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INTERACTION OF AfNON-LINEAR GRAVITY WAVE

AITH SHEAR FLOWSy CONTAINING A VORTEX LAYER

by?

Kai-Nan An

Abstract

Thefnteraction‘of.a-large amplitude PrdgTBSSihg wave
é.'With a piecewise lineaf shear flow is"des¢rib§dj" Itris:
assumed that a gravity wave propagates over a horizontal
bed into a region of uniforn depth.h‘In the undisturbed~
,reglen ahead of the wave the veloc1ty is at rest for a -
- fixed dlstance from the bottom then 1ncreases rapidly in

a thin layer of’ constagt but 1arge,yort1c1ty'to a un;form

value which it retains up to the free surface.. e

iNO'restriction'is placed on the magnitude of'the
dlsturbance, so the governlng equatlons are non- 11near
The only assumptlons are those of classical shallow water
-

theory, 1.e., that the fluid is 1nV1sc1d and that the“

hydrostatlc pressure law may be used
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Abstract

The interaction of a large amplitude progressing wave
with a piecewise linear shear.flow 1s described. .It is
assumed that a gravity wave propagates over a horiiantal

/ bed into a region of uniform depth. 1In the'undistufbed
region ahead,of'the~ane the velocity 1s at rest for a

fixed distance from the bottom, then increases .rapidly in

7

-y

a thin layer of constant but large vorticity to a uniform

value which it retains up to the free surface.

No restriction is Placedonthé magnitude of the
Tdistuernce, SO the.governing~équélions are non-linear.
~ The only assumptions érgpthOSe oﬁ;classical Shaiiow water
- the0¥y; i.e., that fhe—ﬁluiﬁiis inviscid and thai the

\ hydrostatic pressure law may be used. | ﬁ
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I. Intgroduction

In a recent report, Blythe, Kazakia and‘Varley [1]
have shown how to analyze the behavior of gravity waves
propagating into a region where the flow is sheared in a
vertical direction. No restriction was placed on the
amplitude of the wave, the only assumption;\being those of
classical shallow water theory. That is, the fluid is\

’ taken tO*beTinViscid, and the pressure is:givenfbyﬁthe
hYdroStatic preseure law.

The theory was applied by the authors to a number of
5SpéCific.pfoblemS~involving ambient sheer'prafilesofa
simple nature in order to illustrate the specialfeatures
present in these flows. In this paper the.method;is.

:appliedﬁt@'a more complexshear'profile; Chosén.becagig 1t
- models Certaineflqwé of interest which:occur‘in;the'h.

atmosphere. :

It is assumed that a graV1ty wave 1is prOpagatlng over

a horlzontal bed into a region of uniform depth . In the

undlsturhed reglon-ahéad'df the wave‘the_velocity~is at
trest.for'fixed.diStance'from the bottom, then ihcreases
rapldlyﬁln a thin layer of censtant but 1arge'vort1c1ty, to
a unlform value whleh 1t retains up to the free surface.

' ‘This shear profile is illustrated in figure (V.

~ The flow which results when- the wave interacts with

this'shearprofile should provide a quelitativecdescription




of a pressure front in the atmosphere propagaﬁing into a
region where two masses of air moving at uniform but dif-

ferent velocities are separated by a thin layer of high

vorticity.

In the next section the theory of Blythe, Kazakia and
Varley will be briefly outlined for the two dimensional
case only. For the details the original report should be

consulted.

!




2. Theory of gravity waves on shear flows

“We consider the two dimensional motion of fluid bound-
ed from below by the plane y=0. and above by the free
surface y=H(x) , where (x,y) are the axes of a Cartesian
coordinate system, and 'H(x) is.the depth of the fluid.
The basic assumption of the theory is-that the fluid momen-

r‘tum in the y direction can bernB8lected so that the fluid
pressure is given by the hydrostatic pressure law. This is

| . I | L *,
the well-known shallow water theory of water waves.

The. equations governing the motion are the continuity

equation

(2.1)

the momentum equation in the horizontal plane

T o3x . be (2.2)

~ and the pressure law

‘where the pressure p, at the free surface 1is' assumed

~constant. Here u and v are the components of fluid.

-

=3

velocity in the x and vy directions respectively, p.jiS
the fluid density, assumed constant, and g is the accel-

eration dﬁeﬁtq,graVityk  Ihe§e equationS-must be solved

—4-




by

subject to the boundary conditions that

(2.4)

We are interested in describing the behavior of a large
amplitude plane wave propagation in a direction of increas-
ing x 1into a region of constant depth in which there is

a specified shear flow. We therefore take as initial con-

ditions that -

at t =0 x > 0 ¢ LH‘=@HO-,

o

N

s
i

W‘:%_‘f

1

The behavibrbf'theiwave is therefore described in terms
-ﬂflthe*ambient shear flow and the elevation of the free
surface at some initial timea'

 The;essen£ia1 feature in the solﬁtiqn of this problem
is the realization that there exist, as natural extensions
to the simﬁle"waves4ofthe classical fheory,tsimilafity
Sélutions which@escribe pngressing‘anes. In fermsof'

the"independeﬁt variaﬁles\«(i,z,t) , Where z 1s defined .

“and the dependent'variables“(u5w;H):,fWhere:iw< is defined




(2.7)

g
i
S

these solutions have the forms
u = U(H,z)

(2.8)
w = %g-W(H,z}

The elevation of the free surface, H(x,t) , is determined

trom the initial profile fﬁ(X) by the simple wave relation

= H(a)

Il

S“bStitutingthese&simila?ity forms (2.8) into the
~governing equations yields a set of relations for the deter-
mination of the wave speed c(H) “and the fluid velocities
“U(H?Zj » W(H;z) ‘in térms~of'the”émbient sheériflow@ USing
as independent variables (H,y) instead of (H,2) , where
Y is constant at a“PaTticle,aﬂdﬁi¢~:;y%H; when H%HQ ,
z“fhe hOriZ0nta1,¢0mpdnﬁnt“o£‘fluid,VélOcity relative to the
local wave épeed,' . | -

[

Y o f e S
is related to c(H) by the equation ' .

0 Oggrlera g = 0 (2.11)




and the condition that at fixed H . |

1 47 .
30 dy  _ H- |
| Wty - (2-12)

0

* Equations'(z.ll) and (2.12) are solved subject to the

boundary condition that

when H=H : 0= u, (V) - c (2.13)

where ¢ = c(H,) 1is determined from

gHo

L dy o P
L —— = 1 . 2.14)
f:o [uo (V) - C, ]2 | L. 14)

Wheﬁ U(H,¥) and c(H) have been determined, the

'vertigéi_height of the particle, y at a point where the

height of the free surface is H is given by

(V20 dy U

and the vertical component of fluid velocity is given by

ax U f@U 2»a¢=ug(w)‘ 52-16)(

-~

For the details Qf tHe derivation of these results

the reader is referred to [1]. | ~




3. Interaction of a progressing wave with a shear flow

containing a thin vortex layer

We turn now to the solution of the eduations obtained

in the last section for the case when the ambient shear

flow is given by

uo (v) = (IIJ"I') r<y<r+eg (31)

= M~ o

/

as normalized with respect to UY¥ , the velocity at the

free surface in the undisturbed shear flow. Also, all

distances are normalized with respect to H , the height

of free surface in the UﬂdiStUTbEd.regiOnd
When the ambient shear profile (3.1) is used in equation
(2.14), we obtain for the wave speed at the front

'C§<2c0r-¢§8+r' g

F2 = = 2 0
| .cg(l,cb)z

where

- uE-

A
L
(gHy) .

F =

is the Froude number of the shear flow.
In order to apply the formulae obtained in section' 2,
/’,JWe assume that the ambient velocity profile has the form

.H( ”v - -8-




[ eV 0<y<r
s, (¥) ={ e,;r+ I (y-1) or<y<rre (3.3)

e, T+ 1 ¢ ez(w-r-e) r+e<y<l

and then take the 1limit €1+0 , ez+0 . It can be seen

immediately from (2.15) that if the ambient shear profile

1s plecewise linear, so that UJ(W) 1s pliecewise constant,

the horizontal velocity profile in the wave will also be

piecewise linear. It also follows that the interfaceswhich

separates these different regions will be stream surfaces.
In this case they correspond to y=r and yY=r+e

If y = I,(H) dnd y =1 (H) denote the height of
the interfacesf&t a location where the free surface eleva-
tion is H , and 1f‘** U H) , U (H) fJI (H) and GI . (H) -
denote the values of U at the frge.surface, theibOttOmf

andltheutWO*interiaces, respectively, then it follows

immediétEIY‘fIOm;equatidn.(2.15) that

Uly,H) =< U Lo U, -U.] I,<y<I, (3.4)

Sinbe ﬁﬁﬁ, ﬁB, ﬁi‘°and ";fi. are obtalned from U(H w)
> 1 "
for spec1f1c ch01ces of w , they each satlsfy equatlon
- @£? _ =

(2.11) |
-9-
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Equations (3.

du
Yoo, S L = 0 (3.5)

where OJ is any one of the four velocities. Additional

relations are obtained by noting that

at  y =1 : Ug+elI = 0

il
-
(€

]
i
i+
-
!

, -
=
|
(G

at y = I, = U = ;T

and

at y=H: U = 0 - e, (I _-H) . (3.8)

variat Lon of U A U ’ U I,’ UIz y I 12 I ) and ¢ as func-

tions of H .

In the.limit e,0 , € >0 we obtain from (3.6)

from (3.8) -

C 0, =0, L o (3.11)

N
]

|
-g

(3.12)

"aﬂd;ffomi(3a7}




Substracting the equations (3.5) for ,UA and 61 , and

2

similarly these equations for UI and ﬂB , and using
| 1

(3.10) and (3.12) resp?ctively, yields

‘ ‘ 0 (3.14)

2 + .2 1 " (3 '15 )

Equation-(3.14) and (3.15) together with equations (3.5)

for UA and UB , l.€.,

av. . |

u, - U] N fg‘(lz‘l-) “ % (3.18)

form a complete set fbr'the'déierminatianAbf”

Up, Up, I, I, and c .

Once these unknown functions are determined, equation”

(3.4) gives .ﬁfxs,H)} In the limit e, >0 ; e,+0 , these
reduce to : : i

@




( ﬂ | O<y<I1

- 7 |
U(y,H) p g (r-I)) I <y<I (3.19)

Iz<y<H

g
The vertical components of fluid velocity is obtained from

- (2.16), which can be rewritten in the form (see [1])

.

lé ( )(U)f dy : (3.20)

F 52

<
]

and the expression (3.19) for U . The result, in normal-

ized variables, is

<

1
il

B
I (Y L )/€+U
I, (U}- Uz) yUZ+ e(U U) U,

;UU

sz/( )

a1

KA

The variation of x, with H at a particle is given by

‘the expression (see [1])

DH =‘§'/(3x) '£3,22)

so that we obtain .




Yy
[ R2¢12
F UB

0<y<I,

I (y-1)/e+U.y
Dy 2! 5 I <y<I (3.23)
FzUé(UB+E{x3—Il))

12 112 12 111 ) 271
I, (Uy-Ug)+yUg+e (U, -Up) *Ug .
. ~ - Iz<y<H

2772772 — -
F UAUB

At a stream line, however, viewed from a reference frame

moving with respect to the front,

_ v, 3l
- e, /Ge

Y 0<y<I,

) L Lty
e P —
| F2U§[UB+E{Y_I1)+C-Cb]

L <y<I, (5.24)

L (02-02)+y02+e (T -0 20
| 12Uy -Up)*yUgre (U, -Up) Uy

I, <y<H

.FzﬁAﬁE(ﬂA+c-cb)




4. Solution for e-+0

The equations obtained
limit as e+0 by expanding
U(O) +

A | A
(o) .

]
o o
1) ]
-

0) N

1

 B B
(
Il
.

I

]

)

2
(o)

c = C +

From equation (3.13) we see
the superscript zero, we ob

the equations

above can be solved in the

the variables according to

euﬁl) + ..
1) +
1)

1)

el

1)

£

eUé
(
1
- (
2
,(

- T '

£C +
L o (0) (o) e
that I§ )=I§ );I . Dropping

tain for the lowest order terms

= 0 H .3

i
s

| ‘114 -




Substituting these expansions into (3.19), (3.21),

(3.23) and (3.24) gives, to lowest order,

U(y,H)

y OH

dX

]
A
(g
o

+
M | =
TN
~<

1
ey
—

, Il

| o pms 2an . =3
|- §(U,-Up) +yUy

F<U 2Vs




1
" F2U, U2 (U, *c-c.) T %
B~"A 0 (48)

Clearly, the solution in the upper and lower région, which
are i1ndependent of & +to lowest order, can be regarded as

describing the flow for 4an initially discontinuous shear

profile. The solution in the cénter region, whose thick-

ness is given to lowest order by

I, _111, = :ech_UB) (4.9)

provides the transition between these two layers when the

Eliminating g%- from equations (4.3) and (4.4) gives

F202-H _

. ! 2‘_ ." 2
UA“UB

Similarly, equations (4.3) and (4.4) can be solved for

dI s . s  PA s .
dgg © FEPdquating this to the derivative of (4.10) yields an

equationvfor'ﬁA and ﬁB- alone. A second equation for -

Uy ?nd’ ﬁB is obtained by eliminatihg ¢ from (4.1) and

[}
s :
e
&
.

e
Y
o




-
i

| ) | (4.11)

i

we obtain

dA -A2B(A2-AB+B2-1)- (3A-B) (A2+B2-1)+2AB?
d1lnH (2AB) (A2-AB+B2-1)

(4.12)

dB -AB? (A%-AB+B%-1)+(A-B) (A2+B2-1)+2B(1-B?)
(2AB) (A?-AB+B2%-1)

Dividing these two equations gives 4 first order non-linear
differential equation for A and B . Introducing the

parameter T by

A = Bt
! p

results in a :simplification ﬁf'the}algebra,ﬂand;wQ.Obtéin

dB _ BP(r’-t’+t)-B3(r’-T?+2r-3)*+(1-3)B

(4.14)

Thefintegral'curVes of (4:14) are shown in figure (2).

There are fourteen singular points, located at

N -17-




o e

bottom and the free surface, that is 0 <

B=-1 {B=/E7§ {B=§/”7§ {B=1

In terms of B and Tt , equation (4.10) for I 1is

I B 2n2 _ | o

From the requirement that the interface lies between the

<1, it can

mu—.

be seen from (4. 15) that the region of physical 1nterest

in the B-t plane is bounded by the curves B=#1 and

Bt=+1 . These are indicated in the figure by the dot-dash

It is readily seen that equation (4.10) for I and
(3.2) fQIthe wave speed ¢, in the ambient state are
equivalent. Choosing some point CA—~-=)- in the accept—
ablewportlon of the phase plarde as the reference state, SO

that H=1 there and ﬁ —A*/F =1-c,, U -—B*/Fgeec_ :glves

for thlS flow F =A*+B* and ¢ =B*/(A*+B*) Equation
(4.10) then becemes

FZCZ(l C )2
LT - 2c )

-18-




which is identical with (3.2) since I=r 1in the undis-
turbed region.

The acceptable portion of the phase plane is divided
into six regions, as shown in the figure. Regions I and
II, in the first quadrant, correspond to what is termed the

slow wave, because the wave speed ¢ 1lies between UA and

U, , i.e. U,=-v/AB/F <0 and U,=/HA/F >0 . Similarly, the

second quadrant, regions III and IV, corresponds to fast

waves, UB<C, UA<C, and the third quadrant, regions V and

8

VI, corresponds to backward waves, because c¢<0 when

viewed in a reference frame for which UB=Q (i.e. UA>0’

U,>0 ).

Typical flow profiles in each of these six regions
are sketched in figure (3), as well as tﬁe-pfOfileﬁwhiéh“
characterizes the transition from I to II (i.e. the singu-
lar point (t=1,B=1). As the singular point which separates
regions IIL an&-IVis approached, ﬁA/ﬁB*I . However it
will be shown that H»0 at this singular point, so it also

follows that

| The same is true in region V and VI as the singular point
(t=-1, B=-1) is approached. We’éxCiude regions IV and VI

because they correspond to states in which U,-U;<0 , and

o | . 2
only flows for which the undisturbed shear profile satis-

~

-19-

\




fies UA-UB>O are considered (e.g. equation (3.1)). Al-
though one may start from an initial point in region III,
say, and follow an integral curve through the singular

point (t=-1, B=1) , into region IV, it has already been
pointed out that the singular point corresponds to H=0 ,
and so this possibility will not be considered. The same

1s true for transition from region V into region VI. The

entire fourth quadrant is excluded as it also corresponds

to profile for which UA-UB<0

Flows which correspond to integral curves iﬁ the slow
wave region contain critical layers. TH;se are curves in.
the physical plane along which U=0 . All integral curves
in T and II can be regarded as originating from the singu-
lar point (t=1, B=1) . Those in region II cross the T
axis, where ‘ﬁAfUA~6=O , and then correspond to fast waves.
They converge to the singular point (B=z,~r:;%) hIn |
region I, it can.be-shownfthat'along*%he integrdl curves
T+® B%O: and A=BT approaches a constant which depends
on the particular curve.

Integral curves in region III, in addition to those
crossing t=0 ffém~region 11, originate from (r=-1, B=1)
and converge to ‘the singular point (B=2 t=-%ﬁl., The two
‘types of integral curves in region III are separated by a
line from‘the saddle point at (B=1, T=O)"t0'the POint~ 

(B=2, t=-1)" . This curve iéjshﬁwn.iﬁwfhe figure.




The value of H at any point is obtained by integra-

ting (4.13) along an integral curve, and is given by

T 2 2.2 n2 2
In g* _ f 2B®t(B®T®-B2t+B%-1) , (4.16)
% (1%-1)[1-B2?(71+1)?2]

Here H* 1is the height of the free surface at the point
(t*,B*) . We may start the integration at any point and
regard this as the ambient state, where, because of the
normalization, H#*=1

With this schematic picture of the phase plane, the
numerical procedure for integrating the equation is clear.
We start at one of'the:singular points, using asymptotic
approximations valid in that region, integrate a short dis-
tance élohg‘the integral curve, and then use one of the
standard numerical techniques. Once B has been deter-
mined in terms of 1 along a given integral curve in this

manner H can be obtained from (4.16).

The wave speed c(H) is found from

- Detining c=F c¢ , we have

'féférs to some reference state which can be

Again, the *

-21-




arbitrarily chosen as the ambient state with H*=1 , and

E*=B*

Slow wave

All integral curves corresponding to the slow waves

originate at (t=1, B=1) . Around this point
(B-1) ~ A(t-1) (4.18)

where A 1is the slope of the integral curve at the singu-

lar point and -1<X<0 . Using (4.18) in the neighborhood
of the singular point , with <1 , and continuing the in-
tegration of (4.14) numerically, through its transition
into a fast wave and into the singular point (t=-1, B=2) ,
we obtain the integral curves for various choices of X .
Similarly, for =t>1 , the integral curves in the region I

can be obtained.

With B as a known function of =t for various 2 ,
equation (4.16) can be used to determine H along differ-
- ent 1integral curves. Siﬁce;the integrand is not definéd
at (t=1, B=1) , we use L'Hospital's rule and (4.18) to

obtain its value as -£A - ¥ at that point. The value of

the integrand is defined at all other points on the inte-
gral Curve, so the integration can now be carried out in a
étraightfbrward manner. As the integral curves approach

B=2, T=-%3 Heo This can belseen from equation (4.16) and

-22-




the asymptotic form B - 2 ~ 4(t + %) valid near that

)

point.

In region I, since B=0(1/t) as rt+» , it follows
from (4.16) that H approaches a finite limiting value.
Similarly, (4.17) shows that ¢ is bounded in this limit,
and from (4.15) I»0 . Therefore, as Tt+w along integral
curves in region I, the flow approaches a uniform profile
of finite height and velocity, the values of which depend
on the integral curve chosen. At the singular point

(t=1, B=1) I/H can be determined from (4.11) by using the

asymptotic form (4.18), and is given by
H - == (4.19)

Figure (4) shows the curves ﬁA(H), ﬁB(H) computed in

this manner, starting at the singular point =1, B=1 and
integrating‘£0rfdecreasing‘ T across T=0 , into the fast
wave region. At the transttion into a fast wave |

H=H . = 0.285 .

min

Fast wave

All the intégral curves in-region ITII except those
which come from region II originate at the singular point
(B=1, 1=-1) . 'waever, unlike the case of the’slaw waves,

this singulaiipoint cannot be used as a reference state

since-iﬁ'cérrespén&s”tQ ,H;O . This can readily be seen
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from (4.16) as the limit ~«t+-1 , is approached, using the
asymptotic expressions (B-1)~A(t+1) , valid near this
point. Also, as the singular point (B=2, T=-7) 1s ap-
proached, H+»« , as already pointed out. Therefore, in
‘'this region some convenient point away from the singular
points should be taken as the reference state, and the
integration performed numerically along an integral curve
in the direction of one of the singular points. For exam-
ple, thelone'parameter family of integral curves inter-
secting the line T=~%- completely describe the flow in

region IIT,

Backward wave

The situation in region V, for the backward wave is

analogous to that of the fast wave. ‘The'singular points
(t=-1, B=-1) <and (t=-2, B=-1) correspond to H=0 and
H=»  respectively. Convenient reference states can be
chosen as the one parameter family of states along the

A more detailed sketch of the phase plane for regions
I, TI and~III.is_§hown in figure (5). The dotted line
which runs from the 'B=1, =0 through the singular:poiﬁt
| Béi, T=1 ; and out to infinity in region I‘sepérateS'rew

gions I and II into a 10WéT&%nd'an,uPPer1P0rtion. In

a

region I 8H/3t>0 , 9c/dH<0 in the lower portion, and
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dH/31t<0 , 3c/3H>0 in the upper portion. The reverse is

true for region II. Only integral curves for which A<-l

2
enter the lower portion of region I, and they all eventu-
ally cross over to the upper portion as 1+ , Similarly,
only integral curves with A>-% enter the lower portion of

region II, and these all enter the upper region as Tt

-~ —"

decreases.

The upper and lower dotted lines drawn from T=4% ’

B=2 1in region III are the locus of the points for which
dB/dt=0 and , respectively, along the integral curves.
All the integral curves in region III cross the upper line,

and all those originating from t=-1, B=1 cross both

N

1ines,\ Below the lower dotted 1ine, dH/31t>0 , 50/5H<02;

while 9H/3t<0 , 3c/dH>0 above this line.




5. Example: the centered expansion wave

As a specific example we consider a centered expansion

wave, which satisfy the relation

= c(H) . “ (5.1)

ct| >

Various possible free surface shapes, H(x) , for these
waves are 1illustrated in figure (6) corresponding to dif-
ferent integral curVeS. These curves have been normalized
so that H=1 corresponds to the singular point (B=1, t=1).
Therefore, for these flows F =A*+B*=2 , CO=B*/F =0.5, and
x/t=c=0.5¢c . The portion of the curves for x/t<0.5 cor-
respond to region I anq approach the limiting values Hlim;
Cliy @S Tr+e | For"K<~0«5~ they initially increase as
x/t decreases but Teach a maximum corresponds to crossing
from the lower to upper portion of region I, and all the
1¢urVesedecrease to their limiting value. T@e locus of
these maxima are shown by the dotted line in the figute.

As x/t increase from 0.5 those curves corresponding to

X>-0.5 1initially inéfease, since they lie in the lower
‘portion of regipn I1. They reach a maximum when they cross
.into the upper portion, and the locus of these maxima are
alSO shown in the figure." All curves reéch a minimum at
the transitionto'a fast wave, and then H»~ as xX/tre

iWhigh,cOrresandS taiappfoaching*the singular point B=2, -




The locus of these minima are shown in the figure.

_ 1
T"'"z- .

Any point in the acceptable portion of the phase space
can serve as an 1nitial state. Figurc (7) shows the stream-
line pattern, as observed from a reference frame moving
with respect to the front, when the initial state corres-
ponds to the point (B=5.1356, t=0.1) 1in the slow wave
region. The integration 1s carried out along the integra%;
curve in the direction of increasing 1 . The thin center
region is not shown in figure (7), so this flow may also
be regarded as due to an initially discontinuous shear
profile. The interface height I is represented by the

dotted line in the figure. Below the interface, where

the fluid velocity 1s less than the local wave speed, par-

ticles move with a negative relative speed with respect
to the front, i.e. Uy-c¢; < 0 . Above the interface,
the fluid velocity 1is greater than the local wave speed.
However, the fluid velocity is greater than the front
speed ﬁAﬁCO > 0 only in a finite region adjacent to the
front. Behind that region, .U,-c < 0 , and the fluid

particles move away from the front.

The flow in the center région is illustrated in figure

(8) by means of a modified‘streamiine diagram. The vertical

A




scale 1s stretched by % and is taken as é(y-ll) . There-

fore, the lower interface is the horizontal axis of the

figure and the upper interface is at ﬂA-ﬁB The lines

in the figure give the true direction of the fluid velocity

at a given value of x and at a given distance from the

lower interface at that position.

The locus of points along which either the horizontal
Or vertical velocity component vanishes are indicated by
broken lines. They intersect at a saddle point 1in the
interior of the region, and divide the flow field into
four parts. In the lower part, which is adjacent to the
region below the i‘n“te_-'1.”*f;ac::_e*iI:'1 the fluid particles move up
and away from the front while in the upper part, which bor-
ders on the region above the Ié interface, the particles
move down and toward the front. This part terminates at a
finite distance from the front, at the'location-wheregthe
velocity in the region above it is the vertical direction,
and the particles then move down and away from the front.
This part terminates at a finite distance from the front,

at the location where the velocity in the region above it

is the vertical direction, and the particles thénfmdvédown
and away from the front. In the remainingregion,'bordering‘“
the front, the-particles meve“ﬁp andﬁtowardlthe front.
Afina} illustration is provided by figure (9), in '
which the initial state is taken as the-pqint (B=4.79,
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T=-0.2) 1in the fast wave region. This wave is followed
through its transition into a slow wave and through the
singular point (t=1, B=1) where it is continued into
region I along the integral curve which has the same slope
at the singular point, until it reaches its limiting value
as 1+, B>0 . The interface height I(H) 1is indicated
in the figure by the broken line. The transition into a
slow wave occurs at x/t=0.485 where I=H and the veloc-
ity is a uniform horizontal flow. The singular point
(t=1, B=1) occurs at x/t=0.155 and the maximum H oc-
curs at x/t=0.0818 corresponding to T1=1.8, B=0.642 .
The limiting height occurs as T+, B+*0 , and is H=0.35 ,
x/t=0.05 at which point 1I=0 . Since the streamlines are
drawn with respect to an observer moving with respect to
the front, all the streamlines move away from the front,
even 1n the slow wave portion above the interface.

Any two sections can be taken to represent an initial
and final state and the portion of the figure between them
describes the transition between these states. But then
of course the refgrence frame from which this particular

tfigure is drawn becomes artificial.
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FIGURE 2. Integral curves in the phase plane. The
.. ' broken lines represent either infinite
slope or zero slope of integral curves.

The dot-dash lines represent the boundary

of acceptable region. . -
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- FIGURE 6. Various possible free surface shapes, H(x) , for the
h - centered wave. The broken lines indicate locus of
~elther maximum or minimum free surtace height.
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FIGURE 7. Streamlings for a centered wave observed from 3 reference
x frame moving with the front. Entire flow corresponds to
the slow wave region. The broken 1line indicates the
interface,




———=—— Critical layer

PEIEIC

_LS-
/]
/
/

0.887

K . ' 0.900
£ = c(H)




-8¢-

FIGURE 9,

Streamlines for a centered wa
moving with the front. Th
corresponds to the fast wa
wave at x/t = 0.485

ve observed from a frame

€ wave speed near the front
ve, but changes to a slow




Reference

[1] Blythe, P. A., Kazakia, Y. and Varley, E. 1971
The 1nteraction of large amplitude shallow water
waves with an ambient shear flow. (Pending

publication).

= 39—




Résumé

Kai-Nan An was born on August 1, 1947 in Nanking,

China.

After finishing six years elementary education at a
local primary shcool and six years middle education at
Taiwan First High School, he attended the Department of
Mechanical Engineering at National Cheng-Kung University,
Taiwan from July 1965 until July 1969. He was awarded a
B.S5. degree. After graduation he served in the Chinese
Air Force for one year. Following his military service
he began graduate work in the Mechanics Department at
Lehigh University in September 1970 and currently holds
a Researcthssistantship in the Center for the Application
of Mathematics. He expects to be awarded the M.S. degree




	Lehigh University
	Lehigh Preserve
	1972

	Interaction of a non-linear gravity wave with shear flows containing a vortex layer
	Kai-Nan An
	Recommended Citation


	tmp.1528232050.pdf.FzIqg

