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Abstract

Rapid Pressure Swing Adsorption (RPSA) is a gas separation technology with an

important commercial application for Medical Oxygen Concentrators (MOCs). MOCs

use RPSA technology to produce high purity oxygen (O2) from ambient air, and

provide medical oxygen therapy to Chronic Obstructive Pulmonary Disease (COPD)

patients. COPD is a lung disease which prevents O2 from entering a patient’s blood,

and reduces the blood oxygen level. The standard therapy for COPD is to provide

the patient with high purity (∼ 90%) O2. MOCs have become more popular than

traditional O2 gas cylinders due to their improved safety, and smaller device size and

weight. The MOC market is growing rapidly and was expected to grow from $358

million in 2011 to $1.8 billion in 2017. Recently, a novel, single-bed MOC design

was developed and tested to further reduce the size and weight of the device, and

provide a continuous supply of O2 to the patient. This single-bed design uses a

complex RPSA cyclic process with many nonlinear effects. Flow reversals, discrete

valve switching, nonlinear adsorption effects, and complex fluid dynamics all make

operating the RPSA system very challenging. Feedback control is necessary in a final

commercial product to ensure the device operates reliably, but feedback control of

PSA systems is not well studied in the current literature.

In this work, a study of dynamic modeling, predictive control and optimization

1



of this single-bed RPSA device is presented. A detailed, nonlinear plant model of

the RPSA device is used to study the dynamics of the system as well as design a

Model Predictive Controller (MPC) for the RPSA system. The plant model is a fully

coupled, nonlinear set of Partial and Ordinary Differential Equations (PDEs and

ODEs) which act as a representation of reality when design and evaluating the MPC.

A sub-space model identification technique using Pseudo-Random Binary Sequence

(PRBS) input signals generate a linear model which reduces the computational cost

of MPC, and allows the algorithm to be implemented as an embedded controller

for the RPSA device. The multivariable MPC independently manipulates the RPSA

cycle step durations to control both the product composition and pressure. This

MPC strategy was designed and tested in simulation before being implemented on a

lab-scale device.

The MPC is implemented onto a lab-scale MOC prototype using Raspberry Pi

hardware, and evaluated using several MOC-relevant disturbance scenarios. The

MPC is also expanded using piece-wise linear modeling to improve the performance of

an RPSA device for other concentrated O2 applications. The embedded MPC features

a convex quadratic optimization problem which is solved in real time using online

output measurements. Additional hardware in the embedded controller operates the

RPSA cycle and implements control actions supplied by the MPC.

Design and optimization of RPSA systems remains an active area of research, and

many PSA models have been used to optimize RPSA cycles in simulation. In this

work, a model-free steady state optimization approach using the embedded hardware

is presented which does not require a detailed process model, and uses experimental

data and a nonlinear solver to optimize the RPSA operation given various objectives.

2



Chapter 1

Introduction

1.1 Rapid Pressure Swing Adsorption

Pressure swing adsorption (PSA) is a common industrial and commercial gas separa-

tion technology which uses an adsorbent material and a cyclic pressure swing to purify

gas mixtures. Many industrial applications exist, including hydrogen production, wa-

ter removal, CO2 capture, and air separation. PSA relies on phenomena known as

gas adsorption and desorption. Adsorption is the adhesion of a gaseous species onto

a solid surface due to an attractive force between the gas and solid, and desorption is

the removal of the gas species from the solid surface. PSA is a cyclic process, where

multiple adsorbent beds are synchronized to continuously separate a feed gas mixture

by increasing and decreasing the gas pressure in the adsorbent column. There are

many different types of PSA systems, which depend, in general, on the adsorbent ma-

terial, adsorption and desorption pressures, feed gas mixtures and others. A subset of

PSA systems is called Rapid Pressure Swing Adsorption (RPSA) which is generally

categorized as a PSA system with a total cycle time of <10 seconds. RPSA has a

3



significant commercial application in Medical Oxygen Concentrators (MOCs) which

have become very popular medical devices in recent years.

1.2 COPD and Medical Oxygen Concentrators

Chronic Obstructive Pulmonary Disease (COPD) is a lung disease which prevent O2

from transferring to the blood stream inside a patient’s lungs. COPD causes a film to

develop in a patient’s lung which prevent the mass transfer from occuring, and reduces

the patient’s blood oxygen level. A common therapy for many COPD patients is long-

term oxygen therapy, where the patient is continuously supplied medical-grade high

purity oxygen (typically ∼ 90% O2). Fig. 1.1 compares the lungs of a healthy patient

to one with COPD. In the past, patients would utilize high pressure O2 cylinder

to deliver this therapy, but there are several disadvantages to using gas cylinders

from both safety and quality of life perspectives. A gas cylinder must contain a very

high pressure to supply enough gas for an extended period, which could be several

hours depending on the patient’s acitivity level. These cylinders have the potential to

rupture and cause severe injury to anyone standing close to them. The cylinders are

also heavy, bulky items which are difficult to carry and transport. An elderly COPD

patient is typically physically limited, and they cannot carry even moderately heavy

loads. MOCs have become a popular alternative to gas cylinders due to their reduced

size, weight and improved safety considerations.

MOCs produce high purity O2 from ambient air using RPSA technology. There

are many commerical devices available in the current market, and demand for MOCs

is expected to grow [1]. MOCs range in size depending on the patient’s required

flow rate of high purity O2, and their activity needs. Stationary units can produce

4



Figure 1.1: Lungs of a COPD Patient: COPD causes a deterioration of a patient’s
lungs, and prevents O2 from transferring into the bloodstream.[2]
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Figure 1.2: Various Sized MOC Devices: An ultra-small portable unit (left), a larger
stationary unit (middle), a very large MOC which can also fill gas cylinders (right).
[1]

1-5+ liters per min (SLPM) of O2 and are large, immobile units patients use in their

homes and while sleeping. Ambulatory units are smaller, produce approximately 1-3

SLPM O2, and can typically be used on a cart or carried as a backpack. The newest

and most popular designs are ultra-small portable units which produce ∼ 1 SLPM

and can be carried with a shoulder strap. Fig. 1.2 shows examples of different sized

MOCs. The market for MOC devices is expected to grow significantly, especially in

foreign markets, due to increased diagnosis of COPD in developing countries. The

MOC market was expected to grow from $358 million in 2011 to $1.8 billion by 2017

[1].

Current MOCs use a two-column RPSA design to produce high purity O2. Re-

cently, a novel, single bed MOC prototype was developed to reduce the overall size

and weight of MOC devices [3]. These devices are complex systems with unsteady,

cyclic operation and many moving parts which must operate in a precise manner to

produce the required O2 product. Feedback control is required to operate and moni-

tor MOC devices, but control of PSA systems is not well represented in the current

literature.

6



1.3 PSA Modeling and Control in the Literature

PSA systems are diverse in their applications, design and operation, and many differ-

ent groups study PSA systems. Recent literature includes models of varying detail.

Table 1.1 gives a summary of recent publications in PSA modeling, control and op-

timization. In most studies, the PSA model is used to optimize the system based on

some given objective: cycle timing, product purity, energy consumption, etc. These

optimization studies are performed off-line as part of the design process in simula-

tion. The required detail of the PSA model varies depending on this optimization

objective, and many nonlinear physical effects such as gas-solid heat transfer are ne-

glected because they increase the computational cost of the model. In this work, a

process model which makes as few assumptions as possible is used to capture the

dynamic response of the RPSA system in response to several possible disturbances.

Feedback control is not well documented in the literature, but plays an essential role

in PSA system operation. Only, two studies have considered feedback control. Sun,

et al presented a SISO PID controller implemented into a three-column vacuum PSA

model which was then optimized for various factors. Khajuria, et al developed a

SISO MPC for an industrial sized, four column PSA system. This MPC controls the

product purity by manipulating only the adsorption step duration. In both of these

studies, only a single cycle step duration is manipulated to control the PSA system.

This control strategy is not ideal because the controller cannot take advantage of the

coupled relationship all the cycle step durations have on the PSA dyanmics.

In this work, a multivariable MPC is developed for a novel RPSA design. The

unique design requires a control strategy not found in other industrial sized PSA sys-

tems. Enhanced performance and online optimization of cycle step timing is achieved

7



by the MPC independently manipulating all four cycle step durations.
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Table 1.1: Summary of RPSA Modeling, Control and Optimization Literature Review

PSA Type, Isotherm, Mass Energy Momentum Controller Control Manipulated Optimization
Reference Beds Adsorbent Balance Balance Balance Type Variable Variable Objective

[4] VPSA Langmuir, Coal LDF, ADPF Equilibrium Ergun – – – –

[5] VPSA, 3 Langmuir, Carbon LDF, ADPF Equilibrium Ergun PID Product Purity Adsorption Time Power Consumption,
Product Purity,

Recovery,
Productivity

[6] PSA, 2 Langmuir, Zeolite LDF, IPF – Ergun – – – –

[7] VPSA,4 Langmuir LDF, ADPF Equilibrium Ergun – – – –

[8] PTSA Dubinin-Astakhov, Zeolite LDF, ADPF – Ergun – – – –

[9] PSA, 2 Langmuir, Carbon LDF, IPF Equilibrium Ergun – – – –

[10] PSA, 4 Langmuir, Carbon LDF, ADPF Equilibrium Ergun – – – Product Purity

[11] PSA, 2 Zeolite – – – – – – –

[12] V/PSA Langmuir, Zeolite LDF, ADPF Equilibrium Ergun – – – Product Costs

[13] PSA, 2 Langmuir, Multiple LDF, ADPF Equilibrium Ergun – – – Energy Consumption

[14, 15] PSA, 4 Langmuir, Carbon LDF, ADPF Equilibrium Ergun MPC Product Purity Adsorption Time –

[16] PSA Langmuir, Charcoal LDF, IPF Equilibrium – – – – Optimal Cycle

[17] PSA, 2 Langmuir, Zeolite LDF, ADPF Equilibrium Ergun – – – Recovery, Profit

[18] PSA Langmuir, Zeolite LDF, IPF Equilibrium – – – – Optimal Cycle

[19] VPSA Zeolite LDF, ADPF Equilibrium – – – – Recovery

[20] VPSA Langmuir, Zeolite LDF, ADPF Equilibrium Ergun – – – Optimal Cycle

[21] PSA Langmuir LDF, ADPF Equilibrium Ergun – – – Optimal Cycle

[22] VPSA Langmuir LDF, ADPF Equilibrium Ergun – – – Optimal Cycle

[23] PSA Langmuir, Zeolite LDF, ADPF Equilibrium Darcy – – – Optimal Cycle

[24] PSA Langmuir LDF, ADPF Isothermal – – – – Product Purity, Cost

[25] RPSA, 1 Langmuir, Zeolite LDF, ADPF Non-isothermal Ergun MPC Product Purity, Pressure Cycle Step Durations –

LDF-Linear Driving Force Model ADPF-Axially Dispersed Plug Flow IPF-Ideal Plug Flow
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Figure 1.3: A Representation of a MPC Control Problem: At every sample point
k, the MPC uses past measurements to estimate the current state of the system. A
process model predicts the system dynamics over a prediction horizon in response to
a chosen set of control actions. The MPC iteratively chooses the control movements
over a set control horizon until a give objective function is minimized. The first chosen
control movement is implemented, and the calculation is repeated at the next sample
point.

1.3.1 Model Predictive Control

Model Predictive Control (MPC) is a type of optimal control which uses a process

model and a given optimization problem to make ”optimal” control decisions [26].

A summary of MPC is shown in Fig. 1.3. At each sample point, k, the MPC

uses past measurements to estimate the current system states. A process model is

used to predict the system dynamic response over a set prediction horizon to chosen

manipulated input changes. The MPC chooses these input changes, or control actions,

over a given control horizon to yield an ”optimal” system response according to a

given optimization objective. The MPC implements the first control action, and the

calculation is repeated at the next sample point, k + 1.

MPC has many advantages which have made it popular in many control appli-

cations. Utilizing a process model directly in control decisions means the MPC can

10



anticipate the effect its control actions will have on the system. Depending on the

complexity of the process model, the MPC can handle multi-input, multi-output

(MIMO) control problems with which traditional PID controllers would struggle.

Objective functions can be tailored to whatever control objective is required by the

particular system, and constraints to control decisions can be explicitly stated and en-

forced in all calculations. In the RPSA system, constraints are important to ensuring

the RPSA cycle always operates properly.

While MPC has many advantages for optimal control, there are disadvantages

to using it in real applications. Compared to PID control, MPC has a much higher

computational cost which is related to the complexity of the process model and the

type of optimization problem used. A major theme of this work is the trade-off

between model complexity and computational cost, because the computational cost

and solving time can preclude implementing MPC into embedded controllers. In

general, MPC also requires more development time compared to PID control, and a

MPC for one system is not generally transferable to another.

In this work, MPC was chosen as the best choice for using feedback control in

the RPSA system. MPC has the ability to account for multivariable interactions

between the control variables and manipulated inputs prevalent in the RPSA system,

and constraints on the inputs can be explicitly enforced. The disadvantages of MPC

can be mitigated in the process model design and optimization formulations. These

issues are discussed in detail later.
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1.4 Dissertation Overview

The dissertation is broken into three main objectives: design and test a Model Pre-

dictive Controller (MPC) for the MOC device in simulation using a process model,

implement the designed MPC onto the lab-scale MOC prototype using embedded

control hardware, and investigate a model-free steady state optimization technigue

for designing the RPSA process using embedded hardware.

In Chapter 2, a detailed, nonlinear RPSA process model is presented to be used

to design and evaluate the MPC. A unique modeling strategy is discussed which

allows sequential RPSA cycles to be simulated, and different RPSA-specific dynamic

behavior is demonstrated. In Chapter 3, the MPC algorithm, control strategy, design

procedure and final evaluation are presented using the detailed process model as a

representation of the real RPSA device. In Chapter 4, an extension of the presented

MPC using a piece-wise linear model which allows the RPSA system to produce a

wide range of product compositions. Chapters 2-4 detail the design and testing of

the MPC algorithm in simulation.

In Chapter 5, the MPC is implemented as an embedded feedback controller onto

a lab-scale RPSA device. Implementation challenges and solutions are discussed, as

well as modifications to the MPC not seen in simulation. The extension of MPC

using piece-wise linear models is also implemented and experimentally demonstrated.

Finally, in Chapter 6, the same embedded hardware is used to demonstrate a model-

free steady state optimization technique to aid in RPSA process design.
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Chapter 2

Operation and Modeling of the

RPSA System

2.1 Motivation

This chapter, the operation, open-loop dynamics and dynamic model for the single-

bed RPSA system is presented. The operation of the RPSA system, which features a

single adsorber column and product storage tank, helps to identify the control-relevant

variables as well as potential manipulated inputs for the feedback controller. The

plant model for the RPSA system is the most detailed model in the current literature,

and its complexity is required to capture dynamic responses as accurately as possible.

The plant model will be used in future chapters to design and evaluate a feedback

controller for the RPSA system. Because of its cyclic nature, the RPSA system is

extremely difficult to solve numerically, and a simulation strategy is discussed which

integrates the plant model with feedback control calculations to complete the closed-

loop system. A discussion of the dynamic behavior in the RPSA system finalizes the
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multivariable control problem, and motivates the choice of model predictive control

for the RPSA system.

2.2 Novel, Single Bed RPSA Device

A novel, single bed RPSA device was developed previously for MOC applications

[3, 27]. The system features a patented single adsorber column concentrically inserted

inside a product storage tank [28]. A LiLSX zeolite material selectively adsorbed

nitrogen from ambient air. The device uses a 4-step Skarstrom-like [29] RPSA cycle

to continuously produce ∼90% oxygen. A schematic of the RPSA device and 4-step

cycle is shown in Fig. 2.1. During the pressurization step, the column is pressurized

to a super atmospheric pressure (Pa) with feed air. In the adsorption step, feed air

is continuously supplied to the column, and high purity oxygen product leaves the

column and enters the storage tank until the adsorbent bed is saturated with nitrogen.

During blow down, nitrogen is desorbed from the adsorbent bed by reducing the

column pressure to atmosphere. The nitrogen gas is discarded. In the purge step, the

column is back purged using some of the high purity oxygen in the storage tank. High

purity product is continuously supplied to the patient during all four steps. After the

purge step, fresh compressed feed air is supplied and the RPSA repeats. The duration

of each RPSA cycle step can be manipulated, and has a coupled, nonlinear effect on

the RPSA system dynamics.

A process model for the RPSA system to develop and the test potential feedback

control strategies. The process model must include a detailed model of both the

adsorber column and storage tank to best simulate the dynamic response of the

RPSA system to changes in cycle step durations and process disturbances. The
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Figure 2.1: Description of the 4-Step RPSA Cycle: (1) Pressurization: The adsor-
ber column (blue) is pressurized with feed air to super-atmospheric conditions. (2)
Adsorption: Feed air is continuously added to the column and high purity O2 enters
the storage tank (green) from the product end. (3) Blow Down: The nitrogen in the
adsorber column is exhausted to atmosphere and discarded. (4) Some of the high
purity O2 from the storage tank is used to back purge column and clean nitrogen
from the voids. High purity oxygen is delivered to the patient continuously from the
product line in all four steps.

process model used in this work is a set of coupled nonlinear partial and ordindary

differential equations (PDEs and ODEs).

2.3 RPSA Plant Model

The RPSA plant model has two components: a adsorber column model and a storage

tank model. The column model makes several assumptions:

• The ideal gas law holds

• Radial effects are negligible

• The column is non-isothermal and adiabatic

• Pressure drop follows the Ergun Equation
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• Mass transfer between the gas and solid phases follows the Linear Driving Force

(LDF) model

• Langmuir isotherms describe the adsorption equilibrium

• Heat transfer occurs between the gas and solid phases

• Feed air is a 79% N2 and 21% O2 binary mixture

A total and component mass balance in the adsorber column, gives

∂ρg
∂t

=
ε̄

ε
DL

∂2ρg
∂z2
− 1

ε

∂Q

∂z
− ρb

ε

∑
iε{O2,N2}

∂ni
∂t

(2.1)

∂(χiρg)

∂t
=
ε̄

ε
DL

∂2(χiρg)

∂z2
− 1

ε

∂(χiQ)

∂z
− ρb

ε

∂ni
∂t

(2.2)

where ρg is the total gas density, Q is the molar flux through the column, ni is

the fraction of species i adsorbed in the solid phase, and χi is the mole fraction of

species i in the gas phase. ε and ε̄ are the helium and bed void fractions respectively,

and DL and ρb are effective axial mass dispersion coefficient and the bulk density,

respectively. z is the axial distance through the adsorber column. Mass transfer

between the gas and solid phases is modeled by the LDF model using experimentally

determined Langmuir isotherms:

∂ni
∂t

= ki(n
∞
i − ni) (2.3)

where ki and n∞i are the LDF mass transfer coefficient of species i and the equilib-

rium fraction of species i adsorbed, respectively. Pressure drop across the column is

modeled by Ergun’s Equation:
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∂P

∂z
= −150µ

ρgdp

(1− ε̄)2

ε̄3
Q− 1.75Mg

ρgd2
p

1− ε̄
ε̄3

Q2 (2.4)

where µ, dp and Mg are the viscosity, particle diameter and gas mixture molecular

weight, respectively, and P is the column pressure. The energy balances for the gas

phase (2.5) and solid phase (2.6) are

εCpg
∂(ρgθg)

∂t
= ε̄CpgDg

∂2(ρgθg)

∂z2
− Cpg

∂(Qθg)

∂z
+ hgsa(θs − θg),

θg = Tg − Tf
(2.5)

ρbCps
∂θs
∂t

= ρb
∑

iε{O2,N2}

qi
∂ni
∂t
− hgsa(θs − θg),

θs = Ts − Tf

(2.6)

where θg, θs, Tg, Ts and Tf are the differential gas temperature, differential solid

temperature, gas temperature, solid temperature and feed temperature, respectively.

Cpg , Dg, hgs and a are the gas specific heat, the effective axial heat dispersion coeffi-

cient, the gas-solid heat transfer coefficient and the effective surface area, respectively.

Cps and qi are the solid phase heat capacity and the heat of adsorption for species i,

respectively.

Each RPSA cycle step uses Eqns 2.1-2.6 to describe the column dynamics, but

flow reversals are what define the RPSA cycle. Each cycle step has a unique set of

boundary conditions which change to reflect each step’s behavior. Table 2.1 gives a

comprehensive list of all boundary conditions in the RPSA plant model. αi, βi are

coefficients of a polynomial valve equation, and G is the purge to feed ratio.

The storage tank model is a pair of ODEs which make two further assumptions,

• The storage tank pressure is a function of time only
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Table 2.1: Boundary and Initial Conditions for the RPSA Model

RPSA Cycle Step z = 0 z = L

Pressurization −DL
∂(χiρg)

∂z
= Q

ε̄
(χi,f − χi) ∂(χiρg)

∂t
= 0

−Dg
∂(ρgθg)

∂z
= Q

ε̄
(θf − θg) ∂(ρgθg)

∂z
= 0

Q =
∑6

i=1 αi(Pf − P )7−i Q = 0

Adsorption −DL
∂(χiρg)

∂z
= Q

ε̄
(χi,f − χi) ∂(χiρg)

∂t
= 0

∂P
∂z

= 0 P = Pa

Q = Qf
∂Q
∂z

= 0

−Dg
∂(ρgθg)

∂z
= Q

ε̄
(θf − θg) ∂(ρgθg)

∂z
= 0

Blow Down ∂(χiρg)

∂t
= 0 ∂(χiρg)

∂t
= 0

∂(ρgθg)

∂z
= 0 ∂(ρgθg)

∂z
= 0

Q =
∑6

i=1 βi(P − Patm)7−i Q = 0

Purge ∂(χiρg)

∂t
= 0 DL

∂(χiρg)

∂z
= GQ

ε̄
(χi,T − χi)

P = Patm
∂P
∂z

= 0

∂Q
∂z

= 0 Q = −GQf

∂(ρgθg)

∂z
= 0 −Dg

∂(ρgθg)

∂z
= GQ

ε̄
(θf − θg)

Initial Conditions χi(z, 0) = χi,f ; P (z, 0) = PT (z, 0) = Pa; θg(z, 0) = θs(z, 0) = Tf − Tatm
Q(z, 0) = 0; χO2,T (0) = 0.90
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• Storage tank temperature is constant at atmospheric conditions, and not mod-

eled

The storage tank model includes a total and component mass balance.

dPT
dt

=
F

VT
(P |z=L,t − PT )− FP

VT
(PT − Patm) (2.7)

d(χi,TPT )

dt
=

F

VT
((χiP )|z=L,t − χi,TPT )− FP

VT
χi,T (PT − Patm) (2.8)

Where PT and χi,T are the total pressure and mole fraction of species i in the storage

tank. VT , F , FP and Patm are the storage tank volume, flow rate of gas between the

column and tank, product flow rate and atmospheric pressure, respectively. Boundary

and initial conditions for the model are summarized in Table 2.1. A similar model

for a helium nitrogen mixture can be found in [30].

The challenge in modeling the RPSA system is sequentially solving the different

cycle steps. All steps use the same model equations, but, in the column model,

the boundary conditions change to reflect flow reversals. In the tank model, the

parameter F changes to reflect different flows between the column and tank. During

the pressurization and blow down steps, there is no flow between the column and

tank, and F = 0 for these steps. In the adsorption step, gas flows from the column

to tank according to the time-dependent solution of Eqns. 2.1-2.6. The flow between

the column and tank is given as,

F =
QARTg
P

∣∣∣∣
z=L,t

(2.9)
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During the purge step, the flow from the tank to the column is a constant fraction of

the feed conditions, and the flow is given as,

F = −GQfARTf
Pf

(2.10)

The RPSA model is difficult to solve, and a detailed simulation strategy is required.

The simulation strategy in this work allows the development and testing the MPC

by its ability to simulate different disturbance scenarios.

2.4 Simulation Strategies for the RPSA System

Solving the RPSA plant model is an enormous challenge because typical PSA mod-

els are very close to numerical instability due to steep fronts in spatially-dependent

variables and discontinuities due to changing boundary conditions. In many other

studies, models use simplifying assumptions to reduce the computational cost such

as gas-solid thermal equilibrium, negligible pressure drop, ideal plug flow and others.

A summary of some recent PSA modeling studies in summarized in Table 1.1. These

physical effects are critical to accurately modeling the dynamics in RPSA systems,

and cannot be sacrificed in this study. The RPSA plant model present here makes

the fewest assumptions and includes the most physical phenomena in the current

literature.

Modeling the RPSA system requires a special simulation technigue. Comsol

Multiphysics R© is a commercially available software package which specializes in solv-

ing nonlinear PDE systems, but does not have a convenient method of solving cyclic

systems. The model in Eqns. 2.1-2.7 must be solved sequentially for each step, and
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Figure 2.2: Simulation Strategy for the RPSA Model: The four RPSA cycle steps are
solved sequentially in Comsol Multiphysics with the solution of the previous step used
as the initial condition of the next. MATLAB is used to facilitate solving sequential
cycles by saving previous solutions of the purge step and applying them as initial
conditions of the next pressurization. Control calculations are also performed in
MATLAB. Comsol Multiphysics tasks are highlighted in orange.
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the solution of each step must be used as the initial condition for the next. At the

beginning of each RPSA pressurization step, the solution to the purge step must be

used as the initial condition. Comsol R© is not able to accomplish the latter task di-

rectly, so MATLAB R© is used to facilitate simulating sequential cycles. A summary

of this simulation strategy is found in Fig. 2.2. MATLAB R© is also used to make

all feedback controller calculations and completes the simulated closed-loop system.

Comsol Multiphysics R© v5.2 and MATLAB R© R2016B was used to simulate the plant

model using a Dell R© Precision Tower running dual core Xeon CPU (3.2 GHz) with

64GB RAM. On average, a RPSA cycle converges in approximately 27 sec.

2.5 Open Loop Dynamic Response

RPSA systems have two types of dynamics. “Intra-cycle” dynamics are the dynamics

inside a single RPSA cycle such as changing pressures, temperatures and composition

fronts through the adsorber column. An example of intra-cycle dynamics can be seen

in Fig. 2.3. A single RPSA cycle profile of the adsorber column pressure is shown.

The intra-cycle dynamics are essential to the operation of the RPSA cycle, and to

producing the desired O2 product. “Inter-cycle” dynamics occur when the RPSA

cycle is disturbed in some way. Both intra- and inter-cycle dynamics are nonlinear,

highly coupled functions of both the cycle step durations and process disturbances.

Because of these dynamics and the cyclic nature of RPSA systems, a traditional steady

state definition is not possible because the system states never reach a time-invariant

state. Fortunately, the RPSA cycles can reach a “cyclic steady state” (CSS) where

the cycle profiles of all system states reach a constant, time-invariant form. Fig. 2.3

also shows an example of inter-cycle dynamics in response to a process disturbance.
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Figure 2.3: Open Loop Dynamics in the RPSA System: (Left) The intra-cycle dy-
namics of the adsorber column inlet pressure (blue) during a single RPSA cycle.
(Right) The inter-cycle dynamics of the storage tank (green) in response to a process
disturbance. The cycle reference point is highlighted in red circles.

The RPSA cycle profile returns to a constant form at CSS. This CSS property is

useful for identifying the control problem for the RPSA system.

Feedback control is required to reduce or eliminate inter-cycle dynamics when

process disturbances occur. Because of the rapid cyclic operation, controlling the

entire cycle profile of the controlled variables is unnecessary and practically infeasible

using MPC. An alternative definition of the CSS property helps mitigate this issue.

Instead of considering the entire cycle profile of a system state, CSS can be defined as

the point where all states have the same value at the beginning and end of the RPSA

cycle. A cycle referencing strategy can then be used which captures all the necessary

dynamic information without over-whelming the MPC with too much information.

Choosing a cycle reference point reduces the measurement requirements in the system

and makes controlling the RPSA cycle feasible, but choosing the correct reference
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Figure 2.4: Open Loop Block Diagram for the RPSA System

point is essential for capturing all relevant information. The end of the purge step is

an ideal choice for the cycle reference point for two reasons. The product composition

in the tank only changes in the pressurization and adsorption steps, so waiting to

measure composition until after purge reduces any sensor measurement delay effects

which are common in composition sensors. Second, the tank pressure during the

purge step must be high enough to ensure flow, and the pressure decreases during the

purge step. If the controller maintains a high enough pressure after the purge step,

the pressure also must be high enough during the entire purge.

The multivariable control problem can then be defined as shown in Fig. 2.4. The

storage tank pressure (PT ) and O2 composition (χO2,T ) at the end of the purge step

are controlled by manipulating the four RPSA cycle step durations, (tp,ta,tbd,tpu).

The feedback controller will aim to reduce or eliminate the undesired inter-cycle

dynamics caused by changes in several disturbance variables. These disturbance

variables are kept general at this point, but will be specifically defined later. The

feedback controller must be able to account for and utilize the coupled relationship

between all four step durations and the controlled variables. Model Predictive Control

(MPC) was chosen for this system because a process model and input constraints can
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be directly imposed in the controller and the MPC can independently manipulate the

four cycle step durations.

2.6 Closing Remarks

The RPSA system uses a 4-step cycle to produce high purity O2 using a novel, single

bed design. This novel design presents a multivariable control problem where both

the product composition and storage tank pressure. The cycle step durations are

the only manipulated variables available to a feedback controller in a commercial

MOC device, but they have a coupled, nonlinear relationship with the control vari-

ables. A nonlinear plant model for the RPSA system is required to design a feedback

controller, test the overall control strategy and evaluate the closed-loop system per-

formance. The plant model presented here makes the fewest simplifying assumptions,

and is the most detailed in the current literature. This level of detail gives the best

possible representation of reality to simulate the RPSA system and test the MPC. A

combination of Comsol Multiphysics R© and MATLAB R© is used to solve this plant

model and to make control calculations. A MPC can now be designed using this

simulated RPSA system.
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Chapter 3

Model Predictive Control for

RPSA MOCs

3.1 Motivation

In this chapter, a Model Predictive Controller (MPC) for the RPSA system is pre-

sented which controls the product composition and storage tank pressure by indepen-

dently manipulating all four cycle step durations. A multivariable control strategy

for a cyclic system presents significant challenges, and several solutions are presented

which make the MPC implementable in future experimental studies. Implementation

onto embedded hardware is the eventual goal in designing the MPC, so each design

decision is made with this overall goal in mind. A sub-space identification technique

using Pseudo-Random Binary Sequence (PRBS) input signals is used to generate a

linear model which reduces the computational cost of the nonlinear plant model. The

closed-loop system is evaluated using several disturbance and set point scenarios. A

comparison to traditional PID control is also presented. Most importantly, the work
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in this chapter was used to develop an MPC design strategy which can also be used

in future implementation on a lab-scale RPSA prototype.

3.2 Control Challenges and Feedback Strategy

The RPSA system has a rapid, cyclic operation with typical total cycle times ∼ 5−6

seconds. Because of the cyclic operation, the RPSA system never reaches a traditional

steady state, so the feedback controller must consider a desired cyclic steady state

as its objective. As seen in other studies [14], controlling the entire cycle profile is

unnecessary and practically infeasible. A cycle reference point can be used to capture

the relevant dynamics in the RPSA system, and gives the feedback controller enough

information to make control decisions without too much added computational cost.

Correctly choosing this cycle reference point in a way that does not sacrifice necessary

dynamic information is very important. This can be accomplished by considering the

storage tank equations in Eqns. 2.7 and 2.8. The end of the purge step is an ideal

choice for the RPSA system, and is used in the MPC presented here. The choice of

cycle reference point is not unique, and other acceptable choices exist.

The RPSA MOC design has two control objectives derived from both operational

and performance requirements. Maintaining a product composition of ∼ 90% is an

obvious performance requirement, but controlling the storage tank pressure is also an

important operational objective. In the single-bed design, oxygen from the storage

tank is continuously delivered to the patient and used to back-purge the column.

Neither would be possible if the tank pressure is too low. The two control variables,

χO2,T and PT , often compete when only one RPSA cycle step duration is manipulated.

Fig. 3.1 shows an example of this behavior. A set of 10 open-loop simulations were
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Figure 3.1: Effect of Adsorption Time on Storage Tank Composition and Pressure:
The plot shows 10 open-loop simulations run with different adsorption times. The
resulting CSS storage tank purities and pressures demonstrate how adsorption time
has opposite effects on the controlled outputs.

run with only the adsorption time varied, and the controlled outputs, measured at

the cycle reference point, experience opposite trends. When only a single RPSA cycle

step duration is manipulated, a feedback controller would not be able to achieve

both control variables. However, if the controller can independently manipulate all

cycle step durations, the output competition effects can be significantly reduced or

eliminated. A multivariable feedback controller is required to achieve both control

objectives for the RPSA MOC system.

MPC was chosen for the RPSA system because it can use a process model to

account for the multivariable interactions present in the RPSA system, but this benefit

comes with an increased computational cost of solving an optimization problem. The

computational cost of the MPC is directly related to the complexity of the process

model, and as the model complexity increases, so does the computational cost. The
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RPSA is highly complex nonlinear system which is modeled by a set of fully coupled

PDEs. This process model would be impossible to implement into a MPC and solve

in a short time, so a reduced order model is required for the RPSA system. Sub-

space system identification is used to identify a linear model to be used in the MPC

because the identification procedure is easy to implement in a real RPSA device in

later work. The identified model relates the cycles step durations to the control

variables and adequately predicts the RPSA dynamics in the narrow operation range

for MOC applications. This linear model has a low computational cost and can be

solved quickly and efficiently.

3.3 Sub-Space System Identification

Sub-space identification is a technique which uses specially-designed input signals

and measured output responses to identify a process model. In this application,

Pseudo-Random Binary Sequence (PRBS) input signals are chosen because they can

continuously excite the RPSA system with relatively small amplitudes, and can be

implemented easily into real systems [31]. A linear model, identified around a known

baseline operating point, can accurately predict the RPSA dynamics in a narrow

range in which the RPSA operates.

3.3.1 Identification of Baseline Operation

The RPSA MOC is required to produce ∼ 90% O2 product, but finding the RPSA

cycle step durations to achieve this objective is difficult and time consuming. The four

variables are manually manipulated without feedback control until the desired purity
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Table 3.1: Summary of the Chosen Baseline Operating Point for the RPSA MOC

Parameter Chosen Value Measured Value

t̄p [sec] 0.18 –

t̄a [sec] 0.384 –

t̄bd [sec] 0.73 –

¯tpu [sec] 0.36 –

¯χO2,T – 0.90

P̄T [barA] – 1.5

is achieved. The tank pressure is also monitored during this process to ensure it is

always super-atmospheric, so the purge and product flow rates can be maintained.

The baseline value of tank pressure is the value when the composition is sufficient.

The baseline operating point is summarized in Table 3.1. The chosen baseline input

vector, ū = [t̄p, t̄a, t̄bd, ¯tpu] and measured output vector, ȳ =
[

¯χO2,T , P̄T
]

are used

in designing the PRBS input signals. Manually determining the correct cycle step

durations is difficult due to the nonlinear interactions the durations have with the

product composition. An advantage to designing a MPC which manipulates these

cycle step durations is they are changed online using the identified model and feedback

output measurements.

3.3.2 PRBS Signal Design and Optimization

Once a baseline operating point is chosen, the RPSA plant model (Eqns. 2.1-2.8)

must be perturbed around this operating point using specially designed PRBS input
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signals. Unfortunately, there is no well-defined procedure for designing PRBS sig-

nals, particularly for nonlinear systems, but several design criteria were developed for

this application. The PRBS signals must designed and optimized experimentally in

simulation to meet the following objectives:

• Each cycle step duration is perturbed using a PRBS-type signal with large

enough perturbations to elicit a dynamic response, but not so large to move the

RPSA far from its operating point

• The PRBS signals should be as short as possible to minimize the length of the

simulation required to identify the model

The PRBS signal design can be reduced to a series of parameters to make op-

timization easier. A PRBS signal, u(k), k = [1, 2, ..., nT ], is a series of n ∈ Z+

perturbations each with a duration of T ∈ Z+ RPSA cycles. The value of each

perturbation, u(ζT ), ζ = [1, 2, ..., n], has the following constraints imposed:

• Upper and lower bounds, umin are imposed according to,

(1− α)ub ≤ u(ζT ) ≤ (1 + α)ū (3.1)

where 0 ≤ α ≤ 1 is a PRBS design parameter.

• The magnitude of each perturbation, |u(ζT )− u((ζ − 1)T )|, must be large enough

to elicit a dynamic response,

|u(ζT )− u((ζ − 1)T )| ≥ βαū (3.2)

where 0 ≤ β ≤ 1 is a PRBS design parameter.
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Figure 3.2: PRBS-type Simulations for Sub-Space Model Identification: A PRBS-
type simulation has two phases. In phase (1), the RPSA reaches the known operating
point, and all input signals are help constant. In phase (2), each cycle step duration
input signal is PRBS-type which perturbs the RPSA system. The output variables
are measured and collected during Phase (2). Sub-space model identification uses the
input/output data from Phase (2).

• The magnitude of each perturbation must not be too large to keep the RPSA

close to the operating point.

|u(ζT )− u((ζ − 1)T )| ≤ γαū (3.3)

where 0 ≤ β < γ ≤ 1 is a PRBS design parameter.
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Table 3.2: Summary of PRBS-type Simulations for System Identification

No. n T α β γ NRMS χO2,T [%] NRMS PT [%]

1 100 5 0.05 0.1 0.2 89.9 96.9

2 100 1 0.10 0.1 0.2 97.7 82.9

3 100 5 0.10 0.1 0.2 84.2 93.9

4 20 5 0.20 0.1 0.2 99.5 99.1

5 100 1 0.20 0.1 0.2 95.5 92.4

6 100 20 0.20 0.1 0.2 86.2 88.7

The five PRBS signal design parameters, n, T , α, β, γ, can be experimentally

varied in simulation to determine the optimal signal design. Each PRBS-type sim-

ulation consists of two phases. First, the RPSA system is brought to CSS at the

operating point (ū, ȳ) before perturbing the system. Fig. 3.2 summarizes a PRBS-

type simulation used in the sub-space system identification procedure. Each cycle

step duration signal is designed using the PRBS signal design parameters. These four

step duration signals perturb the output variables around the baseline value which

are measured during the simulation. The measured output signals and known input

signals are then used to identify the linear model. The MATLAB R© implementation

of the n4sid algorithm [32] was used to identify the linear model of the form,

x̂(k + 1|k) = Ax̂(k|k) +Bu(k|k)

ŷ(k|k) = Cx̂(k|k) +Du(k|k)

(3.4)
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where A, B, C and D are the state space matrices resulting from the n4sid algorithm.

The number of estimated system states in x̂ are also determined by n4sid to best

predict the measured output signals. The first 2/3 of the data collected in the PRBS-

type simulations are used to in the n4sid algorithm to identify the model, and the last

1/3 of the PRBS data is used to validate the linear model predictions. Because the

optimization of the PRBS signal design is experimentally-based, a metric is needed to

gauge the identified model quality for different design parameters. In this work, the

normalized root mean square (NRMS) is used to determine “goodness-of-fit”. Many

PRBS-type simulation were performed to optimize the PRBS signal design. Some

of the PRBS design parameters can be found with a understanding of the RPSA

dynamics. β and γ were chosen from knowledge and experience in running open-loop

simulations, while n, T and α had to be determined experimentally. Simulation 4 in

Table 3.2 was chosen as the optimal PRBS-type simulation for model identification

due to its high NRMS percentages for both output variables.

3.3.3 Identification Results

The PRBS input/output data chosen for identifying the linear model is shown in

Fig. 3.3. Region (a) shows the first 2/3 of the data used to identify the model and

Region (b) is the portion of the data set used for model validation. The identified

model has eight estimated states which were chosen by the n4sid algorithm to give

the best prediction quality to the PRBS data set. Stability of the identified model

was enforced, so λ(A) ≤ 1. The model was further tested using various step tests

by perturbing individual step durations. This identified model is detailed enough to

predict the RPSA dynamics in the narrow operating range of ∼ 90% O2 product
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Figure 3.3: Sub-Space Identification using PRBS Signals: The first 2/3 of the PRBS
data set, region (a), was used to identify a linear model, and the last 1/3, region (b),
was used to validate the linear model. In the validation region, prediction horizons
less than 30 cycles give very good approximations to the RPSA PDE model. Solid
lines are the PRBS data, and the dots are the linear model predictions.
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Figure 3.4: Block Diagram of the MPC Algorithm: The MPC uses a Kalman filter,
identified linear model and an optimization problem to control the product composi-
tion and tank pressure by manipulating the cycle step durations.

composition without the prohibitive computational cost of the full PDE plant model.

The identified model is used in the multivariable MPC optimization formulation.

3.4 Multivariable Model Predictive Controller

The multivariable MPC designed for the RPSA system manipulates the four cycle

step durations to control product composition and storage tank pressure. The MPC

uses a convex quadratic optimization program, the identified linear model described

above and a discrete Kalman filter to provide the model initial condition. A block

diagram of the closed-loop RPSA-MPC system is shown in Fig. 3.4. The discrete

Kalman filter is shown in Eqn. 3.5.
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x̂(k + 1|k) = (A− LC)x̂(k|k − 1) + (B − LD)u(k|k) + Ly(k|k)

x̂(k|k) = x̂(k|k − 1) +MI(y(k|k)− Cx̂(k|k − 1)−Du(k|k))

(3.5)

where L is the Kalman observer gain and was found by solving a Ricatti Equation

such that λ(A− LC) ≤ 1. The innovation matrix, MI , can also be found to improve

the performance of the Kalman filter.

The MPC can be formulated similar to standard MPC formulations [26] according

to,

min
u(k+i|k)
i=1,2,...,M

N∑
i=1

[ŷ(k + i|k)− r(k + i|k)]2ω1
+

M∑
i=2

[∆u(k + i|k)]2ω2

s.t. x̂(k + i+ 1|k) = Ax̂(k + i|k) +Bu(k + i|k) (3.6)

ŷ(k + i|k) = Cx̂(k + i|k) +Du(k + i|k)

umin ≤ u(k + i|k) ≤ umax, i = 1, 2, ...,M

ŷmin ≤ ŷ(k + i|k) ≤ ŷmax, i = 1, 2, ..., N

where ŷ is the estimated outputs, r ∈ R2×1 is the set point, ∆u ∈ R4×1 is the change

in u(k + i|k), ω1 ∈ R2×1, ω2, ω3 ∈ R4×1 are weighting vectors. A ∈ R8×8, B ∈ R8×4,

C ∈ R2×8 and D ∈ R2×4 are the identified linear model state space matrices, and

x̂ ∈ R8×1 is the estimated state vector. umin, umax ∈ R4×1 are lower and upper bounds

on u and ŷmin, ŷmax ∈ R2×1 are the lower and upper bounds on ŷ. N is the prediction

horizon and M is the control horizon.

The advantage of the MPC algorithm is apparent from the objective function.
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Output deviations from set point are penalized explicitly, as are large manipulated

input changes. The identified model is imposed as a constraint, and both inputs

and predicted outputs are given bounds. Each term in the objective function can be

tuned, and has an effect on the closed-loop performance. However, the coupled effects

of the output variables cause output oscillations around a CSS. An example is shown

in Case (a) of Fig. 3.5. Both output variables oscillate around their set points, and

the MPC must oscillate the cycle step durations to correct this. Standard MPC fails

to achieve the control objectives, and the addition of integral action must be added

to improve controller performance.

Integral action is used in feedback control to eliminate steady state offset, and is

added to enhance the standard MPC formulation. The updated MPC with integral

action is shown as,

min
u(k+i|k)
i=1,2,...,M

N∑
i=1

[ŷ(k + i|k)− r(k + i|k)]2ω1
+

M∑
i=2

[∆u(k + i|k)]2ω2

+
M∑
i=1

[u(k + i|k)− ū(k + i|k)]2ω3

s.t. x̂(k + i+ 1|k) = Ax̂(k + i|k) +Bu(k + i|k) (3.7)

ŷ(k + i|k) = Cx̂(k + i|k) +Du(k + i|k)

umin ≤ u(k + i|k) ≤ umax, i = 1, 2, ...,M

ŷmin ≤ ŷ(k + i|k) ≤ ŷmax, i = 1, 2, ..., N

where ω3 ∈ R4×1 is a tuning parameter. This form of integral action penalizes devi-

ations of the manipulated inputs from their baseline values to discourage extraneous
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Figure 3.5: Effect of Integral Action on MPC Performance: (Left) The standard
MPC causes large oscillations in both outputs and violates the control objectives at
CSS. (Right) Using the same tuning parameters, the integral formulation reduces
these oscillations to zero, and brings the RPSA system to CSS very quickly. When
the outputs deviate from set point, the MPC adjusts the inputs accordingly, but the
integral term encourages them back to baseline at CSS.
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control actions. The integral action term can be tuned using ω3, so set point tracking

is still the most important objective. Case (b) in Fig. 3.5 shows integral action elim-

inating output oscillations and allows the cycle step durations to convert to optimal

values. The MPC formulation with integral action achieved all control objectives

using a control horizon of 23 cycles and a prediction horizon of 25 cycles. The MPC

can then be evaluated using simulated MOC disturbances.

3.5 Controller Evaluation

The MPC developed here was intended to function in a MOC device which was

simulated using the RPSA plant model. To evaluate the MPC performance, a set of

realistic process disturbances were chosen to determine if the MPC could enhance the

MOC device operation. To further test the MPC, set point tracking and comparison

to traditional PID control are also shown.

3.5.1 Disturbance Rejection

Four case studies are given which demonstrate the ability of the MPC to reject realistic

process disturbances which occur in MOC devices:

(1) A decrease in feed gas temperature

(2) A simultaneous pulse of feed and product flow rates

(3) A fluctuation in feed flow rate

(4) A decrease in adsorber bed capacity
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Figure 3.6: Changes in Feed Gas Temperature: A 9K step decrease in the feed
temperature occurs at cycle 50. The MPC dramatically improves the closed-loop
response, and purity remains at set point at CSS. The open loop output response
(green) shows a large decrease in oxygen purity well below the required 90%.
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Case (1), shown in Fig. 3.6, simulates a change in feed gas temperature. Some

MOCs are considered portable, and patients typically travel while using these small

devices. In winter months, the feed gas temperature to the MOC device can drop

dramatically when a patients travels outdoors. When the feed gas temperature drops

from 298 to 290K, the product composition drops from 90% to 84% in open-loop mode

(green curve) when the MPC is turned off. The gas temperature affects the adsorption

capacity of the LiLSX zeolite material. The open-loop response also demonstrates a

significant delayed response between the product composition and feed temperature

due to the heat transfer effects in the RPSA plant model. In closed-loop mode,

the MPC makes small adjustments to four cycle step durations to keep the product

composition at the required 90% (red curve). Note in this case, the MPC does not

need to make large changes to the cycle step durations, and only makes small changes.

The cycle step durations not only have a direct impact on overall RPSA performance,

but they also have a coupled effect which is highly complex. Only by independently

manipulating the cycle step durations can the MPC fully utilize these relationships.

In Disturbance Case (2), a simultaneous rectangular pulse in both product and

feed flow rates is simulated. Stationary-type MOC devices are designed for use while

the patient is at home. These types of MOCs are typically larger and also have a

range of product delivery rates which the patient can change. A patient will typically

use different product flow rates depending on their breathing habits (for example,

breathing rate decreases while sleeping). When a patient changes the product flow

rate, the MOC is programmed to adjust the feed flow rate via some kind of “look-

up” table programmed into the device. Fig. 3.7 shows a change in the product flow

rate 5 to 6 SLPM of O2. In open-loop mode, the pulse causes a decrease in product
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Figure 3.7: Simultaneous Feed and Product Flow Rate Changes: The product flow
rate increases from 5LPM to 6LPM between cycles 250 and 300, and the feed flowrate
is scaled accordingly. The MPC rejects the disturbance and maintains the oxygen
purity at or above 90% at CSS. The open loop output response (green) drops to
almost 87%, much lower than the required oxygen purity.
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purity of approximately 3% below the required 90%. The MPC is able to make small

adjustments to the cycle step durations which keep the product purity at or above

the required level.

Disturbance Case (3) simulates fluctuations in the feed flow rate and is shown in

Fig. 3.8. In MOC devices compressors are used to increase the pressure of the feed

air. These compressors could experience dynamics from disturbances which could

negatively impact the MPC performance. In this simulated disturbance, the feed

flow rate is pulsed, and the product composition experiences some minor oscillations.

The MPC responds by varying the cycle step durations, and the output oscillations

finish before the disturbance ends. The MPC reduced the impact of this disturbance

by shortening its effects, but it also sacrificed the tank pressure set point tracking

to reject the disturbance to product composition. The pressure set point can be

considered a soft constraint in the MPC optimization formulation. The MPC tuning

parameters were chosen to encourage this choice, but constraints on the outputs

prevent pressures too low to prevent proper RPSA operation.

In Case (4), contamination of the adsorber bed is simulated by decreasing the

saturation capacity of the zeolite. In a typical MOC device, water contamination

can occur over long periods of time, and will eventually prevent the device from

producing the required O2 purity. Without feedback, the device cannot respond to

this type of disturbance, and the adsorber bed would have to be replaced by the MOC

device manufacturer. With the MPC, the step durations can be manipulated as the

performance deteriorates, and increase the bed lifespan which reduces maintenance

costs for the patient.
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Figure 3.8: Fluctuations in Product Flow Rate: A fluctuation in feed flow rate sim-
ulates a disturbance due to compressor dynamics, and causes an oscillation in the
product composition. The MPC makes small adjustments to the step durations to
mitigate this disturbance.
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Figure 3.9: Decrease in Adsorber Bed Capacity: As a MOC device operates for
long periods of time, the adsorber bed can be contaminated by moisture, which
deactivates the zeolite adsorber capacity. (Top) In open-loop (green curve), the O2

purity decreases below the required 90% when the saturation capacity of the bed
decreases. In closed-loop, the MPC adjusts the step durations and maintains the
required purity.
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3.5.2 Comparison to PID Control

A comparison between the MPC and PID control is necessary to demonstrate the

superior performance of the multivariable controller over the simpler PID controller.

However, this comparison is not easy because it is difficult to design a PID controller

which can control both output variables by manipulating all the cycle step durations.

To make the comparison easier, a single-input, single-output (SISO) PID controller

was used which controls only the product composition by manipulating only the

adsorption time. The remaining cycle step durations are a constant multiple of the

adsorption time. A similar PID strategy was used by others in the literature [5, 14].

A comparison between the MPC and the SISO PID controller is shown in Fig. 3.10.

The same feed temperature change simulated in Disturbance Case (1) is used in this

comparison. The MPC independently manipulates the four step durations, while the

PID manipulates only adsorption time. The total cycle time is shown in Fig. 3.10

to compare the repsonses. Although both MPC and PID can control the product

composition, the PID controller imposes significant output oscillations which is not

present in the MPC response. Furthermore, the PID controller makes very large

changes to the total cycle time while the MPC only makes minor adjustments. This

comparison further reinforces the high degree of interactions between all cycle step

durations which only a mulitvariable controller can utilize.

The SISO PID controller has severe limitations that preclude its use in the RPSA

system. Unlike MPC, there is no direct imposition of input constraints, and saturation

blocks must be in the PID controller to correct this. The main disadvantage to PID

is its inability to utilize the coupled relationship of the cycle step durations. These

interactions are vital to controlling the RPSA device and have a significant impact as
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Figure 3.10: A Comparison between MPC and PID Control: A SISO PID controller
(red) makes large changes to the total cycle time, and has a very long response time.
The MPCI (green) changes the ratios between the step durations, and does not need
to change the total cycle time dramatically to control the RPSA system.
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seen in the various disturbance case studies. For these reasons, multivariable MPC is

a superior choice over PID control for the RPSA system.

3.5.3 Set Point Tracking

Set point tracking is a difficult problem in complex nonlinear systems because the

controller must move the system to a completely different operating point. This also

challenges the linear model approximation around the original operating point made

during model identification. Fig. 3.11 shows a set point change from 90% to 95%.

The MPC is able to track the set point change accurately because the RPSA system

remains close to original operating point. As the system moves further from the 90%

point, the linear model quality will deteriorate quickly. MOC devices only operate

at a single point, so the linear model approach works very well. If the RPSA system

was used in a different concentrated oxygen application with different product purity

requirements, this MPC would not perform well, and would have to be modified.

3.6 Stability of the MPC Algorithm

Proving stability of the MPC is challenging, but some tools exist which can aid

demonstrating stability. The MPC presented here has a discrete time, constrained

convex quadratic optimization objective function, and a linear model approximation

of a nonlinear system. A stability proof would consist of two objectives: demonstrate

a stability criterion for the objective function without any kind of terminal constraint

and show the error between the identified and process models is finite. The combi-

nation of these two expressions could yield a sufficient stability condition. This is a
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Figure 3.11: Set Point Tracking using MPC: The mole fraction set point increases to
95% at cycle 300, and the pressure set point remains constant. The MPC adjusts the
cycles step durations to achieve this new set point with small offset.

50



complex problem, and the stability problem is presented here, but future work will

be required to fully complete the proof.

A study by Primbs, et al [33] provides a strategy for proving stability of a MPC

objective function without terminal constraints. In this strategy, if the objective

function, J(x̂), can be shown to be decreasing over the control horizon, stability can

be inferred.

J(x̂(k + i+ 1|k))− J(x̂(k + i|k)) ≤ 0

Relating these expressions to the full objective function expression allows them to

show upper and lower bounds for the objective. This same strategy can be used with

the MPC presented here, with one difference: the RPSA process is nonlinear, and

there exists some error between the identified linear model and the process model.

The second component of a stability proof must include an expression of this modeling

error.

Proving the stability of the RPSA plant model is significantly more difficult part of

the stability problem because the model is highly nonlinear, fully coupled and cannot

be solved analytically. To set up the problem, the process model in Eqns. 2.1-2.8 can

be expressed as,

y = H(x, u, α)

where x are the true system states and α are the set of model constants. This model

includes all nonlinear effects and is taken as a true representation of a real RPSA

system. The model error between the process model and the identified model, ε̂ can
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then be expressed as,

ε̂ = y − ŷ

The identified linear model is designed to be stable, so to prove ε̂ finite, H must be

stable, or at least bounded. Because of flow reversals and discrete valve switching,

several states in the process model are not smooth, continuous functions, so proving

stability of the model in the continuous time domain may be impossible, but it might

be possible to generate some type of stability criterion in the discrete time domain. If

ε̂ can be proven finite, it could be integrated with the stability of the MPC objective

function, and a general stability statement for the closed-loop system may be possible.

However, future work is required to fully complete this stability analysis.

3.6.1 Demonstrating CSS Behavior in the RPSA Model

An interesting example of the CSS condition came out of preliminary work in the

MPC stability analysis which may aid future attempts at a proof. In simulation,

a uniqueness behavior was observed between the chosen u of cycle step durations

and the corresponding CSS value of y. Regardless of the initial condition, a given

u will achieve the same y at CSS. The initial condition will change the path to the

CSS condition, but not the final values. This can be demonstrated using the storage

tank equations in Eqns. 2.7-2.8 and the boundary conditions in Table 2.1. At CSS,

the value of the outputs at the beginning and end of each cycle are constant. This

condition can be expressed mathematically as,

y(t = ktcycle) = y(t = (k − 1)tcycle)
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where tcycle = tp + ta + tbd + tpu and k is the cycle index. Because the manipulated

inputs appear in the integration bounds of each RPSA cycle step, the solutions of the

outputs at the cycle reference point are functions of only the inputs, model constants

and initial condition of that cycle (contributions of the state variables are solved for

in the integrand). At cycle k, the outputs can be expressed as,

y(t = ktcycle) = f (u, α, y(t = (k − 1)tcycle))

This relationship is true of any RPSA cycle, but at CSS, the given expression simplifies

to,

lim
k→∞

y(t = ktcycle) = f(u, α)

which demonstrates the CSS value of the outputs are not a function of the initial

condition. This kind of proof may aid future attempts at proving the stability of the

plant model, and is at least an interesting result of using bounds of integration as

manipulated variables.

3.7 Closing Remarks

The multivariable MPC presented here controls the RPSA device by manipulating

the cycle step durations, and can reject MOC-relevant process disturbances well. The

sub-space identification technique using PRBS input signals is a very efficient method

for generating a reduce-cost model used in the MPC calculations, and the technique

is easy to implement experimentally. Although the MPC can track set points in a
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narrow operating regions, the linear approximation around this operating point lim-

its the controllers effectiveness if the RPSA operates in a wider range of product

compositions. A logical extension using piece-wise linear modeling can improve the

MPC performance while still minimizing the computational cost. Stability consider-

ations were discussed, but a rigorous proof will require more development. In this

work, stability of the MPC will be experimentally demonstrated on a lab-scale RPSA

prototype.
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Chapter 4

Piece-wise Linear MPC for other

RPSA Applications

4.1 Motivation

In this chapter, an extension to the MPC using a piece-wise linear modeling approach

is presented which enables the MPC to control the RPSA device at many operating

points. Although MOCs typically produce a single product composition of ∼ 90%,

there are other concentrated O2 applications which have other product composition

requirements. Other applications also operate in a more diverse set of conditions,

various product flow rates, and different scales. Piece-wise linear MPC keeps the

advantage of low computational cost, while improving on the linear approximation.

The generation of a piece-wise linear model for the RPSA system is shown, as well as

additions to the MPC algorithm to enable model switching.
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4.2 Multi-Model Predictive Control Strategy for

Nonlinear Systems

Feedback control of PSA systems is not well studied in the literature, because most

studies focus only on modeling and optimizing the PSA cycle design. However, feed-

back control is an essential component of a RPSA device to both operate the PSA

cycle and ensure the device produces the desired product composition. Sun, et al used

a traditional PID controller which controlled the product composition by manipulat-

ing the total cycle time [5]. Khajuria, et al used a Model Predictive Controller (MPC)

which also controlled the product composition by manipulating the total cycle time

[14, 15]. By only manipulating the total cycle time in control actions, these methods

do not fully utilize the coupled effect the individual cycle step times have on PSA

systems. A multivariable MPC using a single linear model was developed for a novel

RPSA Medical Oxygen Concentrator (MOC) prototype which produces 90% O2 for

COPD therapies [25]. This multivariable controller independently manipulates the

RPSA cycle step durations to control the product O2 purity and storage tank pressure

in the RPSA device. MPC is an ideal choice for RPSA systems because constraints

can be imposed in all control decisions, and a process model can be used to predict

the coupled effect of the cycle step durations on the tank composition and pressure.

We have also demonstrated that the multivariable MPC can improve on traditional

PID control because the MPC can independently manipulate all cycle step durations

[25]. The MPC was able to reject realistic process disturbances to the RPSA device

and track a single set point of 90% O2, but the single linear model failed when the

RPSA device operated outside this narrow operating range. For the RPSA device
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to produce different product compositions for other concentrated O2 applications,

the MPC using a single linear process model is not adequate. A nonlinear MPC

formulation is a better option for the RPSA device.

Nonlinear MPC is an active, ongoing area of research which has great potential

for nonlinear processes such as the RPSA device, but the computational cost of non-

linear MPC is a significant disadvantage. To make useful, online control decisions,

the MPC used in the RPSA device must be solved quickly, in less time than the

RPSA cycle (typically less than 6 sec). Ideally, a MPC will use a process model

which accurately predicts the nonlinear RPSA dynamics while still minimizing the

computational cost. This is a difficult problem to solve, because the nonlinear ad-

sorption effects, discrete cycle step switching, flow reversals, and heat effects make

modelling PSA systems incredibly challenging. There is then a trade-off between

model complexity and computational cost which influences which kind of MPC can

be used in the RPSA device. An attractive compromise between nonlinear and linear

MPC is Multi-Model Predictive Control (M-MPC). M-MPC is an extension of stan-

dard MPC which uses a collection of reduced-order, often linear, models to better

predict nonlinear system behavior [34]. Various approaches to M-MPC can be found

in many industries such as wind energy [35], aeronautics [36, 37], steam generation in

nuclear power plants [38] and medicine [39]. One approach from the medical industry

changes the model parameters based on a patients medical information. The model

chosen here has a constant structure, but parameters are unique to different types

of patients [39]. Other approaches use a collection of models to predict nonlinear

behavior, and algorithms choose which model is appropriate at a given time. In these

algorithms a preliminary optimization will compare all the model predictions to check
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which is the most accurate. This chosen model is then used in the M-MPC control

decision. Examples of this approach can be found in [40, 41, 42, 43]. This approach is

useful in highly complex systems where choosing an appropriate model is non-trivial.

The disadvantage to this method is the increased computational cost of solving an

additional optimization problem. A second approach is to choose a model based on

online output measurements. Example of this approach can be found in[38, 41, 44].

This strategy works well when output measurements can be used to define operating

regions, and models can be identified or linearized around operating points. The

RPSA device is one such system because the nonlinear dynamics are caused mainly

by nonlinear adsorption effects.

Here, a new application of M-MPC for RPSA devices which uses a piece-wise

linear MPC to operate and control the RPSA device. The detailed, nonlinear process

model simulates the RPSA device, and is used to generate the piece-wise linear model

using sub-space system identification techniques. The RPSA device will use the M-

MPC to produce a range of 35-95% concentrated O2. The M-MPC performance will

be evaluated using the nonlinear process model to simulate realistic RPSA process

disturbance rejection and set point tracking case studies.

4.3 Model Identification for Operating Space

The piece-wise linear model consists of a collection of linear models each identified at

a different operating point in the nonlinear RPSA operating space. Each of the linear

models are identified using the same sub-space identification procedure and PRBS

input signals, but designing the PRBS signals correctly becomes more important and

requires more careful consideration.

58



Figure 4.1: RPSA Operating Regions and Points: The nonlinear operating space
(yellow) is split into 6 regions defined by operating points (blue cirles). The region
boundaries are given as a ±5% O2 range around the operating points.

4.3.1 Identification of Operating Points

The operating space is defined as the range of O2 purities required in the RPSA device.

The space is segmented into j ∈ {1, 2, .., 6} operating regions where the RPSA system

can be assumed locally linear, and each region is defined by an operating point. The

size of each region is carefully chosen to be small enough for the linear approximation

to be valid without being so small to have a cumbersome number of models. Each

operating point is defined primarily by the desired value of χO2,T . The corresponding

value of PT at the operating point is the measured CSS value found in simulation.

Based on the set point tracking results in Chapter 3, each of the 6 regions covers

a ±5% range in χO2,T . A summary of the chosen operating regions and points is

shown in Fig. 4.1. The yellow shaded region shows the operating space covered by

the piece-wise linear model, and the blue circles highlighting each operating point.

Region boundaries are shown as dashed lines. With the 6 regions, the piece-wise
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Table 4.1: Linear Model Operating Points and Identification Results

Region ¯χO2,T P̄T [bar] t̄p [s] t̄a [s] t̄bd [s] ¯tpu [s]

1 0.90 1.60 0.1800 0.3840 0.7300 0.3600

2 0.80 1.68 0.1986 0.3875 0.7296 0.3533

3 0.70 1.70 0.2308 0.3944 0.7300 0.3390

4 0.60 1.82 0.2086 0.4302 0.7288 0.3060

5 0.50 2.00 0.2307 0.4910 0.7321 0.2576

6 0.40 2.39 0.2999 0.7600 0.7075 0.1803

linear model can accurately model the RPSA system in the range of 35% to 95% O2.

Finding these operating points is challenging because the four cycle step dura-

tions must be manually manipulated until the desired χO2,T is achieved at CSS. The

found baseline inputs, ūj = [ ¯tp,j, ¯ta,j, ¯tbd,j, ¯tpu,j] and the measured baseline outputs,

ȳj =
[

¯χO2,T,j, ¯PT,j
]

make up the operating point of region j. The main advantage of

using the M-MPC is the controller will automatically find the desired χO2,T without

manual manipulation of the step durations. Table 4.1 summarizes the found step

duration values for each operating point. The nonlinearities in the RPSA system

are due primarily from the adsorption effects in the adsorber column. The current

measurement of χO2,T can be used to determine which model is most accurate as the

M-MPC operates.

4.3.2 Sub-Space Identification using PRBS Signals

Each of the operating regions uses an identified linear model dedicated to that region,

and each model will use a similar identification procedure to that used in Chapter

60



Table 4.2: Summary of PRBS Signals Used to Identify the Piece-Wise Linear Model
for the RPSA System

Region n T α β γ NRMS χO2,T [%] NRMS PT [%]

1 20 5 0.20 0.1 0.2 99.5 99.1

2 20 5 0.20 0.1 0.2 98.9 98.8

3 20 5 0.20 0.1 0.2 99.7 99.4

4 100 5 0.20 0.1 0.2 92.8 96.7

5 100 5 0.20 0.1 0.2 93.8 97.3

6 100 5 0.20 0.1 0.2 96.8 95.9

3. However, in this application, more care needs to be taken during the model iden-

tification procedure to ensure the M-MPC will be able to switch between different

region models. The five PRBS design parameters (n, T , α, β and γ) are chosen for

each region so the linear model prediction is high. The PRBS signals for all regions

are summarized in Table 4.2.

Each PRBS-type simulation was run, and the output data collected was used to

both fit and validate the identified model generated by the n4sid algorithm. In the

piece-wise model, each region model, in addition to being accurate inside the region

boundaries, must also apply around the region boundaries, so the M-MPC can switch

between models without sacrificing accuracy. In the PRBS signal design, the value

of α is critical to ensure this behavior. A precise switching rule, described later, will

make the choice of α more clear. In the PRBS-type simulations, the perturbations in

the cycle step durations must cause the output to move inside and outside the region

boundaries to ensure model accuracy in switching. An example of a PRBS response

from Region 4 is shown in Fig. 4.2. Region 4 is resides in 55% to 65% χO2,T , but the

PRBS signals and α were chosen so χO2,T also moves outside this region. The Region
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Figure 4.2: PRBS Simulation for Operating Region 4: In the bottom plot, each cycle
step duration is a carefully designed PRBS-type signal. The PRBS signals perturb
the RPSA PDE model, and the output response is shown in solid lines. Section (a)
of the data is used to identify a linear model, and section (b) is used to validate the
model. The linear model fit and prediction is shown as dotted lines.

4 model will then overlap with Region 3 and Region 5 models, and model switching

is easy.

4.3.3 Piece-Wise Linear Model for the RPSA System

The piece-wise linear model then consists of the 6 identified linear models described

here. Each linear model has the form,
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x̂(k + 1|k) = Ajx̂(k|k) +Bju(k|k)

ŷ(k|k) = Cjx̂+Dju(k|k)

(4.1)

where (·)j corresponds a parameter in region j. Each model was identified to have

the same number of estimated states, and all model have Re[λ(Aj)] ≤ 1. Each region

also has a Kalman filter of the form,

x̂(k + 1|k) = (Aj − LjCj)x̂(k|k − 1) + (Bj − LjDj)u(k|k) + Ljy(k|k)

x̂(k|k) = x̂(k|k − 1) +MI,j(y(k|k)− Cjx̂(k|k − 1)−Dju(k|k))

(4.2)

where the observer gain Lj is obtained from the corresponding Ricatti equation and

Re[λ(Aj − LjCj)] ≤ 1.

Each region model is significantly different from the others because the nonlinear

behavior of the RPSA changes in different regions. An example of these differences is

shown in Fig. 4.3. The RPSA plant model from Eqns. 2.1-2.7 response (black curve)

is compared three region models (from regions 4, 5 and 6). Region 5 model gives

very accurate predictions of the plant model while the response resides in Region 5.

The models in adjacent Regions 4 and 6 have significant error, up to 20%, which

would severely damage the M-MPC decisions and lead to extremely poor closed-loop

performance. Together, the piece-wise linear model provides reasonably accurate

predictions of the RPSA plant model, and the M-MPC can use this model to control

the RPSA device in a wide range of O2 purities.
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Figure 4.3: Comparison of the Piece-Wise Linear Model using in M-MPC: The RPSA
PDE model (black) is approximated reasonably well by the linear model in Region 5
(red), but linear models from neighboring regions 4 (blue) and 6 (green) have up to
20% prediction error.

4.4 Multi-Model Predictive Controller

The M-MPC has a similar formulation to the MPC with integral action used in Chap-

ter 3 except with region-specific and model and tuning parameters. Carefully chosen

model switching logic and boundary considerations help the M-MPC to maintain

stable output responses while tracking any χO2,T set point.

4.4.1 Controller Formulation

The M-MPC optimization problem shown below uses a quadratic objective function

and linear constraints which are updated according to the region in which the RPSA

resides.

64



min
u(k+i|k)
i=1,2,...,M

N∑
i=1

[ŷ(k + i|k)− rj(k + i|k)]2ω1,j
+

M∑
i=2

[∆u(k + i|k)]2ω2,j

+
M∑
i=1

[u(k + i|k)− ūj(k + i|k)]2ω3,j

s.t. x̂(k + i+ 1|k) = Ajx̂(k + i|k) +Bju(k + i|k) (4.3)

ŷ(k + i|k) = Cjx̂(k + i|k) +Dju(k + i|k)

umin,j ≤ u(k + i|k) ≤ umax,j, i = 1, 2, ...,M

ŷmin ≤ ŷ(k + i|k) ≤ ŷmax, i = 1, 2, ..., N

where (·)j are region-specific parameters. The set point, rj,1(k) is set by the device

user for the desired χO2,T (k), and rj,2(k) is automatically adjusted based on P̄T,j.

Updating the rj,2(k) keeps the local MPC closed to the operating point while the

RPSA resides in region j. The tuning parameters, ω1,j, ω2,j, ω3,j are region-specific

to make local MPCs more or less aggressive depending on the nonlinear behavior

of the RPSA plant model. The same umin,j and umax,j are used in the M-MPC as

were used in the PRBS signal design procedure. Choosing these limits is essential for

model switching in the M-MPC algorithm.

4.4.2 Switching Logic and Boundary Considerations

Switching between local MPCs does not require intensive computation because well-

defined regions were found offline based on operating points. The online measurement

χO2,T (k) is used to determine the current region j because χO2,T (k) is an excellent

metric of the nonlinear adsorption effects in the RPSA device. After each cycle, the
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region j is updated based on the following switching logic,

j =


j + 1, χO2,T (k) ≥ χ+

j + δ

j, χ−j − δ < χO2,T (k) < χ+
j + δ

j − 1, χO2,T (k) ≤ χ−j − δ

(4.4)

where χ−j and χ+
j are the lower and upper bounds of region j as summarized in Fig.

4.1. A boundary tolerance, δ = 0.005, is used to reduce extraneous switching when

the device is close to a region boundary, and improves that stability of the piece-wise

linear model. The choice in α from the PRBS signal design can be formalized using

Eqn. 4.4. α is chosen so there exists a u+
j , u−j such that,

umin,j ≤ u+
j ≤ umax,j

umin,j ≤ u−j ≤ umax,j

χO2,T |u=u+j
(k →∞) ≥ χ+

j + δ

χO2,T |u=u−j
(k →∞) ≤ χ−j − δ

(4.5)

This means a local MPC can choose a u which causes the χO2,T to move outside the

current region at CSS. This ensures that each local controller can move the RPSA

device between regions efficiently. There is a trade-off when choosing α. If α is too

large, a linear model cannot accurately predict the nonlinear RPSA plant model, but

if α is too small, switching cannot occur.

Proving the stability of the M-MPC algorithm is a difficult task. The RPSA

plant model is a fully coupled nonlinear set of PDE equations that does not have an

analytic solution, and a MPC with constraints does not have an analytic equation
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relating the current output measurements to the optimal solution. A stability proof

for this algorithm needs to main components: proving stability of the discrete piece-

wise linear model and proving convergence of a finite horizon MPC. Both problems

are not new, approaches to proving stability of discrete systems has been explored

[45, 46, 47]. Finite horizon MPC has also been studied [33]. Applying these principles

to the M-MPC algorithm can be part of future discussions.

4.5 M-MPC Performance and Evaluation

The M-MPC algorithm is evaluated using several disturbance rejection and set point

tracking scenarios.

4.5.1 Set Point Tracking

Set points in the M-MPC algorithm occur in three possible locations: (a) operating

points, (b) region boundaries, or (c) non-operating points. Fig. 4.4 shows examples

of each case. In case (a), the set point occurs at the operating point for region 3. At

CSS, u(k = 100) = ū3, and the M-MPC converges with zero offset due to integral

action. In cases (b) and (c), the set points are not a known operating point, and

u(k = 300) and u(k = 500) were previously unknown cycle step durations the M-

MPC found automatically. Without M-MPC the RPSA device could operate only at

known operating points. Case (b) also demonstrates the effect of the boundary toler-

ance δ on closed-loop performance. δ = 0.005 is large enough to minimize switching

and prevents oscillatory dynamics at region boundaries. In all three cases, switching
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Figure 4.4: M-MPC Set Point Tracking Scenario 1: Set points at operating points
(a), region boundaries (b) and non-operating points (c) are tracked by the M-MPC.

occurs automatically based on χO2,T (k), but can be visualized in the example when-

ever the tank pressure set point changes. The stability of the piece-wise linear model

is caused by proper PRBS signal design, and M-MPC tuning.

Further set point tracking scenarios demonstrate the ability of the M-MPC to

make large set point changes across many operation regions. Fig. 4.5 shows a step

change from 45% O2 to 90%. The M-MPC switches between five regions before set-

tling at the desired set point with a fast response time and little extraneous movement.

Also in this scenario is an example of the trade-off between pressure and composition
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Figure 4.5: M-MPC Set Point Tracking Scenario 2: Large changes in set points require
multiple model switching between several regions. The M-MPC easily handles these
changes and tracks set points successfully.

set point tracking. The M-MPC is tuned to favor composition, and the pressure set

point is treated as a soft constraint to prevent the system from deviating too far

from the region operating point. As before, the M-MPC found a previously unknown

u(k = 375) which produces the desired 45% O2 composition automatically. The M-

MPC can use the piece-wise linear model to control the RPSA device in the entire

nonlinear operating space between 35 and 95% O2.
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4.5.2 Disturbance Rejection

When the set point remains constant, the M-MPC behaves like a local MPC which

can reject process disturbances similar to the scenarios shown in Chapter 3. A typical

process disturbance to the RPSA device occurs when the product flow rate is changed

by the user. In a commercial product, the feed flow rate is set according to the product

flow rate, and when one changes, the other is automatically updated via a look-up

table. This look-up table is typically based on a easy mass balance of the adsorber

column. When this update occurs, unexpected behavior occurs due to nonlinearities

in the RPSA device, and χO2,T drops below set point. The M-MPC can automatically

adjust u to correct for these small disturbances. An example of this is shown in Fig.

4.6, and the open loop output response without feedback control is shown in green

for reference. The M-MPC small changes to u to maintain the required performance

when the disturbance occurs. The device is extremely sensitive not only to the value

of individual step times, but also the ratio of step times to each other. The M-MPC

can independently change each step duration and alter the ratio between steps. This

allows the RPSA device to not only produce a wide range of O2 purities, but also a

range of product flow rates.

4.6 Extensions of Piece-Wise Linear MPC

The M-MPC described here was intended for a RPSA device which produces a wide

range of O2 product compositions, and a piece-wise linear model based on this com-

position was necessary to approximate the nonlinear RPSA plant model. However,

this modeling and control strategy can work for RPSA applications produce a single
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Figure 4.6: M-MPC Disturbance Rejection Scenario: The open loop output response
is shown in green for comparison. The M-MPC adjusts u to maintain the O2 purity.
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product composition, but have variability in other process design variables. MOCs

only produce a single O2 product composition, but the product flow rate can vary

dramatically based on the patient’s medical requirements and the MOC device size.

Product flow rate, like product composition, is a highly nonlinear function of the

cycle step durations, system pressures and other flow rates, so a single linear model

could not accurately predict all of the nonlinear dynamics. If product flow rate is the

relevant design variable in designing a M-MPC algorithm, the piece-wise linear model

could be designed around this flow rate instead of composition. The M-MPC struc-

ture and design procedure would not change significantly, and the M-MPC strategy

could be applied just as easily. With this in mind, the M-MPC is a flexible option for

different nonlinear aspects of the RPSA design, and can have a wider range of uses.

4.7 Closing Remarks

The M-MPC algorithm presented here works well for the RPSA system because oper-

ating points and regions are easily identifiable from online composition measurements.

Switching between the piece-wise linear models is also possible using online measure-

ments, and simple switching logic helps in stabilizing the M-MPC performance. Set

point tracking is now possible in a wide range of product compositions, which was

impossible using a single linear model. Disturbance rejection was also maintained

because each local MPC behaves as before, and can reduce or eliminate unwanted

dynamics. As before, the performance and stability of the M-MPC will be demon-

strated experimentally on a lab-scale RPSA prototype.
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Chapter 5

Implementation of an Embedded

MPC for a MOC Device

5.1 Motivation

In this chapter, the MPC and M-MPC algorithms are implemented as embedded

controllers on a lab-scale RPSA prototype. A Raspberry-Pi R© 3 is used to imple-

ment the controller, and the algorithm is written using the Python coding language.

There are several implementation challenges which are not seen in simulation, and

these challenges and solutions are discussed. The MPC design procedure developed in

simulation is repeated on the RPSA device, and system identification is performed us-

ing experimental data instead of simulation results. The embedded controller makes

online control calculations by solving an optimization problem every cycle, and syn-

chronizes these calculations with the RPSA cycle operation. The MPC algorithm is

demonstrated experimentally, and evaluated using both set point tracking and dis-

turbance rejection scenarios.
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5.2 Design and Operation of the Lab-Scale MOC

Device

A novel, single bed, MOC was developed previously to continuously deliver 90% O2

using a 4-step RPSA cycle [3, 27, 48]. An image of the MOC unit is shown in Fig.

5.1. The device has a single adsorber column concentrically inserted inside a product

storage tank. The adsorber column contains a LiX zeolite material which selectively

adsorbs N2 from air. Mass flow controllers are used to define the feed, product and

purge flow rates, and a back pressure regulator controls the maximum pressure inside

the adsorber column. Four solenoid valves are precisely timed to open and close

during the four RPSA cycle steps and direct flow through the system. A Linux-

based Raspberry-Pi 3 (R-Pi) system running Python code is used to communicate

with the digital flow and pressure controllers, open and close solenoid valves, collect

output measurements and make the MPC calculations. Honeywell pressure sensors

are used to monitor various pressures, including the pressure of the storage tank, and

a zirconium-based O2 analyzer is used to measure the O2 mole fraction inside the

storage tank.

The MOC unit utilizes a Skarstrom-like [29], 4-step PSA cycle: pressurization,

adsorption, blow down and purge. During pressurization, the adsorber column is

pressurized to super-atmospheric conditions from the feed end. In the adsorption step,

feed air is continuously supplied to the column from the feed end while high purity

O2 enters the storage tank from the product end. During blow down, the exhaust

valve is opened, and the adsorber column is exhausted to atmospheric pressure. The

enriched-N2 gas in the column is discarded. In the purge step, some of the high purity
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Figure 5.1: Lab-Scale MOC Device with Embedded Controller: The single-bed RPSA
device uses a single adsorber column inserted concentrically into a product storage
tank. Feed air is supplied from a compressed-air source, and high purity O2 product
exits the storage tank.

O2 product is used to scrub the adsorber bed and clean the voids. The patient is

continuously supplied with high purity O2 during all cycle steps. Because the RPSA

relies on pressure-driven flow, the tank pressure is a critical component of this single-

bed design which is not found in traditional multi-column PSA systems. The tank

pressure must be controlled by the MPC to ensure both purge flow and product flow

at all times.

From a systems perspective, the RPSA cycle has eight variables which affect the

dynamic reponse of the MOC device. The four cycle step durations (tp, ta, tbd,

tpu) must be precisely controlled because they each contribute to the performance

in a highly coupled, nonlinear manner. These step durations are manipulated by

the MPC to control the MOC device, and considered the system input variables,

u = [tp, ta, tbd, tpu]
T . In a commercial MOC product, the cycle step durations are the

only variables available for control because using digital mass and pressure controllers
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Figure 5.2: Embedded Controller Hardware Schematic: The embedded controller
communicates with the RPSA device in three ways. Electrical relays impose the cycle
step durations via the timing of the solenoid valves. Digital-to-Analog Converters
(DAC) are used to transmit setpoints to the digital controllers, and composition and
pressure measurements are sent to the controller via voltage signals. The Raspberry
Pi coordinates this process as well as running the MPC algorithm in real-time.

is economically prohibitive. In the lab-scale MOC, these digital controllers are used

to design and test the MPC and the MOC device. The remaining four variables are

treated as disturbance variables. The purge flow rate (Fp) and adsorption pressure

(Pa), feed flow rate (Ff ) and product flow rate (FO2) are used to simulate disturbances

due to compressor fluctuations, patient needs and changing ambient conditions. The

effect of the disturbance variables, d = [Ff , FO2, Fp, Pa]
T , can be greatly reduced by

the MPC. A variety of valves, digital controllers, sensors and a Raspberry Pi 3 is used

to operate the RPSA cycle and run the MPC algorithm.
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5.2.1 Hardware Requirements of the Device

A Raspberry-Pi R© 3 (RPi) micro-computer is used in the RPSA device. It uses a set

of electrical relays to precisely time the four 24VDC solenoid valves which direct gas

flow during the RPSA cycle. Using digital-to-analog converters (DAC) and a custom-

made signal amplification circuit, the RPi sends 0-10VDC set point signals to the four

Alicat R© digital controllers to maintain the proper flow rates and column pressure in

the system. A Honeywell R© pressure sensor measures the storage tank pressure, and

sends a 0-10VDC signal to the RPi via an analog input channel. A zirconium-based

O2 sensor measures the product composition and communicates with the RPi using

a 0-4VDC analog signal. A diagram of the MOC hardware is shown in Fig. ??.

The RPi uses a quad-core 1.2 GHz Broadcom processor with 1 GB of RAM to run

Python code which both operates the RPSA cycle and runs the MPC algorithm. The

synchronization of these two tasks is a key feature of this work, and vital to successful

implementation of the MPC algorithm as an embedded controller.

The embedded controller consists of the RPi connected to several circuit board

to expand the RPi Input/Output (I/O) pin capability. Pi-Plates R© Relay and Data

Acquisition and Control (DAQC) boards increase the I/O pin count and allow the

RPi to operate the RPSA cycle and collect output measurements. An image of the

embedded controller is shown in Fig. 5.3.

5.3 Model Predictive Control Algorithm

The RPSA system poses a multivariable control problem due to the single-bed device

design. The MOC device must produce the required 90% O2 product purity (χO2,T )
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Figure 5.3: Components of the Embedded Controller: The Raspberry Pi 3 is con-
nected to additional circuitry to operate the RPSA cycle and run the MPC algorithm.
A board with electrical relays is used to open and close solenoid valves. Two data
acquisition and control (DAQC) boards are used to collect measured data and send
set point signals to digital controllers. A custom circuit is used to amplify the set
point signals.
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Figure 5.4: Open-Loop Block Diagram of the MOC Device: The four cycle step
durations (tp, ta, tbd, tpu) are used by the MPC to control the product tank compo-
sition and pressure. Disturbances from feed, product and purge flow rates, and the
adsorption pressure can disturb the MOC device.

to meet the medical therapy requirement. The total gas pressure in the storage tank

(PT ) must also be maintained at super-atmospheric pressure to ensure both product

and purge flow occurs in each RPSA cycle. Fig. 5.4 summarizes the multivariable

control problem.

Because of its cyclic operation, the RPSA device never reaches a traditional steady

state. Instead, a cyclic steady state (CSS) is achieved which occurs when the cycle

profiles of all system states reach a constant, time-invariant form. When a disturbance

occurs and the CSS condition is broken, undesired “inter-cycle” dynamics occur which

breaks the CSS condition. The MPC adjusts the cycle step durations to control

y = [χO2,T , PT ]T and operate the RPSA device to the desired performance.

5.3.1 Multivariable MPC Formulation

The multivariable MPC algorithm was developed previously in simulation using a

nonlinear plant model for the RPSA system [25]. The MPC uses a quadratic opti-

mization problem and a linear process model identified using sub-space identification

techniques around the desired operating point. The MPC optimization problem is
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given as,

min
u(k+i|k)
i=1,2,...,M

N∑
i=1

[ŷ(k + i|k)− r(k + i|k)]2ω1
+

M∑
i=2

[∆u(k + i|k)]2ω2

+
M∑
i=1

[u(k + i|k)− ū(k + i|k)]2ω3

s.t. x̂(k + i+ 1|k) = Ax̂(k + i|k) +Bu(k + i|k)

ŷ(k + i|k) = Cx̂(k + i|k) +Du(k + i|k)

umin ≤ u(k + i|k) ≤ umax, i = 1, 2, ...,M

ŷmin ≤ ŷ(k + i|k) ≤ ŷmax, i = 1, 2, ..., N

(5.1)

where ŷ is the estimated outputs, r ∈ R2x1 is the set point, ∆u ∈ R4×1 is the change

in u(k + i|k), ω1 ∈ R2×1, ω2, ω3 ∈ R4×1 are weighting vectors. A ∈ R7×7, B ∈ R7×4,

C ∈ R2×7 and D ∈ R2×4 are the linear model state space matrices, and x̂ ∈ R7×1

is the estimated state vector. umin, umax ∈ R4×1 are lower and upper bounds on u

and ŷmin, ŷmax ∈ R2×1 are the lower and upper bounds on ŷ. The prediction horizon,

N = 50 cycles, and the control horizon, M = 20 cycles, were chosen after extensive

controller tuning experiments.

Linear MPC was chosen in this application because of its relatively low compu-

tational cost and feasibility to implement into an embedded controller. The RPSA

device relies on a highly nonlinear, gas-adsorption based, cyclic process, and detailed

process models are too computationally expensive to use in implemented MPC al-

gorithms where the optimization problem is solved in real-time. Because the MOC

only operates in a narrow range of O2, a linear approximation around this point can
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be made. An experimental data-driven sub-space identification procedure is used to

generate this linear process model to be used in the MPC.

5.3.2 Modeling and System Identification

The MPC requires a process model which relates the manipulated inputs, u =

[tp, ta, tbd, tpu], to the controlled outputs, y = [χO2T , PT ]. In a commercial MOC,

few sensors are included to minimize the manufacturing cost of the device, so the

process model cannot also rely on measurable disturbance variables. System identifi-

cation of nonlinear systems is an active area of research, and many possible solutions

exist [49]. In this application, a sub-space identification procedure using Pseudo-

Random Binary Sequence (PRBS) signals was used along with the algorithm N4SID

[32]. PRBS signals were used because they are easy to implement, and they can

continuously excite a system with relatively small amplitudes [31].

Designing proper PRBS signals is critical for system identification, but there is

not a definitive design procedure, especially for nonlinear systems. The system iden-

tification is performed around a linearization point, (ū, ȳ). As described in previous

work [25], there are four main guidelines used in PRBS signal design.

• Each signal is contains n ∈ I+ perturbations, u(ζT ), ζ ∈ (1, 2, ..., n), of length

T ∈ I+ cycles.

• Upper and lower bounds are imposed on each signal,

umin ≤ u(ζT ) ≤ umax (5.2)

• The magnitude of each perturbation change must be large enough to excite the
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MOC system

|u(ζT )− u((ζ − 1)T )| ≥ β (5.3)

• The magnitude of each perturbation change must not be too large to move the

MOC from its baseline point

|u(ζT )− u((ζ − 1)T )| ≤ γ (5.4)

The four PRBS signal tuning parameters, n, T , β, and γ as well as the input bounds

umin and umax can be tested experimentally to best excite the MOC system. This is a

labor-intensive process of multiple experimental runs, but the resulting input-output

data can then be used to identify a linear model using the sub-space identification

algorithm N4SID [32].

For the MOC device, T was the most important parameter to optimize in order to

capture the correct dynamics of RPSA process. If T is too small, process delay and

overshoot does not allow the outputs to respond to perturbations in the cycle step

durations, and if T is too large, the experimental data set does not yield a higher

quality model. The optimized values for the PRBS signals are n = 100, T = 5,

β = 0.1, and γ = 0.2.

A summary of the baseline, upper and lower bound values for the cycle step

durations can be found in Table 5.1. The output baseline values were found to be

χO2T = 89% and PT = 3.12 barA. The baseline value for χO2T does not meet the

90% purity requirement of the MOC device because it is difficult to manually adjust

the cycle step durations with enough precision to meet this requirement. With MPC,

this difficulty is eliminated with online adjustments to the step durations. Based on
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Table 5.1: Summary of Identified Model Linearization Point

tp [s] ta [s] tbd [s] tpu [s] χO2,T [%] PT [barA]

ū 0.5 2.4 2.5 1.5 – –
umin 0.5 2.0 2.3 1.0 – –
umax 0.7 2.6 2.7 1.7 – –
ȳ – – – – 89 3.12

ŷmin – – – – 0 1.5
ŷmax – – – – 100 4.5

the measured output signals in the PRBS experiment, this baseline is close enough

to the requirement for the linear model to make high quality predictions.

The algorithm N4SID was used to identify the linear model used in the MPC.

The PRBS data used in the identification is shown in Fig. 5.5. The first 2/3 of the

PRBS data set was used to identify the model, and the final 1/3 was used to validate

the prediction accuracy. The N4SID algorithm was weighted to favor χO2T at the

expense of PT . The final identified linear model has the form,

x̂(k + 1|k) = Ax̂(k|k) +Bu(k|k)

ŷ(k|k) = Cx̂+Du(k|k)

(5.5)

The number of estimated states were chosen as part of the N4SID algorithm for the

most accurate model predictions to the PRBS data set. The MPC also requires the

value of the estimated states for each control calculation. A discrete Kalman Filter

was designed such that the observer was stable, Re [λ(A− LC)] ≤ 1.

x̂(k + 1|k) =(A− LC)x̂(k|k − 1) + (B − LD)u(k|k) + Ly(k|k)

x̂(k|k) =x̂(k|k − 1) +MI(y(k|k)− Cx̂(k|k − 1)−Du(k|k))

(5.6)
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Fig. 5.5 shows linear model fit to and prediction of the PRBS data set. Region

(a) shows the high quality of the linear model fit to the PRBS data set. The fit of

χO2T is better overall than the fit for PT due to the heavier weight on χO2T during the

identification procedure. Any residual model error is compensated for using feedback

measurements in the MPC.

5.4 Embedded Feedback Controller

The embedded controller has two tasks for the MOC device: operate the RPSA cycle

and run the MPC algorithm. The multivariable MPC algorithm must be reformulated

so it can be solved in real-time using an efficient optimization solver. The linear

process model and Kalman filter are used in each MPC calculation while the RPSA

cycle runs continuously.

5.4.1 Implementation of the MPC Algorithm

The MPC formulation in Eqn. 5.1 is not in a usable form for standard solvers, but

it can be reformulated as a convex quadratic optimization problem (QP) with linear

inequality constraints. The reformulated QP is given as,

min
U

1

2
UTHU + f(x̂(k|k))TU

s.t. AcU ≤ bc(x̂(k|k))

(5.7)

where u = [u(k + 1|k)T , u(k + 2|k)T , ..., u(k +M |k)T ]T are the control moves manip-

ulated by the MPC, H is the Hessian matrix, f(x̂(k|k)) is the gradient vector, Ac is
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Figure 5.5: Sub-Space Identification using PRBS Input Signals: (Bottom) The four
cycle step durations are simultaneously varied using PRBS input signals which excite
the MOC controlled output variables. (Top) The controlled variables are measured
(dots). Region (a) is used to identify a linear model (solid lines) which relates the
four cycle step durations to the O2 composition and tank pressure. Region (b) is used
to validate the linear model prediction.
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the constraint matrix, and bc(x̂(k|k)) is the constraint vector. f and bc are written

to highlight the rold of the Kalman filter in Eqn. 5.6 plays in the MPC calculation.

Eqn. 5.7 can be solved using standard QP solvers, and the Python library CVXOPT

[50] was used in this work.

It is critical to the performance of the RPSA device that the MPC calculations do

not interrupt the RPSA cycle for any reason, so certain safe-guards need to be used

when implementing the algorithm into the embedded controller. The computation

time of the QP solver can be limited by setting a maximum number of solver iterations,

and can ensures the MPC finishes before the RPSA cycle concludes. The QP solver

may terminate with a non-optimal solution (either due to infeasibility or by reaching

the maximum number of iterations). In this case, the algorithm rejects the current

solution, and implements the previous cycle step durations.

Sensor dynamics and response times are other factors to consider when imple-

menting the MPC. The zirconium O2 sensor has a 2% error margin due to its flow-

dependent thermal conductivity sensing mechanism which makes offset-free control

impossible in the MOC unit. To account for the measurement error, a controller

deadband of db = ±0.5% was imposed in the MPC algorithm, and a ±1% acceptable

region is used all controller evaluation studies. Correspondingly, the composition set

point used in the MPC evaluation was set to 91%, so the entire acceptable region

remains above the required 90% O2 composition. The careful choice of the cycle ref-

erence point also helps in accurately measuring composition. χO2T only changes in

the first half of the RPSA cycle when gas is added to the tank. The time between

the end of adsorption and the end of purge give the sensor more time to respond to

the dynamics.

86



The modified MPC algorithm must be solved in real-time in concert with the

continuously running RPSA cycle. This requires careful consideration and coding.

5.4.2 Synchronization of Controller Tasks

The MOC device with the embedded controller operation is summarized in Fig. 5.6.

Each of the four RPSA cycle steps are a precisely timed loop where the corresponding

valve positions and digital controller set points are sent via the RPi. The cycle step

durations for that cycle are collected from the MPC at the beginning of the cycle,

and output measurements, collected at the conclusion of the cycle, are communicated

back to the MPC for the next calculation. The precise timing of the RPSA cycle

cannot be interrupted for any reason, so it is coded as a separate process task on the

RPi, with minimal communication during a single RPSA cycle.

In parallel to the RPSA cycle, the RPi makes a control calculation via the MPC

algorithm. The previous cycle input and output data is collected, and the Kalman

filter in Eqn. 5.6 is solved for x̂(k|k). The gradient and constraint vectors in Eqn. 5.7

are updated, and the QP is solved if the deadband conditions are met. If the solver

terminates with an optimal solution, the MPC updates the cycle step durations.

Otherwise, the previous durations are used in the next cycle. A key feature of the

embedded controller is the real-time calculation of the control actions, which eliminate

the need to solve the MPC offline and estimate the solution on hardware.

Because the QP is solved in real-time, there is an inherent 1 RPSA cycle delay in

the MPC decisions which must be acknowledged. A typical MPC will implement the

first calculated control movement, u∗(k + 1|k). To account for the delay, the second

control movement, u∗(k + 2|k) is used from each MPC calculation.
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Figure 5.6: Embedded Controller Operation Flow Chart: Operating a single RPSA
cycle requires two parallel processes. The MPC calculation is shown in the left half
of the flow chart, and operating the RPSA cycle is shown in the right. These pro-
cesses are dedicated to separate processor threads on the Raspberry Pi to ensure no
interference occurs.
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5.5 Performance and Evaluation of the MOC Sys-

tem

The embedded MPC was evaluated using both set point tracking and disturbance

rejection cases. Examples of each case are described here.

5.5.1 Disturbance Rejection

As a commercial product, MOC devices use the minimum amount of hardware to

reduce manufacturing costs and the final retail price of the device. The embedded

MPC then has no ability to measure possible disturbances from flow rates, tempera-

tures or other sources, and the MPC must be able to correct for unmeasured process

disturbances. The lab-scale MOC does have the ability to manipulate some of these

variables in order to simulate possible disturbances and evaluate the MPC perfor-

mance. In the case shown in Fig. 5.7, FO2 is pulsed for approximately 40 cycles

which causes a significant decrease in both χO2T and PT . This case is shown in Fig-

ure 5.7. The pulse in FO2 causes a 13% decrease in χO2T which recovers in 150 cycles

while the device is in open-loop mode. In closed-loop mode and the MPC active,

χO2T drops by only 7% and recovers 75 cycles. The duration and magnitude of this

disturbance was reduced by 50% with the MPC active. The input signals further

validates the efficacy of the MPC. When the disturbance is most severe, the MPC

brings the inputs to their imposed limits. Once χO2T returns to the acceptable region,

the MPC adjusts the inputs back to a constant value.

89



Figure 5.7: Disturbance Rejection using the Embedded MPC: The product flow rate
is pulsed from 1 to 2 SLPM for approximately 40 cycles, which causes a significant
decrease in O2 purity without the MPC (red dashed). With the MPC active, the
cycle step durations are adjusted, and the disturbance is dramatically improved (red
solid).
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5.5.2 Set Point Tracking

For the MOC device, the MPC must track a constant purity set point at 91%, but

imposing small magnitude set point changes can evaluate the responsiveness of the

MPC. Region (a) of Fig. 5.8 shows the MPC bringing χO2T into the acceptable

region in less than 50 cycles, and settling to a constant 91% after 250 cycles. In

region (b), three set point changes occur, and the MPC responds well in all cases.

When set point changes occur, the MPC significantly changes the RPSA cycle step

durations, and brings the MOC to a previously unknown operating point. Finding

these new operating points with this degree of accuracy and in this short time would

be impossible to manually without feedback control.

There is a limit to how well this MPC responds to set point changes because the

linear model becomes less accurate the further the MOC is from its design point. In

the last step change in region (b), there is a significantly longer response time before

the MOC settles into the acceptable region. As the model becomes less accurate, and

the closed-loop response deteriorates until either unacceptable offset occurs or the

response time is too long. Based on the step tests shown here, the MPC can track

set points above 87% O2. Even with the longer response time, the MPC is still able

to find the correct cycle step durations in a relatively short time.

5.6 Implementation of the M-MPC Algorithm

The M-MPC algorithm presented in Chapter 4 can also be implemented onto the

RPSA system using the Raspberry-Pi R© hardware. A similar design procedure used

in simulation will be repeated using experimental data to generate the piece-wise
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Figure 5.8: Embedded MPC Set Point Tracking Case Study: In region (a), the MPC
sucessfully tracks the 91% O2 set point by adjusting the cycle step durations. In
region (b), three set point step changes occur, and the MPC locates the correct cycle
step durations which achieve the desired O2 purity.
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Table 5.2: Summary of Operating Region Linearization Points and Boundaries

Region t̄p [s] t̄a [s] t̄bd [s] ¯tpu [s] ¯χO2,T [%] P̄T [barA] χ+ [%] χ− [%]

1 0.50 2.90 2.50 1.70 91.5 3.15 92 86

2 0.80 3.50 2.50 2.10 84.0 3.40 86 80

3 1.00 3.00 2.60 2.30 77.1 3.20 80 72

linear model. The embedded M-MPC is evaluated using set point tracking scenarios.

5.6.1 Operating Regions and Linearization Points

The desired operating space is defined according to χO2,T ∈ [73%, 92%]. This op-

erating space is broken into j = 3 operating regions defined by the baseline input

vector, ūj, the baseline output vector, ȳj, the upper region boundary, χ+
j , and the

lower region boundary, χ−j . Each ūj are very difficult to determine and must be found

manually by experimentally varying all four cycle step durations. The measured ȳj

is the CSS values of y, and each operating region is defined as a range of χO2,T in the

operating space. A linear model is generated at each linearization point, (ūj, ȳj), us-

ing sub-space identification techniques and specially designed Pseudo Random Binary

Sequence (PRBS) input signals. A summary of the operating regions and lineariza-

tion points is shown in Table 5.2. In the RPSA system, it is impossible to get very

precise χO2,T values experimentally because of the highly sensitive, coupled relation-

ship between the cycle step durations and the control variables. The main advantage

of the M-MPC is its ability to find new steady states at desired O2 purities.

93



5.6.2 Comparison of Linear Identified Models

Each linear model is identified using the PRBS input/output data and the sub-space

identification algorithm n4sid [32]. The PRBS data is split into two parts. The first

2/3 of the data set is used to generate the linear model matrices (Aj, Bj, Cj, Dj),

and the remaining 1/3 is used to validate the linear model predictions. Predictions

of χO2,T are weighted more than predictions for PT because the product composition

requirement is more important. Each linear model has the form,

x̂(k + 1|k) = Ajx̂(k|k) +Bju(k|k)

ŷ(k|k) = Cjx̂(k|k) +Dju(k|k)

(5.8)

where x̂ are estimated states which are mathematical constructs and do not directly

relate to any physical system states. The number of states was kept constant for all

operating regions, and each model has Re [λ(Aj)] ≤ 1 to be stable.

A discrete Kalman observer is used in the M-MPC algorithm to estimate x̂(k|k)

when making control decisions. The observer has the form,

x̂(k + 1|k) = (Aj − LjCj)x̂(k|k − 1) + (Bj − LjDj)u(k|k) + Ljy(k|k)

x̂(k|k) = x̂(k|k − 1) +MI,j(y(k|k)− Cjx̂(k|k − 1)−Dju(k|k))

(5.9)

where Lj is found by solving the corresponding Ricatti equation, and MI,j is

used to improve the observer predictions. Each observer is also designed to have

Re [λ(Aj − LjCj)] ≤ 1 and be stable.

A single linear model is not adequate to describe the nonlinear dynamics of the
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Figure 5.9: A Comparison of Identified Models: The measured χO2,T PRBS data
from Region 2 (black) is compared to predictions using the identified models for all
three regions. Region 2 model has the best prediction quality, while models from the
neighboring regions have up to 20% error. The collection of linear models can better
predict the nonlienar RPSA system than a single linear model.

RPSA system, and each identified model is only accurate in the region for which

it was designed. A comparison between the identified models is shown in Fig. 5.9.

The PRBS data from region 2 (shown in black) is used to compare the predictions

of the identified models. The model identified for region 2 (blue) gives very accurate

predictions, but the models from adjacent regions (red and green) have very poor

predictions. Used together, the piece-wise linear model better predicts the nonlinear

RPSA dynamics than a single linear model.

5.6.3 Implemented M-MPC Algorithm

The embedded M-MPC makes online control calculations every cycle, and these ac-

tions are synchronized in parallel with the RPSA cycle operation. Computational

cost is an important factor in implementing the M-MPC quadratic program (QP) in
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Chapter 4. As written, standard convex QP solvers can be used, and the QP must

be reformulated into a standard form,

min
U

1

2
UTHjU + fj(x̂(k|k))TU

s.t. Ac,jU ≤ bc,j(x̂(k|k))

(5.10)

whereH and Ac are the hessian and constraint matrices, respectively. f is the gradient

vector and bc is the constraint vector. U is the decision variable vector. f(x̂(k|k))

and bc(x̂(k|k)) are written to highlight the effect of the Kalman observer on the QP.

The Python package CVXOPT [50] is used on the RP3 to solve Eqn. 5.10 as the

RPSA cycle operates.

During each cycle, the M-MPC algorithm determines the current operating region

via the χO2,T measurement. The local linear model, Kalman observer and MPC

parameters are updated accordingly. The Kalman observer is solved to provide an

initial condition for the MPC QP. The QP in Eqn. 5.10 is solved, and the solution

is implemented if the solution is optimal. A summary of the implemented M-MPC

algorithm is shown in Fig. 5.10. In this implementation, there is an inherent 1

RPSA cycle delay between output measurement and implementation of the control

action. To account for this, the M-MPC implements the second optimal control

action, u∗(k + 2|k) instead of the standard u∗(k + 1|k). The composition sensor is

accurate to within ±2%, so a dead band of db = 2% is implemented into the embedded

controller. The QP is solved only when the measured χO2,T is outside this dead band.
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Figure 5.10: Embedded M-MPC Algorithm Flowchart: This flow chart summarizes
the actions of the embedded controller in a single RPSA cycle. On the left, the
M-MPC collects output measurements, determines the correct model, and makes a
control decision. On the right, the embedded hardware operates the RPSA cycle by
precisely timing solenoid valves and digital controllers.
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5.6.4 Evaluation of the M-MPC

The embedded M-MPC is evaluated using several set point tracking cases across

multiple operating regions to demonstrate both the set point tracking and model

switching required by the M-MPC algorithm. Fig. 5.11 shows three set point track-

ing scenarios. Set points for χO2,T at 90%, 75% and 84% are tracked sucessfully by

M-MPC within the acceptable control region. The acceptable region of ±2% is de-

termined by the accuracy of the composition sensor. After the step change at cycle

400, the M-MPC switches models twice before the RPSA system operates in the same

region as the new set point at 75%. After the second step change at cycle 800, the

M-MPC only requires one model switch. In all cases, switching is smooth, and does

not have a negative affect the output performance. The most important function of

the M-MPC is automatically finding a u which corresponds to the desired set point

value. The set points at 90% and 75% do not correspond to the known linearization

points in Table 4.1, and u(k = 250) and u(k = 650) were found by the M-MPC. In

this manner, the M-MPC can find new operating points between 73-92% O2.

5.7 Closing Remarks

The embedded controller presented here performs two tasks for the RPSA device: op-

erate the RPSA cycle and solve the MPC to make control decisions. The Raspberry-

Pi R© was an excellent platform to implement the MPC algorithm because of its flex-

ibility and use of the Python coding language. The biggest challenge in using MPC

for the RPSA system is coordinating the cyclic operation with online control calcu-

lations. Both the MPC and M-MPC algorithms were experimentally demonstrated
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Figure 5.11: Evaluatation of the M-MPC using Set Point Tracking Scenarios: Three
set points are considered at 90%, 75%, and 84%. Each set point exists in different
operating regions of the RPSA device. In each case, the M-MPC tracks the desired
set point to within the acceptable region (red shaded areas) by finding new cycle step
durations.
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to control the RPSA device, and improve its performance when subjected to pro-

cess disturbances. This embedded controller can also be designed for future RPSA

prototypes as commercialization of the single-bed design progresses.
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Chapter 6

Steady State Optimization of MOC

Devices

6.1 Motivation

In this chapter, steady state optimization from both a modeling and experimental

point of view is discussed. Steady state optimization is widely studied in the literature,

but the studies typically use a plant model to simulate a PSA system. Each PSA

model uses different simplifying assumptions depending on the specific objective of

the study. The plant model for the single-bed RPSA device which was used in this

work has several short comings which preclude it from being used in an optimization

study, because it cannot be accurately reconciled with experimental data. Several

enhancements to the current model are proposed, as well as other additions which

could be made in the future. Model-free optimization approaches which are not seen in

the current RPSA literature have several advantages over model-based optimization.

An experimentally-based approach using online process measurements is proposed to
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aid in RPSA device optimization.

6.2 Steady State Optimization of the RPSA Cycle

In MOC optimization, there are many variables that contribute to a so-called “op-

timal” MOC device, which change depending on the specific goal such as optimal

cycle, minimal power consumption, etc. Steady state optimization searches for a CSS

condition which satisfies all MOC device requirements, and meets all performance ob-

jectives. For the MOC device, there are eight possible decision variables which may

or may not be utilized in a given objective. The possible decision variables: cycle

step durations (tp, ta, tbd, tpu), feed flow rate (Ff ), product flow rate (FO2), purge

flow rate (Fp), and adsorption pressure (Pa) are either used as variables or held con-

stant. The distinction for each presented case study is detailed later. In this steady

state optimization, the RPSA system pressure profiles in a single cycle are used to

define the minimal characteristics of the RPSA cycle. Fig. 6.1 shows CSS pressure

profiles for the inlet (Pin), outlet (Pout) and tank (PT ) in the RPSA cycle. From these

profiles, five requirements can be quantified mathematically which will be formulated

into constraints in the model-free optimization problem.

(1) At the end of the adsorption step, there must be a small pressure drop between

the product end of the column and the storage tank,

(Pout − PT )|t=tp+ta
≥ 0

(2) The feed end of the column must reach at least the adsorption pressure by the

102



Figure 6.1: RPSA Pressure Profiles at CSS: The three measured system pressures in
the RPSA device: inlet (Pin), outlet (Pout) and tank (PT ) are shown at CSS. Cycle
steps are denoted by dashed lines, and optimization constraints are constructed at
the end of certain cycle steps.
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end of the adsorption step,

Pin|t=tp+ta
≥ Pa

(3) The pressure drop through the column at the end of the adsorption step should

not be too large,

0 ≤ (Pin − Pout)|t=tp+ta
≤ ε1

where ε1 is a tuning parameter.

(4) The pressure at the product end of the column must reach atmospheric pressure

at the end of the blow down step,

Pout|t=tp+ta+tbd
= Patm

(5) The tank pressure must be above a certain pressure at the end of the purge step

to ensure product and purge flow throughout the cycle,

PT |t=tcycle ≥ ε2 > Patm

where ε2 is a tuning parameter.

The performance requirements for the MOC device can also be formulated mathe-

matically as constraints,

(6) The product composition must achieve the desired requirement,

χO2,T |t=tcycle = ε3

104



where ε3 is a tuning parameter.

Obviously, these requirements are specific the 4-step RPSA cycle used in this work,

but different RPSA cycle characteristics can also be formulated into constraints in a

similar manner. These decision variables and constraints can then be formulated into

an optimization problem.

6.2.1 Formulating Model-Free Optimization Problems

To maintain generality for all optimization case studies, several definitions are

used in the problem formulations. The possible decision variables, D =

[tp, ta, tbd, tpu, Ff , FO2, Fp, Pa], will be either free variables, u, that the solver can ma-

nipulate, or they can be constants, d. The variables which affect the characteristics

of the RPSA cycle are designated as outputs, y = [Pin, Pout, PT , χO2,T ]. The outputs

are an unknown function of u and d according to the nonlinear RPSA dyanmics,

y = H(u, d)

where H represents an unknown, nonlinear function. A generic optimization problem

can be expressed as,

105



min
u

J(u, d, y)

s.t. y = H(u, d)

g(u, d, y) ≤ 0

q(u, d, y) = 0

umin ≤ u ≤ umax

(6.1)

where J is the objective function, g is a vector of inequality constraints, q is a vector

of equality constraints and umin, umax are bounds on the decision variables. In model-

free optimization, H is unknown, and the constraints cannot be expressed analytically

to the optimization solver. The constraints g(u, d, y) and q(u, d, y) are added to the

objective function as exact penalty functions. The objective function, J , can be

written as,

J(u, d, y) = f(u) + µ

Nineq∑
i=1

max [0, gi] +

Neq∑
i=1

|qi|


where f(u) is a known function of only the decision variables. The optimization

problem can be rewritten as,

min
u

f(u) + µ

Nineq∑
i=1

max [0, gi] +

Neq∑
i=1

|qi|


s.t. umin ≤ u ≤ umax

(6.2)

Standard, nonlinear optimization algorithms can be used to solve this type of
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problem. In this work, a Sequential Least Squares Program (SLSQP) solver from the

Python library SciPy is used.

6.2.2 Real-Time Optimization using Embedded Hardware

The embedded hardware used in the MPC implementation can be expanded and mod-

ified to perform steady state optimization on the lab-scale device. The Raspberry Pi

hardware will perform three tasks in this application: operate the RPSA cycle, collect

pressure and composition measurements, and run a nonlinear optimization solver us-

ing standard Python libraries. Additional sensors for inlet and outlet pressures allow

the Raspberry Pi to measure all the output variables necessary in Eqn. 6.2. The

chosen nonlinear solver is the Python SciPy implementation of a SLSQP algorithm.

A summary of the model-free optimization approach using the RPSA device is

shown in Fig. 6.2. The nonlinear solver evaluates a given objective function which

uses the measured outputs from the RPSA device. Each objective function evaluation

will run the RPSA cycle with the current values of the decision variables for a specified

number of cycles, N , and the required output measurements are collected every cycle.

After N cycles, objective function value is calculated and sent back to the solver.

N = 50 cycles must be chosen to allow the RPSA device to reach CSS, but not so

long as to make the function evaluations take too much time. The solver uses these

function evaluations to estimate the jacobian using a finite difference approximation,

computes a search direction and checks optimality conditions. Once the conditions

are satisfied, the solver terminates and returns the optimal solution.

Further control parameters on the optimization solver can be specified to improve

the solution quality and computation time. A maximum number of iterations prevents
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Figure 6.2: Steady State Optimization with Embedded Hardware: The nonlinear
optimization solver requires objective function evaluations, and jacobian approxima-
tions to find new search directions. The objective function evaluations use the output
measurements from the embedded hardware after running a specified number of cy-
cles (N). The solver iterates this process until optimality conditions are met, and
terminates with an optimal solution.
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the solver from long computation time. A tolerance on the objective function can

terminate the solver when the objective does not improve significantly over several

iterations. A minimum jacobian evaluation step size ensures changes in decision

variables are large enough to elicit a measurable change in the RPSA device. Bounds

on the decision variables prevent the solver from improperly operating the RPSA

device.

6.3 MOC Optimization Case Studies

The general optimization problem in Eqn. 6.2 is written to fit any specific objective

in MOC device optimization. Three cases are shown to demonstrate how different

objectives change the optimization formulation.

6.3.1 Case 1: Baseline Identification for MPC Design

In the design of the single linear model used the multivariable MPC or in the de-

sign of the piece-wise linear model for M-MPC, a known baseline or linearization

point is required before performing system identification. This was previously done

experimentally by manually manipulating the RPSA variables until a desired purity

is achieved, but in steady state optimization, this procedure can be automated. The

objective of this case study is to locate a set of cycle step duration which achieves

the desired product composition. The inputs and constants are defined as,

109



u = [tp, ta, tbd, tpu]

d = [Ff , FO2, Fp, Pa]

From knowledge of the RPSA cycle performance, bounds on the total cycle time are

imposed in the optimization problem,

tcycle,min ≤ tp + ta + tbd + tpu ≤ tcycle,max

In the MPC design, a required purity of ε3 = 90% is used in the optimization problem

to locate the correct baseline, while in the M-MPC design, ε3 is changed to reflect

different composition requirements. The optimization problem is given as,

min
u

µ

Nineq∑
i=1

max [0, gi] +

Neq∑
i=1

|qi|


s.t. tcycle,min ≤ tp + ta + tbd + tpu ≤ tcycle,max

umin ≤ u ≤ umax

(6.3)

The objective in this case can be considered a “feasibility” problem, because the

objective function only includes the constraint penalty function terms. Any set of

cycle step durations which satisfies the constraints and the purity requirements is

considered optimal. A series of experimental optimization runs were performed for

this case study. The results are summarized in Table 6.1. In each run, a target O2

composition was set, and the optimization solver varied the cycle step durations until
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Table 6.1: Optimization of RPSA Cycle Timing for Various O2 Compositions

Target χO2,T t̄p [s] t̄a [s] t̄bd [s] ¯tpu [s] ¯χO2,T

90 0.50 2.34 2.44 1.14 89.51

85 0.50 2.12 2.42 0.92 84.21

80 0.60 2.37 2.43 1.17 79.57

the objective function in 6.3 was minimized. In each scenario, the solver was able to

achieve the desired purity within a ±1% error which is within the tolerance of the

composition sensor.

6.3.2 Case 2: Product Flow Rate Maximization

In this scenario, the RPSA must produce the maximum product flow rate while still

producing the required product composition. When a device is constructed, the cycle

step durations, feed flow rate and product flow rate are manually manipulated to

maximize the product flow rate. A secondary objective in this scenario is to minimize

the feed flow rate because this directly relates to the feed compressor specifications

necessary in a commercial MOC product. The decision variables and constants in

this situation can be defined as,

u = [tp, ta, tbd, tpu, Ff , FO2]

d = [Fp, Pa]

The objective function seeks to minimize the feed flow rate, maximize product

flow rate and penalize constraint violations.
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J(u, d, y) = −φ1Ff + φ2FO2 + µ

Nineq∑
i=1

max [0, gi] +

Neq∑
i=1

|qi|


where µ >> φ2 > φ1 are chosen tuning parameters to ensure the variables and

constraints are prioritized correctly. The complete optimization problem is formulated

as,

min
u

φ1Ff − φ2FO2 + µ

Nineq∑
i=1

max [0, gi] +

Neq∑
i=1

|qi|


s.t. tcycle,min ≤ tp + ta + tbd + tpu ≤ tcycle,max

umin ≤ u ≤ umax

(6.4)

This scenario cannot be experimentally demonstrated with the current hardware con-

figuration because the actual flow rate measurements cannot be read by the Raspberry

Pi. Improvements to the data acquisition circuitry could enable the Raspberry Pi to

make these measurements.

6.3.3 Case 3: Power Consumption Minimization

In this final scenario, a preliminary optimization of power consumption is considered

by relating the available decision variables to feed compressor specifications. The size,

weight and other specifications of a compressor are directly related to the discharge

pressure and flow rate requirements. These become the feed flow rate and adsorp-

tion pressure of the RPSA device. Minimizing these variables, while maintaining the
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performance requirements, enables a smaller, lighter compressor to be used in a com-

mercial MOC device. The decision variables and constants in this scenario are given

as,

u = [tp, ta, tbd, tpu, Ff , Pa]

d = [FO2, Fp]

The objective function is similar as Case 2, and the optimization problem can be

written as,

min
u

φ1Ff + φ2Pa + µ

Nineq∑
i=1

max [0, gi] +

Neq∑
i=1

|qi|


s.t. tcycle,min ≤ tp + ta + tbd + tpu ≤ tcycle,max

umin ≤ u ≤ umax

(6.5)

where µ >> φ1, φ2 are similar tuning parameters, but φ1 and φ2 may have similar

values. Similar to Case 2, this problem cannot be experimentally demonstrated due

to the same hardware limitations, and is shown only as an illustration.

6.4 Future Directions in MOC Optimization

The embedded hardware is a versatile tool for steady state optimization, and model-

free optimization is a excellent option which requires little development time. Its
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main disadvantage is a lack of prediction capability as it relies only on function eval-

uations and output measurements to gauge optimality. One possible improvement

could utilize machine-learning techniques to generate a high quality process model

using online measurements from the RPSA device. Another option is to use a de-

tailed process model such as Eqn. 2.1-2.7, but significant error occurs between this

plant model and the RPSA device. A data-reconciled detailed process model is the

ideal option to use in RPSA optimization. Detailed nonlinear process models have

a high computational cost, and would require more powerful computing resources to

solve. The Raspberry Pi R© hardware would have to be reconfigured to communicate,

possibly wirelessly, with a computing station which would run the nonlinear model

and optimization solver. The Raspberry Pi R© would operate the RPSA process while

communicating measurements to reconcile with the process model. These improve-

ments could help reduce the iterations required in a solver algorithm and provide

better optimal solutions than a model-free approach. Improvements to the nonlinear

RPSA model will reduce the model error in the current model.

6.5 Advances in RPSA Modeling for Optimization

A new three-component RPSA model improves on the model used in the MPC design,

and it could be used in future optimization studies for the RPSA device. The model

simulates a dry, synthetic air mixture of oxygen, nitrogen and argon. Argon is used

to model all inert species present in ambient air. The column mass balance equations

are expanded to include argon,
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∂ρg
∂t

=
ε̄

ε
DL

∂2ρg
∂z2
− 1

ε

∂Q

∂z
− ρb

ε

∑
iε{O2,N2}

∂ni
∂t

∂(χN2ρg)

∂t
=
ε̄

ε
DL

∂2(χN2ρg)

∂z2
− 1

ε

∂(χN2Q)

∂z
− ρb

ε

∂nN2

∂t
∂(χArρg)

∂t
=
ε̄

ε
DL

∂2(χArρg)

∂z2
− 1

ε

∂(χArQ)

∂z
− ρb

ε

∂nAr
∂t

1 = χN2 + χO2 + χAr

(6.6)

The mass transfer between the gas and solid phases using Langmuir Isotherms is also

expanded to include argon,

∂nN2

∂t
= kN2(n∞N2 − nN2)

∂nO2

∂t
= kO2(n∞O2 − nO2)

∂nAr
∂t

= kAr(n
∞
Ar − nAr)

(6.7)

The gas and solid phase energy balance are similar, and include heat effects from

all components as before. Momentum balances and pressure drop are calculated as

before. The storage tank component balances are expanded to correspond to the

boundary conditions for the column component balances.

d(χN2,TPT )

dt
=

F

VT
((χN2P )|z=L,t − χN2,TPT )− FP

VT
χN2,T (PT − Patm)

d(χAr,TPT )

dt
=

F

VT
((χArP )|z=L,t − χAr,TPT )− FP

VT
χAr,T (PT − Patm)

1 = χN2,T + χO2,T + χAr,T

(6.8)
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The addition of three equations increases the computational cost of the model, and

so far has led to many numerical instabilities. The advantage to this latest model

is the ability to capture the theoretical limit of 95% O2 product composition, which

becomes more important in steady state optimization than it was in MPC design.

Although this is the most detailed model for RPSA systems to date, the model

still has several limitations which could be improved for use in any RPSA device opti-

mization. The most significant shortcomings of this latest model can be summarized

by these points.

(1) Water contamination of the adsorber material remains an unmodeled phenom-

ena. Modeling water contamination can lead to improved prediction of the zeo-

lite (and device) lifespan and a precise mass of zeolite material. Modeling water

is challenging for several reasons. Including another gas species will increase

the number of equations, and exacerbate the numerical instabilities which are

already present. Water contamination also occurs at a much slower rate, and

bed contamination could take months worth of RPSA cycles. An alternative to

modeling water in the RPSA system is to model a desiccant layer in addition

to the zeolite adsorber column, which could reduce the computational costs of

this issue.

(2) The back pressure regulator is an important component of the lab-scale RPSA

device because it adds resistance through the adsorber column, and improves

the overall device performance. Modeling the regulator is difficult because its

dynamics depend on the column and tank pressure solved for in the model.

One potential modeling strategy is to define the end of the pressurization step

as the point where the column pressure reaches the adsorption pressure. This
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is problematic because now the model has an implicit problem not compatible

with standard PDE solvers.

(3) A commercial RPSA device relies entirely on a compressor for feed gas supply,

and the dynamics of the discharge pressure and flow rate has an enormous

effect on the RPSA device performance. Modeling the compressor gives a more

accurate portrayal of a commercial device, and could also be used to determine

an optimal compressor specifications for a future device manufacturer.

Using a detailed nonlinear model in steady state optimization has the best chance

of reliable, high-quality solutions to RPSA device designs, but this model must be

validated with experimental measurements. Even this latest process model is not able

to accurately predict the dynamics of the lab-scale RPSA unit. Until the model is

validated, a model-free optimization strategy is the best option.

6.6 Closing Remarks

The model-free optimization approach shown here is an excellent option for the RPSA

system because detailed plant models are difficult to accurately reconcile with exper-

imental data. The optimization scenarios shown here can be modified or extended to

meet a wide variety of objectives, but the model-free approach is not without limita-

tions. Without a mathematical model, the optimization solver will most likely have

difficulty with very complex objective functions and too many decision variables. The

eventual goal should be to use a nonlinear optimization solver with a detailed plant

model in a ”data-reconciled optimization formulation” where the model is compared
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to measured variables as the optimization problem is solved. This is a complex, diffi-

cult problem, and will take further development to solve. Improving the plant model

in the ways explained here is a good start to reconciling the model with actual RPSA

performance.
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Chapter 7

Conclusions and Future Directions

7.1 Model Predictive Control for the RPSA Sys-

tem

PSA technology is a common industrial and commercial technology which is widely

studied in the current literature. However, almost all studies focus on the modeling

of PSA systems for steady state optimization, and dynamic modeling and control is

almost nonexistent in the literature. These systems are complex, nonlinear, cyclic

processes subject to flow reversals, discrete valve switching and adsorption effects

which need some form of feedback control for reliable operation. The multivariable

control strategy presented in this work builds on the current state of the art, and

presents a new approach to RPSA control using MPC. Independently manipulating

the cycle step durations is the key feature of the MPC strategy because the controller

can better utilize the coupled relationships between the step durations and control

variables. MPC was shown both in simulation and on a lab-scale unit to improve the
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RPSA performance by rejecting process disturbance and tracking various set points.

Dynamic modeling was used in this work to build and evaluate a MPC design

strategy which was first used in simulation using a detail process model, and then re-

peated experimentally. Each component of this design strategy was chosen to produce

a high-quality MPC which can be implemented as an embedded controller for a com-

mercial product. Sub-space identification is a excellent tool to generate reduced order

models for use in MPC, and model identification using PRBS-type signals was suc-

cessful both in simulation and experimentally. The main disadvantage to the design

strategy is the linear approximation at an operating point for model identification,

but the alternative, nonlinear MPC, would prohibit its use in a commercial device.

More detailed modeling, either linear or nonlinear, could improve the MPC perfor-

mance in theory, but as the model complexity increases, so does the computational

cost. The piece-wise linear modeling approach took advantage of improved model

prediction ability while still maintaining low computational cost. This approach al-

lowed a complex system such as the RPSA device to be controlled by a relatively

simple feedback controller.

This work also gives a systems-level perspective on RPSA design and operation

which is not well represented in the current literature. Integrating a feedback con-

troller into the RPSA system creates a closed-loop system which could behave differ-

ently than in open-loop, and could improve the overall RPSA device performance, but

long-term studies are required to confirm this. Steady state optimization of the RPSA

remains an attractive goal, and the work presented here presents a new approach in

utilizing embedded hardware and process measurements to optimize a RPSA process.
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Model-free optimization approaches are advantageous because they do not rely on po-

tentially flawed process models, but fully integrating both nonlinear process models

and embedded hardware should be the eventual goal because it would be a valuable

contribution to the PSA industry.

7.2 Future Directions

Different modeling approaches could improve the MPC presented here. A fully non-

linear MPC using the detailed plant model could be developed which would provide

superior feedback control for the RPSA system, but the nonlinear MPC would not

be implementable in a commercial MOC device. If the control strategy is adapted for

multi-bed PSA systems, the nonlinear MPC could be used in larger, industrial scale

systems where more powerful computing resources are available. If a linear MPC

formulation is desired, alternative methods for model reduction could be explored

which give a more detailed linear model, perhaps integrating disturbance effects into

control decisions. In any modeling decision, there is a trade-off between complexity

and computational cost which must be considered before designing a MPC. Stability

of the plant model, and then the entire closed-loop system, remains an open question,

and a rigorous proof will require significant future work.

Steady state optimization using a combination of embedded hardware and process

modeling should be a priority for future work. In both RPSA device design and

generating a MPC, finding operating baseline points requires many experiments where

the design variables are manually adjusted. Optimization can greatly reduce the

number of experimental runs and aid designers in finding superior optimal operating

points. A data-reconciled process model will best predict the RPSA response to
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changes in design variables, and help to reach optimums faster.

The single-bed design is currently undergoing development for future commercial

manufacture of a new MOC device, and using the MPC can differentiate this new de-

vice in an already crowded market. Adding composition measurements and feedback

control will provide more transparency to the end user of the device, and provide

more concrete indications of when the device is performing properly, or when mainte-

nance is required. By continuously monitoring the product composition and making

adjustments to the cycle step durations, the MPC could extend the lifetime of the

adsorber column as water contaminates the zeolite. The extent to which the MPC

improves lifetime has yet to be quantified. The eventual success or failure of the MPC

for a commercial product depends on the economics of including composition sensors

and hardware to solve the MPC optimization problem. In this work, the MPC was

shown to improve the closed-loop performance of the RPSA device, and was able to

achieve all the desired objectives.
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