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properties of power series and their analytic continudtion

.

which are essential in a study of function theory. Then,

ﬁTheQrem; ;Hﬁlomorphy;preserving operators also prove tcgbe

point, domain of regularity, and overconvergence for a

normal family of analytic functions. We prove several

tions for a fémily<of’this type to be overconvergent. These

ABSTRACT

OVERCONVERGENCE FOR A NORMAL FAMILY

OF ANALYTIC FUNCTIONS

by - “—

John J. Swétits

In the first parteof this paper we provide some basic

following E. Hille's Analytic Function Theory, we develop

the theory~of’halom0rphy preserving operators. This theéry

is a useful tool in establishing the classical Hadamard Gap

useful in establishing several theorenms giving sufficient
conditions for overconvergence. We then'stafé and prove

several theorems concerning necessary conditions of over-
convergence. \

Recently G. Johnson has &efined.the’conceptg:offregular

theorems giving sufficient conditions and necessary ‘condi-

overconvergence given in the previous sections of this paper.




In addition, we provide a formula for computing the radius

féf”regularity of a normal family of analytic functions.




...............

1. Introduction

Let f(z) be analytic in a domain D = {z:]z| < R}.

Then £(z) can be represented as

f(z) = ]2 a2, lz] <rR (1.1)

Lf |z l = R, where zoiis a regular point of f(z),

then (1.1) may or may not converge at Zy3- We wish to pro-

vide condltlons under whlch (1 1) will overconverge at g

To do this we develop the theory of holomorphy preserving

operators, and we pay special attention to the two functions

discussed in Section 4 of this paper. Much of this material

may be found in [3].

‘Finally, we consider a normal family of analytic
fungtigns..lThé matgria1~0n normali;i.may be found in [51w
Aftersmakinghsuitable definiticns, we prove sevéral theorems
giving tanditions for the overconvergence of this family,

In doing this we follow the worktof-JOhﬂsan,[4}, and Wilson,

[6].

2. Singularities and Analytic Continuation

The results4of“this.seCtion,are elementgfy in nature

and the proofs will be omitted. Proofs can be found in [3].

Definition Z,l: Let p denote the:rédius of the largest

circle for which the terms Janznl:of_(ljl),are~unifdrm1y




-

bounded for [z]| < p. We call o the radius of convergence

of (1.1).

.;Thgqfem'Z.Z: The series (1.1) converges dabsolutely for

every z with [z]| < p, ﬂnd.uniforle"with respect to z for
lz] 1 <o. -

Let £(z;0) denote a power Serieg about the origin with
radius of convergence p > 0. Let b be a point such that '
[b] < p. Then we can rearrange thy series f(z;0) about the
point b, yleldlng a series f(z; b) with radius of confér-
gence pb~ Let D(0) denote the interior of the circle of
convergence of f(z; O), and D(b) denote the interior of the

Sﬂl

circle of convergence of f(z;b).

with p > 0, ifilzo[': p, and if for all t, 0 <t <1,

Py = (1-t)p where b: tz,, then z = 29 1s called a singular

point of f(z)..

;Définition_2;4: If every z such that {z] = Q“is-a singular

point of f(z), then {z:]z] = p} is called a natural bound-

ary of f(z).

Theorem 2.5: p - [b] <o, < p + |b].

If:ﬁb > p-|b|, then D(0) and D(b) have a non—empty

intersection. In this case we state the following:

Definition 2.6: £(z;b) is called the analytic continuation

of f(z) in D(b) - [D(b)gD(0)].




Lemma 2.7: If py = p-|b[, then z, is a singular point of

- f(z), where z, is the commohqpoint.bn the boundaries of
D(0) and D(b).

Theorem 2.8: There is at least one signular point on the

circle of convergence of the function defineﬂ?by-flgl];

s

3. Holomorphy Preserving Operators

In this section we wWish to :consider an operator of the
type ’ .

(3.1)

W.:h‘féfrfei

(3.2)

1/k.

_is an entire function which satisfies lim |g |~/ = 0.
“ | kKo 7

Définitiqn_jﬂsq Let £(z;0) bé a power series about the
origin with radius of convergence p. We define the’princi+
pal star torbe the set 6?'%11 points,;a,isu¢h that £(z;0)
can be continued analyticallyiaiong the line segment [0,a].

We denote the.printipal star by A[f].

Definition 3.4: A sequence ta_: n = 0, 1, 2, ...} is a.

~.holomorphy preserving factor sequence if, for every function

N the

f(z) defined by a power series f(z;0) =:Zn#0 a,z

principal star of thétransform T[f] of f(z) defined'by




ano;ananz“ contains the principal star of f(z).

We now consider the operator $zz(d/dz). - "

Define  o'[f] = ¥,

elre] = ey,

6" [£] €17,

-Lgmm@ 3£55 iThe”equatiﬂns

b Pﬁ(zdaJ

(a-zjn+1":n = 0, 1, 2, ... (5%6)

define functions P (z,a) which satisfy
(1) 'Pﬁfz;&) 1s a polynomial @f‘degree n in z and

n-1in a, n =1, 2 PR s

Pa(z,a) = z 5o o (5.7)

n )
and .

: . g g4k ;

such that

N

(1) We proceed by induction on n. Tt is clear that

P;(z,a) = z. Suppose Pnilfzya)has the desired properties.

- . - (ayz)T




A e g e e B

P (z,a) = 2 [nP, 4 (z, a) + (a-z)P) ,(z,a)]. (3.8)

2 ARG T Vo

TSP e

Since P_l(z a) is of degree n-1 in z and P" l(z a) is
of degree n-2 in a, we see that Pn (z,a) is of degree n in
z and of degree n-1 in a.

(ii) . From (3.8) we find that the follawing[hnldm i' ®

ﬂopnfl

aakﬂ1==(k+11m;;, + (n-k)a k=1,2,...

k,n-=1 k-1,n-1"

an*an%l’

nﬁlynj_

.Sinéé Plfz,a) = Z, we have &' 1 = 1. ThuSg by lHdUCthH

if the coefficients of P. _i(zya) are positive integers,
we see by the recurrence reélations that the coefficients
of P (z,a) are all positive integers.

B = nla” 1P1\a a’)

i
#
.@A

Thus P (a,a) = a [ © o _a" K15k

I
oy
=




i n . a .

Thus §n=

Corollary 3.9: If r = max (|z|, |al), then

P (z,a)] <nl .
[P (z,2) |

Definition 3.10: Suppose f(z) is analytic in a domain D.

We say that an operator of the type (3.1), G(8), applies

to £(z) in D if

i Lo kT ¢ L) y (5. 103

6(0) [£] = 1im |

exists for z in D, and uniformly on compact subsets of D.

_Theﬁrem13{1?% If f(z) is analytic in a domain D, then

G(8) applies to f(z) in D and'G(e)[f] is analYtic in D.

O e e T i D 6(0) [£] contains that of f(z}.'




Finally, {G(n)} is a holomorphy preserving factor sequence.

Proof: Let A be a Gﬁmpact subset of D. Let C be a curve

~in D made up of a finite number of simple closed rectlflable
:curves with distance Y > 0 from A. Since A is compact it
is closed and bounded. Thus there is a positive distance
from A to the boundary of D. Because A is compact, it can
be covered by a finitéznumber of discs. Thus the curve C

exists. 'By thErCauChy integral,fOrmulé,‘we'have

Since differentiation is allowed undet the integral sign
in Cauchy's formula, we can apply the oparatﬁrme under the

integral sign; By Lemma 3.5 )
| ) P R (z,t)
oM £ey)7 = — f T Z)n+1 £(t) dt

N gk Pk(z t) f(t)

“k=m g (t- z§f t-z

- Since A is compact we can find a positive number p such
that max (|z]|, [t]) ¢ ¢ whenever zed, teC., Since

. L y
lim lgkll/ =0 we can find M = M(y,p) such that lgkl<(7—) M
koo © P

for .all k 5u££1c1ently large. Using this and Corollary

3.9 we Hhave




?,ft T Ty | . | . {f, 5;£f:1;.f£fft) :
B g ey < | g® el P 20 1) 0 del

n p,%ﬁk k  | |
L, (55 M(e/Y¥) (max(f;c/v)(dt)
m 4P 2

. e . 1
M(max(f;g}).&&&l2k=m ?&'

n

where max (fjc) = max |f(z)| and £(c) = length of C.
" zec o i

. . —— converges, ) E

n=l B 'ge"j Zk:m;

Ek' @Ek) [£(2z)] converges uniformly on
kT - )
compact subsets of D. Therefore G(8) applies to f(z) in

Thus ijl

D and G(6)[f] is anéiytic in D.

Now let £(z) = Zﬁ:oCnin, [z} < R. Then, by the

~ definition of 8 we have

GO = Iy g 0 [£()]

i
0~
-]
8
0Q
W‘
KX
-
8
=

I
0~
W‘

I 8
S
ol e
o~
|

I 8
o

(g}
=

=i
N
=

& g
= zk Zn F nkc Zn

- can be made arbitrarily -
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Since G(6) applies to f(ii, thiS“senieS'Cd§Vé}geS-

4 Because G(6) is applicable to f(z) in D, it follows

that if f(z) can be continued analyt{gally, SO can
Zn=OG(nJCnZ'° ‘Thus {G(n)} is afhalomOrphylprﬁserﬁing

factor sequence.

In this section we develop some properties of the
following two functions,

, G(w) = ‘rr (1 - a_w_ ), anl 1 cw

a

o 2 a_ |
: n= a_ -

n

Lemma 4.1: G(w) satisfies the properties of (3.1)..

Proof: Since J ° — converges, it follows that G(w) is
£2901% 1 ges, (W,
.

an entire function. [1]., We have

‘n= l

| n=1 n.

.......

where M

!
=

g

Pa

. QBy the Cauchy integral formula,
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68 o)) = A at|

—
@)
~
+|c+
)

We have

IG“‘) Ol

e 1/k
|G '(0)1 = %E ’

. 1/k
Thus  1im 6oy " < 0.

koo

But G{k)IOJ 1s just g, in the series expansion for

T e B
600 = 0 e k.

ko>

i

Lemma 4.2: H(w) satisfies the properties of (3.1).

a_ . . .
Proof: Sin@ei?? > ® as n >, we have |a_| > n for all n
. <;% for all n sufficiently
n -

large: It follows that | 'En;i [;T" converges, and
,nvz

$o H(w) is an entire function [1]. Let M = 5.z

| @ 2
Then [HOI| € (1 + % |)
| n=1 a




Using the same method as in Lemma 4.1 we have

lim ngl

13

1/k ”
= 0 .

Q.E.D.

5. Hadamard Gap Series |

Definiti

.00,

Zn o 8,7 will be called

on 5.1: The series f(z) =

a gap se

fDefiniti

on 5.2: If f(z) = ‘gnmo a z" and if there are

infinite

and if a
n

ly many k such that nk +1 - g > Ny 6 for some & > 0,

= 0 for n 4 n, , then we say fhat f(z) is a

Hadamard gap series.

Theorem

Let f(Z)
Suppﬂge

has 1ts

5.3: (Hadamard Gap Theorem),

a_ = 0 for n,+ :n.n_k and a_ + 0: Then Zk 0 aﬁkz
c1rc1e of convergence as a natural boundary pro-

v1ded there exists 3 fixed }» > 1 such that. - k+1/n 2 A

for all

Proof:

corollar

Theorem

THQLETUQf Qf thiS fhé@iﬁm.Will 3PPGarﬂléter 25. a

hk .}

5.4: The series f(z) = Zk:i~@kz ", a, f 0, has

its circ

lim k/n

koo

Proof:

the seri

le of convergence as a natural boundary if

= Om
s

We can assume that the circle of convergence of

es has radlus 1.
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We break up the sequencaf{nk} into. two complementary
subsequences, £mk}:and,{Pk}s so that
E(2) = ey ez T Bl g s () 4 gla).
Choose the sequence {mk};so that.iijsatisfies the follow-
ing two conditions:
l llfmk - o
lim |h, | " =1 (5.5)
W) k—>00 k / |

The condition (5.5) is possible since 1im sup |a] Ko

It is clear that (5.6) is possible. The series h(z) has

radﬁus«of'conVeﬁgence =1. |
| o % wl 2 o |
Let G(w) = - (1 - ™ /p. ). By hypothesis lim k/py=0.
Thus; by Lemma 4.2 and Theorem 3.12, G(w) represents a
h@lqmorphygpreserving'Qpéraﬁﬁfa
We: have the following condition:
lim (1/m_) 1 og| G (m D=0 (5.7)

The proof can be found in [3].

Applying the operator G(8) to f£(z), we have

G(6) [£(z)] = 6(6)[h(z)] + G(8) [g(2)]

v I o Py




Thus

, m 5
B AN TErfoayT o T 0 A k ° :
GO [£(2)] = Jy2; G(mIhyz <. 1
| =4 X | L .
By (5.5) and (5.7) the radius of convergence of this series

iS 1.

By Theorem 5.3, the series has its circle of conver-

gence as a natural boundary. Since G(8) is a holomorphy

:preserving~0perator, f(Z) caﬁnom beianalytic where Gﬁ@}[fsz]

1s not.

ThusfoZj has its Cirgle=ofmCOhVergence as a matural

'bbquérys

N ) -Q#Exﬁﬁ

6. Sufficient Conditions for Overconvergence

In this section we provide some sufficient conditions

for a series to be overconvergent and we give a prqof of

the Hadamard Gap Theorem.

Definition 6.1: Let f(z) = Zkfoakzkana let {S_(z)} be

the sequence of‘pamtialzsums‘of:f(z)‘ Let f(z) have radius

of convergence R and let ZO be a point such fhat ]zol = R.

iii;;a.neighborhood, N; about zy and a subsequence of

partial sums, {Sﬁ (z)}, such.that {Sﬁ (z)} converges to
'k : k | .
£(z) at all points of N, then we say that f(z) is over-

convergent at z,.

L. ®
8

Theorem 6.2: Let f(z) = ano.cnin=have fadius of conver-

gence = 1...L§£”{mk} and‘{pk} be two sequences of positive
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integers such that (1 + n)my < pk,'Where“nj> 0 is fixed,
and m < py < Myyq+ Assume ¢ = 0 for my <n < py. Then
the sequence of partial sums, {S_ (z)}, of f(z) converge

p 2 ;- .
in a full neighborhood of each point of the unit circle
at which f(z) is analytic.

p

Proof: Let § > 0 be arbitrarily small.

Let

D = {z:]z]|<1-8, 8,<arg z<el+2w}L/{z:|z[<R,61<arg:z<62}

0 |

where R > 1. Let Cs denote the boundary of Dy. Assume

f(z) is analytic in the closure of D;.

lr

Let zeD Consider

5

f(z)-S
e

By hypdthesis, at least [ my] = p terms are missing after
the mkig term., (EX} is the greatesifintegerif x). So,
we have

(f(Z)’SmW(Z))/fk = Tiff fff)ffﬂk
6.
where the a; are arbitrary.

m+l 1 fizp... z S B N

;f(z)_smk(z)/z-k =7?TI f(t)/tmk
& ‘Cs |

where P(-,lg) is a polynomial of degree p or less.

Let B be a domain interior to Ca’iniWhiCh
f




e
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~a < [1-Z] < b, zeB, teC,. a and b are fixed positive
numbers. By the Weierstrass approximation theorem, [3],

we can find a polynomial R(%} such that

[1/1-2 - R(D) | 2€B, teC

6 ...

har

Let v be the degree of R and Tet
Plp) = (1-[1-(1-PR(P] I/1-F

whete m is the largest integer such that m(v+1) ¢ p. This
is aypglynomlal 1n;%=of degree < p, and it is to be used

in (6.3).
We have

Then, .from (6.3), we obtain the following estimate for {

+1
If(z) S (Z)l < MR/aZ (Izl/l cS) | (64)
=

Take the'mKEE‘root of both sides of (6.4). Note that
| 1/m
im/mk~+.n/v+1 Er'. Take 1lim sup |[f(z)- S (z)l k By

k+oo

(6.4) we see that this does not exceed (1 §)° |z|2
Bht this holds for every § > 0. So we have

1/mk . ~ M

Lim sup [£(2)-S, (2)] 2] 2 6.

k+oo

- for zeB. .
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We now make a specific choice for the domain B. Let

o,B be tWQ‘pQSi"CiVe*numbers with 8 > o. Let 1 <vR1 < R,

Since 2" > 1,-We can find 6, 0.€ 6 < 1, such that o2M > 1.
Restrict i so that JzT < min CGZH,‘RIQ, Then (6.5) does
not exceed 6. This means iig?SUP |f§25 . Sﬁk(z)[ = 0.
respec t to Z.

Q.E.D.

Corollary 6.6: (Hadamard Gap Theorem). If py = m .,

then the unit circle is the natural boundary of f(z).
Proof: In this case, the sequence {S_ (z)} coincides with
— m, ¢

the sequence of all partial sums of f(z). But the sequence

of all partial sums converges only inside the circle of
convergence. Thus eéery~point on the dircle of convergence
is singular.
Q.E.D.
The next theorem will be stated without proof, since
the proof lies outside the scope of this paper. The

proof can be found in [3].

Theorem 6.7: Let f£(z) be analytic and bounded in a domain

D which is bounded by a finite number of simple closed

curves, C. Assume [f(z)| € M-in D. S.UPPOSGE a subarc T

of C such that when z approaches any point of I we have




lim sup |f(z)] € m< M. Then 3 function A(z),

0 < x(z) <1, suChathat'fbr'each zeD
log [£(2)] <€ A(z) log m + (1-1(z))log M.

‘Moreover On compact subsets of D, X(z) is:beundedéawayﬂ

from 0 and 1.

Theorem 6.8: Let f(z) = Z mb cnz “have radius of conver-

gence = 1. Let {m '} and {pk} be two sequeénces of positive
integers such that pk/m 4:®; Assume C = 0 for m < n < Py
Then fhe sequence, ,> (z)} converges unlformly to f£(z) in
a neighborhood of any regular point of f(z). The partial
sums converge in the complete domain of existence, D[f],

of f(z), and f(z) is single valued in D[f].

P_LO_ch ¢ Let DO be a 'bf'o-;Undgd subdomain of D[f] with D—OGD [f]l,.
Let R > 1 and suppose D0 s{z : ] zl < R} Assume

{z:|24 < r < 1) ‘5D0° Suppose that an arc T of {z:lz]| = 1}
forms part of the boundary of"DO,
Let

F®) = £(2) - 5, (2, zeny,

Since S (z) is a polynomial of degree my, we have
My ,

S (Z)l < AR k xFquheTmore»fEZ) is bounded. Assume
My ’ |

‘h JIZ

; X . A . . X AL N VLA iy B Soubadhed T -
e NP T SV PAUTAVIVAN - ‘1 et Bt i el G L R B R e e P e T RYIM o - SRR e L L .

e SR T S B S 5 £
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B @ S 1@ ] - s, )]

“Now, for |z| = r and.Cl = {t:|t]| = T1s T <1y < 1}, we

have
| m, +1.
- T8 .
‘my, +1. Py, -Mm; -2 .
-, k 'k Tk .
R B N P L3 ei*ly L

- The terms inserted represent coefficients which are equal

to 0, ahd-SD-theymadd'nofhing to the integral. Then the
above 1§ equal to
pk

Since T is enclosed by Ci,'we~have,for zel

[Fy(2)] < (rerrI)/rl*r)C§i)ﬁ”

:.A(196)pk}h

Therefore we have M < Rl ‘

using the notation of Theorem 6.7. By Theorem 6.7:

“log [F(2)| € A(2) [1og Apk Log (1-8)1+[1-A(z2)] me log Ry

where:zeDo.

N
5 om T A(L-8) k7§-M, where we are
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Since pk/mk > % gnd log (l -(5) < 0, we have

lim log [Fy(z)] = -=.

k+oo ‘
Thus

lim F, (z) = 0.
This limit is uniform on compact subsets of D.O.

because A\ (z) is bounded away from 0 and 1 on compact sub-

sets of DO

If f(z) c¢an be continued analytically along a path
leading from z = 0 to' z = a ;. then we can imbed th is path
in a domain, H@, ogithe type given above. Then fﬁe

o

sequence, {8, (z)}, converges to f(z) along this path. It
1 n 5 : 2 . "

follows that {Sm (z)} converges to f£(z) in the domain of
Tk
existence, D{f],'offf(z),

the limit function of a sequence of polynomials is s ingle

valued.

Q.E.D.

7. Necessary Conditions for Overconvergence.

We assume that a series f(z) = Ineo 2,2" has radius
of convergence = 1 and that £(z) is overconvergent. We
show ~tlh'a"t. f (Z ) can be written as a sum of two series, one

having radius of convergence greater than 1 and the other
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iDéfinitiQn 7.1: We say that F(z) = z : A Z“,fﬂn.kuﬂ, is
A

0
S

a dominant of f(z) = zhzﬂ a for all n.

AL TQHT

—~——

We write 'this as f(z) << E(z). -

Definition 7.2: Let u = f(z) map a domain D to 4 domain

D'. If f(z) 1s single valued and one to one in D, then
we say that f(z) is'a'univalent'mapping,

The following theorem is due to Bieberbach [2].
Theorem 7.3: If f(z) = z+a2z2+az5+.,;,is convergent and

univalent in {z:]z| < 1}, then.lan] 5 Snz'fbrin 2 3 and

]aZT < 2.

Lemma 7.4: ‘Under the hypotheses of Theorem 7.3, f(z) is
dominated by ¢(z) = 1/1-2§Where b 2>and 0 <1t < 1.

Proof: If b > , then for n 2 3, 5n’

have 2 < b and 1 = b,

[£(2)] = |Z|+2|Z| - 4 5,5712“54...$5n7fz ”

|z|+2r|z| /r+..,.+5n2rn ll AN nyeRoly
Replacing the coefficient of Tzfn/rngl'by ph-1 we have
1£02)] < |z|+2r]z|%/es. e PRy PO

Except'for”the.seCQnd;term this is the series expansion

for ¢(z) .« Thus £(z) << ¢(z).

Q.E.D.

g

I'T1T T T 1
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Theorem 7.5 ?If?f(z)'&nfnfvﬁa_zg hﬂS a SUhsequence of
— - tn=0 “n

partial sums, {S_
‘ ?I-lk
neighborhood of a regular point on the circle of conver-

(z)},:dvercqnverging:uniformly in a

gence, there is a 6 > 0 and a p, 0 < p < 1, such that for

sufficiently large k, we have lan{ < p" for nk‘§7n.< (1+8)ny .

Proof: <Consider a function d(z) ;.anzn+,@, such that

I¢(z)[ <1 for zeA, where A is a simply connected domain.
If weimapﬂﬁ on {u:lu| < r}, ¢(z) is transformed into
'c'ﬁ'(u) = bnun-!- .+~ We have l 5( u) , <1 for ,u l < T, B}’

tauchy's inequality, we have |b_| < r™. Thus §(u) is

dﬂminatedby'un/rnflf%}; By Lemma 7.4, u is dominated by

h(z) = z/1 %‘3 where b 2
So .
P S P N bz,
¢(Z) << [z /7 (lm;t)_}[l/leZ/T(lyi?}J,

. Thus

From this we have

. Lan+p|_‘ 2 bcp /r
n+P o+
o= (P,

p

Let o = p/n. Let n+p tend to infinity in such a way
- that o < 6 where 6 is a:small'positivé number:independent

of n and p.

Since p/ n+p = g/l+g < 0, we have

B
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CA/n+p o pep 1/n+p | S
nepl) € 2%%r | c ] o | (7.6)

D

k (|a

For p = 0 énd 1etting n + o  the right hand side of
(7.6) approaches %; "For p 2 1, we note that |

| .. n*p . P A
< (1 + %) / (E) , or in terms of o,

 pep., /0D o 9/l*e. | . L A
[Cp" 7P ] < (1+0)/o When ¢ » 0, the right hand

side of the above inequality approaches 1. Thus, for

2 0, when ¢ » 0, the right hand side of (7.6) approaches

P

== g

. We have N
3 1/n+p

(la.,..D < g(o)/r

n+p!
whgre g(g) > 1 as o » 0.
If r > 1, there is a 6 > 0 and a p, 00 ¢ p < 1, such
that g(d)/r < p < 1 when 0 < p < 6.
Canside;-the sequence {r (2)} wheme-rk(z}=sz):snk(z)i
By hypothesis, {Snk(z}} is .uniformly overconvergént‘}na_
rneighborhcod=of aﬂﬁoint zo at whith'f(z) is.analytic“and.
\

|101‘= 1. Let the.domain.A be the union of this neighbof-

>

i@pod/tdgéther~With the interior of the unit disc.  Thén
for &ufficiently’large k, }rk(zJI <1 for all zsA,

| Frqmthegabovéﬁwe dbtain-chStahtS b, 0 < p < 1, and
6 > 0 such that (Ian+p[)-l/ﬁ+p < p for @ < p[nk <0 For
p=20,n=n and we have p < no. So | a | < o" for

nm $no$om o+ pfwhich gives |aﬂj < pﬁ‘for'nké n < ny(1+6).
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Theorem 7.7: If f{z) =»Zn:0 anZn has aHSUBSequencerf

partial sums, {Snk(z)},'Overconverging'uniformly in a
neighborhood OfagregUlaT‘pOintonthecircle of conver-
jgéﬁce;'then Zn:O anzn is the sum of two power series, the
first of which has radius of convergence greater tﬁan 1,

and the ébefficients~6£ the sécandfposéess Hadamard gaps.

Proof: By Theorem 7.5 we have

TR . S U
la_| < o~ for me §no< (1+6)ny .

ol
where 0 < p < 1 and 6 < 0.

Thus there exists € > 1 such that {@n1gn~< o for all

n such th&ttnk £n < ﬁl*ﬁ}qki ThéTSerieS

Zanznf’nkf‘ﬁ < (1+8)ny , has radius of convergence greater

than 1. The series formed from the remaining coefficients -

is a Hadamard gap series.

. Q . E .D.

8. ©Overconvergence for a Normal Family 0f Ar

In this final section we provide generalizations of
the thearems.ef»secti@ns 6. and 7 to a normal family of
analytic functions.

Definition 8.1: Let F be a family of functions. F is

| X o ) |
called normal if every sequence, {fn} f e F, has a subse-

‘quence which either converges uniformly or diverges uni-

formly on compact sets.

14lytic Functions.

b
i
fid
g
g
i

C gy
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Let R denote the radius of the greatest circle about
the origin in which each fe F is analytic and F is normal.
Assume that the fémily-is-uniformly bounded on compact

subsets of {z:]|z| < R}.

Definition 8.2: R is called the radius of regularity for

F ‘.

Lemma 8.3: Let feF, £(z) = ] %, a_(£)z". Each of the

quantities, sup la (f)l n=20,1, 2; . eey is finite.
feF I )

Proof: let r < R. Let CA {t:|t| = r},

Then |
a,(£) ‘23;‘;{ £(0) /™ de.

Thus -
Ianff)1 < max(f,c)/r"

< M/r"

where Max (f,c) = max |f(z)| and M is the uniform bound
- zec
for F. Therefore we have

sup |a (£)] £ M/r
feF -

feF “
Q.E.D.
1/n
Lemma 8.4: lim sup sup Ia (fﬂ = 1/R
| | feF :

Proof: Let r < R. Then |an(f)2“{ is bounded by K(£).

¢ M/Tt
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where M is thesuniﬁdrm;bmunﬂafbr.F; n
- Therefore - | | " o |
' So

SUP [anﬁfjliln < (M)i/n/r’

It follows that

lim sup sup |a_ (f)ll/n < 1/r.
- ne feF

This holds for every r < R. Thus we have R

1im sup sup |a (f)ll/n < l/R
> feF

Now assume r > R. Assume each feF is analytic in
{z:]z| < R}. Then F is no longer uniformly bounded. So
we can find a point zl‘and a functlon fleF such that
lfv(zl)l > 1. Then we can flnd z, 3 z | and £, ¥ fl,
fzeF such that |f (zz)l > 2. Continuing this process
inductively we can find z, and f eF such that ]fh(znjl S N.
We have lim [f (z )]

. T
Now the sequence, {Zn}, is bounded. There fore it

has a 1limit point zg- It follows that lim lf (zo)l

n-—>o
By the properties of F, {f } converges uniformly on
CdmpactsubéetS‘of {z:]z]| < R}, and the limit function is
analytic. Furthermore this function belongs to F. Let
- ‘ f(z) = lim £,(z) where jz1~< R. By assumption, fIZ)AiS

e | = - .
analytic in {z:|z| < r}. Since f(z) agrees with
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11m f (z) for 1zjf<'R, it agrees with lim £_(z) for

N0 n--e n .

lz] < r. [1]. But lim f n(zg) = <. This is a contradiction.
N+~ ~

IhérefOFe- given r > R, we can find feF such that f
has a singularity in {z: |z] < r}. 1t follows that the
sequence, {lan(f)lr”}, is unbounded. Thus for n sufiigiently
large, *
) ay(0x" s 1
This gives
which yields

fep B 7 r

It follows that

Lim sup sup |a (£)|1/" > 175,

But ‘this holds for every r > R. Thus we have

'limfsup sup lan(f){lfn > 1R,
n+m; teF

.Deﬁiniﬁiﬁn 8.5¢ D will be called a domain ofﬁregularity
of F if each feF is analytic in D, F is normal in D, and

F is uniformly bbund6d=ongcompaét subsetsigf D.

Definition 8.6: A point z on the boundary of D will be
" ¢31led*ﬁ regular point of F if thereiis a neighborhood

about z such that thetuniﬁn of the neighborhood and D is

a domain of regularity.
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Definition 8.7: A point z on the boundary of D will be

called a singular point of F if and only if z is not a

regular point of F.

Definition 8.8: Let D = {z:|z] < R}. If no point of

{z:l21 = R} is a regular point of F, fz:]z] = R} is called

3

a cut for F.

Lemma 8.9: Let z = (w% + w3™1y/2 where q is a positive

integerq If'lWI 5¥12 W %’1, then_]zf < 1.

Proof: It is clear that if |w| < 1, then |z] < 1. Suppose

[w| = 1 and [z| = 1. Then we have

.@

2

Let w = u + iv. We obtain ¢

(Itﬁ)z +.V2'= 4

This is thé:éqyation-af amethésabOut;u = -1, v = 0,
of radius 2. But the only point on this circle with
modulus = 1 from the oriéiﬁdin WW:.Ii IThiS is.atcantra&icy
tion. Thus {z]| < 1 for Jlwl <1, w 4 1.

Lemma 8.10: Suppose lim a_ = a > 0 and lim sup b_ = b > 0.
T} 0o

H

Proof: Let € > 0 be given. EThéﬁ, for Suffiéientiy large

'an bn <’§ﬁ$$}(b+gj
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Since 1lim a, = a, a, > a-e for sufficiently large n.
:By the definition of 1im:sup@ hn'§‘b - € for infinitely
many n. Thus

for-infiﬁitely{many n.

Therefore -

, N>

-Q,Ekl;

Theorem 8.11: Let F be a family of functions. Let

f(z) = Zﬁzo an(f)zn,"where f(ing, Suppose Pehas radiusa
of regularity R = 1 and F is uniformly bounded ancqmpact
subsets of {zr]z[ < 17%. Suppose that to each function
there corresponds a sequence of integers, {A (£)}, such

- that a_(f) = 0«if n %-A (f)  Also assume Ap 1(f)/k (£)2x>1
wheére X is a ¢onstant 1ndependent of £f. Then {z;lzl = 1}
1§ a cut for F.

 PtQp£: Let q be a+positive integer such that q > 1/(x-1).

Let z = (wq+wq 1)/2 Define a family of functlons G, by

Zm:O bm{g}wm-

By Lemma 8.9, |w| < 1, wit 1, implies |z] <« 1. This
e o = ) . ; . ;. ~
n means that each point of {w:|w| = 1} is a regular point of

G except possibly w = 1. Therefore, R(G) > 1. We wish to




show that R(G) = 1, implying that w = 1 is a singular point
of G. Then z #'1 is a singular point of F.

NOW'éonsider the polynomials

Ao (f)
(wq+wq+1/2) % and (wq+wq 1/2)

R

A (f)

'WhérE-L % k. ;Thﬁy have no common powers of w. So we can
express. eathrgoefficient, bm(gJ,'in terms of a single

&n(f); We have

b.. o= (a (£)/2Me. 0 £ 3 &mn

where Cjun is the binomial coefficient (?)1
Let m.=4q, * [n/2], where [n/2]>denotes the greatest

B | - » <~
integer less than or equal to n/2. We have

by (&) = (a (£)/2" )C[ /217"

Since R(P) -

lim sup sup Ia (f)ll/m'= 1

N0 feF

It is also true that

1im {C 2 © o= L.
nim “[n/2],n

Then, by Lemma 8.10 we have

‘lim sup sup me (g)] & = 1.
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. hypotheses of the thearem,
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s l/m
1/R(G) = lim sup sup ,b (g)l
m-»oco g (N G

z 1.
Therefore R(G) < 1,

and so we have R(G ) = I. This

means w = 1 is 3 singular point of G, and s¢ z = 1l is a

singular point of F.

If we consider thevfamily @fifuﬁctians‘defined by

£(t) = ) °°"O a (elé ke

where =z ::el@t, we see that this family=$atisfies the
But t = 1 ig a singular point’

of this family, and so 2 =»_16 is ‘a singular point of F.

Therefore {2:LzJ:: 1} is ga cut for F.

We set S.(f.Z) —-Zk 0 4 (f)z'; and we call

Z {S (f,2)} the complete famlly of partial sums of F.

By a subfamlly of Z we mean a subset of Z determined. by

-

a family of sequences of 1ntegers, {m,(f)},:Where, for

every £, 0 < p 1B <m, () < ..., m (f) » o,
Sn () (5,203 by Jimy (£)] and Jin =1

We denote

Deflnltion 8.12: ‘The,subfamily.of paTtial sums, X[m (£)71,

converges unlformly to F on 3 set A if, given £ > 0, there

is an N(e,A), independent of f, such ‘that Is_ Cf)(f,2)~ffzjfka

for n > N} fEF) ZQAy
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Lemma 8.13: If F has positive radius of regularity R, then

every subfamily of partial sums,'Z[mn(f)], converges uni-

formly to F on every compact subset of {z:]z]| < R}.

Proof: '-S':upposeB a compact subset A and a subfamily .f‘O*f"
partial sums, Z[mn(f)],iWhich daes;ngt»cénverge-uniform1y~
to F on A.

Theng e > 0, zed, and a sequence of functions

a5

{fk{z)}such that

Since F is normal in A, there is & subsequence,

{fk_(Z}},ﬁcf ffk(z)},WHich conVErges'uniforﬁly on A to

A L |
t(z), f(z) an analytic function,
We have

+ [ £(z) - s (f,2)] + |8 (f,2) -

.' Smn(fkjﬁfk;z)[
.Wherﬁ Sn(f}zj,is fhe.nth partial sum of 2y, Bach term;
Un?thegright can be~madéarbitrérily small. This is a
contradiction.

Definition 8.14: Let F have radius of regularity R.

We say that a subfamily ZIﬁh(f)};afﬁthewpartial sums of F

1s overconvergent if {z:|z| = R} is not 4 cut for F, and

if there is a simply connected domain D containing
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fzi]z] < R} and the points of {z:]z] = R where F is regular

subset of D. \

Lemma 8.15: Let F have radius of regularity R. Then the

complete family dfipartial sums 1S never overconvergent.

Proof: We assume {z:|z| = R} is not a,cut for'F, an& that
) is o verconvergent. By definition 8. 1432 0> |z O' > R,
where F is uniformly bounded. Assume lf(zo), <M for all
feF;' By definition 8.12 phere is :an N(l,zo) such that
[Sﬁ(f,Zb)} < Mtl for n > N, for all feF. Then for n > N,

and for all nglwé have

c1imy. | W /5 T <  mfu;<=1/ﬁ |

sup fa_ (£) [ ]za| S [2(M+1)] ] A

fellz ,a;Il. )| l .0, = \j
Thus

lim sup sup lanff)ll/ﬁli@l <1
n>o  feF T &

n->o
This gives
(1/R) fz4] < 1.
But thishis a contradiction.
J - Q.E.D.

_Definition.Bflég We say thatiF'has;gapsggfﬁHadamard type .




.1f there is apoéitiveAnumbar 6 and, for each feF, a pair
of sequences of positive inteéers; {Xﬁ(f)}, {un{f)}, such
”that ) (f) < ﬁ‘(f),nak(f}‘+t0 implies Ah(f) $ k< gn(f)-
for some n and A 1(f) > (1+6)u (f) ”

Theorem 8.17: Suppose F has radius of regularity R = 1

and that {z:|z| = 1} is not a cut for F. Then if F h¥w
gaps of Hadamard type, the subfamily of partial sums,

.Z[U (£) 1, is overconvergent.

Proof: 1Let D be a simply connected domain containing

{z:|z] < 1} and the points of {z:]|z| = 1} at which F is
regular. We assume leD, and. we show that Z[Un(f)l'CQnVerges
uniformly to F on {z:|z:1]| * a} for some positive u. Then
the rotation used in Theotreéem 8.11 suffices to show over-
.chVeréenceat each point-z = eie where F is regular.

Let p be a positive integer such that 1/p < 8. Let
'z = wp+wp 1/2 = ¢(wWw). We define aAfamily=infuhttions G
by - f '

“ Ineo 2 (f)(¢(w)) |

= Zn 0 n(g)W

By Lemma 8.9, Weuhavefwf $1, w4, implies [¢w)] < 1.
SincB»¢(1) ~1eD, there is an e>0 such that G is normal and

unlformly bounded on ‘compact subsets of {w: |,1 < 1l+e},
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By Lemma 8.13 the subfamiiy of partial sums of G
determined byythe family of sequences , {CP+1)Hn(f)},'CQH‘
verges uniformly to G on {Wffw{ S 1+e/2}. The image of
{w:w| < 1+e/2} under z = ¢(w) contains a disc about z = 1.
Let this disc be {z:]z-1| < a} where o > 0. We have

My (£). k  (p+1)w ()

ok
Lo L by (g)w™.

The family on the right converges uniformly to G on
{w:|w| € 1+e/2 . Therefore-éheAfamiLy on the left con-
verges uniformly to F'Qn,{Z:]zFlf £ a}. So the family is
overconvergent at z = 1, By the remark at the beginning
of the proof, the family iS‘overCanergent'at;eaéhgpoinf
of {z:|z| = 1} where F is regular.

:ThEQYQWQB,IB: Let F have radius of regularity R = 1,
Suppose that theé subfamily, Z[mn(fi}, Qf'parpial sums of
F 1is overﬁanvergeht. Then every feF can be written as

the sum of two power series, f(2)= g(z) + h(Z),~Where the
family {g(z)} has gaps of Hadamard type and the family

th(z)} has radius of regularity greater than 1.

ﬁ}oof; Let D be a Simply'connected'domain containing the
{z:]z] < 1} and therdintsof-{z:lzl = 1} at which F is

regular. Let A be a compact subset of D which also contains
{z:ﬁzf'< 1} and the points of {z:|z| = 1} at which F is

regular. "By hypothesis there exists N(1,A) such that
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for n > N and for all feF. % ' N

The analysis in -tfh-.e‘; proof of Theorem 7. 5 applies
uniformly to F. Therefore we have constaiits p, 0 < p < 1, |
and 6 > 0 such that ‘

T

We can find ¢ > 1 such that

[h (£} [e® < o™

for every feF.
 The family {h(z)}, where h(z) = jhn(f}zn,
mn(f) < n < (1+6 )mn (f), is a famll y of functions e ach o f i

which is analytic in a disc of radius greater than 1.

Since p < 1, Jp™ is convergent and this series provides a S |
‘uniform bo und for {h(z)}. Therefore {h{(z)} has radius of

regularity greater than 1.

The family {g(z)} formed from the | remaining coeff icients
has gaps of Hadamard type, where we take the sequences
1A (£)} and {p (£)} to be identical and equal to {m_(£)}.

Q.E.D. ¥
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