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ABSTRACT ...... 

}' 

The concept of Frobenius groups and Frobenius kernels 

arises from the theorem: If H • a non-{e} subgroup of l.S 

-1 n H = {e} G, where xHx for each • G-H, and if M X in 

H11 • the set of elements of G not • any conjugate of l.S in 
' 

then M is a normal subgroup of G. The G and M dis

cussed in the theor~m are respectively, a Frobenius group 

and a Frobenius kernel. The proof of the theorem requires 

a knowledge of group representations and characters, and · 

therefore included in this paper is a short summary of the 

basic results of representation and character theory. 

Two major properties of Frobenius kernels that are 

presented in this paper are that Frobenius kernels are 

unique and that they are nilpotent. Once establishing the 

main properties of Frobenius groups and their kernels, I 

will give applications of Frobenius groups_and their kernels 

in the field of character theory and general group theory. 
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INTRODUCTION 

The concept of Frobenius groups and Frobenius kernels 

arises from a famous theorem due to Frobenius. The proof 

2 

of this theorem requires a knowledge of group representations 

and characters. Therefore included in this paper is a short 

summary of the basic results of representation and character 

theory. The reader who is familiar with these topics is 

advised to read through these results in order to learn the 

notation that will be used in the rest of the thesis. 

The chapters will be arranged as follows. 

Chapter I will contain a summary of basic properties 

of characters. Theorems will be stated without proof. 

Those who wish to see a more rigorous treatment of this 

topic are advised to see Ribenboim, Scott and Feit. 

Chapter II will begin with a theorem of Frobenius, 

which is crucial to this paper. This result will motivate 

the definition of Frobenius groups and their kernels. Also 

included in this chapter will be various characterizations 

of Frobenius groups. It will be necessary to discuss the 

concept of Hall P-subgroups and their properties which will 

be given without proof (reader is referred to Scott for 

proofs). 

Chapter III will be concerned with basic properties of 

Frobenius groups and their kernels. Included in this 

chapter is a discussion of Thompson subgroups., Those who 
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wish a more rigorous treatment of this topic are advised to 
see Feit and Passman. 

Chapter IV will deal with applications of F.robenius 
groups and Frobenius kernels in character and general group 
theory. 

I believe it necessary to note that for the most part 
the results proven in this paper can be found in Scott. 
The reader will notice that I have changed the order of 
presentation. Furthermore, with the aid of other texts, I 
have hopefully in some cases clarified Scott's proof and in 
other cases used different proofs. 
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CHAPTER I 
,·l 

Representations and Characters 

Let G be a finite group, F be a field, and V be 

a vector space over F of finite dimension n. 

A linear representation of G, of degree n over F, 

with representation space V is a mapping R:G-.. LF(V) 

such that 

1) eR = i {the identity transf:ormation) and 

Ndtice that gR is necessarily invertible. 

Two linear representations R1 and R2 of G over 

F with representation spaces v1 and v2, both of degree 

n,. are said to be equivalent whenever there exists an F

isomorphism e from v1 to v2 such that 

for every x € v1 and g e: G. 

Since V is a vector space of dimension n, and the 

group of invertible linear transformations of V can be 

shown to be isomorphic (in many ways) to the group of 

invertible n X n matrices over F, we could have just as 

well defined the representation R as a mapping 

R: G _.. Mn x n (F) such that 

I 

I 

I 

. I 



1) eR = I (identity matrix) and ·· 

2) (g1g2)R = (g1R)(g2R) (matrix multiplication) 

with equivalence of two representations R1 and R2 of 

G over F with degree n meaning there exists an 

invertible matrix T e-"M X (F) n n such that 

(gRl)T = T(gRz) for all g E G. 

5 

It will often be convenient to think of a representation in 
this way. 

The character of a representation R is a map. XR:G -+F 

defined by XR(g) = Tr(gR) for all g in G. When the 
representation is obvious {due to context), XR will be 
denoted by X. 

·-~ . .)\' 
'. 
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Examples. 

1) The principal character. 

The representation R of G of degree 1 where gR • 1S 

the identity linear transformation for every g e G, called 

the one-representation, has character ,, called the princi

pal character of G, where ((g) = 1 for every g € G. 

2) Right-regular representation and character. 

The group ring FG can be considered as an F-space 

with scalar multiplication defined by b ( I agg) = I (bag)g 
gEG geG 

for b, ag E F and g e: G with basis the elements of G 

,a11d dimension equal to the order of G. 

Consider the representation R of G over F with 

representation FG such that gR •• right multipli-space 1-S 

cation the elements of FG· that • <l agg) (g 'R) on 1.s.·, 
' 

=l 
geG 

ag (gg ') for all g' • G. cj R • called the right-in l.S 

gEG 
regular representation of G. 

The Cayley Jordan theorem te-lls us that the set of 

right multiplications of G by elements of G form a 

group of permutations. Thus relative to the basis 

{gjg e: G} of FG g 1R considered as a matrix is merely a 

permutation matrix. Specifically, eR is the identity 

- matrix while gR has a null diagonal for every g f e. 

/ \,. 
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Suppose the character of the right regular representation 

• . of G is P. By the preceding paragraph 

P(e) = O(G) and 

P(g) = 0 for g in· G·, g f e • 

.. 
Two relatively simple, but important results of ~haracter 

theory are as follows. 

1.1 Theorem. Equivalent representations have equal 

characters. 

1.2 Theorem. If R is a representation of G and 

XR is its character, then XR is constant on each conju

gate class of G. 

Some further terms are needed t·o c·otttinue a d-is·.:cuss:ion 

of character theory. 

A representation R of G over F, with representation 

V of degree • said to be reducible if and only space n, is 

if. there • subspace W, {o} < W < V, which is invariant 1.S a 

under (G) R. Otherwise, R • said to be irreducible. l.S 

Furthermore, R is said to be completely reducible if and 

only if V is the direct sum of irreducible (G)R-invariant 

subspaces. A character XR will be called irreducible if 

and only if it is the character of an irreducible representa

tion R. 

:I:, 



... 
There is a very important relationship between the 

irreducible characters of representations. · In order to 

state it, we must introduce the following notion. 

Let X and Y be functions from G into F and 

suppose char(F) + o(G). Consider the expression (X,Y) 

1 
= o(G) 

that ( 

1) 

2) 

I g • in G 
-1 X(g)Y(g ) e F. It is easy to verify 

' ) is a symimetric bilinear form; that • is, 

(X,Y) = (Y,X) ' 
and 

3) (aX,Y) = a(X,Y) for a in F. 

From this point on, unless explicit mention is made, 

we will assume F is the field C of complex numbers. 

8 

1.3 Theorem. (Orthogonality of irreducible characters) 
' 

If R and S are irreducible representations of G with 

characters X and Y respectively, then 

(X,Y) =· 

1 if R and S are equivalent and 

0 if R and S are inequivalent. 

1.4 1Theorem. Two representations of a finite group 

are equivalent if and only if they have equal characters. 

1.5 Theorem. If R is a representation with character 

X, then R is irreducible if and only if (X,X) = 1. 



1.6 Theorem. The number of nonequivalent irreducible 
characters of G equals the number of conjugate classes 
of G. 

9 

Suppose c1, ... ,C
8 

are the conjugate classes of G, 
and x1 , ... ,Xs are the nonequivalent irreducible chara:cters 
of G. Consider the s X s matrix M over C in which 
the (i, j) :~th place • X. (C.), xl • the principle 1.S 1S 

1 J 

= {e} . character and cl M • called the character matrix 1S 

of G. 

If T • a r~presentation of G over C with 1S 

representation space V, then it can be shown that V . ·. 
1.S 

a direct sum of n {GT)-invariant subspaces for some n. 

If {w }n are the direct summands of V, let T. be i i =l 
1. 

the induced representation of T 

defined as the direct sum of the 

on w .. 
1 

T. Is. 
1. 

can be shown that any representation T 

T can then be 

In particular, it 

over C • l.S a 

direct sum of irreducible representations. If T = l T., 
1 

then the T. 1 s are unique up to 1 

satisfy the relation XT = ~ Xi 

equivalence and the characters 

Theorem 1.6 tells us that there are only a finite number of 
nonequivalent irreducible characters, say {x1, . .. ,X

5
} . 

Therefore, every character X of G over C is a sum of 
members of this set. 

Let G be a group (finite) and let H be a subgroup 
of G of index n. If R is a representation of G over 
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C of·degree m, then R/H is a representation of H over 

C of degree m. If X is the character of R, we will 

denote the character of R/H by (X)H. We would like to 

reverse the process. That is, we would like to go from a 

representation of H to one of G. 

Suppose R is a representation of H over C of 

degree d expressed in terms of matrices. We first extend 
~ 

R to G in the trivial fashion by contructing R:G ~ Md x d (C) 

where 

R g 
·g· 4-· 

0 

for 

for. 

·g 

g 

in H and 

not in H. 

Suppose {x1, ... , xn} is a set of coset representatives of 

H in G. We now construct ll*~G - Mnd X nd (C) such that 

-1 g -+. ( (x. gx . ) R) . . block 
1 J 1, J 

R* is called the representation of G induced by the 

representation R of H. Furthermore, R* up to equivalence 

is independent of the choices of, or the order of, the co-

set representatives of H. Let X and X* be the characters 

of R. and R* respectively and let X be the trivial 

extension of X to G. 

1. 7 Lemma. For g itt G, X*(g) = otH) \ 
Lu in G 

1.8 Theorem. (Frobenius Reciprocity Theorem) If H 

is a subgroup of G, {Y1, ... ,Ys} is the set of irreducible 

;,1 

~' 
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11 
G 

~haracters of H over C, {x1, ... ,xr} is the set of 
irreducible characters of G over 

j , 1 ~ j ~ s , (Y • ) * = \ r a .. X . 
J L i=l iJ i 

negative integers, then for each 

= I:=1 a .• y .. 
1J J 

C, then if for each 

where a· .. 
1J 

are non-

i, 1 ~ i ~ r, (X.)H . 1 

1.9 Corollary. With the same hypothesis as above, 

We can extend the notion of induced characters to that 
of induced class functions as follows. Supp.ose, as before, 

that H C G with {x1, ... ,xn} a set of coset representa
tives. If f is a function from H to C which is 
constant on the conjugacy class~s of H, we first define 
f to be the trivial extension df f to G and then define 

n 

I "' -1 = f (x. yx. ) 
1 1. 

f*(y) for G. 
i=l 

As before, f* is independent of the choice of coset repre-
sentatives. It can be shown that the operation * • 1S 

linear; that is, if _f,£1 and f 2 are functions from H 
to C which are constant on the conjugacy classes of 

* * then (fl+ fz)* =fl+ £2, and (cf)*= c(f*) for C 

H, 

• in c. 
A generalized character of a group G is a function X 

of the form X = \ n .X. where each n. is an integer and L 1 1 i • 

{i} is an indexi~g set for the irreducible characters of 
G. If multiplication is suitably defined, namely coordinate-
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wise multiplication, the generalized characters form a ring 

denoted by ch(G) and called the character ring of G over 

c. 

1. 10 Theorem. If X = \ n.X. L 1 1 
• • 1S 1n ch{G), then 

• 
1 

. . (X,X) = I nf • 
• 
1 

1. 11 Theorem. Suppose H: is a subgroup of G. If 

Y is in ch(H), then Y* is in ch(G). 

1. 12 Lemma. If H is a non-{e} subgroup of G, 

where xHx-l OH= {e} for each x in G-H, and if X 

is a generalized character of H, then 

1) X*(h) = X(h) for h in H41c= H-{e }> and 

2) if X{e) = 0, then * x·· (e) = o and * * (X,X)H = (X ,x·· >c· 
If X is a character of G, then the kernel of X, 

written ker(X), is {g € G: X(g) = X(e)}. If X = XR, 

then ker{R) = ker(X). Therefore, ker(X) ~ G. 

1. 13 Theorem. If x E c11 , then there is an irreducible 

character X of G such that x 4 ker(X). 

Suppose R is a representation of G over a field 

F (not necessarily C), then R is also a representation 

of G over any field K containing F. We will say R 

is absolutely irreducible over F if and only if it is 

irreducible over every field K of finite degree over F. 
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1.14 Theorem. If R is a representation of G over 
F;· and the characteristic of F does not divide the order 
of G, then there is a finite extension field K of F 
such that R = I R1 where each R. 

1 
is an absolutely 

irreducible representation of G over K. 

1.15 Theorem. If R is an absolutely irreducible 
representation of a finite Abelian group G over a field 
F whose characteristic does not divide the order of G, 
then the degree of R is 1. 

,, 
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~ CHAPTER II 

Frobenius Groups and Frobenius Kernels: Definitions. 

With the basic knowledge of group representations and 

characters presented in the first chapter, we will be able 

to study the concept of Frobenius groups and their kernels. 

2.1 Theorem. (Frobenius) If H • non-{e} sub-l.S a 

xHx -l OH = { e} group of G, where for each • G-H X in 
' 

• • and if M is the set of elements of G not in any CODJU-

gate of · 11 then M • a normal subgroup of G. H ' l.S 

Proof: 

Suppose x1., .. ... ,Xr are the irreducible characters of· 

G over C. 

Suppose Y1~ ! ~.·•., Ys are the trre.ducib:l·e characters of 

H over C. 

wtog, assume x1 is the principal character of G 

over C and Y 1 is the principal character of H ov:.e:r 

C. Note that (X1)H = Y1. 

By the corollary to the Frobenius Reciprocit:y. Theorem 

for i ~ 1 we have (Yf,X1)G = (Yi' {X1)H)H 

Then e. 
1 

= (Yi,Yl)H 

. 0 if i /= 1 and 
== 6 . 

1.1 
--

1 if 

is a generalized character of H. 

... 

i = 1 . 

I. 

.:'. 
;·; 
~.11 ,. 
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...,, 
t ~ ...... 

.. l_:), 

Tb.en ei(e) = Yi(e) - Yi(e) = Yi(e) - Yi(e) = o. 

Also et= (Yi(e)Y1 - Yi)*= Yi(e)Yt - Yf which is a 

generalized character of G. Furthermore, 
• 

* * * (ei,Xl) = (Yi(e)Yl - Yi,Xl) 

* * = Yi(e)(Y1,x1) - (Yi,Xl) 

= Y. (e) · 1 - 0 
l. 

* Thus in the representation of e. as a Z-linear combina-
1. 

tion of x1, •.. ,Xr, x1 appears with the coefficient Yi(e) 

15 

* · and so there is a Z. in ch(G) such that e. = Y.(e)x
1
- + Z. 

1. 1. 1 1 

and x1 does not appear in Zi; that is, (X1,Zi) = 0. 

and 

Since e. is a generalized character of H over C l. 

* * e. (e) = o, by Lemma 1.12 (e.,e.)G = (e.,e.)H. But 
l. 1. 1. l. l. 

* * (ei,ei)G = (Yi(e)Xl + Z1, Yi(e)Xl + Zi)G 

2 ' 
= {Yi{e)) {Xl,Xl)G + Yi{e){Xl,Zi)G 

+ Y. (E) (Z.,X1)G + (Z.,Z.)G 
1 l. l. 1. 

= {Y. (e)) 2 + (Z.,Z.)G. 
l. l. 1. 

Also, (ei,ei)H = {Yi(e)Y1 - Yi,Yi(e)Y1 - Yi)H 

2 
= (Yi(e)) (Yl,Yl)H + Yi(e)(Y1,Yz)H 

= Y.(e)(Y.,Y1)H + (Y.,Y.)H 
1 l. 1. 1. 

= (Y . ( e) ) 2 + 1. 
l. 

~ ·:; I 

,· 
. : '. ~ r,-' 
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Therefore, (Y.(e)) 2 + (Z.,Z.)G = (Yi.(e}) 2 + 1 and so 1 ]_ 1. 

(Zi' Zi)G = 1. Therefore, there is a j (i), 2 ~ j (i) ~ r, 

such that zi = xj(i) or Zi = -xj(i)' 

thus 

Since 

* Recall that ei(e) = O implies that ei(e) = O 

* O = ei(e) = Yi(e)X1(e) + Zi{e) = Yi(e) + Zi(e) 

and 

where 

and Z.(e) are integers (see definition of characters). 1 

Yi(e) is the degree of the irreducible representation 
of which Yi is the character, Yi(e) > 0. Therefore 

zi (e) < o. Since Xj (i) (e) > o , zi (e) f Xj (i) (e) and s.o 
z. = -x. (.). 1. J ]_ 

* We now have e. = Y.(e)X1 - X.(.)· Since 1 1 J 1 

Yi(e)X1(e) - Xj(i}(e) = Yi(e) - Xj(i)(e), Yi(e) 

Thus 

Suppose x is irt H/f. Then 

Yi(e) - Yi(x) = Yi(e)Y1(x) - Yi(x) 

~ ei (x) 

Y. (x) = X. (.) (x) l. J ]_ 

* = ei (x) 

= Yi(e)X1(x) - Xj(i)(x) 

= Yi(e) - Xj(i)(x) . 

• 

* o = e. (e) 
]_ 

= xj (i) (e). 

Combining the last two paragraphs we have for e:t{~-h· 

:h in H, Y. {h) = X. (.) (h). ]_ J 1. 

:J 

I; 
'I 

'1 

:I ,, 

:·1 
'.II 

I: I 

I, 
I 

I 

i 
' I 

I 

I I 
I 
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Suppose y Then y is not in any conjugate 
of H. Thus by Lemma 1. 7 * . o = ei(y) = Yi(e)X1(y) - xj(i)(y) 

= Y.(e) - x.(.)(y) 1 J 1. 

= xj (i) (e) - xj (i) (y) . 

Thus, Xj(i)(y) = Xj(i)(e) or in other words, y 
Ker(Xj{i)). Therefore, each member of M# is in 

• • l.S l.ll 

for i, 2 ~ i ~ s, and so M£ 0~=2 Ker{Xj(i)). 

Suppose y By Theorem 1.13 there is an 
i, 1 ~ i ~ s, where y is not in Ker{Yi). Since Y1 

• 1.S 

is the principal character of H, its kernel is H. There-
fore, i 2:, 2 and y not in Ker(Y.) 

1. 
implies y. (y) 4 y. (e) 1. T 1. 

and so Xj(i)(y) /= Xj(i)(e). Thus, y is not in Ker(Xj(i)) 
for some i ~ 2 . 

Since ~r~j(i)) is normal in -1 G, x yx is not in 
• in G . Therefore, for each x 

Ker{Xj(i)) for each x 
-1 in G,. x yx is not in 

a conjugate of 

n~=2 Ker(Xj(i)). So no member of 
H# is in 0~-z Ker(X.(.)). Thus n~-z 1.- J 1. 1.-
Therefore, M = n~_2 Ker(X.(.)). So M ]_- J 1. 

is a normal subgroup of G.// 

Another form of the theorem of Frobenius is the fol
lowing theorem about permutation groups. 

2.2 Theorem. If G is a transitive permutation group 
on a 

then 

finite set n and x in G# implies ch(x) = 0 or 
M = {x in G : ch (x) = 0 or x = e} is a regular 

normal subgroup of G. 

1, 
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Proof: 

Suppose a is in O. Since G is transitive on O, 
the conjugates of Ga are Gb for b in n, where 

Ga = {x € G[ax = a} , and Gb ·· is similarly defined. Notice 

that for c .. and d in n, c /: d, Ge n Gd = {e} since only 

the identity fixes more than one element. 

Suppose 

Therefore, if • • x is 1n 

Then Gb = {e} 

Glf, ch(x) = 

for each 

0 and hence 

• in n .. b 

• 1.S G 

regular. Also, M = G and therefore M is a regular normal 

subgroup of G. 

We now c·onsider the important case when Ga f {e} . 
Suppose • • G-G Since • not • 

Ga, ag /= g is 1n g 1.S in a a· 
and so Gag = g -lG g gGag-lOGa -

{e} If • not • - X is in . a ' • 

Gfl Gfl conjugate of then • not· • for any b 
any 

' X 1S in a b 
• n ' and so ch.(x) = 0 - Therefore • . . '· .• 

in or X - e. X 1.S in 

M, and conversely. Thus M is the set of elements not in 

any conjugate of G: and by Theorem 2. 1, M is a normal 

subgroup of G. 

the G;;'s for b b 

(o(Ga)-1). Since 

Also, G is the disjoint union of M and 

in n, and so, o(G) = o(M) + o(O) 
• in g G-G a implies 

ag a , g G -lnG = {e} 
NG(G) = G and therefore G has [G:G] conjugates; a a a 

in other words, [G:Ga] = o(O). Thus 

o(G) = o(M) + [G:Ga]·o(Ga) - [G:Ga] 

= o(M) + o(G) - o(O) rd hence 

~ 
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o(M) = o(Q). If e is an orbit of M where a is in e, 
then o(M) = o(Ma) = o(e). If g is in Ma, then g fixes 

a, which implies ch(g) ~ 1 and thus g = e. So Ma = {e} 
and o(Ma) = 1 which implies o(M) = o(e) and Q = e. 
Therefore, M is transitive on n, and so M is regular 

on 11. // 
,_ 

Theorem 2.2 gives us a class of transitive permutation 

groups in which only the identity fixes more than one 

element and with a nontrivial subgroup fixing an element. 

Groups of this type are known as Frobenius groups after 

the person who first studied them. In the proof of Theorem 

2.2 we notice that Theorem 2.1 abstracts the group theoretic 

properties of Frobenius groups. The subgroup M discussed 

in this theorem will be called the Frobenius kernel. Never

theless, we will define Frobenius groups and Frobenius 

kernels in a more useful manner and will later show the 

equivalence of the two definitions. 

A finite group G is a Frobenius group with Frobenius 

kernel M if and only if 

1) M ~ G, {e} = E f M f G and 

2) m € M41 implies 

Before continuing our discussion on frobenius groups 
tf 

and their kernels it will be necessary to briefly dis·cuss 

the concept of Hall P-subgroups. 
·' 

• 
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Let P be a set of primes. A group G is a P-group 

if. and only if G is periodic and g € G implies o(g) e P. 

Suppose P' is the set of primes not in P. A subgroup 

H of a finite gr.oup G is called a Hall P-subgroup of G, 

written HE Hall (G), if and only if p H • l.S a P-group_and 

[G:H] € P'. It should be obvious that gcd(o{H),[G:H]) = 1. 

2.3 Lemma. Subgroups and factor groups of P-groups 

are P-groups. 

2.4 Lemma. If H and G/H are P-groups, then so 
.. G :1..s ... ·.: 

·.2. 5 Theorem. 

A_• nH: € Hall (A) • .. . p 

2. 6 Theorem. 

If HE Hall {G) p 

If HE Hall (G) p 

and A~ G, then 

and A is a subnormal 

subgroup of G, then AOH E Hallp(A). 

2. 7 Theorem. (Schur 1 s Splitting Theorem) If H 
... 
1S 

a normal Hall P-subgroup of a finite group G, then H 

has a complement. , 

A Hall subgroup is a Hall P-subgroup for some set P 

of primes. 

2.8 Lemma. If G is a Frobenius group with Frobenius 

kernel M, then ME Hallq(G) for some set Q of Primes. 

Proof: 

Suppose po • Sylow p-subgroup of M and p • 1S a 1S 

:a- Sylow p-subgroup of G with E f p ~ P. 
0 

I first wish 

-to show that Z(P) 1 CG(Po) C M. Suppose X E Z(P). Then -
X E p and xq = qx for all q • P. Since P~G and in 

I · I ·I•·• 

•• 

., , ... ~ .. 

:J 

,j 
I 

I 
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P
0 
~ P, x e G and xq = qx for all q in P

0
• This tells 

us that X € CG (Po>, which implies X € n6 p CG (P ) £ np p1F 
~0€ 0 O OE 0 

CG(P
0
). Since CG(P

0
) £ M for all p0 e P~ , x e: M. I 

now wish to show that CG(Z(P)).b M. Suppose x e: CG(Z(P)). 

Pf E implies that Z(P) f E and so there is a z in 

Z(P) where z f e. Then xz = zx and so x is in CG(z). 

z in Z (P) implies that z is in M, and so x • • 
l.S 1.n 

M. Thus Since q • in P implies 

that xq = qx for all x in Z(P), P 1 CG {Z {P). There-

fore P CG(Z(P)) .b M and so P = P
0

• Therefore, Mis 

a Hall subgroup of G. // 

2.9 Theorem. If G is finite and M is a subgroup 

of G with E < M < G, then G is Frobenius with Frobenius 

kernel M if£ there is an HE Hall(G) such that G = MH 

MnH = E and HnHx = E for all x € G-H. Moreover, for 

such an H, Mis the set of elements of G not in any 

conjugate of H#. 

Proof: 

' 

Suppose G is a Frobenius group with Frobenius kernel 

M. The Schur Splitting theorem guarantees the existence of 

a subgroup H of G such that G = MH and MnH = E. 

Since ME Hall(G) and o(H) = [G:M}, gcd([G:H],o(H)) = 1 

and so we have HE Hall (G). Let X € G-H. By way of 

contradiction, suppose HnHx f E. Since G = HM 
' 

we can 

e M4f. 
. . -1 

Let e f h e HnHx. Then and assume X xhx e H 
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_,,, 

so (xhx-1)h-l € H. M ~ G implies hx-lh-l € M and so 

x(hx-lh-1) € M. Therefore, xhx-lh-l € HflM = E. So 

xhx-lh-l = e, or in other words, h ECG(~)£ M, a cOntra

dication. Therefore HnHx = E for XE G-H. 
' I 
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Conversely, suppose that G = MH, MnH = E and HrlHx = E 
,,,~ ..... 

• • for all x 

conjugate of 

in G-H. First, suppose that ye M 1s 1.n a 

H41. Then y = x -lhx for some h in Hf/ 

and some X in G. Suppose x = h1m1 where h1 EH and 

-lhh M Th f h1-l hh
1 

e M. Y = m1 1m1 e • ere ore 

H# and we have a contradiction. 

m1 e M. Then 

-1 But h1 hh1 € 

only contains elements not in any conjugate of 

Thus M 

H41; that 

is, Mi G - U g-lH#g. By a similar argument as in the, 
gEG 

proof of Theorem 2.2, o( U g- 1H41g) = (o{H)-l)(G:H} = o(G) 
gtG 

- (G:H). 

Thus M 

H4f. By 

G. Let 

element 

Therefore o(G - U g-1H41g) = o(G:H) = o(M). 
geG 

contains all the elements not in any conjugate 

Theorem 2.1 the set M • a normal subgroup of 1.S 

M11 and suppose that CG(x) £ M. There • X € l.S 

y f e • CG(x) which is in some conjugate of in 

of 

an 

H. Therefore -1 = X and also y e Hhlm = Hm for some y xy 

h' H and m e M. Thus -1 
for some h • H11 € y = m hm 1n 

and so -1 -1 -1 (m h m)x(m hm) = X which tells us that 

-1 -1 -1 h (mxm ) h = mxm • 

.-
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= mxm-l If we let z e M11 
' he CG(z) and h = zhz-1• 

Therefore, HnHz f E, a contradiction. So CG(x) £ M for 

M1F, 
. . 

all x e and G • a Frobenius group with Frobenius l.S 

kernel M. II 
2.10 Theorem. G is a Frobenius group with Frobenius 

kernel M iff these are integers m > 1 and n > 1 with 

gcd{m,n) = 1 such that o(G) = mn, o(M) = m, M ~ G, and 

if g e G then either gm= e or gn = e, and also 

M = {g Jgm = e} . 

Proof: 

Suppose G is Frobenius with Frobenius kernel M. 

We know that M is a Hall subgroup of G, and therefore, 

if m = o(M) and [G:M] = n, then m > 1, n > 1, o(G) = mn 

and gcd(m, n) - 1. Since M 6. G and -
of order m, M = {glgm = e} • Let g 
n = e. Then (gn)m = e and n g so .g 

g e CG(gn) C M. Therefore gm·=· .. .e. -
Conversely, suppose M ls G_, --o (G.) 

• a Hall subgroup l.S 

E 

€ G 

M11. 

= mn 
' 

and suppose 

By assumption, 

o(M) 7 m, 

gcd(m,n) = 1, m > 1 and n > 1, g e G implies gm= e or 

gn = e and also M = {g jgm = e} . M is obviously a normal 

»~11 subgroup of G. By Schur's Splitting Theorem, there 

is·~ complement H of M. H is also a Hall subgroup of 

G of order n. Suppose there is a g in G-H such that 

HnHg f E. Since G = MH, we can assume that g EM#. 

HnHg f E, there is an h E H11 such that ghg-l E H 

~ . ~1.nce 

and so 

u 

1 
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S. MAG h -lh-l M d ghg-lh-l ince il , g g . e an so 

e HnM = E. Therefore, gh =hg. Let o(h) = n, and o(g) = m. 

Where n1ln and m1 Jm. Since (mlnl) - 1, o(hg) = mlnl. -
By our assumption, n -1 - 1 or ml = 1 and so h = e or g = e 

a contradiction. Thus HnHg = E for g E G-H and by 
.. 

'I 
G • Frobenius with kernel II Theorem 2.9, 1S M. 

Q The following theorem allows us to use inductive methods 

in our study of the properties of Frobenius groups. 

2.11 Theorem. Let G be a Frobenius group with 

Frobenius kernel M and let H be a complement of M. 

Then 

(i) E f H1 ( H implies H1M is Frobenius with 

kernel M, 

(ii) E f K < M and K ~ G implies G/K is Frobenius 

with Frobenius kernel M/K, and 

(iii) E f K M, E f H1 £ H, H1 

is Frobenius with Frobenius kernel K. 

Proof: 

(i) Since M ~ G and H1 < G = NG(M), (i) is true if 

(iii) is true. 

(ii) Since K ~ G and E = K < M ~ G, E ( M/K ~ G/K. 

By Theorem 2.9, we know that if o{M) = m, then 

there is a positive integer n > 1 such that 

o{G) = mn and gcd(m,n) = 1. Suppose o{K) = q. 

Then o{M) =qr= m for some integer r > 1, and 

--, -----.-~...-......-....--...,-. ·-- .r•-,- -~-- -- ·~ - . 

, 



... ··~~,.. .... , 

.. 

gcd(r,n) = 1. Notice that o(G/K) = rm an.d 

o(M/K) = r. Since M is a normal Hall subgroup 

of G, M/K is a normal Hall subgroup of G/K 

of order r. Thus M/K = {g: gr= e}. By 

25' 

the same argument as in the first part of Theorem 

2. 10, g € G/K implies gr = e or g0 = e. Thus 

G/K is Frobenius with Frobenius kernel M/K. 
(iii) H1K is a subgroup of G. Suppose x ~ K# CM#. 

',i
1 
K (x) .£ CG (x) M. The ref ore, <,i

1 
K (x) £ MOH1 K. 

Suppose y E H1KnM. Then y E H1K. Since 

H10M HOM= E, y Ek and so H1KllM £ K. Suppose 

ye K. Then ye M and ye e•K and· so y E H1knM. 

Thus, H1 KllM = K. Therefore 
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CHAPTER III 

Frobenius Groups and Frobenius Kernels: Properties 

3.1 Theorem. If G is a Frobenius group, then there 
is a Frobenius subgroup B with an elementary abelian 

.p-group K for a Frobenius kernel (pa prime) and a comple
ment L of K of prime order. 

Proof: 

Without loss of generality we can assume that G has 
no proper Frobenius subgroup. Therefore, we must show that 
G satisfies the conditions of B • the theorem. in 

Let M be a Frobenius kernel of G with complement 

H. If E <A< H, then by Theorem 2. 11, MA • 
1.S a proper 

Frobenius subgroup of G. Thus H • of prime order. 1.S 

Suppose E j= Pe Syl(M). Then G = N(P)M. Since H 
has prime order, o(H)[o(N(P)). Therefore, since He Syl(G), 
some conjugate of H, say H1, is contained in N(P). H1 

-. is again a complement of 

Frobenius and therefore 

a p-group for some prime 

M. By Theorem 2.11 • • • 
1.1.1., • 

l.S 

PH1 = G 

p. If 

and P = M; that is, M 

M has a characteristic 

• 
1.S 

subgroup Q f E, then Q ~ G and again by Theorem 2 •. 11, QR 
would be Frobenius and M = Q. Thus M is characteristically 
simple. Since Z(M) is a non-E characteristic subgroup of 
M, M = Z(M). Now, the set of all elements of M of order .. •·(''' 

1 or p form a non-E characteristic subgroup of M and 
therefore is M. Thus M is an e--rementary abelian p-group 
as desired. // 

! 
\C 
i 

' 
'. 
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kernel 
3.2 Theorem. If G is a Frobenius group with Frobenius 

M, and A~ G, then either 
AC M. or MC A. - -Proof: 

• 

in A-M. Then CG(x)OM = E, for otherwise x EM, a contra

diction. It follows that o(CG(x)){o(H) and so that 

o(M) = [G:H] Jo(ct(x)) where ct(x) is the set of conjugates 

of x in G. Since ct(x) £ A, o(M)Jo(A). But M is a 

Let H be a complement of M, and suppose that x 
1S 

normal Hall subgroup of G and therefore every Sylow p-sub

group of A such that pfo(M) is contained in M. Hence 
M £ A. II 

3.3 Theorem. If c· is a Frobenius group with Frobenius 

kernel M, and if H is a complement of M, then H does 

not contain a Frobenius group. 

Proof: 

By way of contradiction, assume G is a group of 

minimal order which makes the theorem false. Thus H 

itself is a Frobenius group with no proper Frobenius sub

groups, for if there was a proper Frobenius subgroup H1 

of H, then H'M would be a smaller counterexample. By 

Theorem 3.1, H has an elementary abelian Frobenius kernel 

Q with a complement K of prime order. 

Let E <Pe Syl(M). So G = MN(P). Thus o(H)fo(N(P)). 

Also since M ~ G, N(P)OM ~ N(P). Since H G/M = MN(P)/M 

N{P)/N(P)flM, N(P)OM E Hall (N{P)). By Schur's Splitting 

r 
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theorem, there is a subgroup S of-~ such that N(P) = 

(N(P)f1M)S and (N(P)f1M)ns = E. Notice that S ~ N(P)/N(P)nM 
and therefore S ~ H, and MS = G. Since S I N(P), PS • 1S 

a subgroup of G. By Theorem 2.ll(iii) PS is Frobenius 

with Frobeni11s kernel P, and also S ~ H is a Frobenius 

group. By our assumption G = PS. Therefore, M = P; that 

is, M for some prime p. As in the proof 
• 1S a p-group 

of Theorem 3.1, M is characteristically simple and there

fore is an elementary abelian p-group. Moreover, if M' 

is a non-E proper subgroup of M such that M1 ~ G, M'H < MH 

which is impossible by our assumption. Thus M is a minimal, 

normal, non-E subgroup of G. 

M is a vector space over the field of integers 

mod p, (JP). Consider the map A: H ~ LJ (M) where m(hA) --p 
h-lm h E M. A • J linear representation of G. 1S ·a 

p 

Suppose h € H and m(hA) = h-lmh = m for all • m 1n 

M. Then h e CG (M) £ M and so h = e. Thus A is faithful. 

Suppose M has a JP submodule Ml which is invariant 

under A. Then h- 1M1h S M' for all h • H, and 1n so 

H c N(M'). Since M S N(M') also, HM = G C - N(M 1
). Thus, 

G = N(M') which tells us that M' ~ G. Thus M' - {e} - or 

M and therefore A is irreducible. 

We now know that A is a faithful, irreducible repre

sentation of H over JP with representation space M. 

By Theorem 1.14 there is a finite field extension F of JP 



r· ... 

_.;•, 

--,,,. 

such that A is a direct sum of absolutely irreducible 

representations of H over F. Let B be one of these 

absolutely irreducible representations and let V be the 

vector space being operated upon; that is, B: H -1F(V) 

is absolutely irreducible. We will say an element h of 

H acts on V to mean that hB • 1.s an F-linear transfer-

mation of V and sometimes will denote its acting on v 

by vh. Consider B/Q. WLOO, we have chose F large 

enough such that V = v1+ •.. +Vn where each Vi is an 

irreducible Q-space. By Theorem 1.15, dimQ(Vi) = 1. 

Therefore xB is a scalar on each v. 
l. 

for every X € Q. 
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Suppose by combining the V. Is 
]_ 

properly, we get V = w1+ ... 

+wr 
-;, 

where each w W. 
l. 

is a maximal subspace such that xB 

is scalar on W. for all x in Q. Recall, K is of 
]_ 

prime order and hence cyel~c. 

and x e Q,. 

Suppose 

-1 vyx = vyxy y 

K = <Y>, V € w. 
l. 

= [v((yxy-1))B)]y 

'\. _.,,,,,.,, = cvy 

• since yxy-l e Q and thus acts on v as a scalar. Also 

• 
€ Wiy' xB/Wiy • scalar. Thus W.y C w. for since vy is l. - J 

• Suppose W.y < W .. Then, Vy< V which is some J. l. J ' .. 

impossible • yl3 • invertible . Thus W.y = w .. s 1.nce l.S 1 J 

Suppose s • the linear span of this set. Since s • 
l.S l.S 

i 
; 
\ 

i 
,, 

' 

l 
I 

,I 
I 

,1 
I 

I 

I 
I ·, 

:.1 
I 

I 

I 



invariant under y and Q, and since H = <y,Q>, S • l.S 

invariant under H. But V is irreducible under H and 

so V = S. Also no two members of are the same since 

K is of prime order. 
r-1 +w.y . 

1 

Suppose 1ft w € w . . 
1 

Thus s = r and V = W. + W. y+. • • 
1. 1 

r-1 Then v = w + wy+ ... +wy • 
1S· 

invariant under y and is non zero. Thus v(yB) = v, 

and yB has 1 as one of its characteristic values. 

Therefore every B in the characterization of A as a 

direct sum of absolutely irreducible representations has 

1 as a characteristic value of yB. Therefore yA has 

30 

a characteristic value of 1. So there is a characteristic 

vector 
. fl 

z e M of yA such that z(yA) = z or -1 z = y zy. 

Thus ye C(z) 1 M, a contradiction. Therefore the theorem 

is proved. // 

3. 4 Theorem. 

kernel. 

A Frobenius group has a unique Frobenius 

Proof: 

By way of contradiction, suppose G is a Frobenius 

group with two distinct Frobenius kernels M and M'. 

By Theorem 3.2 we can suppose that M < M1
• Let H be a 

complement of M. Therefore M' = MK, where K = HnM' ~ H 

and E < K ( H. 

Suppose x EK#. Since x EM' and M1 is a Frobenius 

kernel of G, 

fore ~(x) 

CH(x) CG(x) £ M'. Also 

HnM' = K for x e K#. But 

H. There

K is normal in 

-

. ! 
i 

I 

. I 

~I 

, 1 

1' 
I 

'I 

I 

I 
I 

f ,. I . 
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H and so H is Frobenius with Frobenius kernel K. This 

contradicts Theorem 3.3 and therefore a Frobenius group has 

a unique Frobenius kernel. ·;; 

Before proving that Frobenius kernels are nilpotent, 

it is necessary to define a Thompson subgroup and to state 

a nontrivial result concerning it. 

Let P be a p-group. If A is an abelian subgroup 

of P, let m(A) be the minimum number of generators of 

A and d(P) be the maximum of m(A) over all abelian sub

groups A of P. The Thompson Subgroup of P, denoted by 

T(P), is the subgroup of P generated by all abelian sub

groups A of P with m(A) = d(P). T(P) is clearly 

characteristic in P. 

3.5 Theorem. (Thompson) Let p be an odd prime and 

Gp be a Sylow p-subgroup of G. If CG(Z(Gp)) and 

NG(T(Gp)) have normal p-complements, then G has a 

normal p-complement. 

. --

3.6 Theorem. (Thompson) Frobenius Kernels are nilpotent. 

Proof: 

Suppose G is a Frobenius group with Frobenius kernel 

M. The proof will be by induction on the order cf ~ v. 

Without loss of generality, by Theorem 2.11, we may assume 

that G = MH, where o(H) = p, a prime. 

Suppose Z(M) f E. If Z(M) = M, then M is certainly 

nilpotent. If Z(M) f M, then Z(M) ~ G and by Theorem 2.11 

.~: 

11 

I 
:1 
:1 

.. I 

:11 

·' 

' -~ 
I 
I 

a 

'.)! ·, 
·, 



G/Z(M) is Frobenius with Frobenius kernel M/Z{M). The 
induction hypothesis then tells us that M/Z(M) is nil
potent. Therefore M is nilpotent. 

If Z(M) = E, then M is not nilpotent. Therefore, 
there is normal q-complement. Suppose first that q f 2. 
Recall that pt o(M) and H permutes the Sylow q-sub
groups of M by conjugation. Since the number of Sylow 

q-subgroups of M divides o(M), and thus is relatively 
prime to p, there is a Sylow q-subgroup Q of M which 
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is normalized by H. Let Q
0 

= Z(Q) or T(Q) so that Q 
0 

is characteristic in Q and hence normalized by H. Suppose 

Suppose q I = hq h -1 q' • • 
Qo 

• H normalizes 1S 1.n since 0 0 • 0 

Qo. If we let q '' 
-1 then q" • • 

Qo 
• = n q 1n l.S l.Il since 0 0 ·' 0 

~(Qo). Finally, h -lq"h • • Q • 
l\i(Qo). 

n E 18 1n since n E 0 0 

Therefore h-ln-1hq h-1nh e 
0 Qo, and. so, h-lnh E t\i(Qo). 

Thus H normalizes l\i(Q
0

) 

Suppose Q
0 

= T(Q). Then by Theorem 2.11 iii, 

K = H~(T(Q)) 

l\i{T(Q)). If 

also normalizes 

is a Frobenius group with Frobenius kernel 

~(T(Q)) = M, then T{Q) ~ M. Since H 

T(Q), T(Q) ~ G. Now suppose that t\i(T(Q)) < M. 
By the induction hypothesis, l\i(T{Q)) is nilpotent and 
therefore has a normal q-complement. By Theorem 3.5, 

• 
; .I. ~ 

·, 

,( ,. ,, 
I 

I 
l 

i 

1\ 

1' 

,, , ,. 
1· 
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~(Z(Q)) does not have a normal q-complement and thus is 

not nilpotent. This implies that ~(Z(Q)) is not nil

pote~t. Recall that H-~(Z(Q)) is Frobenius. Therefore 

~(Z(Q)) = M and thus Z(Q) ~ M. Since H normalizes 

Z(Q), Z(Q) ~ G. 
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Suppose that we cannot find and odd q to satisfy our 

we will show that M has a normal Sylow 2-
a a 

requirements; 

subgroup R. 

complement of 

If O(M) = 2ap1
1 ... prr' let P. be a norm.al 

a al ai-1 ai+l ar 
pi. Since o(Pi) = 2 Pi ... pi-l Pi+l ···Pr, 

r 
. 01 p. = R • a normal subgroup of M of order 2a and 1S 
1- 1 

• a normal Sylow 2-subgroup of M • Since R • also SO 1S 1S 

characteristic • M, .R ~ G and therefore Z(R) and T(R) 1n 

characteristic • R and hence normal • G. are 1n in 

In any case, we have a non-E normal subgroup of G o·f 

order power of q contained in M. Let's call it Q o· 
Z(Q

0
) and CG(Z(Q

0 )) are normal in G. Since M is the 

Frobenius kernel of G and Z(Q) 
0 

If G acts on Z(Q) by conjugation, the kernel of this 

action is CG(Z(Q
0 )) and so G/CG(Z(Q0 )) acts faithfully 

on Z(Q
0
). Suppose h = hCG(Z(Q

0
)) E G/CG(Z(Q

0
)) where 

h EH#. Then ii has order p and when acting on Z(Q) 

of order a power of q (where (p,q) = 1), induces an 

automorphism on Z(Q) of order p. -Thus h fixes a 
-non-identity element; that is, h centralizes an element 

M. 

·~ 

. ~ ·~ 

v of Z(Q) 11 .- In other words, h E CG(v) M, a contradication. 

·-

I 

I 

'J 

. I 

I 
I 
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CHAPTER IV " . 

Frobenius Groups and Frobenius Kernels: Applications 

Before presenting a major result in character theory 

dealing with Frobenius groups and their kernels, the follow

ing lemma must be proved. 

4.1 Lemma. Suppose S is a finite indexing set and 

D is a nonsingular S X S matrix. If G is a group of · 

permutations of S)( S such that g e G implies that 

there are gR and gc e Sym(S) such that for every 

(i,j), D((i,j)g) = D(igR,j) = D(i,jgc), then 

(i) GR= {gR~.g E G} is a group and similarly for 

G c = {gc I g E G} ' 
(ii) the number of orbits of GR equals the number 

of orbits of Ge, and 

(iii) if G is cyclic, then Ch(G ) . 
C 

Proof: 

Suppose we are given g e Sym(SX S) and two distinct 

gR and gR satisfying the above equality. Then the two 

rows igR and igR of D where igR f igR are equal 

which contradicts the fact that D • nonsingular. Simi-1S 

larly, there • • 1S a unique gc for any g e G . 

Suppose A(g) • the S XS permutation matrix l.S car-

responding to gR and then D = A(g)D. g Then, 



Since D 

.•. . ------· 

A(gh)D = Dgh 

=(Dg)h~1 

= (A(g)D)h 

= A(h)A(g)D 

is nonsingular, A(gh) = .. A(h)A(g). 
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• since Then, 

the function which maps a permutation onto the corresponding 

permutation matrix is one-to-one and reverses products, 

GR is a group. Moreover, the mapping g -AT(g) • 1S a 

representation of G. For later use, suppose this repre

sentation of G has character X. Similarly, one finds 

that if B(g) is the permutation matrix corresponding to 

gc and so Dg = DB(g), then G 
C 

is a group and the map 

g ~B(g) is a representation of G. Suppose the character 

of this representation is Y. 

By assumption A(g)D = DB(g). Thus A(g) is similar 

to B(g). Therefore, Tr(AT(g)) = Tr(B(g)) and so X(g) = 

Y(g) for all g. Since X(g) = Ch(gR), Zg in GX(g) = 

o(GR) (the number of orbits of GR). Similarly, since 

Y(g) = Ch(gc)' Zg in GY(g) = o(Gc) (the number of orbits 

of Ge). Thus (ii) holds, because o(Gc) = o(G) = ~(GR). 

Finally, suppose G is cyclic. Then G = (g> and 

so, GR = <gR? and Ge = (gc>· Thus Ch(GR) = Ch(gR) 

= X(g) 

= Y(g) 

• = Ch(G ) • II C 
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4.2 Theorem. If G is a Frobenius group with Frobenius 

kernel M, Y- is an irreducible character of M other than 

the principal character, and X is an irreducible character 

of G, then 

(i) Y* is an irreducible character of G, and 

(ii) either M C Ker (X} or X = W* for some -
irreducible character W of M. 

Proof: 

• • Suppose H 1S a complement of M in G. For X e H 
-1 

• define T • M ~M by mT = X Recall that T mx. 1S X • X X 

an automorphism of M. Let {cj };=1 be the conjugate 
r {e} classes of M with cl - and {yjh=l be the set of -

irreducible characters of M with yl the principal 

character. Finally, let D. be an irreducible representat:bon 1 

of M with character y .. 
1. 

If µ. 
J 

(*) 

Now suppose 

is a representative of C., then 
J 

X -1 
Tr(µ.D.) = Tr(x µjx)D.) = Tr(µ. (TxD.) 

J 1. 1. J 1 

in H. 

X is in H. We observe that TD. 
X 1 

for x. 

• is an 

irreducible representation of M. Also, suppose xA • l.S 

the permutation of {1, .. ,,r} such that Cj(xB) = cj = 
C.T. By(*), Y.( A)(C.) = Tr(C.(T D.) = Tr(C.( B)D.) ~ J X l. X J J X 1 J X 1 

Yi(Cj(xB)). Consider the character matrix R where the 

(i,j)-th element is-- Y.(C.}. 
1. J 

_. 

R is nonsingular, and if 
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we define (i,j)x = (i,j(xB)) for x in H, then R(i,j)x) 

= R(i,j(xB)), and the hypothesis of Lemma 4.1 is satisfied. 

Suppose (BWOC) x E H
1, Cj f {e} and cj = cj. Then 

there is a y EC. and a z EM such that x-1yx = z-1yz. 
I. J 

In other words, zx-1yxz-l = y, or xz-l € C(y) £ M, which 

implies X € M, a contradiction. Therefore, CJ: f C. for 
JI 

cj f {e} . J J 
all • when Thus Ch(xB) = 1 if X 1n 

H1f. H1f. By Lemma 4. 1, Ch(xA) = 1 for all • rn· X € X in 

fact, xA fixes • I 
1. if and only if y • I 

1. 
is the principal 

character. Since 

let Y(xA) denote 

D. 

y = Y. 
1.0 

for some 

and we .will denote D. by 
10 

Suppose Y(xA) = Y(yA) for x, y € H. Then i
0

(xA) 

= i (yA) 
0 

and so -1 i (y xA) 
0 

• = 1 
0 

where i ~ 2. 
0 

Thus 

x = y, and so if x and y are distinct elements of H, 

Y(xA) f Y(yA) and (Y(xA), Y(yA) = O. 

Recall that G = U{Mx!,x EH}. Therefore, for z 

M we have 

Y*(z) = l Y(x -lzx) 

xeH 

\ -1 = L Y(x zx) 
xeH 

• im 

i 



I Y(xA). 

XEH 

= I tr(z(TxD}} 
xeH 

= I (Y(xA} (z)) 

xeH 

= ( I Y(xA)) (z)) 

X€H 

\ 'v 1 
y in G-M, Y*(y) = L Y(x - yx) = 0 Thus Y*/M 

X€H 

Therefore, 

(Y*, Y*)G = oZG) I Y*(y)Y*(y -1) 

yEG 

= otG) I Y*(y)Y*(y-1) 

yEM 

- l ) \ \ Y(xA) (y) • (uA} (y-l) - o{G) L-J L L 
yEM XEH ueH 
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( I Y(xA) (y)·Y(uA) (y-1)) 

YEM 

= ~~g~ I I (Y(xA), Y(uA}) 
xeH UEH 

=~ I 1 
XEH 

:/ 



- ;,_..;......---.:i;-... ~ ....... - ................... ....-_.... 

= o{Mt·o(H) = l 
o G) 

Therefore Y* ·is irreducible. 
r 

) 
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Suppose X/M = l 
i=l 

a. y .• 
1 1 

If some ai f O, where· i ~ 2, 

* then by the reciprocity theorem (Yi,X) = ai /= 0 and there-

fore * * and irreducib.le. Y. = X • Y. X are both If since 
1 l. 

- 0 for all • 
~ 2, then X/M = a1Y1 and X(x) a. - 1 - a 

1 - 1 

= X(e) for all X € M. Hence M 1 J(er(X). II 

4.3 Corollary. If G is Frobenius with Frobenius 

kernel M, H • a complement of M, X • an irreducible l.S l.S 

character of G, M C Ker X and y • the character of l.S -
the regular representation of H, then X/H = nY. 

Proof: 

By the theorem there • irreducible character u l.S an 

of M such that X = U*. We note that U*{x) = l Uch-1xh) = 0 

he;H 

fol' .• :,c• € Hiff and als·o that U*(e) = l lJ(g -leg) =· l D(e) 

geH ge;H 

= l U(e) = o(H)U(e) = U{e)Y(e). Thus, 

geH 

U(e)Y(e) if y = e and 
X.(y) = U*(y) = 

0 if y € i 1 . 

. Therefore, X/H = -nY where n = U(e) is a positive integer. / I · 
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4.4 Lemma. If G is a noncyclic group of order pq 

and p and q are primes with p ( q, then G • l.S a 

Frobenius group
1
with Frobenius kernel ME Sylq(G) and a 

complement 

Proof: 

He Syl (G). p 

Let M be a Sylow q-subgroup of G. Since the number 

of Sylow q-subgroups of G • the form 1 + kq, with k> 1.S 

which must divide p, M • the only Sylow q-subgroup of G 1.S 

and hence is normal • G. Let be in MfF. Since M in X 

is of order q and is thus abelian, M .£ CG(x). If 

CG(x) = G, then x and hence M is contained in Z(G) 
in which case G/M i~ cyclic with M £ Z(G) which is 

impossible in a non-abelian group. So M = CG(x) and 

therefore G is Frobenius with kernel M. Also, a comple

ment H of M in G is of order [G: M] = p and thus 

is in Syl (G). // p 

4.5 Theorem. If G is Frobenius with Frobenius 

kernel M, H is a complement of M, and p and q are 

distinct primes, then any subgroup of ll of order p2 

or pq is cyclic. 

Then 

Proof: 

Suppose G 
2 o(H) = p 

is a counterexample of minimal order.· 

or pq and M is a minimal normal sub-

group of G (see Theorem 2.11). If o(H) = pq, then 

since H is not cyclic, it is Frobenius (see Lemma 4.4) 

o, 

Ii 
I. 

i1 
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which '"contradicts Theorem 3. 3. Hence H is an abelian 

noncyclic group of order 2 p • As in the proof of Theorem 

3.1, M is an elementary abelian r-group, where • r is a 

prime. Again as in Theorem 3al there is an irreducible 

representation A of H over Jr the field with r 

elements) with M as the Jr-space. By Theorems 1.14 and 

1.15 there is a finite extension field F of 3 r over 

which A is the direct sum of one dimensional representa

tions. Therefore each matrix A(h) is a diagonal matrix 

over F. 

Since each element h of H has order dividing p, 

the entries of A(h} on the diagonal are pth roots of 

unity • in 

unity • in 

x, y € H 

Thus the 

F. Since there are at most p pth roots of 

F and o(H} = p2, there are distinct elements 

with the top row of A(x) and A(y) 

diagonal matrix A(xy-1) over F has 

the same. 

1 • in 

the top row, and hence 1 is ·a characteristic value. 

Therefore the linear representation -1 A(xy ) over 

has characteristic value 1. In other words, xy-l 

centralizes an element of M#, a contradiction. 

• in 

II 
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4.6 Theorem. If G is Frobenius with kernel M and 

complement H and E < P € Sylp(H), then 

(i) pf 2 implies P is cyclic and 

(ii) p = 2 implies P is cyclic or a generalized 

quarternion. 



.. 

42 
. ---,.. 

Proof:· 

By Theorem 4.5 P contains no noncyclic subgroup of 

order p2• There is a subgroup K co~tained in the center 

of P with o(K) = p. If p contains another subgroup 

L of order p, then KL is a noncyclic group of order 2 
p ' 

a contradiction. Hence P has just one subgroup of order 

p. Therefore, by a classic result P is cyclic or is a 

generalized quarternion. // 

4. 7 Theorem. If G is a Frobenius group with Frobenius 

kernel M and [G: M] is even, then M is abelian. 

Proof: 

Since a complement H of M has an element of order 

2, there is an automorphism J of M of order 2. Since 

no element in H# centralizes an element of M#, J has 
-1 -1 no fixed points but e. Suppose h1 (h1J) = h2 (h2J) for 

. -1 -1 h 1,h2 1.n M. Then, h2h1 = {h2h 1 )J. Thus h 1 = h2. 

-rherefore, there are o(M) distinct elements of the form 

h-l(hJ) in M, and so for g EM, g = h-1 (hJ) for some 

h EM. Thus gJ = (h-1(hJ))J = (h-1J)h = g-1. Therefore, 

glg2 = (g21
gi:1>J 

= (g21J) (gilJ) 

( 
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Appendix: Notation 

A B 

(BWOC) 

CG{H),C{H) 

Ch 

char(F) 

[G: H] 

gcd(m,n) 

H~G 

Hallp(G) 

Hall(G) 

~x n(F) 

NG(H),N(H) 

o(G) 

R/G 

Sylp (G) 

Syl(G) 

Tr 

u 
Wlog 

z 

Z(G) 

• ·_r 

A implies B 

By way of contradiction 

Centralizer of H in G 

Character of a permutation or a group of permutations 

Characteristic of the field F 

Index of H in G 

Greatest common divisor of m: and n 

H is a normal subgroup of G 

Set of Hall P-subgroups of G 

Set of Hall P-subgroups for some set P of primes 

Ring of linear transformations of the vector space V over the field F 

Ring of nX n matrices over ·F 

Normalizer of H in G 

Order of G 

Map R restricted to G, 

Set of Sylow p-subgroups of· G

Set of Sylow subgroups of G. 

Trace 

Disjoint union 

Without loss of generality 

Ring of integers 

Center of F 
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