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Abstract 

 

Epilepsy is one of the most common neurological disorders and affects millions of people 

in the United States. Currently available antiepileptic drugs require continuous 

administration for suppression of seizures and have not been shown to prevent the 

development of epilepsy (epileptogenesis). The discovery of antiepileptogenic drug is 

complicated by the long time course of epileptogenesis in animal models of epilepsy and 

the requirement of continuous monitoring of epileptiform activity in vivo for the 

assessment of drug efficacy. In recent years, organotypic hippocampal cultures have been 

increasingly used as an in vitro model of post-traumatic epilepsy in both basic and 

translational research. Epileptogenesis in this in vitro model has a compressed time scale 

and can be monitored by detection of electrographic and biochemical markers of seizure-

like activity. However, the lack of a scalable chronic electrical recording platform is a 

significant bottleneck in high-throughput antiepileptogenic drug discovery using 

organotypic cultures.        

In an effort to circumvent the throughput limitations of in vitro antiepileptogenic drug 

discovery, a hybrid microfluidic-multiple electrode array (µflow-MEA) technology was 

developed for scalable chronic electrical assay of epileptogenesis in vitro. Specifically, the 

microfluidic perfusion technique was utilized to miniature the culture platform, which 

enabled the long-term maintenance of an organotypic culture array on a single device. The 

integration of the microfluidic perfusion system with a customized planar MEA allowed 
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for parallel continuous recordings. As a proof-of-concept demonstration, a pilot screen of 

receptor tyrosine kinase (RTK) inhibitor library was performed on µflow-MEA based 

electrical assay platform. The screen results revealed significant antiepileptogenic effect of 

cFMS RTK inhibitor. 

This thesis also provides further validation of the organotypic hippocampal culture model 

of epilepsy by investigating the influence of culture medium composition on 

epileptogenesis. We found that epileptogenesis occurred in any culture medium that was 

capable of supporting neural survival, indicating that culture medium composition has 

limited influence on epileptogenesis in organotypic hippocampal cultures. 

It is hoped that the techniques presented in this thesis will accelerate the antiepileptogenic 

drug discovery and contribute to the development of new therapeutics to treat individuals 

at risk of epileptogenesis. 
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Chapter 1 

Introduction 

 

 

1.1 In vitro model of epileptogenesis and drug discovery 

Epilepsy affects around 50 million people worldwide, making it one of the most common 

neurological disorders [1]. Diverse acquired brain insults, including traumatic brain injury, 

stroke, infections, and tumors [2,3], can introduce epileptogenesis, a process by which 

normal brain is transformed into epileptic brain generating spontaneous recurrent seizures. 

Epileptogenesis includes (1) a latent period between brain insults and the onset of seizure, 

and (2) the progression of epilepsy after it is established [4] (Figure 1.1). The latent period 

may vary from months to years in patients [5–7], presenting a window of opportunity for 

therapies that aim to prevent or delay the development of epilepsy [8]. Alternatively, 

treatments may be administered after the seizure onset to modify the progression of 

epilepsy, by reducing or eliminating seizures permanently. These therapies are defined as 

having an effect of antiepileptogensis [4]. Currently available antiepileptic drugs (AEDs) 

are anticonvulsants that require continuous administration for suppression of seizures, and 

they have not been shown to prevent epileptogenesis [9–11]. Furthermore, approximately 

30% of patients are drug refractory [12]. At present, epileptogenesis is not a treatment 
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indication, and there is no therapy available in clinic to treat individuals at risk of 

epileptogenesis. Therefore, discovery of antiepileptogenic interventions that prevent, 

interrupt or reverse epileptogenesis has been identified as an epilepsy research benchmark 

[13,14].  

 

Figure 1.1 Definition of epileptogenesis. Epileptogenesis includes the latent period, 

which is defined as the time between brain insults and the occurrence of the first 

unprovoked seizure, and extends beyond the latent period, when seizure frequency and 

severity progressively increase over time. Reproduced with permission from [4].  

 

Development of antiepileptogenic drugs is complicated by the long latent period which 

varies from weeks to months in epileptic animal models [15–17]. Antiepileptogenic effects, 

including (1) delays in seizure onset, alterations in seizure probability versus time after 

injury, and (2) reductions in seizure frequency, intensity, and duration, can occur over 

timescales of days to weeks after compounds application. Thus, continuous 

electroencephalogram (EEG) monitoring of electrographic seizures is necessary for 

sensitive and quantitative assessment of drug efficacy [2,3], which requires time-

consuming and expensive surgical procedures for electrode implantation in animals models. 

Difficulty and high-cost of long-term continuous recording result in a low experimental 
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throughput, presenting a practical challenge for antiepileptogenic drug development. 

Limited throughput is also a major factor that prevents the use of small molecule panels in 

a target-independent approach for antiepileptogenic drug discovery. One promising option 

to circumvent these problems is to use in vitro preparations of epileptogenesis [18]. 

As an in vitro alternative to animal models, brain slices are extensively used for 

toxicological and pharmacological profiling, or carrying out candidate compound screens 

to discover new drugs against neurological diseases [19–24]. Especially, hippocampal 

slices are increasingly used as an in vitro model of traumatic brain injury-induced epilepsy, 

or post traumatic epilepsy [25–28]. Organotypic brain slice cultures were developed to 

maintain slice viability for weeks and months [29]. Since the cultures maintain the 

cytoarchitecture of the originating brain regions, they are termed organotypic slice cultures 

(Figure 1.2A), and these cultures are often used as models for studies on long term 

neurological processes, such as neurogenesis [30], synaptic plasticity [31], and 

epileptogenesis [25,28,32]. The time scale of epileptogenesis in organotypic hippocampal 

slice cultures (1-2 weeks) is much faster than in animal models, and more amenable to 

high-throughput analysis (Figure 1.2B). This model captures critical features of 

epileptogenesis, including the latent period between trauma and the appearance of 

spontaneous epileptiform activity, seizure-dependent cell death, and responses to 

anticonvulsants [28,33] (Figure 1.2C). Epileptogenesis in this model can be monitored with 

chronic imaging, electrical recording, or by detecting biochemical markers of seizures 

[28,33,34].  Organotypic cultures thus provide an easy-to-access in vitro model for 

antiepileptic drug discovery [33–38]. The organotypic hippocampal culture based 

“epilepsy-in-a-dish” model was first developed in 2010, when Dyhrfjeld-Johnsen et al. 



 

6 
 

provided detailed characterizations of the development and evolution of epileptiform 

activity within this in vitro model of chronic epilepsy [32]. In 2012, Berdichevsky et al. 

further characterized the features of this model, like activity-dependent cell death, response 

to anticonvulsants, and emergence of anticonvulsant resistance [28]. After that, the 

organotypic hippocampal slice culture was proposed as an in vitro disease model for 

screening of anticonvulsants and antiepileptogenic therapies, which identified the 

cyclooxygenase inhibitor, Celecoxib, as a novel anticonvulsant and mTOR as an effective 

target of epileptogenesis [33,38]. 
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Figure 1.2 Post traumatic epilepsy is modeled in organotypic hippocampal cultures. 

(A) Left, hippocampus anatomy in rodent brain. Middle, brightfield image of organotypic 

hippocampal culture after 14 days in vitro (DIV). Scale bar, 500 µm. Right, confocal 

imaging of NeuN staining in CA1 and CA3 regions show densely packed neurons. Scale 

bars, 50 µm. (B) Representative recordings on different DIV, revealing the time course of 

epileptogenesis in organotypic hippocampal cultures. (C) Electrographic responses to 

known anticonvulsant. Left, electrical recording reveals that seizures stopped during 

phenytoin application. Right, these results were typical (n = 6, each group). Reproduced 

with permission from [28].  
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High-throughput drug screens based on the organotypic hippocampal culture model will 

require massively parallel recordings for over two weeks for the observation of 

epileptogenesis. However, traditional methods of maintaining organotypic cultures, 

interface methods [29] and roller-tube methods [39], are not directly compatible with 

electrophysiology platforms for chronic recording or scalable to support high-throughput 

electrical assays [40] (Figure 1.3A, B). The lack of a scalable chronic electrical recording 

system is a significant bottleneck for antiepileptogenic drug discovery using organotypic 

cultures.  

 

Figure 1.3 Conventional and microfluidic perfusion methods to maintain brain slices. 
Interface methods (A) and roller-tube methods (B) to maintain organotypic brain slice 

cultures. (C) Microfluidic perfusion system for brain slice that can highly miniaturize the 

culture platform and provide versatile designs. Reproduced with permission from [40].  

 

The rapid progress of technologies for microfluidics and biological 

microelectromechanical systems (BioMEMS) over the past decade has enabled the 
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development of simplified, microengineered platforms that are highly amenable to 

miniaturization, high-throughput experimentations, and real-time analysis for in vitro 

neurobiological studies [40,41], providing an avenue to address the throughput limitations 

in organotypic culture based drug discovery. 

 

1.2 Microfluidic-MEA technology for brain slice based study 

Neural activity within a volume of brain tissue gives rise to transmembrane currents, 

including synaptic activity, action potentials, Ca2+ spikes, and intrinsic currents and 

resonances [42]. All ionic processes superimpose in space to yield field potentials (FPs) 

that can be measured in the extracellular medium. Synaptic transmembrane currents are the 

major contributors to FPs [42]. When neuron receives a synaptic input, the generated 

transmembrane current gives rise to a current sink, where currents flow from the 

extracellular into the intracellular space, and a current source, where currents flow from 

the intracellular to the extracellular space, along the neuron. Depending on the locations of 

sink and source, a current dipole or higher order n-pole is formed, giving rise to the FPs 

(Figure 1.4A). Unlike intracellular recording techniques that use sharp or patch 

microelectrodes to detect activity of individual neurons, extracellular recording of FPs with 

metal microelectrodes is able to detect both single and multiple neuron activity, and it is 

therefore more applicable to network level analysis of population activity in neuronal 

networks, like sharp wave-ripples and epilepsy [43] (Figure 1.4B).  

Multiple microelectrodes can be integrated on a planar surface to create multiple electrode 

arrays (MEAs), a technique adopted from the microelectronics industry [44,45]. When 
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fabricating an MEA chip, the selection of materials depends on the type of experiment that 

will be conducted: dissociated neuron, acute brain slices, or organotypic cultures. Some 

factors to be considered are: biocompatibility, optical transparency, and insulation 

durability. The most commonly used material for the substrate is glass, which can be easily 

interfaced with optical microscopy. Gold, platinum, titanium nitride, and indium-tin oxide 

are used for conductor patterns, including electrodes, track, and contact pads. In the case 

of gold and platinum, an additional metal layer such as titanium or chromium is required 

to promote the adhesion between the glass substrate and metal. The standard fabrication 

process includes conductor patterning, insulator coating and electrode opening (Figure 

1.4C). The conductor layer is deposited onto the substrate using sputtering, thermal 

evaporation or e-beam evaporation. The desired pattern is defined by photolithography 

followed by a wet or dry etching process. To prevent signal crosstalk and dissipation, an 

insulation layer is required to passivate conductor tracks. Normally used isolation types are: 

Silicon dioxide, silicon nitride, SU-8, polyimide, and Polydimethylsiloxane (PDMS). 

Following the insulation, the layout of electrodes and contact pads are exposed by 

photolithography and etching (depending on the material). Dozens of microelectrodes on 

MEA chip enable multiple-sites recordings with high spatial resolution, which is crucial 

for studies of network activities, like signal processing and neurotransmission. Importantly, 

a planar MEA provides a noninvasive neural-electrode interface that allows for long-term 

recording and stimulation.    
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Figure 1.4 Multiple electrode array (MEA) for extracellular electrophysiology. (A-B) 

The origin of extracellular field potentials (FPs). Reproduced with permission from [42]. 

(A) A current sink-source dipole is induced by inhibitory synaptic input at the perisomatic 

region (red symbol). Lines represent isopotentials (red, positive; blue, negative). FPs are 

recorded from 6 sites at vicinity of the neuron. Electrodes are shown in yellow. (B) FPs 

recorded from different sites in hippocampus during synchronized sharp wave activity 

(traces shown in grey). Current sink-source distribution is shown in color map. (C) 

Standard MEA fabrication process.  

 

Using MEAs to record epileptiform activity in brain slices gives rise to novel epilepsy-on-

a-chip systems [46–49]. Hill et al. used MEAs to record burst activities in an acute 

hippocampal slice model of status epilepticus. Multiple-sites recordings were used to 

assess burst propagation speed and frequency as novel parameters for anticonvulsants 

screening [46]. To investigate the modulatory effect of thalamic inputs on seizures 

generated in anterior cingulate cortex (ACC), Chang et al. used MEA recordings to study 

spatiotemporal properties of epileptiform activity in acute thalamic-ACC slice [47]. Hsiao 

et al. reported MEA recordings from different subregions of human epileptic hippocampal 
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slice to study epilepsy generation and propagation in hippocampal circuitry [48]. Ferrea et 

al. developed a large-scale array recording simultaneously from 4096 electrodes to study 

propagating epileptiform activity in acute murine cortico-hippocampal brain slices, and 

topologically localized and quantified the effects of antiepileptic drugs in local neuronal 

microcircuits [49].   

It is important to note that planar MEA chips are compatible with organotypic culture 

methods and have been used to chronically record spontaneous activity in cortical and 

hippocampal cultures over several weeks [50–57]. To study the formation and stabilization 

of axonal projections, Hofmann et al. kept organotypic co-culture of entorhinal cortex (EC) 

and dentate gyrus (DG) slice on an MEA chip for up to 6 weeks (Figure 1.5A). The progress 

of neurite outgrowth and the establishment of functional connections were evaluated by 

analyzing the correlation of evoked signals in EC and DG after electrical stimulation in EC 

[54]. Gong et al. developed a high-density MEA to record electrical activity of individual 

neurons at a high spatial resolution, while monitoring neuronal network activity 

simultaneously in an organotypic hippocampal slice for 4 weeks [55]. A recently developed 

integrated device combined interstitial perfusion and perforated MEA to optimize nutrient 

and oxygen diffusion and enable long-term maintenance of organotypic cultures [56]. 

MEAs can provide immensely parallel recording for high-throughput electrical assay of 

epileptogenesis in vitro. However, currently available MEA chips, for example 

Multichannel Systems, MED64, and Qwane Biosciences, are designed to support only one 

slice culture. The primary factor limiting the number of cultures that can be placed on a 

MEA chip is that traditional culture methods consume large areas of MEA real estate, thus 

preventing high-throughput on-chip experimentations.  
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Figure 1.5 MEA device supports long-term recordings in organotypic culture. (A) 

Organotypic co-culture of entorhinal cortex (EC) and dentate gyrus (DG) maintained on 

MEA chip and evoked signals recorded by MEA electrodes. Reproduced with permission 

from [54]. (B) Microfluidic compartment integrated MEA device supports organotypic 

hippocampal culture and electrophysiology for 4 weeks. Reproduced with permission from 

[58]. 

 

Microfluidics has been previously used to pattern dissociated-neuron based model systems 

[59–62] and to perfuse brain slices [40]. Several groups have reported successful 

integration of microchannel patterns and MEAs with precise alignment between fluidic and 

electronic device components for neural-electrical interfaces [63,64,58,65]. 

Kanagasabapathi et al. bonded compartmented neuron co-culture system to MEAs to study 

the propagation of neural activities between cortical and thalamic neurons [63]. Dworak et 

al. integrated MEAs with PDMS microtunnels to study in vitro neuronal communication. 

In this device, axons extended through the narrow microchannels, and highly selective 

recordings of axonal signals were acquired by MEAs underneath [64]. To investigate the 

information processing in neural networks, Scott et al. developed a microfluidic MEA 
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device with the capability to allow simultaneous multi-sites extracellular recording, and 

focal chemical stimuli delivered by microfluidic network [65]. Berdichevsky et al. used a 

PDMS mini-well to maintain organotypic hippocampal slice cultures on MEA surface for 

4 weeks, and microchannels were incorporated into the mini-well to guide the axons 

sprouting [58] (Figure 1.5B). Microfluidic perfusion can be introduced to miniaturize the 

brain slice culture platform, by removing medium storage off-device and provide versatile 

designs [40] (Figure 1.3C). Furthermore, perfused brain slices may more closely resemble 

their in situ counterparts that are highly perfused by vascular networks in vivo [66–68]. 

However, most microfluidic perfusion systems are used in acute brain slice based studies, 

and relatively little attention has been paid to using microfluidic technology to improve the 

throughput of organotypic culture based experiments.  

A novel MEA chip that is integrated with scalable microfluidic perfusion system, which 

enables long-term parallel recordings from multiple organotypic cultures in a single device, 

will make it possible for high-throughput electrical assay for antiepileptogenic drug 

discovery in vitro. 

 

1.3 Cell signaling pathways in epilepsy 

Some of the characteristics of the epileptic brain include axon sprouting, synaptic 

reorganization, inflammation, and hyperexcitability [2,3,8]. These processes are regulated 

by kinase signaling pathways [8,69–76]. Furthermore, the human genome includes over 

500 kinase genes [77], and many of them play important roles in cellular processes in the 

nervous system [78]. It is highly possible that they are involved in epileptogenesis. Small 
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molecular inhibitors have been synthesized for many of these kinases and are used 

extensively in cancer research. Inhibition of these pathways has the potential to prevent 

formation of epileptic circuitry and thus prevent epileptogenesis after brain injury, or even 

disrupt existing epileptic circuits and cure epilepsy. Some kinase signaling pathways, 

including the PI3k-Akt-mTOR, JAK-STAT, and BDNF-TrkB pathways, have been 

implicated in animal and in vitro models of acquired chronic epilepsies [33,75,79–84]. 

However, only a small percentage of the total kinome have been explored as potential 

targets for antiepileptogenic drugs. For example, many receptor tyrosine kinases (RTKs) 

are expressed in the brain and have been reported to respond to brain injury [85–94], but 

only a few of them have been investigated for inhibition of epileptogenesis. Interestingly, 

the TrkB receptor and the Insulin-like Growth Factor-I Receptor (two types of RTKs) have 

been implicated in epileptogenesis [82–84,95,96]. Other pathways, including JAK-STAT 

and Wnt signaling, which have strong cross-talk with RTK, have also been found to play a 

role in epilepsy [97–99]. This evidence suggests that the RTK signaling network plays a 

prominent role in epileptogenesis and may provide potential targets for antiepileptogenic 

drugs. However, the RTK signaling network is highly complex. There are over 20 RTKs 

expressed in the hippocampus and cortex at significant levels (based on Allen Brain Atlas 

mouse data), and the downstream signaling have cross-talk with multiple other pathways 

[100], which makes the matrix of experiments very large.  

This thesis will focus on the development of an organotypic hippocampal culture based 

screen platform for systematic investigation of the role of cell signaling pathways in 

epileptogenesis, which may have a transformative impact on the search for better therapies 
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for epilepsy. A pilot screen of RTK inhibitor library will be described as a demonstration 

of  how this platform provides rapid dissection of signaling pathways in epilepsy.  

 

1.4 Goals of this thesis 

The general aim of the work described in this thesis is to develop a hybrid microfluidic-

MEA (µflow-MEA) technology for scalable chronic electrical assay of epileptogenesis in 

vitro and to demonstrate how µflow-MEA facilitates antiepileptogenic drug discovery. The 

specific objectives are:       

1. To develop a scalable microfluidic perfusion system for long-term maintenance of 

organotypic hippocampal cultures (Chapter 2) [101].  

2. To integrate microfluidic perfusion system with MEAs for scalable chronic electrical 

assay of epileptogenesis and carry out a pilot screen of a small-molecule kinase (RTK) 

inhibitor library (Chapter 3).  

3. To validate the organotypic hippocampal culture model of epilepsy by studying the 

influence of culture medium composition on epileptogenesis (Chapter 4) [102].  

Finally, future work of this research is discussed (Chapter 5).   
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Chapter 2 

Development of microfluidic perfusion culture platform  

 

              

 

2.1 Motivation 

Both perfusion and electrophysiology are highly amenable to miniaturization, and a 

number of groups reported microfluidic perfusion devices and multiple electrode array 

chips (MEAs) designed specifically for brain slices. Major goals of microfluidic device 

development were to precisely control slice microenvironment [1], enhance nutrient and 

oxygen supply [2–4], or improve experimental access to the slice [5] (see [6] for a 

comprehensive review).  MEA development focused on capturing spatiotemporal patterns 

of neural activity by increasing the number of electrodes per slice [7,8], recording from 

neurons deep within the slice [9], or improving viability of the slice on electrode array chip 

[10]. These efforts may be summarized as applications of microtechnology to improve the 

fidelity of brain slice experiments.  

On the other hand, relatively little attention has been paid to using microtechnology to 

improve the throughput of brain slice experiments, especially the long-term experiments 

The work described in this section has been published in “Perfused drop 

microfluidic device for brain slice culture-based drug discovery” by Liu 

J, Pan L, Cheng X, Berdichevsky Y, Biomed Microdevices. 2016;18: 46. 
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that require electrical recordings of organotypic cultures for multiple days or weeks. Brain 

slice based drug screens typically rely on simple interface or submerged-type perfusion 

and only one or two electrodes per slice for stimulation or recording. However, a screen of 

a compound library may require hundreds or thousands of well-controlled experiments 

with replicates. Multi-slice systems have been developed to allow simultaneous, 

independent electrophysiological recordings from multiple brain slices [11–13]. However, 

these systems require the use of multiple perfusion systems, machined slice chambers and 

discrete micromanipulator-mounted electrodes, imposing practical limitations on the 

number of parallel experiments. Slice survival in these multiple-slice systems is limited to 

only 7 hours, precluding long-term experiments on organotypic cultures [12].   

We set out to apply microtechnology to increase the throughput of organotypic 

hippocampal culture based antiepileptogenic drug screening. Techniques for maintaining 

organotypic brain slice cultures for multiple weeks have been developed over 20 years ago 

(methods and applications of brain slice cultures are reviewed in [14]).  In an interface 

method, the slice is placed on a porous membrane, and culture medium is added so that the 

slice is located at an air-medium interface [15].  In a roller-tube method, the slice is attached 

to a glass cover slip with a blood clot or collagen gel. The slip is then placed into a tube 

with culture medium that is rotated on a roller drum at a slow speed, bringing the slice in 

and out of medium [16]. Both methods ensure that the slice is directly exposed to 

atmospheric oxygen (100% of the time with the interface method, and approximately 50% 

of the time with the roller-tube method) to ensure viability in vitro for multiple weeks. 

Since slices maintain the cytoarchitecture of the originating brain regions, they are termed 

organotypic slice cultures. However, neither interface nor roller-tube methods of producing 
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organotypic cultures are directly compatible with microfluidics. A more recently 

developed method is based on maintaining a slice in a culture medium-filled well cut in a 

polydimethylsiloxane (PDMS) film [17]. The well is connected with a larger medium 

reservoir via channels in PDMS film. Glass culture substrate can be easily substituted for 

a glass-based MEA to enable continuous electrical recording of neural activity in the slice. 

A disadvantage of this method is the requirement for a large medium reservoir that takes 

up valuable MEA area and limits the number of cultures that can be placed on a single 

MEA chip.  Another limitation is the lack of a perfusion system for applying drugs or other 

compounds to slices.   

In this work we developed a novel perfused drop technique to enable the placement of 

multiple organotypic cultures on a single microfluidic device. This scalable culture 

platform is compatible with MEA and capable of significantly increasing the throughput 

of organotypic culture experiments on chip. In our design, hippocampal slice are 

maintained in individual drops confined by PDMS wells. The drops are continuously 

perfused with fresh culture medium through microchannels. PDMS microfluidic network 

can be easily integrated with a planar MEA chip for chronic recordings. The device requires 

only 3 cm2 area per culture, potentially enabling experiments with up to 6 cultures per 

single 2”x 2” MEA chip. A single integrated device may potentially replace an entire 

system for parallel electrophysiology in multiple organotypic hippocampal cultures, 

enabling scalable electrical assay of epileptogenesis in vitro.  
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2.2 Device design and theory 

In our design, slice culture is maintained on a glass substrate in a PDMS culture well with 

lithographically defined microchannel as the medium flow inlet and an open channel as the 

outlet (Figure 2.1). The microchannel is connected to a feeding syringe tube placed at a 

specific height to provide proper medium flow rate. The outlet is connected to a reservoir 

where waste medium is removed by a vacuum needle. Culture well is open for optimal 

oxygen diffusion to the cultures (similar to interface method for organotypic cultures) and 

to provide culture medium surface tension to push the slices against culture substrate for 

better tissue attachment.  
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Figure 2.1 Perfused drop organotypic slice culture platform. (A) Schematic of the 

system setup. PDMS device consists of a membrane (110 µm thick) with an inlet 

microchannel (20 µm high, 50 µm wide), an open outlet channel (0.5 mm wide) and a 

culture well (3 mm radius), as well as a PDMS tubing stand and reservoir (2 mm thick). 

Gravity provides the input culture medium flow through microchannel. Output flow goes 

to reservoir through open channel and is collected by a vacuum needle. Top view (B) and 

3D view (C) of a single device layout. (D) Schematic and photograph of a triple slice device 

filled with dye solution. Overall device size is 3 cm × 3 cm. 

 

In the absence of flow, size of the drop in the culture well and fluid level in the reservoir 

are balanced by surface tension and gravity. Adjustment of fluid height in the reservoir  𝐻1 
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changes the drop size in the culture well (Figure 2.2). Since drop in the culture well is not 

strictly symmetrical due to the presence of an open outlet channel, we describe it by left 

contact angle 𝛽𝑙 (closest to reservoir) and the right contact angle 𝛽𝑟 (closest to inlet), and 

their average 𝛽. We built a simple static model consisting of several force components.  In 

the reservoir, there is pressure due to gravity 𝑃1, and pressure due to capillary force 𝑃2; in 

culture well, there is also pressure due to gravity 𝑃3, and pressure due to surface tension 𝑃4. 

In the absence of flow, 

𝑃2 − 𝑃1 = 𝑃4 − 𝑃3      (1) 

𝑃1 = 𝜌𝑔𝐻1    (2)     𝑃2 = 2𝛾𝑐𝑜𝑠𝛼 (
1

𝑤
+

1

ℎ
)    (3)      𝑃3 = 𝜌𝑔𝐻2    (4)      𝑃4 =

2𝛾𝑐𝑜𝑠𝛽

𝑅
    (5) 

where 𝜌 is the density of fluid, 𝑔 is gravity acceleration, 𝛾 is surface tension of fluid, 𝛼 is 

the contact angle in the reservoir,  𝑤 is the width of the reservoir, ℎ is the length of the 

reservoir, H1 is fluid height in the reservoir, 𝐻2 is fluid height in the culture well, 𝑅 is the 

radius of the culture well, 𝑧1 is the height of the reservoir, and 𝑧2 is the height of the culture 

well.  𝐻2 can be described in terms of contact angle 𝛽： 

𝐻2 = 𝑧2 −
𝑅

𝑐𝑜𝑠𝛽
(1 − 𝑠𝑖𝑛𝛽)      (6) 

cos𝛼 can be described in terms of 𝐻1: 

𝑐𝑜𝑠𝛼 = −
𝑤(𝐻1 − 𝑧1)

(
𝑤
2)

2

+ (𝐻1 − 𝑧1)2

         (7) 
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We can then express the average contact angle 𝛽 of the culture drop in terms of fluid height 

𝐻1 in the reservoir: 

2𝛾𝑐𝑜𝑠𝛽

𝑅
− 𝜌𝑔 (𝑧2 −

𝑅

𝑐𝑜𝑠𝛽
(1 − 𝑠𝑖𝑛𝛽)) = −

2𝛾𝑤(𝐻1 − 𝑧1)

(
𝑤
2)2 + (𝐻1 − 𝑧1)2

(
1

𝑤
+

1

ℎ
) − 𝜌𝑔𝐻1      (8) 

Solving Navier-Stokes equation gives the velocity profile for a pressure-driven, steady-

state flow in a microchannel of rectangular cross section. The flow rate 𝑄 can be found by 

integrating flow velocity in the inlet channel of width 𝑊 and height 𝐻. For a channel with 

aspect ratio 𝑎 < 1 (𝑎 = 𝐻/𝑊), flow rate can be approximated by [18]: 

𝑄 ≈
𝐻4∆𝑝

12𝜂𝐿𝑎
(1 − 0.63𝑎)       (9) 

where 𝜂 is the viscosity of fluid, 𝐿 is the length of microchannel, and ∆𝑝 is the pressure 

difference between two ends of the microchannel, in this case, the gravity pressure due to 

feeding syringe: 

∆𝑝 = 𝜌𝑔𝑍    (10) 

𝑍 is the height difference between the fluid level in the feeding syringe and the device.  
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Figure 2.2 Device in the absence of flow. (A) Photograph of the dye-filled device with no 

input flow. (B) Different levels of fluid in the reservoir control the shape of the culture well 

drop. BSA solution contains red dye, while water is colored with blue dye. (C) 

Experimental measurements and analytical solution of 𝛽 versus 𝐻1  for BSA solution (2.5 

g/L) and water.  Correlation coefficient 𝑅2 is 0.78 for water and 0.83 for BSA solution; p 

<0.001 for both fluids. 

 

2.3 Experimental methods 

2.3.1 Device fabrication 

Culture compartments were fabricated from PDMS. Silicon mold masters were prepared 

by defining a microchannel pattern via SU-8 (Microchem) photolithography on a 3" silicon 

wafer. A pattern of 20 µm height and 50 µm width was fabricated. Liquid PDMS was spin-
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coated onto the silicon master at 600 rpm for 1 min, and cured at 75 °C for at least 4 h. The 

resulting 110 µm PDMS film with imprinted microchannels was removed from the silicon 

wafer. Culture wells of 6 mm diameter and the open channels of 0.5 mm × 8 mm were cut 

in the PDMS membrane. Fluid inlets of 0.025 mm diameter were created by puncturing the 

PDMS membrane with a syringe needle. The length of inlet microchannel L (edge to edge 

distance between fluid input to the device and culture well) is 6 mm (Figure 2.1). PDMS 

compartments were attached to glass substrate through oxygen plasma bonding. Then 2 

mm thick PDMS reservoir (5 mm × 25 mm inner area) and input tubing stand (5 mm × 5 

mm) were bonded to PDMS membrane. Tubing stand through-hole (0.1 mm diameter) was 

centered on the punctured fluid inlet. The edge to edge distance between reservoir and 

culture well is 4 mm. Devices were autoclaved for sterilization. Then each device was 

placed in a 100 mm petri dish, and incubated in humidified atmosphere at 37 °C overnight, 

with culture wells coated with poly-D-lysine (PDL, Sigma).  Devices were then washed in 

three changes of sterile distilled water, and incubated for at least 3 hours with culture wells 

covered with NeurobasalA/B27 medium (Invitrogen) before culturing.  

2.3.2 Velocity modeling 

Flow in the culture well was simulated using COMSOL-Multiphysics. Geometry of the 

simulated chamber mimicked the ones used for the experiments. A plug flow of 0.01 m/s 

was applied at the inlet of the microchannel leading to the slice chamber. The velocity was 

calculated as the preset flow rate of 1 mL/day divide by the cross section area of the 

microchannel (20 µm x 50 µm). The fluid surface exposed to air was set as an open 

boundary and the air phase was neglected, considering the low viscosity of air compared 

to water. All the other boundaries were set as no-slip boundaries.  Brain tissue in the culture 
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well was represented by a solid cylindroid located at the center with a semi-major axis of 

1.2 mm, semi-minor axis of 1 mm and height of 0.2 mm. Fluid parameters corresponding 

to water were used in the simulation. 

2.3.3 Organotypic cultures 

Hippocampi were dissected from postnatal day 7-8 Sprague-Dawley rat pups (Charles 

River Laboratories), cut into 350 µm slices on a McIlwain tissue chopper (Mickle 

Laboratory Eng. Co., Surrey, United Kingdom). Slices were placed in the culture wells of 

the microfluidic devices, and controls were placed onto PDL coated 6-well tissue culture 

plates. All cultures were maintained in serum-free NeurobasalA/B27 medium containing 

0.5 mM glutaMAX (Invitrogen) and 30 mg/L gentamicin (Invitrogen) and incubated at 

37 °C in 5% CO2.  Control slices placed in 6-well culture plate were placed on a rocking 

platform. Medium was changed twice a week. Slices within microfluidic perfusion devices 

were gravity-fed from a syringe tube with a loose-fitting cap, and the flow rate was set to 

approximately 1 ml/day per culture by placing the feeding syringe at a height of 20 cm. 

Fluid was split by a 1 to 6 mini-manifold (Warner Instruments) to supply 2 triple 

microfluidic perfusion devices. The fluid level in the feeding syringe was checked daily 

and replenished every day to maintain same height Z. The feeding tubing was 0.030" ID, 

0.065" OD ultra-purity white silicone tubing (Mcmaster-Carr). Polyethylene tubing with 

0.023" ID, 0.038" OD (Warner Instruments) was used as the interconnector of feeding 

tubing to mini-manifold, and feeding tubing to PDMS tubing stand. Manifolds and tubing 

were sterilized by autoclaving, except for polyethylene tubing which was sterilized by 

ethanol.  All animal use protocols were approved by the Institution Animal Care and Use 

Committee (IACUC) at Lehigh University and were conducted in accordance with the 
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United States Public Health Service Policy on Humane Care and Use of Laboratory 

Animals. 

2.3.4 Immunohistochemistry 

NeuN antibody is a marker for neurons that specifically recognizes DNA-binding, neuron-

specific protein NeuN, which is present in most CNS and PNS neuronal cell types. Cultures 

were washed in phosphate-buffered saline (PBS), and fixed for 2 h in 4% 

paraformaldehyde. Cultures were then transferred to 48-well petri dish, and permeabilized 

in 0.3% Triton X-100 (Sigma-Aldrich) in PBS for 2 h, then blocked with 10% goat serum 

in PBS for 1 h, followed by incubation for 24 h in 1% NeuN at +4 °C on a shaker.  Slices 

were then washed and mounted for confocal microscopy. Z-stack images were collected 

on confocal microscope (Zeiss LSM 510 META, Germany) with 5x and 40x objectives. Z-

stack layers were separated by 2 µm, and depth ranged from 40 µm-60 µm.  Images were 

then processed in Fiji [19].  Neuron numbers were quantified per single field of view of 

high-magnification images, in the optical slice with maximum number of neurons in CA1 

and CA3 areas of control and perfused-drop cultures.  
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2.4 Results and discussion 

2.4.1 Static analysis 

Devices were evaluated under static (no flow) conditions with bovine serum albumin (BSA) 

solution (2.5 g/L), which mimics the surface tension of culture medium, and distilled water. 

We increased the fluid volume in the reservoir to increase the fluid level in the culture well 

(Figure 2.2B).  Averages of 3 separate measurements of 𝐻1 , 𝛽𝑙  and 𝛽𝑟  for each fluid 

volume were calculated for three different devices and plotted in Figure 2.2C.  Results were 

compared to formula (8), evaluated with average dimensions of 3 different devices: 𝑧1 = 

1.7 mm, 𝑤 = 5.8 mm, ℎ = 25.8 mm, 𝑅 = 3 mm, and 𝑧2 = 110 µm, 𝜌 = 103 kg/m3. Surface 

tension values of distilled water and BSA solution (2.5g/L) at 37 °C were 70 mN/m and 54 

mN/m, respectively [20,21].  Analytical solutions of 𝛽  dependence on 𝐻1  for BSA-

containing solution and water were plotted in Figure 2.2C. A good fit with the experimental 

data for water and BSA solution was observed. Correlation coefficients between 

experimental and theoretical values were 𝑅2 = 0.78 for water, and 𝑅2 = 0.83 for BSA 

solution; 𝑝 <0.001 for both fluids.  

In the static model (Figure 2.2), we only consider the operation range of 1 mm < 𝐻1< 4 

mm because values of  𝐻1 less than 1mm reduce 𝛽 below 90 degrees. This may lead to 

cultures drying out.  Fluid confinement by hydrophobic PDMS surface fails for 𝐻1> 4mm, 

imposing an upper limit to the range of 𝐻1. The open channel connecting culture well and 

reservoir may also contribute to fluid balance. However, considering that its area is less 

than 10% of the culture well area, its surface tension may be ignored. In Figure 2.2C, 

theoretical curves of water and BSA solution are close to each other signifying that 
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difference in surface tensions between these two fluids does not strongly affect operation 

of our device.  This is also supported by lack of difference between experimental data for 

water and BSA. 

2.4.2 Dynamic analysis 

𝑍 was set to 20 cm in subsequent culture experiments. 𝛽𝑙 and 𝛽𝑟 were measured while the 

drop in culture well was perfused with BSA solution, and compared to static values 

obtained from the same device without perfusion (Figure 2.3A, B).  The introduction of 

flow had no significant influence on the geometry of drop in culture well (for 𝛽𝑙, p = 0.911; 

for 𝛽𝑟, p = 0.760; n=3, paired t test).  While fluid flow introduces pressure changes inside 

the culture well, the highest pressure change is at the fluid inlet (approximately 0.01 Pa, 

from COMSOL simulation), was less than 0.015% of the pressure in no-flow condition 

(𝑃3 − 𝑃4 is approximately 70 Pa).  Therefore, the shape of the drop in culture well is largely 

determined by static forces. 
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Figure 2.3 Dynamic modeling of streamline and velocity profile in the perfused drop 

device. (A) Photograph of the device under static condition (left, flow was stopped by 

switch) and dynamic condition (right, there is continuous input flow). 𝐻1, 𝛽𝑙 and 𝛽𝑟 were 

measured in these two conditions on 3 devices. (B) Comparison of 𝛽𝑙 and 𝛽𝑟 under static 

condition and dynamic conditions. ● represents no flow, and ○ represents continuous flow. 

(C) Streamlines of the velocity field. Circle in the center of the culture well represents brain 

slice. Flow enters the culture well from the microchannel on the left, flows around the 

culture and then leaves through the open channel on the right. (D) Velocity magnitude 

distribution inside the culture well. High velocity appears at the inlet and outlet but 

decreases quickly closer to the brain slice. (The simulation results refer to the horizontal 

plane at the microchannel midpoint). 

 

We then determined if Eq. (9) accurately models the flow rate in our device.  We used the 

following values: 𝐻 = 20 µm, 𝑎 = 0.4, 𝑍 = 20 cm, and 𝐿 = 6 mm. Viscosity of water is 𝜂 = 

0.71×10-3 Pa·s at 37 °C [22]. Viscosity of BSA solution is approximately the same since 
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low concentration of BSA used in culture medium does not significantly alter fluid 

viscosity [23]. The calculated flow rate 𝑄 was 42 µl/h, which is approximately 1 ml/day 

per slice. In culturing experiments approximately 1 ml/day of culture medium was used 

per slice, which matches with the calculated flow rate.  

Increase of flow rate improves the oxygen/nutrient delivery [24]. However, the 

correspondingly increased fluid velocity can cause larger shear forces that have the 

potential to damage tissues [25].  In our platform, the flow rate is set at 1 ml/day. For slices 

cultured in standard 6-well plate, the medium consumption rate is about 0.3 ml/day [26]. 

Thus, our perfused drop device is characterized by a comparatively high perfusate 

exchange rate which may lead to improved culture viability. COMSOL simulation of the 

streamline and velocity profile 10 µm above the substrate (microchannel midpoint) are 

shown in Figure 2.3C, D. A relatively high velocity above 0.01 m/s only occur near the 

inlet and outlet. The maximum velocity of 0.018 m/s occurs at the outlet of the 

microchannel, and decreases rapidly after entering the culture well. As demonstrated in 

Figure 2.3D, velocity is in the range of 5-20 × 10-6 m/s in the vicinity of cultured slice, 

indicating that slice experiences relatively little shear stress.   

2.4.3 Culture viability 

𝐻1 was set to 1.5 mm to make 𝛽 approximately 100 degrees. This was found to be the 

optimum drop shape for culture viability, since drops with larger 𝛽 caused slices to detach, 

while drops with smaller 𝛽 caused slices to dry out. The culture viability was evaluated at 

5 DIV and 9 DIV by brightfield microscope imaging and confocal imaging of NeuN stained 

organotypic hippocampal cultures (Figure 2.4). Compared with control cultures, perfused 
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drop cultures showed similar well maintained cytoarchitecture with clearly defined neural 

layers. Neuron counts on 9 DIV were not different between control and perfusion slices in 

CA1 (p = 0.599, student t test, n = 3 each condition), but perfusion cultures had 

significantly higher number of neurons than control cultures in CA3 (p = 0.036, student t 

test, n = 3 each condition) (Figure 2.4C).The results showed that viable cultures could be 

maintained in microfluidic perfusion system for at least 9 DIV with no reduction in the 

number of neurons in the hippocampal pyramidal layers. 
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Figure 2.4 Morphology of organotypic hippocampal cultures maintained in the 

perfused drops. Morphology of control (interface method) cultures and perfused drop 

cultures were compared on 5 DIV (A) and 9 DIV (B) by brightfield and confocal imaging. 

Cultures were stained with NeuN for confocal imaging. Scale bars, 500 µm. (C) Higher 

magnification micrographs of NeuN staining in CA1 and CA3 regions show that similar 

numbers of neurons survived in control and perfused drop cultures. Scale bars, 50 µm. (D) 

Neuron counts in CA1 and CA3. n = 3 each condition. Error bars indicate SD, * p < 0.05. 

 

Our morphological findings show that perfused drop method enables organotypic cultures 

that are as viable as cultures maintained with roller-tube or interface methods.  Perfused 

drop method enables integration of organotypic cultures with MEA fabricated on any 
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PDMS-bondable substrate such as glass, without the need for specialty perforated MEA 

[10], thus potentially reducing the costs of organotypic culture-based drug discovery. 

Traditional methods of maintaining organotypic cultures require large area of culture 

substrate to hold the culture medium. In a 6 well plate, each slice takes up to ~10 cm2, 

while actual area of a hippocampal slice is only ~ 0.07 cm2. In our triple device (Figure 

2.1D), each slice takes up only 3 cm2 if reservoir area is taken into account.  The reduction 

in required area is achieved by moving the medium storage off the device.  Since more than 

three culture wells can share one reservoir, the amount of area required per cultured slice 

will become smaller with more slices per device. More cultures can be added by simply 

patterning more wells and microchannels in the PDMS film without an increase in the cost 

of the device. Thus, our perfused drop culture method is inherently scalable, and may 

replace entire systems [11–13] with a single integrated microfluidic-MEA chip. Another 

advantage of this platform is the transparent and planar design that enables convenient 

optical microscopy.  

 

2.5 Conclusions 

In this work, we developed a microfluidics-based method that highly increases the 

scalability of organotypic culture platform. Our method is compatible with planar MEA 

technology, and will enable parallel chronic electrical recordings of epileptogenesis in vitro. 
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Chapter 3 

µflow-MEA technology for antiepileptogenic drug 

discovery 

 

 

3.1 Motivation 

High-throughput drug screens based on organotypic culture model of epilepsy require 

massively parallel recordings for over two weeks for the observation of epileptogenesis. 

Multiple electrode array (MEA) technology provides the highly parallel recordings and 

supports chronic recordings in organotypic brain slice cultures over several weeks [1–8]. 

However, typical MEA devices are deigned to support only one brain slice culture, due to 

the low scalability of organotypic culture chamber. Here we describe a hybrid microfluidic-

MEA (µflow-MEA) technology that incorporates perfused drop technique [9] described in 

Chapter 2 and MEA based parallel electrophysiology into a miniaturized device for 

scalable electrical assays of epileptogenesis.  

In standard MEA designs, an insulation layer is required to confine the active area of 

electrodes in order to prevent signal dissipation and increase detection sensitivity. The most 

used isolation types are: Silicon dioxide, silicon nitride, and SU-8 [10–13]. Silicon dioxide 

and silicon nitride require chemical vapor deposition (CVD) and etching process for 

electrode opening. SU-8 layer is spin coated to the device, and then electrodes are exposed 
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by photolithography. This chapter will describe a simplification in the MEA design to 

detect electrographic seizures which are characterized by synchronized population activity. 

Computational simulation of field potential was conducted to verify the capability of this 

simplified MEA to achieve good detection of seizure-like activity.   

To demonstrate how this µflow-MEA technology can facilitate antiepileptogenic drug 

discovery, we conducted a pilot screen of small molecular inhibitors. In this work, we focus 

on the investigation of receptor tyrosine kinases (RTKs), a class of kinases that act as cell 

surface receptors. Many of RTKs are expressed in the hippocampus, and have been 

reported to respond to brain injury [14–20], the most common known cause of acquired 

epilepsy [21,22]. Therefore there is a significant likelihood that RTKs may play a role in 

epileptogenesis. Lactate and Lactate dehydrogenase (LDH) measurements have been used 

to evaluate antiepileptic drug efficacy in organotypic cultures [23–25], since their 

concentrations in the spent culture medium were found to be correlated with seizure-like 

activity and seizure-dependent cell death, respectively. Lactate and LDH productions can 

be measured by commercial assay kits, enabling rapid analysis of drug effects on 

epileptogenesis. Lactate level also depends on the number of surviving neurons in the 

culture since neurons produce physiological lactate even when there is no seizure. Thus, 

analysis of cell death via LDH assay is necessary to interpret lactate level as a marker of 

seizure-like activity. However, LDH assay cannot reflect the cell death when apoptotic 

cells degrade without releasing LDH into culture supernatant [26]. Candidate drugs might 

have unpredictable effects on cell survival, which would complicate the interpretation of 

lactate and LDH data. Furthermore, spent culture medium are sampled at twice-weekly 

medium changes for lactate and LDH assays. So that the lactate and LDH levels reflect the 
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overall seizure load in the 3-4 days period between medium changes, providing a 

measurement of seizure activity with low temporal resolution. In contrast, continuous 

electrical recordings provide direct measurement of electrographic seizures at high-

resolution. Therefore, for accurate assessment of drug efficacy, it is important to use 

chronic electrical assay to verify the lactate and LDH data, or even replace the lactate and 

LDH assays when high-throughput can be achieved. In this work, we present a two-stage 

screening platform based on organotypic hippocampal cultures model of epilepsy. The first 

stage was for biochemistry assays, where epileptogenesis was evaluated by measurements 

of lactate and LDH levels during chronic inhibitor application. The second stage was for 

µflow-MEA technology based chronic electrical assay to verify the results obtained in 

stage I.  

 

3.2 Experimental methods  

3.2.1 Device design and fabrication 

The µflow-MEA device was the integration of customized MEA chip with PDMS 

microfluidic perfusion compartments we developed in our previous work [9] described in 

Chapter 2. The device has 8 metal microelectrodes (30 µm × 3 mm) recording from 6 

culture wells, with one electrode for each well, and one additional electrode in two wells 

(since we used a 16 channel data acquisition system, 8 channels were allocated to each 

device), and a reference electrode (diameter = 3 mm) in the fluid reservoir (Figure 3.1). 

For the purpose of drug screening, we simplified the MEA design by excluding the 

isolation process to make the device cheap and quickly fabricated. PDMS microfluidic 
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system was bonded to metal patterned MEA chip as an insulator to passivate conductor 

tracks, and the recording electrodes were left uninsulated in the organotypic culture well.  

Glass slides (2 × 2 inch, Fisher Scientific) were cleaned in Piranha solution. The electrodes 

pattern was defined photolithographically with negative lift-off process using AZ nLOF 

2070 (MicroChem). Titanium (50 nm) and gold (200 nm) were deposited with e-beam 

evaporator to make the electrodes. The photoresist was lifted with photoresist stripper AZ 

400T (MicroChem) at 80 °C for 3 hours, leaving the electrode pattern on the glass slide. 

PDMS compartments were assembled to the MEA chip through oxygen plasma bonding, 

with electrodes centered in culture wells. MEA integrated device was then autoclaved for 

sterilization before culturing.  

 

Figure 3.1 Schematic representation of the µflow-MEA chip. This device is the 

integration of PDMS microfluidic perfusion system [9] and MEA printed glass substrate 

for long-term parallel recording in 6 organotypic hippocampal cultures. 
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3.2.2 Field potential simulation 

Field potentials were simulated using COMSOL-Multiphysics (COMSOL Inc.). The 3D 

geometry model included the culture well, current source model of seizure and 2D recoding 

electrodes. We built a simplified current source model based on the hippocampal slice 

geomerty to reflect seizure-like activity when the whole hippocampal network is 

synchronized. Insulating boundary conditions were assigned to the circumference and the 

floor of the culture well, and the air-medium interface. The conductivity of the medium 

was set as 1.5 S/m to match reported conductivity of artificial cerebrospinal fluid (aCSF) 

[27–29].  

3.2.3 Preparation of organotypic cultures 

For experiments in stage I, slices were maintained in 6-well tissue culture plates. For µflow 

perfused culture in stage II, slices were placed in the mini culture wells of µflow-MEA 

device and perfused at the rate of 1 ml/day per culture. Details are described in Chapter 2. 

3.2.4 Morphology Analysis  

Brightfield images were taken on an upright microscope (Olympus) with 4x objective. 

Cultures’ “health” was evaluated based on three morphological criteria: 1. Blurriness of 

the culture edge. Blurry edges indicate that the slice has attached well to the polylysine 

substrate, while distinct edge indicates that the slice has not integrated well with the 

substrate. Very unhealthy slices become completely detached and float in the culture media. 

2. Brightness of the slices. Unhealthy slices appear darker than healthy slices due to 

accumulation of cellular debris. 3. Integrity and distinctness of neural layers. Healthy slices 
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have well-preserved cytoarchitecture with distinct CA1, CA3 neural layers and dentate 

gyrus (DG). 

3.2.5 Drug application and assays 

Phenytoin was dissolved in dimethylsulfoxide (DMSO), and added to the culture medium 

at 100 μM concentration. Phenytoin was applied when consistent seizure-like activity was 

observed. Cultures were perfused by medium with phenytoin for 10 hours, then switched 

back to normal medium perfusion. Electrical recordings before, during and after drug 

perfusion were analyzed to evaluate the drug efficacy.  

Cultures from the same animal were organized into four experimental groups to test three 

drugs with a vehicle-treated control (n = 3 cultures each condition). All inhibitors were 

dissolved in DMSO and applied to cultures starting on 3 DIV. Control cultures were treated 

with 0.1% DMSO as vehicle. Toxicity pre-screen (0-7 DIV) was conducted by morphology 

analysis and measurement of LDH on 7 DIV. Cultures showed either unhealthy 

morphology or significantly higher LDH than control were deemed toxic and a lower 

concentration of applied drug was retested until the maximum nontoxic concentration was 

identified. The maximum nontoxic concentration of each drug were then applied in two 

stage chronic screens. In stage I, culture supernatant was collected on 3, 7, 10, 14, 17 and 

21 DIV and seizure-like activity and cell death were measured by lactate and LDH assay, 

respectively. Lactate and LDH concentrations in the supernatant were determined by using 

kits (Eton Bioscience and Roche Diagnostics, respectively) according to manufacturers’ 

protocols. Lactate concentrations were calculated relative to known lactate standards, while 

LDH concentrations were calculated in terms of arbitrary units (a.u.), normalized to the 0 
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- 3 days in vitro (DIV) average of LDH concentration in control culture supernatant. In 

stage II, cultures were perfused by culture medium with drugs from 3 DIV to 14 DIV. 

Chronic electrical recordings were then used to evaluate drug efficacy. 

3.2.6 Immunohistochemistry 

NeuN staining refers to Chapter 2. Slices were then washed and mounted for confocal 

microscopy. Z-stack images were collected on confocal microscope (Zeiss LSM 510 

META, Germany) with 5x and 40x objectives. Z-stack layers were separated by 1 µm, and 

slices were imaged over their total depth. Images were then processed in Fiji (ImageJ) [30]. 

Neurons in CA1 and CA3 pyramidal layers were quantified with a counting algorithm 

modified from existing “3D watershed technique” for counting cell nuclei (ImageJ macro 

developed by [31]). 

3.2.7 Electrophysiology and data analysis 

Electrical recordings were carried out by connecting the electrode contact pads on MEA to 

a 16-channel extracellular amplifier with high impedance head stage (3600, A-M Systems). 

Signals were digitized with a multiple-channel digital acquisition board (Measurement 

Computing). Sampling rate was 200 Hz per channel. Chronic data acquisition will be 

initiated on 1 DIV, and continued until 14 DIV, with short interruptions for medium supply. 

Data were recorded with dClamp software (available from authors upon request), and 

analyzed with Matlab (Mathworks). A data binning algorithm was developed for 

automated quantification of seizure-like activity in chronic recordings. Color raster plots 

were created by binning the data at 0.5 s and calculating the number of super-threshold 
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bins (represent paroxysmal events) per 10 seconds sliding window. Threshold was set at 

20 ~ 30 µV, since the system noise was about 10 µV.  

3.2.8 Statistical Methods 

We used Student’s t test for two-variable comparisons, one-way ANOVA with Holm-Sidak 

post hoc analysis for multiple variable comparisons, and Kolmogorov-Smirnov test for 

cumulative distribution analysis. Number of samples n refers to the number of cultures. 

 

3.3 Results and discussion 

3.1.1 Simulation of field potential in organotypic culture well 

In our simplified MEA design, recording electrodes were uninsulated in the organotypic 

culture well with relatively large active area (30 µm × 3 mm). Increased electrode area can 

reduce electrical noise, but also moderate detection sensitivity by averaging out field 

potentials occurring over the length of electrode. Different from normal electrophysiology 

platform, in which case the brain slice is placed in a large culture or perfusion chamber 

(~30 mm diameter, containing 1~2 ml conducting culture medium), µflow-MEA records 

from cultures that are physically confined in PDMS mini well (6 mm diameter, containing 

5~10 µl conducting culture medium).We hypothesized that electrical signal attenuation is 

highly reduced in spatially confined culture well, which offsets the loss of detection 

sensitivity. Therefore the uninsulated electrodes can still achieve good detection of field 
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potentials, particularly population electrical fields resulting from seizure-like activity that 

is characterized by highly synchronous neuronal firing over the entire culture area. 

To test this hypothesis, we built a current source model of seizure-like activity in 

hippocampal slice culture (Figure 3.2A,C). Due to the diversity of neuron geometry and 

the way neurons assemble in the hippocampus, the anatomy of hippocampal slice is defined 

by multiple neural layers: stratum oriens (o) is where the basal dendrites of pyramidal 

neurons (the principal excitatory neurons of the hippocampus) are located; pyramidal layer 

(p) contains the cell body (soma) of pyramidal neurons; stratum radiatum (r) contains apical 

dendrites of pyramidal neurons; stratum lacunosum-moleculare (lm) also contains apical 

dendrites of pyramidal neurons; dentate molecular layer (m) contains dendrites of the 

dentate granule cells; granule cell layer (g) contains cell body of the dentate granule cells. 

The cell body assembly can be observed in confocal imaging of NeuN staining (Figure 

3.2A). When spontaneous synchronized activity involves the whole hippocampus, at the 

moment that dendrites are depolarized by excitatory inputs, current sink forms in the layers 

that contain dendrites (o, r, m). Correspondingly, current source forms in the layers that 

contain cell body (p, g, CA3p). Reversely, at the moment that dendrites are hyperpolarized 

by inhibitory inputs, the current sink forms in soma layers, and current source forms in 

dendrite layers. Therefore, during dynamic activity, the current sink-source pattern will flip 

over the time [32,33]. The current sink-source pattern of epileptiform activity in 

hippocampal slice have been observed in previous works [1,34–36]. Based on these data, 

we created a simplified current source model of seizure-like activity in hippocampus with 

the whole slice synchronized. Current sink forms in o, r, m layers, and current source forms 

in p, lm, g, CA3p layers (Figure 3.2C). The current source in lm layer is probably due to 
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the formation of current quadrupoles in CA1 pyramidal neurons [33]. The current source 

density was set at 105 A/m3.   This value was estimated by multiplying synaptic current 

amplitude (200 pA, based on reported amplitude of evoked and spontaneous postsynaptic 

currents in epileptic hippocampal slice [37–40]) by neuron density in hippocampal slice (5 

× 105 mm3, based on our previous cell counting results [41]). We then simulated the field 

potential in mini culture well (diameter = 6 mm, fluid depth = 100 µm), and field potential 

in standard petri dish (diameter = 35 mm, fluid depth = 2 mm), which mimics the widely 

used submerged slice chamber [42,43]. The field potential distribution in the plane 50 µm 

above the substrate (mini culture well midpoint) is shown in Figure 3.2D. The plot of field 

potential distribution along the x and y coordinate showed that the electrical field due to 

synchronized activity is highly amplified in mini well, compared with standard well (Figure 

3.2E).   
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Figure 3.2 Simulation of field potential generated by seizure-like activity. (A) 

Hippocampal slice anatomy. Red and green lines represent opposite polarity of current 

source in each neural layer during synchronized synaptic transmission (when dendrite 

layers are receiving excitatory synaptic inputs: green, sink; red, source). (B) Slice culture 

maintained in an interface mini well (top; diameter = 6 mm, fluid depth = 100 µm), and in 

a submerged standard  well (bottom; diameter = 35 mm, fluid depth = 2 mm). (C) Current 

source pattern during seizure-like activity with whole hippocampal circuit synchronized 

(blue, sink; red, source). (D) Simulated field potential in mini well (top; white lines show 

the outline of neural layers), and standard well (bottom). The insert  zooms in on the 

hippocampal slice. Scale bar, 1 mm. (E) Field potential distribution along the x (top) and 
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y (bottom) coordinates at the middle of well (red, mini well; black, standard well). The 

simulation results refer to the horizontal plane at 50 µm from the well floor. o, stratum 

oriens; p, pyramidal layer; r, stratum radiatum; lm, stratum lacunosum-moleculare; m, 

dentate molecular layer; g, granule cell layer; CA3p, hilus, pyramidal layer of CA3c 

subregion. 

 

We then calculated the potential amplitude that can be detected by uninsulated electrode at 

different positions in the culture well (Figure 3.3A). Field potential distribution along the 

length of the electrode is shown in Figure 3.3B, and the corresponding average potential of 

each electrode position is shown in Figure 3.3B. The electrode can detect field potential 

ranging from 0.2 mV to 3.5 mV, similar to previous observed potential amplitude of 

epileptiform activity in brain slice [44–46]. We conclude that field potential is amplified 

in spatially confined mini culture well, which offsets the loss of sensitivity caused by 

increased electrode area, and the uninsulated electrode can still achieve good detection of 

seizure-like activity in hippocampal slice culture. 
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Figure 3.3 Amplitude of potential detected by microelectrodes at different positions. 

(A) Different positions of recording electrodes. (B) Field potential distribution along each 

microelectrode. (C) Average potential that is detected by each microelectrode.  

 

3.3.2 Validation of in vitro model of epileptogenesis on µflow-MEA 

We developed a system capable of operating two µflow-MEA devices with a 16-channel 

data acquisition setup (Figure 3.4A). Based on this system, we conducted a series 

experiments to validate the organotypic hippocampal culture model of epilepsy on µflow-
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MEA, through culture viability evaluation, epileptogenesis verification, and drug response 

test.  

We evaluated the culture viability by counting the number of surviving neurons at 14 DIV, 

and compared perfused µflow-MEA and control (interface method) cultures. Confocal 

imaging of NeuN staining showed similar well maintained cytoarchitecture and densely 

packed neurons in perfused and control cultures (Figure 3.4B). Neuron counts showed no 

difference between control and perfused cultures in CA3c, CA3b and CA1 subregions 

(Figure 3.4C; p = 0.366, 0.491, and 0.289, respectively, student t test, n = 9 each condition). 

This result suggested that microfluidic perfusion and chronic electrophysiology do not 

compromise the viability of organotypic cultures. 

Continuous electrical recording was conducted from 3 DIV to 16 DIV. Raster plots were 

constructed from electrical data with interictal and ictal (seizure) activities pseudocolored 

based on paroxysmal event frequency (Figure 3.4D). Electrographic seizures were defined 

as paroxysmal events (with significantly larger amplitudes than unit and multi-unit neural 

activity) that occurred for at least 10 seconds with event frequency of at least 2 Hz, and 

colored red in the raster plot. Neural activity was observed in all cultures, including unit 

and multiunit activity, population spikes, as well as epileptiform ictal and interictal-like 

activity, with examples shown in Figure 3.4D. The chronic data showed that organotypic 

cultures go through a latent period with little population activity before developing 

electrographic seizures (Figure 3.4E, n = 5). Seizure-like activity occurred after one week 

in vitro and continued in the later culture days. These activity patterns and epileptogenesis 

time course were similar to previous observations in organotypic hippocampal cultures 

maintained with traditional methods [23,24,47,48]. 
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We tested the effect of phenytoin, a first-line anticonvulsant that is used to treat epilepsy 

in human patients, on seizure-like activity in hippocampal cultures. In the phenytoin wash-

in and wash-out experiment, seizure-like activity was transiently abolished when phenytoin 

was applied and rebounded after the termination of drug application (Figure 3.4F, G, n = 

3). Thus phenytoin exerted acute, reversible anticonvulsive effects on this model, which is 

consistent with previous findings [23].  
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Figure 3.4 Epilepsy-on-a-chip model validation. (A) Photograph of the fully assembled 

system prototype, with a zoom in photo of the device, and a brightfield image of a 
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hippocampal culture maintained in the mini well with one substrate-integrated 

microelectrodes. Scale bar, 1 mm. (B-C) Culture viability validation. (B) Representative 

confocal imaging of NeurN staining in control cultures (interface methods) and 

microfluidic perfused cultures on 14 DIV, and higher magnification imaging in CA3c and 

CA3b, and CA1 regions. Scale bars as indicated in figure. (C) Neuron counts in CA3c, 

CA3b, and CA1. n = 9 each condition. (D-E) Chronic recordings reveal epileptogenesis. 

(D) Left: representative raster plot of chronic recording from 3 to 16 DIV. Color 

corresponds to the frequency of paroxysmal events, with low frequency indicated by blue 

color, and high frequency of paroxysmal events (seizures) indicated by red. Each horizontal 

line of the raster plot represents one hour of recording, with 24 lines per DIV. Right: the 

color map of interictal activity (top trace); seizures-like activity (ictal activity, bottom 

trace). (E) Incidence of ictal and interictal activity as a percentage of cultures recorded on 

MEA, with age of culture. n = 5 cultures. (F-G) Phenytoin showed anticonvulsive effect 

on this model. (F), representative recordings for each time period (control, phenytoin 

treatment, wash). (G) Seizure frequency during each period. n = 3, Error bars indicate SD. 

Statistical significance is indicated as ***, representing p < 0.001. 

 

3.3.3 Receptor tyrosine kinase (RTK) inhibitors screen results 

Before chronic screening, a short-term neurotoxicity pre-screen (0-7 DIV) was conducted 

to determine the non-toxic maximum concentrations of each inhibitors. The pre-screen 

results is shown in Table 3.1. Those concentrations were then applied to cultures for 

chronic screen in stage I (lactate and LDH assay), and stage II (chronic electrical assay).  

 
Table 3.1 Pre-screen results. 
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In stage I, we screened 12 hippocampal RTK inhibitors listed in Table 3.1, and found that 

several inhibitors showed strong reducing effect in lactate and LDH levels (Figure 3.5A). 

Lactate and LDH production reached their peaks between 14-17 DIV, as the consequence 

of established epilepsy and seizure-induced cell death [23]. We therefore used the period 

of 7-14 DIV, the time between spontaneous seizure onset and significant neuron death 

caused by chronic epilepsy, to evaluate the drug efficacy on epileptogenesis. We integrated 

the lactate and LDH production of inhibitor-treated cultures between 7-14 DIV, and 

normalized it to vehicle-treated control from the same animal (n = 3). A scatter plot of 

lactate versus LDH is shown in Figure 3.5B for individual cultures. Some lactate and LDH 

values were lower than the mean of controls by more than 3 times the mean standard 

derivation (data points that are outside the dashed circle), suggesting antiepileptogenic 

effect. Significantly lower LDH was observed for VEGF, PDGF, and cFMS inhibitors, and 

significantly lower lactate for GTP-14564, a multi-target inhibitor for c-fms, c-kit and Flt-

3, and EGFR/ErbB-2 inhibitor (one-way ANOVA with Holm-Sidak post hoc analysis, n = 

3 cultures each condition). However, a different EGFR/ErbB-2/ErbB-4 inhibitor did not 

show significant results, suggesting that inhibitor non-specificity may be responsible.  
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Figure 3.5 Screen of inhibitors by lactate and LDH. (A) Lactate and LDH data are 

shown as ratios of levels found in inhibitor-treated cultures and levels found in vehicle-

treated controls. n = 3 each condition. (B) Integrated lactate production (DIV7–14) versus 

integrated LDH production (DIV7-14), and data was normalized to controls from the same 

animal. 𝜎 = standard deviation of integrated lactate (horizontal axis) and LDH (vertical 

axis) of controls. Data are plotted for 12 RTK inhibitors. Drugs that showed strong 

reducing effect are highlighted.   

 

In stage II, a chronic electrical assay was conducted to verify the results we obtained in 

stage I. As is shown in Figure 3.4A, each screen was run by two µflow-MEA chips to test 

3 drug-treated conditions with one vehicle-treated control (n = 3 each condition, cultures 

were from the same animal). Chronic recording was initiated on 1 DIV and continued until 
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14 DIV. Drugs and vehicle were applied since 3 DIV. A representative 1 hour recording in 

12 cultures from one screen is presented in Figure 3.6A. In our preliminary data, a potential 

reducing effect in cumulative time seizing was observed in cFMS and EGFR/ErbB-2 

(Figure 3.6B). The cumulative number of seizures was also analyzed and showed similar 

results. Significant antiepileptogenic effect was revealed in cFMS inhibitor (Figure 3.6C-

G). Compared with the control, cumulative time seizing (Figure 3.6D) and cumulative 

number of seizures (Figure 3.6E) were significantly reduced in cultures treated by cFMS 

inhibitor. Cumulative distribution of normalized time seizing per day and normalized 

number of seizure per day showed significant  decrease in cFMS inhibitor-treated cultures 

(p = 0.005, and 0.009, respectively, Kolmogorov-Smirnov test; n = 5, from 2 animals). 
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Figure 3.6 Screen of inhibitors by chronic electrical assay. (A) Representative plot of 1 

hour recording, showing parallel monitoring of epileptogenesis in 12 organotypic 

hippocampal cultures (black, vehicle; blue, red and green represents different inhibitors 

treated conditions).  n = 3 each condition, cultures are from the same animal. (B) Ratios of 

cumulative time seizing in inhibitor-treated cultures and in vehicle-treated controls. n = 3 

each condition. (C) Representative chronic recordings of vehicle-treated control and cFMS 

RTK Inhibitor-treated cultures. (D-G) Antiepileptogenic effect of cFMS RTK Inhibitor. 
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(D, E) Normalized cumulative time seizing and normalized cumulative number of seizures. 

(F, G) Cumulative distribution of normalized time seizing per day and normalized number 

of seizures per day. Data was normalized to controls from the same animal. n = 5, from 2 

screens. Error bars indicate SD. ** p < 0.01, Kolmogorov-Smirnov test.  

 

In the simulation of field potential, we present a simplified current source model of seizure-

like activity in a hippocampal slice in an instant where the whole slice is synchronized. In 

this moment, the layers occupied by dendrites are activated by excitatory inputs, resulting 

in current sink formation in these layers and current source formation in soma occupied 

layers (Figure 3.2C). However, neural activity is dynamic, and at most points in time, 

seizure-like activity is propagating or synchronized in a specific neural layer [49,35]. We 

calculated the current source density using constant neuron density and synaptic current 

amplitude. However, neuron density is not homogenous throughout the hippocampal slice, 

and the amplitude of synaptic current varies depending on the strength of synaptic input. 

To build a more sophisticated model, all these factors need to be taken into account.  

To validate the in vitro model of epilepsy on our µflow-MEA device, we conducted drug 

response test of phenytoin. Interestingly, the cultures showed even higher seizure 

frequency after the phenytoin treatment termination. This might due to the long time scale 

(20 hours) of this microfluidic perfusion based wash-in and wash-out experiment. Seizure 

frequency progressively increased during epileptogenesis, even though phenytoin was 

applied for a period during this time. In our microfluidic culture platform, cultures are 

maintained at an liquid-air interface, so that the surface of the culture is not perfused. 

Therefore the applied drug can only reach the cells in the culture by diffusion, which could 

possibly explain the length of time it took to show drug effect. Our results suggest that 



 

76 
 

phenytoin cannot prevent epilepsy progression in this model, which agrees with previous 

observations [23]. 

In our preliminary data of the µflow-MEA based chronic electrical assay, cFMS and 

EGFR/ErbB-2 inhibitors showed potential reducing effects in cumulative time seizing 

(Figure 3.6B), confirming the LDH and lactate data. The most consistent and significant 

result was seen in cFMS inhibitor (Figure 3.6D-G), suggesting its antiepileptogenic effects. 

GW-2580, the compound’s name of the cFMS inhibitor we used in this work, has been 

reported to also inhibit Trk receptors [50]. It is important to note that conditional deletion 

or inhibition of TrkB kinase can attenuate or eliminate seizures in animal models of 

epilepsy [51–55]. Therefore, there is likelihood that the antiepileptogenic effect we 

observed in cFMS inhibitor is due to its non-specific inhibition of Trk kinases. To verify 

the antiepileptogenic properties of cFMS inhibitor, its inhibition selectivity and potential 

off target effects will be further investigated. In EGFR/ErbB-2 treated cultures, the data 

was more variable, and a larger sample size is needed to confirm the drug efficacy. The 

system described in this work represents a single unit of the scalable epileptogenesis assay 

platform: 12 cultures on 2 µflow-MEA chip, recorded by 12 channel electrophysiology 

station to test 3 drug-treated conditions and a vehicle-treated control. This system can be 

easily scaled up through additions of more units for high-throughput drug discovery.        

 

3.4 Conclusion 

We developed a hybrid µflow-MEA technology for scalable chronic electrical assay of 

epileptogenesis in organotypic hippocampal culture model. The simplified MEA electrode 
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design rendered cost-effective device without compromising the sensitive detection of 

seizure-like activity. As a proof of concept, µflow-MEA based chronic electrical screening 

of inhibitors of hippocampal RTKs confirmed the results of biochemistry assay and 

identified inhibitors with antiepileptogenic effects. This epilepsy-on-a-chip screening 

platform provides a rapid dissection of complex signaling pathways associated with 

epileptogenesis, paving the way for high-throughput antiepileptogenic drug discovery. 
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Chapter 4 

Disease model validation: Culture medium study 

 

 

 

4.1 Motivation   

Brain insults, including traumatic brain injury, trigger a series of changes at molecular, 

cellular, and network levels, that can cause epilepsy [1,2].  It has been hypothesized that 

the triggering event of epileptogenesis in organotypic cultures is the trauma of brain slice 

preparation [3].  In cultures, this trauma results in axonal and dendritic reorganization [4–

8] and glial activation [9,10] that are associated with epileptogenesis. In this view, 

organotypic cultures are an in vitro analogue of animal models of traumatic brain injury-

induced epileptogenesis [11–13]. However, unlike brain tissue in vivo, organotypic slices 

are maintained in an artificially controlled environment. It may be possible that 

epileptogenesis in organotypic cultures is driven by artificial environmental factors. Here, 

we test this hypothesis by focusing on the most artificial aspect of organotypic culture 

environment: the culture medium.   

The work described in this chapter has been published in 

“Epileptogenesis in organotypic hippocampal cultures has limited 

dependence on culture medium composition” by Liu J, Saponjian Y, 

Mahoney MM, Staley KJ, and Berdichevsky Y, PLoS ONE. 2017;12: 

e0172677. 
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Mammalian tissues must be bathed in a mixture of metabolic substrates, hormones and 

growth factors (culture medium) to maintain them in vitro longer than 24 hours.  Early 

versions of culture media were often supplemented by actual blood-derived serum [14,15].  

Since concentrations of hormones and metabolites can sometimes vary significantly in 

samples of animal serum, fully chemically-defined media were developed to enhance 

reproducibility [16,17]. We have previously used both serum-supplemented and 

chemically defined media to maintain organotypic hippocampal cultures, and found that 

epileptogenesis occurs in both types of media [18,19]. One concern is that chemically 

defined culture medium is based on the composition of blood plasma rather than 

cerebrospinal fluid (CSF).  Epileptogenesis in vivo may be enhanced by the opening of the 

blood-brain barrier (BBB) after brain injury [20,21].  This enhancement is thought to arise 

from direct exposure of brain tissue to components of blood that normally do not cross 

BBB, or to compounds that are present in blood at different concentration than in CSF 

[22,23].  Therefore, it may be possible that epileptogenesis in organotypic cultures is not 

triggered by the trauma of dissection, but by exposure of hippocampal tissue to a cocktail 

of compounds that are present at much lower concentration or not present at all in normal 

CSF. 

Organotypic slices are prepared from perinatal (postnatal day 7) rodent brain, so the culture 

media is typically that used for the culture of postnatal neurons (Neurobasal-A, the NeurA 

column in Table 4.1) with B27 supplement (Table 4.2). It can be readily seen that 

concentrations of glucose, potassium, and magnesium in Neurobasal-A are substantially 

different than those found in CSF [24–26].  Some of these differences, such as increased 

potassium and decreased calcium and magnesium concentrations, may contribute to in 
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vitro hyperexcitability [22,27].  In addition, many amino acids are contained in Neurobasal-

A at significantly higher concentrations than in CSF [28–31]. Altered concentrations of 

amino acids such as glycine, serine, leucine, isoleucine, valine, phenylalanine and others 

are found in metabolic epilepsies [32,33], and might also play a role in development of 

spontaneous epileptiform activity in organotypic cultures.  Neurobasal-A medium is 

usually supplemented with B27, which contains Bovine Serum Albumin (BSA), insulin, 

transferrin, progesterone, putrescine, and selenium along with others for a total of 20 

components (Table 4.2). These components may also play a role in epileptogenesis [34]. 

 

Table 4.1 Composition of Neurobasal-A, customized medium (CST) and CSF based 

medium (CBM). 



 

90 
 

 

Table 4.2 Composition of B27 medium supplement. 

 

In this work, we tested the hypothesis that the composition of culture medium influences 

epileptogenesis in organotypic hippocampal cultures. To do this, we altered the 

concentration of individual components of the media and measured the effects on 

epileptogenesis in this model. 

 

4.2 Experimental methods 

4.2.1 Culture media preparation 

Customized culture media were prepared with different compositions and concentrations 

of electrolytes, amino acids, and glucose (all from Sigma) as described in the text.  The 

osmolarity of all custom media was matched to Neurobasal-A (240 – 260 mOsm/kg) by 

adjusting the NaCl concentration. Unless otherwise indicated, all culture media were 

supplemented with bovine serum albumin (BSA) (250 mg/L: physiological range of 
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albumin in healthy CSF is 70 – 266 mg/L [35–38]), insulin (3.5 mg/L), selenium (14 µg/L), 

from Sigma, and glutaMAX (0.5 mM) and gentamicin (30 mg/L), from Life Technologies.  

In experiments addressing role of B27 components, concentrations of BSA, insulin and  

4.2.2 Morphology Analysis 

Morphology analysis is described in detail in Chapter 3. Here, slice brightness was 

quantified by calculating mean greyscale value of the slice area minus the background in 

bright field images (Fiji/ImageJ).  

4.2.3 Electrophysiological recordings and data analysis 

Cover slips with cultures were transferred to a 35 mm petri dish and placed in an interface 

chamber perfused with culture medium at 37 °C. Extracellular field potential recordings 

were performed using tungsten microelectrodes (0.1 MOhm) connected to an amplifier 

(RZ2, Tucker Davis Technologies) fitted with high-impedance multiple-channel pre-

amplifier stage (PZ2-64, Tucker Davis Technologies) (band-pass 1 Hz-3 kHz, gain ×1000). 

Sampling rate was 6 kHz per channel. To record the population activity and multiple unit 

activity, microelectrodes were placed in CA3 pyramidal cell layer. OpenEx (Tucker Davis 

Technologies) and Matlab (MathWorks) were used for signal processing and data analysis. 

Ictal events (electrographic seizures) were defined as paroxysmal events of much larger 

amplitude than background multiple unit activity and lasting longer than 10 s, including 

discrete shorter paroxysmal events that occurred with event frequency of at least 2 Hz for 

at least 10 s.  
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4.2.4 Nissl and NeuN staining and image analysis 

For Nissl staining, cultures were fixed in 4% paraformaldehyde, permeabilized for 1 h in 

0.3% Triton-X on a shaking platform, and stained with propidium iodide (Invitrogen; 1 

mg/ml stock) diluted 1:250 in phosphate-buffered saline (PBS) for 5 h. NeuN staining was 

carried out as described in Chapter 2. Slices were then washed and mounted for confocal 

microscopy. Z-stack images were collected on a confocal microscope (Zeiss LSM 510 

META, Germany) with 40× objective. Z-stack layers were separated by 2 µm, and slices 

were imaged over their total depth.  Images were then processed in Fiji (ImageJ). Neurons 

in CA1 and CA3 pyramidal layers were quantified with a counting algorithm modified 

from existing “3D watershed technique” for counting cell nuclei (ImageJ macro developed 

by [42]).   

4.2.5 Statistical Methods 

We used Student’s t test for two-variable comparisons, one-way ANOVA with Holm-Sidak 

post hoc analysis for multiple variable comparisons, and z-test for seizure-like event 

incidence comparison. Number of samples n refers to the number of cultures or the number 

of cells as indicated. 

 

4.3 Results 

The summary of our experiments is provided in chart form in Figure 4.1.  We focused on 

identifying components of B27 and Neurobasal-A that were vital for viability of 
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organotypic hippocampal cultures. We then simplified the culture medium, and varied 

concentrations of essential components to determine effects on epileptogenesis. 

 

Figure 4.1 Summary of experiments. 

 

4.3.1 Replacement of B27 supplement with BSA, insulin and selenium 

We hypothesized that only BSA and a subset of components of B27 with concentrations 

indicated in Table 4.2 (these components make up the widely used N2 supplement) are 

essential to maintain viable slice cultures.  The following compositions were tested: BSA 

only; BSA and insulin (BSA + ins); BSA, insulin and selenium (BSA + ins + Se); BSA + 

insulin + Se + transferrin + putrescine + progesterone; and B27. The concentration of each 

component is listed in Table 4.2.  Supplements were added to Neurobasal-A medium, 

which was further supplemented with GlutaMAX and gentamycin as described in section 

4.2.1.  Confocal images taken on 8 DIV showed that cultures kept in medium supplemented 

with BSA only or with BSA + insulin had missing or fragmented pyramidal layers, 
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indicating poor neuronal survival (Figure 4.2A). Slices maintained in media with 3 other 

supplements showed intact pyramidal layers and maintained hippocampal morphology. To 

further compare these 3 supplements, we quantified the neuron numbers in CA3c, CA3b 

and CA1. Compared with B27 group, BSA+ins+Se+transferrin+putrescine+progesterone 

group had a significantly lower number of neurons in CA3b (ANOVA with post hoc Holm-

Sidak analysis in this and subsequent statistical tests, p = 0.007, n = 3 cultures, each 

condition) (Figure 4.2B). BSA + insulin + selenium group showed similar neuron numbers 

to B27 group in CA3c, CA3b and CA1 (p = 0.222, 0.410, 0.398, respectively, n = 3 cultures, 

each condition). We conclude that BSA, insulin and selenium were essential and sufficient 

supplements to Neurobasal-A medium for neuronal survival in organotypic hippocampal 

cultures until 8 DIV.  
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Figure 4.2 Essential components of B27 supplement. (A) Low magnification confocal 

images of Nissl staining in cultures at 8 DIV, conditions are indicated on the left side of 

images, scale bars, 500 µm. (B) Corresponding neuron counts in CA3c, CA3b and CA1. 

Statistical differences are indicated for comparisons between B27 group versus other 

groups. Error bars indicate SD. Statistical significance is indicated as **, representing p < 

0.01. (C) Confocal images of Nissl staining in CA3c, CA3b and CA1, scale bars, 50 µm. n 

= 3 cultures, each condition.  

 

4.3.2 Reduction of selenium and insulin affects cell survival 

We modified concentrations of each component of the simplified supplement (BSA + 

insulin + selenium) to investigate their effect on cultures. Following concentrations were 

tested: for BSA, 0.4x (BSA concentration equal to 0.4 times that listed in Table 4.2), 1x 
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(BSA concentration equal to that listed in Table 4.2), 4x (4 times) and 10x (10 times); for 

selenium, 0x (no selenium), 0.1x (selenium concentration equal to 1/10 of that listed in 

Table 4.2), 1x (selenium concentration equal to that listed in Table 4.2), 10x (10 times); 

for insulin, 0.01x (insulin concentration is 1/100 of listed), 0.1x (insulin concentration 

equal to 1/10 of that listed in Table 4.2), 1x (insulin concentration equal to that listed in 

Table 4.2), and B27.  The concentration of only one component was varied in each 

experiment while the other components were included at concentrations found in Table 4.2.  

It was not possible to reduce albumin below 100 mg / L due to reductions in the uniformity 

of wetting of the hippocampal slice surface by the media.  Brightfield microscope images 

were taken at 21 DIV. We measured LDH and lactate concentrations in spent culture media. 

Data were from medium collected on 3, 7, 10, 14, 17 and 21 DIV. There were no significant 

differences in gross culture morphology or LDH and lactate concentrations in medium 

containing different concentrations of BSA (Figure 4.3A). Cultures in medium with 0x 

selenium had undistinguishable neural layers, indicating poor survival (Figure 4.3B). 

Compared with 1x selenium group, 0x selenium group had significantly higher LDH at 7 

DIV, 10 DIV, 14 DIV and 17 DIV (p < 0.001 for 7, 10, 14 DIV, p = 0.01 for 17 DIV, n = 

3 cultures, each condition) and significantly lower lactate at 10 DIV, 14 DIV, 17 DIV, 21 

DIV (p < 0.001 for all these days, n = 3 cultures, each condition), confirming morphology 

results and indicating that selenium is essential for culture survival.  No differences in 

morphology or lactate and LDH concentrations were observed between cultures 

supplemented with 0.1x, 1x, or 10x selenium.  Cultures in medium with 0.01x insulin were 

brighter and smaller than cultures with 0.1x or 1x insulin or B27 (Figure 4. 3C; inverted 

greyscale values of cultures were 123.41 ± 8.35, 142.13 ± 8.31, 149.47 ± 3.40 and 132.72 
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± 7.63 for 0.01x, 0.1x, 1x and B27 group respectively, n = 3 cultures, each condition.  A 

significant difference was found in comparison of 0.01x vs. 1x group, p = 0.007, n = 3 

cultures, each condition). Compared with 1x insulin group, 0.01x insulin group had 

significantly lower LDH from 10 DIV to 21 DIV (p < 0.001 for 10, 14, 17 DIV, p = 0.005 

for 21 DIV, n = 3 cultures, each condition) and significantly lower lactate from 7 DIV to 

21 DIV (p < 0.001 for 7, 10, 14 DIV, p = 0.007 for 17 DIV, p = 0.003 for 21 DIV, n = 3 

cultures, each condition).  However, LDH concentration for 0.01x group was moderately 

higher on DIV 3 than for cultures supplemented with higher concentrations of insulin or 

with B27.  This, together with smaller size of the 0.01x insulin cultures, suggested that 

more cells died by DIV 3 due to lack of sufficient concentration of insulin, leading to lower 

lactate production in these cultures later on.   
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Figure 4.3 Effects of different concentrations of BSA, selenium, and insulin. (A-C) 

Left: brightfield images of cultures maintained in media with indicated concentrations of 

BSA, selenium or insulin, scale bars represent a distance of 500 µm; Right: time course of 

LDH and lactate concentration in culture supernatant of cultures; n = 3 cultures, each 

condition. Error bars indicate SD. Significant statistical differences are indicated for 

comparison of 0X selenium versus 1X selenium and 0.01X insulin versus 1X insulin, with 

***p < 0.001, **p < 0.01. 

 

We further investigated the influence of insulin concentration on culture survival. We used 

the following conditions: 0x (no insulin), 0.01x (insulin concentration is 1/100 of that listed 

in Table 4.2), and 1x. Confocal images taken on 8 DIV showed that 0x group had smaller 

slice area compared with other groups (Figure 4.4A). We measured the slice area and a 

significant difference was seen between the 0x group and 1x group (p = 0.011, n = 3 
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cultures, each condition). We quantified the number of neurons in CA3c, CA3b and CA1 

(Figure 4.4B, left chart).  However, we found that due to the more compact size of 0x 

insulin cultures, a larger proportion of the pyramidal cell layer would fit into a single field 

of view for those cultures compared to 0.01x and 1x cultures.  To arrive at a correct relative 

number of neurons between the cultures, we corrected neuronal counts with normalized 

total slice area (Figure 4.4B, right chart). Compared to the 1x group, the 0x group and 0.01x 

group showed significantly lower neuron numbers in CA1 (before slice area correction: p 

= 0.002 for 0x group, p = 0.011 for 0.01x group, n = 3 cultures, each condition; after slice 

area correction: p < 0.001 for both conditions). We inspected the size of individual neurons 

and found that 0x group and 0.01x group had smaller neurons compared to the 1x group 

(Figure 4.4D). A significant difference was seen between the 0x group and 1x group (p < 

0.001, n = 30 cells, each condition). We concluded that insulin affects neuronal size, 

survival and slice size. However, insulin concentrations that were reduced by a factor of 

10 from the standard N2 levels had no significant effects on our measures of the health of 

the slice cultures. In subsequent experiments, we supplemented all media with BSA, insulin 

and selenium at concentrations listed in Table 4.2, since these concentrations were optimal 

for neural survival by DIV 8. 
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Figure 4.4 Insulin enhances neuronal survival. (A) Low magnification confocal images 

of Nissl staining in cultures at 8 DIV, conditions are indicated on the left side of images, 

scale bars, 500 µm. Chart shows effect of insulin on slice area; (B) Left: neuron counts in 

CA3c, CA3b and CA1; Right: neuron counts corrected by the normalized slice area. n = 3 

cultures, each condition. Statistical differences are indicated for comparison between 1X 

group and other groups. (C) Representative confocal images of Nissl staining in CA3c, 

CA3b and CA1, scale bars, 50 µm. (D) Left: representative confocal images of neurons in 

CA3c, scale bars represent a distance of 5 µm; Right:  corresponding cell size in CA3c. n 

= 30 cells, each condition. Significant statistical differences are indicated for comparison 

of 0X group versus 1X group. Error bars indicate SD. Significant differences are labeled 

as *p < 0.05, **p < 0.01 and ***p < 0.001. 

 

4.3.3 Identification of essential components of Neurobasal-A 

We grouped the hypothesized non-essential components into three sets listed in Figure 

4.5A.  We then replicated  Neurobasal-A by combining BME amino acids solution (B6766, 
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Sigma, 1:12.5 dilution) and BME vitamins solution (B6891, Sigma, 1:25 dilution) with 

other components in Neurobasal-A formulation in appropriate concentrations (Table 4.1, 

NeurA columns). Suspected noncritical components were included in the replicate 

experimental group, or excluded as indicated. Cultures were maintained in replicated 

NeurA or replicated NeurA with set 1, set 2, or set 3 excluded (-set1, -set2, -set3 

experimental groups). Brightfield microscope images taken on 21 DIV showed that 

cultures without glycine and L-serine (-set1) were significantly brighter than other groups 

(Figure 4.5B; inverted greyscale = 152.60 ± 6.74, 110.28 ± 9.29, 148.85 ± 2.98 and 152.65 

± 7.39 for replicate, -set1, -set2 and –set3 group respectively; p < 0.001 for –set1 vs. 

replicate, n = 3 cultures, each condition). Slices in –set2 and –set3 had morphologies 

similar to control (replicated NeurA) slices. Group lacking set1 was found to have lower 

LDH and lactate concentrations than the other three groups from 14 DIV to 21 DIV. 

Significant differences in lactate between –set1 group and NeurA replicate group appeared 

on  14, 17, 21 DIV (p < 0.001, p = 0.004, p = 0.007, respectively, n = 3 cultures, each 

condition). Based on the altered morphology, LDH, and lactate, we conclude that glycine 

and L-serine play a role in cell survival and activity.  On the other hand, exclusion of set2 

or set3 had no noticeable effect on culture morphology or LDH and lactate release. In 

subsequent experiments, we used NeurA medium with the noncritical sets 2 and 3 excluded, 

which we termed customized medium (CST, Table 4.1).  The role of glycine and L-serine 

was investigated further in experiments described in the section 4.3.4. 

Based on CST, we generated media with different concentrations of essential amino acids:  

control (essential amino acid concentrations equal to those listed for CST), 0.1x (essential 

amino acid concentrations equal to 1/10 of those listed for CST), 0.01x (1/100) and 0x (no 
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essential amino acids). By 7 DIV, cultures in 0x group were significantly darker than 

control cultures, indicating poor survival (Figure 4.5C; inverted greyscale values were 

135.19 ± 3.42, 124.77 ± 3.87, 144.46 ±15.32 and 170.53 ± 10.56 for control, 0.1x, 0.01x 

and 0x group respectively; p = 0.001 for  0x vs. control group, n = 3 cultures, each 

condition). Neural layers became undistinguishable in 0x cultures by 7 DIV. 0.01x and 0x 

group had significantly higher LDH than control at 7 DIV (p < 0.001, n = 3 cultures, each 

condition). We conclude that concentrations of essential amino acids lower than 1/100 of 

what is found in Neurobasal-A are insufficient for culture survival.  We then compared 

0.1x and control groups (Figure 4.5D). No observable differences in culture morphology 

were found in microscope images at 14 DIV. However, 0.1x group had significantly higher 

LDH than control at 10 DIV (p = 0.03, n = 3 cultures, each condition) and 14 DIV (p = 

0.006, n = 3 cultures, each condition). Thus, we conclude that reduction of all essential 

amino acid concentrations was detrimental to culture survival.  

We then examined the possibility that we could reduce seizure activity in organotypic slice 

cultures by reducing the concentrations of some of the essential amino acids, without 

increasing cell death.  We focused on the amino acids that play a role in metabolic epilepsy: 

leucine, isoleucine, phenylalanine and valine (Figure 4.5E). Control cultures were 

maintained in CST with all essential amino acids, -leucine & isoleucine cultures were 

maintained in CST without leucine and isoleucine, and -4S cultures were maintained in 

CST without leucine, isoleucine, phenylalanine, and valine.  The cultures of the last two 

groups had a deformed shape with a hole in the slice center, and much thinner neural layers 

compared with the control group at 10 DIV. The control group showed significantly higher 

LDH than the other two groups at 7 DIV (p < 0.001 for both groups), 10 DIV (p = 0.009 
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for –leucine and isoleucine group, p = 0.035 for -4S group), and 14 DIV (p < 0.001 for 

both groups).  In this case, early cell death in –leucine & isoleucine and -4S cultures 

(detected by poor morphology of these cultures) resulted in lower LDH at later time-points, 

due to fewer surviving cells.  We conclude that leucine, isoleucine, phenylalanine, and 

valine are essential for organotypic hippocampal culture viability.  

We also excluded all vitamins (-vitamins mix), and compared it with 1x vitamins 

concentration medium (control). Microscope images at 10 DIV revealed that the -vitamins 

mix group slices shrank, with significantly darker neural layers than control cultures, 

despite no significant difference in LDH (Figure 4.5F; inverted greyscale = 125.77 ± 8.21 

and 157.73 ± 0.30 for control and –vitamins mix group respectively, p = 0.005, n = 3 

cultures, each condition). We conclude that exclusion of vitamins increased cell death in 

cultures. 
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Figure 4.5 Neurobasal-A simplification. (A) List of hypothesized noncritical components. 

(B) Left: brightfield microscope images at 21 DIV, scale bars represent a distance of  500 

µm; Right: time course of LDH and lactate concentration in spent culture media from 

cultures treated with replicated NeurA, or NeurA without set1, set2 or set3; n = 3 cultures, 

each condition. Significance is shown for replicate group versus –set1 group. (C) Cultures 

maintained in the presence of different concentrations of essential amino acids. Top: 

photomicrographs at 7 DIV. Scale bars, 500 µm; n = 3 cultures, each condition. Statistical 

significance is indicated for 0x group and 0.01x group versus control. (D) Cultures 

maintained in the presence of reduced and control concentrations of amino acids. Images 

are from 14 DIV; n = 3 cultures, each condition. (E) Evaluation of the removal of 4 

metabolic epilepsy-related essential amino acids (4S: leucine, isoleucine, phenylalanine 
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and valine).  Images are from 10 DIV; n = 3 cultures, each condition. Statistical differences 

are shown for experimental groups versus control. (F) Cultures maintained in the presence 

of 1x (control) and without vitamins (- vitamins mix) and corresponding greyscale and 

LDH measurements. Images are from 10 DIV; n = 3 cultures, each condition. Error bars 

indicate SD. Significances are labeled as ***p < 0.001, **p < 0.01 and *p < 0.05. 

 

4.3.4 Reduction of non-essential amino acids affects cell survival  

We investigated glycine and L-serine in more detail. We maintained cultures in media 

containing different concentrations of glycine or L-serine (only one of those amino acids 

was present in media described in this paragraph and Figure 4.6A and B.  Base 

concentration (1x) of glycine or L-serine was 0.4 mM as in NeurA.  0x medium contained 

neither glycine nor L-serine. Confocal images of cultures stained with anti-NeuN neuron-

specific antibody were taken at 21 DIV (Figure 4.6A). Cultures maintained in 0x and 0.01x 

glycine had very few neurons remaining by 21 DIV. NeuN staining in 0.1x glycine group 

revealed distinct neuron layers similar to 1x group. Neuronal counts in area CA1 revealed 

that compared with 1x group, significantly less neurons remained in 0x (p < 0.001, n = 3 

cultures, each condition) and 0.01x (p = 0.009, n = 3 cultures, each condition) glycine 

groups, while more neurons remained in 0.1x (p = 0.041, n = 3 cultures, each condition) 

group. Cultures maintained in 0x serine group cultures shrank and lost hippocampal 

morphology, while cultures maintained in 0.01x serine had distinct CA1 and CA3 neuronal 

layers but few neurons in DG (Figure 4.6B). In 0.1x and 1x L-serine groups, cultures had 

well preserved and distinct pyramidal and granule neuron layers (bright NeuN staining). 

The number of neurons in CA1 was significantly lower in 0x L-serine group (p < 0.001, n 

= 3 cultures, each condition) compared with 1x group. There were no significant 

differences between numbers of CA1 neurons in 0.01x, 0.1x and 1x L-serine groups.  Based 
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on CA1 neuron counts and preservation of DG, we conclude that concentrations of glycine 

and L-serine less than 0.1x (0.04mM) were insufficient to support culture survival.  

We then examined whether combined glycine and L-serine could support neurons in 

organotypic cultures at lower concentration than glycine or L-serine alone. We compared 

lactate and LDH release in media containing 0.01 mM glycine and L-serine and in medium 

containing 0.4 mM glycine and L-serine (CST medium) (Figure 4.6C). Slightly less lactate 

and LDH was released in medium with 0.01 mM glycine and serine compared to medium 

with 0.4 mM glycine and serine, although results were not statistically significant except 

for LDH on 17 DIV  (p = 0.036, n = 3 cultures, each condition). We conclude that when 

both L-serine and glycine are included in culture media, concentrations can be reduced to 

0.01 mM without adversely affecting cell survival.  Slightly higher LDH and lactate release 

in medium with higher glycine and serine concentrations pointed to a potential pro-

epileptic effect of these amino acids. 
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Figure 4.6 Cultures in media with different glycine and serine concentrations. (A) Left: 

low magnification confocal images of NeuN staining in cultures at 21 DIV, glycine 

concentrations are indicated on left side of images, scale bars, 500 µm; Middle: 

representative confocal images of NeuN staining in CA1, scale bars, 50µm; Right: 

corresponding CA1 neuron counts; n = 3 cultures, each condition. Statistical differences 

are indicated for comparisons between 1x group versus other groups. (B) Cultures 

maintained in different concentrations of serine. Significances are indicated for 0x group 

versus 1x group; n = 3 cultures, each condition. (C) Lactate and LDH results for cultures 

treated with combined glycine and serine, n = 3 cultures, each condition. Error bars 

represent SD. Significant differences are labeled as *p < 0.05, **p < 0.01 and ***p < 0.001. 
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4.3.5 Modification of electrolyte and glucose concentrations affects cell survival and 

ictal activity  

Concentrations of glucose, calcium, magnesium and potassium in CST are different from 

those found in rat CSF. We modified the concentrations of these components to investigate 

their effect on cultures.  The following concentrations were tested: for glucose, 11 mM 

(glucose concentration used in typical artificial CSF (aCSF) for acute slice experiments 

[19]), 15 mM, 20 mM, and 25 mM; for calcium, 0.5 mM, 1 mM, 2 mM ( [Ca2+] used in 

typical aCSF), 4 mM; for magnesium, 0.5 mM, 1.3 mM ( [Mg2+] used in typical aCSF), 2 

mM, and 4 mM; for potassium, 2 mM, 3.5 mM ([K+] used in typical aCSF), 5 mM, and 8.5 

mM. Concentration of only one medium component was varied in each experiment; other 

components were included at concentrations found in CST (Table 4.1).  Brightfield 

microscope images were taken at 14 DIV. There were no differences in culture morphology 

or LDH and lactate in media containing different concentrations of glucose (Figure 4.7A). 

Cultures in medium with [Ca2+] = 4 mM had dark edges around neuron layers, indicating 

that cell death occurred (Figure 4.7B). Compared with [Ca2+] = 2 mM group, [Ca2+] = 4 

mM group had significantly higher LDH (p = 0.004, n = 3 cultures, each condition) and 

significantly lower lactate (p < 0.001, n = 3 cultures, each condition) at 7 DIV, confirming 

morphology results and indicating that high Ca2+ concentration is toxic for organotypic 

hippocampal cultures. Cultures in medium with [Mg2+] = 4 mM had significantly brighter 

neural layers than cultures in media with lower [Mg2+], which is potentially due to lower 

dead cell accumulation (Figure 4.7C; inverted greyscale = 144.94 ± 1.19, 146.73 ± 3.43, 

141.21 ± 3.60 and 130.20 ± 2.08 for 0.5 mM, 1.3 mM, 2.0 mM and 4.0 mM group 

respectively; p < 0.001 for 4.0 mM vs. 1.3 mM, and 4.0 mM vs. 0.5 mM, p = 0.04 for 4.0 
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mM vs. 2.0 mM, n = 3 cultures, each condition). Interestingly, cultures in [Mg2+] = 2 mM 

and [Mg2+] = 4 mM groups had significantly lower LDH and lactate release compared with 

[Mg2+] = 1.3 mM group at 10 DIV (p = 0.001, LDH, n = 3 cultures, each condition, and p 

= 0.006, lactate, n = 3 cultures, each condition). Cultures in media containing [K+] = 5 mM 

and [K+] = 8.5 mM group had better morphology (lighter, clearer neuronal layers) than 

cultures in [K+] = 3.5mM, while cultures in [K+] = 2 mM group had the worst morphology 

(dark, neuronal layers not visible) (Figure 4.7D). [K+] = 8.5 mM group released 

significantly less LDH than [K+] = 3.5 mM group at 10 and 14 DIV (p = 0.007 and p = 

0.008, respectively, n = 3 cultures, each condition). There were no significant differences 

found in lactate release by cultures in media with different [K+].  Brighter neural layers and 

lower LDH in [K+] = 8.5 mM group indicated that high concentration of K+ was 

neuroprotective (inverted greyscale = 169.73 ± 4.27, 168.07 ± 6.20, 152.08 ± 0.45 and 

143.69 ± 4.17 for 2.0 mM, 3.5 mM, 5.0 mM and 8.5 mM group respectively; p < 0.001 for 

8.5 mM vs. 2.0 mM, and 8.5 mM vs. 3.5 mM, p = 0.003 for 5.0 mM vs. 2.0 mM, p = 0.006 

for 5.0 mM vs. 3.5 mM, n = 3 cultures, each condition). This finding was surprising, since 

acute application of high [K+] was previously found to increase ictal activity in acute 

hippocampal slice preparations [43].  The potential anticonvulsant effect of elevated [Mg2+] 

in organotypic cultures, evidenced by lower lactate production, is consistent with data from 

other models [44,45]. 
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Figure 4.7 Modification of glucose and electrolyte concentrations affects cell survival 

and ictal activity. (A-D) Left: brightfield images of cultures maintained in media with 

indicated concentrations of glucose, Ca2+, Mg2+, or K+ at 14 DIV, scale bars, 500 µm; Right: 

time course of LDH and lactate release into culture medium. n = 3 cultures, each condition. 

Error bars indicate SD.  Concentrations of ions that correspond to rat CSF are underlined 

and indicated by solid symbols.  Significant statistical differences are indicated for 

comparison of 4 mM Ca2+, 4 mM Mg2+ and 8.5 mM K+ versus CSF concentrations of 

corresponding ions. , with **p < 0.01 and ***p < 0.001.  
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4.3.6 CSF-based medium can support organotypic hippocampal cultures 

We hypothesized that changing concentrations of glucose, Ca2+, Mg2+, and K+ 

simultaneously may produce different effects than changing their concentrations 

individually.  We made another medium, defined as CSF-based medium (CBM). CBM has 

the same components as CST, but concentrations of electrolytes were changed to reflect 

concentrations in rat CSF, while glucose concentration was changed to match typical 

concentration used in aCSF for acute slice experiments [46] (Table 4.1). Cultures 

maintained in CST or CBM were compared to cultures maintained in NeurA (Figure 4.8A). 

Compared with NeurA slices, CST and CBM cultures showed similar well-preserved 

hippocampal morphology with clear neuronal layers. No significant differences in LDH 

release were found between the three experimental groups, confirming morphology results 

(n = 3 cultures, each condition).  On the other hand, significantly lower lactate release in 

CST and CBM groups were found in comparison to the NeurA group starting from 7 DIV 

to 21 DIV (at 7 DIV, 10 DIV, 14 DIV, 17 DIV and 21 DIV, for CST versus NeurA, p = 

0.003, 0.015, 0.023, 0.012, 0.002, respectively; for CBM versus NeurA, p = 0.002, 0.001, 

0.001, 0.002, 0.006, respectively, n = 3 cultures, each condition).  Significant differences 

were also found between CST and CBM groups at 10 DIV and 14 DIV (p = 0.038, and 

0.036, respectively, n = 3 cultures, each condition).  

Confocal images of NeuN-stained cultures showed that pyramidal neuronal layers were 

well organized and densely packed in both NeurA and CBM cultures at 10 DIV (Figure 

4.8B). The numbers of surviving neurons were not different between NeurA and CBM 

cultures in either CA1 (p = 0.663, student t test, n = 3 cultures, each condition) or CA3 (p 

= 0.317, student t test, n = 3 cultures, each condition).  
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To further investigate the reduced lactate production in CBM and CST vs. NeurA culture 

media, we quantified electrographic seizures (ictal events) in NeurA and CBM cultures 

from 0 to 14 DIV.  To compare effects of NeurA and CBM, data were grouped into four 

time periods: 0-3 DIV, 4-7 DIV, 8-10 DIV, and 11-14 DIV (at each time point, for NeurA: 

n = 17 from 6 animals, 9 from 6 animals, 8 from 4 animals, 10 from 4 animals, respectively; 

for CBM: n = 15 from 6 animals, n = 8 from 6 animals, n =10 from 3 animals, n = 10 from 

4 animals, respectively; 10 animals were used in total, n represents the number of cultures).  

Seizure incidence was slightly, but not significantly lower in cultures maintained in CBM 

compared to cultures maintained in NeurA during all time periods (Figure 4.8C, D; p = 

0.141, 0.742, 0.769, 0.348 for 0-3, 4-7, 8-10, 11-14 DIV, respectively, z-test). We then 

examined seizure frequency, duration, and total time seizing per hour only in cultures with 

seizures.  The only significant reduction in average seizure duration was found in CBM vs. 

NeurA during the 4 - 7 DIV time period (p = 0.039, n = 6 for NeurA, n = 5 for CBM).   

Thus, CBM cultures were somewhat less epileptic than NeurA cultures, which matches 

well with the differences in lactate between cultures maintained in CBM and NeurA media. 

However, electrical recordings also revealed that number of seizures per hour (p = 0.094 

on 8-10 DIV, n = 6 for NeurA, n = 7 for CBM; p = 0.344 on 11-14 DIV, n = 8 for NeurA, 

n = 5 for CBM, n represents the number of cultures), and time seizing per hour (p = 0.201 

on 8-10 DIV, n = 6 for NeurA, n = 7 for CBM; p = 0.713 on 11-14 DIV, n = 8 for NeurA, 

n = 5 for CBM) were slightly but not significantly lower in CBM compared to NeurA after 

8 DIV. In cultures that had electrographic seizures, average seizure duration was actually 

slightly, but not significantly higher in CBM compared to NeurA at 11 – 14 DIV (p = 0.057, 

n = 8 for NeurA, n = 5 for CBM). 
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Figure 4.8 Comparison between NeurA, CST and CBM media. (A) Brightfield images 

at 10 DIV. Scale bars, 500 µm. Time course of LDH and lactate concentration in culture 

supernatant; n = 3 each condition per time point. Error bars indicate SD. Statistical 

significant differences are indicated for CBM and CST versus NeurA, with **p < 0.01. (B) 

Representative confocal images of CA1 and CA3 area of NeuN-stained organotypic 

hippocampal cultures at 10 DIV. Scale bars, 50 µm. Neuron counts in CA1 and CA3 are 

shown on the right; n = 3 each condition. (C) Representative recordings of electrographic 

seizure-like events in organotypic cultures on 10 DIV. Seizure detail is shown in lower 

traces. Red lines indicate the threshold for paroxysmal event detection. (D) Electrographic 

seizures (ictal events) in NeurA and CBM in electrographic recordings of seizing slices. 

For 0-3 DIV, 4-7 DIV, 8-10 DIV, 11-14 DIV,n = 17, 9, 8, 10 for NeurA, n = 15, 8, 10, 10 

for CBM, respectively. n represents the number of cultures. *p < 0.05.  Error bars represent 

95% confidence intervals for incidence of ictal activity and SD for other graphs.  
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4.3.7 Epileptogenesis occurs independently of medium composition 

Previous experiments revealed that reduction of glycine and L-serine concentrations to 

0.01 mM and increase of [Mg2+] to 2 mM significantly decreased cell death and reduced 

lactate production (Figure 4.6C and 4.7C). We integrated these two modifications into a 

modified medium, and compared it with CBM. Microscope images at 14 DIV revealed that 

cultures in modified media had significantly brighter neural layers than cultures in CBM 

(Figure 4.9A; inverted greyscale = 155.22 ± 8.37 and 134.15 ± 5.06 for CBM and modified 

medium group respectively, p = 0.038, n = 3 cultures, each condition). Cultures maintained 

in modified medium released significantly less LDH than slices in CBM at 14 DIV (p = 

0.048, n = 3 cultures, each condition).   No significant differences were observed in lactate 

release between two groups.  We recorded electrographic activity in CBM and modified 

media cultures from 10 DIV to 14 DIV (Figure 4.9B, C; for CBM, n = 13 cultures from 3 

animals; for modified medium, n = 14 cultures from 3 animals). No significant differences 

were observed in ictal activity incidence (p = 0.853, z-test). In cultures with seizures (n = 

7 cultures for CBM and modified medium), no significant differences were observed in the 

number of seizure per hour, average seizure duration or time seizing (p = 0.642, p = 0.937, 

p = 0.506 respectively, t test). It therefore appears that this modified medium was 

moderately neuroprotective (better morphology, lower LDH), but did not affect 

epileptogenesis.  
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Figure 4.9 Epileptogenesis occurs independently of medium composition. (A) Left: 

brightfield images at 14 DIV. Modified medium refers to the medium with lower 

concentrations of glycine and serine (0.01 mM) and higher concentration of magnesium 

(2.0 mM) compared to CBM. Scale bars, 500 µm; Right: time course of LDH and lactate 

concentration; n = 3 cultures, each condition. Error bars indicate SD. *p < 0.05. (B) 

Representative recordings of electrographic seizure-like events in organotypic cultures 

maintained in CBM and modified medium on 11 DIV. Seizure detail is shown in lower 

traces. Red lines indicate the threshold for paroxysmal event detection. (C) Comparison of 

electrographic seizures in cultures maintained in CBM or modified medium during 10-14 

DIV. n = 13 cultures for CBM; n = 14 cultures for modified medium; only cultures with 

seizures used for quantification of seizure frequency, duration, and time seizing. Error bars 

represent 95% confidence intervals for incidence of ictal activity and SD for other graphs. 
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4.4 Discussion 

4.4.1 Interpretation of morphology, lactate, and LDH data 

 

Slice dissection results in substantial cell death at the surface layers of hippocampal slices.  

Cell death in organotypic hippocampal cultures continues until 3 DIV, and then almost 

completely disappears by 7 DIV as dead cells are cleared from organotypic cultures 

maintained in serum-based or Neurobasal-A/B27 media [19].  Brightfield microscope 

images taken at 3 DIV show relatively dark but clearly distinguishable neural layers, while 

images taken at 7 DIV show much brighter neural layers.  Measurement of LDH in the 

culture medium at 3 DIV (capturing LDH release between 0 and 3 DIV) reveals much 

higher LDH concentration (corresponding to higher cell death [40]) than at 7 DIV (LDH 

release between 3 and 7 DIV) [19].   From 7 to 14 DIV, the incidence of spontaneous 

electrographic seizures increases in organotypic hippocampal cultures maintained in 

serum-based or Neurobasal-A media [18,19].  Spontaneous seizures are accompanied by 

activity-dependent neuron death, which results in darker, less distinguishable neural layers 

by 10 – 14 DIV. The glutamate receptor antagonist kynurenic acid and anticonvulsant 

phenytoin reduce occurrence of spontaneous seizures and accompanying cell death.  

Cultures maintained in the presence of kynurenic acid or phenytoin have clearer neural 

layers and release less LDH into spent culture media  between 10 – 14 DIV than vehicle-

treated cultures [19,47]. Thus, in cultures maintained in serum-based or Neurobasal-A 

media, morphology and LDH release are closely linked, and follow a predictable pattern: 

darker cultures and high LDH release signifying high cell death between 0 and 3 DIV, 

brighter, clearer cultures, low LDH release, and low cell death, between 3 and 7 DIV, and 

darker cultures and increasing LDH release accompanying seizure-induced cell death after 
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7 DIV.  Lactate release into culture medium is correlated to the amount of time spent 

cultures seizing per hour [4].  Thus, little lactate is released into culture medium until 7 

DIV, while after 7 DIV, increasing incidence of seizures causes increasing lactate release. 

We found that changes in medium composition can negatively affect culture survival, and 

reduce the correlation between morphology and LDH release.  For example, exclusion of 

vitamins in culture medium did not affect LDH release, but caused significant changes in 

morphology (Figure 4.5F).  This may occur because LDH release from dead cells is 

affected by the mode of cell death: loss of membrane integrity in necrotic cells results in 

release of LDH into culture supernatant, while most of LDH in apoptotic cells may be 

degraded without release into extracellular space [39].  Therefore, we used culture 

morphology as first determinant of culture survival in different media, while LDH release 

was used to gauge culture survival when no differences were detected morphologically. 

When a change in medium composition resulted in decreased culture survival, lactate 

release was also decreased (effects of 0.01x insulin in Figure 4.3C or 4 mM Ca2+ in Figure 

4.7B).  This decrease occurred due to fewer surviving cells present in the culture to release 

lactate, and not necessarily due to lower seizure load.  Thus, lactate, LDH, and morphology 

data needed to be analyzed together to determine effects of a medium composition on 

culture survival and development of epilepsy. 

4.4.2 Effect of medium composition on epileptogenesis 

 

We investigated the influence of BSA, selenium and insulin on culture survival. Albumin 

may play a role in epileptogenesis by triggering TGF-β pathway activation after blood-

brain barrier is compromised [34,48]. However, we did not observe any significant 

differences in morphology, LDH or lactate in cultures maintained in various concentrations 
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of BSA. Selenium is an antioxidant trace element that is protective against oxidative 

damage and can prevent the development of epilepsy induced by peroxidative injury [49–

51]. Our experiments confirmed that selenium is essential to culture survival, but 

increasing the concentration of selenium had no beneficial or harmful effects. Insulin is 

frequently used in serum-free media formulations to stimulate cell growth [52], and has 

been reported to prevent apoptosis of external granular layer neurons in rat cerebellar slice 

cultures [53]. Our experiments confirmed that insulin affects neuronal size and is essential 

for neuronal survival (Figure 4.4). We therefore supplemented all media used in subsequent 

experiments with insulin and selenium to promote neuronal survival, and with BSA 

concentration that was in the range of albumin concentration in normal CSF.  

We attempted to change concentrations of essential and non-essential amino acids, 

vitamins, electrolytes, and glucose to bring culture medium composition closer to CSF 

composition.  We found that changing concentrations of essential amino acids, or removing 

some essential amino acids, negatively affected culture survival. Similarly, we found that 

organotypic cultures could not survive without vitamins.  On the other hand, we found that 

cultures were more tolerant of changes in concentrations of non-essential amino acids, 

electrolytes, and glucose.  Alanine and proline could be removed from culture medium, 

while concentrations of glycine and serine could be varied from 10 to 400 µM without 

affecting culture viability.  We also found that concentration of glucose in the range of 11 

– 25 mM, [Ca2+] between 1 - 2 mM, [Mg2+] between 0.5 - 4 mM, and [K+] between 3.5 - 

8.5 mM supported culture survival.   

In healthy CSF, the concentration of K+ is 2.7 - 3.9 mM, the concentration of Mg2+ is 1 - 2 

mM and the concentration of Ca2+ is 1.5 – 2.5 mM [22,25,27].  Changes in the 
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concentrations of these ions can alter neuronal excitability and lead to spontaneous 

epileptiform activity [22,27,43,54–57].  Glucose concentration in CSF is approximately 

1.5 - 5 mM, although 10 – 11 mM concentrations are used in acute slice preparations to 

compensate for the altered glucose delivery pathway: rather than active transport from 

capillaries, glucose is provided via the diffusion gradient between the bathing medium and 

the extracellular fluid of actively metabolizing cells [27,46].  CSF contains 25 – 300 µM 

of serine and 5 – 40 µM of glycine depending on age [28,29,58].  Glycine affects excitatory 

neurotransmission by modulating N-methyl-d-aspartate (NMDA) receptor activation and 

desensitization [59–61], activates glycine receptors, and alters induced epileptiform 

activity [62].  L-serine (contained in culture medium) serves as a precursor for the synthesis 

of neuromodulators glycine and D-serine [63], which is also a co-agonist for the majority 

of NMDA receptor subtypes [61,64]. Finally, L-serine and glycine can act as trophic 

factors for survival and dendritogenesis of neurons [65].  

We created two CSF-based media, CBM and modified CBM, to examine whether 

epileptogenesis in organotypic cultures is caused by medium composition. Comparison 

between CBM and Neurobasal-A revealed that both media supported culture survival 

equally well, with a trend toward lower excitability in CBM cultures relative to 

Neurobasal-A cultures.  This may be due to lower [K+] and glucose in CBM.  However, 

the incidence of electrographic seizures was the same in both media, leading us to conclude 

that effect on epileptogenesis was minor. In modified CBM, we increased [Mg2+] to 2 mM , 

and reduced glycine and serine concentrations to 10 µM in an effort to minimize 

excitability but keep medium components within physiological ranges (note that Mg2+ was 

more protective at 4 mM, but this concentration is higher than what is found in CSF).  
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Reducing glycine concentrations from 400 µM to 10 µM, which is slightly below the point 

of saturation for NMDA receptors [66], and increasing [Mg2+] from 1.3 mM to 2 mM may 

reduce Ca2+ entry through the NMDA receptors during seizures, thus lowering 

excitotoxicity [67]. However, electrophysiological recordings revealed that there were no 

changes in seizure incidence or the total time seizing; in other words, epileptogenesis was 

not altered in cultures maintained in medium that was formulated for low excitability. On 

the other hand, culture survival was slightly improved. 

 

4.5 Conclusion 

Changes to culture medium composition moderately reduced electrographic seizure load 

and decreased cell death in organotypic hippocampal cultures.  However, epilepsy 

developed in all media compositions that supported neuronal survival.  Thus, medium 

composition is unlikely to be the cause of epileptogenesis in the organotypic hippocampal 

culture model of epilepsy. 
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Chapter 5 

Conclusion and future perspectives 

 

 

5.1 Conclusion 

The work presented in this thesis delivers solutions to the throughput limitation in in vitro 

antiepileptogenic drug discovery (Chapter 2, 3), and provides further validation of the 

organotypic culture based in vitro model of epilepsy (Chapter 4).  

In Chapter 2, we described a microfluidic perfused drop culture method to maintain 

organotypic cultures for over two weeks. This technique reduced the footprint required by 

brain slice cultures, and thus enabled the placement of a culture array on a single device, 

which dramatically improved the scalability.  

In Chapter 3, we presented a µflow-MEA technology for antiepileptogenic drug discovery. 

The integration of the microfluidic perfusion system with customized MEA allowed the 

maintenance of 6 cultures on a single 2 × 2 inch device for scalable chronic electrical assay 

of epileptogenesis. Field potential simulation confirmed that a simplified MEA design 

(with uninsulated electrodes) was able to achieve good detection of seizure-like activity. 

The in vitro model of epilepsy was validated on the µflow-MEA by neuron viability 

evaluation, epileptogenesis verification, and anticonvulsant test. A two-stage screening 

platform was developed to carry out a pilot screen of receptor tyrosine kinases (RTKs) 
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inhibitors. In stage I, several RTK inhibitors showed significant reducing effect in lactate 

dehydrogenase (LDH) and lactate levels. In stage II, our preliminary data of µflow-MEA 

based chronic electrophysiology confirmed the results of the stage I screen and identified 

the antiepileptogenic properties of cFMS RTK inhibitor. This work demonstrated the 

capability of µflow-MEA technology to facilitate high-throughput antiepileptogenic drug 

discovery. 

In Chapter 4, we further validated the organotypic hippocampal culture model of epilepsy 

by studying the influence of culture medium composition on epileptogenesis. We 

systematically studied the composition of the Neurobasal-A/B27 culture medium system 

and identified the essential components for culture survival. By excluding the non-essential 

components, we made a simplified medium for further study. We then altered the 

concentration of individual components and measured the effects on epileptogenesis and 

found that the modification of glycine, serine and Mg can moderately reduce ictal activity 

and that epileptogenesis occurred in all culture medium that supports neuronal survival. 

This study proved that epileptogenesis is independent of medium composition. 

It is hoped that the techniques presented in this thesis will accelerate antiepileptogenic drug 

discovery and contribute to the development of new therapeutics to treat individuals at risk 

of epileptogenesis.   
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5.2 Future perspectives 

5.2.1 Microwire based sequential recording platform for broad drug screening 

Our µflow-MEA technology provides continuous recording and enables the evaluation of 

drug efficacy at high-resolution. However, at this point, the throughput of this platform is 

limited by the number of channels in the data acquisition system we have in the lab, since 

a 16-channel workstation can support only 1 screen of 3 drugs per 2 weeks. To increase 

the experimental throughput, an upgraded multichannel workstation is required to support 

higher degree of parallelism. Besides the µflow-MEA system, we developed a new 

sequential recording platform based on the microwire electrode technique, so that multiple 

screen experiments can be performed at the same time with one 16-channel workstation.  

The microwire electrode array technique has been developed for decades and is a well-

established neural implant for in vivo study [1,2]. To our knowledge, this technique has 

not been utilized for chronic recordings in organotypic cultures. We cultured a 

hippocampal slice on a PFA-coated tungsten wire (bare diameter = 50.8 µm, coated 

diameter = 101.6 µm, A-M systems Inc.) that was affixed to the substrate of 6-well culture 

plate by PDMS, and we found that the existence of the microwire did not influence the 

culture survival (Figure 5.1A). We then built a microwire integrated culture plate for neural 

recording (Figure 5.1B). In each culture well, a recording electrode was fixed to the 

substrate with the microwire tip placed in the center, where the slice culture would be 

inserted, and a reference electrode (same type of microwire with 1.5 cm insulation layer 

removed at the tip) was placed on the side. Then organotypic cultures were maintained in 
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microwire plates for two weeks. Plates were transferred to a mini incubator (37 °C and 5% 

CO2) for one hour electrical recordings every other day (Figure 5.1C).  

To demonstrate the capability of microwire recording platform to screen drugs, we retested 

cFMS RTK inhibitor, which was previously identified as having a significant 

antiepileptogenic effect in the µflow-MEA based screen (Chapter 4), and Flt-3 RTK 

inhibitor, which did not show an obvious antiepileptogenic effect, as a negative control. 

We used four parameters to evaluate the drug efficacy: time seizing, tonic time (processing 

methods are described in section 5.2.2), average event rate, and electrographic load. 

Average event rate referred to the average paroxysmal event number (in 10 s time window) 

in one hour recording. Electrographic load was the integration of the power of voltage with 

time. The screen results agreed with our previous observation (Figure 5.1D-H) that cFMS 

inhibitor treated cultures showed significantly decreased time seizing and average event 

rate (p = 0.0214, p < 0.001, respectively, Kolmogorov–Smirnov test, n = 4 each condition, 

cultures from the same animal), and moderately decreased electrographic load (p = 0.056, 

Kolmogorov–Smirnov test). No significant drug effect was seen in the cultures treated with 

Flt-3 inhibitor. Representative recordings are shown in Figure 5.1H.    
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Figure 5.1 Microwire based sequential recording platform for drug screening. (A) 

Microwire electrode is compatible with organotypic culture. Scale bars, 500 µm. (B) The 
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electrode layout in a 6-well plate culture well. (C) Recording schedule for two weeks 

culturing. (D-H) Screen results of cFMS inhibitor and Flt-3 inhibitor. Drug efficacy was 

evaluated by time seizing per hour (D), tonic time per hour (E), average event rate (F), and 

electrographic load (G). (H) Representative recordings on 12 DIV. Histogram on the right 

shows the distribution of event rate in one hour recording. Kolmogorov–Smirnov test, n = 

4 each condition, cultures from the same animal. Error bars indicate SD.   

 

In this microwire recording setup, each screen experiment can test 2 drugs and 1 control 

with n = 4, and at most 6 screens can be conducted every 2 weeks, rendering a throughput 

of 24 drugs per month. Therefore, microwire recording platform provides higher 

experimental throughput, allowing for fast and broad screen of compound libraries. 

However, due to compromised recording resolution, it is important to subject the findings 

obtained in this platform to subsequent continuous monitoring. We expect the future 

applications of microwire based screen platform in rapid dissection of complex cell 

signaling pathways in epilepsy.   

5.2.2 Seizure type classification and transition study  

We developed an automated algorithm for seizure quantification and seizure type (refers 

to different tonic and clonic phase composition) classification. Two sets of analysis were 

performed: (1) bin duration was set as 0.5 s, aiming to identify event rates of up to 2 Hz 

(tonic-clonic phase of electrographic seizures); (2) bin duration was set as 0.1 s, intending 

to identify event rates of up to 10 Hz (tonic phase of electrographic seizures) [3–6] (Figure 

5.2A). 
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Figure 5.2 Drug effects on seizure type. (A) Tonic-clonic seizures and its tonic phase 

were quantified separately for seizure type study. (B-E) The influence of cFMS inhibitor 
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on seizure type. (B) one hour recordings with consistent seizure activity were selected for 

analysis. (C-D) Representative seizure type and its tonic composition in each condition. (E) 

Quantification of average seizure duration (left), average tonic phase duration (middle), 

and tonic phase percentage (right). *** p < 0.001, t-test, n = 32 seizures for control, and n 

= 14 seizures for cFMS-treated culture. Error bars indicate SD.     

 

Interestingly, we found that cFMS inhibitor significantly reduced the duration of tonic-

clonic seizures (Figure 5.1D), but it did not show obvious effects on the tonic phase of 

seizures (Figure 5.1E). Similar results were also observed in our chronic data. It might 

suggest that cFMS inhibitor modifies the seizure type by increasing the tonic phase 

duration in tonic-clonic seizures. To test this hypothesis, we quantified the duration of 

tonic-clonic seizures and the tonic phase duration in one hour recordings. We selected the 

recordings with consistently occurring seizure activity of a vehicle-treated control and a 

cFMS-treated culture for this analysis (Figure 5.2B). Treatment with the cFMS inhibitor 

did not change the duration of individual tonic-clonic seizure, but it significantly increased 

the  tonic phase duration in each seizure, thus increasing the tonic phase percentage (Figure 

5.2E, p = 0.181, <0.001, and <0.001, respectively, t-test, n = 32 seizures for control, and n 

= 14 seizures for cFMS inhibitor-treated culture). Representative plots presenting the 

seizure type modifications are shown in Figure 5.2C, D.  

To find the biological explanations of the drug effect on seizure type would be an 

interesting topic we can explore in future studies. Moreover, seizure type is variable over 

time. The dynamic of seizure type transition can be studied by analyzing chronic data with 

sufficient sample size, which might add to our understanding of the mechanism of epilepsy 

progression.     



 

137 
 

Finally, we expect that future applications of our antiepileptogenic drug screening 

platforms will include experiments with libraries of peptides, antibodies, and silencing 

RNA that would achieve more specific inhibition of a broader range of potential drug 

targets. We also expect that this platform may have future applications in 

neurodevelopment research and drug discovery for psychiatric disorders.  
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