) 

    = 𝐴 + 𝑤𝑀 [
−sin (𝑤𝑀𝑡) cos (𝑤𝑀𝑡)
−cos (𝑤𝑀𝑡) −sin (𝑤𝑀𝑡)

] [
cos (𝑤𝑀𝑡) −sin (𝑤𝑀𝑡)
sin (𝑤𝑀𝑡) cos (𝑤𝑀𝑡)

] 

= [
𝑎11 𝑎12

−𝑎12 𝑎11
] + [

0 𝑤𝑀

−𝑤𝑀 0
] = [

𝑎11 𝑎12 + 𝑤𝑀

−(𝑎12 + 𝑤𝑀) 𝑎11
]                      ( 1.41a ) 

𝑔̅(𝑡) = 𝑀(𝑡)𝑏̅ = |
cos (𝑤𝑀𝑡) sin (𝑤𝑀𝑡)
−sin (𝑤𝑀𝑡) cos (𝑤𝑀𝑡)

| |
𝑏1

𝑏2
| = 𝑏0 |

sin (𝑤𝑀𝑡 + 𝛽)
cos (𝑤𝑀𝑡 + 𝛽)

| 

where  𝑏0 = √𝑏1
2 + 𝑏2

2
, 𝛽 = 𝑡𝑎𝑛−1(𝑏1/𝑏2);                                ( 1.41b )                               

ℎ̅𝑇 = 𝑐̅𝑇𝑀−1(𝑡) = |𝑐1 𝑐2| |
cos (𝑤𝑀𝑡) −sin (𝑤𝑀𝑡)
sin (𝑤𝑀𝑡) cos (𝑤𝑀𝑡)

| 

        = 𝑐0|sin (𝑤𝑀𝑡 + 𝛼) cos (𝑤𝑀𝑡 + 𝛼)|. 

where  𝑐0 = √𝑐1
2 + 𝑐2

2, 𝛼 = 𝑡𝑎𝑛−1(𝑐1/𝑐2)                                                     ( 1.41c )                

To prove that the derived system and the target filter have same zero input 

response, we reproduce the expression for zero input response of the target filter:       

    𝑦𝑍𝐼(t) = c̅T𝜙(𝑡)𝑥̅(0),   where 𝜙(𝑡) = 𝑒𝐴𝑡   ( 1.42 )                                                                      

Using the property 𝑀−1(t)M(t) = I, rewrite eqn. (1.42) as: 

𝑦𝑍𝐼(t) = c̅T𝑀−1(t)M(t)𝜙(𝑡)𝑀−1(0)M(0)𝑥̅(0) = ℎ̅𝑇(𝑡)( M(t)𝜙(𝑡)𝑀−1(0))𝑤̅(0) 

 ( 1.43 ) 

Note that M(t) = 𝐾𝑒 𝐴̂𝑡𝑒−𝐴𝑡 , the three matrices commute and M(0) = 𝐾, so 

 𝑒 𝐴̂𝑡 = M(t)𝑒𝐴𝑡𝐾−1 = M(t)𝑒𝐴𝑡𝑀−1(0)        ( 1.44 ) 

Therefore, the zero input response of the synchronous filtering system is: 

𝑦̂𝑍𝐼(t) = ℎ̅𝑇(𝑡)𝑒 𝐴̂𝑡𝑤̅(0) = ℎ̅𝑇(𝑡)M(t)𝑒𝐴𝑡𝑀−1(0)𝑤̅(0) = 𝑦𝑍𝐼(t)        ( 1.45 ) 
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Eqn. (1.45) suggests that the zero input response of the synchronous filtering system is 

completely determined by the initial conditions of the core filter, and it is exactly the 

same as that of the target filter. Furthermore, the phase offset 𝛼 and 𝛽 of the modulating 

signals could be removed without affecting the system zero input response.  

FM Mode Synchronous Complex Filters 

 Complex filters, also called polyphase filters, are generally multiple input-

multiple output blocks widely used in RF circuits. Besides the bandpass filtering 

function, a complex filter is able to reject the image of an RF signal[14-17]. Due to the 

employment of complex-domain signal processing[18], it has the ability to distinguish a 

positive frequency component from its negative counterpart by attenuating one of them 

to a negligible level when both are present. Potential realizations for a monolithic 

complex filter are passive RC networks or active networks. Passive RC complex filters 

have a high-image rejection ratio but limited selectivity, which means they suffer from 

strong adjacent channel interference, hence requiring extra filtering[14]. Although active 

complex filters can achieve both good adjacent channel interference rejection and image 

rejection, it’s extremely hard to find an acceptable monolithic realization for the transfer 

function of a very high-frequency very high-Q complex filter. Utilizing the derived 

model above, we develop in this section the state space model of a biquad high-

frequency high-Q complex filter in the FM mode synchronous filtering architecture[11]. 

One possible state space description of a second-order complex filter, given in 

eqn. (1.46), is almost identical to that of a second-order bandpass filter as defined by eqn. 

(1.30). Inspection of the state space models reveals that the intrinsic difference between 
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a standard biquad bandpass filter and a biquad complex filter is that their output is 

created via slightly different combinations of the state variables.   

|
x1̇

x2̇
| = |

−
w0

2Q
−wA

wA −
w0

2Q

| |
x1

x2
| +

w0

Q
|
1

−1
| u   ,           y =

1

2
|1 −1| |

x1

x2
|         ( 1.46 )                              

where w0  is the center frequency, Q is the quality factor, wA = √1 − (1/2Q)2w0.  

Suppose the equation set above represents a high-frequency high-Q factor complex filter. 

Note that the state matrix has the same format as matrix 𝐴 specified in eqn. (1.34): 

identical diagonal entries and opposite off-diagonal entries. It suggests that the state 

space transformation developed above could be applied to eqn. (1.46) to derive a system 

in the modulator-core filter-modulator architecture that is functionally equivalent to the 

target complex filter.  

To find out a proper transformation matrix 𝑀(𝑡), we need to define a proper state 

matrix, 𝐴̂, for the core filter in the derived system first. As the core filter is expected to 

have low center frequency and low Q factor so that the signal filtering does not have to 

take place in a high frequency band, it is natural to write 𝐴̂ in the same format as A but 

with different entry values, as eqn. (1.47). Constructing 𝐴̂ in this form also makes the 

implementation of the core filter straightforward, as will be shown in Chapter 3. 

𝐴̂ = ||
−

w0̂

2𝑄̂
−wÂ

wÂ −
w0̂

2𝑄̂

|| 

where w0̂ is the core filter center frequency,  Q̂ is the core filter quality factor  

𝑤𝐴̂ = √1 − (1/2𝑄̂)2𝑤0̂                                        ( 1.47 ) 



21 

 

As 𝐴̂  corresponds to a lower-frequency lower-Q core filter, wÂ < wA  and 𝑄̂ < 𝑄 . 

Assume the two filters have same bandwidth, then 
w0̂

𝑄̂
=

w0

Q
.  Define wA − wÂ = 𝑤𝑀, the 

transformation matrix 𝑀(𝑡) is derived as: 

  𝑀(𝑡) = [
cos (𝑤𝑀𝑡) sin (𝑤𝑀𝑡)
−sin (𝑤𝑀𝑡) cos (𝑤𝑀𝑡)

] = 𝛷(𝑤𝑀𝑡)                   ( 1.48 ) 

According to eqn. (1.41a), 

𝐴̂ = 𝑀(𝑡)𝐴𝑀−1(𝑡) + 𝑀̇(𝑡)𝑀−1(𝑡) = |
−𝑤0/2Q −wA

wA −𝑤0/2Q
| + |

0 𝑤𝑀

−𝑤𝑀 0
| 

   = |
−𝑤0/2Q −(wA − 𝑤𝑀)
wA − 𝑤𝑀 −𝑤0/2Q

|                                                                                 ( 1.49a ) 

𝑔̅(𝑡) = 𝑀(𝑡)𝑏̅ = (w0 Q⁄ ) [
cos(𝑤𝑀𝑡) sin(𝑤𝑀𝑡)

− sin(𝑤𝑀𝑡) cos(𝑤𝑀𝑡)
] |

1
−1

| 

         = (w0 Q⁄ ) |
cos(𝑤𝑀𝑡) − sin(𝑤𝑀𝑡)

− sin(𝑤𝑀𝑡) − cos(𝑤𝑀𝑡)
|                                                                                   ( 1.49b )  

ℎ̅𝑇 = 𝑐̅𝑇𝑀−1(𝑡) =  (
1

2
) |1 −1| [

cos(𝑤𝑀𝑡) − sin(𝑤𝑀𝑡)

sin(𝑤𝑀𝑡) cos(𝑤𝑀𝑡)
] 

      = (1/2)|cos(𝑤𝑀𝑡) − sin (𝑤𝑀𝑡) −sin(𝑤𝑀𝑡) − cos (𝑤𝑀𝑡)|                                   ( 1.49c )                                           

Now, simplify 𝑔̅(𝑡)  and ℎ̅𝑇  and formulate the derived state-space equations in eqn. 

(1.50), where the phase offset of 
3𝜋

4
 could be removed without affecting the system 

performance. 

|
𝑤1̇

𝑤2̇
| = ||

−
𝑤0̂

2𝑄̂
−(𝑤𝐴 − 𝑤𝑀)

𝑤𝐴 − 𝑤𝑀 −
𝑤0̂

2𝑄̂

|| |
𝑤1

𝑤2
| + √2(𝑤0 𝑄⁄ ) |

𝑠𝑖𝑛 (𝑤𝑀𝑡 +
3𝜋

4
)

𝑐𝑜𝑠 (𝑤𝑀𝑡 +
3𝜋

4
)

| 𝑢 

       𝑦 = √2 |𝑠𝑖𝑛 (𝑤𝑀𝑡 +
3𝜋

4
) 𝑐𝑜𝑠 (𝑤𝑀𝑡 +

3𝜋

4
)| |

𝑤1

𝑤2
|                                  ( 1.50 )                                   

The physical meaning of the above equation set is obvious: the state matrix 𝐴̂ specifies 

the core filter; vectors 𝑔̅(𝑡) and ℎ̅𝑇, respectively, represent the front end and back end 

modulators with modulating frequency approximately equals to the difference of w0 and 
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𝑤0̂. Because 𝑀(𝑡) is consistently non-singular, the state space transformation from eqn. 

(1.46) to eqn. (1.50) is linear, and the derived synchronous filtering system is 

functionally equivalent to the target high-frequency high-Q complex filter. Due to the 

introduction of both end modulators, the core filter works in a comparatively lower 

frequency range so the required quality factor and center frequency are accordingly 

scaled down, and the high frequency limitations of the active components have less 

influence on the core filter’s performance. 

In the system specified by eqn. (1.50), the modulating frequency 𝑤𝑀 is lower 

than wA, so the front end modulation is subheterodyne. It has been proven in [11] that 

the front end modulation could also be superheterodyne. To develop the corresponding 

system model, matrix 𝑇 was introduced to generate the transpose of 𝐴̂.  

𝑇 = [
0 1
1 0

]                   ( 1.51 ) 

Note that this matrix has some interesting properties: 

𝑇−1 = 𝑇  𝑎𝑛𝑑   𝑇−1𝑇 = 𝑇𝑇−1 = 𝐼                           ( 1.52 ) 

Moreover,  

𝑇𝐴̂𝑇 = 𝑇𝐴̂𝑇−1 + 𝑇̇𝑇−1 = 𝐴̂𝑇                                    ( 1.53 ) 

Suppose that 𝐴̂𝑇 specifies the lower-Q lower-frequency core filter in the synchronous 

system, then 

𝐴̂𝑇 = |
−w0̂ 2𝑄̂⁄ −wÂ

wÂ −w0̂ 2𝑄̂⁄
| = |

−𝑤0/2Q (wA − 𝑤𝑀)
−(𝑤𝐴 − wM) −𝑤0/2Q

| → 𝑤𝑀 = 𝑤𝐴 + 𝑤𝐴̂   ( 1.54 ) 

Therefore, modulating frequency 𝑤𝑀 in the new system approximately equals the sum 

of the center frequencies of the target filter and the system’s core filter, which suggests 

superheterodyne front end modulation in the resulting synchronous filter.  
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Define matrices and state variable vector that specify the superheterodyne-mode 

system as 𝐴̂𝑇 , 𝑔𝑇̅̅̅̅ (𝑡) , ℎ𝑇
̅̅ ̅𝑇

and 𝑣̅  to distinguish from 𝐴̂ , 𝑔̅(𝑡) , ℎ̅𝑇(𝑡)  and 𝑤̅  in the 

subheterodyne-mode system. According to eqn. (1.53), the generic formulation for the 

former set could be easily derived from the latter, using the 𝑇 in eqn. (1.51) as the 

transformation matrix. Specifically, 

𝐴̂𝑇 = 𝐴̂
𝑇

= 𝑇𝐴̂𝑇−1 + 𝑇̇𝑇−1,   𝑔𝑇̅̅̅̅ (𝑡) = 𝑇𝑔̅(𝑡),   ℎ𝑇
̅̅̅̅ 𝑇

= ℎ̅
𝑇
(𝑡)𝑇−1 = ℎ̅

𝑇
(𝑡)𝑇, 𝑣̅  = T𝑤̅     

( 1.55 ) 

Substitute the expression for 𝐴̂, 𝑔̅(𝑡), ℎ̅𝑇(𝑡) given in eqn. (1.41a) to eqn. (1.41c): 

𝐴̂𝑇 = [
𝑎11 −(𝑎12 + 𝑤𝑀)

(𝑎12 + 𝑤𝑀) 𝑎11
]                                       ( 1.56a )                        

𝑔𝑇̅̅̅̅ (𝑡) = [
0 1
1 0

] |
𝑐𝑜𝑠 (𝑤𝑀𝑡) 𝑠𝑖𝑛 (𝑤𝑀𝑡)
−𝑠𝑖𝑛 (𝑤𝑀𝑡) 𝑐𝑜𝑠 (𝑤𝑀𝑡)

| |
𝑏1

𝑏2
| = 𝑏0 |

𝑐𝑜𝑠 (𝑤𝑀𝑡 + 𝛽)
𝑠𝑖𝑛 (𝑤𝑀𝑡 + 𝛽)

|, 

where  𝑏0 = √𝑏1
2 + 𝑏2

2
, 𝛽 = 𝑡𝑎𝑛−1(

𝑏1

𝑏2
).                                            ( 1.56b )                                     

ℎ̅𝑇 = |𝑐1 𝑐2| |
cos (𝑤𝑀𝑡) −sin (𝑤𝑀𝑡)
sin (𝑤𝑀𝑡)    cos (𝑤𝑀𝑡)

| [
0 1
1 0

] 

= 𝑐0|cos (𝑤𝑀𝑡 + 𝛼) sin (𝑤𝑀𝑡 + 𝛼)| 

where  𝑐0 = √𝑐1
2 + 𝑐2

2, 𝛼 = 𝑡𝑎𝑛−1(𝑐1/𝑐2) .                                                                 ( 1.56c )                                    

Referring to the state space representation of the target complex filter in eqn. (1.46), the 

state space model of the superheterodyne FM-mode synchronous complex filter is 

derived as eqn. (1.57), by replacing 𝑎11, 𝑎12, 𝑏1, 𝑏2, 𝑐1, 𝑐2 in eqn. (1.56a) to eqn. (1.56c) 

with −𝑤0/2Q, −wA, 1, -1, 1, -1, respectively. 
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|
𝑣1̇

𝑣2̇
| = |

−𝑤0/2Q −(𝑤𝑀 − wA)
(𝑤𝑀 − wA) −𝑤0/2Q

| |
𝑣1

𝑣2
| + √2(w0 Q⁄ ) |

cos (𝑤𝑀𝑡 +
3𝜋

4
)

sin (𝑤𝑀𝑡 +
3𝜋

4
)
| 𝑢        

( 1.57 ) 

              y = √2 |cos (𝑤𝑀𝑡 +
3𝜋

4
) sin (𝑤𝑀𝑡 +

3𝜋

4
)| |

𝑣1

𝑣2
|,   where 𝑤𝑀 = 𝑤𝐴 + 𝑤𝐴̂. 

Similar to the subheterodyne system, the phase offset of 
3π

4
 in the modulating signals 

could be removed without affecting the system performance. 

 AM Mode Synchronous Filtering 

Consider a second-order system and its transformed version given in eqn. (1.58):  

    ẋ̅ = Ax̅ + bu     →       𝑤̇̅ = 𝐴̂𝑤̅ + 𝑔̅(𝑡)𝑢 

y = c̅Tx̅ + du    →        𝑦 = ℎ̅
𝑇
𝑤̅ + 𝑑𝑢 

where A = |
𝑎11 𝑎12

𝑎21 𝑎22
| , b = |

b1

b2
| , c̅T = |𝑐1 𝑐2|, d = 0 are all constant matrices and                  

Â = M(t)AM−1(t) + Ṁ(t)M−1(t),  g̅(t) = M(t)b̅,  h̅T = c̅TM−1(t)     ( 1.58 ) 

With the transformation matrix in eqn. (1.59) [19], we derive Â, g̅(t) and h̅T as 

eqn. (1.60):  

M(t) = |
p1(t) 0

0 p2(t)
|,  pi(t) is either always positive or always negative 

( 1.59 ) 

Â = |
𝑎11 +

𝑝1̇(𝑡)

𝑝1(𝑡)

p1(t)

p2(t)
𝑎12

p2(t)

p1(t)
𝑎21 𝑎22 +

𝑝2̇(𝑡)

𝑝2(𝑡)

|,  g̅(t) = |
𝑝1(t)b1

𝑝2(t)b2
|,   h̅T = |𝑐1/𝑝1(t) 𝑐2/𝑝2(t)| ( 1.60 ) 

When 𝑝1(t) = 𝑝2(t) = p(t), the above matrices are simplified as: 

Â = |
𝑎11 +

𝑝̇(𝑡)

𝑝(𝑡)
𝑎12

𝑎21 𝑎22 +
𝑝̇(𝑡)

𝑝(𝑡)

|,   g̅(t) = 𝑝(𝑡) |
b1

b2
|,    h̅T =

1

𝑝(𝑡)
|𝑐1 𝑐2|    ( 1.61)     



25 

 

In the resulting system, the front end stage modulates the input signal by 

𝑐1𝑝1(𝑡), 𝑐2𝑝2(𝑡); the modulation results are then fed through a time-varying core filter 

specified by Â; to draw the external equivalence between this system and the original 

time-invariant system, another block that scales the core filter output with 
𝑐1

𝑝1(t)
,

𝑐2

𝑝2(t)
 has 

to be included. As the derived system performs amplitude modulation at both ends to 

match the time-varying properties of the core filter, it could be taken as an AM mode 

synchronous filter. Such a technique finds prevalent application in companding 

(compressing and expanding) systems to improve signal integrity[20, 21], which have 

been used for many years in transmission and audio magnetic recording[22, 23]. A 

companding system typically consists of compressing the dynamic range of a signal to 

be transmitted or recorded, before noise and/or distortion in the transmission or 

recording medium gets a chance to corrupt it. At the receiving or playback end, the 

dynamic range is expanded again, so the output SNR could get improved. The need for 

companding in signal processing and its merit is now briefly introduced as follows[19]. 

Suppose the output of an analog signal processor consists of three types of components: 

useful signal, noise (internally generated noise and external interference) and distortion 

(harmonics, intermodulation, etc.). Denote the rms value of the signal, the noise and the 

distortion with S, N and D respectively. For a linear system, S is proportional to the input 

rms value, N is independent of the input. For large enough input signals, nonlinearities 

of the system components would result in output distortion, and the output signal might 

not be proportional to the input anymore, as shown in Fig. 1.6(a). For demonstration 

simplicity, we utilize the ratio of signal to noise-plus-distortion in decibel, given by 
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Fig.1.6(b), to represent the system input dynamic range: denote the minimum acceptable 

(
𝑆

𝑁+𝐷
)𝑑𝐵 with which the input signal could be successfully processed as (

𝑆

𝑁+𝐷
)𝑎𝑐𝑐𝑒𝑝𝑡,𝑑𝐵, 

then the usable dynamic range of the input signals is the quantity shown as DR in the 

same figure.  

             
(a)           (b) 

     

Figure 1.6 (a) Three typical types of output components from a conventional signal processor: 

signal (S), noise (N), distortion (D), and noise-plus-distortion (N+D), represented as power in 

dB. (b) S/(N+D) in dB and the usable dynamic range (DR) for a specified minimum acceptable 

S/(N+D). 

 

 To widen the system’s dynamic range, assuming the maximum signal level 

cannot be raised due to the limited supply voltage, then the noise floor should be reduced 

below the level shown in Fig. 1.6(a). This gives rise to the S/(N+D) curve in the solid line 

in Fig. 1.7, where the broken line is a replica of the curve in Fig. 1.6(b). Apparently, the 

new usable dynamic range is wider than the original one due to the lowered noise floor. 

However, lowering the noise floor usually causes some undesired issues for an integrated 

signal processor in practice. Take for instance a system where the main noise source of 

interest is thermal noise which is contributed by resistors or transconductors that along 

with some capacitors determine the critical frequencies of the filter. As the mean square 

value of the noise is inversely proportional to the total capacitance, large capacitances 
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should be used to keep the system noise low, which results in a much larger chip area. 

Moreover, as the associated transconductantors need to be scaled up by the same factor 

in order to maintain the system’s original frequency response, the system dynamic power 

dissipation would increase by the same factor[24-26]. Note that the solid curve in Fig. 

1.7 displays some amount of wasted value around its peak compared to the broken-line 

curve, which is resulted from the lowered system noise floor.  

 
Figure 1.7   Solid line: the raised 

S

N+D
 by lowering the system noise floor; broken line: the 

original system 
S

N+D
. The dynamic range gets widened from DR to DR’. 

 

 The companding technique greatly relaxes the above limitations by operating on 

the dynamic range in a way shown in Fig. 1.8(a), where the center portion represents the 

level of the signal at a point inside the signal processor. It is also assumed that the noise 

generated in the processor itself is much higher than the input noise and is the dominant 

noise source, which is a very practical assumption for a high-Q design[27-29].  As the 

overload level inside a signal processor can be lower than the external overload level in 

some designs, the companded input signal leads to a flattened S/(N+D) curve, shown by 

the solid line in Fig. 1.8(b). The corresponding dynamic range, DR” is much larger than 

the original dynamic range DR; compared to the solid curve in Fig. 1.7 which is achieved 
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by lowering the system noise level, the S/(N+D) curve resulted by companding has lower 

peak value while yields a greatly enlarged usable dynamic range. 

The input/output signal and its companded version could either be of the same 

type (e.g., both are voltage signals) or of different types. An interesting and popular 

application of the latter case is some current-mode companding filtering systems, where 

the input and output signals are current, while the core filter processes voltages signals 

across its capacitors. In these systems, the overload levels of input/output signals are not 

directly related to the supply-imposed voltage limitations, and the input/output dynamic 

ranges can be very different from what’s attainable within the filter. Fig. 1.8 depicts the 

distinction between the original signal and its companded versions, as well as the 

associated dynamic range. When the companding technique is applied to a filtering 

system, the core filter’s signal levels may be no longer proportional to the input, so the 

system is internally nonlinear, however, its overall input-output behavior remains linear 

if the system is implemented with appropriately synchronized circuits. Companding is 

accomplished by monitoring signal(s), either inside or outside the signal processor, and 

then accordingly modifying some gain-related quantities. Based on the gain controlling 

signals utilized, there are two main types of companding systems: instantaneous and 

syllabic. If the value of the gain-related quantities depends only on the value of signals 

in the signal path at the same instant, the companding action is called instantaneous. If a 

measure of the average strength of a signal, such as its rms value or envelope, is used as 

a gain control, then the resulting companding is syllabic. Syllabic companding was first 

used in speech transmission[20, 21], and it also finds application in audio recording and 

reproduction[22, 23]. It typically relies on an appropriately designed dynamical system 
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to evaluate the control signal’s average strength and adjust the specific gain to compand 

related signals in the system. 

         
        (a)                                                                                     (b) 

Figure 1.8 (a) Schematic representation of companding. (b) Solid line: S/(N+D) curve of a 

companding system, broken line: S/(N+D) curve without companding.  

 

 

Figure 1.9 A companding system with the core signal processor being internally voltage-limited 

while having current signals as input and output. Typically, the system has an external dynamic 

range much larger than the dynamic range of the signal processor. 

 

  

 Combinational Synchronous Filtering 

The framework of synchronous filtering systems allows us to go beyond what 

has already been developed[11]. Another transformation matrix, 𝑀𝑛𝑒𝑤(𝑡) , is now 

defined as the product of 𝑀(𝑡) and a time-varying scalar, 𝑝(𝑡). 

𝑀𝑛𝑒𝑤(𝑡) = 𝑝(𝑡)𝑀(𝑡) = 𝑝(𝑡)Φ(𝑤𝑀𝑡 + 𝜃𝐾)   ( 1.62 ) 
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where 𝑝(𝑡)  has to be a strictly positive time function to guarantee 𝑀𝑛𝑒𝑤(𝑡)  is 

nonsingular. Transforming the state matrix with the 𝑀𝑛𝑒𝑤(𝑡), we have 

             𝐴̂𝑛𝑒𝑤(𝑡) = 𝑝(𝑡)𝑀(𝑡)𝐴𝑀−1(𝑡)
1

𝑝(𝑡)
+

𝑑

𝑑𝑡
[𝑝(𝑡)𝑀(𝑡)]𝑀−1(𝑡)

1

𝑝(𝑡)
    

        = 𝑀(𝑡)𝐴𝑀−1 + [𝑝̇(𝑡)𝑀(𝑡) + 𝑝(𝑡)𝑀̇(𝑡)]𝑀−1(𝑡)
1

𝑝(𝑡)
 

                                = 𝑀(𝑡)𝐴𝑀−1 + 𝑀̇(𝑡)𝑀−1(𝑡) +
𝑝̇(𝑡)

𝑝(𝑡)
𝐼  

                      = 𝐴̂ +
𝑝̇(𝑡)

𝑝(𝑡)
𝐼                                                                               ( 1.63 ) 

 

The complete system is now represented as: 

𝑑

𝑑𝑡
𝑤̅𝑛𝑒𝑤 = 𝐴̂𝑛𝑒𝑤(𝑡)𝑤̅𝑛𝑒𝑤 + 𝐺𝑛𝑒𝑤(𝑡)𝑢̅             ( 1.64 ) 

                                              𝑦 = 𝐻𝑛𝑒𝑤(𝑡)𝑤̅𝑛𝑒𝑤 + 𝐷𝑢̅     

where  𝐺𝑛𝑒𝑤(𝑡) = 𝑝(𝑡)𝐺(𝑡),  𝐻𝑛𝑒𝑤(𝑡) =
1

𝑝(𝑡)
𝐻(𝑡),  𝑤̅𝑛𝑒𝑤 = 𝑝(𝑡)𝑤̅. 

The system specified by eqn. (1.64) actually adds to the FM-mode synchronous filter a 

network that performs signal companding, represented by 𝑝(𝑡) in 𝐺𝑛𝑒𝑤(𝑡) and 
1

𝑝(𝑡)
 in 

𝐻𝑛𝑒𝑤(𝑡). So the front end and back end stages of the system perform both amplitude 

modulation and frequency modulation. In practice, 𝑝(𝑡) could be adjusted continuously 

to implement some automatic gain control that helps maximize the system’s dynamic 

range. It has been reported in literature[30, 31] that one issue about the time-varying gain 

is that it might change the system signals and produce distortion when the core filtering 

block is involved in the companding process. Inspection reveals that the introduced time-

varying diagonal terms in the state matrix, 
𝑝̇(𝑡)

𝑝(𝑡)
 , amount to a time-varying Q factor of the 

system core filter. Electronically tuning the Q factor in most integrated filters is 

relatively easy, so this change does not pose a challenging implementation problem. The 

benefits resulting from the companding nature of the system will almost certainly 



31 

 

outweigh the cost of the increased circuit complexity. A conceptual representation of a 

companding synchronous filtering system is given in Fig. 1.10. 

 
Figure 1.10 Block diagram for a companding synchronous filter system. 

 

 Taking the above second-order subheterodyne synchronous filter for instance, 

the specific expression of the matrices for the new model is derived as below: 

𝐴̂𝑛𝑒𝑤(𝑡) = |
−

𝑤0

2Q
+

𝑝̇(𝑡)

𝑝(𝑡)
−(𝑤A − wM)

(𝑤A − wM) −
𝑤0

2Q
+

𝑝̇(𝑡)

𝑝(𝑡)

|                            ( 1.65a )                                            

𝑔̅𝑛𝑒𝑤(𝑡) = 𝑏0𝑝(𝑡) |
sin (𝑤𝑀𝑡 + 𝜃𝐾 + 𝛽)
cos (𝑤𝑀𝑡 + 𝜃𝐾 + 𝛽)

| 

where  𝑏0 = √𝑏1
2 + 𝑏2

2
, 𝛽 = 𝑡𝑎𝑛−1(𝑏1/𝑏2);                                                                      ( 1.65b )  

ℎ̅𝑛𝑒𝑤
𝑇 (𝑡) = 𝑐0

1

𝑝(𝑡)
|sin (𝑤𝑀𝑡 + 𝜃𝐾 + 𝛼) cos (𝑤𝑀𝑡 + 𝜃𝐾 + 𝛼)|                                                   

where  𝑐0 = √𝑐1
2 + 𝑐2

2, 𝛼 = 𝑡𝑎𝑛−1(𝑐1/𝑐2).                                                      ( 1.65c ) 

 Overview of this Dissertation  

 In Chapter 1 we have given a brief introduction to the architecture and 

mathematical model of a few synchronous filtering systems. The objective of our 

research is to search for effective approaches or architectures related to synchronous 

filtering to improve the noise performance of analog filters. The subjects of our research 
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are a biquad bandpass filter and a biquad complex filter, the state space descriptions of 

which are given by eqn. (1.30) and eqn. (1.46) respectively.  

In Chapter 2, log-domain filters and a particular technique to design log filters 

are introduced. A log-domain biquad bandpass filter is then designed and tested, based 

on which an AM mode synchronous bandpass filter is proposed and modified. The 

ideally modified filter, according to mathematical analysis, has superior capability in 

suppressing the input noise while maintaining the useful input components. It leads to 

the creation of a feedback filtering system capable of producing signals very similar to 

what is produced by the ideally modified filter under certain circumstances. What is 

more important, the feedback system provides a foundation for the development of a 

novel high noise performance feedback filter with tunable Q factor as will be articulated 

in Chapter 5. 

Chapter 3 discusses a log-domain biquad complex filter and related synchronous 

filtering systems. Following a detailed implementation process, we verify the input-

output function of the resulting FM mode static synchronous complex filter. We then 

transform it into a dynamic synchronous system with time-varying core filter center 

frequency and modulating frequencies. Two specific patterns for the center frequency 

variation are introduced and tested, to show that the overall dynamic system externally 

maintains the function of a standard complex filter. 

In Chapter 4, after a brief review on the developed systems in previous chapters, 

we test their performance in dealing with the input noise and the injected in-filter noise, 

to explore approaches or architectures that might lead to the design of a filter with 

improved noise performance.  



33 

 

Inspired by some discoveries made in Chapter 4, we devised a novel method of 

utilizing feedback signals to tune the Q factor of a bandpass filter, which could be used 

to alter a low-Q bandpass filter into a much sharper one that has superior immunity to 

the in-filter noise. Mathematical analysis is provided to explain the Q-factor tuning 

mechanism. In Chapter 5, we detail the development of such a feedback filter, test its 

function and noise performance, and give a transistor-level design solution for a log-

domain feedback complex filtering system. Important research discoveries are 

summarized in Chapter 6, followed by suggestions regarding future work that could be 

done.    
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 AM mode-synchronous-filtering Related Bandpass Filters  

This chapter focuses on the transistor-level realization of an AM mode 

synchronous bandpass filter. A particular class of circuits known as log-domain filters 

are introduced first, as their unique features make them a good implementation solution 

for synchronous filters. A classic realization technique is then articulated, followed by a 

specific design case of applying the synchronous filtering approach to a biquad log-

domain bandpass filter. Moreover, a feedback filtering system will be derived from the 

resulting synchronous filter.     

 Introduction to Log-domain Filters 

The idea of ‘log-domain filtering’ was initially proposed by Adams in 1979[32]. 

It was motivated by the need from electronic music applications for filters that have 

tunable gain and cut-off or center frequency, wider tuning range and lower signal 

distortion. Adams claimed that a linear transfer function could be implemented by an 

internally nonlinear system with properly designed log-domain circuits. In general, a log 

filter takes a current signal as input and converts it into a voltage signal, which is its 

natural logarithm version, for the following processing. The processed voltage signal 

will be converted back into current signal so that the final output is a linearly filtered 

version of input. Adams’ log-filter is illustrated in Fig. 2.1 and could be divided into 

three parts: front end, back end converting circuit and the filtering stage. Assuming ideal 

components are used in the filter implementation, we formulate the following equations: 

Vi =
1

k
 ln (

Iin

Is
) ,    C

dVC

dt
= Ic = Ise

k(Vi−Vc) − I0,   Iout = Ise
k(VC+VD3) = I0e

kVC   ( 2.1 ) 
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where  Is is the reverse bias saturation current of an ideal diode,and k is the inverse of 

thermal voltage Vt  of a PN junction. Based on the equations above, Iout  and Iin  are 

correlated:                          

dIout

dt
+

kI0

C
Iout =

kI0

C
Iin                                        ( 2.2 )                                                               

Eqn. (2.2) indicates that the system in Fig. 2.1 is a one-pole low-pass filter with unity 

low-frequency gain and a cutoff frequency of w0 = kI0 C⁄ . The transfer function is 

derived as:  

Y(s) =
Iout(s)

Iin (s)
=

w0

S+w0
                                          ( 2.3 )                                                               

 
Figure 2.1 Adam's basic log-domain filter. 

 

Another perspective on the ‘log-filter’ is to picture the input as an ac signal riding on a 

constant DC current I0. In this sense, diode  D2 contributes a resistance equal to the 

dynamic impedance of a diode with I0 flowing in it. Then the log-filter is equivalent to 

a first-order RC filter with R = Vt/I0  and the cutoff frequency w0 = I0/VtC. Adams 

therefore suggested that any active RC filter should have a log-domain counterpart where 

all the original resistors are replaced with an appropriate network of diodes and current 

sources.  
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Features of a log-domain filter include convenient tunability, accurate wide 

tuning range and current operational mode. In Adams’ low pass filter, the cutoff 

frequency is proportional to dc current I0, so it could be tuned with great ease by simply 

adjusting the magnitude of the current source. The relation between I0 and w0 is claimed 

to hold accurate over a range wider than three decades for I0 in the literature [32]. On 

the other hand, since the log filter incorporates an electrical network designed upon the 

constitutive law for a forward-biased diode and Kirchhoff’s current law (KCL), it’s 

categorized as a current-mode filter. Therefore, it provides a potential solution to the 

high frequency limitation of many voltage-mode filters. A major shortcoming of Adams’ 

design is the use of op-amps in signal processing such as logging, level shifting and 

exponentiation. Due to non-idealities of the op-amps, such as input offset voltage, bias 

current, input noise, etc., the filter would face serious performance degradation in 

practice. Another drawback of the design approach proposed by Adams is that it yields 

distortion when applied to the realization of filters of second or higher order. The defect 

manifests itself as some unwanted term(s) in the differential equation that specifies the 

implemented filter. 

 Implementation Technique  

Inspired by Adam’s log-domain filtering idea, Frey proposed in 1993[33] a 

distortionless synthesis procedure which provides an elegant guideline for the generation 

of many modern filter topologies. The technique uses a particular state-space 

representation derived from the system transfer function. After applying an exponential 

mapping and giving physical meaning for the state variables, the dynamical equations 

become explicitly implementable as each term is associated with some parameter in an 
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electrical network. To make this point clearer, the specific mathematical operation and 

a design example related to the synthesis technique will be introduced. Start with the 

generic dynamical equations:  

ẋ̅ = A x̅ + bu,      y = c̅Tx̅ + du                                        ( 2.4 )                                       

where x̅ = (x1, x2, … , xn)
T is the state vector, u is the input scalar and y the output scalar; 

A is an  n × n matrix, b is an n × 1 vector, c̅T is a 1 × n vector, and d is a scalar. Next, 

define the change of variables using exponential mapping: 

                  xi = ekVi   ,  u = Idce
kV0                                           ( 2.5 )                                                           

where k is a positive real number, Vi is a nodal voltage associated with the state variable 

xi, and Idc is the value for a nominal dc current. Substitute the specific expression of x̅ 

and u back into the state equation, then multiply both sides with (Ci/k)e−kVi : 

 Ci

dVi

dt
= [∑

Ci

k

n

j=1

Aije
k(Vj−Vi)] +

Ci

k
biIdce

k(V0−Vi) 

= [∑ Iaij
n
j=1 ek(Vj−Vi)] + Ibie

k(V0−Vi)                                 ( 2.6 )                        

where 1 ≤ i ≤ n, constants Ci are arbitrary, Aij denotes the entry in the ith row and the 

jth column of matrix A,bi is the ith element of vector b, Iaij =
Ci

k
Aij, Ibi =

Ci

k
biIdc. The 

physical meaning of the above equation set is explicit if we take it as a series of nodal 

equations associated with the electrical parameters in a circuit. Defining Vi as the ith 

node voltage, the left-hand side could be interpreted as the current flowing into a 

capacitor Ci, which has one end grounded and the other tied to the ith node. This current 

is contributed by the variation of the capacitor variation. The right-hand side could be 

taken as the sum of currents entering or leaving the same capacitor, contributed by 
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surrounding circuitry. Using the same mapping method, the system input-output 

equation is rewritten as:          

     𝑌 = (∑ 𝑐𝑖̅𝑒
𝑘𝑉𝑖𝑛

𝑖=1 ) + 𝑑𝐼𝑑𝑐𝑒
𝑘𝑉0                                                  ( 2.7 ) 

where c̅i denotes the ith element in c̅T. Due to the introduced exponential mapping, it is 

now possible to implement a log filter with much less effort, using only current sources, 

capacitors and BJTs in active region or MOSFETs in subthreshold region.  

Take the implementation of a first-order, unity gain lowpass filter which is 

specified by the transfer function below for instance: 

 𝐻(𝑠) =
𝑤0

𝑠+𝑤0
                                                     ( 2.8 ) 

A possible set of dynamical equations that corresponds the transfer function is: 

𝑋̇ = −𝑤0𝑋 + 𝑤0𝑈,         𝑌 = 𝑋                                              ( 2.9 ) 

where X is the state-variable, U is the input signal, Y is the system output and w0 is the 

cutoff frequency of the filter. Apply the exponential mapping and define 

𝑋 = 𝐼𝑠 𝑒𝑥𝑝 (
𝑉1

𝑉𝑇
) = 𝑌 ,     𝑈 = 𝐼𝑠 𝑒𝑥𝑝 (

𝑉0

𝑉𝑇
)                         ( 2.10 ) 

Note in eqn. (2.9) the input vector U is strictly positive, which indicates that the input 

current has to be appropriately offset for the system to work as expected. Substitute the 

definition in eqn. (2.10) into the dynamical equations and multiply both sides with 
𝑉𝑇𝐶

𝑋
: 

𝐶𝑉𝑇̇ = −𝑤0𝐶𝑉𝑇 + 𝑤0𝐶𝑉𝑇 𝑒𝑥𝑝 (
𝑉0−𝑉1

𝑉𝑇
) = −𝐼0 + 𝐼𝑠 𝑒𝑥𝑝 (

𝑉𝑑𝑐+𝑉0−𝑉1

𝑉𝑇
)         ( 2.11 ) 

where I0 = w0CVT, Vdc = VTln (
 I0

 Is
). At this point, the system dynamical equations have 

been transformed into a form which is very straightforward to implement. Fig. 2.2 shows 

the resulting log filter. An unobvious issue in the design is the necessity of forcing a 
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proper operating point for the system so that small signals get processed as expected and 

the dc component in the output is predictable. In this case, the solution is to set the bias 

current of Q2 to be I0. By doing this, the dc level of the output should be the same as 

that of the input signal.  

  

Figure 2.2 A first-order low pass log filter with cutoff frequency 𝑤0 = 𝐼0 𝐶𝑉𝑇⁄ . 

 

Simulation was run in PSpice for design verification. As a prototype design, ideal 

components are used and the transistors are with β=10k so their base current is negligible. 

The particular filter designed is expected to have a cutoff frequency at 1kHz. Other 

related parameters are set up accordingly as: I0 = 500𝑢𝐴, 𝐶 = 3.084𝑢𝐹. Test results are 

shown below. The Bode plot verifies the filter’s low-frequency unity gain, cutoff 

frequency and roll-off slope rate. In the transient test, the input signal is a sine wave 

current:  Iin_os = 500𝑢𝐴 + 400𝑢𝐴 ∙ sin (2𝜋 ∙ 1000𝑡) . No distortion is observed in the 

output waveform at steady state, and the amplitude and phase change matches what is 

specified by the transfer function of a first-order low pass filter. 
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Figure 2.3  Bode plot of the log filter in Fig. 2.2. 

   
 

    
Figure 2.4 Input and output signals from the transient test. Upper graph: time-domain plots. 

Lower graph: Corresponding FFT spectra. 
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 A Biquad Log-domain Bandpass Filter 

 Circuit Realization 

As has been mentioned in Chapter 1, the state-space equation set below 

implements the transfer function of a standard second-order bandpass filter given by eqn. 

(2.13). 

|
x1̇

x2̇
| = |

−
w0

Q
−w0

w0 0
| |

x1

x2
| + |

w0

Q

0
| u ,  y = |1 0| |

x1

x2
|     ( 2.12 ) 

 H(s) =
Y(s)

U(s)
=

w0
Q

s

s2+
w0
Q

s+w0
2
                                              ( 2.13 ) 

where w0 is the center frequency,  σ =
w0

Q
 , and Q is the quality factor. According to the 

synthesis technique, an exponential mapping is first applied to the state equation set to 

transform it into a new form which is explicitly associated with a BJT transistor-level 

electrical network. Define the state variables as: 

𝑥1 = 𝐼𝑠 𝑒𝑥𝑝 (
𝑣1−𝑣𝐼𝑓𝑐

𝑣𝑡
) = 𝑦1 ,    𝑥2 = 𝐼𝑠 𝑒𝑥𝑝 (

𝑣2

𝑣𝑡
)                     ( 2.14 ) 

where v1  is a voltage of two-diode drop while  v2  is a one-diode drop voltage, vIdc
 

represents the base-emitter voltage of a BJT carrying dc current Idc. The state equations 

are correspondingly transformed into:             

Cv̇1 = −
Ifc

Q
− Is exp (

v2+vIfc
+vIdc

−v1

vt
) + Is exp (

vM1+vIQ
−v1

vt
)                ( 2.15 )                       

      Cv̇2 = Is exp (
v1−vIfc

+vIfc
−v2

vt
)                                                  ( 2.16 ) 

Related current and voltage notations are explained below:  

𝐼𝑓𝑐 = w0𝐶𝑣𝑡,  𝐼𝑄 =
𝐼𝑓𝑐

𝑄
, 
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𝑣𝐼𝑓𝑐
= 𝑣𝑡𝑙 𝑛 (

𝐼𝑓𝑐

𝐼𝑠
) = 𝑣𝐼𝑑𝑐

= 𝑣𝑡𝑙 𝑛 (
𝐼𝑑𝑐

𝐼𝑠
) , 𝑣𝑀1

= 𝑣𝑡 𝑙𝑛 (
𝑢𝑀1

𝐼𝑠
) + 𝑣𝑡 𝑙𝑛 (

𝐼𝑓𝑐

𝐼𝑠
), 𝑣𝐼𝑄 = 𝑣𝑡 𝑙𝑛 (

𝐼𝑄

𝐼𝑠
). 

Physical meaning of the yielded equations is obvious. For both equations, the left hand 

side represents a current flowing into a capacitor which is contributed by the variation 

of the voltage across the capacitor, and the right hand side terms are current flows 

generated by surrounding circuitry to balance out the current on the left hand side. Fig. 

2.5 shows a possible circuit realization of the filter which incorporates two interacting 

capacitors. The input to the circuit, Iin_os, is a current with offset Idc. The circuitry in the 

broken-line box implements a negative transconductance with a translinear loop. The 

operating point of each capacitor voltage is forced by circuitry enclosed by the solid line. 

Specifically, 𝑉𝑐_𝑙𝑒𝑓𝑡 = 𝑣𝐼𝑓𝑐
+ 𝑣𝐼𝑑𝑐

, 𝑉𝑐_𝑟𝑖𝑔ℎ𝑡 = 𝑣𝐼𝑑𝑐
. The collector currents labeled as 

Y_BPF and Y_LPF are possible circuit outputs: the former provides a band-pass filtered 

version and the latter is a low-pass filtered version of the input current. This result could 

be derived from the state-space representation of eqn. (2.12): 

𝑋2(𝑠)

𝑈(𝑠)
=

𝑤0

𝑆
𝐻(𝑠) =

𝑤0
2

𝑄

𝑠2+
𝑤0
𝑄

𝑠+𝑤0
2
                                             ( 2.17 ) 

The design in Fig. 2.5 could be modified into another bandpass filter whose peak gain is 

proportional to the quality factor. As shown in Fig. 2.6, the new circuit has a much 

simpler schematic. Since no circuitry is designed to balance 𝐼𝑄 for the left capacitor, it 

is required 𝐼𝑄 to be much smaller than 𝐼𝑓𝑐, which indicates that the bandpass filter needs 

to be set with a high Q to avoid performance degradation. On the other hand, because 

the filter’s mid-band gain is proportional to Q, the amplitude of input current needs to 

be adjusted properly to ensure a distortionless output. The transfer functions realized by 
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the circuit are given by eqn.(2.18). Different from the bandpass filtered output, the low-

pass filtering output has a unity passband gain that is independent of Q. Both filters in 

Fig. 2.5 and Fig. 2.6 are electronically tunable: varying the amplitude of current sources 

labeled with Ifc or IQ, we can easily adjust the filter’s center frequency or quality factor. 

𝐻1(𝑠) =
𝑌𝑏𝑝(𝑠)

𝑈(𝑠)
=

𝑤0𝑠

𝑠2+
𝑤0
𝑄

𝑠+𝑤0
2
       𝐻2(𝑠) =

𝑌𝑙𝑝(𝑠)

𝑈(𝑠)
=

𝑤0
2

𝑠2+
𝑤0
𝑄

𝑠+𝑤0
2
           ( 2.18 )       

 
Figure 2.5  A unity gain, electronically tunable second-order log-domain bandpass filter. 

 

 
Figure 2.6 A non-unity gain, electronically tunable second-order log-domain bandpass filter. 
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 Simulation Results 

Both ac test and transient test are run under PSpice to verify the function and 

performance of our design. The purpose of the ac test was to generate the system’s Bode 

plot and verify the filter’s tunability, and the transient test was mainly for checking out 

the integrity of output current signals. Ideal sources and capacitors were used in the 

design. Unless otherwise mentioned, all the NPN transistors take the QbreakN model (in 

Cadence) with 𝛽𝑓 set to 10k. Other parameters are: 𝐼𝑑𝑐 = 0.5𝑚𝐴, 𝐶 = 3.076𝑛𝐹.  

ac test 

According to the design technique, 𝐼𝑓𝑐  is proportional to the bandpass filter 

center frequency. Therefore, adjusting current sources “𝐼𝑓𝑐 ” easily tunes the center 

frequency. Also, the Q factor is determined by the ratio of 𝐼𝑓𝑐 to 𝐼𝑄, so if 𝐼𝑄 stays the 

same while 𝐼𝑓𝑐 is tuned, both the center frequency and the Q factor will be scaled by the 

same factor and the filter bandwidth would remain unchanged. On the other hand, if 𝐼𝑓𝑐 

is fixed and 𝐼𝑄 is tuned, then the center frequency will remain the same while the Q 

factor and the bandwidth will be scaled together. The above expected properties need to 

be verified by Bode plots and related measurement data from the ac test. The lowpass 

filtering function of the filter can be verified with Bode plot too. 

1. Tests on the unity-gain filter in Fig. 2.5 

1) Center frequency tunability 

Setup 

   Input: ac=1,  dc offset = 500u.  Output:  Iout = Y_BPF 

      Current sources setup: IQ=10u, Ifc sweeping: 320u, 410u, 500u, 660u, 720u                    
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Simulation Results 

 

Figure 2.7 Bode plots of the bandpass filter in Fig. 2.5 under the center frequency tunability test. 

 

Test 

Setup 

Ifc (A) 320u 410u 500u 660u 720u 

IQ (A) 10u 10u 10u 10u 10u 

Test       

Results 

Center 

Frequency (Hz) 
640.143k 820.183k 1.000M 1.320M 1.440M 

Quality Factor 32.026 41.025 50.029 65.988 71.972 

Bandwidth 

(Hz) 
19.987k 19.992k 19.997k 20.007k 20.012k 

Peak Gain (dB) -0.013 -0.015 -0.017 -0.022 -0.024 

Phase Angle 

Zero Cross (Hz) 640.143k 820.183k 1000.440k 1320.290k 1440.330k 

Table 2-1 Measurement data from the center frequency tunability test on the filter in Fig. 2.5. 
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Observation 

Varying 𝐼𝑓𝑐 and keeping the 𝐼𝑄 scales the center frequency and Q factor of the 

bandpass filter simultaneously with the same factor, while the bandwidth is almost 

unaffected. The peak gain of this filter is unity and is barely influenced by the tuning of 

𝐼𝑓𝑐 . In each test case, the phase change starts to drop from 90 degrees as the input 

frequency increases, approximately hitting 0 when the input frequency equals the filter’s 

center frequency and asymptotically approaches -90 degrees as the input frequency 

becomes extremely high.  

2) Quality factor tunability 

Setup 

Input: ac=1, dc offset = 500u. 

Current sources setup: Ifc =500u, IQ sweeping: 2u, 5u, 10u, 20u, 50u. 

Simulation Results            
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Figure 2.8 Bode plots of the bandpass filter in Fig. 2.5 under the Q factor tunability test. 

Table 2-2 Measurement data from the Q factor tunability test on the filter in Fig. 2.5. 

Observation 

Varying 𝐼𝑄  while keeping the value of 𝐼𝑓𝑐  changes the quality factor and 

bandwidth of the filter, but the center frequency is almost unaffected. Also, the peak gain 

of this filter is barely affected during the tuning of quality factor. Comparing the 

measured Q factors to the target values, it’s discovered that the tuning for a higher Q is 

less accurate, which might because it requires a very low 𝐼𝑄 current. But even in the 

tuning for Q=250, the error is measured to be smaller than 1%. The phase spectrum again 

verifies that the filter center frequency does not change during the tuning of 𝐼𝑄, as long 

Test 

Setup 

Ifc (A) 500u 500u 500u 500u 500u 

IQ (A) 2u 5u 10u 20u 50u 

Test 

Results 

 

Center 

Frequency (Hz) 1.000M 1.000M 1.000M 1.000M 1.000M 

Quality Factor 248.085 99.832 49.973 25.012 10.019 

Bandwidth (Hz) 4.031k 10.019k 20.015k 39.989k 99.830k 

Peak Gain (dB) -0.087 -0.035 -0.017 -0.009 -0.003 

Phase Angle 

Zero Cross (Hz) 1000.220k 1000.220k 1000.220k 1000.220k 1000.220k 
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as 𝐼𝑓𝑐 is fixed. The test results from 1) and 2) suggest that 𝐼𝑓𝑐 and 𝐼𝑄 can be adjusted 

together to set up the bandpass filter with any random combination of 𝑓𝑐 and Q within 

certain range.  

3) Low-pass filtering function 

Setup 

Input:  ac=1, dc offset = 500u. Output:  Iout = Y_LPF 

Current sources: 𝐼𝑓𝑐 =500u, 𝐼𝑄 sweeping: 2u, 5u, 10u, 20u, 50u 

Simulation Results         

 

Figure 2.9 Gain spectra of the filter in Fig. 2.5 under the low-pass filtering and damping factor 

tunability test. 

 

Test 

Setup 

Ifc (A) 500u 500u 500u 500u 500u 

IQ (A) 2u 5u 10u 20u 50u 

Test 

Results 
Passband gain 0.004 0.010 0.020 0.040 0.100 

Overshooting peak 0.990 0.996 0.998 0.999 1.001 

 

 Table 2-3 Measurement data from the low-pass filtering and damping factor tuning test on the 

filter in Fig. 2.5. 
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Observation 

The gain spectra above explicitly verify the low-pass filtering function of the 

filter. According to the particular current source setup, the low-pass filter damping factor 

is expected to be 1/500, 1/200, 1/100, 1/50 and 1/20 during the sweep of 𝐼𝑄 . The 

measured passband gain is proportional to the ratio of 𝐼𝑄 to 𝐼𝑓𝑐, which agrees well with 

what is suggested by the transfer function in eqn. (2.17). As the damping factor of the 

lowpass filter is smaller than unity in each case, overshoot is expected before the roll-

off of the gain spectra. The location and value of the overshooting peak remain 

approximately the same during the tuning of 𝐼𝑄  as long as 𝐼𝑓𝑐  is unchanged. 

Measurement shows that the peak is consistently located at the center frequency of the 

bandpass filter, with a constant gain close to unity.  

2. Test on the non-unity gain filter in Fig. 2.6 

1) Tunability of the peak gain 

Setup  

        Input: ac=1, dc offset = 500u.  Output:  Iout = Y_bp 

        Current sources setup: Ifc=500u. IQ sweeping: 2u, 5u, 10u, 20u, 50u. 

Simulation Results 
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Figure 2.10 Gain spectra of the bandpass filter in Fig. 2.6 under the Q factor tunability test 

 

        Table 2-4 Measurement data from the Q factor tunability test on the filter in Fig. 2.6. 

 

Observation 

This particular design implements a bandpass filter whose peak gain equals the 

quality factor Q ideally, as indicated by eqn. (2.18). When 𝐼𝑄 is tuned with 𝐼𝑓𝑐 fixed, the 

quality factor Q is expected to be inversely proportional to 𝐼𝑄 while the center frequency 

fc stays the same. In the test above, fc was set and fixed at 1MHz, and Q is expected to 

be 250, 100, 50, 25 and 10 as IQ gets swept from 2uA to 50uA. The measured data agrees 

well with our expectations: a constant center frequency, a tunable quality factor, and a 

peak gain that tracks Q and inversely proportional to 𝐼𝑄. 

Test  
Setup 

Ifc (A) 500u 500u 500u 500u 500u 

IQ (A) 2u 5u 10u 20u 50u 

Test 
Results 

Center 
Frequency(Hz) 1000.22k 1000.22k 1000.22k 1000.22k 1000.23k 

Quality Factor 248.083 99.836 50.018 25.034 10.019 

Peak Gain 247.497 99.599 49.899 24.974 9.996 
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Transient test 

A transient test was run on both designs to test the integrity of the output current 

signals. Related parameters are as: Idc = 0.5mA, Ifc = 0.5mA, IQ = 10uA, C=3.076nF. 

Based on the setup, the center frequency of the bandpass filter is 1MHz and the quality 

factor is 50, so the bandwidth of the filter is 20kHz.  

1. Test on the unity-gain filter in Fig. 2.5 

AM input:  𝐼𝑖𝑛 = 𝐼𝐴𝑀 + 𝐼𝑜𝑠 = (0.1𝑚) sin(2𝜋 ∙ 1𝑀𝑒𝑔 ∙ 𝑡) [1 + 0.5sin(2𝜋 ∙ 10𝐾 ∙ 𝑡)] + 0.5𝑚 

A more explicit expression of the input, in the form of the sum of sinusoids of different 

frequencies, could be derived by applying a trig identity to the equation above: 

𝐼𝑖𝑛 = (100𝑢) sin(2𝜋 ∙ 1𝑀𝑒𝑔 ∙ 𝑡) + (25𝑢)𝑐𝑜𝑠(2𝜋 ∙ 0.99𝑀𝑒𝑔 ∙ 𝑡) − (25𝑢)𝑐𝑜𝑠(2𝜋 ∙ 1.01𝑀𝑒𝑔 ∙ 𝑡) + 0.5𝑚 

Note that the carrier is at 1MHz and the sideband signals are at 0.99MHz and 1.01MHz 

respectively. As the bandwidth of the filter is 20kHz, we can expect that the amplitude 

of both input sideband signals experiences an attenuation of approximately 3dB during 

the signal processing. 

Simulation results 

 

 
Figure 2.11 Transient plots of the unity-gain bandpass filter input (upper) and output (lower) 

current signals. 
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Figure 2.12 FFT spectra of the unity-gain bandpass filter input (upper) and output (lower) current 

signals. 

 

The above plots show that the designed circuit is capable of generating a distortionless 

bandpass filtered version of the input current signal. The quality factor of the bandpass 

filter could be verified by the FFT spectrum of the output signal. Moreover, the output 

is measured to have the same level of dc offset as the input, which is not labeled out in 

the figure.    

2. Test on the non-unity gain filter in Fig. 2.6 

The transient test on the second design is mainly to verify the realization of the 

non-unity peak gain of the bandpass filter that tracks the filter’s quality factor. The same 

parameter setup for current sources and capacitors was used, which suggests that a peak 

gain of 50 should be implemented. The amplitude of ac components in the original AM 

input is scaled by 1/50 to avoid distortion in the process of small signal filtering and 

amplification. With this setup, the successful implementation of a bandpass filter whose 

peak gain equals the quality factor is easily verified if the output signal from this test is 

close to that from the above test. 
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Input:  𝐼𝑖𝑛 = (2𝑢) sin(2𝜋 ∙ 1𝑀𝑒𝑔 ∙ 𝑡) + (0.5𝑢)𝑐𝑜𝑠(2𝜋 ∙ 0.99𝑀𝑒𝑔 ∙ 𝑡) − (0.5𝑢)𝑐𝑜𝑠(2𝜋 ∙ 1.01𝑀𝑒𝑔 ∙ 𝑡) + 0.5𝑚 

Simulation results 

 

Figure 2.13 Transient plots of the non-unity gain bandpass filter input (upper) and output (lower) 

current signals. 

 

Figure 2.14 FFT spectra of the non-unity gain bandpass filter input (upper) and output (lower) 

current signals. 

 

As shown in Fig. 2.14 and Fig. 2.15, the simulation results perfectly agree with our 

expectation.  
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 AM mode Synchronous Bandpass Filter and Related Feedback Filtering System 

 The Mathematical Model 

  It has been introduced in Chapter 1 the derivation and generic state space 

representation of AM mode synchronous filtering, we now modify the unity-gain 

bandpass filter discussed above into a synchronous filter of this mode. First, we utilize 

the transformation approach introduced in Chapter 1 to transform the mathematical 

model of the standard biquad bandpass filter, given by eqn. (2.19), into a new version 

that corresponds to a companding system.  

|
x1̇

x2̇
| = |

−
w0

Q
 −w0

w0 0
| |

x1

x2
| + |

w0

Q
 

0
| u  ,           y = |1 0| |

x1

x2
|               ( 2.19 )                                 

Define the new set of state variables as  w̅ = p(t)x̅, where p(t) is always positive, then 

an alternate state space representation of the bandpass filter is derived as:                

|
w1̇
w2̇

| = |
−

w0

Q
+

p(t)̇

p(t)
w0

−w0
p(t)̇

p(t)

| |
w1

w2
| + |

w0

Q

0
| p(t)u ,      y =

1

p(t)
|1 0| |

w1

w2
|       ( 2.20 ) 

The above dynamical equation set could be associated with a system that has a core filter 

with time-varying Q factor and amplitude modulators at both ends. Although internally 

time variant, the system is externally time invariant and it implements a transfer function 

identical to that of the original bandpass filter. So if the impulse response of the bandpass 

filter is ℎ(𝑡), then the output of the derived system to input 𝑢(𝑡) could also be expressed 

as: 

y(t) = u(t) ∗ h(t)                                               ( 2.21 ) 

where symbol “*” denotes convolution. The block diagram of the derived synchronous 

filter is shown in Fig. 2.15. 
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Figure 2.15 Block diagram of an AM mode synchronous BPF specified by eqn. (2.20). 

 

Interestingly, if we take the modified core filter as an independent system and 𝑢(𝑡) ∙

𝑝(𝑡) its input, as shown in Fig. 2.16, then the system output could be expressed as 𝑦(𝑡) ∙

𝑝(𝑡) or [𝑢(𝑡) ∗ ℎ(𝑡)] ∙ 𝑝(𝑡), which is the product of a bandpass filtered 𝑢(𝑡) and the 

original 𝑝(𝑡). Suppose 𝑢(𝑡) is a carrier and 𝑝(𝑡) a properly offset baseband information 

signal that is always positive, also suppose we were able to generate the ideal 
𝑝̇(𝑡)

𝑝(𝑡)
 and 

alter the core filter into one that corresponds to the state matrix in eqn. (2.20). According 

to the analysis above, when receiving an AM signal 𝑢(𝑡) ∙ 𝑝(𝑡) , the derived system 

would apply the bandpass filtering specified by ℎ(𝑡)  only to the carrier 𝑢(𝑡)  and 

produce the product of the processed carrier and the original information signal as output. 

If the center frequency of the core filter has been tuned to the carrier frequency 𝑤0, then 

the frequency component 𝑤0  in the carrier could pass through the modified filter 

unchanged while other components in the carrier will be attenuated. Therefore, the useful 

sideband signals in the AM input would ideally stay intact during the signal processing. 

It leads to an appealing advantage of the system when processing noisy AM input signals: 

the original time-invariant bandpass filter centered at 𝑤0 could in principle be tuned as 

sharp as needed to suppress the undesired components near 𝑤0, and the useful input 

sideband signals would be maintained regardless of the core filter’s original Q factor. In 



56 

 

this sense, the system in Fig. 2.16 is capable of producing an output with noticeably 

improved SNR compared to a standard second-order bandpass filter with the same Q 

factor. The noise performance of such a system will be discussed in detail in Chapter 4. 

 

Figure 2.16 Another perspective of the AM mode synchronous BPF: a filter with time-varying 

Q factor processing an AM input signal, which has the potential of producing an output with 

very high SNR. 

 

 The Filter with a Time-varying Q Factor  

In this section, we will implement the filtering block in Fig. 2.16 that has a time-

varying Q factor by modifying the log domain unity-gain bandpass filter in Fig. 2.5. The 

input AM current is particularly set up as: 

𝐼𝑖𝑛 = 𝑢(𝑡)𝑝(𝑡) + 𝐼𝑜𝑠                                           ( 2.22 ) 

where 𝑢(𝑡) = 𝑠𝑖𝑛(2𝜋 ∙ 1𝑀𝑒𝑔 ∙ 𝑡) , 𝑝(𝑡) = (0.1𝑚)[1 + 0.5𝑠𝑖𝑛(2𝜋 ∙ 10𝐾 ∙ 𝑡)] , 𝐼𝑜𝑠 =

0.5𝑚. Note that the state matrix in eqn. (2.20) is the sum of |
−

w0

Q
w0

−w0 0
| and |

𝑝(𝑡)̇

𝑝(𝑡)
0

0
𝑝(𝑡)̇

𝑝(𝑡)

|, 

where the former matrix is the state matrix for the original time-invariant bandpass filter 

and the latter specifies the Q factor variation, so the new filter could be realized by 

respectively injecting the current corresponding to 
𝑝(𝑡)̇

𝑝(𝑡)
𝑤1 and 

𝑝(𝑡)̇

𝑝(𝑡)
𝑤2 to the associated 

capacitors in the original filter. As p(t) is always positive, it could be realized by the 

collector current of a BJT and be expressed as p(t) = Isexp (
vp

vt
), where vp is the base-
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emitter voltage difference of the BJT with collector current p(t), and it follows that 
p(t)̇

p(t)
=

v̇p

vt
. To realize 

p(t)̇

p(t)
wi(i=1 or 2), we first transform the term the same way as we transform 

the state equations of the bandpass filter, namely, multiplying it with C
vt

wi
. The product 

could then be simplified as Cv̇p, where C is the capacitance of the capacitors in the core 

filter. The physical meaning of p(t)̇

p(t)
wi  has become explicit at this point: the current 

flowing in the capacitor C when it’s applied with voltage vp . The conceptual 

implementation of 
𝑝(𝑡)̇

𝑝(𝑡)
𝑤𝑖 is given in Fig. 2.17, where an ideal current source kp(t), an 

ideal npn transistor and two ideal CCCSs are used. The two branches of output current 

are respectively injected into the capacitors in the core filer to implement the filter with 

a time-varying Q factor in Fig. 2.16. 

                     

Figure 2.17 Schematic for implementing the time-variant quality factor. 

 

A transient test was run on the resulting time-variant filter to test its performance. 

For comparison, the output of the original time-invariant bandpass filter corresponding 

to the same input was also plotted. The core filter was centered at 1MHz and its original 

Q factor was set to be 50. The input signal is the amplitude modulation result of an offset 

10kHz sine wave and a carrier at 1MHz. It’s expected that the original bandpass filter 
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produces an output with sideband signals attenuated by approximately 3dB while the 

modified filter produces an output almost identical to the intput. Simulation results in 

Fig. 2.18 demonstrate that the sideband signals of the AM input sent to the modified 

filter experience very little phase shift or ampitude attenuation, expect that some 

intermodulation noise components of negligible size were observed. Besides the 

particular test presented here, simulation was also run on the system set up with other 

original Q factors and 𝑝(𝑡) frequencies, it was consistently observed that the modified 

system is always able to produce an output signal very similar to the input. Therefore, 

the function of the filtering block in Fig. 2.16 does agree with our expectation developed 

from the system mathematical model. 
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Figure 2.18  Transient plots and corresponding FFT spectra of the input and output signals in the 

test on the original bandpass filter with a constant Q factor and the ideally modified filter with a 

time-variant Q factor, where the core filter was centered at 1MHz and the original Q factor was 

tuned to 50. 

 

 A Feedback Bandpass Filter Inspired by AM Mode Synchronous Filtering  

In practice, generating the Q factor control signal 
𝑝(𝑡)̇

𝑝(𝑡)
𝑤𝑖 is very challenging, as 

we usually do not have the baseband information signal p(t) at the receiver end and have 

to recover it from the received AM signal. As any demodulator inevitably introduces 

phase shift to the received AM signal, the recovered baseband signal p̂(t) always lags 

the original p(t) hence doesn’t seem to be a proper source for generating the Q factor 

control signal. In this section, we will explore the possibility of constructing a feedback 

filtering system with the demodulated input AM signal, shown in Fig. 2.19, and compare 

its performance to that of the ideally modified filter in Fig. 2.16.  
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The first task is to design a special demodulator, or envelope detector, to recover 

p̂(t)  from the core filter output with as little introduced phase shift as possible, 

considering that the ideal p̂(t) is expected to be in phase with the original p(t). Recall 

that in a conventional AM receiver, as shown in Fig. 2.20, the output of the bandpass 

filter is mixed with a local oscillator output and the resulting signal is lowpass filtered 

to recover the useful information, so the phase of the recovered signal is mainly 

influenced by two blocks: the bandpass filter and the lowpass filter. Since the phase shift 

results from the bandpass filtering is typically inevitable, we can focus on developing a 

demodulation module that recovers the information signal with possible minimum phase 

shift. 

 

Figure 2.19 Block diagram of the proposed feedback AM-mode filtering system 

 

 

Figure 2.20 Block diagram of a basic conventional AM receiver. 

 

Based on the above analysis, we devised a demodulator that employs a sample-and-hold 

block (S/H), instead of the mixer-lowpass filter module, to recover the information signal 
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from the bandpass filtered AM input. The switch of the S/H block is controlled by a 

pulse train at the carrier frequency and with extremely small duty cycle. According to 

the sampling theory, the frequency-domain representation of an ideally sampled signal 

is: 

Fideally_sampled(w) = e−j0.5Tw ∙ sinc(0.5Tw) ∙ ∑ F(w − nw0)
n=+∞
n=−∞     ( 2.23 ) 

where F(w) is the Fourier transform of the signal to be sampled, which in our case is the 

bandpass filtered AM signal, w0is the sampling frequency, T is the sampling period, and 

n is a integer. For a sampling rate that equals the carrier frequency of the AM input, the 

phase shift introduced to the baseband components in the S/H output, i.e. −
𝑤

𝑤0
𝜋  (w≪

𝑤0), would be very small. And since the repeating patterns of F(w) over the frequency 

axis are weighed by function sinc(0.5Tw), the patterns that are not in the baseband 

(corresponding to 𝑛 ≠ ±1 ) would be scaled to a negligible level compared to those in 

the baseband (corresponding to 𝑛 = ±1). Some analysis would convince readers that the 

S/H block is able to extract the input signal’s envelope with very small error. 

Although the phase shift introduced in the lowpass filtering stage in a traditional 

demodulator could be avoided by utilizing the S/H block, the reconstructed baseband 

signal p̂(t) still lags the original p(t), due to the preceding bandpass filtering. Therefore, 

it’s still unclear whether p̂(t) could be used to generate the Q-factor control signal. To 

answer this question and evaluate the performance of the feedback filtering system in 

Fig. 2.19, a Gm-C system model has been implemented and simulated in PSpice, as 

shown in Fig. 2.21, where all the sources and blocks are ideal. The system could be 

divided into two parts: the voltage-mode bandpass filter with a time-invariant Q factor 
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and the feedback path that consists of an S/H demodulator and a Q-factor control signal 

generator. The core filter implementation becomes very straightforward after we 

transform the state space equations in eqn. (2.21) into the following form: 

|
w1̇ C
w2̇ C

| = |
g11 g12

g21 0 | |
w1

w2
| + |

gu1

0
| p(t)u + |

p̂(t)̇

p̂(t)
C 0

0
p̂(t)̇

p̂(t)
C
| |

w1

w2
| ,   y = |1 0| |

w1

w2
| 

( 2.24 ) 

where 𝑔11 = −
𝑤0

𝑄
𝐶, 𝑔12 = −𝑤0𝐶, 𝑔21 = 𝑤0𝐶, 𝑔𝑢1 =

𝑤0

𝑄
𝐶.  

The original bandpass filter with time-invariant Q factor is explicitly associated with the 

Gm-C network in Fig. 2.21, where the input is a voltage signal and all the 

transconductors are modeled by ideal voltage-controlled-current-sources (VCCSs). The 

core filter is followed by an envelope detector which is modeled as a switch in series 

with a capacitor. The on and off status of the switch is controlled by an impulse train. 

Notate the recovered voltage signal as p̂(t) and apply it to a capacitor with one end 

grounded, then the capacitor current equals Cṗ̂(t) . A feedback connection control 

circuitry is included to prevent the Q-factor control signal being sent back before p̂(t) 

steps into steady state, in order to avoid convergence problem in the simulation.  
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Figure 2.21 Ideal Gm-C model for the feedback filter in Fig. 2.20. 

 

To test the performance of the above system, we set up a simulation as follows: 

Input AM voltage signal: 

 p(t) ∙ u(t) = [1m + (0.5m)sin(wpt)]sin(wcarriert ), wp = 2π ∙ 10K, wcarrier = 2π ∙ 1Meg; 

 Capacitors and VCCSs:  

C=3.075n, Cs=100n, g10=g11=386.416u, g12=g21=19.321m; 

S/H impulse train: 

 TD=250ns, PW=1ns, PER=1000n; Switch: RON=1e6, ROFF=1e-3; 

Feedback connection control:  

From t=0 to 1.5ms, the loop is open; from t=1.5ms to 2ms, the switch is partially on 

and starting from t=2ms, the switch is completely turned on, 100% of the feedback current is 

injected into the core filter.   

The setup for the filtering capacitors C and the VCCSs implements a center 

frequency of 1MHz and an original Q factor of 50 for the core filter. So it is easy to 
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predict that before the loop is closed, the reconstructed baseband signal p̂(t) is 3dB 

lower than p(t) and 45 degrees lagging in phase. A transient test was run on the feedback 

bandpass filtering system and the system with a core filter modified by the ideal 
𝑝̇(𝑡)

𝑝(𝑡)
.  

The blue plot in Fig. 2.22 shows the recovered signal 𝑝̂(𝑡) from the system in 

Fig. 2.21 in the open-loop stage (0ms to 1.5ms), partially closed-loop stage (1.5ms to 

2ms) and completely closed-loop stage (2ms to 3ms). It’s apparent that the phase and 

amplitude of 𝑝̂(𝑡) in the three stages are different, and with higher percentage of  
𝑝(𝑡)̇

𝑝(𝑡)
  

sending back to the core filter, the recovered signal 𝑝̂(𝑡) from the feedback system bears 

stronger resemblance to the original p(t), and when 100% of  
𝑝(𝑡)̇

𝑝(𝑡)
 feeds back, 𝑝̂(𝑡) 

almost overlaps with 𝑝(𝑡). The corresponding FFT spectra quantitatively verifies that 

𝑝̂(𝑡) from the feedback system has most of its energy concentrating at dc and 10kHz, 

and the respective signal size is very close to its counterpart in the original 𝑝(𝑡) . 

Moreover, the size of the undesired harmonics in 𝑝̂(𝑡) is at a negligible level compared 

to that of the information component. The simulation results suggest that it is possible 

to replace 𝑝(𝑡) with 𝑝̂(𝑡) to generate a Q-factor control signal for the standard biquad 

bandpass filter and further develop it into a feedback filtering system. When processing 

ideal AM signals, the feedback filtering system is capable of recovering a baseband 

signal that bears remarkable resemblance to the original information signal 𝑝(𝑡) in both 

amplitude and phase. 

Finally, it was discovered through varying the AM input bandwidth that to ensure 

the given feedback system to produce negligible output harmonic distortion, the 
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bandwidth of the input AM signal needs to be limited in a range which is constraint by 

the original sharpness of the core filter, while the filter modified by the ideal 𝑝̇(𝑡)/𝑝(𝑡)  

is not subject to such an issue. Table 2.5 provides some measurement data to demonstrate 

this observation. The discovery could also be interpretted as that unlike the ideally 

modified filter in Fig. 2.17 of which the original Q factor could in principle be tuned 

extremely high, the highest original Q factor for the feedback filtering system to generate 

an output with negligible harmonic distortion is constraint by the bandwidth of the input 

signal. To better demonstrate this observation, we stuck with the same AM signal tested 

above (bandwidth of 20kHz) and swept the origianl Q factor of the core filter (centering 

at 1MHz) over 80, 100, 200, 500 for both systems to compare their performance. Spectra 

of the steady state recovered signals from the two systems are plotted on the same graph 

for each Q factor tested, as shown in Fig. 2.23.  

 

 

Table 2-5 Measurement on the fundamental and 2nd-order harmonic in the recovered signals 

from the feedback filtering system and the ideally modified filtering system when they process 

noiseless AM signals with different bandwidths. 

 

 

 

 



66 

 

 

(a) Transient plots 

 
(b) FFT spectra of the plots in (a) 

Figure 2.22 The original 𝑝(𝑡) and the recovered signal 𝑝̂(𝑡) from the feedback filtering system 

(blue plot) and the system with a core filter modified by the ideal 𝑝̇(𝑡)/𝑝(𝑡) (red plot). 
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(a) Q=80 

 

        
  (b) Q=100 

 

      
   (c) Q=200 
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   (d) Q=500 

 

Figure 2.23 FFT spectra of the steady state recovered signals from the ideally modified filter and 

the feedback filtering system with same original bandwidth, under the Q factor sweeping test. 

 

 The above test result suggests: 1. For the ideally modified bandpass filter, raising 

its original Q factor does not result in any undesired harmonic distortion. 2. For the 

feedback bandpass filter, as the original Q factor increases, the output harmonic 

distortion rises too. 3. If the original bandwidth of the feedback filter is too narrow 

compared to the bandwidth of the input signal, large-sized harmonic distortion will be 

generated so the output SNR is noticeably degraded. 4. Suppose the input signal has a 

bandwidth of 𝐵𝑊𝑖𝑛 , to ensure the second order harmonic distortion in the feedback 

bandpass filter output to be lower than 1/300 of the fundamental component size, it’s 

recommended that the minimum original bandwidth of the core filter to be 0.5𝐵𝑊𝑖𝑛, 

which sets an upper limit for the feedback system’s original Q factor. Therefore, it’s only 

under certain circumstances that the feedback bandpass filter produces an output similar 

to its ideally modified bandpass filter counterpart.  
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 Summary 

 Log-domain biquad bandpass filters, with unity peak gain or peak gain 

proportional to the Q factor have been implemented at the transistor level. Upon 

verifying their tunability and function, we proposed in Fig. 2.15 an AM mode 

synchronous filtering system based on the transformed state space representation of a 

standard biquad bandpass filter. Moreover, we deleted the back end modulator and 

turned the system into a new one which could be viewed as a double-sideband AM signal 

being processed by a bandpass filter with time-variant Q factor, shown in Fig. 2.16. 

Mathematical analysis suggests that in principle the ideal system is able to suppress the 

input noise as hard as desired while keeping the phase and amplitude of the useful input 

sideband signals unchanged. It, hence, provides a compromising approach to improving 

the SNR of a biquad bandpass filter when dealing with noisy AM signals. The 

implementation of such a system with log-domain circuitries has been discussed and 

tested. Considering the challenge in generating the ideal Q-factor control signal, a novel 

feedback AM mode bandpass filter inspired by the system in Fig. 2.16 was proposed and 

implemented as the ideal Gm-C network model in Fig. 2.21. Surprisingly, when the 

bandwidth of the AM input is no wider than two times the original core filter bandwidth, 

the filter modified by the feedback Q-factor control signal is able to maintain the size 

and phase of the AM input. As the input bandwidth increases, however, harmonic 

distortion of noticeable size emerges in the output. Therefore, the performance of the 

feedback system is dependent on the match between the bandwidth of the input and the 

original bandwidth of the system core filter, while the ideally modified system does not 

have this issue. The noise performance of both systems will be discussed in Chapter 4.  
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 FM mode-synchronous-filtering Related Complex Filters 

     In Chapter 2, the synchronous filtering approach that includes amplitude 

modulation as part of the signal processing was applied to the implementation of a 

biquad bandpass filtering system. In this chapter, we will focus on the application of 

another type of synchronous filtering that performs frequency modulation in some stages 

of the signal processing and could be viewed as FM mode synchronous filtering. 

Specifically, we will implement a biquad high-Q high-center frequency complex filter 

with both static and dynamic synchronous filtering approaches. In the static FM mode 

synchronous complex filter, the core filter center frequency and the terminal modulating 

frequencies are time invariant. Due to the front end modulation, the input signal is shifted 

into a much lower frequency band, so the following signal processing only requires a 

filter with lower center frequency and Q factor. The back end modulation brings the 

processed signal back into the original frequency band; hence, the overall system 

maintains the input-output function of the target filter. Such an architecture relieves the 

challenge posed by the performance limitation of available components at high 

frequencies, and makes possible the monolithic realization of a high-center frequency 

high-Q complex filter. The dynamic FM mode synchronous complex filter, besides 

making use of the above advantageous architecture, has a time-varying core filter center 

frequency and end modulating frequencies. The internally time-variant externally time-

invariant system is capable of suppressing noise components in a certain frequency range 

and producing an output of higher SNR, which will be demonstrated in Chapter 4.  

 Design of a Static FM Mode Synchronous Complex Filter 

Take the design of a subheterodyne synchronous complex filter for instance.  
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First of all, we reproduce the state space equations specifying the filter and the system 

block diagram introduced in Chapter 1, by eqn. (3.1) and Fig.3.1. In this section, we will 

utilize the mathematical model given by eqn. (3.1) and the technique for synthesizing 

log-domain filters to design a current mode high-center frequency high-Q factor 

complex filter that incorporates front end and back end modulators and a low-center 

frequency low-Q factor core filter. The system will be realized with BJTs of high β value, 

ideal current sources and capacitors. The design and implementation detail of each block 

will be discussed, followed by functional verification with PSpice simulation. 

|
𝑤1̇

𝑤2̇
| = |

−
𝑤0̂

2𝑄̂
−𝑤𝐴̂

𝑤𝐴̂ −
𝑤0̂

2𝑄̂

| |
𝑤1

𝑤2
| + √2(𝑤0 𝑄⁄ ) |

𝑠𝑖𝑛(𝑤𝑀𝑡)

𝑐𝑜𝑠(𝑤𝑀𝑡)
| 𝑢         ( 3.1 ) 

y = √2 2⁄ |sin(𝑤𝑀𝑡) cos(𝑤𝑀𝑡)| |
𝑤1

𝑤2
|  

where wÂ = wA − wM,  wA is the carrier frequency of the received AM signal 𝑢,wM is 

the front/back end modulating frequency; w0̂ = wÂ/√1 − (1 2Q̂⁄ )2, w0̂  is the center 

frequency and Q̂ is the quality factor of the core filter. Note that for a high Q̂ , wÂ ≈ w0̂.  

 

Figure 3.1 Embodiment of a FM mode synchronous complex filter. 

 

 The Front End Mixer 

Design detail 
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Note that since the front end and back end modulators have similar block 

diagrams, they could be implemented together with similar circuitry. Start with the 

design of the front end quadrature mixer which modifies the frequency spectrum of the 

input signal. Specifically, the received RF signal is mixed with two channels of 

quadrature sinusoids generated by a local oscillator, and the mixer outputs are two 

channels of modulated signal that have the same magnitude spectrum but quadrature 

phase angle. Synthesis of this block is based on the translinear loop theory, which is 

commonly utilized in monolithic four-quadrant multipliers to achieve small error over a 

wide frequency range. The principle is briefly explained with the circuit shown in Fig. 

3.2 where all the transistors are assumed to be perfectly matched and have negligible 

base current, and the current flow in each branch doesn’t change direction. Using KVL 

and the constitutive law of a forward biased ideal PN junction, it is straightforward to 

formulate:   

             𝑉𝐵𝐸3 − 𝑉𝐵𝐸4 = 𝑉𝐵𝐸1 − 𝑉𝐵𝐸2                                                                        ( 3.2 ) 

    𝑖3/𝑖4 = 𝑖1/𝑖2                          ( 3.3 ) 

where VBEi represents the base-emitter voltage difference of transistor Qi. It follows that 

                      (𝑖3 − 𝑖4)/𝑖4 = (𝑖1 − 𝑖2)/𝑖2                                                                        ( 3.4 )                                                               

           (𝑖3 + 𝑖4)/𝑖4 = (𝑖1 + 𝑖2)/𝑖2                                                                       ( 3.5 )                                                               

Divide (3.4) with (3.5) and multiply both sides of the resulted equation with “(i1 + i2)”: 

𝑖3 − 𝑖4 = (𝑖1 − 𝑖2)(𝑖3 + 𝑖4)/(𝑖1 + 𝑖2)                                                  ( 3.6 )                                                      

Eqn. (3.6) suggests that the circuit in Fig. 3.2 could be used in the design of a multiplier. 

Strictly speaking, the difference between collector current i3 and i4 is a scaled product 

of the sum of i3, i4 and the difference between collector current i1, i2. Typically, 𝑖1 + 𝑖2 
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and 𝑖3 + 𝑖4 are constants and they are realized as two current sources in the circuit. Note 

that a proper dc offset is required to ensure all the transistors are consistently working in 

active region. 

 

Figure 3.2  A translinear circuit example. 

 

Circuit realization of the front end mixer is shown in Figure 3.3, where all the ac 

current sources are offset with 𝐼𝑑𝑐. In the circuitry enclosed by the broken line, a three-

diode drop bias is generated for the transistor pair hosting the received RF current and 

its differential signal. The circuit configuration in the two solid-line boxes is identical 

and the circuitry implements two parallel four-quadrant multipliers. Each multiplier 

consists of two differential pairs connected to a current mirror, a dc current source and 

an output transistor. The greyish part in the mixer could be taken as a one-stage 

operational amplifier, which is employed to improve the accuracy of the current mirror 

by reducing Early effect. The output signals of this block are collector currents labeled 

as 𝐼𝑜𝑢𝑡 and 𝐼∗
𝑜𝑢𝑡. They are a scaled product of ac component in 𝐼𝑅𝐹 and ac component 

in the quadrature pair 𝐼𝐿𝑂1, 𝐼∗
𝐿𝑂1 respectively. Both output signals are offset with 𝐼𝑑𝑐 in 

the design to guarantee a consistent direction of the current flows, and they can be 

formulated as:  

𝐼𝑜𝑢𝑡 =
2(𝐼𝑅𝐹−𝐼𝑑𝑐)(𝐼𝑂𝐿1−𝐼𝑑𝑐)

𝐼𝑑𝑐
+ 𝐼𝑑𝑐 ,     𝐼∗

𝑜𝑢𝑡 =
−2(𝐼𝑅𝐹−𝐼𝑑𝑐)(𝐼

∗
𝑂𝐿1−𝐼𝑑𝑐)

𝐼𝑑𝑐
+ 𝐼𝑑𝑐         ( 3.7 ) 

i1+i2

Q1 Q2

i3+i4

Q3 Q4
i2i1

i4i3
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Figure 3.3  Schematic of the front-end mixer. The notation Idc, IRF, ILO1 and Iout represents 

the system dc offset current, the received RF current offset with Idc, the local oscillator output 

offset with Idc and the block output. Symbols ‘~’ and ‘∗’, respectively, stand for the differential 

and quadrature counterpart of a signal. 

 

Simulation setup and results 

 Unless otherwise mentioned, ideal sources and transistors with 𝛽 = 10𝑘  are 

used in PSpice simulation for all designed circuits in this chapter. The particular set of 

current sources used in the test is listed below: 

Idc = 500u,  Itail = 50u 

IRF = 500u + 400u × sin(2π ∙ 5Meg ∙ t) , IRF̃ = 500u − 400u × sin (2π ∙ 5Meg ∙ t) 

ILO1 = 500u + 200u × sin (2π ∙ 4Meg ∙ t), ILO1̃ = 500u − 200u × sin(2π ∙ 4Meg ∙ t) 

ILO1
∗ = 500u − 200u × cos (2π ∙ 4Meg ∙ t), ILO1

̃ ∗
= 500u + 200u × cos(2π ∙ 4Meg ∙ t) 

Therefore, the two channels of output currents are expected to be: 

Iout = 160u × cos(2π ∙ 1Meg ∙ t) − 160u × cos(2π ∙ 9Meg ∙ t) + 500u 

Iout
∗ = 160u × sin(2π ∙ 1Meg ∙ t) + 160u × sin(2π ∙ 9Meg ∙ t) + 500u 

In the derived output signals, frequency component 1MHz in Iout
∗ lags that in Iout by 

90° , while frequency component 9MHz in Iout
∗ leads that in Iout by 90°. The phase 
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angle relationship is well verified by Fig. 3.4. On the other hand, by measuring the 

magnitude of 1MHz and 9MHz components in the output FFT spectra (as labeled in Fig. 

3.5) and comparing the data to the ideal values above, we are further convinced that the 

modulator in Fig. 3.3 implements a quadrature mixer as expected.     

     

Figure 3.4  Transient plots of Iout and Iout
∗. 

 

 

Figure 3.5 FFT spectra of Iout and Iout
∗. 
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 The Core Filter 

Design detail 

For the sake of argument, we made a little modification to the system dynamical 

equations given by (3.1) and focused on the input-output characteristic of the core filter: 

|
𝑤1̇

𝑤2̇
| = |

−
w0̂

2𝑄̂
−w𝐴̂

w𝐴̂ −
w0̂

2𝑄̂

| |
𝑤1

𝑤2
| +

𝑤0̂

𝑄̂
|
𝑢𝑀1

𝑢𝑀2
| ,      y = |

𝑤1

𝑤2
|        ( 3.8 ) 

where wÂ = wA − wM, wA is the carrier frequency of the input AM signal,wM is the 

front end modulating frequency; w0̂ = wÂ/√1 − (1 2Q̂⁄ )2, w0̂ is the center frequency 

and Q̂ is the quality factor of the core filter. Note that for a high Q̂ , wÂ ≈ w0̂. uM1 and 

uM2 are input signals to the filter. In the synchronous complex filtering system they are 

generated by the preceding mixer and are two channels of quadrature modulated current 

with the same dc offset. We started the design with the development of an ideal Gm-C 

filter that only deals with small signals and provides a block-level perspective of the core 

filer. First, define w1 = 𝑣𝐶1 = 𝑦1 , w2 = 𝑣𝐶2 = 𝑦2, where both state variables are ac 

voltages without offset. Eqn. (3.8) is now rewritten as: 

Cv̇C1 = (−Cw0̂ 2Q̂⁄ )vC1 − CwÂvC2 + (Cw0 Q⁄ )uM1       ( 3.9 ) 

  Cv̇C2 = CwÂvC1 + (−Cw0̂ 2Q̂⁄ )vC2 + (Cw0 Q⁄ )uM2              ( 3.10 ) 

We then make another definition to introduce the transconductors: 

g11 = −Cw0̂ 2Q̂⁄ , g12 ≈ −Cw0̂, gu1 = Cw0 Q⁄ , g21 ≈ −Cw0̂, g22 = −Cw0̂ 2Q̂⁄ , gu2 = Cw0 Q⁄  

It follows that the electrical network in Fig. 3.6 provides a straightforward 

implementation of the core filter, of which both input and output are voltage signals. The 

schematic suggests that the core filter can be realized with a pair of capacitors and 

circuits demonstrating positive or negative transconductance. 
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Figure 3.6 An ideal Gm-C model of the core filter. 

 

To design a transistor-level log-domain filter, exponential mapping was first 

applied to the state-space description in eqn. (3.8) to derive an equation set that could be 

associated with an electrical network. Utilizing the synthesis technique introduced in 

Chapter 2, we define the system state variables as: 

w1 = Is exp (
v1−vIdc

vt
) = y1 ,    w2 = Is exp (

v2−vIdc

vt
) = y2                    ( 3.11 ) 

where v1 and v2 are two-diode drop voltages, vIdc
 representing the base-emitter voltage 

drop of a BJT carrying current Idc.The state equations are correspondingly converted 

into: 

    Cv̇1 = −
Ifc

2Q
− Is exp (

v2−v1+vIfc

vt
) + Is exp (

vuM1
−v1+vIQ

vt
)             ( 3.12 ) 

      Cv̇2 = Is exp (
v1−v2+vIfc

vt
) −

Ifc

2Q
+ Is exp (

vuM2
−v2+vIQ

vt
)                 ( 3.13 ) 

where related definitions are listed as follows: 

Ifc = w0̂Cvt = Idc,    vIfc
= vtln (

Ifc

Is
) = vIdc

, 

vM1
= vt ln (

uM1

Is
) + vt ln (

Idc

Is
), vM1

= vt ln (
uM2

Is
) + vt ln (

Idc

Is
), IQ =

Ifc

Q
,  vIQ = vt ln (

IQ

Is
). 

The resulting equation set could be taken as nodal equations for a pair of interconnected 

capacitors, with one end grounded and the other end connected to a node of 𝑣𝑖  (𝑖 =
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1 𝑜𝑟 2) volts. The left-hand side of each equation represents a current flowing into the 

related capacitor, generated by the variation in 𝑣𝑖, and the right-hand side is the sum of 

other current flows from surrounding circuitry to balance the left-hand side current. 

From this perspective, the core filter is implemented as shown in Fig. 3.7. For the circuit 

to work properly, a stable dc operating point of two-diode drop across both capacitors 

has to be forced. The circuitry enclosed with a dotted line is designed for this purpose. 

Moreover, for design simplicity, terms “𝑣𝐼𝑄” in eqn. (3.12) and (3.13) were actually 

implemented as 𝑣0.5𝐼𝑄 = 𝑣𝑡 𝑙𝑛(0.5𝐼𝑄 𝐼𝑠⁄ ). This modification only lowers the gain of the 

core filter by 0.5 and has no other influence on the transfer function.  

The current sources in the circuit could be categorized based on their function: 

1) Current sources "𝐼𝑓𝑐" that in conjunction with the capacitors set the filter’s center 

frequency to be w0̂ = 𝐼𝑓𝑐 𝑐𝑣𝑡⁄ .  2) Current sources that influence the quality factor are 

labeled as 𝐼𝑄, and Q ≈ 𝐼𝑓𝑐 2𝐼𝑄⁄ . 3) Auxiliary current sources "𝐼𝑑𝑐" that help generate a 

proper dc operating point for the circuit. 4) Input currents 𝑢𝑀1 and -𝑢𝑀2 that are both 

offset with 𝐼𝑑𝑐. 5) If the circuit works properly, both output currents 𝑦1 and 𝑦2would 

have the same offset 𝐼𝑑𝑐.  

Tuning  w0̂ and Q of this filter is simple. For example, by changing the value of 

all the current sources labeled as "𝐼𝑓𝑐", the filter’s center frequency will be tuned while 

its bandwidth remains the same. Similarly, varying the value of all the “𝐼𝑄” sources will 

change the bandwidth of the filter without affecting the filter’s center frequency.  
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Figure 3.7 A log-domain complex filter implemented with the state-space exponential mapping 

technique. 

 

Simulation setup and results 

We simulated the transistor level log-domain complex filter above with PSpice 

to test its function and properties. The tests include: 1) Generating Bode plots to verify 

the bandpass filtering function and the electronic tunability in both center frequency and 

quality factor. 2) Transient test on the combination of the filter and its preceding 

modulator, to check out signal integrity and verify the image rejection capability of the 

filter.     

Test 1: Transfer function verification 

The state space equation set corresponding to the design in Fig. 3.7 is a little 

different from eqn. (3.8) in the input matrix, which only halves the gain of the resulting 

filter. The equation set is formulated as below: 

|
𝑤1̇

𝑤2̇
| = |

−
w0̂

2𝑄̂
−w𝐴̂

w𝐴̂ −
w0̂

2𝑄̂

| |
𝑤1

𝑤2
| +

w0̂

2𝑄̂
|
𝑢𝑀1

𝑢𝑀2
| ,           y = |

𝑤1

𝑤2
|       ( 3.14 ) 
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To estimate the performance of the core filter, all the transfer functions relevant to eqn. 

(3.14) were derived and listed below: 

H11 =
𝑤1

𝑢𝑀1
=

(𝑠+
w0̂
2𝑄̂

)
w0̂
2𝑄̂

𝑠2+
w0̂
𝑄̂

𝑠+w𝐴̂
2+(

w0̂
2𝑄̂

)2
     (𝑢𝑀2 = 0), H21 =

𝑤2

𝑢𝑀1
=

−(
w0̂
2𝑄̂

)w𝐴̂

𝑠2+
w0̂
𝑄̂

𝑠+w𝐴̂
2+(

w0̂
2𝑄̂

)2
 (𝑢𝑀2 = 0)  

H12 =
𝑤1

𝑢𝑀2
=

(
w0̂
2𝑄̂

)w𝐴̂

𝑠2+
w0̂
𝑄̂

𝑠+w𝐴̂
2+(

w0̂
2𝑄̂

)2
     (𝑢𝑀1 = 0), H22 =

𝑤2

𝑢𝑀2
=

(𝑠+
w0̂
2𝑄̂

)
w0̂
2𝑄̂

𝑠2+
w0̂
𝑄̂

𝑠+w𝐴̂
2+(

w0̂
2𝑄̂

)2
 (𝑢𝑀1 = 0)          

( 3.15 )    

To verify the above transfer functions are successfully implemented, the core filter 

center frequency was tuned to 1MHz and the quality factor was tuned to be 50. Therefore,  

w0̂

2𝑄̂
 is two orders of magnitude lower than w0̂, and w𝐴̂ would be very close to  w0̂. The 

setup also suggests that the magnitude spectra of H11 and H22 would be similar to that 

of a bandpass filter whose center frequency is close to 1MHz and peak gain is about -

6dB. Also, H21  and H12are expected to have magnitude spectra similar to that of a 

second-order lowpass filter, with a pass-band gain of -40dB, an overshoot peak at 1MHz 

and a rolloff slope of -40dB/dec, approximately. To plot H11 and H21, uM2 was set up 

as Idc and uM1 was an ac current offset with Idc. We switched the setup for 𝑢𝑀1 and 

𝑢𝑀2 to generate the Bode plot of H12 and H22. All the plots generated, as shown in Fig. 

3.8 and Fig. 3.9, agree with our expectation. Note that the minus sign in H12 indicates 

an introduced phase shift of 180 degrees, which is verified by the phase spectrum of H12. 
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Figure 3.8 Magnitude spectra of H11, H21, H12, H22 for a complex filter with fc=1MHz, Q=50. 

 

     
Figure 3.9 Phase spectra of H11, H21, H12, H22 for a complex filter with fc=1MHz, Q=50. 

 

 

Test 2: Image rejection capability 

Typically, a complex filter takes a pair of quadrature signals as input and it is 

capable of distinguishing one frequency component from its image with respect to the 

center frequency. Therefore, the core filter should be able to attenuate the input 

quadrature signal pair in certain phase relationship (𝑢𝑀1 leads/lags 𝑢𝑀2 by 90 degrees) 

to a negligible level while letting the quadrature pair in the opposite phase relationship 

(𝑢𝑀1 lags/leads 𝑢𝑀2 by 90 degrees) pass through. Dual-channel ac input was set up in 

the following simulation to test the image rejection capability of the designed filter. 
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Specifically, 𝑢𝑀1 was set up to lead and lag 𝑢𝑀2 by 90 degrees respectively.  As shown 

in Fig. 3.10, the magnitude and phase spectra suggest that input quadrature pairs with 

𝑢𝑀1 lagging 𝑢𝑀2 by 90 degrees will be attenuated heavily, while the input quadrature 

pairs in the opposite phase relationship will be bandpass filtered in the frequency range 

near 1MHz. The magnitude spectra also indicate that the peak image rejection ratio of 

the filter about -50dB.   

  

   (a)                                                                                 (b) 

Figure 3.10 Gain and phase spectra of the quadrature input signals corresponding to (a) 𝑢𝑀1 

leading 𝑢𝑀2 by 90 degrees and (b) 𝑢𝑀1 lagging 𝑢𝑀2 by 90 degrees. 

 

Test 3: Center frequency and quality factor tunability  

Due to the particular implementation technique we used, the resulting filter is 

supposed to be electronically tunable in both center frequency and quality factor with 

great convenience. In this section, we generated gain and phase spectra of the input 

quadrature signals while sweeping either 𝐼𝑓𝑐 or 𝐼𝑄 over certain range. 
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Test 3.1 Center frequency tunability  

Current sources setup: IQ=5u (Q=50), Ifc: 320u, 410u, 500u, 660u, 720u. 

Test results: 

 

                                                  (a)                                                                 (b) 

Figure 3.11 Gain and phase spectra of (a) the leading input and (b) the lagging input in the center 

frequency tunability test. 

 

Current Setup 
Ifc 320u 410u 500u 660u 720u 

IQ 5u 5u 5u 5u 5u 

Center Frequency 

(Hz) 

u1 640.279k 820.396k 1.001meg 1.321meg 1.441meg 

u2 640.279k 820.396k 1.001meg 1.321meg 1.441meg 

Quality Factor 
u1 32.031 41.024 50.024 65.979 71.962 

u2 32.031 41.024 50.024 65.979 71.962 

Bandwidth (Hz) 
u1 19.990k 19.998k 20.005k 20.017k 20.021k 

u2 19.990k 19.998k 20.005k 20.017k 20.021k 

Peak Gain (dB) 
u1 -0.011 -0.014 -0.018 -0.023 -0.025 

u2 -0.011 -0.014 -0.018 -0.023 -0.025 

Table 3-1 Measurement result from Test 3.1 (u1: the leading input; u2: the lagging input). 

The test results above explicitly verify that the filter’s center frequency is proportional 

to 𝐼𝑓𝑐, the bandwidth is proportional to 𝐼𝑄 and the Q factor is determined by the ratio of 
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𝐼𝑓𝑐 to 𝐼𝑄. Varying 𝐼𝑐 while maintaining 𝐼𝑄 changes the filter’s center frequency and Q 

factor but barely affects its bandwidth. 

Test 3.2 Quality factor tunability  

Current sources setup: Ifc =500u (fc=1MHz), IQ sweeping: 1u, 2u, 5u, 10u, 20u. 

Test results: 

 

                                              (a)                                                                           (b) 

Figure 3.12 Gain and phase spectra of (a) the leading input and (b) the lagging input in the Q 

factor tunability test. 

 

Current 

Setup 

Ifc 500u 500u 500u 500u 500u 

IQ 1u 2u 5u 10u 20u 

Center 

Frequency 

(Hz) 

u1 1.001meg 1.001meg 1.001meg 1.000meg 1.000meg 

u2 1.001meg 1.001meg 1.001meg 1.000meg 1.000meg 

Quality 

Factor 

u1 247.538 124.489 50.009 25.006 12.502 

u2 247.538 124.489 50.009 25.006 12.502 

Bandwidth 

(Hz) 

u1 4.042k 8.037k 20.006k 40.004k 79.966k 

u2 4.042k 8.037k 20.006k 40.004k 79.966k 

Peak Gain 

(dB) 
u1 -0.096 -0.046 -0.018 -0.009 -0.004 

u2 -0.096 -0.045 -0.018 -0.009 -0.004 

Table 3-2 Measurement result from Test 3.2 (u1: the leading input; u2: the lagging input). 
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According to measurement results, Q factor of the filter is inversely proportional to IQ. 

In the tuning of the Q factor, the center frequency stays at 1MHz and the filter’s peak 

gain is consistently close to unity.  

Test 4: Transient tests  

The first transient test run on the combination of the front end modulator and the 

complex filter was to evaluate the signal integrity during the modulation and filtering 

process. In the following image rejection test, another AM signal was generated, which 

is the image of the input signal used in the first test with respect to the core filter’s center 

frequency. The specific test setup, important plots and observation are given below. 

Test 4.1 Front end modulation and complex filtering 

The transient plots and corresponding FFT spectra of the original AM signal, 

modulator output and filter output are plotted. The system input is an AM current signal 

generated by mixing an offset 10kHz sine wave with a 5MHz carrier, plus a dc offset. 

Main components of the input include dc, 4.99MHz, 5MHz and 5.01MHz, as shown in 

Fig. 3.13. The front end modulating frequency was set to be 4MHz, as the designed 

modulator performs sub-heterodyning and the following filter is centered at 1MHz. After 

the modulation, ac components in the received AM signal will be shifted to the sum and 

difference of 5MHz and 4MHz and the dc component will be shifted to 4MHz. Fig. 3.14 

and Fig. 3.15 respectively show the left channel input/output and right channel 

input/output signals of the core filter. According to the core filter setup (fc=1MHz, 

Q=50), it is expected that the filter attenuates frequency components far away from  

1MHz to a negligible level, suppresses the sideband signals at 0.99MHz and 1.01MHz 

by approximately 3dB and provides unity gain to the components at 1MHz.  
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Figure 3.13 FFT spectrum of the input AM signal 

   
Figure 3.14 Transient plots and FFT spectra of the left channel input 𝑢𝑀1 and the corresponding 

output 𝑤1. 

   

Figure 3.15 Transient plots and FFT spectra of the right channel input 𝑢𝑀2 and corresponding 

output 𝑤2. 
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The figures above show that the modulator generates a pair of quadrature signals from 

the AM input and the filter processes the quadrature signals exactly as expected. No 

distortion is observed in the transient plots. Comparing the spectra of the input and 

corresponding output, the average noise level is a little higher after filtering. The 

introduced noise is of a negligible size and mainly distributes near harmonics of 1MHz, 

which might be the computation noise generated by the simulator. 

Test 4.2 Image rejection  

To generate the image counterpart of the above input AM signal, the carrier was 

switched from 5MHz to 3MHz, which is the image of the original carrier with respect to 

4MHz. The new system input is represented by the FFT spectrum below. The AM signal 

is then processed by the front end modulator, which yields two channels of quadrature 

signal, both containing components at dc, 0.99MHz, 1MHz, 1.01MHz, 6.99MHz, 7MHz 

and 7.01MHz. It’s expected that the bandpass filtering function of the complex filter 

(centering at 1MHz) attenuates the components at 6.99MHz, 7MHz and 7.01MHz to a 

negligible level. On the other hand, due to the particular respective phase relationship 

between the components at 0.99MHz, 1MHz and 1.01MHz in the the two channels, all 

of them are supposed to be attenuated heavily. Therefore, both output channels of the 

filter should ideally have no ac component. Fig. 3.17 and Fig. 3.18 respectively show 

the left channel and right channel input, and their corresponding output from the filter. 

The image rejection capability is verified by comparing the output signals in Fig. 3.17 

and Fig. 3.18 to that in Fig. 3.14 and Fig. 3.15. 
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Figure 3.16 FFT spectrum of the input AM signal for the image rejection test, which is the image 

of the input AM signal in Fig. 3.13 about 4MHz. 

  
Figure 3.17 Transient plots and FFT spectra of 𝑢𝑚_𝑀1 , the image signal of 𝑢𝑀1 and its 

corresponding core filter output. 

  
 

Figure 3.18 Transient plots and FFT spectra of 𝑢𝑚_𝑀2, the image of 𝑢𝑀2 and its corresponding 

core filter output.  
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 The Back End Modulator 

Design detail 

This block applies frequency shifting to the core filter output. It consists of an 

interface circuit, a pair of mixers and a current subtractor. The interface acts as both a 

voltage-current converter and a differential signal generator. Connecting the base of the 

output transistors in Fig. 3.7(the two circled transistors) to the base of the two input 

transistors of the interface circuit, the output currents of the core filter are directly 

‘copied’ to the interface circuit. As both input currents have the same dc offset Idc, two 

current sources of 2Idc are used to generate the differential of the input, which is needed 

in the subsequent modulation. The following circuitry is similar to the front end 

modulator and it is able to perform either up conversion or down conversion, depending 

on the setup of local oscillators. Specifically, if 𝐼𝐿𝑂2 has the same frequency as 𝐼𝐿𝑂1 in 

the front end modulator, the backend modulator would generate an up-converted output 

signal, so the system is equivalent to a complex filter. If 𝐼𝐿𝑂2 oscillates at a frequency 

that equals the core filter’s center frequency, then the system is capable of recovering 

the baseband information carried by the received AM signal. Note that the quadrature 

and differential current sources eed to be carefully set up in order to implement the 

expected conversion. Schematic of the modulator is shown in Fig. 3.19, where the output 

is labeled as IOUT and could be expressed as: 

IOUT =
2ILO2_ac∙y1_ac

Idc
−

2 ILO2̃ ∗

_ac∙y2_ac

Idc
+ Idc                      ( 3.16 ) 

where ILO2_ac, y1_ac, ILO2̃
∗

_ac
, y2_ac are ac components in signal ILO, y1, ILO2̃

∗
, y2. 
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Figure 3.19 Schematic of the back end modulator. The notation y1and y2, ILO2, IOUT means 

the two channels of input current, the current generated by local oscillator and offset with Idc, 

and the block output. The symbols ‘~’ and ‘∗’, respectively, stand for the differential and 

quadrature counterpart of a signal. 

 

Simulation setup and results 

Transient simulation was run to test both up-conversion and down-conversion 

performance of the modulator. In the up conversion test, the back end modulating 

frequency was set to be 4MHz, and IOUT is expected to be a bandpass filtered version of 

the input AM signal. Fig. 3.20 shows the transient plots and FFT spectra of the system’s 

input and output. Comparison between the transient plots shows that the introduced 

phase shift to the input sideband signals is approximately 45 degrees. Also, according to 

the parameter setup, the gain contributed by the front end and back end modulators 

together is 0.64. Measurement results labeled on the spectra suggest that the core filter 

in the system provides a peak gain of unity to the components equal or very close to 

5MHz, the gain drops by 3dB at 4.99MHz and 5.01MHz. That is to say, the center 

frequency of the overall system is approximately 5MHz and the quality factor is about 

250. Simulation results from the down conversion test are shown in Fig. 3.21, in which 

the back end modulating frequency was tuned to 1MHz and the phase of all the back end 

0

3Vdc

   

2Idc 2Idc Idc 

Itail ILO2 

IOUT 
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modulating signals was accordingly adjusted. In the spectrum of the recovered baseband 

signal, most energy concentrates at dc and 10kHz, harmonic distortion at a negligible 

level is observed.  

 

Figure 3.20 Transient plots and FFT spectra of the input and output current signals of the static 

synchronous complex filtering system in the up conversion test.  

 

   

Figure 3.21 Transient plots and FFT spectra of the original modulating signal and the output 

signal from the synchronous complex filtering system in the down conversion test.  
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 Overall System Test 

Gain spectrum 

To verify that the synchronous filtering system designed above, when performing 

up conversion in the back end, implements the input-output function of a complex filter, 

we plotted its gain spectrum over certain frequency range. Specifically, the system core 

filter was set up with fc = 1MHz and Q = 50, whose gain spectrum is plotted in Fig. 

3.22(a); the carrier frequency of the system’s AM input was 5MHz and a series of 

baseband signals ranging from dc to 50kHz were used as the information signal. In the 

superheterodyne mode, both the front end and back end modulating frequencies were set 

to be 6MHz; in the subheterodyne mode, they were tuned to 4MHz. The gain spectra 

generated in both modes were plotted in Fig. 3.22(b), and they almost overlap. Compared 

to the spectrum in Fig. 3.22(a), it’s obvious that the synchronous complex filter has 

higher center frequency and higher Q factor. Moreover, the magnitude spectrum of the 

transfer function of a biquad complex filter with fc = 5MHz and Q=250 was plotted too. 

The strong resemblance between the three plots in Fig. 3.22(b) clearly proves the 

functional equivalence between the synchronous filtering system with a low-Q low-

center frequency core filter (fc = 1MHz and Q = 50) and a complex filter with high-Q 

high-center frequency(fc = 5MHz and Q=250). 
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(a) 

      
(b) 

 
Figure 3.22  The gain spectrum of (a) a biquad complex filter with fc = 1MHz and Q = 50, (b) 

a static synchronous complex filter developed with the core filter specified by (a), in both 

subheterodyne mode and superheterodyne mode. The magnitude spectrum of the transfer 

function of a complex filter given by 𝐻11 (𝐻22) in eqn. 3.15, with w0̂ = w𝐴 = 5MHz and Q =
250, is also plotted in (b) as a reference. 

 

Image rejection 

A synchronous complex filter in the subheterodyne mode was tested first. The 

front end and back end modulating frequency was set to be 4MHz. The input currents 

were generated by mixing a baseband information signal at 10kHz with carriers at 5MHz 

and 3MHz respectively, so that they form an image pair with respect to 4MHz. Plots in 

Fig. 3.23(a) and (b) suggest that the synchronous filtering system is able to suppress the 

input signal carried by 3MHz to approximately 45dB lower than the filtered version of 
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the input carried by 5MHz. The filter was then modified into superheterodyne mode and 

its end modulating frequency was still 4MHz. Simulation results in Fig. 3.23 (c) and (d) 

show that the new filter lets the input signal carried by 3MHz pass through while heavily 

suppresses the signal carried by 5MHz, which is excatly opposite to the performance of 

the subheterodyne mode system. Therefore, a synchronous complex filter in either mode 

maintains the image rejection capability, and the subheterodyne synchronous complex 

filter shows slightly stronger image suppression capability. 

   

(a) The AM input carried by 5MHz and the up conversion output from a subheterodyne synchronous complex filter 

 

     

(b) The AM input carried by 3MHz and the up conversion output from a subheterodyne synchronous complex filter 
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(c) The AM input carried by 5MHz and the up conversion output from a superheterodyne synchronous complex filter 

 

      
(d) The AM input carried by 3MHz and the up conversion output from a superheterodyne synchronous complex filter 

 

Figure 3.23 Results from the image rejection test on a static synchronous complex filter with 

front end and back end modulating frequency at 4MHz, in either subheterodyne or 

superheterodyne mode. 

 

 Design of a Dynamic FM Mode Synchronous Complex Filter 

3.2.1 The Mathematical Model  

In this section, we develop a more sophisticated FM mode synchronous filter, 

which is in the same architecture as the system implemented above but with time-varying 
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core filter center frequency and both end modulating frequencies. A dynamic 

synchronous complex filter could be represented by either eqn. (3.17) or eqn. (3.18), 

depending on the front end modulation mode.  

|
w1̇
w2̇

| = |
−w0̂ 2Q̂⁄ −wÂ(t)

−wÂ(t) −w0̂ 2Q̂⁄
| |

w1

w2
| + √2(w0̂ Q̂⁄ ) |

sin(ϕ(t))

cos(ϕ(t))
| u 

y = √2/2|sin(ϕ(t)) cos(ϕ(t))| |
w1

w2
|                         ( 3.17 ) 

|
w1̇
w2̇

| = |
−w0̂ 2Q̂⁄ −wÂ(t)

wÂ(t) −w0̂ 2Q̂⁄
| |

w1

w2
| + √2(w0̂ Q̂⁄ ) |

cos(ϕ(t))

sin(ϕ(t))
| u 

y = √2/2|cos(ϕ(t)) sin(ϕ(t))| |
w1

w2
|                        ( 3.18 ) 

where w0̂ is the dc offset of the time-varying core filter center frequency, Q̂ is the dc 

offset of the time-varying quality factor, while w0̂ Q̂⁄  is time invariant; wÂ(t) is the 

time-varying center frequency of the core filter; eqn. (3.17) represents a subheterodyne 

mode system, where dϕ(t) dt⁄ =  wA − wÂ(t) ; eqn. (3.18) represents a 

superheterodyne mode system, and dϕ(t) dt⁄ =  wA + wÂ(t) ; wA  is the carrier 

frequency of system input u . In principle, a dynamic synchronous complex filter 

maintains the function of the targeted complex filter as long as dϕ(t) dt⁄ =  wA −

wÂ(t)  (subheterodyne) or dϕ(t) dt⁄ =  wA + wÂ(t)  (superheterodyne), but some 

particular variation patterns for wÂ(t)  are preferable if they have the following 

properties: 1) the associated phase angle ϕ(t)  in the modulating signals is simple, 

implementable and conveniently tunable; 2) the synchronized variation of the core filter 

center frequency and the modulating  frequencies makes the system superior to its static 

counterpart in noise performance. Taking these concerns into consideration, two types 
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of wÂ(t) are proposed here. One pattern of our interest is the sinusoidal waveform. 

Recall that the core filter center frequency is proportional to the center frequency control 

current “Ifc”, so to realize the sinusoidal center frequency specified by eqn. (3.19), we 

only need to set up the control currents as given by eqn. (3.20). The phase angle ϕ(t) of 

the modulating signals is accordingly derived as eqn. (3.21).      

wÂ(t) = w0 + ∆w0sin (wvart)                    ( 3.19 ) 

Ifc(t) = Ios + (
∆w0

w0
)Ios sin(wvart)                                 ( 3.20 ) 

ϕ(t) = wMt − (
∆w0

wvar
)cos (wvart)       ( 3.21 ) 

where w0 is the offset component in the time-varying center frequency, ∆w0 represents 

the center frequency variation range, wvar is the variation rate; Ios = CVTw0 and C is the 

value of the capacitors in the filter.  

The other proposed pattern of wÂ(t) is the square waveform. Suppose that the 

dc offset of the core filter’s time-varying center frequency is w0, the variation range is 

w0 ± ∆w0 and the switching rate is wvar , then the control current Ifc(t) should be a 

square waveform at frequency wvar, with peak value of (
∆w0

w0
)Ios and an offset of Ios. 

The phase angle ϕ(t) in synchronization with  wÂ(t) is derived as the sum of w0t and a 

triangle waveform at frequency wvar  with peak-to-peak value of (π∆w0)/wvar . 

Moreover, an offset component, ϕ0, may be added to ϕ(t) to specify the phase angel 

initial condition.   
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(a) 

 

(b) 

Figure 3.24 Graphical representation of the modulating signal phase angle and the core filter 

center frequency in a dynamic synchronous complex filter. (a) The sinusoidal variation pattern. 

(b) The square waveform variation pattern. 

 

3.2.2 Overall System Test 

Dynamic synchronous complex filters with core filter center frequency varying 

in both patterns were set up in Pspice, where ideal programmable blocks were used to 
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implement the time-varying center frequency for the core filter and the time-varying 

modulating frequencies. The following tests were run to evaluate the system up/down 

conversion performance, image rejection capability and input-output function in certain 

frequency range. 

Up/down conversion  

Take a dynamic synchronous complex filtering system in subheterodyne mode 

for instance. The system was tested with different center frequency variation rate and 

variation range. Table 3.3 lists the specific test setup. Fig. 3.25 shows the output signal 

spectra from the up conversion test and Fig. 3.26 gives both transient plots and FFT 

spectra of the down conversion system output. A static subheterodyne synchronous 

complex filtering system was simulated too, to provide a reference to evaluate the 

performance of the dynamic systems. 

 

Table 3-3 Parameter setup for the up/down conversion test on a dynamic synchronous complex 

filtering system. 

 

Simulation results suggest: 1) Regardless of the variation rate and variation range, 

the amplitude of useful signals in the dynamic system output is very close to its static 

system counterpart, but the dynamic system output contains more spurious noise due 

mainly to the intermodulation between the modulated input signal and the time-varying 

core filter center frequency. 2) When set up with the same variation rate and variation 

range, a square waveform center frequency variation pattern produces higher 

5MHz (0.1A)

4MHz 

1MHz

4MHz (up conversion)

1MHz(down conversion)

1.6 Gain of the back end modulator 0.8 (up conv.) /1.6(down conv.)Gain of the front end modulator

AM input carrier frequency AM input modulating frequency dc(1mA)+10KHz (0.5mA)

Front end modulating frequency offset Core filter center frequency variation rate 16KHz,80KHz,200KHz

Core filter center frequency offset Core filter Q-factor offset 50

Back end modulating frequency offset Core filter center frequency variation range
1MHz±400KHz

1MHz±800KHz
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intermodulation distortion than a sinusoidal variation pattern does, which might be due 

to the periodic instantaneous level transitions in the former pattern. 3) The size of the 

noise components is related to the variation rate, and it was discovered through sweeping 

the variation rate that if the core filter’s static time constant is τ, then a variation rate 

lower than 1 τ⁄  typically produces an output with higher intermodulation distortion. For 

example, comparing Fig. 3.25 (b) and Fig. 3.25(c), we found that the intermodulation 

noise corresponding to the center frequency varying in a sinusoidal waveform at 16kHz 

is about four times higher than its counterpart corresponding to a rate of 80kHz, which 

is slightly higher than 1 τ⁄  of the system under test; the 200kHz variation rate further 

lowers the intermodulation distortion, as shown in Fig. 3.25(d). 4) Widening the 

variation range from 1MHz ± 400KHz  to 1MHz ± 800KHz  doubles the size of the 

intermodulation distortion, so a proper variation range is also critical for the dynamic 

system to produce a cleaner output. 

 

(a) Input signal and the output from a static complex filter 
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(b) Up conversion output signals from a dynamic system with different center frequency variation patterns 

but the same variation rate and variation range: fvar = 16KHz and fdev = 400KHz. 

 

 
(c) Up conversion output signals from a dynamic system with different center frequency variation patterns 

but the same variation rate and variation range: fvar = 80KHz and fdev = 400KHz. 
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       (d) Up conversion output signals from a dynamic system with different center frequency variation  

          patterns but the same variation rate and variation range: fvar = 200KHz and fdev = 400KHz. 

 

    
      (e) Up conversion output signals from a dynamic system with different center frequency variation 

patterns but the same variation rate and variation range: fvar = 200KHz and fdev = 800KHz. 

 

Figure 3.25 FFT spectra of output signals from the dynamic synchronous complex filters under test. 
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For the down conversion test, only the output signals from the dynamic systems 

with fvar = 16KHz and fdev = 400KHz are shown in Fig. 3.26, as this setup yields the 

noisiest output in the up conversion test. The transient plot of the recovered signal from 

the dynamic synchronous system employing either center frequency variation pattern is 

almost identical to its static system counterpart. FFT spectra show some intermodulation 

distortion in the dynamic system output, which is at a negligible level. 

   

Figure 3.26 Down conversion test output signals from a static complex filter and a dynamic filter 

with different center frequency variation patterns. 
 

Image rejection  

If a subheterodyne mode complex filter has the front end and back end 

modulating frequency at 4MHz, then any input signal carried by 3MHz will be 

attenuated heavily due to the filter’s image rejection property. To verify that the 

developed dynamic complex filter also possesses such a capability, a transient test was 

set up as Table 3.4. We ran the test on both the subheterodyne and superheterodyne mode 

dynamic synchronous complex filters, with the core filter center frequency varying in 

sinusoid/square waveform pattern and at different rates. According to the simulation 
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results in Fig. 3.27, a properly synchronized dynamic complex filter of either mode 

maintains the capability of suppressing image signals, and a subheterodyne filter has 

slightly stronger image rejection capability. 

 

Table 3-4 Parameter setup for the image rejection capability test on the dynamic synchronous 

complex filtering systems. 

 
Transient plots                    FFT spectra 

       
Transient plots                    FFT spectra 

(a) Up conversion result from dynamic complex filters with sinusoid or square waveform center frequency 

variation pattern both of fvar = 16KHz  and fdev = 400K Hz. The output plots in the upper group 

correspond to a subheterodyne system and those in the lower group correspond to a superheterodyne 

system. In each group, the blue plot corresponds to the sinusoidal center frequency variation pattern and 

the red one corresponds to the square waveform center frequency variation pattern. 

3MHz

4MHz(subht)/2MHz(superht)

1MHz

Back end modulating frequency offset 4MHz(subht)/2MHz(superht) Core filter center frequency variation range 1MHz±400KHz

Front end modulating frequency offset Core filter center frequency variation rate 16KHz,200KHz

Core filter center frequency offset Core filter Q-factor offset 50

AM input carrier frequency AM input modulating frequency 10KHz
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Transient plots                    FFT spectra 

      

Transient plots                    FFT spectra 

 (b) Up conversion result from dynamic complex filters with sinusoid or square waveform center 

frequency variation pattern both of fvar = 200KHz and fdev = 400KHz. The output plots in the upper 

group correspond to a subheterodyne system and those in the lower group correspond to a superheterodyne 

system. In each group, the blue plot corresponds to the sinusoidal center frequency variation pattern and 

the red one corresponds to the square waveform center frequency variation pattern. 

 

Figure 3.27 Results from the image rejection test on the dynamic synchronous complex filters. 

The input is the image of the signal shown in Fig. 3.25 (a), about the modulating frequency of 

4MHz.  
 

The gain spectra 

To show the frequency response of the impelemented dynamic synchronous 

complex filter, gain spectra of the system in both superheterodyne mode and 

subheterodyne mode were generated. In each mode, both the sinusoidal center frequency 

variation pattern and the squae waveform center frequency variation pattern were tested. 
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Related parameter setup is listed in Table 3.5, where the variation rate and variation 

range were randomly picked. 

    

Table 3-5 Parameter setup for the frequency test on dynamic synchronous complex filters in 

different modulation modes and with different center frequency variation patterns. 

 

According to Fig. 3.28, dynamic complex filters of the same mode have almost 

identical frequency responses regardless of their different center frequency variation 

patterns. However, when set up with the same variation pattern, the gain spectrum of a 

superheterodyne mode dynamic filter is a little different from its subheterodyne 

counterpart, which might be due to the non-ideal synchronization between the 

modulating frequency and the core filter center frequency. The magnitude spectrum of 

the transfer function for the target complex filter (fc=5MHz, Q=250) was plotted out as 

a reference. Interestingly, in lower frequency range, the gain spectra of the 

subheterodyne systems almost overlap with the reference plot and their superheterodyne 

counterpart are slightly off; as the frequency approaches 5MHz and gets higher, the 

opposite scenario is observed. It’s possible that the equivalent center frequency of the 

dynamic complex filter under test was slighly lower than 5MHz when it’s in the 

subheterodyne mode and a little higher than 5MHz when it’s in the superheterodyne 

mode. 
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Figure 3.28 Frequency response of the dynamic synchronous complex filters under test 

 

 Summary 

This chapter discusses in detail the state space representation, log-domain 

implementation and function verification of both static and dynamic FM mode 

synchronous complex filters. An FM mode synchronous filter is either superheterodyne 

or subheterodyne, depending on the relationship between the input carrier frequency and 

the system front end modulating frequency. The two types of filters have quadrature 
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modulating pairs with different relative phase angels as well as frequencies. Table 3.6 

lists the ideal modulating signal pairs for FM mode synchronous filters of both types to 

perform up/down conversion.  

 

Table 3-6 Ideal front end and back end quadrature modulating signal setup for an FM mode 

synchronous complex filter to perform up/down conversion. 

 

While the architecture of a static FM mode synchronous complex filter relieves 

the challenge of implementing complex filters with high Q factor and high center 

frequency, the dynamic filters in the same architecture and with a time-varying center 

frequency synchronized by both end modulating frequencies provide a potential solution 

to reducing the in-filter single-tone noise in a certain frequency range. Both sinusoid and 

square waveform center frequency patterns of different variation rates and ranges have 

been tested on a noiseless filtering system in this chapter. It was discovered that a 

dynamic synchronous complex filter tends to generate some intermodulation distortion 

due to the periodic variation in the center frequency, so it’s a little noisier than its static 

counterpart in general. Such distortion, fortunately, could be lowered to a negligible 

level by properly setting up the time-variant center frequency. For a noiseless system, 

it’s preferable to vary the center frequency in a sinusoidal pattern, at variation rates 

higher than the inverse of the core filter’s static time constant and in a range no larger 

Front end modulator

Up 

Conversion

Down 

Conversion

Superheterodyne

Subheterodyne

Input: p(t)·carrier

Back end modulator

Up 

Conversion

Down 

Conversion

Back end modulatorFront end modulator

𝑠𝑖𝑛(𝑤𝑀𝑡 −  𝑐𝑎𝑟𝑟𝑖𝑒𝑟)

−𝑐𝑜𝑠(𝑤𝑀𝑡 −  𝑐𝑎𝑟𝑟𝑖𝑒𝑟)

𝑠𝑖𝑛 (𝑤0𝑡 −  𝑐𝑎𝑟𝑟𝑖𝑒𝑟)

−𝑐𝑜𝑠 (𝑤0𝑡 −  𝑐𝑎𝑟𝑟𝑖𝑒𝑟)

𝑠𝑖𝑛 (𝑤𝑀𝑡)

−𝑐𝑜𝑠(𝑤𝑀𝑡)

𝑠𝑖𝑛(𝑤𝑀𝑡)

𝑐𝑜𝑠(𝑤𝑀𝑡)

𝑠𝑖𝑛 (𝑤𝑀𝑡 −  𝑐𝑎𝑟𝑟𝑖𝑒𝑟)

𝑐𝑜𝑠(𝑤𝑀𝑡 −  𝑐𝑎𝑟𝑟𝑖𝑒𝑟)

−𝑠𝑖𝑛 (𝑤0𝑡 +  𝑐𝑎𝑟𝑟𝑖𝑒𝑟)

𝑐𝑜𝑠 (𝑤0𝑡 +  𝑐𝑎𝑟𝑟𝑖𝑒𝑟)

𝑝 𝑡 = 1+ 0.5cos (𝑤𝑠𝑖𝑔𝑡 +  𝑠𝑖𝑔) 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 = cos (𝑤𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑡+  𝑐𝑎𝑟𝑟𝑖𝑒𝑟)

(𝑤𝑀 = 𝑤𝑐𝑎𝑟𝑟𝑖𝑒𝑟+𝑤0)

(𝑤𝑀 = 𝑤𝑐𝑎𝑟𝑟𝑖𝑒𝑟 − 𝑤0)

𝑤0: Center frequency of the core filter𝑤𝑀 : System front end modulating frequency
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than one half of the core filter’s static center frequency. Take the test results in section 

3.2.2 for instance, for the dynamic synchronous complex filter with original center 

frequency at 1MHz and original Q factor of 50, a sinusoidal center frequency variation 

pattern at 200KHz and in the range of 1MHz±400KHz enables the system to generate 

the lowest intermodulation distortion. Systems with the core filter center frequency 

varying as a square waveform consistently generate larger intermodulation distortion 

and the noise size is much less sensitive to the change of the variation rate and range. 

Noise performance tests on the FM mode synchronous complex filters will be 

demonstrated in Chapter 4.  
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 Noise Performance of the Developed Filtering Systems  

Previous chapters have discussed the basic idea, state-space representation, 

circuit implementation and functional verification of synchronous filtering systems in 

both AM mode and FM mode. Although a synchronous filter is more complicated and 

harder to implement, it has higher flexibility in the system parameter configuration. For 

example, there are in principle infinite ways for an AM mode synchronous bandpass 

filter to vary its core filter Q factor while maintaining its external transfer function and 

linearity. An FM mode synchronous complex filter could perform either subheterodyne 

or superheterodyne modulation, with a dynamic FM mode synchronous complex filter 

having its time dependent core filter center frequency varying in any waveform. Given 

these freedoms, it’s expected that some variation patterns would effectively improve the 

noise performance of the filtering system. In this chapter, we will focus on exploring 

noise reduction methodologies in the context of synchronous filtering, utilizing the 

filters introduced in Chapter 2 and Chapter 3 as research objects. Ideal Gm-C system 

models will be simulated in the preliminary tests to exclude all the non-idealities in the 

transistor-level circuits and help us develop a better understanding on the effectiveness 

of the designs under test. Systems related to AM mode synchronous filtering will be 

tested first, followed by the tests on the FM mode synchronous complex filters that have 

higher circuit complexity and more degrees of freedom in the parameter setup. 

 Noise Tests on the AM mode Filtering Systems  

A Review on the Systems under Test 

The idea of AM mode synchronous filtering could be generalized as follows: a system 

specified by eqn. (4.1) implements the same transfer function as the system represented  
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by eqn. (4.2) does, as long as 𝑝(𝑡) is always non-zero. 

d

dt
w̅ = (A +

ṗ

p
I) w̅ + b̅pu,      y =

1

p
c̅Tw̅                         ( 4.1 ) 

   ẋ̅ = A x̅ + bu,      y = c̅Tx̅ + du                                      ( 4.2 )     

Applying eqn. (4.1) to a standard second-order bandpass filter that is represented by eqn. 

(4.3), we come up with the state space equations in eqn. (4.4).  

|
x1̇

x2̇
| = |

−
w0

Q
−w0

w0 0
| |

x1

x2
| + |

w0

Q

0
| u ,  y = |1 0| |

x1

x2
|                    ( 4.3 ) 

|
w1̇
w2̇

| = |
−

w0

Q
+

p(t)̇

p(t)
w0

−w0
p(t)̇

p(t)

| |
w1

w2
| + |

w0

Q

0
| p(t)u ,  y =

1

p(t)
|1 0| |

w1

w2
|         ( 4.4 ) 

The block diagrams of the systems corresponding to eqn. (4.3) and eqn. (4.4) are given 

in Fig. 4.1. In the second block diagram, the core filter modified by 
𝑝(𝑡)̇

𝑝(𝑡)
 has a time-

variant Q factor. Amplitude modulators that scales the signal at the front end and back 

end, respectively with 𝑝(𝑡) and 
1

p(t)
, work in a synchronized mode with the time-varying 

Q factor and ensure the overall system to be equivalent to System 1 in the input-output 

characteristics. 

Based on the AM mode synchronous filter functionally equivalent to System 1, 

we developed System 2 by redefining the system input and output. Specifically, suppose 

u(t) is a carrier and p(t) a properly offset baseband signal that is consistently positive, 

then the front end modulator output u(t)p(t) in the synchronous filter could be viewed 

as an AM signal, which we take as the input of System 2; also, suppose we were able to 

generate the ideal 
ṗ(t)

p(t)
 to continuously vary the Q factor of the core filter; moreover, if 
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we intentionally get rid of the back end modulating block and directly take the core filter 

output as the output of System 2, then according to eqn. (4.4), it could be expressed as 

𝑦 ∙ 𝑝(𝑡) , which is the product of the bandpass filtered carrier u(t) and the original 

baseband signal 𝑝(𝑡). It reveals an appealing property of System 2: as long as the core 

filter is centered at the input carrier frequency, regardless of its Q factor, the sideband 

signals in the system output would always have amplitude and phase very close to that 

of the input sideband signals.  

However, it’s almost impossible to generate the ideal Q-factor control signal 
ṗ(t)

p(t)
 

at the receiver end, as we typically have to reconstruct the information signal from the 

received AM signal. The recovered information signal, call it p̂(t) , always lags the 

original p(t) due to the bandpass filtering and lowpass filtering in a conventional AM 

receiver. In the novel demodulator proposed in Chapter 2, an S/H block performing ideal 

sampling was utilized to extract the envelope of the bandpass filter output, so as to 

minimize the phase difference between p̂(t) and p(t). Although p̂(t) still lags p(t) due 

to the bandpass filtering, simulation results have shown that when processing a noiseless 

AM signal, System 3 in Fig. 4.3, of which the core filter bandwidth is controlled by the 

feedback signal  
p̂(t)̇

p̂(t)
, could produce an output very similar to what is produced by System 

2. The noise performance of such a feedback filtering system is of our great interest.  

Considering the challenge in implementing the S/H block that performs ideal 

sampling in System 3, we created System 4 that provides a much easier way to recover 

the information signal. Recall that the FM mode complex filtering system discussed in 

Chapter 3 comprises a core filter and two terminal modulators, of which the back end 
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modulator could perform either up conversion or down conversion without introducing 

extra phase shift if the local oscillators were properly set up. As the transfer function of 

a second-order complex filter is very similar to that of a standard biquad bandpass filter, 

we believe that a synchronous complex filter could easily be modified into a feedback 

filtering system as an alternate of System 3, shown in Fig. 4.4. System 4 might have 

improved noise performance because of its particular demodulator that produces less 

high-frequency noise components than the S/H block. 

 

                         

                          System 1                      An AM mode synchronous bandpass filter functionally 

                  equivalent to System 1 (p(t)>0 or p(t) <0) 

 

Figure 4.1 Block diagrams of the systems specified by eqn. (4.3) and eqn. (4.4). 

 

 

System 2 

Figure 4.2 A biquad bandpass filter with time-variant Q factor processing an AM input signal. 
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System 3 

Figure 4.3 Block diagram of a feedback filtering system inspired by System 2. 

 

 

 

System 4 

Figure 4.4 Block diagram of a feedback filtering system developed with a synchronous complex 

filtering system. 

 

At this point, we have finished reviewing the block diagrams of all the systems 

related to AM mode synchronous filtering. Their ideal Gm-C models are now produced 

as follows. Fig. 2.21 in Chapter 2 has given a Gm-C network realization of System 3 

based on transforming the modified state space representation of the AM mode 

synchronous bandpass filter represented by eqn. (4.4). Models for System 1 and System 
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2 are easily developed by trimming and modifying the design in Fig. 2.21. Fig. 4.5 

illustrates the ideal models for System 1, 2 and 3.  

 
System 1 

 

 
System 2 

 

 
System 3 

Figure 4.5 Ideal voltage-mode models for System 1 ~ System 3 with the core filter implemented 

by a Gm-C network. 



116 

 

The same approach used in implementing System 3 was used to develop the Gm-

C model for System 4. Taking a complex filtering system in the superheterodyne mode 

for instance, the modified core filter is specified in eqn. (4.5). A back end down converter 

is required so that the output could be taken as the source to generate the Q-factor control 

signal. 

|
x1̇

x2̇
| = |

−
w0

2Q
+

ṗ̂

p̂
 −w0

w0 −
w0

2Q
+

ṗ̂

p̂
 
| |

x1

x2
| + (w0 Q⁄ ) |

   sin(wM1t)

−cos(wM1t)
| v         ( 4.5 )        

  yupconversion
= |sin(wM1t) −cos(wM1t)| |

x1

x2
| 

ydown_conversion = |cos(w0t)     sin(w0t)| |
x1

x2
| = p̂(t) 

where v is the system input and could be represented as 𝑣 = 𝑢(𝑡) ∙ 𝑝(𝑡) in our test, with 

𝑢(𝑡)  being the carrier and 𝑝(𝑡)  the useful information signal; 𝑤𝑀1  is the front end 

modulating frequency which is higher than the input carrier frequency for the 

superheterodyne modulator; w0 is the center frequency of the core filter which equals 

the difference between 𝑤𝑀1 and the input carrier frequency. The reconstruction of the 

information signal 𝑝̂(t)  is performed by the down converter specified by the last 

equation above. Now let us rewrite the state space equations and make relevant definition 

to associate the core filter with a Gm-C network: 

|
Cx1̇

Cx2̇
| = |

g11 g12 
g21 g22 

| |
x1

x2
| + gu |

   sin(wM1t)

−cos(wM1t)
| v    

where g11 = C(−
w0

2Q
+

ṗ̂

p̂
 ), g12 = C(−w0), g21 = Cw0, g22 = C(−

w0

2Q
+

ṗ̂

p̂
 ), gu = C

w0

Q
. 

A possible implementation of the system is given in Fig. 4.6 where all the components 

and blocks are ideal. For demonstration simplicity, only the back end down converter is 
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shown in the figure. The ‘Feedback On/Off Control’ block models a switch that allows 

us to determine when to send back the Q-factor control signal. When turned off, the 

system models an open-loop complex filter. Moreover, to implement System 2 with a 

complex filter, we only need to break the feedback loop at the demodulator output and 

apply the ideal voltage signal 𝑝(𝑡) across the capacitor C. 

 

Figure 4.6 Ideal voltage-mode model for System 4 with the core filter implemented by a Gm-C 

network. 

 

 Noise Performance Test 

The noise performance of System 1 to System 4 are evaluated by stimulating 

them with two types of noise sources: the input noise and the in-filter noise.  

1. Noisy input and noiseless system 

We started off with testing the response of all the systems to a noisy AM input, 

which was generated by superimposing a white noise voltage signal onto an ideal AM 

voltage signal. MATLAB was used to generate the data file of the noise, which could be 

read and converted by PSpice. Test parameters are listed in Table 4-1. 
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Input (v) 

u(t)=p(t)m(t)+noise 

p(t)=1m+(0.5m) sin(2π(10K) t) 

m(t)=sin(2π(1Meg) t) 

White noise: zero mean, 0.2mV RMS 

Biquad Bandpass Filter Q=50 or 500, fc=1MHz 

S/H Block 
Switching rate=1MHz, ON time=1ns 

ON resistance=1mΩ, OFF resistance=1MegΩ 

 

Table 4-1 Parameter setup for the noise test on the bandpass filters and related AM mode filtering 

systems. 

 

1) Test on System 1 and System 2  

According to the state space representation of System 2, if the center frequency 

of the core filter is tuned to equal the input carrier frequency, then the ideal Q-factor 

control signal 
ṗ(t)

p(t)
 will enable System 2 to suppress the input noise to the same level as 

System 1 does while maintaining the size and phase of the input sideband signals. To 

verify this feature of System 2, a noisy AM signal was fed through System 1 and System 

2, the core filter output and the S/H output were plotted in Fig. 4.7 and Fig. 4.8. 

Comparison shows that the noise floor of the core filter output from System 2 almost 

overlaps that from System 1, while the sideband signals in System 2 output are 

approximately 3dB higher than their System 1 counterpart. Also, Fig. 4.8 shows that the 

S/H demodulator output from System 2 nearly overlaps with the original modulating 

signal p(t). The simulation results suggest that System 2 is capable of suppressing the 

input noise like a standard biquad bandpass filter while letting the input sideband signals 

pass through with little attenuation or phase shift, so System 2 yields an output with 

higher SNR than System 1 does when processing a noisy AM signal. By comparing the 
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core filter output to the S/H block output, we are convinced that the S/H block is able to 

reconstruct the baseband signal without introducing extra phase shift or undesired noise, 

therefore, the baseband noise level of the recovered signal is also a good representation 

of the core filter output noise level near the center frequency.  

  

Figure 4.7 Transient plots and FFT spectra of the noisy AM input and the core filter output of 

System 1 and System2. (Q=50, fcenter = 1MHz for both core filters) 

 

   

Figure 4.8 Transient plots and FFT spectra of the recovered information signal from System 1 

and System2 corresponding to a noisy AM input. (Q=50 for both core filters) 
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Moreover, according to the derived expression for the output of System 2, the 

system is expected to have another appealing noise performance: after getting centered 

at the carrier frequency, the core filter could in principle be tuned as sharp as needed, so 

that the undesired input noise components will be heavily suppressed; since the 

amplitude and phase of the useful input sideband signals will be maintained regardless 

of the core filter’s original Q factor, the output SNR will be greatly improved. To verify 

this expectation, we raised the original Q factor to 500 for the core filters in both systems 

and drove them with the same noisy AM input. Because of the sharpened core filter, the 

output noise floors in Fig. 4.9 and Fig. 4.10 are obviously lower than that in Fig. 4.7 and 

Fig. 4.8. While the useful input sideband signals get heavily attenuated by System 1, 

they magically pass through System 2 almost unchanged. Therefore, if an ideal Q-factor 

control signal were available, System 2 could produce an output with very high SNR.  

   

Figure 4.9 Transient plots and FFT spectra of the noisy AM input and the core filter output of 

System 1 and System2. (Q=500 for both core filters) 
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 Figure 4.10 Transient plots and FFT spectra of the recovered information signal from System 1 

and System2 corresponding to a noisy AM input. (Q=500 for both core filters) 

 

2) Test on System 3 

It has been verified in Chapter 2 through simulation that when the AM input is 

noiseless, System 3 reconstructs a baseband signal which is very similar to the original 

information signal in both amplitude and phase. However, when receiving a noisy AM 

signal, the recovered information signal, p̂(t), is noisy too, it is hence unobvious whether 

the Q-factor control signal generated with the noisy p̂(t) is still capable of yielding a 

feedback filter which has the noise reduction capability comparable to that of System 2. 

System 3 with the original Q factor of 50 and 500 was tested with the above noisy AM 

signal, and related output signals were plotted in Fig. 4.11 and Fig. 4.12.  
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Figure 4.11 Transient plots and FFT spectra of the noisy AM input and the core filter output 

from System 3. (Q=50 and Q=500) 

 

  

Figure 4.12 Transient plots and FFT spectra of the S/H output from System 3 (Q=50 and Q=500). 

FFT spectra of the core filter output suggest: 1) The input noise is not suppressed 

by System 3 as hard as it is by System 1 and System 2. 2) Noise peaks are observed 
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appearing in pairs in the core filter output, symmetric about the filter’s center frequency. 

Moreover, the system with a higher original Q factor generates more distortion and 

higher noise peaks that distribute closer to the center frequency. The noise components 

near 1MHz in the core filter output are shifted into the base band after demodulation, as 

shown in Fig. 4.12, which results in a noisy recovered information signal. 3) The core 

filter in System 3 produces larger-sized sideband signals than the core filter in System 2 

does, which might be caused by the noisy feedback signal. The recovered information 

signal from System 3 has larger amplitude than its System 2 counterpart too. However, 

due to the introduced large-sized distortion, the output SNR of System 3 is much lower 

than that of System 2. Moreover, when processing a noisy AM signal, the noise 

performance of System 3 is even inferior to that of System 1, and a sharper core filter 

tends to result in more noise in the frequency range of our interest hence further lowers 

the system output SNR.     

As the cause to the noise components in the core filter output is obscure, we did 

a set of trial-and-error simulation in an effort to search for some solutions to alleviate 

this situation. Specific setup and test results are given below. The same noise source 

used above was added to the input signals in all the tests.  

Sweeping the frequency of 𝑝(𝑡) 

In this test, we set up the core filter with original Q factor of 500 and center 

frequency of 1MHz. The input modulating frequencies under test were 500Hz, 1kHz, 

5kHz and 15kHz. The FFT spectra in Fig. 4.13 suggest that the noise level and noise 

peak of the core filter output have very little dependence on the bandwidth of the input 



124 

 

signal. As the modulating frequency increases, the intermodulation noise becomes 

higher and more noticeable, degrading the output SNR. 

 

Figure 4.13 FFT spectra of the core filter output from System 3 corresponding to AM input 

signals of different bandwidths. ( Original Q=500) 

 

Varying the original Q factor of the core filter 

Having excluded the effect of the input signal bandwidth, we swept the original 

Q factor of the core filter in this test. The core filter was still centered at 1MHz and the 

Q factor was tuned to 20, 100 and 200 respectively. The modulating signal of the AM 

input was set to be 10kHz, so Fig. 4.11 could also be used in the output comparison. The 

spectra in Fig. 4.14 and Fig. 4.11 reveal that System 3 with a smaller original Q factor 

produces lower noise peaks that are further away from the center frequency while a high 

Q factor raises the distortion components and pushes them toward the center frequency. 

The recovered signal from the system with a sharper original core filter usually has a 
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higher baseband noise floor hence lower SNR. The test results again indicate that when 

dealing with a noisy AM input, System 3 does not possess the appealing input noise 

suppression capability as System 2 does, due mainly to the noisy feedback Q-factor 

control signal. 

 

Figure 4.14 FFT spectra of System 3 core filter output (original Q=20, 100, 200). 

 

Adding a lowpass filter behind the S/H block  

Furthermore, we tried adding a lowpass filter between the S/H block and the 

control signal generator, expecting it to attenuate the noise in the recovered signal and 

make the feedback Q-factor control signal less noisy. The system centering at 1MHz 

with an original Q factor of 100 followed by a first-order lowpass filter was tested. The 

filter’s cutoff frequency was set to be 20kHz, 50kHz, 100kHz and 500kHz in the test.  
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Figure 4.15 FFT spectra of the core filter output from the modified System 3 where a first-order 

LPF is put behind the demodulator. Cutoff frequencies under test are 20kHz, 50kHz, 100kHz 

and 500kHz. (Original Q=100) 

 

Comparing the spectra in Fig. 4.15 to the second spectrum in Fig. 4.14, we 

discovered that the inserted lowpass filter suppresses the core filter output noise floor at 

the cost of introducing undesired harmonic distortion of large size, and the filter with 

lower cutoff frequency yields higher in-band noise floor and larger sideband information 

signals in the core filter output. It might because the Q-factor control signal is very 

sensitive to the phase change in the baseband signal with which it’s generated, any phase 

shift caused by the lowpass filter deforms the Q-factor control signal and degrades the 

output SNR. As it is very hard to determine the cutoff frequency to make a good tradeoff 

between the reduction of output noise and the rise of output harmonic distortion, 

inserting a lowpass filter in the feedback path does not seem to be an effective way to 

improve the system noise performance.  
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Utilizing an assistant bandpass filter 

In this experiment, another bandpass filter of the same type as the core filter is 

employed to help produce a less noisy Q-factor control signal for the core filter. Block 

diagram and circuit model of the proposed design are given in Fig. 4.16 and Fig. 4.17. 

In the first test, we utilized a noiseless AM signal as input to explore a proper setup for 

𝑄𝑐𝑜𝑟𝑒 and 𝑄𝑐𝑡𝑟𝑙 so the sideband signals in the core filter output have amplitude close to 

that of the input sideband signals. As shown in the table below, the system input was an 

AM signal carried by 1MHz and has a bandwidth of 20kHz, the two filters are both 

centered at 1MHz. We stuck with 𝑄𝑐𝑜𝑟𝑒 = 50 while swept the assistant filter’s Q factor, 

and plotted related output signals from each case. 

Input (v) 

u(t)=p(t)m(t) 

p(t)=1m+(0.5m)sin(2π(10k) t) 

m(t)=sin(2π(1Meg) t) 

Core Bandpass Filter 𝑄𝑐𝑜𝑟𝑒=50, fc=1MHz 

Assistant Bandpass Filter 𝑄𝑐𝑡𝑟𝑙=5, 20, 50, 100, 200 , fc=1MHz 

 

 

Figure 4.16 A two-filter system derived from the feedback system for processing noisy AM 

signals. 
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Figure 4.17  Ideal Gm-C model for the two-filter system in Fig. 4.16. 

 

Shown in Fig. 4.18 (a), as the ratio of 𝑄𝑐𝑜𝑟𝑒 to 𝑄𝑐𝑡𝑟𝑙 decreases from 10 to 0.25, 

the harmonic distortion in the core filter output consistently drops, however, the 

amplitude of the output sideband signals increases at first, hitting a peak value even 

higher than that of the input sideband signals when the ratio is around 2.5, and then 

consistently decreases. Fig. 4.18(b) suggests that the recovered signal from the two-filter 

system always lags the original modulating signal regardless of the ratio, and a lower 

ratio results in a larger phase shift. We screened out the combination of 𝑄𝑐𝑜𝑟𝑒 = 50  and 

 𝑄𝑐𝑡𝑟𝑙 = 200 as it yields an output with sideband signals lower than the input sideband 

signals. For the rest combinations, the lower the ratio of 𝑄𝑐𝑜𝑟𝑒 to 𝑄𝑐𝑡𝑟𝑙, the higher the 

core filter output SNR is. In the following noisy input test where the AM signal was 

added with white voltage noise of 0.2mVrms, the system was set up with 𝑄𝑐𝑜𝑟𝑒 =

50 𝑎𝑛𝑑 𝑄𝑐𝑡𝑟𝑙 = 5, 20, 50, 100  respectively, and the output signals in Fig. 4.19 were 

compared to evaluate the system noise performance. 
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 According to Fig. 4.19(a), the core filter output from the two-filter system does 

not contain any undesired additional noise components as the feedback filter output does 

(Fig. 4.12). Different combinations of Qcore and Qctrl  yield a filtering system with 

different noise suppression capability, and a rough comparison suggests that the system 

with higher 𝑄𝑐𝑡𝑟𝑙 applies stronger attenuation to the out-band noise. To better evaluate 

the noise performance of the system, we normalized the 10kHz component in the 

recovered signals to 0.5m, as shown in Fig. 4.19(b). Comparison between the resulting 

FFT spectra reveals that the system’s capability in suppressing the input white noise 

depends mainly on the smaller one in Qcore and Qctrl: when Qctrl is lower than Qcore, a 

higher Qctrl  yields a lower output noise floor; if Qctrl  is already higher than Qcore , 

tuning Qctrl too high would raise the in-band noise floor while only slightly lower the 

out-band noise floor. To demonstrate this property more clearly, Fig. 4.19(c) gives the 

FFT spectra of the normalized recovered signal from the systems set up with Qcore =

50 and Qctrl = 10, 50, 200, 500. Fig. 4.19(d) is a zoomed-in version of the spectra in 

Fig. 4.19(c) (without the one corresponding to Qctrl = 10) and the FFT spectrum of the 

normalized recovered signal from an open loop biquad bandpass filter with Q =50. It 

indicates that a higher Qctrl  makes the two-filter system with the out-band noise 

suppression capability closer to that of an open loop biquad bandpass filter with Q factor 

equals Qcore; on the other hand, as Qctrl increases, the amplitude of the useful signals in 

the system output decreases. Considering this tradeoff, setting Qctrl = Qcore  is 

appropriate for improving the system output SNR when processing a noisy AM signal. 
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(a)  Core filter output from the two-filter system set up with different combinations of Qcore and Qctrl 

 

 

(b) Transient plots and FFT spectra of the recovered signal from the two-filter system set up with different 

Q factor combinations, with the 10kHz component normalized to 500uV. 
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(c) FFT spectra of the recovered signals from the two-filter system set up with different Q factor 

combinations, with the 10KHz component normalized to 500uV. 
 

     
(d) A zoom-in version of the FFT spectra of the recovered signals from the two-filter system set up with  

𝑄𝑐𝑜𝑟𝑒 = 50, 𝑄𝑐𝑡𝑟𝑙 = 50, 200, 500 and an open loop biquad bandpass filter with 𝑄 = 50. 

Figure 4.19 Results from the noisy input test on the two-filter system in Fig. 4.17. 
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Finally, we set up the two-filter system with 𝑄𝑐𝑜𝑟𝑒 = 𝑄𝑐𝑡𝑟𝑙 = 50, and 𝑄𝑐𝑜𝑟𝑒 = 

𝑄𝑐𝑡𝑟𝑙 = 500, respectively, and compared its noise performance to that of the reference 

system, the ideally modified bandpass filter shown in System 2. The test results below 

suggest: 1) Unlike the ideally modified bandpass filter, the two-filter system cannot 

maintain the amplitude of the useful input components when the filter bandwidth is tuned 

too narrow compared to the input bandwidth, as shown in Fig. 4.20(a) where the input 

bandwidth is 20kHz and the bandwidth of all the filters is 2KHz. 

 
 (a) Noisy input test on the two-filter system with Qcore = Qctrl = 500 and System 2 with Q = 500 

 

 

 2) When there is a good match between the filter bandwidth and the input bandwidth, 

the useful components in the two-filter system output have an amplitude close to or even 

higher than that of the original information components. Take the test where the 

bandwidth of the all the filters and the input signal was 20kHz for instance, the sideband 

signals in the two-filter system’s core filter output have an amplitude of 281uV, while 

both the input sidebands and the output sidebands from the reference ideally modified 

filter have an amplitude of 250uV, as shown in Fig. 4.20(b). After normalizing the output 

sideband components from both systems to 250uV, it’s observed in Fig. 4.20(c) that the 
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output SNR of the two systems are comparable, while the ideally modified bandpass 

filter demonstrates slightly stronger out-band noise reduction.  

 
(b) Noisy input test on the two-filter system with Qcore = Qctrl = 50 and System 2 with Q = 50. 

 

 
(c) A zoomed-in version of the above output FFT spectra with the sideband components normalized to 

250uV. 

 

 

Trial and error simulation results not shown here suggest that for the core filter 

output to have sideband signals not smaller than the original input sideband signals, the 

upper limit for 𝑄𝑐𝑜𝑟𝑒 is about 1.4𝑓0/𝐵𝑊𝑖𝑛, where 𝑓0 is the core filter center frequency 
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and 𝐵𝑊𝑖𝑛 is the input bandwidth. Take the AM signal of 20kHz bandwidth and carried 

by 1MHz for instance, when the two-filter system is set up with 𝑄𝑐𝑜𝑟𝑒 = 𝑄𝑐𝑡𝑟𝑙 = 70 and 

𝑓0 = 1𝑀𝐻𝑧, the core filter output sideband signals have an amplitude very close to that 

of the input sideband signals. It was also discovered that the two-filter system with 

𝑄𝑐𝑡𝑟𝑙 = 𝑄𝑐𝑜𝑟𝑒 has the input-noise-suppression capability comparable to that of an open 

loop biquad bandpass filter with Q factor equals 0.7𝑄𝑐𝑜𝑟𝑒. As long as the system filter 

bandwidth is not narrower than 0.7𝐵𝑊𝑖𝑛 , the input sideband signals will not be 

attenuated, although they will always get some negative phase shift.  

Based on the above discoveries, we predicted that for noisy AM input signals, 

the output noise floor of a two-filter bandpass filtering system with 𝑄𝑐𝑡𝑟𝑙 = 𝑄𝑐𝑜𝑟𝑒 would 

be very close to that of an ideally modified bandpass filter (System 2) with Q factor 

equals 0.7𝑄𝑐𝑜𝑟𝑒. Therefore, for input AM signals with comparatively narrow bandwidths, 

the two-filter system is capable of producing an output with very high SNR. The noise 

performance of the two-filter system and System 2, tested with different Q factors and 

input bandwidths as shown in Fig. 4.20 (d), agrees well with our expectation. 
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 (d) FFT spectra and related measurement of the noisy input signal and the output from the two-filter 

system with different Qcore, Qctrl setup and the reference ideally modified bandpass filter with a Q factor 

equals 0.7Qcore. 

Figure 4.20 Noise performance test and comparison of the two-filter system with Qcore = Qctrl 

and the ideally modified bandpass filter with Q factor equals Qcore or 0.7Qcore in dealing with 

noisy AM input signals. 
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3) Test on System 4  

Note that System 3 utilizes a sample-and-hold block to recover the baseband 

signal, which has the following drawbacks: 1) In order to minimize the introduced phase 

shift and noise in the recovered signal, the S/H block is expected to perform ideal 

sampling at a rate that equals the carrier frequency of the input AM signal. The 

implementation of such a block is very challenging in practice. For example, the ON 

resistance of the switch has to be extremely small, SNR of the sampling result is very 

sensitive to the parasitic resistance of the sampling capacitor, etc. 2) According to the 

math, the output signal of the S/H block, p̂(t), has components near harmonics of the 

sampling rate. Although their amplitude is negligible compared to the size of the 

information signal, they will be responsible for the undesirable high frequency 

components in the Q-factor control signal  
ṗ̂(t)

p̂(t)
 and may lower the output SNR of the 

feedback system. Recall that a synchronous complex filtering system utilizes a mixer 

module for down conversion, and the recovered signal doesn’t contain as many high 

frequency components as the S/H block output does, System 4 might be superior to 

System 3 in noise performance.  

The test on System 4 is set up as follows: the input is the same noisy AM signal 

used in the tests on System 1~System 3; the system front end modulating frequency is 

2MHz; the core filter center frequency is 1MHz and the original Q factor is 50 or 500; 

the back end modulating frequency is 1MHz. Moreover, a complex filtering system with 

its core filter modified by the ideal 
ṗ(t)

p(t)
 and an open-loop complex filtering system were 

also tested for comparison.  
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Figure 4.21 Demodulator output from System 4 and two reference complex filtering systems, all 

with the original Q factor of 50. 

 

  

Figure 4.22 Demodulator output from System 4 and two reference complex filtering systems, all 

with the original Q factor of 500. 
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In both Fig. 4.21 and Fig. 4.22, the ideally modified complex filtering system 

produces a recovered signal as if the input noise was processed by an open-loop complex 

filter with the same Q factor while the input information signal was almost intact. 

However, the output noise floor of System 4 is obviously higher, and large-sized noise 

components are observed in a higher frequency range. When the original Q factor is 

increased to 500, the output noise floor from the feedback complex filtering system does 

not get further reduction while the noise peak rises and moves into a lower frequency 

range, which causes the baseband noise floor even higher than it is in the case where 

Q=50. We tried to alleviate this problem by resetting the input carrier frequency and the 

front end modulating frequency, to separate their sum and difference further apart, 

expecting the unwanted high frequency components in front end modulator output to get 

harder attenuation. Specifically, the carrier frequency was raised to 4MHz from the 

original 1MHz, and the front end modulating frequency was accordingly increased to 

5MHz. Then the front end modulator generates components near 1MHz and 9MHz 

instead of near 1MHz and 2MHz. Unfortunately, simulation results (not shown here) 

suggest that although this method lowers the high frequency noise in the output, it barely 

affects the baseband noise level. Therefore, System 4 is not able to suppress the input 

noise either, due mainly to the noisy feedback Q-factor control signal.   

Finally, we compared the demodulator output of System 3 and System 4 by 

plotting them on the same graph. Both systems under test have a core filter with an 

original Q factor of 50 and center frequency of 1MHz. The transient plots in Fig. 4.23 

suggest that both systems are able to reconstruct the information component to be in 

phase with the original modulating signal. According to the FFT spectra, the output noise 
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floors of both systems are at a similar level in the baseband, and large output noise 

components are observed near 130KHz for both systems. The recovered signal from 

System 4 has much less high frequency components due to its signal mixing 

demodulation approach. As a summary, when dealing with a noisy AM input signal, 

System 3 and System 4 produce output signals of comparable SNR, and both are noisier 

than their open loop filter counterpart.    

 

Figure 4.23 Transient plots and wide-range FFT spectra of the recovered signal from System 3 

and System 4 when the input is a noisy AM signal. The core filter in both systems has a quality 

factor of 50.  
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2. Noiseless input and noisy system 

In this section, we focus on the performance of the noisy feedback AM mode 

filtering systems. Two uncorrelated white noise currents were respectively injected into 

the capacitors of the core filter to model the in-filter noise.  

1) Input-referred noise  

First, we verify with simulation that for the open loop counterpart of System 3 

and System 4, the same amount of injected noise is equivalent to higher input-referred 

noise if the core filter has a higher Q factor. The systems were tested with a noisy core 

filter and the recovered signals were plotted. Since a typical method for evaluating the 

input-referred noise of an open loop system is to measure the output noise and divide it 

with the open loop gain, the noise level of the recovered signal could be a good 

representation of the system’s input-referred noise.  

Filter in the systems under test 2nd Order Bandpass Filter 2nd Order Complex filter 

 Filter Q value 50, 200 50, 200 

 Filter Center Frequency 1MHz 

RMS value of the injected noise 0.1uArms for both uncorrelated currents 

Input AM signal 
u(t)=p(t)m(t) 

p(t)=1m+(0.5m)sin(2π(10k) t),      m(t)=sin(2π(1Meg) 

Table 4-2 Parameter setup for the input-referred noise test 

As a bandpass filter with Q of 200 has a much narrower bandwidth than the one with Q 

of 50, it is supposed to apply more attenuation to the input-referred noise in the frequency 

range of our interest. However, in Fig. 4.24, the recovered signal from the system with 

Q=200 has even higher baseband noise floor, which suggests that with the same amount 

of injected noise, a sharper filter tends to have higher input-referred noise. Similar 

situation was observed in the demodulator output from the open loop complex filtering 
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systems, which indicates that a complex filter deals with the in-device noise the same 

way as a standard biquad bandpass filter does. 

 
Bandpass filtering system demodulator output 

 

  
Complex filtering system demodulator output 

Figure 4.24 Transient plots and FFT spectra of the recovered signals from the bandpass filtering 

system and the complex filtering system with a noisy core filter of different Q values. 
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2) Test on System 3 and System 4 

This part focuses on the performance of noisy feedback systems, namely, System 

3 and System 4 with a noisy core filter. Reference systems with their core filter modified 

by the ideal Q-factor control signal were tested too. The spectra in Fig. 4.25 correspond 

to the recovered signals from the systems under test, all with an original Q factor of 50. 

The noise suppression capability of the systems controlled by the ideal 
ṗ(t)

p(t)
  is still 

comparable to their open loop counterpart, and the recovered information signals are 

very similar to the original p(t). Unfortunately, both feedback systems again fail to 

suppress the injected noise as hard as their related open loop filtering systems do, and 

they generate undesirable noise components in a higher frequency range, hence 

producing a noisier recovered signal. The recovered information component itself has 

similar size and phase as that of the original p(t) though.  A closer inspection shows that 

the noise peak appears in a lower frequency range in the output of System 3 while System 

4 has a slightly higher output noise floor in the in-band frequency range, so the baseband 

output noise of System 3 and System 4 has comparable strength.  

When raising the original Q factor for both systems to 200, convergence problem 

was encountered in the simulation, which might be because the input-referred noise was 

scaled up to a too high level compared to the size of the input AM signal. We hence 

multiplied the original AM input by 5 and reran the simulation. The demodulator output 

from the systems under test were shown in Fig. 4.26. Both the noise peak and the 

baseband noise floor in the demodulator output from System 3 and System 4 became 

much higher than they were in the case where Q=50. This is due to the scaled up input-
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referred noise and the noisier feedback Q factor control signal. Comparing Fig. 4.25 to 

Fig. 4.26, it was revealed that System 3 and System 4 with a lower original Q factor 

produce an output with higher SNR when the core filter is noisy. 

 
  (a) 

 

  

           (b) 

Figure 4.25 Transient plots and FFT spectra of the recovered signals from the noisy System 3, 

noisy System 4 and the noisy reference systems modified by the ideal Q-factor control signal. 

(Original Q=50 for all the systems) 
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     (a)  

  

Figure 4.26 Transient plots and FFT spectra of the recovered signals from the noisy System 3, 

noisy System 4 and the noisy reference systems modified by the ideal Q-factor control signal. 

(Original Q=200 for all the systems) The input AM signal was set five times larger than it was 

in the above test to avoid convergence problem in the simulation. 

 

 Noise Tests on the FM Mode Synchronous Filtering Systems 

 System Review 

Dynamic FM mode synchronous filtering systems have been introduced in the 

last section of Chapter 3. An ideal dynamic synchronous complex filter has external 

function almost identical to that of its static counterpart, although it has a time-varying 
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center frequency and accordingly synchronized terminal modulating frequencies. The 

block diagram below gives a conceptual description on such a system. Two typical 

variation patterns of the core filter center frequency are sinusoidal waveform and square 

waveform, as they make the synchronization more straightforward and implementable. 

An appealing advantage of the dynamic filtering systems is their potential noise 

suppression capability. Consider a dynamic synchronous complex filter adopts the 

square waveform pattern, although the overall system performs like a complex filter with 

a constant center frequency, the core filter center frequency switches between f0 ± ∆f0 

at the rate of fvar  and barely stays at f0  (f0  is the dc offset of the core filter center 

frequency, ∆f0 is the maximum difference between the time-varying center frequency 

and f0 ). Suppose ∆f0  is large and the core filter is sharp enough (the core filter’s 

bandwidth is a constant independent of the center frequency variation), then from 

intuitive point of view, the system will be able to effectively filter out the noise near f0 

without further attenuating the input sideband signals, hence it is superior to its static 

counterpart in suppressing the internal noise in a certain frequency range.  

 
 

Figure 4.27 The block diagram of a dynamic FM mode sychronous filtering system. 
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 Noise Performance Test 

1. Noiseless Input and In-filter Single-tone Noise  

Based on the qualitative analysis above, we started off with the test where single-

tone noise currents were injected into the core filter while the input signal was noiseless. 

According to the parameter setup in Table 4-3, the time constant for the complex filter 

in the static system is about 16us (𝜏 =
2𝑄

𝑤0
), so we swept the switching rate from 80kHz 

to higher frequencies, as 80kHz corresponds to a switching period a little shorter than 

the filter’s time constant. While sweeping the center frequency variation rate, the 

variation range was kept to be 1MHz ± 400KHz for most tests.  

Table 4-3 Parameter setup for the in-filter noise immunity test on the FM mode synchronous 

complex filters. 

Baseband signal  

and carrier    fsig = 10KHz (amplitude: 0.5mA), fcarrier = 5MHz( amplitude: 1mA) 

Modulating 

frequencies  

ffront_end = 6MHz  (superheterodyne mode)  

fback_end = 1MHz (down conversion for signal reconstruction) 

(amplitude of 0.4mA for both ends) 

Complex filter setup Q = 50, f0 = 1MHz 

Test List f0  ∆f0 fvar In-filter noise 

Test 1 

1MHz 

 

𝟒𝟎𝟎𝐤𝐇𝐳 

 

80kHz 

1.003MHz,988kHz  

(amplitude of 0.5uA for 

both noise currents) 

Test 2 𝟏𝟎𝟎𝐤𝐇𝐳 

Test 3 125kHz 

Test 4 160kHz 

Test 5 200kHz 

Test 6 300kHz 

Test 7 

200kHz, 

800kHz 100kHz 
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Plots in Fig. 4.28 to Fig.4.33 represent the demodulated signals from the 

synchronous complex filtering systems under test. Both sinusoidal and square waveform 

variation patterns were tested to explore the most effective approach to suppressing the 

injected single-tone noise. In Fig. 4.28, the demodulator output from a static complex 

filtering system injected with the same noise is plotted to provide a reference to evaluate 

the noise performance of the dynamic systems.  

 

Figure 4.28 Test 1 results: Transient plots and FFT spectra of the down conversion results from 

a static complex filtering system and dynamic systems of which the core filter center frequency 

varies in a sinusoidal or square waveform with fvar = 80KHz and fdev = 400KHz. 
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Figure 4.29 Test 2 results: Transient plots and FFT spectra of the down conversion results from 

a static complex filtering system and dynamic systems of which the core filter center frequency 

varies in a sinusoidal or square waveform with  fvar = 100KHz, fdev = 400KHz. 

 

 

     

Figure 4.30 Test 3 results: Transient plots and FFT spectra of the down conversion results from 

a static complex filtering system and dynamic systems of which the core filter center frequency 

varies in a sinusoidal or square waveform with fvar = 125KHz and fdev = 400KHz. 
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Figure 4.31 Test 4 results: Transient plots and FFT spectra of the down conversion results from 

a static complex filtering system and dynamic systems of which the core filter center frequency 

varies in a sinusoidal or square waveform with fvar = 160KHz and fdev = 400KHz. 

 

      

Figure 4.32 Test 5 results: Transient plots and FFT spectra of the down conversion results from 

a static complex filtering system and dynamic systems of which the core filter center frequency 

varies in a sinusoidal or square waveform with fvar = 200KHz and fdev = 400KHz. 
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Figure 4.33 Test 6 results: Transient plots and FFT spectra of the down conversion results from 

a static complex filtering system and dynamic systems of which the core filter center frequency 

varies in a sinusoidal or square waveform with fvar = 300KHz and fdev = 400KHz. 

 

 

Figure 4.34 Test 7 results: FFT spectra of the down conversion result from a dynamic complex 

filtering system of which the core filter center frequency varies in a square waveform with fvar =
100KHz, fdev = 200KHz (upper) and 800KHz (lower).  
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 The simulation results suggest: 1) A dynamic system does possess improved 

capability in suppressing the in-filter noise near the core filter’s static center frequency. 

2) Square waveform variation patterns are typically superior to sinusoidal patterns in 

suppressing the in-filter noise, which agrees with the qualitative analysis. 3) Some 

particular combinations of the variation rate and variation range effectively improve the 

system noise performance. For example, sticking with the 1MHz±400kHz variation 

range, when the center frequency is varied at 100kHz as a square waveform, the system 

produces an output in which the undesired single-tone noises get suppressed to be more 

than three orders of magnitude lower than the useful signal (Fig. 4.29). Although noise 

components of noticeable size are observed near 100kHz in the recovered signal, they 

could easily be attenuated by the subsequent low pass filtering. Unfortunately, as shown 

in Fig. 4.28, Fig. 4.30 and Fig. 4.31, a random variation rate other than integer multiples 

of 100kHz, such as 80kHz, 125kHz and 160kHz, could not suppress the single-tone 

noises as hard as it could when set to be 100kHz. Not only are the baseband noise 

components less attenuated, undesired low frequency spurious noise also rises due 

mainly to the intermodulation and high-frequency noise folding back. 4) A too high 

variation rate also degrades the system noise performance even it is an integer multiple 

of 100kHz. Comparing Fig. 4.33 to Fig. 4.28, a variation rate of 300kHz produces an 

output even noisier than the 80kHz variation rate does; also, comparing Fig. 4.32 to Fig. 

4.29, the output baseband intermodulation components corresponding to the square 

waveform varying at 200kHz are about 50 times higher than those generated by the 

100kHz variation rate. 5) Sticking with the square waveform pattern at 100kHz and 

adjusting the variation range doesn’t obviously affect the output baseband spectrum, 
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while the intermodulation noise components around 100kHz become smaller as the 

variation range gets wider, comparing the spectra in Fig. 4.34 to the corresponding 

spectrum in Fig. 4.29. It could be summarized from the above simulation results that for 

a complex filtering system with original center frequency of 1MHz and Q factor of 50, 

when the center frequncy varies as a square waveform at 100kHz and in the range of 

1MHz ± 800kHz , the resulting dynamic synchronous system is able to effectively 

suppress the in-filter single-tone noise without further attenuating the input sidebands.  

We continued to test this particular system with AM input of different 

bandwidths and the injected noise at different frequencies, the test setup is given in Table 

4.4. It turned out that in both cases the dynamic system manifests improved performance 

in suppressing the injected single-tone noise, as shown in Fig. 4.35. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-4 Parameter setup for the in-filter noise suppression capability tests on a dynamic FM 

mode synchronous complex filter with a particular center frequency variation pattern.  

Core Filter  

Q = 50, f0 = 1MHz 

Center frequency variation pattern: 

  square waveform, ∆f0 = 800kHz, fvar = 100kHz 

Test List fsignal Injected noise to the core filter 

Test 1 1.5kHz 1.013MHz, 999kHz  

(both have amplitude of 0.5uA) Test 2 19.5kHz 
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(a) 

 

 
(b) 

 

Figure 4.35 Transient plots and corresponding FFT spectra of the demodulation result from a 

static complex filtering system and the particular dynamic synchronous filtering system in (a) 

Test 1 and (b) Test 2. 

 

2. In-filter White Noise and Noiseless Input 

Unfortunately, when white noise is injected into the particular dynamic filtering 

system above, the output noise floor is not lower than that of the reference static filtering 

system, as shown in Fig. 4.36. This is because the spectrum of white noise determines 

that no matter where the core filter center frequency is during the variation, there is 

always same amount of white noise in the frequency range of the instant bandpass 
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filtering. So an FM mode dynamic synchronous complex filter is not a good candidate 

to suppress the in-filter white noise. 

 

Figure 4.36 Transient plots and corresponding FFT spectra of the demodulation result from both 

static and dynamic synchronous filtering systems under in-filter white noise test. 

 

3. Noisy Input and Noiseless Filtering System 

Finally, a single-tone noise component near 5MHz was added to the original AM 

input signal and the core filter was set up noiseless for both the static and dynamic 

sychronous filtering systems under test. The center frequency of the dynamic system 

was varied as a square waveform at 100KHz in the range of 1MHz±800KHz . However, 

according to the test result(not shown here), such a dynamic system is not superior to its 

static counterpart in suppressing the input noise.  

 Summary 

Noise performance of some second order filtering systems related to AM mode 

or FM mode synchronous filtering is tested and compared in this chapter. The two types 

of noise environment set up for the tests include: an AM signal with white noise 
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stimulating a noiseless system and a noiseless AM signal driving a system with injected 

white noise or single-tone noise.  

AM mode synchronous filtering related systems  

The AM mode synchronous filtering idea is described by eqn. (4.1), and its 

application in the biquad bandpass filter design is specified by eqn. (4.4) and Fig. 4.1. 

Eliminating the back end modulator of the AM mode synchronous filter in Fig. 4.1, we 

discovered an attractive behavior of the yielded system when processing noisy AM 

signals: according to the derived mathematical expression, the ideal system is able to 

suppress the undesired input noise as hard as needed while keeping the amplitude and 

phase of the useful sideband signals. Such a system is illustrated as System 2 in Fig. 4.2. 

Due to the challenge in generating the ideal Q-factor control signal for System 2, we 

proposed a feedback filtering system that time varies its Q factor with the signal 

generated from the system’s down conversion result. When dealing with noiseless AM 

input, the output from this feedback system could be very similar to the output from 

System 2. System 3 and System 4 are application examples of the feedback system, 

respectively developed with a standard biquad bandpass filter and a biquad complex 

filter. Besides the difference in the core filter, they utilize different methods to recover 

the baseband signal for generating the Q-factor control signal.  

Test results  

Section 1: Noisy input signal and noiseless filtering systems  

System 2 and a standard biquad bandpass filter with Q=50 and Q=500 were 

tested first. The simulation results agree with our expectation very well and verify that 

System 2 is capable of suppressing the input noise like a standard biquad bandpass filter 
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with the same Q factor while letting the input sideband signals pass through with little 

attenuation or phase shift. Moreover, getting centered at the carrier frequency, the core 

filter in System 2 could in principle be tuned as sharp as needed to heavily suppress the 

undesired input white noise without affecting the amplitude and phase of the input 

sideband signals. Comparing the output of System 2 in Fig. 4.9 and Fig. 4.7, due to the 

sharpened core filter, the output noise level is apparently suppressed lower but the 

sideband signals are barely changed. Therefore, System 2 with a sharp core filter could 

produce an output with very high SNR when processing a noisy AM input signal, as long 

as the ideal Q-factor control signal is available and the core filter is centered at the carrier 

frequency.  

It has been discovered in Chapter 2 that System 3 could generate an output very 

similar to the output of System 2 when processing a noiseless AM signal. However, it 

does not possess the appealing noise performance as System 2 does when processing a 

noisy AM signal, under any circumstances. The output of System 3 is even noisier than 

its standard biquad bandpass filter counterpart. Moreover, System 3 with a sharper core 

filter results in more output noise components of larger size and distributing closer to 

the center frequency, which further degrades the output SNR. This might be due to the 

mismatch between the bandwidths of the input white noise and the system core filter 

introducing new noise with frequency-dependent amplitude through the feedback 

modulation, which greatly outweighs the filtering capability of the system.    

In an effort to improve the noise performance of System 3, we did a few 

experiments, such as adjusting the input bandwidth, sweeping the system core filter Q 

factor and inserting a lowpass filter in the feedback path, but didn’t observe anything 
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exciting. Some interesting discoveries were made through tests on the proposed two-

filter design in Fig. 4.17, which is inspired by System 3 and utilizes an auxiliary filtering 

system of the same type as the main system. We first explored how the setup of Qcore 

and Qctrl, the respective Q factor for the main filter and the auxiliary filter, affects the system 

noise performance. Sticking with Qcore = 50  and sweeping Qctrl  from 5 to 200, it was 

discovered that the system’s capability in suppressing the input white noise mainly 

depends on the smaller one in the two quality factors: when Qctrl is smaller than Qcore, 

a higher Qctrl produces a lower output noise floor; if Qctrl is already higher than Qcore, 

tuning Qctrl to very high does not suppress the out-band noise floor lower than an open 

loop bandpass filter with Qcore does, moreover, the in-band noise floor gets lifted up and 

the amplitude of sideband signals drops. Considering this tradeoff, setting Qctrl = Qcore 

is appropriate for improving the two-filter system output SNR when processing a noisy 

AM signal. Next, we tested whether the system noise performance is constrained by the 

input bandwidth, or whether the Q factors could be set as high as needed without 

obviously affecting the output sideband signals. It has been observed: 1) Unlike System 

2, the two-filter system cannot maintain the amplitude of the sidebands when the filter 

bandwidth is tuned too narrow compared to the input bandwidth. 2) For the core filter 

output to have sidebands with amplitude no smaller than their input level, the upper limit 

for 𝑄𝑐𝑜𝑟𝑒 and 𝑄𝑐𝑡𝑟𝑙 is about 1.4𝑓0/𝐵𝑊𝑖𝑛, where 𝑓0 is the core filter center frequency and 

𝐵𝑊𝑖𝑛 is the input bandwidth. 3) The two-filter system with 𝑄𝑐𝑡𝑟𝑙 = 𝑄𝑐𝑜𝑟𝑒 has the input-

noise-suppression capability comparable to that of a biquad open loop bandpass filter 

with a quality factor of 0.7𝑄𝑐𝑜𝑟𝑒. Also, as long as the system filters’ bandwidth is not 

narrower than 0.7𝐵𝑊𝑖𝑛 , the input sidebands will not get attenuated, albeit some 
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inevitable negative phase shift. 4) We hence predicted and verified through simulation 

that the noise performance of the two-filter bandpass filtering system with 𝑄𝑐𝑡𝑟𝑙 =

𝑄𝑐𝑜𝑟𝑒 = 𝑄 could be very close to that of System 2 with a quality factor of 0.7𝑄, when 𝑄 

is not higher than 1.4𝑓0/𝐵𝑊𝑖𝑛. Therefore, when driven with noisy narrow-banded AM 

input signals, the proposed two-filter system is capable of producing an output with very 

high SNR.  

 The last test in this section was run on System 4, the feedback system developed 

with a biquad complex filter. Compared to System 3, the advantage of System 4 lies in 

its back end down converter which is easier to implement and generates less high 

frequency components in the recovered signal. Unfortunately, due to the same reason, 

System 4 is not able to suppress the input noise as the ideally modified system does 

either. Comparison of the output FFT spectra suggests that when dealing with a noisy 

AM input signal, System 3 and System 4 have outputs of comparable SNR, and both are 

noisier than their open loop filter counterpart.    

 Section 2: Noiseless input and noisy filtering systems 

We firstly showed that for both standard biquad bandpass filter and biquad 

complex filter, the same amount of injected noise generates higher input-referred noise 

if the filter has a higher Q factor. Next, we tested System 3 and System 4 with Q=50, 

their ideally modified counterpart and original open loop counterpart. It was observed 

that the noise suppression capability of the noisy systems controlled by ideal 
ṗ(t)

p(t)
  is still 

comparable to that of their open loop counterpart filters, and the recovered information 

signals from them are very similar to the original p(t). Unfortunately, the feedback 
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systems, System 3 and System 4, fail to suppress the noise near the center frequency as 

hard as the reference systems do, and they even generate some undesired components in 

the output. The recovered information component itself has similar size and phase as 

that of the original p(t) though. Despite the different spectra, the output baseband noise 

of System 3 and System 4 has similar strength.  

When raising the Q factor for both systems to 200, convergence problem was 

encountered and it was fixed by scaling up the AM input by a factor of 5. Both the noise 

peak and the baseband noise floor in the demodulator output from System 3 and System 

4 are much higher than they are in the case where Q=50. This is due to the increased 

input-referred noise and the noisier feedback Q-factor control signal. So when the core 

filter is noisy, System 3 and System 4 with a lower Q factor would have better noise 

performance, but still inferior to their open loop counterpart.  

FM mode synchronous filtering related systems 

The goal of this section is to explore if there are any center frequency variation 

patterns that would enable a dynamic FM mode synchronous complex filter to 

effectively suppress the in-filter noise or the input noise. We focused on the sinusoid and 

square waveform patterns proposed in Fig. 3.24 and sought for a proper setup for the 

variation rate and range. 

Simulation results suggest: 1) A dynamic system does possess improved 

capability in suppressing the in-filter single-tone noise if it’s near the core filter’s static 

center frequency. 2) Square waveform variation patterns are typically superior to 

sinusoidal patterns in suppressing the in-filter noise, which agrees with the qualitative 

analysis. 3) Some particular combinations of the variation rate and variation range could 
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effectively improve the system noise performance. For example, sticking with the 

1MHz±400kHz variation range, when the core filter center frequency is varied at 

100kHz in a square waveform, the system produces an output in which the undesired 

single-tone components get suppressed to be more than three orders of magnitude lower 

than the useful signal (Fig. 4.29). 4) Unfortunately, when white noise is injected into this 

particular dynamic filtering system, the output noise floor is not lower than that of the 

reference static system, as shown in Fig. 4.36. This is because the spectrum of white 

noise determines that no matter where the core filter center frequency is during the 

variation, there is always same amount of noise in the frequency range of the instant 

bandpass filtering. So a dynamic synchronous complex filter is not a good candidate to 

reduce the in-filter white noise.5) Moreover, a dynamic synchronous complex filter is 

not superior to its static counterpart in suppressing the input noise of any form. 
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  A Novel Feedback Filtering System with Improved Noise 

Performance 

 A Q-factor Tuning Approach utilizing the Scaled Feedback Signal 

In the exploration of approaches to improving the noise performance of the AM 

mode feedback filtering system in Fig. 4.3, an interesting discovery was made through 

varying the feedback scale factor 𝑘 and a new system is developed as shown in Fig. 5.1. 

Consider a noiseless system at first: when the feedback loop is open, i.e. k=0, the filter 

output could be expressed as h(t) ∗ [u(t) ∙ p(t)], where h(t) is the impulse response of 

the core bandpass filter; with 100% feedback of 
p̂(t)̇

p̂(t)
, i.e. k=1, as long as the core filter 

bandwidth is not too narrow compared to the system input bandwidth, the filter output 

is very similar to [h(t) ∗ u(t)] ∙ p(t) , except that it contains some intermodulation 

distortion of negligible size. Comparing the sideband signals in the filter output in the 

above two cases, we could qualitatively say that a scale factor k in the range of 0 to 1 

flattens the feedback filter as it approaches 1.  

 
Figure 5.1 A modified version of System 3 in Fig. 4.3 for tuning the filter’s equivalent Q factor. 

To verify and demonstrate such a property, we ran a sweep simulation on the 

feedback scale factor k, with a noiseless AM input signal and a feedback filtering system 
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whose core filter is a standard biquad bandpass filter. Related parameters are listed in 

Table 5.1. All the demodulation results as shown in Fig. 5.2 contain some undesired 

harmonic distortion components, which are of negligible size compared to the useful 

information signal. A larger k consistently yields a larger recovered information signal, 

which suggests that the resulting feedback filter does become flatter. The dc offset of the 

demodulated signal in each case remains the same, indicating that the center frequency 

of the resulting system is independent of the amount of the feedback.  

When k = 0.5, the recovered 5kHz component is about 3dB lower than the 5kHz 

component in the original modulating signal, indicating that the equivalent Q factor of 

the developed filter approximately equals 100. We hence roughly relate the original Q 

factor of the system’s core filter, Qcore, the feedback scale factor k and the equivalent Q 

factor of the feedback system, Qeq, with eqn. (5.1). 

Qeq ≈ (1 − k)Qcore                                                   ( 5.1 ) 

 

AM Input (v) 

p(t)u(t) 

p(t)=1m+(0.5m)sin(2π∙5K∙ t) 

u(t)=sin(2π∙1M∙t) 

Biquad Bandpass Filter Q=200, fc=1MHz 

S/H Block 
Switching rate=1MHz, ON time=1ns 

ON resistance=1mΩ, OFF resistance=1MΩ 

Feedback scale factor k  0,0.2,0.5,0.75,1 

Table 5-1 Parameter setup for the sweep test on the feedback scale factor k. 
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Figure 5.2 Transient plots and FFT spectra of the recovered signal from a feedback bandpass 

filtering system with different feedback scale factors. 
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To test the accuracy of eqn. (5.1), we accordingly set up three standard open-

loop bandpass filtering systems respectively with Q factor of 160, 100 and 50 and drove 

them with the same AM input signal used above. The demodulation outputs from the 

open-loop system and its related feedback system were plotted on the same graph in each 

test. Shown in Fig. 5.3, the transient plots of the output signals from the open loop system 

and the feedback system are almost identical, their slight difference is the negligible 

harmonic distortion that exists in the feedback system output. Therefore, for k in the 

range of (0,1), eqn. (5.1) provides a proper first order evaluation on the equivalent 

sharpness of the yielded feedback filtering system for AM input signals. 

  

Figure 5.3 Transient plots and FFT spectra of the recovered signal from both feedback system 

and the corresponding open-loop filtering system for evaluating the accuracy of eqn. 5.1. 

 

 

Based on the above discovery, we started to question: what would happen if k is 

negative? Is it possible to sharpen the filter with a negatively scaled feedback signal  
p̂(t)̇

p̂(t)
? 

A test set up as below was run to figure out the answer. 
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Input voltage:                 𝑝(𝑡) ∙ 𝑢(𝑡) = [1𝑚 + (0.5𝑚)𝑠𝑖𝑛(𝑤𝑝𝑡)]𝑠𝑖𝑛(𝑤𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑡 ), 

    𝑤ℎ𝑒𝑟𝑒 𝑤𝑝 = 2𝜋 ∙ 10𝑘 , 𝑤𝑐𝑎𝑟𝑟𝑖𝑒𝑟 = 2𝜋 ∙ 1𝑀𝑒𝑔 

Core filter:                      𝑤0 = 𝑤𝑐𝑎𝑟𝑟𝑖𝑒𝑟 = 2𝜋 ∙ 1𝑀𝑒𝑔,  𝑄 = 50 

Feedback scale factor:  𝑘 = 0,−0.5,−1,−2,−5 

Simulation results in Fig. 5.4 show that the envelope of the core filter output becomes 

smaller as the feedback scale factor k gets more negative, indicating that a negatively 

scaled feedback signal indeed sharpens the filtering system. Measurement data provides 

some quantitative description on the recovered information signal and its 2nd-order 

harmonic: their ratio gets smaller as k becomes more negative, which is undesirable; but 

even the smallest value approximately hits 300, so the harmonic distortion is at a 

negligible level. Therefore, setting the scale factor k in the feedback system in Fig. 5.1 

with negative values provides an approach to implementing a bandpass filter of high 

equivalent Q factor with a time-invariant low-Q bandpass filter.  

     
Figure 5.4 Feedback system demodulator output corresponding to different negative k values. 
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  To check out if eqn. (5.1) still holds true for a negative k, for each negative k 

above, we swept the frequency of the input modulating signal p(t) over a certain range, 

maintaining its amplitude and seek for a point at which the recovered modulating 

frequency component in the demodulator output drops by approximately 3dB from the 

original amplitude of 0.5mV. Then the equivalent bandwidth of the resulting feedback 

system is about twice as much that input frequency. Data from Table 5.2 suggests that 

eqn. (5.1) suits the feedback filtering system with negative k values in the range of [-5, 

0) very well.  

 

Table 5-2 Data from the tests for evaluating the equivalent Q factor of the feedback filter with 

time-variant bandwidth. 

 

Moreover, the gain spectra of two feedback filtering systems were plotted, as 

shown in Fig.5.5 (a) and Fig. 5.5 (b). The feedback scale factor for both systems is -9, 

both core filters are centered at 1MHz and the original Q factors were set to be 5 and 20 

respectively. It’s clear that both feedback systems are much sharper than the original 

filters from which they are developed, and they both have an equivalent Q factor 

comparable to what is estimated by eqn. (5.1), while the equivalent Q factor of the 

system developed from a sharper core filter fits the equation better. The gain spectra of 

the feedback filter and its related open-loop filter have strong resemblance but are not 

identical, so the input-output functions of the two systems are not exactly the same. One 
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obvious difference, for instance, is manifested by the harmonic distortion generated by 

the feedback filtering system. 

 

(a) 

 

                                (b) 

Figure 5.5 Gain spectra of two feedback filters developed from a core filter with different 

original Q factors.    
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Another simulation on the feedback systems with different original Q factors and 

feedback scale factors shows that the system developed from a sharper original core filter 

and a less negative feedback scale factor produces an output with higher SNR and 

behaves more similarly to the open-loop bandpass filter with a Q factor derived by eqn. 

(5.1) does. In this test, the reference open loop system incorporates a bandpass filter with 

Q=100, and the feedback systems are set up with Q=50, 20, 10, 5 and k=-1, -4, -9, -19, 

respectively. Fig. 5.6(a) and (b) show transient plots and FFT spectra of all the system 

outputs corresponding to the same AM input which is modulated by a sine wave at 5kHz. 

The output harmonic distortion consistently increases and the amplitude of recovered 

signal consistently drops as the system’s original Q factor decreases. For the systems 

with Q=10, k=-9 and Q=5, k=-19, the size of harmonic distortion exceeds 1% of the 

information signal amplitude and the output SNR has been greatly degraded. 

 

  (a) 
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(b) 

 

 
                                                           (c) 

Figure 5.6 (a), (b) Transient plots and FFT spectra of output signals and (c) gain spectra of the 

systems under test. 

 

Recall that the FM mode synchronous complex filtering system, System 4 in Fig. 

4.4, has very similar function as that of System 3 in Fig. 4.3. One advantage of System 

4 over System 3 is its simpler demodulator. As has been introduced in Chapter 3, 
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implemented only with mixers and a current mirror, the demodulator is able to recover 

the information signal from the core filter output without introducing additional phase 

shift. Comparing to the S/H block output from System 3, the recovered signal from 

System 4 contains less high frequency components. Therefore, it’s of our interest if the 

method discussed above could be used to sharpen the filtering system in Fig. 5.7, a 

modified version of System 4. In the test where k=-9 and the feedback system was set 

up with 𝑄𝑐𝑜𝑟𝑒 = 5, the system steady state output almost overlaps with the output of the 

open loop complex filtering system with Q=50, and no harmonic distortion is seen in the 

FFT spectrum, as shown in Fig. 5.8 (a) and (b). Moreover, the gain spectra of the two 

systems are plotted in Fig. 5.8(c) and they demonstrate higher resemblance in bandwidth 

and shape than the spectra in Fig. 5.5(a) do. Therefore, the feedback system developed 

from a low-Q complex filter has input-output function very similar to an open-loop high-

Q complex filter, and it produces a less noisy output than the system in Fig. 5.1 

developed with a bandpass filter of the same 𝑄𝑐𝑜𝑟𝑒 and feedback scale factor 𝑘. 

 

Figure 5.7 A modified version of System 4 in Fig. 4.4 for tuning the complex filter’s equivalent 

Q factor. 
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To check out if the equivalent Q factor of the system in Fig. 5.7 could also be 

evaluated by eqn. (5.1), the gain spectra of a set of feedback systems with Q=50, 20, 10, 

5 and feedback scale factors of k=-1, -4, -9, -19 were plotted in Fig. 5.9, together with 

that of the reference open loop system in which the complex filter Q factor equals 100. 

According to the measurement data, all the feedback systems have similar bandwidths 

close to that of the reference complex filter, indicating that the relationship between 𝑄𝑒𝑞 

of a feedback complex filtering system and the original 𝑄𝑐𝑜𝑟𝑒 fits eqn (5.1) better than 

its bandpass filtering system counterpart does. 

  

           (a)                                                                                         (b)                                                              
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                                                       (c) 

 

Figure 5.8 (a), (b) Transient plots and FFT spectra of the output signals from a feedback complex 

filtering system with 𝑄𝑐𝑜𝑟𝑒 = 5 and k=-9 and an open-loop complex filtering system with Q=50; 

(c) Gain spectra of both systems. 
 

 

Figure 5.9 Gain spectra of all the feedback complex filtering systems and the reference system 

under test. 
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The explanation to the above discoveries is now given as follows. First, consider 

a simple first order lowpass filter specified by the following differential equation: 

𝑦̇ = −𝑤0𝑦 + 𝑤0𝑢                                           ( 5.2 ) 

where 𝑤0 is the cutoff frequency. Now suppose 𝑢 is an always non-zero input signal and 

the gain on the output, 𝑦, is modulated in the following way: 

𝑦̇ = (−𝑤0 + 𝑘
𝑦̇

𝑦
) 𝑦 + 𝑤0𝑢                                        ( 5.3 ) 

Rearranging the equation to yield the following: 

(1 − 𝑘)𝑦̇ = −𝑤0𝑦 + 𝑤0𝑢   ⟹  𝑦̇ = −
𝑤0

1−𝑘
𝑦 +

𝑤0

1−𝑘
𝑢                  ( 5.4 ) 

The net result of the modulation of the gain on y in the differential equation is to scale 

the cutoff frequency of the filter. For 𝑘 < 0, the resulting cutoff frequency is lower than 

𝑤0; for 0 ≤ 𝑘 < 1, it is equal to or larger than 𝑤0 . For eqn. (5.4) to have physical 

meaning, 𝑘 should not exceed 1. 

Now consider a pair of lowpass filters of the above type, constituting a second 

order system that can be written as: 

|
𝑥̇1

𝑥̇2
| = |

−𝑤0 0
0 −𝑤0

| |
𝑥1

𝑥2
| + 𝑤0 |

1
−1

| 𝑢 , y =
1

2
|1 −1| |

𝑥1

𝑥2
|            ( 5.5 ) 

It’s easy to derive: 

x1 = −x2 = y,    
x1̇

x1
=

x2̇

x2
=

ẏ

y
 ,   ẏ = −w0y + w0u 

Apply the modulation of state variable(s) as introduced in eqn. (5.3): 

|
ẋ1

ẋ2
| = |

−w0 + k
ẏ

y
0

0 −w0 + k
ẏ

y

| |
x1

x2
| + w0 |

1
−1

| u,        y =
1

2
|1 −1| |

x1

x2
|     ( 5.6 )            
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It follows that both lowpass filters get their original cutoff frequencies scaled by a same 

factor, 
1

1−k
, and the system output remains the same as represented by eqn. (5.4). Utilize 

a time varying matrix, M(t), to transform the above second-order system: 

𝑥̅(𝑡)  →    M(t)𝑥̅(𝑡), where M(t) = |
cos (𝑤𝑀𝑡) −sin (𝑤𝑀𝑡)
sin (𝑤𝑀𝑡)    cos (𝑤𝑀𝑡)

|          ( 5.7 )                         

Since any state-space transformation with a nonsingular M(t)  keeps the system’s 

original input-output characteristics, the system represented by eqn. (5.8) corresponds to 

the same transfer function as the first order lowpass filter with a scaled cutoff frequency 

specified by eqn. (5.4) does. The "
𝜋

4
" phase angle in all the modulating sinusoids could 

be removed together without affecting the system’s transfer function.  

|
𝑥̇1

𝑥̇2
| = |

−𝑤0 + k
ẏ

y
−𝑤𝑀

𝑤𝑀 −𝑤0 + k
ẏ

y

| |
𝑥1

𝑥2
| + √2𝑤0 |

sin (𝑤𝑀𝑡 +
𝜋

4
)

−cos (𝑤𝑀𝑡 +
𝜋

4
)
| 𝑢      ( 5.8 )                         

y =
√2

2
|sin (𝑤𝑀𝑡 +

𝜋

4
) −cos (𝑤𝑀𝑡 +

𝜋

4
)| |

𝑥1

𝑥2
| 

Such a system incorporates a frontend modulator, a second-order core filter and a 

backend modulator. The input baseband signal is modulated by a pair of quadrature 

signals at 𝑤𝑀, and the two channels of up converted signals are processed by a biquad 

core filter that has multiple input and multiple output, the two channels of the filter 

output are modulated again and summed up to produce the lowpass filtered version of 

the input. Since the overall system performs like a first order lowpass filter cuts off at 

w0

1−k
 and the terminal modulators don’t have filtering capability, the biquad core filter 

could be taken as the lowpass filter being up converted into a higher frequency range, 
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and it has a bandwidth of  
2w0

1−k
 if 𝑤𝑀 ≫ 𝑤0. The non-zero off-diagonal entries in the state 

matrix could be interpreted as the up conversion of the lowpass filter, and the bandwidth 

of the core filter depends only on the diagonal entries.  

 The above analysis leads to a promising point: when a biquad bandpass filter is 

processing an AM signal, we might be able to tune its bandwidth (or Q factor) with the 

approach specified by eqn. (5.8), as long as the filter meets some requirements. First, the 

biquad bandpass filter could find a state space representation in which the state matrix 

has identical diagonal entries and opposite off-diagonal entries just like the state matrix 

in eqn. (5.8). Second, the bandpass filter’s magnitude and phase responses to signals at 

𝑤0, 𝑤0 + 𝑤𝑠𝑖𝑔 and 𝑤0 − 𝑤𝑠𝑖𝑔 (𝑤0 is the filter’s center frequency, 𝑤𝑠𝑖𝑔 is the baseband 

information signal frequency, and usually 𝑤𝑠𝑖𝑔 ≪ 𝑤0) are very similar to that of some 

first order lowpass filter to signals at dc, 𝑤𝑠𝑖𝑔 and −𝑤𝑠𝑖𝑔. Third, the bandpass filter has 

a demodulator which is able to recover the information signal without introducing 

additional phase shift.  

Recall that the state space representations of a standard biquad bandpass filter 

and a biquad complex filter, respectively given in eqn. (1.30) and eqn. (1.46) (reproduced 

in eqn. (5.13) and eqn. (5.17)), both have a state matrix in the particular formation. For 

each bandpass filter, we have proposed and verified an approach to the reconstruction of 

the information signal from the core filter output, which introduces negligible phase shift 

in the demodulation process. Therefore, if the magnitude and phase responses of the two 

bandpass filters meet the second requirement above, when we time vary their bandwidths 

with ′𝑘
𝑝̇

𝑝
′, where ′𝑝̂′ is the properly reconstructed baseband signal from their core filter 
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output, both systems would have a time-varying bandwidth equivalent to 
1

1−𝑘
 times their 

original core filter bandwidth. 

The review below, through eqn. (5.9) to eqn. (5.21), formulates the transfer 

function, the particular state space representation and the frequency response of a 

standard biquad bandpass filter, a biquad complex filter and a correlated first order 

lowpass filter. 

The first-order lowpass filter cuts off at 
𝑤0

2𝑄
 

▪ Transfer function:    H𝐿𝑃𝐹(𝑠) =

𝑤0
2𝑄

𝑠+
𝑤0
2𝑄

                                                                     ( 5.9 )                     

▪ State space representation with the state matrix in the particular formation: 

|
𝑥̇1

𝑥̇2
| = |

−
𝑤0

2𝑄
−𝑤𝑀

𝑤𝑀 −
𝑤0

2𝑄

| |
𝑥1

𝑥2
| + √2𝑤0 |

sin (𝑤𝑀𝑡)
−cos (𝑤𝑀𝑡)

| 𝑢 

y =
√2

2
|sin (𝑤𝑀𝑡) −cos (𝑤𝑀𝑡)| |

𝑥1

𝑥2
| 

where 𝑤𝑀 is the front end and back end modulating frequency.                           ( 5.10 )  

▪ Magnitude and phase responses: 

|H𝐿𝑃𝐹(±𝑗𝑤𝑠𝑖𝑔)| =
1

√1+(
2Q𝑤𝑠𝑖𝑔

𝑤0
)2

,  ∡H𝐿𝑃𝐹(±𝑗𝑤𝑠𝑖𝑔) = ∓arctan (
2𝑄𝑤𝑠𝑖𝑔

𝑤0
)        ( 5.11 ) 

The standard biquad bandpass filter centered at 𝑤0 with a bandwidth of 
𝑤0

𝑄
 

▪ Transfer function: H𝑆𝐵𝑃𝐹(𝑠) =

𝑤0
𝑄

𝑠

𝑠2+
𝑤0
𝑄

𝑠+𝑤0
2
                                                          ( 5.12 ) 

▪ State space representation with the state matrix in the particular formation: 

|
x1̇

x2̇
| = |

−
w0

2Q
−wA

wA −
w0

2Q

| |
x1

x2
| +

w0

Q
|
1

−1
| u,   y =

1

2λ
|(−γ + λ) −(γ + λ)| |

x1

x2
| 
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where 𝛾 = 1/2𝑄;  𝜆 = √1 − (1/2𝑄)2;  𝑤𝐴 = √1 − (1/2𝑄)2𝑤0                                 ( 5.13 ) 

▪ Magnitude and phase responses:        

|H𝑆𝐵𝑃𝐹(𝑗(𝑤0 ± 𝑤𝑠𝑖𝑔))| =

𝑤0

𝑄
(𝑤0 ± 𝑤𝑠𝑖𝑔)

|𝑗
𝑤0

𝑄
(𝑤0 ± 𝑤𝑠𝑖𝑔) + 𝑤𝑠𝑖𝑔(∓2𝑤0−𝑤𝑠𝑖𝑔)|

=

𝑤0

𝑄

√(
𝑤0

𝑄
)2 + 𝑤𝑠𝑖𝑔

2 (∓2𝑤0 − 𝑤𝑠𝑖𝑔)2

(𝑤0 ± 𝑤𝑠𝑖𝑔)2

 

Assume 𝑤0 ≫ 𝑤𝑠𝑖𝑔, 
(∓2𝑤0−𝑤𝑠𝑖𝑔)2

(𝑤0±𝑤𝑠𝑖𝑔)2
=

(2𝑤0±𝑤𝑠𝑖𝑔)2

(𝑤0±𝑤𝑠𝑖𝑔)2
≈

(2𝑤0)2

(𝑤0)2
= 22.  

It follows that   

|H𝑆𝐵𝑃𝐹(𝑗(𝑤0 ± 𝑤𝑠𝑖𝑔))| ≈

𝑤0
𝑄

√(
𝑤0
𝑄

)
2
+(2𝑤𝑠𝑖𝑔)

2
=

𝑤0
2𝑄

√(
𝑤0
2𝑄

)
2
+𝑤𝑠𝑖𝑔

2
=

1

√1+(
2Q𝑤𝑠𝑖𝑔

𝑤0
)
2
          ( 5.14 ) 

For w = 𝑤0 + 𝑤𝑠𝑖𝑔, 

  ∡H𝑆𝐵𝑃𝐹(𝑗𝑤) =
𝜋

2
− [arctan(

𝑤0

𝑄
𝑤

𝑤0
2 − w2

) + π] = −
𝜋

2
+ arctan(

𝑤0

𝑄
𝑤

w2 − 𝑤0
2
) 

                  = − arctan (
w2−𝑤0

2

𝑤0
𝑄

𝑤
) ≈ −arctan (

2𝑤𝑠𝑖𝑔
𝑤0
𝑄

)                                   ( 5.15 )  

Similarly, for w = 𝑤0 − 𝑤𝑠𝑖𝑔, ∡H𝑆𝐵𝑃𝐹(𝑗𝑤) ≈ arctan (
2𝑤𝑠𝑖𝑔

𝑤0
𝑄

)                                      ( 5.16 ) 

The biquad complex filter centered at 𝑤0 with a bandwidth of 
𝑤0

𝑄
 

▪ Transfer function: HCMPLF(s) =
(s+

w0
2Q

)
w0
Q

s2+
w0
Q

s+wA
2+(

w0
2Q

)2
                                                   ( 5.17 ) 

▪ State space representation with the state matrix in the particular formation: 

|
x1̇

x2̇
| = |

−
w0

2Q
−wA

wA −
w0

2Q

| |
x1

x2
| +

w0

Q
|
1

−1
| u,   y =

1

2
|1 −1| |

x1

x2
| 

 where wA = √1 − (1/2Q)2w0.                                                                                             ( 5.18 ) 

▪ Magnitude and phase responses:        

 Assume 𝑄 is high enough so that 𝑤𝐴
2 ≈ w0

2, 
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|H𝐶𝑀𝑃𝐿𝐹 (𝑗(𝑤0 ± 𝑤𝑠𝑖𝑔))| =

𝑤0

𝑄
|𝑗(𝑤0 ± 𝑤𝑠𝑖𝑔) +

w0

2Q
|

|𝑗
𝑤0

𝑄
(𝑤0 ± 𝑤𝑠𝑖𝑔) + 𝑤𝑠𝑖𝑔(∓2𝑤0 − 𝑤𝑠𝑖𝑔) + (

w0

2Q
)

2

|
 

=

𝑤0

𝑄
√(

𝑤0

2𝑄
𝑤0 ± 𝑤𝑠𝑖𝑔

)

2

+ 1

√(
𝑤0

𝑄
)2 + 𝑤𝑠𝑖𝑔

2 (
2𝑤0 ± 𝑤𝑠𝑖𝑔

𝑤0 ± 𝑤𝑠𝑖𝑔
)

2

+
(
𝑤0

2𝑄)4

(𝑤0 ± 𝑤𝑠𝑖𝑔)2 + 2𝑤𝑠𝑖𝑔(∓2𝑤0 − 𝑤𝑠𝑖𝑔)(

𝑤0

2𝑄
𝑤0 ± 𝑤𝑠𝑖𝑔

)

2
 

 

Since 

𝑤0
2𝑄

𝑤0±𝑤𝑠𝑖𝑔
≪ 1,  (

𝑤0
2𝑄

𝑤0±𝑤𝑠𝑖𝑔
)

2

+ 1 ≈ 1  and 
(
𝑤0
2𝑄

)4

(𝑤0±𝑤𝑠𝑖𝑔)2
≪ (

𝑤0

2𝑄
)2.  

Assume 𝑤𝑠𝑖𝑔 ≪ 𝑤0,  2𝑤𝑠𝑖𝑔(∓2𝑤0 − 𝑤𝑠𝑖𝑔) (

𝑤0
2𝑄

𝑤0±𝑤𝑠𝑖𝑔
)

2

≈ 2𝑤𝑠𝑖𝑔(∓2𝑤0 − 𝑤𝑠𝑖𝑔) (
1

2𝑄
)

2

≈ ∓
𝑤𝑠𝑖𝑔𝑤0

𝑄2 . 

It follows that   

|H𝐶𝑀𝑃𝐿𝐹 (𝑗(𝑤0 ± 𝑤𝑠𝑖𝑔))| ≈
(
𝑤0

𝑄
)

√(
𝑤0

𝑄
)2 + 22𝑤𝑠𝑖𝑔

2 +
(
𝑤0

2𝑄
)4

(𝑤0 ± 𝑤𝑠𝑖𝑔)2 ∓
𝑤𝑠𝑖𝑔𝑤0

𝑄2

 

≈
(
𝑤0

𝑄
)

√(
𝑤0

𝑄
)2 + 22𝑤𝑠𝑖𝑔

2 +
𝑤0

2

(2𝑄)4 ∓
𝑤𝑠𝑖𝑔𝑤0

𝑄2

=
1

√1 + (
2𝑤𝑠𝑖𝑔
𝑤0

𝑄

)2 + (
1
2
)2(

1
2𝑄

)2 ∓
𝑤𝑠𝑖𝑔

𝑤0

≈
1

√1 + (
2𝑤𝑠𝑖𝑔𝑄

𝑤0
)

2

 

( 5.19 ) 

For w = 𝑤0 + 𝑤𝑠𝑖𝑔, ∡H𝐶𝑀𝑃𝐿𝐹(𝑗𝑤) = arctan (
𝑤
w0
2Q

) − [𝜋 + arctan (

w0
Q

w

𝑤𝐴
2+(

w0
2Q

)
2
−𝑤2

)]. 

Assume 𝑤𝐴
2 + (

w0

2Q
)
2

≈ w0
2,  

∡𝐻𝐶𝑀𝑃𝐿𝐹(𝑗𝑤) ≈ 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑤
𝑤0

2𝑄

) − 𝜋 + 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑤0

𝑄
𝑤

𝑤2 − 𝑤0
2
) ≈ 𝑎𝑟𝑐𝑡𝑎𝑛

𝑤
𝑤0

2𝑄

− 𝜋 + 𝑎𝑟𝑐𝑡𝑎𝑛
𝑤0

2𝑄𝑤𝑠𝑖𝑔

 

So    ∡𝐻𝐶𝑀𝑃𝐿𝐹(𝑗𝑤) ≈ (arctan
2Q𝑤

w0
−

𝜋

2
) − arctan

2Q𝑤𝑠𝑖𝑔

w0
 , is little less than −arctan

2Q𝑤𝑠𝑖𝑔

w0
.     

                                                 ( 5.20 )                                                          
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For w = 𝑤0 − 𝑤𝑠𝑖𝑔, still assume 𝑤𝐴
2 + (

w0

2Q
)2 ≈ w0

2，  

∡H𝐶𝑀𝑃𝐿𝐹(𝑗𝑤) ≈ arctan (
𝑤
w0
2Q

) − arctan (

w0
Q

w

w0
2−𝑤2) ≈ arctan (

𝑤
w0
2Q

) − arctan (
w0

2Q𝑤𝑠𝑖𝑔
) 

= arctan (
2Q𝑤

w0
) −

𝜋

2
+ arctan

2Q𝑤𝑠𝑖𝑔

w0
≈ arctan

2Q𝑤𝑠𝑖𝑔

w0
                              ( 5.21 ) 

 

∡H𝐶𝑀𝑃𝐿𝐹(𝑗𝑤) in this case is a little less than arctan
2Q𝑤𝑠𝑖𝑔

w0
. 

As a summary, the derived magnitude and phase responses suggest: 

|H𝑆𝐵𝑃𝐹(𝑗(𝑤0 ± 𝑤𝑠𝑖𝑔))| ≈ |H𝐶𝑀𝑃𝐿𝐹 (𝑗(𝑤0 ± 𝑤𝑠𝑖𝑔))| ≈ |H𝐿𝑃𝐹(±𝑗𝑤𝑠𝑖𝑔)| =
1

√1+(
2Q𝑤𝑠𝑖𝑔

𝑤0
)
2
    ( 5.22 ) 

∡H𝑆𝐵𝑃𝐹 (𝑗(𝑤0 ± 𝑤𝑠𝑖𝑔)) ≈ ∡H𝐶𝑀𝐵𝑃𝐹 (𝑗(𝑤0 ± 𝑤𝑠𝑖𝑔)) ≈ |H𝐿𝑃𝐹(±𝑗𝑤𝑠𝑖𝑔)| = ∓arctan (
2𝑄𝑤𝑠𝑖𝑔

𝑤0
) ( 5.23 ) 

 At this point, the discoveries we made with the two feedback bandpass filtering 

systems through sweeping the feedback scale factor ′𝑘′, as well as eqn. (5.1), get clearly 

explained. Neglecting the influence of all the undesired high frequency components in 

the recovered signal, we could formulate rough transfer functions for the two feedback 

filters when they are processing AM input signals.   

H𝑆𝐵𝑃𝐹𝑓𝑏
(𝑠) =

w0
(1−k)Q

𝑠

𝑠2+
w0

(1−k)Q
𝑠+𝑤𝐴

2+
w0

2

4(1−k)2Q2

                                  ( 5.24 ) 

  H𝐶𝑀𝑃𝐿𝐹𝑓𝑏
(𝑠) =

[𝑠+
w0

2(1−k)𝑄
]

w0
(1−k)Q

𝑠2+
w0

(1−k)Q
𝑠+𝑤𝐴

2+
w0

2

4(1−k)2Q2

                                        ( 5.25 ) 

where 𝑤𝐴 = √1 − (1/2(1 − k)𝑄)2𝑤0 , as in the original transfer functions 𝑤𝐴 =

√1 − (1/2𝑄)2𝑤0. When setting 𝑤𝐴 = 𝑤0 for analysis and simulation simplicity, 𝑤𝐴 = 𝑤0 

still holds true for the above feedback system transfer functions. 
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 Noise Performance Test 

In this section, we focus on the noise performance of both feedback bandpass 

filtering systems in Fig. 5.1 and Fig. 5.7, with negative k values. Output signals from the 

feedback systems and related open loop systems are plotted together for comparison.  

 The Feedback Bandpass Filtering System 

Noiseless input and noisy core filter 

The test set up below was run to evaluate the capability of the feedback system 

in suppressing the white noise injected into its core filter. Demodulated signals from the 

systems under test were plotted, as their noise floor is a good representation of the core 

filter output noise level. 

Input voltage:  p(t) ∙ u(t) = [1m + (0.5m)sin(wpt)]sin(wcarriert ),  

                             where wp = 2π ∙ 10k ,wcarrier = 2π ∙ 1Meg 

Feedback system:  Qcore = 50,  𝑘 = −4,−9,−19 

Open-loop bandpass filter system:  Q = 250 , 500, 1000 

Injected noise: two uncorrelated white noise current sources, the RMS value for both is 0.1uA.  

 

Figure 5.10 A biquad bandpass filter with injected current noise 
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According to the plots in Fig. 5.11 (a) to Fig. 5.11(c), as the open-loop bandpass 

filter becomes sharper, the same amount of injected noise yields higher output noise 

floor. This is due mainly to the transconductance notated by gu providing a gain of 𝑔𝑢
−1 

to the injected noise, which is proportional to the filter’s Q factor and cannot be counter 

balanced by the system’s filtering capability. Therefore, a sharper bandpass filter tends 

to have higher output noise floor, hence less dynamic range. For all the k values under 

test, the 10kHz component in the recovered signals from the feedback system and its 

open-loop reference system is very close in amplitude while the output noise floor of the 

former is consistently lower. A close inspection reveals that as k becomes more negative, 

or the equivalent Q factor becomes higher, the feedback filtering system’s output noise 

floor is suppressed to an even lower level, which is in contrast to what was observed in 

the noise test on the open-loop bandpass filters. This advantageous noise performance 

of the feedback filtering system is the result of two mechanisms: the input-referred noise 

of the feedback system depends mainly on the amount of injected noise and the original 

sharpness of the core filter, and it barely varies with the feedback scale factor k; on the 

other hand, when k is tuned more negative, the filtering system becomes sharper. When 

the same amount of input-referred noise gets filtered harder, the output noise floor surely 

drops to a lower level. Moreover, Fig. 5.11 (d) compares the output signals from two 

feedback systems set up to implement the same equivalent Q factors. Their original Q 

factors are 50 and 10, and k values are -3 and -19, respectively. The system with a flatter 

original core filter produces an output noise level about 1/5 as much as the other system 

does, but large harmonic distortion and slightly smaller recovered information signal 

drastically lowers the output SNR. Therefore, the tradeoff between the output noise level, 
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harmonic distortion and 𝑄𝑐𝑜𝑟𝑒 value is an issue worth consideration in tuning a feedback 

bandpass filter.  

As a summary, setting the feedback scale factor k with negative values for the 

system in Fig. 5.1 provides an approach to implementing with a low-Q bandpass filter a 

new filtering system that has a time-variant Q factor and equivalent bandwidth 

comparable to that of a higher-Q bandpass filter; the feedback bandpass filter has 

improved performance in suppressing the in-filter noise hence a wider dynamic range 

compared to the open loop bandpass filter of comparable sharpness. Low requirement 

for the core filter Q factor and the superior in-filter noise suppression capability are two 

attractive features of the feedback filtering system. However, there is a tradeoff between 

the output noise level and output harmonic distortion. 
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(d) 

Figure 5.11 Transient plots and FFT spectra of the recovered signals from systems under the 

injecting white noise test. (a) Feedback system: Q=50, k=-4. Open-loop bandpass filter Q=250; 

(b) Feedback system: Q=50, k=-9. Open-loop bandpass filter Q=500; (c) Feedback system: 

Q=50, k=-19. Open-loop bandpass filter Q=1000; (d) Feedback systems: Q=50, k=-3 and Q=10, 

k=-19. 
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Noisy input and noiseless feedback system 

Similar setup was used in this test, but the injected current noise was removed 

and white voltage noise was superimposed onto the system input AM signal: 

Input voltage: 𝑝(𝑡) ∙ 𝑢(𝑡) = [1𝑚 + (0.5𝑚)𝑠𝑖𝑛(𝑤𝑝𝑡)]𝑠𝑖𝑛(𝑤𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑡 ) + 𝑛𝑜𝑖𝑠𝑒,  

                       where 𝑤𝑝 = 2𝜋 ∙ 10𝑘 ,𝑤𝑐𝑎𝑟𝑟𝑖𝑒𝑟 = 2𝜋 ∙ 1𝑀𝑒𝑔, 𝑛𝑜𝑖𝑠𝑒 =  0.1𝑚𝑉𝑟𝑚𝑠 

Feedback system: 𝑄𝑐𝑜𝑟𝑒 = 50,  𝑘 = −1,−4,−9 

Open-loop bandpass filter system: 𝑄 = 100, 250 , 500 

As shown in Fig. 5.12, for each k value under test, the noise floor in the output of both 

the feedback filtering system and the reference open loop system almost overlap, and 

the recovered information signals have very similar amplitude, except that the feedback 

system output contains noticeable harmonic distortion in the baseband. Therefore, the 

feedback bandpass filtering system is not superior to the open-loop bandpass filter with 

comparable sharpness in suppressing the input noise.  
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Figure 5.12 FFT spectra of the recovered signals from the feedback system with different k 

values and from the reference open-loop system in the noisy input test. 

 

 The Feedback Complex Filtering System 

From the above test, we discovered that when the core filter is noisy, the feedback 

bandpass filtering system with negative k values produces a less noisy output than the 

open loop bandpass filtering system of comparable sharpness does, but it fails to more 

effectively suppress the input noise. We hence only focused on the in-filter noise 
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suppression capability of the feedback complex filtering systems here. Large amount of 

simulation in Chapter 4 has shown that a synchronous complex filter behaves similarly 

to a synchronous bandpass filter, so it’s predicted that a feedback complex filtering 

system with negative k also has improved immunity to the injected noise. 

Both the feedback system and the reference open-loop system under test were 

injected with white noise current of 0.1uArms. The original Q factor of the feedback 

system was set to be 50 and the scale factor k was -9. As shown in Fig. 5.13(a), the noise 

floor in the recovered signal from the reference open-loop system is consistently higher 

than that from the feedback system in the frequency range of our interest. Lowering k 

value from -9 to -19 and raising the open-loop complex filter’s Q factor from 500 to 

1000 accordingly, it’s clearly shown by the FFT spectra in Fig. 5.13(b) that a sharper 

complex filter produces higher output noise floor while the feedback system with higher 

equivalent Q factor applies stronger attenuation to the injected noise. Finally, to compare 

the performance of the feedback systems with comparable equivalent bandwidth but 

different original Qcore values, same amount of noise was injected into two systems, with 

Qcore=50, k=-3 and Qcore=10, k=-19 respectively. Shown in Fig. 5.13(c), the recovered 

information signals from both systems have similar amplitude compared to the size of 

the recovered signal from an open loop complex filter with Q factor of 200, while the 

feedback system with smaller Qcore produces a much lower output noise floor. Moreover, 

no noticeable harmonic distortion is seen in the output spectra of either feedback system, 

therefore, the feedback complex filtering systems are superior to the feedback bandpass 

filtering systems in dealing with the in-filter noise.  
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(a) 

 

 
(b) 
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(c) 

Figure 5.13 Transient plots and FFT spectra of the recovered signals from systems under the 

noisy core filter test. (a) Feedback complex filtering system with core filter of Q=50 and k=-9, 

and the reference open-loop complex filtering system with core filter of Q=500 and 50. (b) 

Feedback system with core filter of Q=50 and k=-19, and the reference open-loop system with 

core filter of Q=1000. (c) Feedback systems with Q=50, k=-3 and Q=10, k=-19, and the reference 

open loop system with Q=200. 

 

 A Noisy Feedback Complex Filtering System Model 

In this section, we propose and test a more practical Gm-C network model for 

the feedback complex filtering system where all the transconductors are noisy. In such a 

situation, the recovered signal p̂(t) is noisier than its ideal model counterpart, and it’s of 

our interest whether the noisy feedback filtering system still has the improved noise 

performance compared to the reference open loop filtering system. 

A brief review on the noisy transconductor model is given as follows. The block 

schematic shown in Fig. 5.14 illustrates a generic transconduator’s noise model [34-36]. 

Regardless of its type (with differential pair or with second generation current conveyor) 

and technology realization (bipolar, CMOS), any transconductor may be represented by 

an active noiseless device with the equivalent noise sources. In the model from Fig.5.14, 
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𝑑𝑣𝑖𝑒𝑞
2̅̅ ̅̅ ̅̅ ̅ is the mean squared value of the equivalent input noise voltage source and 𝑑𝑖𝑖𝑒𝑞

2̅̅ ̅̅ ̅̅  

is the mean squared value of the input noise current source. Depending on the resistance 

of the circuitry that drives a transconductor, the dominating noise source is different. 

When the source resistance is comparatively low (𝑅𝑠 ≪ 𝑅𝐺𝑚_𝑖𝑛), the transconductor 

could barely divide any current from the input-referred noise current generator, so the 

equivalent input noise voltage source is dominant. If the source resistance is high (𝑅𝑠 ≫

𝑅𝐺𝑚_𝑖𝑛), then the transconductor takes most of the current from the input-referred noise 

current generator and almost no voltage from the input-referred noise voltage generator, 

so it’s the input current noise source mainly contributes to the transconductor output 

noise in this situation. For finite and not-null values of 𝑅𝑠, both input noise generators 

need to be taken into consideration.  

 

Figure 5.14 Noise model of a transconductor. 

Power density of the equivalent input noise current and voltage of a 

transconductor stage (in bipolar or CMOS technology) can be expressed as follows [37]: 

𝑑𝑣𝑖𝑒𝑞
2̅̅ ̅̅ ̅̅ ̅ = 𝛾𝑣

𝑘𝑇

𝜋𝐺𝑚
𝑑𝑤, 𝑑𝑖𝑖𝑒𝑞

2̅̅ ̅̅ ̅̅ = 𝛾𝑖
𝑘𝑇𝐺𝑚

𝜋𝐺𝑚
𝑑𝑤                      ( 5.26 ) 

where 𝛾𝑣  and 𝛾𝑖  coefficients are the noise voltage and current factors of the 

transconductor, 𝐺𝑚– the transconductance value of the circuit, k – Boltzmann’s constant, 

and T – absolute temperature. An important difference between a CMOS and a bipolar 
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transistor is that usually the base current flows in a BJT cannot be neglected. Shot noise 

is associated with this current, which gives rise to the equivalent input noise current 

generator that is not present in a MOSFET. As a result, each BJT virtually has two input 

noise generators.  

To simplify the modeling of the noisy transconductors in our system, we assume 

that each transconductor has only the input-referred noise voltage source as its dominant 

noise source while the input-referred noise current source is of little importance. The 

BJT “tanh” transconductor in Fig. 5.15 for instance, has such a noise property. As 

analyzed in the literature [38], it has an input-referred noise voltage power density of: 

𝑑𝑣𝑖𝑒𝑞
2̅̅ ̅̅ ̅̅ ̅ = 4𝑑𝑣1

2̅̅ ̅̅ ̅ = 4
𝑘𝑇

𝜋𝐺𝑚
𝑑𝑤                                   ( 5.27 )                                         

 

Figure 5.15 “Tanh” transconductor noise sources. 

We utilized eqn. (5.27) to determine the amount of white noise voltage to insert 

in front of each VCCS and developed a noisy system as shown in Fig. 5.16. The specific 

test setup is listed in Table 5. 3, where the feedback filter has an original Q factor of 50 

and a feedback scale factor of -9, and the reference open loop filter has a Q factor of 500.  

Using filtering capacitors of 3.07nF and a 3.07uF capacitor for generating the feedback 

signal, we could determine all the transconductors in the system. Take 𝑔11 = 𝑔22 =
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−192.89𝑢𝑆 which corresponds to a core filter with center frequency of 1MHz and Q 

factor of 50 for instance, using eqn. (5.27), the input noise power density is: 

𝑑𝑣𝑖𝑒𝑞_𝑄50
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

8𝑘𝑇

𝐺𝑚
𝑑𝑓 =

8×25.85𝑚𝑉×1.602×10−19𝐴∙𝑠

192.89𝑢𝐴𝑉−1
𝑑𝑓                 ( 5.28 ) 

As all the white noise sources (uncorrelated) were generated in MATLAB at the rate of 

1sample/20ns, the flat noise spectrum has a bandwidth of 
1

20×10−9×2
= 25𝑀𝐻𝑧 . 

Therefore, the rms value of the transconductor’s input noise voltage is: 

𝑣𝑖𝑒𝑞_𝑄50_𝑟𝑚𝑠 = √25𝑀𝐻𝑧 ∙ 𝑑𝑣𝑖𝑒𝑞_𝑄50
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

8 × 25.85 × 1.602 × 10−19 × 25 × 106

0.19289
𝑉 = 65.527𝑢𝑉 

( 5.29 ) 

Similarly, the input noise voltage for 𝑔12  and 𝑔21  (19.289mS) has an rms value of  

6.553𝑢𝑉. For the transconductor in the feedback path (9mS or 1mS), the input noise rms 

value is about 9.593𝑢𝑉 or 30𝑢𝑉.   

 

Figure 5.16 A noisy model for the feedback complex filtering system. 
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Table 5-3 Test setup for comparing the performance of the noisy feedback complex filtering 

system and the reference noisy open-loop complex filtering system. 

 

For both tests, we intentionally set up the core filter in the open loop system with 

the same set of input noise voltage sources derived for the core filter with Q=50 in the 

feedback system, which actually makes the open loop filter less noisy than it is supposed 

to be. The up conversion and down conversion output signals from the systems under 

test were plotted in Fig. 5.17. The noisy feedback filter and the noisy reference open 

loop filter still have comparable sharpness, as their recovered information signals are 

very close in amplitude. Moreover, the output noise floor of the feedback system is 

obviously lower than its open loop counterpart. Comparing the results of Test 1 and Test 

2, the in-band output noise is apparently higher for the open loop filter with a larger Q 

factor, while there is barely difference between the in-band output noise levels for the 

feedback filters with different k value. Therefore, even the transconductors in the Gm-C 

model are noisy, the feedback complex filter is still able to produce an output with higher 

SNR than the output from an open loop complex filter of comparable sharpness. 

Considering that a noisy filter with smaller Q factor usually outputs lower in-band noise 

but it has very limited filtering capability, the feedback complex filtering system 

provides an innovative method to effectively sharpen a filter without raising the output 

noise floor in the interested frequency range.



194 

 

                                                                                      

  

  
  

  
  

 

  
  
  

 

(a
) 

L
ef

t 
co

lu
m

n
: 

U
p

 c
o

n
v
er

si
o
n
 r

es
u
lt

s 
fr

o
m

 T
es

t 
1
  
  

 R
ig

h
t 

co
lu

m
n
: 

D
o
w

n
 c

o
n
v
er

si
o
n

 r
es

u
lt

s 
fr

o
m

 T
es

t 
1
 

 



195 

 

  
  

 
  
  

  
 

  

 

(b
) 

L
ef

t 
co

lu
m

n
: 

U
p

 c
o
n
v
er

si
o
n
 r

es
u
lt

s 
fr

o
m

 T
es

t 
2
  
  

  
R

ig
h
t 

co
lu

m
n
: 

D
o
w

n
 c

o
n

v
er

si
o

n
 r

es
u

lt
s 

fr
o

m
 T

es
 t

2
 

F
ig

u
re

 5
.1

7
 T

ra
n
si

en
t 

p
lo

ts
 a

n
d
 F

F
T

 s
p
ec

tr
a 

o
f 

(a
) 

T
es

t 
1
 a

n
d

 (
b

) 
T

es
t 

2
. 

 

  
  

  
  

  
  

 
 



196 

 

 The Implementation of a Log-domain Feedback Complex Filtering System 

Finally, we propose a transistor-level implementation solution for the feedback 

complex filtering system that utilizes log-domain filtering circuitries and related 

technique. We have implemented in Chapter 3 a log-domain open loop synchronous 

complex filtering system that is able to perform both up conversion and down 

conversion at the back end stage, and we have verified that the down conversion result, 

𝑝̂(𝑡), could be used to generate the Q-factor control signal 𝑘
p̂(t)̇

p̂(t)
. We now discuss in 

detail the implementation of the feedback path. The state-space representation of a 

superheterodyne feedback complex filtering system is reproduced in eqn. (5.30), where 

𝑘
𝑝̇

𝑝
𝑥1,2 corresponds to the feedback Q-factor control signal.  

|
𝑥1̇

𝑥2̇
| = |

|
−

𝑤0

2𝑄
+ 𝑘

𝑝̇̂

𝑝̂
 −𝑤0

𝑤0 −
𝑤0

2𝑄
+ 𝑘

𝑝̇̂

𝑝̂
 
|
| |

𝑥1

𝑥2
| + (𝑤0 𝑄⁄ ) |

   𝑠𝑖𝑛(𝑤𝑀1𝑡)

−𝑐𝑜𝑠(𝑤𝑀1𝑡)
| 𝑣 

𝑦𝑢𝑝_𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = |𝑠𝑖𝑛(𝑤𝑀1𝑡) −𝑐𝑜𝑠(𝑤𝑀1𝑡)| 

𝑦𝑑𝑜𝑤𝑛_𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = |𝑐𝑜𝑠(𝑤0𝑡)     𝑠𝑖𝑛(𝑤0𝑡)| |
𝑥1

𝑥2
| = 𝑝̂(𝑡)         ( 5.30 ) 

In the log-domain complex filtering system, 𝑝̂(𝑡) is an always positive current signal 

which is realized as the current flowing in the output transistor of the back end down 

converter. For demonstration sake, we express 

p̂(𝑡) = 𝐼𝑠exp (𝑣𝑏𝑒𝑜
/𝑣𝑇)                                                     ( 5.31 ) 

where 𝑣𝑏𝑒𝑜
 is the base-emitter voltage difference of the output transistor. It follows that  

ṗ̂ =
𝑣𝑏𝑒𝑜̇

𝑣𝑇
p̂ →

ṗ̂

p̂
=

𝑣𝑏𝑒𝑜̇

𝑣𝑇
                                              ( 5.32 ) 
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Recall that to associate the state space representation with a log-domain circuit, both 

sides of the state equations are multiplied with 
𝐶𝑣𝑇

x1,2
. Terms k

ṗ̂

p̂
x1,2 are correspondingly 

transformed into: 

k
ṗ̂

p̂
x1,2 ∙

𝐶𝑣𝑇

x1,2
= k

ṗ̂

p̂
𝐶𝑣𝑇 = 𝑘𝐶𝑣𝑏𝑒𝑜

̇                                     ( 5.33 ) 

Eqn. (5.33) reveals the explicit physical meaning of the feedback signal: k times the 

current flowing in a capacitor of C farads when applied with voltage 𝑣𝑏𝑒𝑜
. Based on the 

analysis above, we designed the circuitry in Fig. 5.18 to generate a current signal that 

approximately equals 𝑘𝐶𝑣𝑏𝑒𝑜
̇  with some offset, using the complex filtering system’s 

down converter output current p̂(𝑡). The design consists of two log-domain first-order 

lowpass filters connected by a current mirror. p̂(𝑡) is sent to LPF1 by connecting the 

base of the output transistor in the down converter to the emitter of the filter’s input 

transistor. The transfer function of LPF1 is: 

𝐼𝑂𝑈𝑇(𝑠)

𝐼𝐼𝑁(𝑠)
=

𝑤1

𝑠+𝑤1
, where w1 =

ILP1

CVT
                                   ( 5.34 ) 

When w1 is tuned to be far away from the input information component, the baseband 

of the filter output current is very similar to that of p̂(𝑡), so the log version of the output 

current, i.e. the voltage across the capacitor C notated as vbe0
̂ , has very similar baseband 

as that of 𝑣𝑏𝑒𝑜
. Therefore, the current flowing in C approximately equals 𝐶𝑣𝑏𝑒𝑜

̇ . To 

scale this current, another low-pass filter, LPF2, with tunable peak gain is included, the 

transfer function of which is:  

𝐼𝑂𝑈𝑇(𝑠)

𝐼𝐼𝑁(𝑠)
=

𝑘𝑤2

𝑠+𝑤2
, where w2 =

ILP2

CVT
                                 ( 5.35 ) 
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Figure 5.18  Implementation of  𝑘𝐶𝑣𝑏𝑒𝑜
̇  with dc offset. 

 

Note that the dc component in the input current of LPF2 will be scaled by k too, it’s 

preferable to adjust it to a low level before the signal processing so that the output dc 

offset will not be too high. This issue can be fixed by adding a tunable source 𝐼𝑜𝑠1 to 

pull away some dc current from the current mirror output, so the offset could be tuned 

conveniently without affecting the cutoff frequency of LPF1. The output current of the 

overall circuitry, call it 𝐼𝑜𝑢𝑡1, is an offset, low-pass filtered version of 𝑘𝐶𝑣𝑏𝑒𝑜
̇ . If w1 and 

w2 are high enough, very few phase shift would be introduced to the useful components, 

so the baseband spectrum of 𝐼𝑜𝑢𝑡1 would be very similar to that of 𝑘𝐶𝑣𝑏𝑒𝑜
̇  (𝑘 > 0). The 

circuitry in Fig. 5.19 gets rid of the dc component in 𝐼𝑜𝑢𝑡1  and reverses the ac 

components to implement the negative k. The output current 𝐼𝑜𝑢𝑡2 approximately equals  

−𝑘𝐶𝑣𝑏𝑒𝑜
̇  and could be sent back to the core filter to time vary its Q factor. Switches not 

shown here are used as an interface, with which we could prevent the Q-factor control 

signal being immediately sent back when it’s just generated but close the loop at some 

point when the transient part in the signal fades to a negligible level. The switches are 

indispensable for avoiding convergence problem in the simulation. 
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Figure 5.19 Implementation of  −𝑘𝐶𝑣𝑏𝑒𝑜
̇  

The trickiest part in the feedback path design lies in eliminating the undesired 

signals resulted from the interaction between the Q-factor control signal and the 

quiescent signals in the core filter. Qualitatively, for the feedback system to work as 

expected, the Q-factor control signal should only interact with the ac components in the 

core filter and generate signals in the frequency range near the filter’s center frequency. 

However, the log-domain core filter incorporates circuitry that helps establish the dc 

operating point, which inevitably generates dc signals at some nodes that will be 

modulated by the feedback signal. Such an undesirable modulation results in ac 

components in the baseband, which is far away from the filter’s center frequency. 

Considering that the filter output contains ac components near its center frequency and 

in the baseband as well, the down conversion result is much noisier than expected due 

to the baseband components being shifted into a higher frequency range. The high 

frequency noise would lower the SNR of the feedback Q-factor control signal and 

degrades the performance of the feedback system, which is manifested by the large 

output harmonic distortion. Lowpass filtering is not an effective solution because the 

high frequency noise has comparable size as that of the baseband signals, and the 

feedback system is very sensitive to the phase change in the recovered baseband signal. 
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To fix the issue, we introduced another core filter, which is exactly the same as the core 

filter but with no ac input. It’s used to model the quiescent part of the original core filter, 

so when the same Q-factor control signal is injected, it would produce baseband ac 

components almost identical to the baseband components produced by the modified 

core filter. Subtracting the output of the modified auxiliary filter from that of the 

modified core filter, we would be able to get rid of most of the undesired baseband 

components and recover 𝑝̂(𝑡)  with much less noise near the back end modulating 

frequency. The design is illustrated in Fig. 5.20.   

 

Figure 5.20 Embodiment of the log-domain feedback complex filtering system 

 

The interface between the core filter and the back end modulator in the feedback 

system is accordingly redesigned to perform current subtraction. Related circuitry is 

shown in Fig. 5.21. The schematic of the feedback log-domain complex filtering system 

is shown in Fig. 5.22, where the up converter is omitted. All the BJTs are ideal and have 

𝛽 = 100𝐾, MbreakN and MbreakP models from the PSpice Breakout library were used 

to implement the switches. A transient test was run on both the feedback system and its 

related open loop system. Furthermore, the gain spectra of the particular systems under 

test were plotted to show their frequency response in a generic way. The specific setup 

for the transient test is listed in Table 5.4.    
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(a) 

 

 

(b) 

Figure 5.21 Schematic of (a) the back end stage and (b) the two modified filters in the feedback 

system. 
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Table 5-4 Circuit parameters for the feedback log-domain complex filter. 

 

The first set of systems under the transient test include: a feedback complex 

filtering system with Q=5, k=-9, an open loop system with Q=5 and an open loop system 

with Q=50. The down conversion results from all the systems are plotted in Fig. 5.23(a). 

According to the simulation setup, the feedback loop is not closed until t=2ms, so the 

output signal of the feedback system (k=0) perfectly overlaps with the output from the 

open loop filter with Q=5 till 2ms, then becomes smaller when the loop is closed and 

gets in phase with the output of the open loop system with Q=50. FFT spectra of the 

steady state output signals from the two systems are given in Fig. 5.23(b), measurement 

results show that they have baseband components of similar respective sizes, but the 

amplitude difference is a little higher for dc component. It might be due to the feedback 

filter’s peak gain is slightly higher and its actual center frequency is a little off. 

In the second set of systems tested, the feedback system is set up with Q=5, k=-

19 and the reference open loop system has Q=100. Down converter output signals from 

the two systems are plotted in Fig. 5.24. Their dc levels have even larger difference, 

while for the rest components the amplitude difference is at a negligible level. It 

indicates that a feedback filter with more negative k has a higher peak gain. Moreover, 

the feedback system output is noisier than its open-loop system counterpart, which is 
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due to the high frequency components inevitably generated in the down conversion 

process. As the output noise is in a higher frequency range and at a comparatively low 

level, it could be attenuated by an additional low-pass filter without affecting the useful 

baseband components. 

 

(a) 

   

(b) 

Figure 5.23 Transient plots and FFT spectra of the recovered signals from the first set of systems 
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(a) 

 

(b) 

Figure 5.24 Transient plots and FFT spectra of the recovered signals from the second set of 

systems 

 

Gain spectra of all the filtering systems under test above are plotted, together 

with gain spectra of the transfer functions for biquad complex filters with Q=200, 

𝑓0=4MHz and Q=400, 𝑓0=4MHz, as shown in Fig. 5.25. High similarity between the 
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bandwidths of the filters in the same set verifies that the log-domain feedback system 

with a low-Q core filter is capable of implementing a high Q filtering system when the 

current sources varying the core filter bandwidth are properly set up. The peak gain of 

the feedback filter is closer to the ideal value, while the gain spectrum of the open loop 

filter bears stronger resemblance to the Bode plot of the target transfer function. 

 

 

 

 

Figure 5.25 Gain spectra of all the log-domain filtering systems under test and the transfer 

functions of two reference biquad complex filters.  
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Finally, to compare the capability of the log-domain feedback complex filter in 

suppressing the internal noise to that of its reference open loop complex filter, white 

noise currents of 1uArms were injected into the filtering capacitors in the core filter in 

both systems. The feedback system was set up with 𝑄𝑐𝑜𝑟𝑒 = 5 𝑎𝑛𝑑 𝑘 = −19 and the 

reference open loop complex filter had 𝑄𝑐𝑜𝑟𝑒 of 100. Simulation results in Fig. 5.26 

explicitly verify the improved noise performance of the feedback filtering system in 

dealing with the in-filter noise. Moreover, it was observed that even when the assistant 

filter in the feedback system is injected with noise currents of the same RMS value, its 

output SNR is still about one order of magnitude higher than that of the open loop filter 

in the frequency range of interested. (The test results are not plotted here) 

    
 

    
(a) 
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(b) 

 

Figure 5.26 Transient plots and FFT spectra of the interested output signals from the log-domain 

feedback complex filter (Q=5, k=-19) and the reference open loop complex filter (Q=100) in 

the in-filter noise test. 

 

 Summary 

An innovative approach to tuning the Q factor of a biquad bandpass filter 

processing AM signals was discovered and mathematically proved. The idea is inspired 

by the AM mode synchronous filtering and is illustrated in Fig. 5.1. Simply put, by 

scaling the feedback signal 
𝑝̇(𝑡)

𝑝(𝑡)
  with 𝑘 (𝑘 ≤ 1), we would be able to turn the original 

bandpass filter with quality factor 𝑄𝑐𝑜𝑟𝑒 into one with time-variant bandwidth and an 

equivalent quality factor of (1 − k) 𝑄𝑐𝑜𝑟𝑒.  

Simulation results suggest that the AM mode feedback system developed from 

a biquad bandpass filter would always produce some output harmonic distortion. For 

any positive 𝑘, the distortion is at a negligible level; while for negative 𝑘 values, the 

output distortion gets higher as 𝑘  becomes more negative. When implementing a 
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feedback bandpass filter with some target Q factor, the combination of a sharper core 

filter and less negative 𝑘 would have higher output SNR and frequency response more 

similar to that of the reference open loop bandpass filter. This might be due to the 

reconstructed 𝑝̂(𝑡) contains a lot of high frequency harmonics of the down conversion 

sampling rate. An alternate system realization is shown in Fig. 5.7, which utilizes a 

biquad complex filter as the core filter. When set up with same 𝑄𝑐𝑜𝑟𝑒  and 𝑘 , the 

feedback complex filtering system produces much less harmonic distortion and has an 

equivalent Q factor fits eqn. (5.1) better. Moreover, the gain spectrum of the feedback 

complex filter bears stronger resemblance to that of the reference open loop complex 

filter.  

Mathematical explanation to the Q-factor tuning approach was inspired by 

noticing that when a first order lowpass filter cuts off at 𝑤0 gets it output modulated by 

−𝑤0 + k
𝑦̇

𝑦
, where 𝑦 is the modified filter’s instant output, the yielded system would 

have a new cutoff frequency of 
𝑤0

1−𝑘
. Moreover, transformation on the state space 

description of the modified first order lowpass filter suggests that it could be realized 

by a second-order system that incorporates two terminal modulators and a biquad core 

filter. The state matrix specifying the biquad core filter has a formation identical to that 

of the state matrix in some state space representation of a biquad bandpass/complex 

filter. Furthermore, we proved that both the biquad bandpass filter and complex filter 

have the expected frequency response so as to generate a proper bandwidth control 

signal. Based on all the similarities, it becomes obvious that the mechanism the feedback 
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modulation scales the Q factor of a biquad bandpass/complex filter is exactly the same 

as that of the gain modulation scales the cutoff frequency of a first-order lowpass filter. 

Observation made through the noise performance test is summarized as follows: 

1) The feedback AM mode filtering system with a negative k is superior to its 

reference open loop filter in suppressing the in-filter noise. The advantage manifests 

itself in two aspects: First, when dealing with same amount of noise currents injecting 

to the filtering capacitors, the feedback filter always produces an output with lower noise 

floor than the open loop filter of comparable sharpness does. Second, to sharpen an open 

loop filter, we have to directly increase its Q factor, which amps up the input-referred 

noise and usually raises the output noise floor because the enhanced filtering capability 

could not counter balance the gain in the noise. For the feedback system, we could stick 

with the original core filter and simply tune the feedback scale factor 𝑘 more negative. 

As the injected noise is not additionally amplified while the filter gets tuned sharper, the 

system output noise floor gets suppressed to a lower level.  

2) Comparing the output spectra from feedback systems of comparable 

equivalent bandwidths, injected with same amount of noise, but developed with core 

filters of different Q factors, we discovered that the output noise level is consistently 

proportional to 𝑄𝑐𝑜𝑟𝑒, so the feedback system with smaller 𝑄𝑐𝑜𝑟𝑒 always produces lower 

output noise floor. However, for feedback bandpass filters with very low 𝑄𝑐𝑜𝑟𝑒 and too 

negative scale factor 𝑘 (e.g. 𝑄𝑐𝑜𝑟𝑒=10, k=-19), large second-order harmonic distortion 

appears in the output (about 1.7% of the information signal size) and the recovered 

information signal is obviously lower than expected (about 10% lower), which greatly 

degrades the output SNR (Fig. 5.11(d)). So there is a tradeoff between the output noise 
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level, output harmonic distortion and 𝑄𝑐𝑜𝑟𝑒 value in implementing a feedback bandpass 

filter. Excitingly, the feedback complex filter is not subject to this issue, as shown in 

Fig. 5.13(c), no harmonic distortion is seen in the output from the system with 𝑄𝑐𝑜𝑟𝑒=10 

and k=-19, and the information component has larger amplitude. Therefore, the 

feedback complex filter demonstrates better performance than the feedback bandpass 

filter in dealing with in-filter noise. 

3) For the feedback complex filtering system, we proposed a noisier Gm-C 

network model where all the transconductors are added with an input voltage noise 

source. The reference open loop filter models were accordingly set up noisy too. Test 

results in Fig. 5.17 suggest that even with noisy transconductors, the feedback complex 

filter and the reference open loop filter still have comparable sharpness, and the output 

noise floor from the feedback filter is still lower than its open loop filter counterpart. 

Moreover, the in-band output noise is apparently higher for the open loop filter with 

larger Q factor, while there is barely difference between the in-band output noise levels 

of the feedback filters with different sharpness, as long as they have the same 𝑄𝑐𝑜𝑟𝑒 

factor. Therefore, the feedback complex filtering system provides an innovative 

approach to effectively sharpening a filter without raising the output noise floor in the 

interested frequency range. 

4) Unfortunately, both the feedback bandpass filter and the feedback complex 

filter fail to more effectively suppress the input noise, compared to their reference open 

loop filters. 

 In the last section, a possible implementation of a biquad log-domain feedback 

complex filter is proposed. The schematic for the overall system is given Fig. 5.22. 
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Transient test, frequency response test and in-filter noise suppression test were run on 

the transistor-level feedback filter and its reference open loop filter. Specific test setup 

is given in Table 5.4, the filtering function and noise performance of the circuit is 

verified by simulation results in Fig. 5.23 to Fig. 5.26. Note that the proposed design 

has to include an assistant core filter to eliminate some undesired frequency components 

so as to implement the expected time-variant Q factor, which makes the circuit more 

power consuming and subject to more noise, further effort could be put into modifying 

the design and simplifying the schematic. 
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 Conclusion and Future Work 

In the context of synchronous filtering, we focused on developing analog filters 

with improved noise performance. Specifically, a second-order bandpass filter and a 

second-order complex filter were implemented and modified utilizing AM mode or FM 

mode synchronous filtering techniques. Important discoveries and designs are 

summarized as follows: 

1. The FM mode synchronous filtering, either static or dynamic, provides a 

modulator-core filter-modulator architecture that could be used to implement a high-

center frequency high-Q factor complex filter with a low-center frequency low-Q filter. 

A dynamic synchronous complex filter, of which the core filter center frequency and 

both end modulating frequencies vary with time in a synchronized way, is capable of 

suppressing the injected in-filter single-tone noise in a certain frequency range. 

Consider the particular dynamic complex filter we studied that has a center frequency 

offset at 1MHz and a constant bandwidth of 20kHz for instance. When the center 

frequency varies as a square waveform at 100kHz in the range of 1MHz ± 800kHz, the 

system suppresses the single-tone noise components near 1MHz injected to the core 

filter to about three orders of magnitude lower than their levels in the static system 

output, without additionally attenuating the useful information signals. 

2. We developed a few filtering systems with time-varying Q factor based on 

the architecture of an AM mode synchronous filter. The related block diagrams are 

given below. System 1 could be taken as an AM mode synchronous bandpass filter 

without the back end modulator, receiving input signal 𝑢(𝑡); it could also be viewed as 
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a filter with time-varying Q factor receiving an AM signal 𝑢(𝑡)𝑝(𝑡). Taking the second 

perspective, if System 1 has a very sharp original time-invariant core filter, then it would 

be able to heavily suppress the input noise while maintaining the amplitude and phase 

of the useful information components. Unfortunately, as it’s almost impossible to 

generate the ideal 
ṗ(t)

p(t)
 with the AM input 𝑢(𝑡)p(t) , System 1 might not be 

implementable in practice.  

 

Figure 6.1    System 1: A bandpass filter with time-variant Q factor processing an AM input 

signal, derived by deleting the back end modulator of an AM mode synchronous bandpass filter. 

 

Interestingly, we discovered that if we demodulate the core filter output with very 

little introduced phase shift to recover the information signal 𝑝̂(𝑡) and generate 
𝑝(𝑡)̇

𝑝(𝑡)
 to 

time vary the core filter’s Q factor, as long as the input AM signal is noiseless, the 

resulting system is able to produce an output very similar to what is produced by System 

1. Such a feedback system is represented by System 2 with k=1, where the demodulator 

could be realized with a sample-and-hold block performing ideal sampling at the rate 

equal to the input carrier frequency. However, when dealing with a noisy AM signal, as 

the feedback Q-factor control signal becomes noisy, the system output SNR drastically 

drops and is even lower than that of an open loop bandpass filter with the same Q factor.    
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In an effort to improve the feedback system performance in processing a noisy 

input, we tried out several methods and came up with a system that incorporates two 

bandpass filters. The purpose is to generate a less noisy Q-factor control signal with the 

second filter. It has been shown by simulation results that for input signals with narrow 

bandwidths, the system is able to heavily suppress the input noise while almost 

maintaining the original amplitude of the useful components. The downside of this 

system is that the achievable highest output SNR is constrained by the bandwidth of the 

input signal. Namely, as the input bandwidth gets wider, the system output SNR 

gradually drops. 

 

Figure 6.2    System 2: An implementable feedback system inspired by System 1. When k=1 

and the input AM signal is noiseless, it is capable of producing an output very similar to what 

is produced by System 1. When k is negative, the equivalent Q factor of the system becomes 

higher than the original Q factor of the core filter. 
 

    

Figure 6.3    System 3: The two-filter system inspired by System 2 with k =1, for processing 

noisy input. 
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Figure 6.4    System 4: A feedback complex filtering system: an advanced version of System 2 

which is easier to implement and has better noise performance. 
 

3. It has been discovered with System 2 that the equivalent Q factor of the 

filtering system could be tuned by adjusting the amount of the feedback signal, denoted 

as 𝑘
𝑝(𝑡)̇

𝑝(𝑡)
. The equivalent Q factor could roughly be evaluated with eqn. (5.1): Qeq =

(1 − k)Qcore for k smaller than 1. It suggests that System 2 provides an approach to the 

design of high-Q filters with a low-Q filter by making k < 1. Moreover, the resulting 

feedback filter with time-varying Q factor is superior in suppressing the in-filter white 

noise to an open loop filter that has comparable bandwidth.  

4. A static FM mode synchronous complex filter was modified to implement a 

feedback complex filter with time-varying Q factor, represented by System 4. Compared 

to System 2, System 4 provides a more implementable way to recover the information 

signal from the core filter output for generating the Q-factor control signal. Simulation 

on both the ideal Gm-C model and the noisier Gm-C model has verified the function 

and the improved noise performance of System 4. Finally, we implemented the system 
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as a log-domain filter and verified the frequency response and in-filter noise reduction 

capability of the ideal BJT-level design. 

Proposals for future work include: 

1. Set up a more practical Gm-C model for the feedback complex filtering 

system by including noise sources associated with multipliers in the demodulator and in 

the feedback path, checking out the performance and noise suppression capability of the 

model. For the transistor-level design, add noise sources in the feedback path and check 

out how they affect the system performance. 

2. Develop a simpler transistor-level design solution to implement the feedback 

complex filter. 

3. Derive an analytical solution for the complete response of the feedback 

bandpass filtering system with k=1. Determine a mathematical explanation to the 

emergence of the output noise peak(s) shown in Fig. 4.11, which is the result of the 

input white noise being processed by the feedback system. 

4. Derive an analytical solution for the complete response of a dynamic FM 

mode synchronous complex filter. Solve it for the system where the core filter center 

frequency varies as a sinusoid waveform first, then as a square waveform. 

5. Utilize the analytical solutions to develop new methods or architectures that 

lead to filtering systems with improved capability in reducing both the injected noise 

and the input noise. 
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