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‘:Abstract = .

{

' The order,of the*stress singularity at 1its vertéx of
a wedgé of two bonded el§stic medla under longitudinal shear
1s solved by use of the Williams method° The similar pro-

blem of an elastic wedge bonded to a rigid foundation'is

‘also solved using the same method. Next, the problem off a

7

~cylindrical elastic media whose boundary 1is a pblygon bonded

to a rigid'founQation and subjected to various types of
longitudinal shear loads on 1ts boundary igconsidered. A

number of examples are workgg\gut ang expressions for con- -

tact stresses along the bonds are given,

4

~t |
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“. I, Introduction i - ST
N —— .A |

N 2 7 . . . ’
. .

N . In the field of fracture mechanics considerable atten:dv

.tlon has recently been given to the evaluation of stress
| & singularities in elastic materials (for\survey and ref
- | see, Irwin [l] Barenblatt [2] and Sneddon [3]). Most of o
'//the work 1n this fleld deals with the determination of the
stress state in the vieinity of cracks in homogeneous media:__
Williams [4,5] has studied the form of the stress singularity
‘in bonded dissimilar planes contalning semi-infinite cracks.
-~ The solution of the general problem of two bonded semi-
infinite dissimilar planes containing a series of cracks

along the bond has been solved by Erdogan [(6,7].

Barenblatt‘and Cherepanov [8] havé;considered the
infinite homogeneous plane containing cracks of various
geometries and subjected to longitudinal shear, Erdogan-
[9] has‘recently solved the prob of two semi-infinite
elastic media bonded along y=0 plane, containing cracks”or'.
symmetric cavities with surfaces parallel to the z-axis

.. and subjected to longitudinal shear forces or tractions :
in various ways, In the first partaof this thesis we study
| -/ the form of the stress singularity at the crack tip in the

problem solved by Erdogan [9]., 1In particular we solve the

problem of the stress singularity at its vertex .of a.gf

wedge of two bonded




'“elastic media under 1ongit&dinal shear using a technique
similar to that developed by Williams [M] This solution
is then checked agalnst [9]. |

Nexthe consider the problem of a 3;dimensional
cylindrical elastic media whose boundary is a pol&gon
bonded to a rigid foundation and Subjected to various

types of longitudinal shear loads on its boundarye For

example,.consider a block of aluminum bonded to a founda-

“1on made of steel. The elastic shear modul s of alumi-
num is much smaller than that of steel; ther fore, the
deformations. in tne steel foundation are negligible com-
'pared to the defornations'in the aluminum}block so that
-for all practicle purposes the Eteel foundation may be
considered rigid This problem can also be applied to

three- dimensional cylindrical polycrystalline materials

4

/ ,
wilth different properties containing cavities or cracks

along the crystal\boundaries:and snbjected to various

" types oflongitudinal“ehear'loadse-;?
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. An 'tﬁ ‘
2, Elastic Wedge
S O ——————

Consider an infinite elastic wedge with 1ts generators_
parallel to the z-direction (Fig, 1) and external loads

and displacements parallel to . the z-axis and 1ndependent

- of the z-coordinate. Following [8], for the diSplacementswf‘

. a
~and stresses we have
! -
u=10, v=0, w=uwx,y) .
| N (1)
. g = g = oz = 7 = O’ T . = u-a_vi’ T = uﬂv.
W’ X Y Xy yaz. | ay XZ 3 X

where u 1s the shear modulus, Substituting (1) into the
equilibhrium equat%fns yields

V2w = 0 | ; | (2)

From [M] we‘see'that~ar0und the- wedge tip w may be
-
written in-'polar coordinates as the product solution of a

function of r and 6 (O<e<mn).

In polar coordinates (2) becomes N
rz d 'W + p m + W = 0 L e .~ < (u) J
ar2  3r  3¢2 | . { "
- u - i




7 .
Substituting (3) into (4) yields,
where the.primes_represent'differentiation with respect
to 9, 'Solving the differential equation (5) for F(s)
ylelds
F(8) =A_cos A 6 +B sin A 6 ’ | (6)
n - n . n n -
where A and B are constants determined from the boun-
'dary conditions,, Substituting (6) into (3) yields )
W=or (Aa cos A 6 + B_ §in A, 9) (7)
 ?¢ In polar coordinates + and = are replaced by T and
\ Yz X2 | 0z |
‘7., and the latter two_are given by - g
o= (8 s
r 30 . - -
p 5 Differentiating (7) with respect to 6 and r and substituting BN
" into (8) ana (9) ylelds - | o
) o ¥
T = u A pAn-1 (A toé A-e'; B_ sin A 6)1 : (10)
rz n - n - 'n- n. n-". -




T

0z

_ o~
Ag=-1

(=A_ sin 2. 6 + B cos A 8)
n n n n

,\) . -

=y Anr

Case I - Clamped-Free Wedge

(11)

N

Consider the case where the edge, 6 = mn, is stress

| N |
in (7) and & = mv in (11) and setting them equal to

yie£d§

o5

b
Lo

d_. | | t

free and the edge, 6 = 0, is clamped, SubstitutingAe = 0

&"“\/
zero

Ay

Ty (mn) 0 WX or ( A sin A mm +_Bnlcos Anmn) (12)

w&O) = 0 =A r'm

»

A

From (12) and (13) We_have

A

. A— m
cos A mm

whieh implies

mmwi

A

n

n

= 0

0

\\¥
=,(2n-1>1T
2

B,

- 2N=1

2m

(13)

NS
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- " Near the wedge tip, that 1s for small values of r the v §
displacement and stresses may be expressed as {
N ' | | ] , : ' | \
S = »l/2m 0 3/2m ’
W r-/ = (Bl sin m) + O(r ) /‘}
“ - - ' $ 7
N ~ (M m ' .0y - Z2m
( %o = (=) r (B?.c?sza) + O(r =7 ) E
1-2m ' . 3-2m
U 2m 6 ' + 0 2m )
Trz = (2-5) r A('Bl si_n m) 3 (I‘
;- ~ ° From the last equatkon the order of the stress singula-
, . : | l-2m
rity at the wedge tip 1s given by r °® ., "Define .
l=2m | | ) , .,V_,‘"
% = | | ; €18)
o B
Equation (18) shows the following analogiles: | - ; .
N | | | -
m <‘%3‘ A\ ¥ > 03 m o> %3 A\¥ < 0; m = %, A% =0
The results_éhpw\that for the ciamped-freeicase there are .
: | \.// : | ' ’ ‘ | N
- stress singularities at the wedge tip only for m > %o, | |
. Case'iIi Free-Ffee . '
Consider the case where the edges, 6 = mn and 6 = 0 ~
are .stress free. Substituting'e =-0 and 6 = mr in (11)
‘i\ | ' » )
; Y N - o ‘ : ‘., " . \

,_,:/J - B .( .\ am 7 -




~‘and setting the'reéulting expressions equal to zero_yieldg'.

o Ap=1, -
'0 =W A r'n (Oan) | -

o
[

. Xn-l ' ‘ . 5 | )
u-}n r | (--An sin Anmw + Bn”cos Anmn)

{
{

'

(19)

S (20)

If we take the determinént of the coef‘ficients'_of' An and

”Bﬂ in (19) and (20) and set them equal to zero we have .

"sin A mm Q‘

which implies

4 y
mrl, = oam.one=l, 2, 3, L.,
n | |
Anz;n. n=-¢..l’ 2’ 3, o6 0

Again, for small values of r the stresses become

~

l-m | 2-m'
= (K m S 0 . m
Tgg = (3) T (=A) sin ﬁ? + 0(r )
L\/ e
2 lem 2-m
_ m 8y m - ’
L (50 r (Al cos ﬁ) + 0(r 7 ) )

v

Equation (24) shows that there are no singularities

vertex except for m > 1,

N

e

(24)
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If the edges 6 = m and 6 = 0 are qlémped, equation

(7) at these values of 8 becémes - ]

g -

(25)

- on oo | o
0 = r"®(A cos A mm + B sin ;Anmn) o (26)

o

-frﬁm which we have .
sin Aymm =0

It then follows that

\

lem
m

/ f = E. -
Tﬁz =T (B, cos m) + O(r

lem 2-m
r ™ (B; sin =) + O(r " )

-
"
S=

- o~ S .
~ It 1s obvious that equations (22) and (23) from case II

ey ”~ | |
follow and that the results for the order of stress sin-

gularity in both case II and case IIT are the same,

L7

]
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Wedge of Two Bonded Elastic Media

Consider an infinite wedge of two bonded elastic
media with its generators parallel to the z-direction

(Fig° 2) and external loads and displacements parallel

to the z-axis- and independent of the z-coordinate,

Erpeml
™~

——

Now let two elastic”media_with—sheaffmo&uli'ul and
Mo oocupy the lower and upper portions of the wedge S~
and s, respectively (Fig. 2)., Let the two media be
bonded along the strip L on the real'axis!x, W) and wj

will have to satisfy (1) in S~ and ST and following [9]

the boundary conditions may be written as
WT(t) = wit) = n(t) " onL o (28)
- + | s

where the subscripts 1 and 2 refer to lower and upper

parts of tne.wedge, t 1s the coordinate along the real

axis, and h(t) is themdislocation,along the bonds.
Let
. A | S ﬂ | | | /
w2 =r" Fp(e) - | (31)
o | NS
— o '

) . 3 i PO ‘
im0l s s e 1

o e e W et i
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“From (8) and4£9) we have

. ?

~ Substituting (30) and (31) into (4) ylelds two differen-
. tial equations 1n F,(6) and F,(8) identical to (5) whose

'.sdlutions are identical to (6); therefore,we have

?

‘Fl(e) = A, cos A6 +B sin )6 ” | (32)

Fa(8) = C, cos A @ + D sin e | (33)

In polar coordinates we replace Tiyz and Tyyz by T34z and

rzezo"Equation'(29) becomes

t102(0) = t7gz(0) (34)

s - S,
(36)‘
Substituting .(30) - (33) 1into (35) ylelds
o =y r An(-An'sinﬁf'f Bﬁ COSzﬁf) '(31)‘

o A=l RSP AR SO ‘2,}_
Tppp =2 T A\ (=C . sin Ap + Dn‘cosrﬁf) - (38)

If we subétitute (37) and'(38) 1nto (34), we'have"

D, = —B, L _f‘(39)

b bt e S s e s
1
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Case I - Mixed Boundary Condition§
. ‘ . ! ’ -
— \ ' P ’

dbnSidér'the case for which the_diSldbation alogé the
bond iine L 1s zero and the edges are stress free., We

then have

h(t) = 0 o .
’ - (40)

(B1) = 7, (-kcr) = 0

t20z

n

from (37), 0 = A sin kmx_+ B cos kmh_ + 0 ©(b2)

_fromg(38), 0 sinma} ~ (43)

O + B El COoS mrA -« C
: n uz n n

In order for A , B , and C_ not all to be identically

zero, the determinant of their coefficients must be zero
| _ 0 /r
which yields -

)

cos. knd_ sin mmA_ + — sin kmA_ cos mmA_ = 0 ul)
n R ¢ U - n n =

M2

Equation-(wu) 1s then the eiéen-equation from which AnmuSt

be determined: Dividing (44) by cos kwr, cos mmir, yields
i M1, | .

tan mmi, = - (F;),tan-kﬂxn | (45)

Define:

\

Py
L~ n e e A Pt B N § S L - e %2 L et s faras it

e e e o e ot e =




u > J

- Substituting (46), (47), and (48) into .(45) reduces (U5) to
| | N N S e
tan Bx = - o tan x/ | . (49).

Next, we choose eleven values of o and 8, We then
construct an éleven by eleven matrix with each member of

the matrix representing the first value of x such that

- 0 < x < m which satisfies equation (49) for the corres-
- ponding value of a and 8., The results are shown 1n table
I and the graph in Fig, 17. Once x is known, the smallest

value: of X between 0 and 1 is determined from equation (U47) -

as a function of k. Equation (48) is then used to cal-
culate m once k 1is stipulated,

o
Case II

Conslder the case where thé’dislocation along the
‘bond line 1s zero and_ﬁhe displacements on the edges are

; ~ also zero. Applying the boundary conditions yields

| from(28), 0=A" =-C (50)
7 . n n AN
. ;;om (30), .0,= An’cos kmd = B, sin km = - | f’.(Sl)
S from (31), 0 = Ll g sin mmA +C_ cos mmA a (52)
o d T 7 | u'z n n n- n ‘ " 'n B

- 13 -

~




3 ’
t_.
If we take the determinant of the coefficients of A -
. ‘Bh,aand Cy in (50), (51) and (52) and set 1t equal to
- ~zero, we have o “

) B o kndy sin mmr, + sin kmi_ cos mmA_ = 0 - (53)
uz . ] i & B

Equation (53)'reduces'to |

— tan mm = - tan kn)_ u (54)

M2 | | o

. | . C \'

Substituting (46), (U47) and (48) into (54) yields

« tan gx = - tan x  °  ° (55)

" As in case I we form an eleven‘by eleven matrix and
calculate the first value of x between 0 and r from equation
(49) for given values of o and 8, The results are shown

. -~

'
in Table II&and the graph in Fig. 18,

- Case III

Consider the caée'for which the edges are stress free

and the derivative of the dislocation is zero along the

.. bond 1line, Differentiating (28) with respect to t yields
y |

i) W) sne) (56)

L

- 14 -




A 8 . RN

'f' In'po1ar cdordinates the t axis 1is equai_to-m and_from’(363

: . ’ ] i ‘ B . B
E . K ' i ~, . ‘ . ..

N \ v * ” o . v * : i

’ 1

. s . . . - ! {
' . N . P

) . . (

-, .t . o . s " s
X

we see that (56) becomes - S I

O e

T?rz(r) T;rz(r)

= h*(t) - o (57)
LB W2 g n !

— : . _ o /
- . - i . . {

 Applying the boundary conditions ylelds

. U1 Ho . |

>

a

sin kpy, + Bn/cos Krap, =0 . 159)

from (37), A,

’ L U '
from (38), B T cos mpA - C, sinmmr =0 | o (60)

If we take the detérminaht oflthe coefficlents of the

~. constants In equations (58) to (60) and set it equal to
zero, we have the following eigen—equation fbr'kno
u'l H2

— sin kmA_ cos mmA_ + == cos km\ sin.mm\_ = 0 (61)
M2 - A . M1 n T "

Equation,(éi) reduces to

. : u l : | . : X ) { 3 L | e
(==)2 tan kmiA_ = tan mmw) | o f62)'

If we substituteféquati¢ns'(M6);— (48) into (62), we have

!

N aztan X = taﬁ<8x S . (63)

R

R ) | - o - e .

- 15 = B




"
A0y

J#y.

‘which implieeo - o s

~Again, as in case I and II we form an eleven by
eleven matrix and determine the first value of X between

0 and n satisfying equation (63) for the given valueé&of

a and Bo The results are shown in Table III and the

graph in Fig, 19

¢ .

There are several interestingvoompariSOns to be made
“between the eigen-equations for the bi-material wedge and

the wedge of constant shear modulus,‘ for example, if k

.or m equals zero, the bi-material wedge becomes a wedge of

constant shear modulus andequations KIU), (53) and (61)

reduce to (21) 'and (27) which is as we would eXpectm

If the bi-material wedge is symmetric, i,e, k=m,
:équations (44), (53), and (61) reduce to T

@in‘knln cos Kmi, =0 o | (6&)

LN

If we recall the trigonometric identity, sin 2x=2 sin X cos Xx-

equation (64) becomes -

i
o

sin ékwxn fk&g)m_

2knxh = nn; ‘ n'=‘l; 25 we !, (66)-

e -, e -




......

T .a

A ’ L Y . . . W

v 7+ For the smallest value of A_between 0 and 1 we have

o o, _
le'a '];" | I L (67)

,
[

w

- Equation (66) is the same as équatign.(QZ),where the

wedge angle 2nk in (66) is gqualfto tﬁe wéhge angle mn'
in (22), | |

1 equals y,, equations (44), (53) and (61) reduce

fin knA_cos mr\ + ‘cos km) sin.mﬁx =0 , KGE)"
n n n n : -

If we recall the trigonometrﬂc‘identity

sin (x+y) = sin x cos y + sin y‘QOS X,
equation (68) becomes - . -
sin mx_ (k+m) =0 { - S (69)

which implies

\
h

mAL (k+m) = nr, n=1,2, ,,, - S (70)

!

Again,'for the Sméllest valuequ X~betWeen zerO-andkone

we have

>
i

| (71) .
(k+m)

- T BT T T T o 1 S TG ST A e et 59+ e A § i e e e e s

U

h
TS D TR TR | et = &




B v
h . . ;
] ~ ’ 4 .n """"\ %
. o
. Equation (70) is thg\same as equation (22) where the . |
wedge angle (k+m)n in (70) 1s equal to the wedge angle §
. my in (22). ! | |
‘ a . \
\ | |
% . .
5 7_,, ;
‘ A
' 5 2
; “
v \
N ~




'.M.. The Problem of Bonded Planes with a Diamond-'.

‘Shaped Cavity - - | o |

Consider infinitely long two-bonded semi-infinite -
cylindrical elastic media (Figure 3) with their genera-
tors parallel‘to the cd.irectiono "Let theguniform shear
load q (per unit thickness) and displacements be parallel
to the s-axis and independent of the o coordinate° .Pet‘
the two media be bonded along the strip ' on the real

axis r. Let v represent the cavity with square profile,

‘Let the two media with the elastic shear modull u; and %2

I3

| occupy the lower and upper-half planes I and £+\re5pec-

tively, Let the sldes of the‘square be of length a,-

vé

Assume  an analytfc function n = w(z) is found which

conformally maps the I plane onto the‘Sfplane'(Figure by

in such a way that z+ I, y+, Yy , T are mapped onto.S+,

S L'+ L'" eand w(;) > g as g + «, The displacements

w1 and wz, which are harmonic functions in n r+is plane,
will remain harmonic in 4 =_x+iy plane and the function

w(zg) will have a branch cut along L', If we now consider

the "equivalent longitudinal shear" problem in the - plane

(Figure 4), it is seen that, since w(g) = g as ¢ » =, we

’

have

"




e ..‘.4,.1_.5‘;&;»@

i oAb iy LA A s

o B |
i A .“ :
~ In Figure 4 let the bonded.media contain a central -
_crack (-b b), ‘the stress state at 1nfin1ty q and the
dislocation on L h(t) be zero and the shear stress. on’
the ;rack surface be, g(t) = 0, The solution for phe o
sontact st;ssses along L for this;problem'is'given by L
" Erdogan [9] as | % .

T, (t) =1egb 7 2 (t > b)) - (72)

tyz %y 2 - |
Again from Erdogan [9] the. contact stresses on T are:
Obtained as’ |

= (r) = 1~ () (13)

1S5S0 1yz2 "~ Iw'(t)]

where r;yz(t) 1s the equivalent shear obtained from (72).
The problem now is to find a mapping.function which con- <
formally maps the square cavity in Figure 3 onto the

crack in Figure 4, Consider the following Swartz-

*.Christoffel mapping function

1/2 - ;

W'(e) = S0 . __K o R 7))

~ie - l /2 | \_ i R
B ;2 -b?2 ) R -
o | | T ~ ; T o e L‘//
7 | |
- 20 - )
\\ . ...‘.
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KR

ﬂ'bfsuch'that | | | ¢

¥

-

which maps the square;cavity.in.Figure;3fonpb the crack

;n.Figure 4, Bymchoosing k=1,‘91<+1 as cQw. We ch&ose

dc

| 1/2
b
(D) = n(C) = z dg
"n( ) *'n< : I°‘(52-b2)l/ﬂ

or

v gl/2 g¢

—'(l-i) = I e ——————

N ) N 0 (52_b1)1/4177

' _

but

A

il/g = [e

(g2-p2)

(£2-b2)71/H = 2 (1.1) (p2-¢2)1/4

therefore !
4 7

4 w ‘. l .
<D 4 /.2 dcf;

becomes

i

= I"/z /6 sIn 6 b cos 6 de
0 ~ Jb cos 8

&

. . -
= b jg/ v/sIn o cos ‘6 de

_ m
]

1

(bz-Cz')J-l/u _ e-i'ﬂ'./u(bz

-z2)

If we let ¢ = b sin 8, dz = b cos : ae,-quation,(Tﬁ)“

-

.
. V
. . R
; 3 .
FANEN "
. § L
v o ' ¥
A
I ; N
.

|

-1/4

(76)

T

:'\-




e e e e et i e e

"for £ > b and ¢ < =b,

» N

o
|

= ’["/2 /T_ZF de T ‘ .
/5 00 < .U

C

2= 22 [ /sin 8. do = -—»J'"/2 /SIn 6 do -
vz /Z 0 |

R
_b [r r (T)
> 2r(5)

The function _ _ 1s ho1omorph1c except for
w(g) ¢ es” |

I'“\

/

The contact stresses are given by (73). For |t]

where t is the real axis on L
; o tl/2 . . £ l1/2
'w (t)l - i " l/
(t2-b2)1/4|  (£2-p2)

Hence, from (73)

o () = gt (t2-b )l/h

T
1sg T/ ° ) |t|1/2 )

- 22 =

C77)

f7b - < bj; however, the value of w'(z) is well defined

(78)




e’

q ._(tz-bz);2n | | | | -

J

~Let t =b + € where ¢ 1s very small. .Equation (79)

becomes

or
R (80)

q 2

80 that as e¢+0 the order of stress singularity at the

point t=b in the g-plane is 1/4,

- ~Q“ From (74) we have | ; . - o

Efl/.z .

v e S

- | d 'T . ( B .
thus for t = (b+e) S o
Y 1/h
| ‘ | (2b)1/He1/k 2
- 23 -
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-
R ) :
; or | |
| b1/ 3/
= w(t) =fg--(g-) / 53/ + constant
now, as e+0 - th therefore the constant =_2;. Hence, .
" define ' | | -
a 4 p,1/4 3/4
t— - e €
é r /> k] ('2')
therefore, - ﬂ .' : -
Ceml/h U -b-l/h]l/3 5=1/3 (81)
. '3 (3)

§ .
substituting (81) into'(80) gives for the stress con-
centration on the r axis near the point r, = a.

1/3 -1/3 o
where b = 7%: (0,99706)a, so that as §+0 the order of
- 2 , |
'stress singularity at the point T = %E;in the n-plane
1s 1/3 -
Consider the case of the bi-material wedge symmetric

about the bond line with miXed boungzr'x-conditionso

Equationz(67) gives 1) = §-xwhere 2k is the wedge angle.,

“Since we are interested in the stress singularities, we

ll.(.-h Vo T B

) -
R St 5. PRI o7 ., g



-0y

o~ . ’ : . ) : T .
4 . U : '\f . Ny

;o ettt | - (83)

Foer = 3/4 (83) becomes | ‘

el =L .2, D

™

(n=1) =L

/

- The order of‘stress'singularity given’by (84) is the i

same as that given by (82) which 1is to be eXpected since

N i both Have the same wedge angle.

T S R R s R e s e
M = " BT W R, e S R W




~ where is.thé\shear modulus, If*we_substituté (87) into

g -k - -
5. Elastic Polygon-Bonded to a Rigid Foundation

-

.,

Consider an infinitely loné cylindrical elastic body 2

. (Pigure 5) with its generators parallel to the o direction.
Let the specified external loads and displacem®nts be
'parailel to- the o axis and 1ndepepden€ of the o coorQ&: |

nate.On the surface y with outward normal n in the r-s

plane, the shear stress acting in the o direction on vy

/) - N}
may be written as

T =M il _‘ (86)

ng 3n_

Then, after [8], for the displacement and stresses we have

>

s, W =w(s,r)

-
i
o
-
<
n
o

- (87)

o _ = 0 AW _ oW
Or = 0g T 0, = Trg = Uy Tgo = B 35 Tpg © ¥ 37

( |
the equilibrium equations, we obtain ¢

2y =0 . (88

From (87 and (88) it is easily verified that the

r'e A

displgg;ment and the stresses may be represented in terms;

<df.a,§ingle analytic function f(n) as follows

w =Re f(n), =

g * 1T eI (89)

where n = r+is

- 26 -

- 2w A e et

T Tt LRAE I 3 ek e e e g B ST A A T N el R s s T e
. »

e SRR AT R TS -:.’m.a:\‘.sg;m - G




: gquafioﬁ\(go) in the GgZ-plane be comes

The iong}tudinalﬁshear problem may be formulated-< o

as follows:

v . . Rl

- V2y(r,s) =0 '- 1 in I

wh(r) = h(r) 1.“~._ on T S ‘)=f90)

where z+ 1s the region in the upper half of-the n plane
o , |
* bounded by the surface v; T is the bond between the pol-
ygon and the rigid foundation; h(r) is the dislocation

along the bond; and q{r,s) represents the resultant lgn-

gltudinal shear force on Y-

| Assume that an analytic function n = w(Z) is found
which conformally maps the ¥ plane (Figdre 5) 1nto the

S+ plane (Figure 6) in such a way that 2+, 'y v are
| - N/
mapped onto S+, L, L', and normals on

-

Y are mapped onéa.

normals on L' with w(g) > ¢ as t > =, The displace-
ment, which is a hafmonic function in the n-plane, will
remain harmonic in the C;piane,-

G |

Using the .definition of directional derivative
- 27.-
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2wy =0 ins

_,“\ ¥

L () QSlJ‘“ = g(t) onL' - . .(91)
| Yz dn N o | a

L+ - wu&)=hn(t) - < onlL _ Vi
N . . . L , - N
NG | where t is the real aXiif N | | 2

{

Differentiating the last equation with respect to t and

recalling that %% = w'(zg), (91)'becomes - I -

~ : ; 4

v2w(x,y) =0  ° in S
: + | . N oy
| ) ryz(t) = g(t) |w'ét)| . on L' - (92)
) , ) | o | » . \ P \

W' (E) = nr(t) : on L

- & ‘ é - .
| > ' -
j ' i : : .
i
‘
1

For the substitute shear problem in-the f plane equax

tions (87) and (89) can be written as

1 ‘ . W - OW \ A~ \
T X 3% - Yy -ay \

\\

= Nl 4 oy = 0 ‘ ol \ -..~
W Ri £(z) , T, t1 Tog = £'(z - (9L) “

4.

o * Defining | _ - . o

- ' From (94) we may write -

i "
. . e~
-
v
"l <t ) . e B
' \ _ _ -y S .
. . . . o S
& V. - . i .
g ; : . s
o ‘ .. .
. - . ‘
’
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Thus the problem reduces to solving the Hilbert/problem
N given by’ (98) to obtain the function Q(;) which is

bond L has finite end points (-b, a) the solution of (98)

as follows - . | - | » ]
" oalz) = F(C) | ;(T§>S ’ (97)
t Fle) ¢ in S Lo 4
{d\{\n . ‘ | ~ |
, | :J .
iNoting that
F
o ¥ _ |
F=(t) = F () = a=(t)
Fr(e) = F(8) = a¥(e)

.sectionally holomorphic in the entire planeo If the

W = 5 [£(2) + T(5)] ”
(96)s
1, = 3w [F(2) - F(0)] " '

Y2

‘Now we define a new function Q(C) by expanding the

definitién of F into the lower-half plane S~ (Figure 6)

& ’\/\_/

and using (96) and (97), the last two equations in (92)

be come -
a*(£) +07(£) ="2n' (t) - on L
R o o (98)
a¥(e) - am(p) = &) JetCe)l g

') i

- 29 -




';* ~ may be written as [10]

'9(-c)l'= P(z) R(g) + R(z) fL 2h'(t) dt o
| . 27l R(t)(t=-z) D

o +R(g ., 2aB)]e'(t)]dt o ~ (99)

Vg B 2ni - rui(t‘C) R(t)

"where P(gz) is an arbitrary polynomial consistent with .
the behayior of @(z) at infinity and the»sectidnally

holomorphic function R(g) is the solution of the

SR U SO

homogeneous Hilbert problem obtained from (98) given .

. .
by - . '

— [
:
. i
: -

'R(C) = 1 ’

= —_— ” (100)-
/<c+bszc-35 A

'Since L is finite P(z) = A;z. From the boundary condi-
| Age F |
tions a(z)» 0 as g»» which implies that A; = 0; there-

fOre;
P(z) =0 . : * (101)
The contact stresses on ' are obtained as

W 9w
Taolr) =

-t
~
X.
~r
i

.8 . Yz | | (1.0‘2 )
° Iw'(t)l * LT

_Now;-xyz(t) is‘given.by -

L B ' : . o

" v

,yz(g) Ea.[n (t) -'n (t)] . ~;h~“(1o3o ?w*,,

- 30_-
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Examples

\.

Problem 1 -

Coﬁkidefva wedge with vertex angle mr élamped from
r=0 to r=a under a coﬁgentrated lopngitudinal shear force’
T (per uhit thickness) at fhe point bel™" 1n the n-plane

(Figure 7)\§Qd =0 on the feal axls for f>a. Thé mapping

- v function is given by = ' -
» . - .

no= w(g) = ¢"
, w(z) is a sectionally holomorphic function
3 e h ;
‘and its derivative is gilven by
= ’ . g
£ = w(e) = (@ Y : (104)
From the boundafy conditions (Figure 8) we have

g | . ”
h'(t) = 0 e

.\-. B ” e | \

1

@ R(z) ,
- c(g-a /M)
Substituting (104) and (105) into (99) yields - -°

YA

SO

CEmTATRS

=&

e e e )3 (¥ IUeERtai s i
~Els s G Y




0(e) = - —L [,

vu/c(cealjm)(bl/m+cl/m)_

/

Substituting equations (106), (10“), and (103) into

~equation (102), gives the contact stresses on T (Figure 7)

¥ LI

as
2m-1 1-2m .
2m 2m lm+1m |
o (r) = I A1T2g , (107)

AN
T _/al7m_r17m(bl/m+rl/m)

l/m f’/

where't has been repiaced by r . “From equation (107)
we see that the stress singularity at r=0 depends on the
power of r which is equal to ¥ given by equation (18)
thus, the order of stress singularity obtained in
equation (107) is the same as_that obtained using the
Williams method, For m=1 it is easily verified that
T o(r)'reduces to %yz(t) where r=t, Let us check‘the

stress singularity at r=a. Let }

- § = (a-r) R T
al/?(l-%Jl/m

r;/mt= (a;ﬁ)l/m -

/m

~The binomial expansion of (1-—»)l is

- 32 -
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0
fd

i
4
' L 1l ,1 \
§,1/m S m (Irl) Sy2
(1-— ] R —— + (-) -----
a ma 2| a

Now 6§ << ; therefore, we have

€quivalent to r-a, rso(r).has“a singularity on the order

of %m This agrees with A% given by equation (18) when

r axis, 1, e, let a*® in equation (107) whi ch yields

1 ‘ | . | . . u | .

e

From the last equation;we see that as §+0 which is

m=1, -

| Next consider the wedge clamped along the entire

2m-1 1-2m
T b 2m - am

1 (r) = —m—t -~ (108)




H.
U
Problem 2 . ~J ~ _; ot
Consider.a semi- 1nfin1te rectangle (Figure 9)
01amped from r=-a to r=+a under a concentrated shear '
force T (per unit thickness) at the point No. = a+ib in
‘the.n-planeo ' The mapping function is given by | -
n = w(g) = E% sinflc
(109)
o | <
From the boundary conditions (Figure 10) we have
h'(t)
q(t) = T6(t-c) ) |
R(g) = —— - (110)
v 2.1 -
g
whe I'é ) o / 1.
¢ = sin — (a+ib) = Ccos lbw cosh 2T (111)
2a - 2a 2a .

Substituting equations (109) and (110) into (99) yields

T‘Get-c) — ~g—% ¢ﬁ2-l dt
(L) = = i | . <;_z)
'nu ch- L o |
_/

_'- - .




(L) = —— - | | . (112)
m2y {cz-l (g=-c) R - -

- Substituting equations (112), (111), (109) and (103)

into (102) gives the contact stresses on I (Figure 9)

. a8

Lo

/| 

TSO(P):= I

(13)

7(sin %g - cosh %%)

If we treat equation (112) as a Green's function and

replace T by a distributed load q, (per unit thickness),

1ntegratihg equation (112) with respect to ¢ between

the limits o and 8 (Figure 12) ylelds |

Q(z) = log (== | - 7(11H)
2y VgZ-T 0 a-g |
where
¢
Figure (11) (115)
a = cosh %% “ | |

%

Substituting equations (115, (114), (109) and (103)

into (102) gives the contact stress on T (Figure II) as

r-

' W DT Tr | .
Qo - 2osh '« s8in
© o Tgelr) = — 1n -23T ?Z,"_ (116)
- U ; cn . SR , |
, Pchqshﬁ .sin ?3‘- ( |
, R . N ;
7 T 35 - R ?

s et




Equations (116) and (113)'show that there are no stress

]

.

J o
~ |

singularities at r = *a, In these ekpréssions we see _. |
% 4 l : . ‘ ~ aa h _ / | : %
| f' that“TF??T is raised to\the—zero power which agrees wlth ' |
| /B“‘ ‘equation (18) fOr.m=%'(F1gure 1).
. - | ® ./ ‘\__\ ,‘
*~ Problem 3 ' P
Corisider a reéténgular block bonded to a rigid-
foundation along T subjected to a longitudinal shear
force (per unit length) T (Pigure 13) at the point n=n,,
- The mapping function is given by
N T C? I S— o
dg - (g2-1)(g2-a2) . o
| . | o (117)
| | -1 .y
N e Iz; azt F(E’ sin z)

T DeD) .

where F(k,¢) 1s an elliptic integral of the first kind

-and'b and ¢ XFigure 13) are given inltefms of a (Figure 14)

by' o ’
: - p =«f; dt |
* | (1=t ¢)(a2-t2)
. - - /v
. “ . {‘N&.’.,(
¢ = [ e
. l (t2-1)(a2-t2) .
\ ‘ | <
S o |
- 36,- |
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|
‘ \
~To adjust the size; arientation, and position of the -
. r'ec‘t'»‘-?lfvlgle»let'w = An + B, where A and B are constants. .
From the boundary conditions (Figure 14) we have .
| . ‘ : : o A
.hv(t) = 0 ’
: : .o x : . _/}
a(t) = T8(t-to,) : . (118
R(z) = '
/T2 =1 ‘ |
where ¢. and t, (Figure 14) are given in terms of n and: |
’ no (Figure 13) by
¢ = -sn [naF(= , =) ] E
| g’ 2 :
P “to = =sn [NoaF (=, x)] | (119) %
‘o | o a 5
1.
Nne =r + 1c or n, = tb + is
where sn(x) is the Jacobian elliptic function, f

Substituting equations (117) and (118) into equation (99)

yields
. - w L | V/EZoT at
. ﬁ(;) = _ﬁ——i——— f 'Td(t-to) l _E——l—gg .
| . Vg2-1my L /(t2-1)(tz-a2)| (t-g)
o T 1 1
QL) = « co———— — (120)
-, . '“VCZél“u 'tg“az (to'C)~ |




» -’ (“:/
. | 4 &=
| J.&>‘ . i o ‘ S i.: o A%
: - The ﬁosition of to with reSpect to a depends on "o‘\
in the following way Af no = r + 1c/}hen lt | >a; 1T -
- .. Mg = tb + is7then Itol ‘a. Substituting equations (120),
| ~(ll9), (117) .and (103) 1nto equ;%ﬂon (102) ‘glves the con-
. zf.*  tact stress in thQ n-plane &Figure 13) as N
T | 1 - 7
N Isd(r) = (?) 1 T -
sn[nan(-,§)] - sn[raF( ,50] Q
> 2r o1 T |
a2 - Sn [I'aF(m,?)]
R — ol (121)
Problem 4

.
Consider an isosceles right triangular wedge
(Figure 15) clamped from O<r<a under a concentrated shear

force T (per unit thickness) at the point n=n, in the

n-plane, The mapping function is given by RS
3gi
: . -~
uu>=n=e771¢___£%___
0 (t2_1)3 t1/2

o q (122)

_ww(;).= ______l_______

(g2-1)3/% (1/2

In Figufe 15 b 1is given by

TN

- 38 -
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Fihca -

-y

b oo {1 dt __BO/MI/M T
- —2\3/% 1/2 - R

g 0 (1-t2)3/% ¢ .2 f
where B equals thebeta.function and t 1s the real axis
in Figure 16, From the boundary agnditions (Figure 16)

.

~ we have
h'(¢) =0 =

q(t) = Té(t-t,) (123)

where to, in Figure 16 1s given such that

3ri " -

N o= e n fto dt
S0 (g221)3/8 ¢gl/e

P

- . N
To adjust the size, orientation, and position of the
isosceles right triangle, let W = An + B where A and B

are constants: "

Substituting equations (123) and (122) ihtbiequation

(99) yiglds -

1 f | Td(t't.) /t(t-l)
L'

lg) = = =
|  (t=-2)(t%-1)

™ /_T—-TT
T o(124)

‘_ | Q( C) - ( l ‘ V'Co-I

A TH Vel ( o= c)(to 1)3
o : | _ 39 L




S %Substituting equation (124) 1into Squation (103)

Y Rt

gives the contact stress in the ;-plane (Figure 16) as

N . 1 BTISE) (to-t) |t3-1;3/%

From equation (102) we see that -~

e - - | 1/4,7:.13/k |
A ' () = 1-t. ,1+§ T : . (126)
.- B0 T(to=t) [to+1 |3/ ™|t -1] -

let t =1 + ¢ w%gre £<<, Equation (126) becomes

()18 (2y3/

1. (r) =
80 (to=1) [to+1]3/* |t -1|2

(127)
From (122) we have

Ny K

thus for t = | +-¢

ll(e)l/h

r=w(t) = (2)37%

+ const, o - (128)

As €20, w(e)+b; ﬁﬁerefore,‘the.const. = b,  Define

| /4 | s |
6-=r_b=-u(—e-)_$_ | (129)

y - (2)3/4

- hp -

(125)'
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Subs ' /W, 0 g |
. oubstituting for (e)™'" 1in equation (127) from equation
(129) ylelds - e
N el e@)3? _ (130
<o T hn(to=1) |to+1|3/%|to-172/4 T
where t, in terms of n, 1is given by |
‘ y | R ‘ r \
| | 3."1 e . :
* q to' dt : | ]
"o = e TS 1AW YL] ‘
0 (t2-1)° t |
From equationA(l30),we see that 6§ 1s ralsed to the first
power, If we c?nsider the case of the elastic wedge with
mixed boundary condiéions, we see that from equation (18), @

for m = 1/b4, A% = 1 which agrees with the power of 5 1in

equation (130). | o ]
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x|

0.2

0.4

0;6

0.8

1.0

1.2

1.5

2.0

~ 2,5

I, 0

8.0

1.82653
2,15005
2.34863
2.42169
2.48285

2.50983

2,53476
2.55786
2.57933
2.59932
2.61799

1,69439
1.88094
2,01741
2,07325
2,12288
2,14571
2.16736
2,18793
2.20751

2.22618

2.24399

1.63741
1,74287
1.82349
1.85729
1.88771
1.90183
1.91529
1,.92185
1.94044

1.95221

t

1.,60065

1.64800
1,68400
1.69898
1.71238
1.71857
1,72445

1.73005-

1.73538
1.74047

1.74532

1.57080
1,57080
1.57080
1,57080
1.57080
1,57080
1.57080
1.57080
1.57080
1.57080
1.57080

Table I

1.54208
1.50066

1.47203

1. 46075
1.45095
1, 44652
1.44236
1.43845

1,43476

1.43128

1.49215
1,39817
1.34004
1.31811
1.29942
1.29105
1,28325
1.27596

1.35594
1.22421
1.,15026
1012298

1,09983
1.08952

1.07991

5307093

1.16513
1,06002
0.99437

-

0.96928
0.94771
0.93800
0.92890
0.92037

1.26911 1,06252 '0.91233

1.26269

1.05463

\

/

0.90475
1.25663 1,04719 0.89759

0.76163
0.72095

0,68792

0.67372
0.66080

0.65478

0.64902

0.64351
0.63823
0.63317

0.62831

0.38759

0,37788
10,36883
0.36456

0.36045

0.35845
0.35650

0.35458

0.35271

0.35086

0.34906 .




0.4 0.6

0.8

1.0

1.2

105

2 00 295t

N0

- 8.0

2.65006 2.23416
2°h859u 2012}u9
2,142322,2,07966
2.36928 2,04418
2.34500 2.02836
2,3226 2.01362
2,30092 1.99986
2.28083 1.98697
2.26189 1,97487
2.24399 lw563“9

2,91283 2.42680

1,91824
1.85445
1.81110
1,79416

1.77951
1.77289

1.76669
1,76086

1.75538
1,75021

l§74532

1.57080
1.57080
1.57080
1,57080

51057080

1.57080
1.57080

1,57080
1.57080

1.57080

1.57080

Table

1,32950 1§08257‘

1.36191
1.38646
13966
1,40573
1.40992

1.41390

1,41768

l o )421 2 8

~1.42472

1.42799

11

1.13881
1,18191
1,19988
1,21623
1.22377

1.23095
1.23781

1.24436.

1,25063
1;25§63

0.83091 0.67775
0.90183 0.75237
0.95531 0.80696
0.97759 0.82930
0.99759 0,84915
1.00685 0.85828
1,01567 0.8669%
1,02409 0.87517
1,03213 0,88300
1,03982 0.89047
1004719‘9,89759

Xe

0, bhhly
0.51464
0.56079
0,57848
0:59362
0.60041
0.60674
0,61266

0.61820

1

0.24407
0.29395
0,31961

0,32817
0.33501

0.33792

0.34057
0,34298

0.,34518
0.62341 0.34720
0.62831 0,34906
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X

0.1|1.60094

0.3H1.80u83
0.5,]2.08467

0.6

2,21891
0.7(2.34053
0.75 |2.39585
0.80 2. 44741
0.85|2. 49526

0.90|2.53952
0.95]2.58036
1.0012.61799 -

Sl 0.2

0.4

0.6

0,8

1.0

1.58440
1.68316
1.84007
1.92601
2,01143
2.05310
2.09378
2.13331
2.17156
2.20847
2,24399

1.58097
1.63124
1,71928
1,76918
1.81990
1.84504
1.86983

1.89415

1.91791
1.9410%4

1,96349

é ' ‘
1.57u01 1.57080 1.56758 1.56108

1.59789

1.63743 1.57080

1.65979
1.68241
1.69356
1.70451
1.71521
1.72559
1.73564

1.74532

1.57080

1.57080
1,57080
1.57080
1.57080
1.57080
1.57080
1,57080
1.57080

1.2

1.5

J

2.0

2.5

4,0

8.0

—

1,54465
1.50952
1.49104
1.47325
1.46479

1 o L' 56 67
1.44892

1.44156

1.43458

1.42799
|

Table III

1.49857
1.41707
1.37818
1.3424Y
1.32591
1.31029
1.29558
1.28175
1.26878

1.25663

1.50037
1.36618
1.24904
1.19841
1.15327
1.13264
1,11327
1.09510
1.07807

1.06212

1.04719

1.24480

1,17238 0.76389
1.08117 0973933_

1.03756
0,99711
0;97823
0.96028

0.94326

0.92715
0.9119)4

0.89759

0.78291

0,71032
0 0‘6891‘2

0,67888"

0.66841

09.65806
0.64790

0 063797
0.62831

0.39218
0.38810
0.38024
0.37509
0.36927
0,36614
0.36289
035955
0.35611
0.35261,
6.3u906
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.  Fig. 17

X vs.a  from Table T

. ——

[

. ;

O

N— —_—— b
0.1 0,2 0,3 0.4 0,5 0.6 0.7 0.8 0.9 1,0

-0

L2 3
¥

L A
A ¥ -
L \ :




» >4

3H

Fig, 18
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