Lehigh University Lehigh Preserve

Theses and Dissertations

1973

Simulation of grass in the hydraulic laboratory

Chhun V. Heang *Lehigh University*

Follow this and additional works at: https://preserve.lehigh.edu/etd Part of the <u>Civil Engineering Commons</u>

Recommended Citation

Heang, Chhun V., "Simulation of grass in the hydraulic laboratory" (1973). *Theses and Dissertations*. 4162. https://preserve.lehigh.edu/etd/4162

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

SIMULATION OF GRASS IN THE HYDRAULIC LABORATORY

D:

.

•

1

by Chhun V. Heang

A Thesis Presented to the Graduate Committee of Lehigh University in Candidacy for the Degree of Master of Science

in **Civil** Engineering

Lehigh University 1973

CERTIFICATE OF APPROVAL

This thesis is accepted and approved in partial fulfillment

of the requirements for the degree of Master of Science.

-ii-

Date: 29-JUNE-197

1

Dr. Walter H. Graf

5

Professor in Charge

Dr. David A. VanHorn, Chairman Department of Civil Engineering

ACKNOWLEDGHENTS

The writer wishes to thank Dr. Walter H. Graf, Director of the Hydraulics Division, Fritz Engineering Laboratory, and adviser to his

Master's Degree Program, who suggested the topic and critically reviewed the manuscript.

Special acknowledgment of gratitude is extended to the Institute of International Education for most helpful assistance.

Thanks are due to Mr. Elias Dittbrenner for his help in setting up the laboratory instrumentation. The writer would like to give mention of thanks to Dr. Willard A. Murray for reading the dissertation. A special debt of gratitude is due to Mrs. Linda Heindel who patiently read and corrected the manuscript. Sincere appreciation

is extended to Mrs. Jane Lenner who typed the final copy.

-iii-

Dr. Lynn S. Beedle is the Director of the Fritz Engineering

Laboratory, and Dr. David A. VanHorn is the Chairman of the Civil Engineering Department.

TABLE OF CONTENTS

Ť

CERTIFICATE OF APPROVAL11ACKNOWLEIKNENTS111TABLE OF CONTENTS17LIST OF RECIPENTS SYMBOLS71LIST OF RECIPENTS71LIST OF FROMESS11LIST OF TABLES14ABSTRACT11. INTRODUCTION31.1 Presence of Grass in Channels31.2 Monning's Relation41.3 Scope of Present Study62. EXPERIMENTAL EQUIPMENT72.1.1 Purp and Notor72.1.2 Head Tank72.1.3 Vouther 1 Meter92.1.4 STITLING Basin92.1.5 Experimental Set-Up for Rectangular Channels132.2.6 Point Cage122.2.1 Pumps and Motors132.2.2 Pressure Tank and Supply Line132.2.3 Manometers132.2.4 Experimental Flume152.2.5 Point Cage182.3 Artificial Roughnesses183.1 Rectangular Channels223.1 Rectangular Channels223.1 Rectangular Channels223.1 Rectangular Channels223.1 Rectangular Channels234.1 Computation of Uniform Depth for Both Rectangular28				
ACKNOWLE DORMENTS 111 TABLE OF CONTENTS 107 LIST OF PROPERTIES SYMBOLS v1 LIST OF FROMES v11 LIST OF FROMES v11 LIST OF TABLES 12 ABSTRACT 1 1. INTROMUCTION 3 1.1 INTROMUCTION 3 1.2 Manning's Relation 3 1.3 Scope of Present Study 6 2. EXPERIMENTAL EQUIPMENT 7 2.1.1 Pump and Motor 7 2.1.2 Houd Tank 7 2.1.3 Volumit Patter 9 2.1.4 Stilling Basin 9 2.1.5 Experimental Set-Up for Triangular Channels 13 2.2.2 Pressure Tank and Supply Line 13 2.2.3 Manometers 13 2.2.4 Experimental Flume 13 2.2.5 Point Cage 18 2.3 Artificial Roughnesses 18 3.4 EXPERIMENTAL PROCEDURE 22 3.1 Rectangular Channel 25 3.2 Triangular Channels 25 3.1 Rectangular Channels 26 3.1 Rectangular Channels 28 4.1 Computation	C	ERTIFICATE OF APPROVAL	11	
TABLE OF CONTENTSisLIST OF DECIDENC SYMBOLSr1LIST OF FLOTEESviiLIST OF FLOTEESviiLIST OF TABLESixABSTRACT11. INTRODUCTION31.1 Presence of Grass in Channels31.2 Manning's Rolation41.3 Scope of Present Study62. EXPERIMENTAL EQUIPMENT72.1 Experimental Set-Up for Rectangular Channel72.1.2 Hoad Tauk92.1.3 Venturi Meter92.1.4 Stilling Basin92.1.5 Experimental Set-Up for Triangular Channels132.1.6 Point Gage122.2.7 Pressure Tank and Supply Line132.2.8 Manometers132.2.9 Foint Gage182.3 Artificial Roughnesses183.4 EXPERIMENTAL PROCEDURE223.1 Rectangular Channel253.1 Rectangular Channels253.1 Rectangular Channels253.1 Rectangular Channels253.1 Rectangular Channels253.1 Rectangular Channels253.1 Rectangular Channels284.1 Computation of Uniform Depth for Both Rectangular and Triangular Channels28	A	CKNOWLEDCHENTS	111	
LIST OF BEGTREING SYMBOLSviiLIST OF FLORESviiLIST OF TABLESisABSTRACT11. INTERDECTION31.1 Presence of Grass in Channels31.2 Moning's Rolation41.3 Scope of Present Study62. EXPERIMENTAL EQUIPMENT72.1 Experimental Set-Up for Rectangular Channels72.1.2 Hoad Motor72.1.3 Wonturi Meter92.1.4 Stilling Basin92.1.5 Experimental Set-Up for Triangular Channels132.2.2 Pressure Tunk and Supply Line132.2.3 Manometers132.2.4 Experimental Plume132.2.5 Point Gage182.3 Artificial Roughnesses183. EXPERIMENTAL PROCEDURE223.1 Rectangular Channels254.1 Computation Of Uniform Depth for Both Rectangular and Triangular Channels28	T	BLE OF CONTENTS	iv	٠
LIST OF FLARES vii LIST OF TABLES ix ABSTRACT 1 1. INTRODUCTION 3 1.1 INTRODUCTION 3 1.2 Manning's Relation 4 1.3 Stope of Present Study 6 2. EXPERIMENTAL EQUIPMENT 7 2.1 Experimental Set-Up for Rectangular Channel 7 2.1.1 Pump and Motor 7 2.1.2 Head Task 7 2.1.3 Venturi Mater 9 2.1.4 Stilling Basin 9 2.1.5 Experimental Flume 13 2.1.6 Point Cage 12 2.2.1 Pressure Task and Supply Line 13 2.2.2 Pressure Task and Supply Line 13 2.2.3 Manometers 13 2.2.4 Experimental Flume 15 2.2.5 Foint Cage 18 2.3 Artificial Roughnesses 18 3.1 Rectangular Channels 22 3.1 Rectangular Channels 23 3.2 Triangular Channels 28 4.1 Computation of Uniform Depth for Both Rectangular and Triangular Channels 28	L	ST OF RECURRING SYMBOLS	vi	
LIST OF TABLESjxABSTRACT11. INTRODUCTION31.1 INTRODUCTION31.2 Manning's Relation31.3 Scope of Present Study62. EXPERIMENTAL EQUIPMENT72.1 Experimental Set-Up for Rectangular Channel72.1.1 Pump and Motor72.1.2 Head Tank72.1.3 Venturi Neter92.1.4 Stilling Basin92.1.5 Experimental Flume92.1.6 Point Cage122.2 Experimental Set-Up for Triangular Channels132.2.2 Pressoure Tank and Supply Line132.2.3 Manometers132.2.4 Experimental Flume152.2.5 Point Gage182.3 Artificial Roughnesses183.1 Rectangular Channel223.1 Rectangular Channel223.2 Triangular Channel223.1 Rectangular Channel223.2 Triangular Channel223.1 Rectangular Channel223.2 Triangular Channel224.1 Computation of Uniform Depth for Both Rectangular28	1.	ST OF FIGURES	vii	
ABSTRACT11. INTRODUCTION31.1 Encourse of Grass in Channels31.2 Manning's Relation41.3 Stope of Present Study62. EXPERIMENTAL EQUIPMENT72.1 Experimental Set-Up for Rectangular Channel72.1.1 Pump and Motor72.1.2 Head Tank72.1.3 Venturi Meter92.1.4 Stiffing Basin92.1.5 Experimental Flume92.1.6 Point Gage122.2 Experimental Set-Up for Triangular Channels132.2.1 Pumps and Motors132.2.2 Pressure Tank and Supply Line132.2.3 Manometers132.2.4 Experimental Flume152.2.5 Point Gage182.3 Artificial Roughnesses183. EXPERIMENTAL PROCEDURE223.1 Rectangular Channels254. EVALUATION OF EXFERTMENTAL DATA284.1 Computation of Uniform Depth for Both Rectangular28	L	ST OF TABLES	ix	
1. INTROMMUTION31.1 Preserve of Grass in Channels31.2 Manning's Relation41.3 Scope of Present Study62. EXPERIMENTAL EQUIPMENT72.1 Experimental Set-Up for Rectangular Channel72.1.1 Pump and Motor72.1.2 Head Tank72.1.3 Venturi Meter92.1.4 Stilling Basin92.1.5 Experimental Flume92.1.6 Point Cage122.2 Experimental Set-Up for Triangular Channels132.2.2 Pressure Tank and Supply Line132.2.3 Manometers132.2.4 Experimental Flume152.2.5 Point Gage182.3 Artificial Roughnesses183. EXPERIMENTAL PROCEDURE223.1 Rectangular Channels254. EVALUATION OF EXPERIMENTAL DATA284.1 Computation of Uniform Depth for Both Rectangular and Triangular Channels28	AE	STRACT	1	
1.1Presence of Grass in Channels31.2Manning's Relation41.3Stope of Present Study62.EXPERIMENTAL EQUIPMENT72.1Experimental Set-Up for Rectangular Channel72.1.1Pump and Motor72.1.2Head Tank72.1.3Venturi Meter92.1.4Stilling Basin92.1.5Experimental Flume92.1.6Point Gage122.2Experimental Set-Up for Triangular Channels132.2.1Pumps and Motors132.2.2Pressure Tank and Supply Line132.2.3Manmeters132.2.4Experimental Flume152.2.5Point Gage183.1Rectangular Channel223.1Rectangular Channel223.2Triangular Channel254.EXPERIMENTAL PROCEDURE223.1Rectangular Channel223.2Triangular Channel223.4Computation of Uniform Depth for Both Rectangular and Triangular Channels28	1. IN	TRODUCTION	3	
2. EXPERIMENTAL EQUIPMENT72.1 Experimental Set-Up for Rectangular Channel72.1.1 Pump and Motor72.1.2 Head Tank72.1.3 Venturi Meter92.1.4 Stilling Basin92.1.5 Experimental Flume92.1.6 Point Gage122.2 Experimental Set-Up for Triangular Channels132.2.1 Pumps and Motors132.2.2 Pressure Tank and Supply Line132.2.3 Manometers132.2.4 Experimental Flume152.2.5 Point Gage183. EXPERIMENTAL PROCEDURE223.1 Rectangular Channels234. EVALUATION OF EXPERIMENTAL DATA284.1 Computation of Uniform Depth for Both Rectangular and Triangular Channels28	1. • 1. 1.	1 Presence of Grass in Channels 2 Manning's Relation 3 Scope of Present Study	3 4 6	
2.1Experimental Set-Up for Rectangular Channel72.1.1Pump and Motor72.1.2Head Tank72.1.3Venturi Meter92.1.4SLiHling Basin92.1.5Experimental Flume92.1.6Point Gage122.2Experimental Set-Up for Triangular Channels132.2.1Pumps and Motors132.2.2Pressure Tank and Supply Line132.2.3Manometers132.2.4Experimental Flume152.2.5Point Gage183.EXPERIMENTAL PROCEDURE223.1Rectangular Channel223.2Triangular Channels254.EVALUATION OF EXPERIMENTAL DATA284.1Computation of Uniform Depth for Both Rectangular and Triangular Channels28	2. EX	PERIMENTAL EQUIPMENT	7	
2.1.1 Pump and Motor72.1.2 Head Tank72.1.3 Venturi Meter92.1.4 Stilling Basin92.1.5 Experimental Flume92.1.6 Point Gage122.2 Experimental Set-Up for Triangular Channels132.2.1 Pumps and Motors132.2.2 Pressure Tank and Supply Line132.2.3 Manometers132.2.4 Experimental Flume152.2.5 Point Gage182.3 Artificial Roughnesses183. EXPERIMENTAL PROCEDURE223.1 Rectangular Channels254. EVALUATION OF EXPERIMENTAL DATA284.1 Computation of Uniform Depth for Both Rectangular and Triangular Channels28	2.	L Experimental Set-Up for Rectangular Channel	7	
2.2 Experimental Set-Up for Triangular Channels132.2.1 Pumps and Motors132.2.2 Pressure Tank and Supply Line132.2.3 Manometers132.2.4 Experimental Flume152.2.5 Point Gage182.3 Artificial Roughnesses183. EXPERIMENTAL PROCEDURE223.1 Rectangular Channel254. EVALUATION OF EXPERIMENTAL DATA284.1 Computation of Uniform Depth for Both Rectangular and Triangular Channels28		 2.1.1 Pump and Motor 2.1.2 Head Tank 2.1.3 Venturi Meter 2.1.4 Stilling Basin 2.1.5 Experimental Flume 2.1.6 Point Gage 	7 7 9 9 9 12	
2.2.1Pumps and Motors132.2.2Pressure Tank and Supply Line132.2.3Manometers132.2.4Experimental Flume152.2.5Point Gage182.3Artificial Roughnesses183.EXPERIMENTAL PROCEDURE223.1Rectangular Channel253.2Triangular Channels254.EVALUATION OF EXPERIMENTAL DATA284.1Computation of Uniform Depth for Both Rectangular and Triangular Channels28	2.2	Experimental Set-Up for Triangular Channels	13	
2.3 Artificial Roughnesses183. EXPERIMENTAL PROCEDURE223.1 Rectangular Channel223.2 Triangular Channels254. EVALUATION OF EXPERIMENTAL DATA284.1 Computation of Uniform Depth for Both Rectangular and Triangular Channels28		 2.2.1 Pumps and Motors 2.2.2 Pressure Tank and Supply Line 2.2.3 Manometers 2.2.4 Experimental Flume 2.2.5 Point Gage 	13 13 13 15 18	
3. EXPERIMENTAL PROCEDURE 22 3.1 Rectangular Channel 22 3.2 Triangular Channels 25 4. EVALUATION OF EXPERIMENTAL DATA 28 4.1 Computation of Uniform Depth for Both Rectangular and Triangular Channels 28	2.3	Artificial Roughnesses	18	
3.1 Rectangular Channel223.2 Triangular Channels254. EVALUATION OF EXPERIMENTAL DATA284.1 Computation of Uniform Depth for Both Rectangular and Triangular Channels28	3. EXP	ERIMENTAL PROCEDURE	22	
 4. EVALUATION OF EXPERIMENTAL DATA 28 4.1 Computation of Uniform Depth for Both Rectangular and Triangular Channels 28 	3.1 3.2	Rectangular Channel Triangular Channels	22 25	
4.1 Computation of Uniform Depth for Both Rectangular and Triangular Channels 28	4. EVA	UATION OF EXPERIMENTAL DATA	28	
"我们,我们就是你们的你们,你们就是你们的你们,你们就是你们的你们,你们就是你们的你们,你们就是你们的你们,你们就是你们的你们,你们不是你们的你们,你们不是你们的	4.1	Computation of Uniform Depth for Both Rectangular and Triangular Channels	28	

TABLE OF CONTENTS (Contd.)

ŗ

۰,

1

	4.2	Computation of Various Hydraulic Parameters	28
		4.2.1 Rectangular Channel 4.2.2 Triangular Channeln	28 32
	4.3	Computation of Bottom Roughness Coefficient	33
		4.3.1 Rectangular Channel 4.3.2 Triangular Channels	33 34
	4.4	Sample Calculation	34
		4.4.1 Rectangular Channel 4.4.2 Triangular Channels	34 37
5.	REPR	ESENTATION OF IMTA	40
6.	CONC	LUDING REMARKS	44
7.	IMPO	RTANCE OF STUDY TO HYDRAULIC MODELING	46
	APPER	NDIXA-SUMMARY OF DATA AND COMPUTATION	49
	RE FEF	RENCES *	55
	VITA		56

LIST OF RECURRING SYMBOLS

A	entire cross-sectional area; in square feet
AB	cross-sectional area with respect to the flume bottom in Fig. 4.2; in square feet
A.,	cross-sectional area pertaining to both sides of the walls in Fig. 4.2; in square feet
B, B'	widths of the channels in Figs. 3.2, 3.3, and 3.4; in feet
D	measured depth at each station in Figs. 3.3 and 3.4; in feet
D	average cross-sectional depth; in feet
Du	uniform flow depth; in feet
NR	flow- Reynolds number; $N_R \approx (4 R_h \overline{u})/v$
$n_{A} \cdot 1, n_{A} \cdot 2$	roughness coefficient for Astroturf No. 1 and Astroturf No. 2
n _B	roughness coefficient of the bottom

roughness coefficient of the side wall

n w

P

Q

R_B

R_h

R W

So

U

α,α.

ΔH

nwood

roughness coefficient of the wooden surface

wetted perimeter of the entire cross section; in feet

flow discharge, in cubic feet per second

hydraulic radius pertaining to the flume bottom; in feet

hydraulic radius pertaining to the entire cross section; in feet

hydraulic radius pertaining to the side walls; in feet longitudinal slope of the channels

average velocity of the flow; in feet per second angles of the side slopes, shown in Figs. 3.3 and 3.4 manometer deflection; in feet

-vi-

LIST OF FICURES

æ

..

Pigure	Title	Page
1.1	Flow Over Crass	3
1.2	Variation of n-Value with Stage and Discharge	6
2.1	Arrangement of Class-Walled Flume	8
2.2	Pumps, Motors and Rheostats	10
2.3	Glass-Walled Flume (Looking Downstream)	10
2.4	Downstream End of Test Section	11
2.5	Point Gage Mounted on a Carriage	12
2.6	Schematic Diagram for Triangular Channel	14
2.7	Triangular Flume with Astroturf No. 1	16
2.8	Plan and Elevation View of Triangular Channel	17
2.9	Astroturf No. 1	19
2.10	Astroturf No. 2	19
2.11	Strip (16.0' · 1.5' [4.89m · 0.457m]) Disposition of Astroturf No. 2	20
2.12	Schematic Sketch of Astroturf	20
3.1	Astroturf No. 1 Ready to be Stapled	23
3.2	Depth Measurements for Rectangular Channel	24
3.3	Depth and Width Measurements for Triangular Flume with Longitudinal Wall	26
3.4	Depth and Width Measurements for Triangular Flume without Longitudinal Wall	26
4.1	Sketch of Uniform Definition	29
4.2	Elements of Cross Section for Rectangular Channel	31
. 5.1	Variation of n-Value with Depth	41

-vii-

LIST OF FICURES (Contd.)

nii Fii

Pigure	Title			
5.2	Roughness Coefficient, n, Versus Reynolds Mumber, N · (10) ⁵ R	42		
5.3	Variation of n-Value with Depth-Astroturf's Height Ratio, D_{u}/H_{u}	43		

LIST OF TABLES

, L

Table	Tic le	Page
1.1	Values of Roughness Coefficient, n, for Grass	5
2.1	Summary of Size of Both Astroturfs	21
6.1	Comparative n-Values	44
7.1	Summary of Example Results	48
A.1	Summary of Data and Computation for Astroturf No. 1 in Rectangular Channel	50
A.2	Summary of Data and Computation for Astroturf No. 2 in Rectangular Channel	51
A.3	Summary of Data and Computation for Wood Surface in Rectangular Channel	52
A. 4	Summary of Data and Computation for Astroturf No. 1 in Triangular Channel without Longitudinal Wall	53
A.5	Summary of Data and Computation for Astroturf No. 1 in Triangular Channel with Longitudinal Wall	54

ABSTRACT

The present study is concerned with the experimental investigation of artificial grass, known as Astroturf. Two types of Astroturf were investigated. Astroturf consists of a thick mattreas which simulates the soil surface where groups of grass are fixed in equidistant longitudinal and radial rows. Each group of grass possesses strips which simulate the grass blades that radiate both upward and outward from the mattress.

2

The experiments were conducted in one rectangular flume and two triangular flumes located in the Hydraulic Laboratory of Lehigh University. Investigated in the rectangular flume were two types of Astroturf and a wooden surface. The latter was used only to compare the results. Investigated in the triangular flumes was only

Astroturf No. 1.

The discharge, Q, the hydraulic radius, R_h , the wetted perimeter, P, and the slope, S_o , were measured. With this information and the use of Manning's equation, the n-values were calculated. The computed roughness coefficients were plotted against both the uniformflow depths and the Reynolds numbers. The plots showed a dependency of the n-value on the flow depth and/or the Reynolds number. However, this dependency disappeared at high discharge. The n-values selected from this study were those which were independent of the flow discharge and/or flow depth. They were taken as

-1-

 $n_{A-1} = 0.0326$ for Astroturf No. 1, $n_{A-2} = 0.0275$ for Astroturf No. 2, and $n_{wood} = 0.0150$ for the wooden surface.

.

- 🗑

These n-values are in good agreement with the experimental

F

results for "real" grass found in the hydraulic literature. It is concluded, therefore, that Astroturf will be a useful material when simulating grassed channels in the hydraulic laboratory.

1. INTRODUCTION

1.1 Presence of Grass in Channels

3

۲

The presence of grass in channels is the source of considerable flow turbulence, which results in noticeable loss in energy and flow retardance. The flow retardance reters to water held back by the surface roughness. This back water effect may be responsible for flooding and thus might become a menace to civilization in the flood plains. Although such instances could be termed disadvantages, the presence of grass in channels can be an advantage as well. Earth channels are built to carry water; frequently these earth channels are subject to soil erosion. PARSONS (1963) reported that grass lining in channels may protect both the streambed and streambank from being eroded in many ways. Namely, it will remarkably reduce the average velocity of the flow and the shear stress at the soil surface to a value below that

required to cause erosion. REE (1949) prepared a comparative diagram

velocity - and the shear stress as well - is drastically reduced with the grass lining. Another advantage is that grass lining may result in inducing deposition of sediments and thus will contribute to bed and bank stability. Whether or not grass channels present advantages or disadvantages to the flow dynamics or to the environment, the hydraulics of the channels has to be investigated. It is an important task of hydraulics to study the flow-roughness coefficient of grassed surfaces.

1.2 Manning's Relation

The fundamental empirical equation used in the flow computation was developed by Manning (1889) for either a canal or a river. In English units the equation reads

$$\overline{u} = \frac{1.486}{n} R_{h} S_{o}$$
 (1.1)

'n.

where \overline{u} is the average velocity of the flow, R_h is the hydraulic radius which approximates the depth of the flow in a case of a wide, onedimensional flow channel, S_o is the energy slope of the steady uniform flow, which can be replaced by the water-surface slope without introducing any serious error, and n is the so-called Manning roughness coefficient. Equation (1.1) was derived for the turbulent flow, which requires that the Reynolds number be greater than 2,000. For the computation of flow in cross sections with composite roughness, a method was developed by HORTON (1933) and EINSTEIN (1942).

From the available literature the Manning roughness coefficients for various types of vegetation were collected by CHOW

-4-

(1959, pp. 110-113). Table 1.1 summarizes this information on the

roughness coefficients for grass.

	Type of Channels and Description	Minimum	Norma l	Maxim
1/	Lined or Built-Up Channels - Vegetal Lining	0.030		0.500
2/	<pre>Excavated or Dredge Channels - Short grass, few weeds - Grass, some weeds</pre>	0.022 0.025	0.027 0.030	0.033 0.033
3/	Flood Plains - Short grass - High grass	0.02 5 0.030	0.030 0.035	0.035 0.050

Table 1.1: Values of Roughness Coefficients, n, for Grass (after CHOW (1959, pp. 110-113))

REE et al. (1949) have conducted experiments for the U. S. Soil Conservation Service on a series of channels lined with various types of natural grass. They found that for a given type of grass and for a given channel, the roughness coefficient will not remain the same under all conditions. It was found that the n-value depended on the stage and discharge of the flow. Figure 1.2 illustrates the variation of the n-value with mean stage or depth for three different rivers. It can be noticed that in general the roughness coefficient increases as the discharge and/or the stage decreases. This is due to the fact that at low depths the materials (sand, bedform, grass, etc.) of the rivers are relatively more exposed to the flow than at high depths. On the other hand, the roughness coefficient can be higher at high

-5-

÷

Fig. 1.2: Variation of n-Value with Stage and Discharge (after CHOW (1959, p. 105))

discharge and/or high depth. This fact would be observed when water overflows the huge flood plains of the river.

1.3 Scope of the Present Study

Numerous times, it becomes necessary to investigate grasslined canals or rivers in the hydraulic laboratory. The inevitable question arises as to how the roughness coefficient of grass can be modeled. The present investigation studies the possibility of using artificial "grass". Artificial grass is now available on the market under the name of Astroturf. Two types of Astroturf are studied herein.

-6-

2. EXPERIMENTAL EQUIPMENT

2.1 Experimental Set-Up for Rectangular Channel

The experiments were conducted in a glass-walled open channel located in the Hydraulics Laboratory of Lehigh University. Figure 2.1 shows the entire testing equipment. The experimental set-up was arranged in loop form. As can be seen from Fig. 2.1, a centrifugal pump was responsible for pumping water from an underground water tank (or sump) to a constant head tank, which in turn released its water through the supply line. The water passed through a Venturi meter and then reached the stilling basin upstream from the glass-walled flume. Leaving the stilling basin the water passed into the glass-walled flume in which the desired slopes were adjusted.

2.1.1 Pump and Motor

Water was circulated by a centrifugal pump having a capacity of 1850 gpm under a head of 70 ft [21.3 m] while operating at 1750 rpm. Figure 2.2 shows two pumps, of which pump No. 1 was used. This pump was driven by a 40 hp electric motor. The revolutions per second of the motor shaft, as well as those of the pump itself, could be changed by manipulating a rheostat.

2.1.2 Head Tank

A constant head tank from which the water flowed by gravity through 8-inch [203-mm] pipes was equipped with an overflow device to maintain a constant water elevation in the head tank. This can be seen in Fig. 2.1.

-7-

2.1.3 Venturi Meter

The flow rate through the channel was measured by a Venturi meter which was installed in the supply line. The Venturi meter, shown in Fig. 2.1, was 4 ft [1.22 m] long and had a throat diameter of 5 in [127 rm]. The unit had been calibrated by previous experiments, and the following rating equation was obtained:

$$Q = 1.05 \text{ } \Delta H^{0.522}$$
 (2.1)

where Q is the discharge rate in cfs and ΔH is the difference of heads in feet of water, read from the manometer.

2.1.4 Stilling Basin

The stilling basin, as can be seen in Fig. 2.1, was located upstream from the glass-walled flume. The stilling baffles were built

into this basin to damp the water surface oscillation.

2.1.5 Flume

، ک

The glass-walled flume was a rectangular open channel. The flume was 24 ft [7.32 m] long and 1.5 ft [0.45 m] wide. It was equipped with a tail gate. Figure 2.3 shows the flume (looking downstream) with the point gage mounted on a carriage. The false bottom, to be seen in Fig. 2.4, was 16 ft [4.87 m] long and made of two pieces of plywood. Eight adjusting screws were used. Each of these was attached at 4-foot [1.22 m] intervals along both sides of the support structure to make the slope adjusting possible.

-9-

Fig. 2.2: Pumps, Motors, and Rheostats

Fig. 2.3: Glass-Wall Flume (Looking Downstream)

-10-

- ¹64

2.1.6 Point Gage

Figure 2.5 shows the point gage used in the investigation. It was equipped with vernier scale which enabled measurements to an accuracy of 0.001 ft [$3.05 \ge 10^{-4}$ m]. The point gage was made to have three degrees of freedom; that is, it could move, with respect to the flume, longitudinally, transversally, and vertically.

Fig. 2.5: Point Gage Mounted on a Carriage

-12-

2.2 Experimental Set-Up for Triangular Channel

In order to obtain higher discharges another experimental

set-up was used. Figure 2.6 shows the schematic diagram of the testing
arrangement. Two pumps (B) raised water from the sump (A) into the
pressure tank (D). From there the water flowed into the head tank
(N) and then through the channel (J). Subsequently, the water returned to the main sump (A).

2.2.1 Pumps and Motors

Figure 2.6 shows two pumps, each of which was driven by a

9B type HF Induction Motor equipped with a rheostat. Motor No. 1 had **a** rating of 40 hp with a maximal speed of 1740 rpm. Motor No. 2 had **a** rating of 35 hp with a maximal speed of 1720 rpm. Each pump was **a** single-stage, double-suction, centrifugal pump.

2.2.2 Pressure Tank and Supply Line

The circular pressure tank (D) was 5 1/2 ft [1.68 m] in diameter and 34 ft [10.4 m] high. Water leaving the pressure tank was controlled by the supply valve (E). The rate of discharge allowed to be delivered to the manifold discharge pipe (M) was measured by means of a 4-inch [101-mm] orifice meter (H).

2.2.3 Manometers

The 4-inch [101-mm] orifice (H) in a 12-inch [305-mm] supply pipe was placed upstream from the supply valve (E). It was either an air-water manometer (F) for lower discharges ($Q \le 0.5$ cfs) or a liquidwater manometer (G) for higher discharges (Q > 0.5 cfs). The specific

-13-

M	Sump	

gravity of the manometer liquid was 2.95. The unit had been calibrated,

and the volumetric expression was given by

$$Q = 0.42 \cdot \Delta H^{0.5}$$
 (2.2)

.

where Q is the flow rate of water in cfs and ΔH is the pressure head difference in feet of water [x 0.3048 m].

2.2.4 Channel

The testing channel, which is shown with Fig. 2.7, was

28 ft [8.54 m] long and 16 ft [4.89 m] wide. Figure 2.8 shows both the plan view and the elevation view of the model construction. Two steel frames supported the swale slope (0) and the back slope (P) which form a triangular channel. Both swale slope and back slope were made of 3/4-inch [19-mm] plywood upon which Astroturf No. 1

was stapled. These slopes were joined together by means of hinges which were welded to the invert of the channel to prevent the two steel frames from being separated and to provide freedom for the frames to rotate about the invert whenever the swale and back slopes were desired.

A main beam W8 x 40I supported the entire length of the invert. The mid-point deflection of this beam was eliminated by providing support at mid-span. The longitudinal slope could reach its maximal value of 8.00%. The side slopes could be adjusted by means of four 3/4-inch [19-mm] threaded tension rods (Q). The longitudinal wall (V) could be removed whenever the flow over both side slopes was needed.

-15-

Fig. 2.7: Triangular Flume with Astroturf No. 1

-16-

J

LEGEND

S

5

- Manifold Discharge
- Swale Stope
- Back Slope
- Side-Stope Adjusting
- Main Supporting
- Opening to Sump
- Removable Wall

2.2.5 Point Cage

In all depth measurements a point gage graduated to 0.001 ft $[3.05 \cdot 10^{-5} \text{ m}]$ was used. The gage was mounted on a carriage that rolled along a 3-inch [76.3-mm] by 5-inch [127-mm] aluminum rectangular track which was 17 it [5.18 m] long. The rectangular track was placed 2 ft [0.6 m] above the invert and was at right angles to the invert of the channel. To permit the beam to travel freely above the invert, both ends of the aluminum member were supported by a monorail system.

2.3 Artificial Roughnesses

There were three roughnesses investigated in this study. Two of them, Astroturf No. 1 and Astroturf No. 2, were the artificial grasses, products of Monsanto Chemical Company. The third roughness was simply the wood surface of the false bottom.

Figure 2.9 shows Astroturf No. 1 consisting of a 1/16-inch [1.6-mm] thick mattress which simulates the soil surface where groups of grass are fixed in equidistant longitudinal and radial rows of 2/5 inch [10 mm]. Each group of grass possesses eight strips forming a compact base of 1/4 inch [6.34 mm] in diameter. At the very top, that is to say, at a distance 15/16 inch [23.8 mm] from the mattress, the simulating blades radiate outward so that the surface of the Astroturf resembles that of the natural grass.

Astroturf No. 2, as can be seen in Fig. 2.10, is smaller in size than Astroturf No. 1. Also it consists of groups of strips. Each group is 1/36 inch [0.7 mm] in diameter at the base and contains

-18-

Fig. 2.9: Astroturf No. 1

Fig. 2.10: Astroturf No. 2

-19-

16 strips that rise upward and radiate outward. The mattress on which the groups are mounted equidistant in rows is 1/16 inch [1.6 mm] thick. The rows, shown in Fig. 2.11, form with both transversal and longitudinal edge of the mattress an angle of 45° . The distance between each group in any row is 1/8 inch [3.2 mm] and the distance between adjacent rows is also 1/8 inch [3.2 mm]. The height, H_a, of Astroturf No. 2 is 2.5/8 inch [7.95 mm]. Each blade is 0.093 in [1 mm] wide.

m

A	m	Ø	na	d	Ha	S		
	in [mm]	in [mm]		in [mm]	in [mm]		in an	
1	2	3	·'+	5	6		aff, at a s or or	
No. 1	1/16 [1.6]	1/4 [6.35]	8	11/135 [2]	15/16 [23.6]	na n		
No. 2	1/16 [1.6]	1/36 [0.7]	16	11/270 [1]	2.5/8 [7.95]			

Table 2.1: Summary of Size of Both Astroturfs

"See the following for explanation of symbols column by column in Table 2.1:

	.(1)	A st	(type of astroturf)
	(2)	m	(thickness of the mattress)
	(3)	Ø	(diameter of each group at)
	(4)	na	(total number of strips or)
	(5)	đ	(width of blade)
	(6)	Ha	(height of groups as well as
	(7)	S	(distance between axes of g
	(8)	Dast	(distance between adjacent
	(9)	D'ast	(distance between adjacent a
	· · · · · · · · · · · · · · · · · · ·	•	
	• • • •	3 • • • • • •	

See 1

-21-

*

base)

blades in each group)

s that of astroturf)

roups in any row)

rows)

transversal rows) **4 ***

· · · · . **5**26 .) • ..

- **18**

÷

κ.

. Pái

a a agus ^ban g

3. EXPERIMENTAL PROCEDURE

Roctangular Flume 3.1

Slope Setting: Each slope, S - shown in Tables A-1, A-2, and A-3 of Appendix A -, was set (α) by changing the slope of the false floor, shown in Figs. 2.3 and 2.4, with the 8 (4 on each mide) mlope adjusting screws and (β) by using a level (transit).

After the slope was adjusted, 2-inch [50.8-mm] self-sticking transparent tape and permagum were used to seal the joints where the longitudinal plywood edges and the glass-walled surfaces met in order to make the space below the slope waterproof. Since it was impossible to keep the slope as it had been adjusted, it was necessary to verify the slope frequently.

Grass Stapling: Astroturf No. 1 was investigated first. It

was cut to fit the width of the flume and was brought into the flume to cover the slope. Figure 3.1 shows Astroturf No. 1, which was made ready to be stapled to the slope that had been adjusted.

To prevent the astroturf from being washed away down the slope at high discharges, the mattresses of both sizes of astroturf were stapled to the wooden slope at a density of one staple per 30 square inches.

Discharge Measurements: For each opening of the valve located upstream from the stilling basin, the water was allowed

-22-

Fig. 3.1: Astroturf No. 1 Ready to be Stapled

for five minutes to flow through the flume in order to stabilize the flow rate. Then the air-water manometer was read off to obtain the manometer deflection, ΔH , which was used with Eq. (2.1) to compute the flow rate.

Depth Measurements: For each slope ten different discharges were studied. Each discharge could be controlled by the opening of the supply valve located immediately upstream from the stilling basin, as can be seen in Fig. 2.1.

-23-

Depth measurements were made at cross sections located at every foot along the channel's test section, which was 16 ft [4,89 m] long. The depth at each cross section was known as the average of the three " depths measured at the quarter points of the cross section, as shown " in Fig. 3.2. At each point the difference between the water level

Fig. 3.2: Depth Measurements

reading and the bottom reading (the point gage was lowered to the mattress) was taken as the depth, D_i . (The subscript, i, refers to the quarter point number.) Now that the depths, D_1 , D_2 , and D_3 , were known, the average depth, \overline{D} , for the cross section would be obtained as follows:

$$\overline{D} = \frac{D_1 + D_2 + D_3}{3}$$
(3.1)

The same procedure was used for all cross sections along the test section; that is, from station 0 to station 16.

<u>Width of the Channel</u>: The width of the rectangular flume is constant, (B = 1.5 ft [0.457 m]). -24-

The whole procedure was repeated for Astroturf No. 2 and for

۲

the wood, whose data and results are shown in Tables A-2 and A-3 of Appendix A, respectively.

3.2 Triangular Flume

<u>Grass Stapling</u>: Astroturf No. 1 was brought into the flume and was stapled to the wooden side slopes and to the longitudinal wall.

Slope Setting: Four longitudinal slopes were used; see Tables A-4 and A-5 of Appendix A. They were adjusted in the same way as described before for the rectangular flume. However, a crank instead of adjusting screws was used to lift the longitudinal slope up and down. One side slope was constant at S = 1/6; the other side slope was either at S' = 1/4 or at the vertical position. (See Figs. 3.3 and 3.4.)

Discharge Measurements: As can be seen from Tables A-4 and

A-5 in Appendix A, ten different discharges were also investigated for each slope setting. The reader is referred to the discharge measurements for the rectangular flume because the procedure was the same. The discharge itself was computed according to Eq. (2.2).

<u>Depth Measurements</u>: Depth measurements were made within a 5 ft [1.52 m] - long reach located in the middle part of the 28 ft [8.54 m] - long test section. This reach was reasonably uniform, being as far as possible removed from the flow transition zones. Figures 3.3 and 3.4 show that the depth, D, can be measured directly by the point gage or it can be computed in terms of the angles,

-25-

PointGoge

Zero Mark

Fig. 3.4: Depth and Width Measurements for Triangular Flume Without Longitudinal Wall (Not to Scale)

 α or α ', and the widths, B or B'. The angles, α and α ', the widths, B and B', and the slope, S_o, were measured at every foot within the chosen reach.

To utilize both, namely, the direct depth measurements and the (indirect) depth calculations, the following procedure for the computation of the average depths was adopted:

-26-

$$\overline{D} = \frac{D + B \tan \alpha + B' \tan \alpha'}{3}$$
(3.2)

ΞĒ.

where D is the measured depth and B and B' are the measured widths.

<u>Width Measurements</u>: The widths, B or B', varying with discharge, were measured directly by using the plumb bob. The plumb bob was lowered from the transversal beam graduated in tenths of a foot, shown in Figs. 3.3 and 3.4, down to the points, E or E', where the free water surface and the side slopes met. The marks at F or at F' were read off and the distances, Fo or F'o, were known at once. This method was repeated for all cross sections.

Tables A-4 and A-5 in Appendix A summarize the data and computation for the triangular flume without and with the longitudinal wall, respectively.

4. EVALUATION OF THE EXPERIMENTAL INTA

4.1 <u>Computation of Uniform Depth for Both Rectangular and Triangular</u> Channels

The uniform depth for a given discharge was computed as fol-

lows;

(1) The average depth of each cross section, D_i , was computed for a rectangular flume as (see Eq. (3.1))

$$\overline{D}_{i} = \frac{D_{1} + D_{2} + D_{3}}{3}$$
(4.1)

T.

Ð,

ġ.

for a rectangular flume as (see Eq. (3.2))

$$\mathbf{D_i} = \frac{\mathbf{D} + \mathbf{B} \tan \alpha + \mathbf{B'} \tan \alpha'}{3}$$
(4.2)

(2) Once the cross-sectional depths, D_i , given by Eq. (4.1) or Eq. (4.2), were available, the channel's mean uniform depth, D_u , for a carefully chosen uniform reach (see Fig. 4.1) - this one was as far as possible removed from the entrance and exit zones - was calculated as

$$D_{u} = \frac{\frac{N}{\Sigma} D_{i}}{N}$$
(4.3)

4.2 Computation of Various Hydraulic Parameters

4.2.1 Rectangular Channel

<u>Cross Section Area, A</u>: The cross section area was computed accordingly:

-28-

ł,

Fig. 4.1: Sketch of the Uniform Flow Definition

$$\mathbf{A} = \mathbf{D}_{\mathbf{u}} \cdot \mathbf{B} \tag{4.4}$$

.....

.

where D_u is the uniform depth and B is the constant width of the glass-walled flume.

Average Velocity of the Flow, \overline{u} : The expression of the velocity of the flow reads

$$\overline{u} = \frac{Q}{A}$$
 (4.5)

where Q is the flow rate computed according to Eq. (2.1) and A is the cross section area given by Eq. (4.4).

<u>Hydraulic Radius with Respect to the Entire Cross Section, R</u>h: The hydraulic radius was computed by

-29-

$$R_{h} = \frac{A}{B + 2D_{u}}$$
 (4.6)

where A is the area given by Eq. (4.4) and B and D are the width of the channel and the uniform depth.

<u>Reynolds Number, N_R </u>: The Reynolds number of the flow was calculated according to the general formula which reads

$$N_{R} = \frac{4 R_{h} \overline{u}}{v}$$
(4.7)

in which v is the kinematic viscosity of the flowing water.

<u>Hydraulic Radius Pertaining to the Wall, R</u>: Figure 4.2 shows the cross section with different roughnesses; the roughness of the two sides is different from the roughness of the bed of the flume. In the

case of a cross section with different roughnesses, the individual roughnesses are added to form the equivalent roughness of the entire cross section.

The computation of the composite roughness is reviewed by CHOW (1959, p. 136). It is assumed that the entire cross section is divided into units; that is, into a finite number of the cross sections corresponding to the materials which form the wetted perimeter, as can be seen in Fig. 4.2. An additional assumption is that the average velocity given by Eq. (4.5) is the same at every unit of the cross section. Based on the above assumptions, the flow computation for each unit can be made. Furthermore, the hydraulic radius of each unit can

-30-

Fig. 4.2: Elements of the Cross Section

be expressed in terms of the roughness coefficient, n, the average velocity, \overline{u} , and the slope of the uniform flow, S_{o} , as shown by the Manning formula. If n_{w}^{*} is the known value of the roughness coefficient of the wall unit, the hydraulic radius, R_{w} , pertaining to the wall is

$$\mathbf{R}_{\mathbf{w}} = \frac{n_{\mathbf{w}}}{1.486} \cdot \frac{\overline{\mathbf{u}}}{s_{0}^{0.5}}$$
(4.8)

Area Pertaining to the Wall, \underline{A}_{w} : As can be seen in Fig. 4.2, the areas, $\underline{A}_{w_{L}}$ and $\underline{A}_{w_{R}}$, are added together provided that the side walls are made of the same materials; that is, $\underline{A}_{w} = \underline{A}_{w_{L}} + \underline{A}_{w_{R}}$ (4.9) $\overline{A}_{w} = \underline{A}_{w_{L}} + \underline{A}_{w_{R}}$ (4.9)

-31-

Since Fig. 4.2 is symmetrical about its center line, the areas, A and I. A, are equal. With this information, the following equation reads R

$$A_{v} = 2 (P_{v} R_{v})$$
 (4.10)

It can be seen in Fig. 4.2 that the wetted perimeter, P_v , with respect to each wall is the flow depth, D_u . So Eq. (4.10) becomes

$$A_{w} = 2 (D_{u} R_{w})$$
 (4.11)

Area Pertaining to the Bottom, \underline{A}_B : With reference to Fig. 4.2, the area, \underline{A}_B , with respect to the channel bottom is the difference between the whole area, A, given by Eq. (4.4), and the area given by Eq. (4.11). The expression of the bottom area is then written as

$$A_B = D_u B - 2 (D_u R_w)$$
 (4.12)

Hydraulic Radius Pertaining to the Bottom, R_R: With the

knowledge of Eq. (4.12), the following expression is obtained, pro-

vided that the wetted perimeter pertaining to the bottom is $P_{y} = B$.

$$R_{B} = \frac{A_{B}}{B} = D_{u} \left[1 - 2 \frac{R_{w}}{B} \right]$$
 (4.13)

4.2.2 Triangular Channels

Widths of the Channels, B and B': The uniform widths, B and B', (see Tables A-4 and A-5, Appendix A) were computed as follows for the known uniform depth, D_{u} :

-32-

$$\mathbf{B} + \mathbf{B}' = \left[\frac{1}{\tan \alpha} + \frac{1}{\tan \alpha'}\right] \mathbf{D}_{\mathbf{u}} \qquad (4.14)$$

Cross-Sectional Area, A: The cross-sectional area was cal-

culated according to

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ \frac{1}{\tan \alpha} + \frac{1}{\tan \alpha'} \end{bmatrix} \frac{\mathbf{D}^2}{\mathbf{D}^2}$$
(4.15)

۲

Average Velocity, \overline{u} : With the knowledge of Eq. (4.15) the average velocity, \overline{u} , was computed according to Eq. (4.5).

<u>Wetted Perimeter, P</u>: The following equation was used to compute the wetted perimeter:

$$\mathbf{P} = \left[\frac{1}{\sin\alpha} + \frac{1}{\sin\alpha'}\right] D_{\mathbf{u}}$$
(4.16)

Hydraulic Radius, R: With the results of Eqs. (4.15) and

(4.16) the hydraulic radius, R, was computed as

$$R_{h} = \frac{A}{P}$$
 (4.17)

<u>Reynolds Number, N</u>: The same formula given by Eq. (4.7) was used to compute the Reynolds number, N_R.

4.3 Computation of the Bottom Roughness Coefficient

4.3.1 Rectangular Channel

Both the roughness coefficients, $n_{A.1}$ and $n_{A.2}$, of Astroturf No. 1 and Astroturf No. 2, respectively, and of wood, n_{wood} , were obtained by a modified Manning relation: -33-

$$n_{\rm B} = \frac{1.468}{-1.468} \cdot R_{\rm B} \cdot S_{\rm O}$$
 (4.18)

5<u>.</u>

۵

where \overline{u} and R_{B} are computed according to Eqs. (4.5) and (4.13), respectively. Equation (4.18) is based on the same assumption as Eq. (4.8).

4.3.2 Triangular Channels

Since the wetted perimeter of the triangular channels is composed of one single roughness (Astroturf No. 1), the roughness

coefficient, n_{A-1}, was calculated according to

$$n_{A-1} = \frac{1.486}{u} \cdot R_{h} \cdot S_{o}$$
 (4.19)

where \overline{u} and R_h are computed by Eqs. (4.5) and (4.17), respectively.

4.4 Sample Calculation

4

An example best illustrates the foregoing steps.

4.4.1 Rectangular Channel

For the following sample calculations, the reader is referred to the first line of Table A-1, Appendix A, column by column.

(1) The kind of roughness was specified as "Astroturf No. 1". The summary of sizes of Astroturf No. 1 is given in Table 2.1.

(2) The longitudinal slope, S_0 , was set according to the procedure given in Section 3.1. It was $S_0 = 0.0176$.

-34-

(3) The air-vater manometer deflection, ΔH , vas read off as $\Delta H = 3.470$ ft.

ë [®]

(4) Equation (2.1) was used and

 $Q = 1.05 \cdot (3.47)^{0.522} = 1.98 \text{ ft}^3/\text{sec}$

(5) The depth, D_{ij} , for the uniform channel reach (see

Fig. 4.1) was calculated by using the accuracy calculation. The error of the difference in n-roughness values computed from two mean cross-sectional depths given by Eq. (4.1) must be within the adopted range^{*}. If the accuracy of the difference computed from two different depths, \overline{p}_i , is within the allowable error, the uniform depth, p_u , is the average of all cross-sectional depths bounded by these two depths, \overline{p}_i . According to the above procedure, the resulting uniform depth was found to be 0.416 ft.

(6) The area, A, of the cross section was calculated ac-

cording to Eq. (4.4):

 $A = 0.416 \cdot 1.5 = 0.624 \text{ ft}^2$

(7) Equation (4.5) was used to compute the mean velocity,

u, of the flow; that is,

If a is called the accuracy of the difference in n values, the following inequalities were adopted for different ranges of discharges:

High discharges:	$10\% < a \leq 15\%$
Medium discharges:	$5\% < a \le 10\%$
Lower discharges:	$0\% \le a \le 5\%$

-35-

$$\overline{u} = \frac{1.98}{0.624} = 3.173$$
 ft/sec

Ĉ

(8) The hydraulic radius, R_h , of the cross section was obtained by Eq. (4.6):

$$R_h = \frac{0.624}{1.5 + 2.0.416} = 0.268 \text{ ft}$$

(9) The Reynolds number, N_R , of the flow was calculated according to Eq. (4.7), provided that the kinematic viscosity of the flow at 70°F is equal to 1.059 x 10⁻⁵ ft²/sec^{*}; that is,

$$N_{R} = \frac{4 \cdot (0.268) \cdot (3.173)}{1.059 \cdot (10^{-5})} = 320,700 = 3.2 \times 10^{5}$$

(10) With the roughness coefficient of the walls ($n_w = 0.01$), the hydraulic radius pertaining to the walls, R_w , was according to Eq. (4.8)

$$\mathbf{R}_{\mathbf{W}} = \left[\frac{0.01}{1.486} \cdot \frac{3.173}{(0.0176)^{0.5}}\right]^{1.5} = 0.064 \text{ ft}$$

(11) By using Eq. (4.11) the area pertaining to the walls, A, was obtained

$$A_{w} = 2 \cdot (0.416 \cdot 0.064) = 0.054 \text{ ft}^{2}$$

(12) The area of the cross section, A_B , pertaining to the bottom of the flume was computed according to Eq. (4.12); that is,

The kinematic viscosity of water, v, depending on the temperature, is given by OLSON (1970, p.21)

-36-

$$A_{\rm B} = 0.416 \cdot 1.5 - 2 \ (0.416 \cdot 0.064) = 0.570 \ {\rm fc}^2$$

(13) The hydraulic radius pertaining to the bottom of the flume, R_B, was calculated according to Eq. (4.13): $R_{B} = 0.416 \cdot \left[1 - 2 \cdot \frac{0.064}{1.5}\right] = 0.380 \text{ ft}$

(14) Finally, the value of the roughness coefficient, n_{A-1} , of Astroturf No. 1 was, according to Eq. (4.18), for $N_B = n_{A-1}$

$$n_{A-1} = \frac{1.486}{3.173} \cdot (0.38) \cdot (0.0176) = 0.033$$

4.4.2 Triangular Channel

For the following sample calculations, the reader is referred to the first line of Table A-5 in Appendix A column by column.

(1) Astroturf No. 1 was investigated.

(2) The longitudinal slope, S_o, of the triangular channel
was set according to the procedure described in Section 3.2. It was
0.027.

(3) The liquid-water manometer deflection, ΔH , was read off as $\Delta H = 4.760$ ft.

(4) The discharge, Q, was computed according to Eq. (2.2); that is,

 $Q = 0.42 \cdot (4.76)^{0.5} = 2.95 \text{ ft}^3/\text{sec}$

-37-

 (5) The computation of the uniform depth, D, for the triu, for the triangular channel was the same as that of the rectangular channel. Based
 on that procedure, the resulting uniform depth was

$$D_{u} = 0.583 \, \text{ft}$$

(6) The width of the uniform flow, B, was computed according

Q,

to Eq. (4.14). For the cross section with longitudinal wall, i.e., $\alpha' = 90^{\circ}$ and tan $\alpha' = \infty$, Eq. (4.14) reduces to

$$B = \frac{1}{\tan \alpha} \cdot D_{i}; \quad \alpha = 9.5^{\circ}$$

or

$$\mathbf{B} = \frac{1}{0.1673} \cdot 0.583 = 3.370$$

(7) The cross-sectional area, A, was calculated by means of Eq. (4.15) which can be reduced to

$$A = \frac{1}{\tan \alpha} \cdot \frac{D_u^2}{2}$$

(9) Equation (4.16) reduces in the present case to:

Ū.

$$\mathbf{P} = \begin{bmatrix} 1 \\ 1 \\ n \ln \eta \end{bmatrix} \mathbf{D}_{\mathbf{u}}$$

since $\alpha' = 90^{\circ}$ and sin $\alpha' = 1$. This simplified formula was used to com-

pute the wetted perimeter, P; that is,

$$\mathbf{P} = \left[\frac{1}{0.165} + 1\right] 0.583 = 4.116 \text{ ft}$$

(10) To compute the hydraulic radius, R_h , Eq. (4.17) was used: $R_h = \frac{0.982}{4.116} = 0.239$ ft

(11) The Reynolds number, N_R , according to Eq. (4.7), was $N_R = \frac{4 \cdot 0.239 \cdot 3.003}{1.059 \cdot 10^{-5}} = 2.707 \cdot 10^5$

(12) Finally, the roughness coefficient,
$$n_{A-1}$$
, of Astroturf

No. 1 was, according to Eq. (4.19),

$$n_{A-1} = \frac{1.486}{3.003} \cdot (0.239) \cdot (0.027) = 0.031$$

-39-

5. REPRESENTATION OF DATA

The computed roughness coefficients, n, were plotted against the respective uniform flow depths, D_u , and the Reynolds numbers, N_R , in Figs. 5.1 and 5.2, respectively. Both plots show the same general trend of the three curves, which is found in overall agreement with Lane's results (1951) reported by CHOW (1959) and given in Fig. 1.2.

The curves for the wooden surface are reasonably vertical.

ţ.

ß

Figures 5.1 and 5.2 show that the n-value for both Astroturfs increases as the flow depth and/or the Reynolds number decreases. This can be explained by the fact that the exposure of Astroturf is more and more pronounced as the depth and/or Reynolds number decreases. This can also be seen in Fig. 5.3, where the depth to Astroturf's height ratio is plotted against the n-value. However, the curves of Figs. 5.1 and 5.2

show a reasonable independency of the n-value at the high range of depths and Reynolds numbers. In other words, the n-value no longer depends upon the depth of the flow and the Reynolds number, but becomes a constant value.

-40-

6. CONCLUDING REMARKS

5

*

The roughness of two types of artificial grass, Astroturf No. 1 and Astroturf No. 2, have been investigated in three different hydraulic flumes. The following conclusions can be drawn from the present study.

The n-value was found to be dependent on the flow depth and

6 <u></u>

•

on the Reynolds number at low range of depths. It was shown to be independent of the flow parameters at high range of depths.

It seems reasonable to select the roughness coefficient for

the range of the higher discharges as constant, being

 $n_{A \cdot 1} = 0.0326$ for Astroturf No. 1, $n_{A \cdot 2} = 0.0275$ for Astroturf No. 2, and $n_{wood} = 0.0150$ for the wooden surface.

Table 6.1 shows a comparison of Manning's roughness coeffi-

cients for "real" grass and for "model" grass, i.e., for Astroturf. In this table the ranges of n-values for high and short "real" grass were taken from Table 1.1; while for "model" grass, the results of the present experiment are used.

Manning's Roughness Coefficient, n				
"Real" Grass	' Model" Grass [Astroturf]			
High Grass	Astroturf No. 1			
0.030 - 0.050	$n_{A \cdot 1} = 0.0325$			
Short Grass	Astroturf No. 2			
0.025 - 0.035	$n_{A \cdot 2} = 0.0275$			

Table 6.1: Comparative n-values

-44-

From the above table we may conclude that Astroturf, being a "model" grass, simulates reasonably well the "real" grass.

We recommend the use of Astroturf in the simulation of grass in hydraulic modeling.

:*

.

#

7. IMPORTANCE OF STUDY TO HYDRAULIC HODELING

To illustrate the usefulness of having a "model" grass available, we shall perform a numerical example.

ĝ.

(7.3)

Simulating a grassed watercourse, it becomes necessary to consult a frictional criterion, as discussed by GRAF (1971, p. 389) and YEE (1972, pp. 13-14).

Equation (1.1), which is the Mamming empirical relationship, may be used as a frictional criterion. This frictional criterion requires a relationship between prototype and model * such as

$$\begin{bmatrix} \frac{2/3}{h} & \frac{1/2}{s_{o}} \\ \frac{1}{u} & \frac{1}{u} & n \end{bmatrix}_{p} = \begin{bmatrix} \frac{2/3}{h} & \frac{1/2}{s_{o}} \\ \frac{1}{u} & \frac{1}{u} & \frac{1}{u} \\ \frac{1}{u} & \frac{1}{u} & \frac{1}{u} \end{bmatrix}_{m}$$
(7.1)

for an undistorted model, $(S_0) = (S_0)$. If the hydraulic radius is re-

placed by a suitable dimension, L, Eq. (7.1) reduces to

$$\begin{bmatrix} \frac{L^{2/3}}{\overline{u} \cdot n} \end{bmatrix}_{p} = \begin{bmatrix} \frac{2/3}{\overline{u} \cdot n} \end{bmatrix}_{m}$$
(7.2)

Equation (7.2) can be rearranged for the discharge relation-

ship; that is,

$$\frac{Q_p}{Q_m} = \begin{bmatrix} L_p \\ L_m \end{bmatrix}^{2.67} \cdot \frac{m}{n_p}$$

The letters p and m will stand for prototype and model, respectively.

-46-

EXAMPLE

A grass-lined irrigation canal is to be investigated in the

荷

hydraulic laboratory. An undistorted model with a scale ratio of $\frac{L_p}{L_m} = \frac{10}{1}$ is to be built. The laboratory pump system provides a maximum discharge (i.e., model discharge) of $Q_m^{max} = 3$ cfs. For what maximum discharge, Q_p^{max} , of the irrigation canal, having $n_p = 0.030$, is this laboratory investigation applicable?

ANSWER

Use of Eq. (7.3):

(a) <u>Laboratory Investigation with Wood</u> $n_{wood} = 0.0150$ $Q_{p} = \left[\frac{10}{1}\right]^{2.67} \cdot \frac{0.0150}{0.030} \cdot Q_{m} = 165 Q_{m}$

(7.3)

₩. F

$$Q_p^{max} = 165.3 = 495 \text{ cfs}$$

(B) Laboratory Investigation with Astorturf No. 1

 $n_{A \cdot 1} = 0.0325$

$$Q_p = \left[\frac{10}{1}\right]^{2.67} \cdot \frac{0.0325}{0.030} \cdot Q_m = 510 Q_m$$

-47-

$$Q_p^{max} = 510.3 = 1530 \text{ cfs}$$

(Y) <u>Laboratory Investigation with Astroturf No. 2</u> $n_{A.2} = 0.0275$ $Q_p = \left[\frac{10}{1}\right]^{2.67} \cdot \frac{0.0275}{0.030} \cdot Q_m = 430 Q_m$ (7.3) $Q_p^{max} = 430.3 = \underline{1290 \text{ cfs}}$

Length Scale 1. /1 $10/1$											
Ma	del	Prototype									
Q max, ft ³ /nec	n Pa	Q max, 11 /acc	th p								
	$n_{A \cdot 1} = 0.032^{\circ}$	1530									
3 ,	$n_{A+2} = 0.0275$	1290	0.030								
	n 0.01m	495									

Table 7.1: Summary of Example Results

.

From the above example, we shall conclude that:

(a) Our hydraulic laboratory cannot model any prototype canal
which carries a maximum discharge greater than 1530 cfs, 1290 cfs, and
495 cfs for laboratory investigation with Astroturf No. 1, with

Astroturf No. 2, and with the wooden surface, respectively.

(b) In order to model any prototype canal carrying very highdischarge, a material of high roughness coefficient, such as Astroturf,is recommended to be used in modeling.

-48-

APPENDIX A SUMMARY OF DATA AND COMPUTATION

-3

9

宿 · · · · · ·

0

5. 19. 10.

ſ

4

٠

.e

••• 7

Ι

.

•

۰. ۱

1.

re ja.

12. s

e.

.

*

۲

۰.

• • •

:

.

۰

ø

٠

C # 🗰

TABLE A.1 SUMMARY OF DATA AND COMPUTATION

KIND	DA	TA		COMPUTATION									
OF.					8 5 1	1 1 1 1		N.,		1			
都会民族政府的工具	\supset_{0}	11	11/22.	11	112	Ti AZ	* 		n			***	
ł			4	* ,	6		ł	9	,	8 8 8 8) * 1 *	; 1	ţ. x
	. 8 1 7 4	3.471	● ○ ○ ● ○	.*15	. 87%	1.373	 		• • • • •		• • • •	, **:	. 7 1 1
	- 17	1.117 7.810	1.797	- 4 2 1 ⊾// t		1.151 1.121	. 261	1.1111 + 15 1.3151 + 15	- 15 K 	. 251		• 3 * 7	
-	. 3171		1.633	1.4.	7 7	2.9					• 1 •	* * * ÷	
Ó	. 5 1 7 4		1. 143	. 364			. 246				•		
	- 5176	1.77*	1.519	. * 4, *	<u>_</u> #299	2. A. K. 2	. 282	2.4.735+75				132 A	
	.0176	1 <u>5</u> 5 5	1.279	1 1 1	. 5. ×	₹	. 23.2	▲ ○○方長 ★ ○○	• 1 Sep 45		. 47 1		. 116
	. 2171	1.201	1.163	- 517	. 471.	2.429	54 € 4 4 € 1		. 141				.* 36
	. 3171	- Cî î	• ⁶ 8 ⁶ 8 ⁶ 8	.291	.431	. .96	9 g 7 • • • • •	1-2202-425	. 137			. 27 8	
	. 2176	- 904	. 62%		. 167	1.703	. 1	1、1月16日(1月17日)	• • • •	• • • •	• ³ 5 •		. 6 4 4
	. 076.0	3 85A	7. (7.7	L + 4.	6.2.3	1 179	217	1 6571 × 74			£ • •	145	
	.4260	2.870	1.#71	. 3.45	.577	1 1 1 7				• ⊒ 4 '* • • • •		4 3 5 5 3 4 4	. (37
	.0260	2.170	1.647	. 166	54.3	1.066			• • • • •	، الا يار ال الا التي	• 1.4 ≩ 1. 5 €.	• 2321 TEA	- 1 - 1
	.0260	1.963	1.491	TEN		2.641		2.5.1.1.5.5		• • • • •	- 495	. 1 * 1	
	. \$26C	1.463	1-279	.316	. 474	2.699		2.26614(5	. 6 3 4		453	. 336	. (
	.0260	. 915	1.000	.244	.412	2.314	.205	1.5108+18	. 11)	• • • •	. 4 ! 5	.776	. (4 4
_	.0260	.765	-910	.275	. 412	2.206	.201	1.6778+08		. 015	.397	. 266	.045
	-02FC	- 415	. (59	. 246	.369	1.757	-145	1.2500+25	. 220	.210	. 359	.239	.052
	.0260	.093	- 299	-141	. 271	1.120	-145	6.3598+04	.910	. ÚÕ4	.265	-179	. (69
	.0260	• 0 3 0	-158	-147	• 271	.764	.123	3.5468+64	.006	-002	.219	.146	. 687
	.0348	3.750	2.090	. 371	. 555	3.756	.248	3.5228+05	. 250	. 0 37	. 51 9	. 146	-636
	-334A	3,340	1.571	. 369	. 553	3.560	.247	3.3268+05	.046	.034	.570	.346	.636
-	348	2.860	1.817	.358	. 537	3. 384	.242	3.3976+05	. 643	31	.506	-33A	-040
	-0348	5-350	1.629	.341	-512	3.181	.235	2-1198+05	. 239	.027	.436	. 324	.541
	.0348	1.735	1.398	.314	- 471	5.968	• 221	2-4415+55	.035	.022	. 443	.299	-042
CC [.0348	1.265	1.195	.249	. 433	2.756	.209	2.1718+05	. 331	-015	.415	.277	-043
	- 1240	* 4# 0	1.01/	+ 211 D 7 P	+415 70 x	2.447	• 262	1.8696+[5	.026	• v15	.401	.767	-047
	.0368	• 71U 450	•739	- () ()	+ 177 - 271	2.009	• 1 7 1	1.4121+65	.020	.010	. 3'47	.232	.051
\vdash	.0348	.010	.136	.113	• 163	.904	-098	2-9518+04	•012 •005	.001	-27J -168	.140	.052
	. 0440	3.300	1.958	.346	• 519	3.773	.237	3. 774E+(5	.042	.029	- 490	. 327	- 139
S I	.04.0	3.250	1-943	. 743	. 514	3.776	.235	3.3578+05	. 342	.029	.486	. 324	.639
	• 0440	3.270	1.549	.344	-516	3.777	.236	3.3648+05	.042	. 029	.457	.325	. 039
	-0440	2.740	1.777	.333	• 499	3.558	.231	3.J99E+C5	.039	.026	.474	.316	.041
~	• 0 4 4 0	2.380	1-651	• 324	. 486	3.397	• 556	2.9036+65	.) 36	.023	. 463	.309	.042
×	•0440	1.957	1.500	.302	• 453	3.311	.215	2.693E+C5	. 3 3 5	.021	.432	.288	.041
	• U4 4U 67.1.6	1.450	1.200	·285	• 429	2.450	•207	2.3075+05	• J29	.017	.412	.275	.645
1	•044V _ALLA	• / ÇŲ	• J((L76	• 2 4 7 1 8 0	+ 30/ 2#1	2.710	+165 +5+	1.7510+05	•]2]	• 011	.356	.234	.048
. 1	.0420	• 27.2	• • • 0	+107 .142	• 204 212	1.872	+151 (10	3+7821+64 6 6515+14	• 513 onc	.005	• 279	• 186	.050
		40.V	• « " • •	• 4 • 6	€ I 3	10036	•113	4 • C746.764	• 989	•692	• 211	•141	.082

- 50 -

ę

t €.

ł

浙:同

3

÷.

Г

TABLE A-2 SUMMARY OF DATA AND COMPUTATION

KIND	0/	NTA		COMPUTATION									
OF	i e	A.H			A	E Second		N. a		Δ.			
KALONE T	0			n		- Notae						1 11	A 2
1	:	₹.	•	******	ę,		يرم	÷	;1	1:		11	14
<u>.</u>	- <u>2 1</u> 5 7	*1698 21*51	1.7%6 1.6%1	. 363	. 56 k Kat	1.758 8.715		2.4728+15	. ****	. 16 1		.*:5	. 624
			1		. 4.5.5	2 • 24 • 7 • * 5 7		1.25087150 2.2508155	. 97.7	. \$4\$. % % 7	. 295	
Ó	. 854 *	1.667	1 18 c]	191	• ¹ , * *		.:::	2.5555±25	. 144		- "• • -3 • •∎ •		
Z	* F () . B () .	1.757	1 7 ·.			2,921	.199	₽ . 175₽ * 55	. :* 9		1 7 2 • 2 2		.(.)6
			1.22° .481	• / • • • > • •	. 17.7	* * * * *	- 1 5 5	1.9178.415	1	• 1 C K	• * ¥ *s	.272	
	.0165		14. 4	•••••		2 # ⁵ % , 78 - ± F	• 1. · ·		. 25 9		1 ▲ 4	• • •	7
1.	. 116 5	.150	. \$ 2.9	.163		1.743			i File Alterna	• 4 • 5	. 7 5 . 		. 1 2 9
u.	. ₫18.5	. 130	-15*	. : : 1	. 157	1.111	. ()?		* * F 7 * * *	• • • • •		• • • 7	
									• • • • -	• 3	a <u> </u>	ف ي ي م	4 3
8	.1260		7.171	. 34 1		4 113	714	t trainer		• • •			
h.d.	.6260	2.432	1 77	.311		3. 54 9	• • • •	i e e sub e ume Biorente e me	/ 4		يد وکيا يا ي	• 2 2 4	.0.26
	.0246	2-433	1. (69	. * 60	_ <u>6,</u> €, ∩	3.700	.714		4 318 M	• 4 4 4 4 . 3 7	. 4. 1. 4 1. 1. 1	• 236 	- 6 2 7
	.026 C	2.940	1.*.? 5	.25%	• 4 J 1;	1. 3.78	Q	2.7525.464	• • •	- 9 37 - 1 1 1	4 94 1 7 1 1 1 1	• £ 1 £ • 2 9	- # 27
\supset	.0240	1.535	1.297	.757	• T # 5	3.366	.191	2.4375+65		.027	• 3 5 . 	•• 552 2334	-027 837
_	.0260	1.193	1.150	- 233	.355	1.277	-1*1	2.1961 (24	· 24 9	- 2 2 3	- <u>1</u> 7 4	. 223	.027
-	• 6 2 0 5 5 • 7 5 0	- 235	1-01:	-774	- 355	5.CC9	• 172	1.9628+65	. (44	.3/2	. 316	.711	. (2 4
.	- 1260	- 530 758	- <u>3</u> 39 - 500	• • • • •	.333	2.795	•15ª	1-6878+65	.040	.016	. ? * *	-119	. 0 2 9
	.0260	- 074	. 136	•19(ngo	• 2 6 5 • 6 6 0	6.233	.126	1.0651+05	. 025		. 21.9	.146	. 630
		· • • •	• 1 4 0	• • • •	• 1 • ja	• 417	- 457	3.1308+64	.007	.03:	-157	.075	.056
\cap	.0354	3.210	1.930	200	1.6.8								
	.0354	2.730	1.775	+ () 7	• ** * 7. • * * *	N= 3 U 1	- 214	3.4756+05	. 150	.016	- 412	.275	-027
1	-0354	2.225	1.592	.265	-402	3.960	• 2 9 9 • 1 9 7	3 . 2241 + 05	• 056	.032	.431	.267	.028
1	.0354	1.770	1-415	.248	. 372	3.505	-136	2 - 1935 + 69 2 - 5785 6/6	•U53	•029	.373	.249	-028
\sim 1	.0354	1-350	1.230	.232	.345	3.534	.177	2.1664405	• J 5 () 0 / C	• 025	+ 347 233	.231	-028
-	-0754	-970	1.033	.209	. 31 3	7.296	. 163	5-9446+00	• 0 4) • 0 4)	= U C 1 n 4 7	* 247 707	• 218	.029
I	.0354	- 6×0	• † 53	•192	-285	2.979	.153	1.7208+65	.035	. 313	- 275		070
1	-0354 0754	-500	-731	-175	• 26 ?	2.785	-142	1-4926+05	. 331	. U11	. 251	-16A	
\vdash	-0374	* 227	- 476	•146	219	2.174	•122	1.0038+05	- 022	.006	.213	.142	.035
		● U O U	• (01	• 117	• 175	1.601	.101	E-121E+04	.914	.003	.172	-115	.641
	.0440	3. 265	1-046	280	6.2.0	, , , , ,							
0)	.04%0	2.680	1.757	.270	* 42 C 6 A S	4.033	• 244	3-5646+05	-057	- 935	.245	.259	-827
	. 9440	2.145	1.562	.249	777		+199	3+252E+65	• 052	- 128	- 377	•251	-029
1	-0440	1-810	1-431	.242	363	3.943	•177 .183	2 7255615	• 049 0/5	.024	- 349	.233	.028
\triangleleft	-0446	1-360	1.242	.219	729	3.781	.170	2.4215+05	= U 4 7 0 1. 2	• 422	-241	+227	.029
	-044C	1.000	1-050	.203 .	304	3-443	.160	2.0816+05	-037	+019	+ 310	+207	.029
	- 0440	.745	- 897	-184 -	275	3.251	-148	1.4145+65	- 034	-017 -017	• 67 J . 26 L	•193 •7c	.030
1	- 0440	-400	•651	•157 •	236	2.763	-130	1-3558+05	.026		+CU4 .727	+140	120
1	- 0440	- 095	• 299	.113 .	169	1.762	.098	6.537E+04	-613	.033	-156	**71 _111	• 0 3 4
	● U ♥ ♥ U	.030	-168	.090 .	135	1.247	. 686	3.7858+04	. 308	.001	.134	.089	-056

- 51-

. . .

0	1		 -		
	1	-			b
					¥

-

a',

-

TABLE A.3 SUMMARY OF DATA AND COMPUTATION

12

1

KIND	DA	TA		COMPUTATION									
\mathbf{O}_{T}^{*}	c				A			1. 			- ^	E E	
ROLESONE 22	0,0	(1	1 the	1 1	11	Et a ta ta ta	r.		n	H A A A A A A A A A A A A A A A A A A A			
1	:	*	تر	*	ę	+		Y	; 0	t t Y 7	n - ² 4 - main (n - 2000) 1 - €	;)	<u>t</u> 'n
Ш С О	 ・ままたた ・ままたた ・ままたた ・ままたた ・ままたた ・ままたた ・ままたら ・ままたら ・ままたら ・ままたら ・ままたら ・ままたら 	う。フライ フ・オート し、ホート し、ホート し、ホート し、 し、 た た た た た た た た た た た た た	2.200 2.200 2.4000 2.40000000000		· 43. • 74. • 37. • 701 • 26.7 • 701 • 701 • 19.7 • 19.7 • 19.7 • 19.7 • 19.7 • 19.7 • 19.7 • 19.7 • 19.7	···· ···· ···························		 「、まごごり *ごろ 「、まごまご *ごろ 「、日本日本ごろ 「、日本日本ごろ 「、日本日本ごろ 「、日本日本ごろ 「、日本日本ごろ 「、日本日本ごろ 「、日本日本ごろ 「、日本日子本ごろ 「、日本日子本」 「、日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本	 ・またで、 ・またで、 ・またで、 ・たたい、 ・たたい、 ・たたい、 ・たたい、 ・ため、 <li< th=""><th>· 2013 · 2013 · 2013 · 2015 · 2013 · 2013 · 2013 · 2013 · 2013 · 2013 · 2013 · 2013 · 2013 · 2014 · 2015 · 2014 · 2015 · 2015 ·</th><th> ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</th><th>·····································</th><th>.013 .013 .013 .013 .013 .013 .013 .013</th></li<>	· 2013 · 2013 · 2013 · 2015 · 2013 · 2013 · 2013 · 2013 · 2013 · 2013 · 2013 · 2013 · 2013 · 2014 · 2015 · 2014 · 2015 ·	 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	·····································	.013 .013 .013 .013 .013 .013 .013 .013
S	. 9260 . 0760 . 7261 . 0260 . 0260 . 0260 . 0260 . 0260	1.593 1.673 1.363 1.054 .575 .575 .173 .690	1.504 1.372 1.220 1.077 .947 .746 .416 .293	. 201 . 1 * * . 1 * 0 . 1 * 0	. 30 x . 28 2 . 25 2 . 22 9 . 710 . 177 . 12 3 . 495	4.385 4.485 4.473 4.473 4.403 4.017 2.365 3.161	. 199 . 199 . 197 . 127 . 127 . 115 . 192 . 355	2 - 9264 + 03 2 - 3230 + 04 2 - 3230 + 04 2 - 3230 + 04 2 - 2230 + 05 2 - 2200 + 05 3 - 5230 + 05 9 - 4536 + 24 5 - 9305 + 24	• 0.95 • 2.92 • 2.92 • 2.92 • 2.92 • 2.92 • 2.92 • 2.92 • 2.5 • 2.	.015 .015 .015 .027 .027 .017 .019 .019	- 293 - 263 - 263 - 263 - 263 - 273 - 273 - 273 - 273 - 165 - 114 - 114	. 1 45 . 1 75 . 1 55 . 1 1 5 . 1 1 5 . 1 2 5 . 1 0 6 . 3 7 5 . 3 5 3	-015 -015 -015 -01- -01J -01J -01J -01J -01J -01J
и Ш О О	.0354 .0354 .0354 .0354 .0354 .0354 .0354 .0354 .0354	3.190 2.669 2.265 1.860 1.490 1.049 1.049 .600 .559 .500 .150	1.924 1.750 1.507 1.457 1.457 1.976 .976 .976 .976 .976 .976 .976	.214 .20* .199 .177 .159 .141 .130 .112 .691 .664	• 721 • 312 • 294 • 265 • 234 • 212 • 195 • 168 • 135 • 096	5.993 5.503 5.384 5.467 5.067 5.007 4.737 4.447 4.063	• 155 • 157 • 157 • 143 • 131 • 119 • 111 • 097 • 081 • 059	3.759E+35 3.450E+35 7.194C+25 2.958E+35 2.53E+35 2.272E+35 2.035E+35 1.762E+35 1.353E+35 9.044E+04	•099 •090 •955 •384 •381 •375 •375 •375 •375 •355	.247 .037 .034 .031 .225 .522 .023 .016 .012 .007	+279 +275 +265 +235 +213 +190 +175 +152 +125 +089	- 100 -	•015 •014 •015 •015 •015 •015 •015 •013 •013 •012 •016
3	. 0404 . 0404	3.620 2.650 2.350 1.985 1.625 1.625 1.625 1.625 .790 .490 .260	2.055 1.746 1.640 1.493 1.351 1.351 1.170 1.050 .928 .724 .520	.218 .199 .189 .178 .160 .146 .132 .121 .095 .075	 327 299 284 267 240 219 191 191 147 113 	6.284 5.849 5.785 5.614 5.628 5.342 F.303 5.115 4.922 4.620	<pre>.159 .157 .151 .144 .132 .12? .112 .104 .087 .058</pre>	4.009E+05 3.475E+05 3.298E+05 3.051E+05 2.803E+05 2.456E+05 2.248E+05 2.013E+05 1.612E+05 1.190E+05	.097 .087 .087 .085 .075 .076 .075 .071 .067 .051	.U42 .934 .C32 .C29 .026 .026 .027 .017 .017 .013 .039	-285 -264 -251 -238 -214 -197 -178 -164 -134 -103	•190 •176 •163 •159 •143 •143 •131 •119 •110 •083 •959	.015 .015 .015 .015 .014 .014 .014 .014 .014 .013 .012 .011

52-

4

۰.

.

÷

TABLE A.4

٠.

÷.

SUMMARY OF DATA AND COMPUTATION

KIND	DA D	ATA		COMPUTATION									
tijt∓	, , ,							Å		T t			
ROLFAINT 11	S.		12/246		1 (1					*			n
	and the second s	ىمى بىيەتلەر ئايىتىلەر ئەتتىرىغانىيىكى مىلىرىيەت يىرىنى بىيەتلەر ئايىتىرىيەت قىلىكى مىلىرىيەت	! ************************************						11 242				•
		•	4 <u>4</u> 5	*,	÷.,		\$	Ű,	∎ - • <	× • 4		: 1	
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	₩. 5.3 ¥	5.917 • • • •	2.144	4.171	* * * • · · · ·	2. 3323 x35	* * · · ·
		• • • •			1.653	1.541			• • •	8,558 2,74	• • • •		
		1.7:0	2.00	• *• < €	.	1,785	5.732	.9.3					.016
		· · · · · ·		• • • • •			N. 774	. 955		· · · · · ·	• • • • •		
	4	· · · · · ·	e a e l'at	• • • •			# . 1 * *	• # ħ [*] ≱	₹. ÷ * 4	कृत्य क जिस्त्र रेजे द		1.9188.1 <u>0</u> .0	
			***** * . 6 7 u	••≨≉ 1.9	2 • 14 2 2 • 11 •		· · · · ·	. 164		A		8	. 5 4 5
			1.71	. 151		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	3 - 9 7 3 5 - 7 5	.734		* • 2 · 1	.113		· 2 · · ·
	. 2122	. 160	. 5.12	.113	1.611	* * 31 (7) * * * *	3.314	1944	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	• 1 <i>4 %</i>	1.7563 * <u>1</u> .5	
					-	•••			≟ + ≵ -1 à	રંકે મામ્ય જાવ	. : 3 %		-191
	<i>7</i>												
	.6435 ∧:ss	5.550 1.2.5	2.935	. 416		1.772	245	. 936	1.11	کو ۽ ٿو تر ج	. `::	2.2972.00	
	- 1 - 3 - 1 - 3 -		ដឹតដីភ្ដី ក្រុមត្រ		2.447	1.746	4.253	.919	1.102	····			. : : :
		3.640	* * * 3 G	/ 	1.463 7.101	1.731		. 893	1.564		.226		. 5 3 7
	.(4)	2.412	2.3/0	144	2.241	2 + 13 5 5 1 − 4, 4 1	900 - 100 - 200 100 - 10	. 9 i. i. 	1.042		•		.036
		2 . let	Э. ę. ж. н. 	. 3 13	2.772	1.515	3.4.4	· · · · č · · · č	£ • 11 9 3 77 5		•1 +1		- 237
	.947	1.912	1.653	. 373	• • • • •	1.516	3.672	.535	2.744	4+2 J 1 A 7 2	• 1 • 2	1 + H 2 (H + 2 H) + - A + H + 1 + 2	.039
	• • • • • •	1.400	1.654	. 3	2.040	1.414	3.455	.617	2.571	1.614	.171	- 4 + ひちこしきよう - たいえきらく 4 4 4	
	• 4 4 3 2 6 1 3 6	. 5 5 0	1.210	.323	1.500	1.3*3	3.224	.530	2.235	3.345	.155	1.3076+15	.052
	• t • • • •	•1/3	• 550	•206	1.533	1.041	2.619	.343	1.579	2.711	-126	7.0026+34	.053
	.0755	4.860	3.000	.401	2.314	1.635	1 94.8	737	* ***				1
	.070ù	4.650	2.900	. 3-16	2.259	1.616	3.349	.772	3+799 8,757	4.087 N.5.86	+194	2.7725+45	.035
	.07.33	4.290	2.800	.364	2.243	1.577	3.820	.741	3.775	3.955	**7*	2.67.642.403	.635
	-9790	3.783	∠.600	.379	2.191	1.541	3.731	.707	3.077	3.863	.153	2.5425+95	-034
	.0700 .0700	3.030 2.600	2.500	.375	7.165	1.524	3.692	•695	3.335	3.822	-151	2.3226+35	.037
	40700 40700	1.923	1 • 100	• 3 2 /	2.064	1.451	3.515	.627	3.747	3.639	+172	2.1408+05	.036
64	.0703	1.350	1.550	.327	1.490	1 770	3.367	•575	3.195	3.480	.105	1.9942+05	.037
	.0730	.740	1.150	.300	1.734	1.220	2.956	•220 . LL t	2 6 3 4 5	3.333	-158	1-757E+15	.039
	.3703	.165	. 420	.245	1.416	.936	2.412	.295	1.421	2.497	+1+5	1+4215+05	-042
											• I I O	0.3035+0+	
	. 6.800	5 010	7 7.0			-							
	.0800	4.770	2.900	+ 341 Te t	2.250	1.559	3.850	.753	4.335	3.935	•139	3.128E+05	.032
ഗി	.0330	4.230	2.800	.374	2.162	1.571	3.642	•/ <u>22</u> 190	4.016	3,904	•135	2.805E+05	.034
	.0890	3.750	2.600	.367	2.121	1.492	3.613	• 50 F	4+U00 4.321	3.812	+181	2.7748+35	.033
	.3899	3.110	2.450	.357	2.064	1.451	3.515	•627	3,015	1+1+1 1-1-1 1-1-1	+172	2.5475+45 2.5475+05	. U.5.4
	.0800	2.670	2.150	.353	2.040	1.435	3.475	·£13	3.505	3.598	.170	2.257F+15	. U.3.3
~	•U0UU 	2.070	1.950	.340	1.965	1.332	3.347	.569	3.427	3.466	•164	2.1255+05	.037
1	- 0000 - 06830	1.445	1.010	.315	1.821	1.280	3.101	.483	3.296	3.211	.152	1+894E+55	.036
	. 0800	.290	.740	• 2 4 7 • 2 4 5	1.146	1.199	2.904	• 423	2.918	3.007	•142	1.570E+05	.039
			•• · · · · · · ·	* 6 7 7	T + 4 T O	• 770	c•41C	• 2 7 2	2+504	2.497	•118	1.119E+05	.043
													1

- 53-

.....

•

a.

ű

TABLE A.5 SUMMARY OF DATA AND COMPUTATION

D

KIND	D/	TA	COMPUTATION									
	er e	1			1 1				T.			
	- 10		7 7	1. 1.		n² ·	11/54x		l n		П., .	
\$		· •···································		ŧ <u></u> ţ	£		n	- 1	::		: :	
			1.351	. • • •	1.17	. 99.	3. ** 1	►. \$ \$ 6		2.*******	. : : :	
		*. <i>*1</i> :	1.827	.**	1. 11 t	. 95.2	2.522	÷.; 92	. : 14	7.6775#1%		
		► 1 1 1			1.222	. ** 1	1. 1. <u>1</u> .	2.317	.22 t			
, c		1,891			1.191	, ≢\$3		2. * 197		1.5 ⁻¹ 1 ⁻¹ 1 ⁻¹ 1 ⁻¹ 1		
			· · · ·	.* 11	1.16%	- 35-	2, † 44			2. 37.25 x 24		
.	4 · • · · ·		2.121	4 5 4 5	2.9t3	125		7.6+1	. 715	**************************************		
							₹ , 5,42	1.5.11		2,257)#35	.1.17	
	• • • • •	1.917	1.630		2.725	. 6 4 4		* • * *	• 1 × 1	■→ 参支 忠 → うち	. 2 * 1	
tı l	• • • •	* 4 5 P	1.137	***					. : : :	\$ 4 N x ¹ 7 € # 3 ¹ 5	· 1 * 4	
· •	• • • • •	• • •	▲ \$5 \$2 \$3	• • • • •	홓노양堆 <u>考</u>	. 12 5	\$. • 4 \$	1.173		9.8428 *ta	. 5 15	
		5 . · · · · · ·	1	614	5 4 - 8		1 <i>5</i>					
α I			1 1 1 1	* * / £ € * *	29342 1 824	* 7 2 X * 1 X	ીં કે જે છે. કે ગાળકરે		• 1 • 1	2.9331+15 		
	. 5			4 - 2 4 	1.754	* 7 ± 1 7 ± 1	3 . 4 12 1 . 10	7 # 8 % } 7 # 5 # 5 # 1	• • 1 /			
		1.200	2.000	. 515	* 42 m B	● 1 〒 4 〒1 下	2 . 4 · · · 4	2 4 ⁻ 1	1 	- そんかまたりまでた。 - あったちたく しい		
		1.1.1				. 75 #	1 114	2. * *** ¥ ¥ \$ = 1.341.	4 4 4 1 7 4 4		• 12 5 5	
D	- 2623		1.17:		7.774		1 24.1	2 . 4 4 4 4 1	ાર્ચ્યું કહે. ક્રાહ્ય ક			
		2.629	1.927	. 674	2.753	44.5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• À 17 89 • • • •	2 2 4 4 2 7 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • •	
	. 6423	1.452	1.45 1	. 435	2.517		2.37.	1 0 2 1	* 1 FL 1 7 G		* 2 * 6	
	· j = ? j	. 340	1.210	. 3 9 4	2.101		2.6#7		****	- 6 + 6 4 1 6 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7	• • • • •	
	. 0420	.220	. 1 2 4	. 322	1.861	.300	2.269	2.275	.112	1.0105.05		
									• • • • •		• 4 4 C	
	_											
\circ	.0650	4.910	3.000	.511	2.954	.755	3.975	3-528	.239	3.1418+05	.071	
	.0523	4.550	2.85s	.442	2.844	.700	4.074	3.47%	.701	3.0395+35	.931	
	.5524	4.230	2.750	. 4 6 7	2-815	.685	4.012	3.439	.149	3-0215+05	. 231	
	. 6526	3.750	2.603	.478	7.763	.6F0	3.937	3.375	.195	2.9152+05	.032	
	+2521	3.960	2.250	• 4 5 9	2.711	.634	3.697	1.31:	-142	2.6318+05	- C 3 3	
- LL	• U 3 2 U	2.010	2.1.	,446 	2.574	•575	3.705	3.149	.143	2.5555.405	- 6 + 5	
I	• USCU	2.050	1.949	+ 4 37	2.5¢6	• 55.7	3.515	3.035	.179	2.3751+05	-533	
	+U520 6621	1.420	1.776	* 498 *7#	2 + 3 7 3 7 + 0 f	+ 4 2 1	3.222	331	•167	2.0325+05	.935	
j [.6620	+04U 160	1.224	•) / 3	2.109	+41:	2.354	2.669	• 155	1.7275+25	.036	
•	• U V L 2	• 105	• 24 4	• 2 74	7 - 0 3 3	• 6731	2:102	2.479	•120	9.8262+04	•042	
	.0300	4.850	2.995	.436	2.809	. 533	4.330	3.431	. 199	3-2915+05	.037	
S I	. 3800	4.580	2.840	. 472	2.723	+64L	4.473	3.333	. 19]	3.2645+05	. 11 7.1	
	.0800	4.220	7.750	.464	2.682	.622	4.419	1.275	.190	3.1716+05	.0.71	
	.0300	3.580	2.550	.452	2.513	.590	4.319	3.191	.185	3.0145+05	.1132	
	• 0399	3.110	2.360	. 4 4 1	2.549	.562	4.199	3.114	.181	2.863E+U5	.1132	
~	.0900	2.550	2.151	.428	2.474	.523	4.051	2.022	.175	2.697E+05	.032	
	.0103	2.070	1.920	.414	2.333	.495	3.976	2.923	.159	2.4910+05	.933	
1	.0800	1.420	1.630	.388	2.243	.435	3.677	2.740	.159	2+206E+05	.034	
	.0300	.530	.990	.334	1.931	.322	3.940	2.358	.137	1.570E+U5	-037	
·]	• C899	.230	•640	•294	1.699	• 25 1	2.562	2.075	.129	1.165E+05	.040	
											ł	

Δ

REPERENCES

3

۲

- CHOW, V. T., Open Channel Hydraulics, McGraw-Hill Book Company, New York, 1959.
- EINSTEIN, H. A., 'Method of Calculating the Hydraulic Radius in a Cross Section with Different Roughnesses", Trans., ASCE, Vol. 107, 1942, pp. 575-577.
- GRAF, W. H., Hydraulics of Sediment Transport, McGraw-Hill Book Company, New York, 1971.
- HORTON, R. E., "Separate Roughness Coefficients for Channel Bottom and Sides", Engineering News Record, Vol. 111, No. 22, November 30, 1933, pp. 652-653.
- PARSON, D. A., "Vegetative Control of Stream Bank Erosion", Miscellaneous Publication 970, U. S. Department of Agriculture, 1963, pp. 130-136.
- REE, W. O., "Hydraulic Characteristics of Vegetation for Vegetated Waterways", Agr. Eng. 30(4), 1949, pp. 184-187.
- REE, W. O. et al., "Flow of Water in Channels Protected by Vegetative Lining", U. S. Conservation Service, Technical Bulletin, No. 967, February 1949.
- YEE, P. P., "Hydraulic Performance of Highway Drainage Inlets Used in Pennsylvania", Thesis Presented to the Graduate Committee of Lehigh University in Candidacy for the Degree of Master of Science, 1972, pp. 13-14.

VITA

ন্থ

9

.

Chhun V. Heang was born on December 2, 1945 in Kompong Chām, a provincial capital of the Ehmer Republic. He is a son of Mr. Leang Chhun Nguon and Mrs. Ros Kim Ly.

In 1952 he started the primary school, "Ecole de Suong",

叢.

and received the "Certificat d'Etudes Primaire" six years later in 1958. He received the first high school diploma, the "Diplôme d'Etudes Secondaires du Premier Cycle", in 1962 and the second, the "Baccalauréat de la Première Partie", in 1964. He carned the third and final high school diploma, the "Baccalauréat de la Deuxième Partie", in 1965. In late 1965 he began in Phnom Penh his engineering education at the "Institut Technique Superieur de l'Amitié Khméro-Soviétique" in the field of hydraulic engineering. In 1967 he received the "Diplôme des

Sciences Générales", and on November 28, 1970, the "Diplôme d'Ingénieur de l'Hydrotechnique".

In September 1971 he was admitted to the Graduate School of Lehigh University at Bethlehem, Pennsylvania as a full-time student on a Fulbright-Hays Scholarship.

-56-