Analog simulation of heat conduction in coated plates

Koichi Ogawa
Lehigh University

Follow this and additional works at: https:/ / preserve.lehigh.edu/etd
Part of the Electrical and Computer Engineering Commons

Recommended Citation

Ogawa, Koichi, "Analog simulation of heat conduction in coated plates" (1965). Theses and Dissertations. 3322.
https:/ / preserve.lehigh.edu/etd/3322

analog simulation of heat

 CONDUCTION IN COATED PLATESby
Koichi Ogawa

A Thesis
Presented to the Graduate Faculty of Lehigh University in Candidacy for the Degree of Master of Science

Lehigh University

CERTIFICATE OF APPROVAL

This thesis is accepted and approved in partial fulfillment of the requirements for the Degree of Master of Science.

ACKNOWLEDGMENTS

The author wishes to express his sincere gratitude for the supervision, encouragement, critical review, and the many helpful suggestions of his thesis supervisor, Professor John J. Karakash.

The author sincerely appreciated the chance to use PACE TR-10 analog computer. Thanks is expressed to Dr. William Edward Schiesser, who is Assistant Professor of Chemical Engineering for his useful advice.

Thanks is also extended to Mrs. D. F. Fielding who typed the manuscript.

TABLE OF CONTENTS

Page
ABSTRACT 1

1. INTRODUCTION 2
1.1 Purpose 2
1.2 Approach 2
2. PREPARATION AND PROCEDURE 4
2.1 Basic Heat Equation 4
2.2 Finite-Difference Approximation 5
2.3 The PACE TR-10 Analog Computer 6
2.4 Simulation of Heat Equation of Slab
3. ANALOG SOLUTION FOR SLAB WITH DIFFERENT MATERIAL 10
3.1 Introduction 10
3.2 Analog Computer Setup 11
3.3 Analog Solutions 12
3.4 Analog Solutions with $4,6,8,10$ and 12 Cells 14
4. THEORETICAL SOLUTION OF HEAT TRANSFER EQUATION 15
4.1 Introduction 15
4.2 Case 1, Fig. 5 15
4.3 Case 2, Fig. 6 21
5. SUMMARY AND CONCLUSIONS 25
6. APPENDIX 27
7. tabLes and figures 33

TABLE OF CONTENTS (continued)

Page
8. REFERENCES 79
9. VITA 80

LIST OF TABLES

Table Page
1 THERMAL CONDUCTIVITY, SPECIFIC HEAT, DENSITY 34AND THERMAL DIFFUSIVITY OF VARIOUS MATERIALS
2 digital solution of the heat equation with 3510 CELLS (CASE 1)
3 DIGITAL SOLUTION OF THE HEAT EQUATION WITH 36 8 CELLS (CASE 1)
4 DIGITAL SOLUTION OF THE HEAT EQUATION WITH 37 6 CELLS (CASE 1)
5 DIGITAL SOLUTION OF THE HEAT EQUATION WITH 384 CELLS (CASE 1)
6 DIGITAL SOLUTION OF THE HEAT EQUATION WITH 3912 CELLS (CASE 1)
7 DIGITAL SOLUTION OF THE HEAT EQUATION WITH 40 12 CELLS (CASE 1)
8 DIGITAL SOLUTION OF THE HEAT EQUATION WITH 41 12 CELLS (CASE 2)
9 DIGITAL SOLUTION OF THE HEAT EQUATION WITH 42 12 CELLS (CASE 2)

LIST OF RIGURES

Figure Page
1 TYPICAL SLAB SHOWING DIVISION OF SLAB THICKNESS FOR 43 FINITE-DIFFERENCE APPROXIMATION
2 DIVISION OF SIAB THICKNESS (12 CELLS) 44
3 COMPUTER CIRCUIT FOR SOLVING THE GENERAL HEAT EQUATION 45
4 MODIFIED COMPUTER CIRCUIT FOR SOLVING THE HEAT EQUATION 46
5 CROSS SECTION OF SLAB WITH BOUNDARY CONDITIONS 47
6 CROSS SECTION OF SIAB WITH BOUNDARY CONDITIONS 47
7 CROSS SECTION OF COMPOSITE SLAB WITH BOUNDARY CONDITIONS 48
8 CROSS SECTION OF COMPOSITE SIAB WITH BOUNDARY CONDITIONS 48
9 ANALOG SOLUTIONS OF THE HEAT EQUATION WITH 12 CELLS 49(CASE 1) - Aluminum
10 analog solutions of the heat equation with 12 Cells 50(CASE 1) - Cast Iron
11 analog solutions of the heat equation with 12 cells 51(CASE 1) - Aluminum Oxide12 analog solutions of the heat equation with 12 celis52(CASE 1) - Asbestos
13 analog solutions of the heat equation with 12 cells 53(CASE 2) - Aluminum
14 analog solutions of the heat equation with 12 cells 54(CASE 2)
15 analog solutions of the heat equation with 12 cells 55 (CASE 2) - Aluminum Oxide
16 analog solutions of the heat equation with 12 cells 56(CASE 2) - Asbestos
17 analog solutions of the heat equation with 12 cells 57(CASE 3) - Aluminum Oxide + Aluminum

LIST OF FIGURES (continued)

Figure Page
18 ANALOG SOLUTIONS OF THE HEAT EQUATION WITH 12 CELLS 58
(CASE 3) - Aluminum Oxide + Cast Iron
19 ANALOG SOLUTIONS OF THE HEAT EQUATION WITH 12 CELLS 59(CASE 3) - Asbestos + Cast Iron
20 ANALOG SOLUTIONS OF THE HEAT EQUATION WITH 12 CELLS 60(CASE 3) - Asbestos + Aluminum
21 ANALOG SOLUTIONS OF THE HEAT EQUATION WITH 12 CELLS 61
(CASE 4) - Aluminum Oxide + Aluminum
22 analog solutions of the heat equation with 12 cells 62
(CASE 4) - Aluminum Oxide + Cast Iron
23 ANALOG SOLUTIONS OF THE HEAT EQUATION WITH 12 CELLS 63
(CASE 4) - Asbestos + Aluminum
24 ANALOG SOLUTIONS OF THE HEAT EQUATION WITH 12 CELLS 64
(CASE 4) - Asbestos + Cast Iron
25 analog Solutions of the heat equation with 12 CELLS 65 (CASE 1) - Aluminum
26 ANALOG SOLUTIONS OF THE HEAT EQUATION WITH 10 CELLS 66
(CASE 1) - Aluminum
27 ANALOG SOLUTIONS OF THE HEAT EQUATION WITH 8 CELLS 67
(CASE 1) - Aluminum
28
ANALOG SOLUTIONS OF THE HEAT EQUATION WITH 6 CELLS 68(CASE 1) - Aluminum
29 ANALOG SOLUTIONS OF THE HEAT EQUATION WITH 4 CELLS 69(CASE 1) - Aluminum
30 UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE ALUMINUM 70 OXIDE AND ALUMINUM COMPOSITE SLAB (CASE 3)
31 UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE ALUMINUM 70 OXIDE AND CAST IRON COMPOSITE SLAB (CASE 3)
32. UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE ASBESTOS 71 and aluminum composite slab (case 3)

LIST OF FIGURES (continued)

Figure Page
33 UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE ASBESTOS 71 and cast iron composite siab (case 3)
34 UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE ALUMINUM 72 SIAB (CASE 2)
35 UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE ALUMINUM 72 OXIDE (CASE 2)
36
UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE CAST IRON 73(CASE 2)
37
UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE ASBESTOS 73(CASE 2)
38
UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE ALUMINUM 74 OXIDE AND ALUMINUM COMPOSITE SIAB (CASE 4)
39 UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE ALUMINUM 74 OXIDE AND CAST IRON COMPOSITE SLAB (CASE 4)
40 UNSTEADY-STATE TEMPERATURE DISTRIbUTION OF THE ASBESTOS 75 and aluminum composite siab (CASE 4)
41 UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE ASBESTOS 75 and cast IRON COMPOSITE SLAB (CASE 4)
42 UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE ALUMINUM 76 SLAB WITH DIFFERENT NUMBER OF CELLS $\frac{8}{77}$
43 PERCENTAGE ERROR AS A FUNCTION OF THE NUMBER OF CELLS 78

ABSTRACT

Partial differential equations can be approximated with systems of simultaneous ordinary differential equations by replacing one or more of the partial derivatives by appropriate finite differences. The resulting ordinary differential equations can sometimes be solved directly by an analog computer.

Simulation of the partial differential equation of heat conduction with the PACE TR-10 analog computer and theoretical solution of the problem are described and compared. When the slab of material at temperature $T_{o}{ }^{\circ} \mathrm{C}$ is suddenly immersed into an ice-water bath at $0^{\circ} \mathrm{C}$ the slab temperature varies with distance x from the face of the slab. Simulation is shown to be of more practical use than analytical solution for examining the heat conduction.

1. INTRODUCTION

1.1 Purpose

The prime objectives of this investigation are the study of the heat equation for a slab with or without a thermal insulator coating when exposed to heat and the simulation of the equation using the finite difference method by means of an analog computer. The accuracy of the analog solution will be compared to a theoretical solution.

When a slab (coated with or without a thermal insulator) is exposed to heat, the slab temperature change is a function of time, distance from the surface, and the properties of the surface coating. Since the analytical solution of the coated $s l a b$ is tedious ${ }^{1}$, an analog simulation is proposed in this thesis.

1.2 Approach

The analog computer is an important tool for engineering design. Since an analog computer integrates analysis with respect to only one variable, namely time, it is fundamentally limited to the solution of ordinary differential equations. To solve a partial differential equation, it is necessary first to convert the equation to one or more ordinary differential equations. If the partial differential equation is linear, this can often be done by separation of variables, which
results in ordinary differential equations of the eigenvalue type, $\mathbf{2 , 4}$

The above method of separating variables and obtaining a series type of solution can be carried out fairly efficiently on an analog computer .

Simulation can be done by replacing some of the partial derivatives by finite differences in order to convert the original partial differential equations into a system of ordinary differential equations, ${ }^{5}, 7,8$

2. PREPARATION AND PROCEDURE

2.1 Basic Heat Equation

The equation of heat flow through a continuous medium involves second order special derivatives and only first order time derivatives. The basic heat equation in the x direction is given by

$$
\begin{equation*}
\rho c \frac{\partial T}{\partial t}=\frac{\partial}{\partial x}\left[k \frac{\partial T}{\partial x}\right]+f \tag{2.1}
\end{equation*}
$$

where
$c=s p e c i f i c$ heat
$\boldsymbol{\rho}=$ density
$\mathrm{k}=$ thermal conductivity
$f=$ heat generated in the material
$T=T(x, t)$ temperature at position x and time t in ${ }^{0} C$ $t=$ time

The heat flux F across a unit surface normal to the x direction is defined by the equation

$$
\begin{equation*}
F=-k \frac{\partial}{\partial x} \tag{2.2}
\end{equation*}
$$

In this problem no heat was generated, therefore

$$
\begin{equation*}
f=0 \tag{2.3}
\end{equation*}
$$

For analog solution the partial differential equation (2.1) must be reduced to a series of ordinary differential equations with constant coefficients. This reduction is ordinarily made by using a finite difference approximation ${ }^{9}$ for all derivatives with respect to x.

2.2 Finite-Difference Approximation

The equation becomes
$C \rho \frac{\partial T(x, t)}{\partial t}=\frac{\partial}{\partial x}\left[k \frac{\partial T(x, t)}{\partial x}\right]$
where
the heat capacity $C=c \rho$

Instead of measuring the temperature T at all distance x we can measure T only at certain stations along x (Fig. 1). Let T_{1} be the value of T at the first x station $\left(x=x_{1}\right), T$ be the value of T at the second x station ($x=x_{2}$) and T_{N} be the value of T at the nth x station $\left(x=x_{N}\right)$. Further, let the distance between stations be a constant Δx. Thus $T(x, t)$ is replaced by $T_{1}(t), T_{2}(t)$, etc. and we can approximate the heat flux $\mathrm{F}_{\mathrm{N}}-1 / 2$ at the $\mathrm{N}-1 / 2$ station as

$$
\begin{equation*}
F_{N}-1 / 2=-\left.k \frac{\partial T}{\partial x}\right|_{N-1 / 2}=-k_{N}-1 / 2 \frac{T_{N}-T_{N}-1}{\Delta x} \tag{2.5}
\end{equation*}
$$

In fact the limit of (2.5) as $\Delta x-0$ is just the definition of the partial x derivative at that point, In the same way we can approximate the gradient of the flux at the nth station as

$$
\begin{equation*}
\left.\frac{\partial}{\partial x}\left[k \frac{\partial T}{\partial x}\right]\right|_{N}=-\left.\frac{\partial F}{\partial x}\right|_{N}=-\frac{F_{N}+1 / 2-F_{N}-1 / 2}{\Delta x} \tag{2.6}
\end{equation*}
$$

The equation of heat-flow balance at the nth station can now be written. Thus

$$
\begin{equation*}
C_{N} \frac{d T_{N}}{d t}=k_{N+1 / 2} \frac{T_{N}+1-T_{N}}{(\Delta x)^{2}}-k_{N}-1 / 2 \frac{T_{N}-T_{N}-1}{(\Delta x)^{2}} \tag{2.7}
\end{equation*}
$$

Where C_{N} is the heat capacity at the nth station. It is now clear that $d T_{N} / d t$ is a ordinary derivative and not a partial derivative, since by definition x is fixed for $T=T N$

2.3 The Pace TR-10 Analog Computer

The PACE TR-10 Analog Computer is a fully transistorized, general purpose analog computer. Solid state circuit elements are used throughout the computer to eliminate vacuum tubes, thereby achieving a compact design which requires very little power. It is able to operate stably and accurately in normal office surroundings. Reliable with simplicity in functional design, it is easy to use and can be a powerful tool for the individual engineer in the rapid solution of scientific and engineering problems.

To solve mathematical equations, one interconnects the computing components -- the building blocks of the electrical model. These blocks perform the following operations on variable d - c voltages: multiplication by a constant; algebraic summation; integration with respect to time; multiplication of two variables; generation of known functions of a variable; combinations of these operations. Each component has input and output terminations which are readily accessible at the front face of the computer for interconnection by plugs and patch cords.

Below the patching area lies the monitoring and control panel. This contains features which permit (a) switching the computer on and
off, (b) controlling the operational mode of the computer, (c) setting the values of problem parameters to tru-place accuracy, (d) reading out stationary values of problem variables, and (e) periodically adjusting the balance of the $d-c$ amplifiers to ensure their accurate operation.

The front face of the computer is divided into three fiveinch high rows of computing components and their corresponding interconnecting terminations. This will be referred to as the "patch panel". In the top row there are attenuators for multiplying voltages by positive constants less than unity. In the bottom row there are highgain d - c amplifiers uncommitted in their form of operation and capable of performing many tasks. In the middle row there is an assortment of components and terminations - integrator networks for use with the d - c amplifiers, fixed and variable function generators, quarter-square multipliers, comparators, and terminations for additional control panels, mounted attenuators, function switches, the reference voltages of ± 10 volts, and ground potential.

2.4 Simulation of Heat Equation of Slab

For purposes of illustration, let us assume the following boundary conditions for our conducting slab: at $x=0$ the temperature remains fixed at T_{0} and at $x=L=\Delta x(N+1 / 2)$ the heat flow is zero. The space between $x=0$ and $x=L$ is therefore broken into N cells. Assume the initial condition, which is the initial temperature distribution in the slab, is such that

$$
T_{1}(0)=\theta, \quad T_{2}(0)=\theta_{2}, \cdots \cdots,-, T_{N}(0)=\theta_{N}
$$

Thus we have

$$
\begin{aligned}
& \text { 1. Zero temperature at } x=0: T_{0}=0 \\
& \text { 2. Zero heat flux at } x=L=(N+1 / 2) \Delta x: F_{N}+1 / 2=0 \\
& \text { 3. } T_{1}=\theta_{1}, T_{2}=\theta_{2}-\cdots-T_{N}=\theta_{N} \text { at } t=0
\end{aligned}
$$

Therefore we can write the complete set of differential equations for N cells:

$$
\begin{align*}
& F_{1 / 2}=-k_{1 / 2} \frac{T_{1}-T_{0}}{\Delta x} \\
& F_{3 / 2}=-k_{3 / 2} \frac{T_{2}-T_{1}}{\Delta x} \\
& F_{5 / 2}=-k_{5 / 2} \frac{T_{3}-T_{2}}{\Delta x} \tag{2.8}\\
& F_{N}-1 / 2=-k_{N}-1 / 2 \frac{T_{N}-T_{N}-1}{\Delta x}
\end{align*}
$$

For equation (2.7)

$$
\begin{align*}
& C_{1} \frac{d T_{1}}{d t}=k_{3 / 2} \frac{T_{2}-T_{1}}{(\Delta x)^{2}}-k_{1 / 2} \frac{T_{1}-T_{0}}{(\Delta x)^{2}} \\
& C_{2} \frac{d T_{2}}{d t}=k_{5 / 2} \frac{T_{3}-T_{2}}{(\Delta x)^{2}}-k_{3 / 2} \frac{T_{2}-T_{1}}{(\Delta x)^{2}} \tag{2.9}\\
& C_{N} \frac{d T_{N}}{d t}=k_{N / 2}+1 \frac{T_{N}+1-T_{N}}{(\Delta x)^{2}}-k_{N}-1 / 2 \frac{T_{N}-T_{N}-1}{(\Delta x)^{2}}
\end{align*}
$$

The computer arrangement for solving the difference equations is shown in Fig. 3. Note that the outputs of each successive row of amplifiers are reversed. Thus the temperature T and heat flux F across the slab can be observed directly as a function of time.

Fig. 3 is simpler despite the increased number of amplifiers.
 To vary the conductivity k or heat capacity C at any station, only the appropriate resistors are varied. Changes in initial temperature distribution across the slab are made by setting the $T_{1}, T_{2}, \ldots \ldots$ T_{N} voltages to the desired values.

3. ANALOG SOLUTION FOR SLAB WITH DIFFERENT MATERIAL

3.1 Introduction

Thermal conductivity k, specific heat c, and density ρ are functions of the x coordinate. When a slab is composed of one type of material then $\mathrm{k}_{\mathrm{N}}-1 / 2$ and C_{N} Eq. (2.9) and Fig. 2 are;

$$
\left\{\begin{array}{l}
k_{1 / 2}=k_{3 / 2}=\cdots \cdots k_{N}-1 / 2=k \tag{3.1}\\
c_{1}=c_{2}=\cdots c_{N}=c
\end{array}\right.
$$

where

$$
c=\rho c
$$

We are only interested in temperature T in different positions of the slab; therefore, we can combine the constants C_{N} and $k_{N}-1 / 2 /(\Delta x)^{2}$; and the new constant is called thermal diffusivity a. Thus we have

$$
\begin{equation*}
a=\frac{k}{\rho c}=\frac{k}{c} \tag{3.2}
\end{equation*}
$$

Therefore equation (2.9) becomes

$$
\left\{\begin{array}{l}
\frac{d T_{1}}{d t}=\frac{a}{(\Delta x)^{2}}\left\{\left(T_{2}-T_{1}\right)-\left(T_{1}-T_{0}\right)\right\} \tag{3.3}\\
\frac{d T_{2}}{d t}=\frac{a}{(\Delta x)^{2}}\left\{\left(T_{3}-T_{2}\right)-\left(T_{2}-T_{1}\right)\right\}
\end{array}\right.
$$

$$
\frac{d T_{N}}{d t}=\frac{a}{(\Delta x)^{2}} \quad\left(T_{N}+1^{-} T_{N}\right)\left(T_{N}-T_{N}-1\right)
$$

If the number of cells are 12 then equation (3.3) will be given by 11 ordinary differential equations. The division of slab thickness and the computer arrangement for the 11 ordinary differential equations are shown in Figs. 3 and 4.

3.2 Analog Computer Setup

The following slab materials and their combinations of aluminum, cast iron, aluminum oxide, and asbestos were tested. These values of the thermal conductivity constants are shown in Table 1.

We have the following four cases for analog solutions.

Case 1

The slab having a temperature of $100^{\circ} \mathrm{C}$ is suddenly immersed in $0^{\circ} \mathrm{C}$ water (Fig. 5).

Initial condition of the analog computer is $100^{\circ} \mathrm{C}$. We have to choose voltages that depend on thermal diffusivity a and the boundary conditions fixed at $x=0$ and $x=L=\Delta x N$.

The space between $x=0$ and $x=L$ is therefore broken into $N+1$ cells. In our problems, it was broken into 12 cells with
$\Delta x=0.1 \mathrm{~cm}$. Therefore x becomes $x=L=1.2 \mathrm{~cm}$ and $\frac{a}{(\Delta x)^{2}}=\frac{a}{0.01}$.

Case 2

One face of the slab having initial temperature of $0^{\circ} \mathrm{C}$ is suddenly heated to $100^{\circ} \mathrm{C}$ with a side of the face at $0^{\circ} \mathrm{C}$ (Fig. 6)

Case 3

The composite slab having initial temperature of $100^{\circ} \mathrm{C}$ is suddenly immersed into $0^{\circ} \mathrm{C}$ ice-water (Fig. 7). Here we considered one material from $x=0$ to $x=0.55 \mathrm{~cm}$ and a second material from $x=0.55 \mathrm{~cm}$ to $x=1.2 \mathrm{~cm}$. The two materials have constants of $\frac{a_{1}}{(\Delta x)^{2}}$ and $\frac{a_{2}}{(\Delta x)^{2}}$, respectively, where a_{1} is thermal diffusivity of one material from $x=0$ to $x=0.55 \mathrm{~cm}$, and a_{2} is thermal diffusivity of another material from $x=0.55 \mathrm{~cm}$ to $\mathrm{x}=1.2 \mathrm{~cm}$.

Case 4

One face of the composite slab at a temperature of $0^{\circ} \mathrm{C}$ is suddenly heated to $100^{\circ} \mathrm{C}$, with the other side of the face remaining at $0^{\circ} \mathrm{C}$ (Fig. 8).

3.3 Analog Solutions

All dimensions are expressed in c.g.s. Slab thickness L is $1.2 \mathrm{~cm}, \Delta x$ is 0.1 cm and the number of cells is 12 . For values of thermal conductivity constants used, see Table 1., ${ }^{3,4}$

An x - y recorder was used to plot the solutions.

Case 1

Analog solutions for the slab with different materials (aluminum, cast iron, aluminum oxide, and asbestos) are shown in Figs. 9, 10, 11 and 12. In this case temperature change shows symmetry in the right and left sides from the center of the slab. Hence, measurements at only six stations are actually required for this particular problem and the figures show only half of the 12 stations.

Case 2

Analog solutions are shown in Figs. 13, 14, 15 and 16. Temperature changes in 11 stations are shown.

Case 3
Analog solutions are shown in Figs. 17, 18, 19 and 20. In this case temperature change shows no symmetry with respect to the center of the slab since the slab is composite. Measurements in 11 stations are shown.

Case 4

Analog solutions are shown in Figs. 21, 22, 23 and 24. Temperature change of 11 stations is shown.

Erom the analog solutions of Case 3 we can observe the unsteady state temperature distribution of composite slab against the distance for the time parameter. These graphs are shown in Figs. 30 to 32 .

From Cases 2 and 4 we can observe the unsteady-state temperature distribution of single and composite slab. These are shown in Figs. 33 to 41.

3.4 Analog Solutions with $4,6,8,10$ and 12 Cells

The accuracy of the finite-difference approximation depends on the number of cells. Let us now examine the error of the analog solution for the problem of Case 1. The slab material was aluminum and the problem was solved with $4,6,8,10$ and 12 cells. These analog solutions are shown in Figs. 25 to 29. Digital solutions are also plotted on the same graphs. From these graphs we can observe the temperature distribution against the distance for the time parameter. These graphs are shown in Fig. 42.

Referring to these figures, consider the center of the slab at a time t. We can now plot the percentage error in the temperature as a function of the number of cells. This is shown in Fig. 43. It follows that the accuracy of the analog solution improves with the number of cells. There is obviously a limit in the number of amplifiers available. Thirty-four amplifiers were used in this problem for 12 cells.

4. THEORETICAL SOLUTION OF HEAT TRANSFER EQUATION

4.1 Introduction

In order to evaluate the accuracy of the differenc technique, it is worth-while to solve the partial differential equations of heat flow by separating variables ${ }^{2,3,4}$ or using the Laplace method. ${ }^{1}$ For simplicity we will solve the problem of the temperature distribution.

Assume that the medium has constant conductivity k and constant specific heat capacity C. Also assume that there are no heat sources within the medium. Using the complete solutions we will show the numerical results obtained by means of the digital computer for Case 1 and Case 2.

4.2 Case 1, Fig. 5

$$
\begin{align*}
& \text { The region } 0<x<L \\
& \text { Ends kept at zero temperature } \\
& \text { Initial temperature } 100^{\circ} \mathrm{C} \\
& \frac{\partial^{2} T}{\partial x^{2}}=\frac{1}{a} \frac{\partial T}{\partial t} \quad 0 \leq x \leq L \tag{4.1}
\end{align*}
$$

The thermal diffusivity a which appears in all unsteady-heat-conduction problems is a property of the material. Qualitatively we observe that, in a material that combines a low thermal conductivity with a large
specific heat per unit volume, the rate of temperature change will be slower than in a material that possesses a large thermal diffusivity. Since the temperature T must be a function of time t and distance x, we begin by assuming a product solution, i.e., multiplying one function, which only depends on time, (H) (t), by another function which only depends on distance $X(x)$.

The nature of these functions is not known at this point, but will be determined as we proceed.

Thus, if

$$
\begin{equation*}
T(x, t)=X(x) \circledast t \tag{4.2}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\frac{1}{a} \frac{\sigma(H)}{\sigma t}=\text { (H) } \frac{\sigma^{2} x}{\sigma x^{2}} \tag{4.3}
\end{equation*}
$$

We can now separate the variables, i.e., bring all functions which depend on x to one side of the equation and all functions which depend on t to the other.

By dividing both sides of Eq. (4.3) by $X(H)$, we obtain

$$
\begin{equation*}
\frac{1}{a(H)} \frac{\sigma(H)}{\sigma t}=\frac{1}{x} \frac{\sigma^{2} x}{\sigma x^{2}} \tag{4.4}
\end{equation*}
$$

Now observe that the left-hand side is a function of t only and, therefore, is independent of x. Similarly the right-hand side is a function of x only and will not change as t varies. Since neither side can change as t and x vary, both sides are equal to a constant which we shall call μ. Hence, we have two ordinary and linear differential equations with constant coefficients.

$$
\begin{equation*}
\frac{d \Theta(t)}{d t}=a \mu \circledast(t) \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d^{2} x}{d x^{2}}=\mu x(x) \tag{4.6}
\end{equation*}
$$

The general solution for Eq. (4.5) is

$$
\begin{equation*}
\text { (H) }(t)=c_{1} e^{a \mu \theta} \tag{4.7}
\end{equation*}
$$

If μ were a positive number, the temperature of the slab would become infinitely high as t increased which is contrary to physical conditions. Therefore, we must reject the possibility that $\mu>0$. If μ were zero, then we would find that the function expressing the time dependence of the temperature in the slab would be a constant. Again, this possibility must be rejected because it would not be consistent with the physical conditions of the problem. We therefore conclude that μ must be a negative number and for convenience we let $\mu=-\lambda_{n}^{2}$.

The time-dependent function, then becomes

$$
\begin{equation*}
\text { (H) }(t)=C_{1} e^{-a \lambda_{n}^{2} t} \tag{4.8}
\end{equation*}
$$

The general solution of Eq. (4.6) can be written in terms of a sinusoidal function. Since this is a second-order equation, there must be two constants of integration in the solution. The solution to the equation

$$
\frac{\partial^{2} x(t)}{\partial x^{2}}=-\lambda_{n}^{2} x(t)
$$

is usually written as

$$
\begin{equation*}
x(x)=C_{2} \cos \lambda_{n} x+C_{3} \sin \lambda_{n} x \tag{4.9}
\end{equation*}
$$

Returning to the original product solution as expressed by Eq. (4.2), the temperature, as a function of distance and time in the slab, is given by

$$
\begin{align*}
T(x, t) & =C_{1} e^{-a \lambda_{n}^{2} t}\left(C_{2} \cos \lambda_{n} x+C_{3} \sin \lambda_{n} x\right) \\
& =e^{-a \lambda_{n}^{2} t}\left(A_{n} \cos \lambda_{n} x+B_{n} \sin \lambda_{n} x\right) \tag{4.10}
\end{align*}
$$

where

$$
A_{n}=C_{1} C_{2} \text { and } B_{n}=C_{1} C_{2}
$$

Both A_{n} and B_{n} being constants, they must be evaluated from the boundary and initial conditions. In addition we must also determine the value of the constant λ in order to complete the solution. The initial and boundary conditions, stated in symbolic form, are:

$$
\begin{align*}
& \text { At } t=0, T(x, 0)=T_{0}=100^{\circ} C \text { (initial condition) } \\
& \qquad(0 \leq x \leq L) \tag{4.11}\\
& \text { At } x=0 \text { and } x=L \\
& T(0, t)=0^{\circ} C \tag{4.12}\\
& T(L, t)=0^{\circ} C \text { (boundary condition) } \tag{4.13}
\end{align*}
$$

Substitute boundary conditions of Eq. (4.12) into Eq. (4.10), then we get for $\mathrm{x}=0$

$$
\begin{aligned}
0 & =e^{-a \lambda_{n}^{2}{ }_{n}} \quad\left(A_{n} \cos 0+B_{n} \sin 0\right) \\
& =A e^{-a \lambda_{n}^{2} \cdot t}
\end{aligned}
$$

So

$$
A=0
$$

The solution for $T(x, t)$ becomes

$$
T(x, t)=B_{n} e^{-a \lambda^{2}} n^{t} \sin \lambda x
$$

For $x=L$ this becomes

$$
0=e^{-a \lambda^{2} t B_{n}} \sin \lambda L
$$

In order to satisfy the equation, $\sin \lambda_{n} L$ must be equal to zero, so that

$$
\lambda_{n} L=n \pi
$$

and

$$
\lambda_{n}=\frac{n \pi}{L}
$$

The general solution is the sum of the solutions corresponding to each characteristic value, or

$$
\begin{equation*}
T(x, t)=\sum_{n=1} e^{-a \frac{n^{2} a^{2}}{L^{2}} t} B_{n} \sin \frac{n \pi}{L} x \tag{4.14}
\end{equation*}
$$

The constant B_{n} is evaluated by substituting the initial condition $T(x, 0)=100^{\circ} \mathrm{C}$ into Eq. (4.14). We have

$$
\begin{equation*}
T(x, 0)=100^{\circ} C=\sum_{n=1} B_{n} \sin \frac{n \pi}{L} x \tag{4.15}
\end{equation*}
$$

It can be shown that the characteristic functions, $\sin \frac{n \pi}{L} x$, are orthogonal between $x=0$ and $x=L$ and therefore

L

$$
\begin{align*}
\sin \frac{n \pi x}{L} \text { sin } \frac{m \pi x}{L} & =0 \text { if } m \neq n \tag{4.16}\\
& \neq 0 \text { if } m=n
\end{align*}
$$

To obtain a particular value of B_{n}, we multiply both sides of Eq. (4.15) by $\sin \frac{m \pi x}{L}$ and integrate between 0 and L. In accordance with Eq. (4.16) all terms on the right hand side disappear except the one involving the square of the characteristic function, $\sin \frac{n \pi}{L} x$, and we obtain

$$
\begin{equation*}
\int_{0}^{L} 100\left(\sin \frac{n \pi}{L} x\right) d x=B_{n} \int_{0}^{L}\left(\sin \frac{n \pi}{L} x\right)^{2} d x \tag{4.17}
\end{equation*}
$$

The left hand side of Eq. (4.17) becomes

$$
\begin{aligned}
& \int_{0}^{L} 100 \sin \frac{n \pi}{L} \times d x=100 \frac{L}{n \pi}\left(-\cos \frac{n \pi}{L} x\right]_{0}^{L}= \\
& \frac{-100 L}{n \pi}(\cos n \pi-1)=\frac{100 L}{n \pi}(1-\cos n \pi)
\end{aligned}
$$

The right hand side of Eq. (4.17) reduces to

$$
\begin{aligned}
B_{n} \int_{0}^{L} & \left(\sin \frac{n \pi}{L} x\right)^{2} d x=B_{n} \int_{0}^{L} \frac{1-\cos \frac{2 n \pi}{L} x}{2} d x \\
& \frac{B_{n}}{2}\left[x-\frac{L}{2 n \pi} \sin \frac{2 n \pi}{L} x\right]_{0}^{L}=\frac{B_{n}}{2} L
\end{aligned}
$$

Hence

$$
\begin{equation*}
\frac{100 L}{n \pi}(1-\cos n \pi)=\frac{L}{2} B_{n} \tag{4.18}
\end{equation*}
$$

and

$$
B_{n}=\frac{200}{n \pi}(1-\cos n \pi) \quad(n=1,2,3, \ldots)
$$

For n even $\left(n=2,4,6 \ldots\right.$), B_{n} is clearly zero, and for n odd $(\mathrm{n}=1,3,5 \ldots$)

$$
1-\cos n \pi=2
$$

and hence

$$
\begin{equation*}
B_{n}=\frac{400}{n \pi} \quad \text { for } n=1,3,5, \ldots \tag{4.19}
\end{equation*}
$$

Finally we obtain the complete solution,

$$
\begin{equation*}
T(x, t)=\frac{400}{\pi} \sum_{\substack{n=1 \\(n: o d d)}}^{\infty} \frac{1}{n} \sin \frac{n \pi}{L} x \cdot e^{-\frac{a n^{2} \pi^{2}}{L^{2}} t} \tag{4.20}
\end{equation*}
$$

4.3 Case 2, Fig. 6

The region $0<x<L$
Ends kept at temperatures $100^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$
Initial temperature zero

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial x^{2}}=\frac{1}{a} \frac{\partial T}{\partial t} \tag{4.1}
\end{equation*}
$$

The slab is initially at zero temperature

$$
\begin{equation*}
T_{0}=T(x, 0)=0 \tag{4.2}
\end{equation*}
$$

and for $t>0$, the end $x=L$ is kept at zero temperature, while the temperature of the end $x=0$ is varied in a prescribed way with time.

$$
\begin{equation*}
T(0, t)=100^{\circ} C, \quad T(L, t)=0 \tag{4.3}
\end{equation*}
$$

The temperature distribution throughout the slab is required as a function of x and t. The temperature distribution is expressed as the sum of two distributions, one of which is to represent the limiting steady-state distribution (independent of t) and the other is to
represent the transient distribution (which must then approach zero as $t \rightarrow \infty$).

$$
\begin{equation*}
T(x, t)=T_{s}(x)+T_{T}(x, t) \tag{4.4}
\end{equation*}
$$

The function $T_{s}(x)$ must be a linear function of x datisfying

$$
T(0, t)=100^{\circ} C \quad, \quad T(L, t)=0^{\circ} C
$$

and hence is of the form

$$
\begin{equation*}
T_{s}(x)=100-100 \frac{x}{L} \tag{4.5}
\end{equation*}
$$

and $T_{T}(x, t)$ is a particular solution of (4.1). The function T_{T} mast be determined in such a way that it vanishes when $t \rightarrow \infty$

$$
\begin{equation*}
T_{T}(x, \infty)=0 \tag{4.6}
\end{equation*}
$$

and so that the sum $T_{S}+T_{T}$ satisfies the initial condition (4.2). Also, since $T_{s}(x)$ satisfies (4.3) it follows that T_{T} must vanish at the ends $x=0$ and $x=L$ for all positive values of t.

$$
\begin{equation*}
T_{T}(0, t)=T_{T}(L, t)=0 \tag{4.7}
\end{equation*}
$$

Thus the transient distribution satisfies the homogeneous end conditions.

Product solutions of (4.1) satisfying (4.6) and (4.7) are
obtained in the form similar to that of Case 1.

$$
T_{T}=A_{n} \sin \frac{n \pi x}{L} e^{-\frac{a n^{2} \pi^{2}}{L^{2}} t \quad(n=1,2, \ldots)}
$$

Thus, combining (4.5) and a superposition of solutions of this type, the required function $T(x, t)$ may be assumed in the form

$$
\begin{equation*}
T(x, t)=100-100 \frac{x}{L}+\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{L} e-\frac{a n^{2} \pi^{2}}{L^{2}} t \tag{4.8}
\end{equation*}
$$

We may verify that (4.8) satisfies the end conditions (4.3), and also that this solution approaches the proper steady-state solution as $\mathrm{t} \rightarrow \infty$. It remains then to determine the coefficients A_{n} in such a way that the initial condition (4.2) is satisfied. Hence,

$$
T(x, 0)=0=100-100 \frac{x}{L}+\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x_{e}}{L} e^{-0},
$$

or

$$
\begin{equation*}
100 \frac{x}{L}-100=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{L} \tag{4.9}
\end{equation*}
$$

Multiplying by $\sin \frac{m \pi x}{L}$ and integrating from $x=0$ to $x=L$

From this, we obtain

$$
\begin{aligned}
A_{n} & =\frac{2}{L} 100 \int_{0}^{L}\left(\frac{x}{L}-1\right) \sin \frac{n \pi x}{L} d x \\
& =\frac{-200}{n \pi} \quad(n=1,2,3 \ldots \ldots)
\end{aligned}
$$

Finally we obtain the solution of Eq. (4.1) with initial and boundary conditions (4.2) and (4.3)

$$
\begin{aligned}
T(x, t) & =100-100 \frac{x}{L}-\frac{200}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi x}{L} e^{-\frac{a n^{2} \pi^{2}}{L^{2}} t} \\
& (n=1,2,3 \ldots)
\end{aligned}
$$

5. SUMMARY AND CONCLUSIONS

This thesis is concerned with the simulation of the heat equation by an analog computer, and with the accuracy of the solution. The general form of analog solutions of the temperature distributions of slabs are discussed, both the simple uncoated and also the more complex coated slab situations.

The investigation consists of the following:

1. Simulation of f inite differences of the heat equation.
2. Analog solutions of the heat equation under different initial and boundary conditions for the following slab materials: aluminum, cast iron, aluminum-oxide, aluminum with asbestos, cast iron with aluminum-oxide, and cast iron with asbestos.
3. Digital solutions of the heat equation and comparison with the analog solutions.
4. Analog solutions for aluminum slab with 4, 6, 8, 10 and 12 cells to establish accuracy of analog simulations.
5. The temperature distribution curves of the slabs.

The following conclusions are drawn:
The simple and straightforward solutions of the heat equation with the analog computer has been shown. The solution of the heat equation shows good agreement with that obtained by digital computer solutions based on

separation of variables.

As far as percent of error is concerned, it is shown that if an error of 5% is tolerable, only four cells need be used, or that if an accuracy of one percent is required, the minimum of ten cells are required.

6. APPENDIX

The methods to get the theoretical solutions used in the preceding cases may be said to be immediate consequences and extensions of Fouries classical work. An alternative method of dealing with the differential equations of applied mathematics follows from the work of Heaviside. This method is adapted to the solution of problems in conduction of heat. All the solutions previously obtained for heat conduction in the unsteady-state can be derived with the Laplace Transformation method. Since, however, the advantage of the method increases with the complexity of the problem it is reasonable to apply it to the most difficult cases, which in this case is the composite solid heat conduction.

Consider the finite slab with one medium $-\ell<x<0$ and with parameters $k, \rho_{1}, c_{p}, a_{1}, T_{1}$ and a second medium $0<x<a$ and parameters $k_{2}, \rho_{2}, c_{2}, a_{2}, T_{2}$. Zero initial temperature $x=-\ell$ maintained at T_{0}, constant and $x=a$ at zero for $t>0$. (Case 4, Fig. 8)

The differential equations to be solved are

$$
\begin{equation*}
\frac{\partial^{2} \mathrm{~T}_{1}}{\partial \mathrm{x}^{2}}-\frac{1}{a_{1}} \frac{\partial \mathrm{~T}_{1}}{\partial \mathrm{t}}=0 \quad-\ell<\mathrm{x}<0, \mathrm{t}>0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial^{2} T_{2}}{\partial x^{2}}-\frac{1}{a_{2}} \frac{\partial T_{2}}{\partial t}=0 \quad-0<x<a, t>0 \tag{2}
\end{equation*}
$$

The boundary conditions there are

$$
\begin{array}{ll}
\mathrm{k}_{1} \frac{\partial \mathrm{~T}_{1}}{\partial \mathrm{x}}=\mathrm{k}_{2} \frac{\partial \mathrm{~T}_{2}}{\partial \mathrm{x}} & , \quad \mathrm{x}=0, \mathrm{t}>0 \\
\mathrm{~T}_{1}=\mathrm{T}_{2} & , \quad \mathrm{x}=0, \mathrm{t}>0 \tag{4}
\end{array}
$$

We apply the Laplace transformation ot (1) and (2), that is, multiply by $\mathrm{e}^{-\mathrm{pt}}$ and integrate with respect to t from . This gives

$$
\int_{0}^{\infty} e^{-p t} \frac{\partial^{2} T_{1}}{\partial x^{2}} d t-\frac{1}{a} \int_{0}^{\infty} e^{-p t} \frac{\sigma T}{\sigma t} d t=0
$$

Since

$$
L\left\{\frac{\sigma T}{\sigma t}\right\}=P L(T)-T_{0}=P \bar{T}-T_{0}
$$

and

$$
\mathbf{L}\left\{\frac{\sigma^{n} T}{\sigma x^{n}}\right\}=\frac{\sigma^{n} \bar{T}}{\sigma x^{n}}
$$

where

$$
\bar{T}=\bar{T}(P)=L \quad(T)=\int_{0}^{\infty} e^{-P t} T d t
$$

this gives

$$
\frac{d^{2} \bar{T}_{1}}{d x^{2}}-\frac{P}{a} \bar{T}_{1}=-\frac{1}{a} T_{0}
$$

Since initial temperature $T_{0}=0$

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \overline{\mathrm{~T}}_{1}}{\mathrm{~d} \mathrm{x}^{2}}-\mathrm{q}_{1}^{2} \overline{\mathrm{~T}}_{1}=0 \quad-\ell<\mathrm{x}<0 \tag{5}
\end{equation*}
$$

and similarly, Eq. (2) gives

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \overline{\mathrm{~T}}_{2}}{\mathrm{~d} \mathrm{x}^{2}}-\mathrm{q}_{2}^{2} \overline{\mathrm{~T}}_{2}=0 \quad 0<\mathrm{x}<\mathrm{a} \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
& q_{1}=\sqrt{\frac{p}{a_{1}}} \\
& q_{2}=\sqrt{\frac{p}{a_{2}}} \tag{7}
\end{align*}
$$

These have to be solved with

$$
\begin{align*}
& \mathrm{k}_{1} \frac{\mathrm{~d} \overline{\mathrm{~T}}_{1}}{\mathrm{dt}}=\mathrm{k}_{2} \frac{\mathrm{~d} \overline{\mathrm{~T}}_{2}}{\mathrm{dx}}, \quad \overline{\mathrm{~T}}_{1}=\overline{\mathrm{T}}_{2}, \quad \text { at } \mathrm{x}=0 \tag{8}\\
& \overline{\mathrm{~T}}_{1}=\frac{\text { H. }}{\mathrm{P}}, \quad \mathrm{x}=-\ell \tag{9}\\
& \overline{\mathrm{T}}_{2}=0 \quad, \quad x=a \tag{10}
\end{align*}
$$

A solution of (5) which satisfies (9) is

$$
\overline{\mathrm{T}}_{1}=\frac{\text { (H) }}{\overline{\mathrm{P}}} \cosh : \mathrm{q}_{1}(\ell+\mathrm{x})+\mathrm{A} \sinh : \mathrm{q}_{1}(\ell+\mathrm{x})
$$

and a solution of (6) which satisfies (10) is

$$
\bar{T}_{2}=B \sinh \cdot q_{2}(a-x)
$$

The unknowns A and B are found from (8)

$$
\begin{aligned}
& \left.k_{1} \frac{d \bar{T}_{1}}{d x}\right|_{x=0}=\frac{k_{1} q_{1}(H)}{P} \sin h q_{1} \ell+A q_{1} k_{1} \cos h q_{1} \ell \\
& \left.k_{2} \frac{d \bar{T}_{2}}{d x}\right|_{x=0}=-B q_{2} k_{2} \cos h q_{2} a
\end{aligned}
$$

$$
-A q_{1} k_{1} \cos h q_{1} \ell-B q_{2} k_{2} \cos h q_{2} a=\frac{k_{1} q_{1}(H)}{P} \sin h q_{1} \ell
$$

and

$$
\begin{align*}
& -A \sinh q_{1} l+B \sin h q_{2} a=\frac{1}{P} \cos h q_{1} \ell \tag{H}\\
& =\frac{\frac{\mathbf{k}_{1} \mathrm{q}_{1} \text { (H) }}{\mathrm{P}} \sinh \mathrm{q}_{1} \ell \sin h \mathrm{q}_{2} a+\frac{\mathrm{q}_{2} \text { (H) }}{\mathrm{p}} \mathrm{k}_{2} \cos h \mathrm{q}_{1} \ell \cos h \mathrm{q}_{2} a}{-\mathrm{q}_{1} \mathrm{k}_{1} \cos h \mathrm{q}_{1} \ell \sin h \mathrm{q}_{2} a-\mathrm{q}_{2} \mathrm{k}_{2} \sin \mathrm{~h} \mathrm{q}_{1} \ell \cos h \mathrm{q}_{2} a} \\
& =\frac{-\frac{q_{2} \text { (H) }}{P}\left\{\cos q_{1} \ell \cos q_{2} a+\frac{k_{1} q_{1}}{q_{2}} \sin h q_{1} \ell \sin h q_{2} a\right\}}{q_{1} k_{1}\left\{\cos h q_{1} \ell \sin h q_{2} a+\frac{k_{2} q_{2}}{k_{1} q_{1}} \sinh q_{1} \ell \cos h q_{2} a\right\}}
\end{align*}
$$

$$
\begin{aligned}
\bar{T}_{1}= & \frac{(H)}{P} \operatorname{coshq_{1}(\ell +x)} \\
& +\frac{\frac{k_{2} q_{2}(H)}{P} \sinh q_{1}(\ell+x)\left\{\operatorname{coshq_{1}} \ell \cosh q_{2} a+\frac{k_{1} q_{1}}{k_{2} q_{2}} \sin h q_{1} \ell \sin q_{2} a\right\}}{k_{1} q_{1}\left\{\cosh q_{1} \ell \sin h q_{2} a+\frac{k_{2} q_{2}}{k_{1} q_{1}} \sin h q_{1} \ell \cosh q_{2} a\right\}}
\end{aligned}
$$

I

$$
=\frac{\text { (H) }}{\text { (}} \frac{\cos h q_{1} x \sinh q_{2} a-\frac{k_{2} q_{2}}{k_{1} q_{1}} \sinh q_{1} x \cosh q_{2} a}{\cosh q_{1} \ell \sin h q_{2} a+\frac{k_{2} q_{2}}{k_{1} q_{1}} \sin q_{1} \ell \cos h q_{2} a}
$$

and simitarly

$$
\bar{T}_{2}=\frac{(H) \sinh q_{2}(a-x)}{P\left\{\cosh q_{1} \ell \sinh q_{2} a+O \sin h q_{1} \ell \cosh q_{2} a\right\}}
$$

$$
\begin{aligned}
& \begin{array}{l}
-\left|\begin{array}{l}
-q_{1} k_{1} \cosh q_{1} \ell \frac{k_{1} q_{1} H}{P} \sin h q_{1} \ell \\
-\sinh q_{1} \ell \quad \underset{P}{(H)} \cosh q_{1} \ell
\end{array}\right| \\
-q_{1} k_{1}\left\{\cosh q_{1} \ell \sin h q_{2} a+\frac{k_{2} q_{2}}{k_{1} q_{1}} \sin h q_{1} \ell \cosh q_{2} a\right\}
\end{array} \\
& =\frac{\frac{k_{1} q_{1} H}{p}\left\{-\left(\sin q_{1} \ell\right)^{2}+\left(\cosh q_{1} \ell\right)^{2}\right.}{q_{1} k_{1}\left\{\cosh q_{1} \ell \sinh q_{2} a+\frac{k_{2} q_{2}}{k_{1} q_{1}} \sin h q_{1} \ell \cosh q_{2} a\right\}}
\end{aligned}
$$

The solutions obtained from the Inversion Theorem

$$
\begin{aligned}
& T_{1}=\frac{\text { (H) }\left(k_{1} a-k_{2} x\right)}{k_{1} a+k_{2} l}- \\
& 2 H \sum_{m=1}^{\infty} \frac{\left(\cos \beta_{m} x \sin \alpha_{a} \beta_{m}-\sigma \sin \beta_{m} x \cos \alpha_{a} \beta_{m}\right) e^{-a_{1} \beta_{m}^{2} t}}{\beta_{m}\left\{(\ell+\sigma \alpha) \sin \beta_{m} \ell \sin \alpha a \beta_{m}\right.} \\
& \left.-(\sigma \ell+\alpha a) \cos \beta_{m} \ell \cos k a \beta_{m}\right\} \\
& T_{2}=\frac{k_{1} \text { (H) }(a-x)}{k_{1} a+k_{2} l}- \\
& \left.2 \oplus \sum_{m=1}^{\infty} \frac{\sin \alpha \beta_{m}(a-x) e^{-a_{1} \beta_{m}^{2} t}}{\beta_{m}\left\{(l+\sigma \alpha a) \sin \beta_{m} \ell \sin \alpha \beta_{m}-(\sigma l+\alpha a) \cos \beta_{m} \ell \cos \alpha a \beta_{m}\right.}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& \beta_{m}(m=1,2,3, \ldots) \text { are the roots of } \\
& \text { and } \quad \begin{aligned}
& \cos \beta \ell \sin \alpha \beta a+\sigma \sin \beta \ell \cos \alpha \beta a=0 \\
& =\frac{k_{2}}{k_{1}} \alpha \\
\quad \sigma & =\sqrt{\frac{a_{1}}{a_{2}}}
\end{aligned}
\end{aligned}
$$

7. TABLES AND FIGURES

Thermal Conductivity, Specific Heat, Density and Thermal Diffusivity of Various Materials

Material	k	c	ρ	a
	$\left(\mathrm{cal} / \mathrm{sec} . \mathrm{cm}^{2}{ }^{\circ} \mathrm{C}\right.$)	$\left(\mathrm{cal} / \mathrm{gm}{ }^{\circ} \mathrm{C}\right.$)	$\left(\mathrm{gm} / \mathrm{cm}^{3}\right)$	($\mathrm{cm} / \mathrm{sec}$.
(Metal)				
Aluminum	0.484	0.208	2.71	0.86
Cast Iron	0.124	0.10	7.29	0.171

(Non Metal)

Aluminum	0.064	0.28	3.20	0.0714
Asbestos	0.00036	0.25	0.58	0.00248

k : thermal conductivity
c : specific heat
ρ : density
a : thermal diffusivity

TABLE 2 digital solution of the heat equation with 10 CELLS

CASE 1

TABLE 3 dIGITAL SOLUTION OF THE HEAT EQUATION WITH 8 CELLS

CASE 1

Time Station (sec)	$\begin{gathered} T_{1} \\ (x=0.15) \end{gathered}$	$\begin{gathered} \mathrm{T}_{2} \\ (\mathrm{x}=0.30) \\ \hline \end{gathered}$	$\begin{array}{r} T_{3} \\ (x=0.45) \end{array}$	$\begin{gathered} T_{4} \\ (x=0.60) \end{gathered}$
0.05	39.07	69.15	86.45	91.85
0.10	27.22	50.08	65.16	70.41
0.15	20.14	37.20	48.58	52.58
0.20	14.99	27.70	36.19	39.17
0.25	11.16	20.63	26.95	29.17
0.30	8.31	15.36	20.07	21.72
0.35	6.19	11.44	14.95	16.18
0.40	4.61	8.52	11.13	12,05
0.45	3.43	6.34	8.29	8.97
0.50	2.56	4.73	6.17	6.68

Aluminum $\quad a=0.86$

$$
\mathrm{L}=1.20
$$

$$
\Delta x=0.15
$$

CASE 1

$\begin{aligned} & \quad \text { Station } \\ & \text { Time } \\ & (\mathrm{sec}) \\ & \hline \end{aligned}$	$\begin{gathered} T_{1} \\ (x=0.2) \end{gathered}$	$\begin{gathered} T_{2} \\ (x=0.4) \end{gathered}$	$\begin{gathered} T_{3} \\ (x=0.6) \\ \hline \end{gathered}$
0.05	50.41	82.12	91.85
0.10	35.52	61.16	70.41
0.15	26.31	45.54	52.58
0.20	19.59	33.92	39.17
0.25	14.59	25.26	29.17
0.30	10.86	18.81	21.72
0.35	8.09	14.01	16.18
0.40	6.02	10.43	12.05
0.45	4.49	7.77	8.97
0.50	3.34	5.79	6.68
Aluminum	$\begin{aligned} & =0.86 \\ & =1.20 \mathrm{~cm} \\ & =0.20 \end{aligned}$		

TABLE 5 DIGITAL SOLUTION OF THE HEAT EQUATION WITH 4 CELLS

CASE 1

Station Time (sec)	$\begin{gathered} T_{1} \\ (x=0.3) \\ \hline \end{gathered}$	$\begin{gathered} T_{2} \\ (x=0.6) \end{gathered}$
0.05	69.15	91.85
0.10	50.08	70.41
0.15	37.20	52.58
0.20	27.70	39.17
0.25	20.63	29.17
0.30	15.36	21.72
0.35	11.44	16.18
0.40	8.52	12.05
0.45	6.34	8.97
0.50	4.73	6.68

$$
\text { Aluminum } \begin{aligned}
\mathbf{a} & =0.86 \\
\mathrm{~L} & =1.2 \mathrm{~cm} \\
\Delta \mathbf{x} & =0.2
\end{aligned}
$$

CASE 1

Time (sec)	T 1	T 2	T3	T4	T_{5}	T6
0.05	26.67	50.41	69.15	82.12	89.48	91.85
0.10	18.43	35.52	50.08	61.16	68.06	70.41
0.15	13.62	26.31	37.20	45.55	50.79	52.58
0.20	10.14	19.59	27.70	33.92	37.83	39.17
0.25	7.55	14.59	20.63	25.26	28.18	29.17
0.30	5.62	10.86	15.36	18.81	20.98	21.72
0.35	4.19	8.09	11.44	14.01	15.62	16.18
0.40	3.12	6.03	8.52	10.43	11.64	12.05
0.45	2.32	4.49	6.35	7.77	8.67	8.97
0.50	1.73	3.34	4.73	5.79	6.46	6.68

Aluminum $\quad a=0.86$
$\mathrm{L}=1.2 \mathrm{~cm}$ $\Delta x=0.1$

TABLE 7 DIGITAL SOLUTION OF THE hEAT EQUATION WITH 12 CELLS

CASE 1

Station Time (sec)	T_{1}	T_{2}	T3	T_{4}	T_{5}	T_{6}
0.1	41.13	72.05	89.52	98.07	99.30	99.76
0.2	29.78	55.54	74.81	87.23	93.67	95.64
0.4	21.06	40.46	56.78	69.00	76.52	79.05
0.6	16.37	31.59	44.62	54.58	60.82	62.95
0.8	12.91	24.93	35.26	43.18	48.15	49.85
1.0	10.21	19.72	27.89	34.15	38.09	39.44
1.2	8.07	15.60	22.06	27.02	30.13	31.20
1.4	6.39	12.34	17.45	21.37	23.84	24.68
1.6	5.05	9.76	13.80	16.91	18.86	19.52
1.8	4.00	7.72	10.92	13.37	14.92	15.44
2.0	3.16	6.11	8.64	10.58	11.80	12.22

Cast Iron

$$
\begin{aligned}
\mathbf{a} & =0.171 \\
\mathbf{L} & =1.2 \mathrm{~cm} \\
\Delta \mathbf{x} & =0.1
\end{aligned}
$$

TABLE 8 DIGITAL SOLUTION OF THE HEAT EQUATION WITH 12 CELLS

CASE 2

Station Time (sec)	T 1	T 2	T3	T_{4}	T_{5}	T_{6}
0.1	80.95	62.96	46.95	33.48	22.80	14.69
0.2	86.46	73.29	60.87	49.46	39.27	30.41
0.3	88.84	77.88	67.29	57.24	47.83	39.14
0.4	90.11	80.32	70.74	61.45	52.51	43.98
0.5	90.80	81.66	72.64	63.77	55.10	46.66
0.6	91.19	82.41	73.69	65.06	56.54	48.15
0.7	91.40	82.82	74.27	65.78	57.34	48.97
0.8	91.52	83.05	74.60	66.17	57.78	49.43
0.9	91.58	83.18	74.78	66.39	58.03	49.68
1.0	91.62	83.25	74.88	66.51	58.16	49.82

TimeStation (sec) 0.1	$\mathrm{~T}_{7}$		$\mathrm{~T}_{\mathbf{8}}$		T_{9}		$\mathrm{~T}_{10}$

Aluminum
$a=0.86$
$\mathrm{L}=1.2 \mathrm{~cm}$
$\Delta x=0.1 \mathrm{~cm}$

TABLE 9 digital solution of the heat equation with 12 CELLS

GASE 2

Station Time (sec)	$\mathbf{T}_{\mathbf{1}}$		\mathbf{T}_{2}		$\mathbf{T}_{\mathbf{3}}$		$\mathbf{T}_{\mathbf{4}}$	

$\begin{aligned} & \text { Station } \\ & \text { Time } \\ & (\mathrm{sec}) \end{aligned}$	T_{7}	T_{8}	T_{9}	T_{10}	T_{11}
0.2	0	0	0	0	0
0.4	5.84	3.06	1.49	0	0
0.6	12.21	7.70	4.60	2.53	1.11
0.8	17.97	12.39	8.12	4.85	2.25
1.0	22.77	16.51	11.34	7.06	3.38
1.2	26.66	19.92	14.08	8.97	4.35
1.4	29.77	22.69	16.32	10.54	5.16
1.6	32.25	24.90	18.12	11.80	5.82
1.8	34.21	26.65	18.55	12.81	6.34
2.0	35.77	28.05	20.68	13.62	6.75

Cast Iron $a=0.171$
$\mathrm{L}=1.2 \mathrm{~cm}$
$\Delta x=0.1 \mathrm{~cm}$

Fig. 1 (a) TYPICAL SLAB SHOWING (b) DIVISION OF SLAB THICKNESS FOR FINITE-DIFFERENCE APPROXIMATION

Fig. 2 DIVISION OF SLAB THICKNESS (12 CELLS)

Pig. 3 computer circuit for solving the general heat equation

Fig. 4 MODIFIED COMPUTER CIRCUIT FOR SOLVING THE HEAT EQUATION

CASE 1
Fig. 5 CROSS SECTION OF SLAB WITH BOUNDARY CONDITION

$$
T_{0}=T_{n+1}=0 \text { at } x=0, x=L
$$

CASE 2
Fig. 6 CROSS SECTION OF SLAB WITH BOUNDARY CONDITIONS

$$
T_{0}=100^{\circ} \mathrm{C} \text { at } \mathrm{x}=0, \mathrm{~T}_{\mathrm{n}+1}=0 \text { at } \mathrm{x}=\mathrm{L}
$$

CASE 3
Fig. 7 CROSS SECTION OF COMPOSITE SLAB WITH BOUNDARY CONDItIONS

$$
T_{0}=T_{n+1}=0 \text { at } x=0, x=L_{2}
$$

CASE 4
Fig. 8 CROSS SECTION OF COMPOSITE SLAB WITH BOUNDARY CONDITION

$$
T_{0}=100^{\circ} C \text { at } x=0, T_{n+1}=0 \text { at } x=L_{2}
$$

Fig. 10 analog solutions of the heat equation with 12 Cells (case 1)

Fig. 11 analog solutions of the heat equation with 12 Cells (CaSE 1)

Fig. 12 ANALOG SOLUTIONS OF THE HEAT EQUATION WITH 12 CELLS (CASE 1)

Fig. 13 ANALOG SOLUTIONS OF THE HEAT EQUATION WITH 12 CELLS (CASE 2)

Fig. 14 analog solutions of the heat equation with 12 cells (Gase 2)

Fig. 15 analog solutions of the heat equation with 12 cells (Case 2)

Fig. 16 analog solutions of the heat equation with 12 cells (Case 2)

Fig. 17 analog solutions of the heat equation with 12 cells (Case 3)

Fig. 18 analog solutions of the heat equation with 12 cells (Case 3)

Fig. 19 ANALOG SOLUTIONS OF THE HEAT EQUATION WITH 12 CELLS (CASE 3)

Fig. 21 analog solutions of the heat equation with 12 cells (Case 4)

Fig. 22 analog solutions of the heat equation with 12 cells (CASE 4)

Fig. 23 analog solutions of the heat equation with 12 Cells (case 4)

Fig. 24 ANALOG SOLUTIONS OF THE HEAT EQUATION WITH 12 CELLS (CASE 4)

Fig. 25 ANALOG SOLUTIONS OF THE HEAT EQUATION WITH 12 CELLS (CASE 1)

Fig. 26 ANALOG SOLUTIONS OF THE HEAT EQUATION WITH 10 CELLS (CASE 1)

Fig. 27 aralog solutions of the heat equation with 8. Cells (GASE 1)

Fig. 28 ANALOG SOLUTIONS OF THE HEAT EQUATION WITH 6 CELLS (CASE 1)

Fig. 29 ANALOG SOLUTIONS OF THE HEAT EQUATION WITH 4 CELLS (CASE 1)

Fig. 30 UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE ALUMINUM OXIDE AND ALUMINUM COMPOSITE SLAB (CASE 3)

Fig. 31 UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE ALUMINUM OXIDR AND CAST IRON COMPOSITE SLȦB (CASE 3)

Fig. 32 UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE ASBESTOS AND aluminum composite siab (case 3)

Fig. 33 UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE ASBESTOS AND CAST IRON COMPOSITE SLAB (CASE 3)

Fig. 34 UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE ALUMINUM SLAB (CASE 2)

Fig. 35 UNSTRADY-STATE TEMPRRATURE DISTRIBUTION OF THE ALUMINUM OXIDE (CASE 2)

Fig. 36 UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE CAST IRON (CASE 2)

Fig. 37 UNSTEADY-STATE TEMPERATURE DISTRIbUTION OF THE ASBESTOS (CASE 2)

Fig. 38 UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE ALUMINUM OXIDE AND ALUMINUM COMPOSITE SLAB (CASE 4)

Fig. 89 UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE ALUMINUM OXIDR AND CAST IRON COMPOSITE SIAB (CASE 4)

Fig. 40 UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE ASBESTOS AND ALUMINUM COMPOSITE SLAB (CASE 4)

Fig. 41 UNSTEADY-STATE TEMPERATURE DISTRIBUTION OF THE ASBESTOS AND CAST IRON COMPOSITE SLAB (CASE 4)

Fig. 42 UnSteady-State temperature distribution of the aluminum slab WITH Different number of cells

\therefore 。
Fig. 42 continued

Fig. 43 PERCENTAGE ERROR AS A FUNCTION OF THE NUMBER OF CELLS

8. REFERENCES

1. Carslaw, H. S. and Jaeger, J. C., "Conduction of Heat in Solids", John Wiley \& Sons, Inc., 1949
2. Hildebrand, Francis B., "Advanced Calculus for Applications" Prentice-Ha 11, Inc., Fourth printing, 1964
3. Kreith, Frank, "Principles of Heat Transfer", International Textbook Company, 1958
4. Ingersol1, Leonard R, Zobel, Otto J. and Ingersoll, Alfred C., "Heat Conduction", The University of Wisconsin Press, 1954
5. Jackson, Alberto S., "Analog Computation", McGraw-Hill Book Company, 1960
6. Howe, Robert M. and Haneman, Vincent S., Jr., "The Solution of Partial Differential Equations by Difference Methods Using the Electronic Differential Analyzer", Proceedings of the I. R. E., pp. 1947-1508, 1953
7. Hermann, P. J., Pake, F. A. and Galsener, F. E., "Application of Geda Analog Computers to Study Temperature Transients in a Plastic Windshield", Proceedings Math. Simulation Conference, Dallas, Texas, January 19-21, 1956, pp. 41-46
8. Fifer, Stanley, "Analogue Computation", Vol. III, McGrawHill Book Company, 1961
9. Copple, C., Hartree, D. R., Porter, A. and Tyson H., "The Evaluation of Transient Temperature Distributions in a Dielectric Alternating Field", The Journal of the I. E. E., Vol. 85, pp. 56-66, 1939

9. VITA

Koichi Ogawa was born on May 17, 1935 in Tokyo, Japan, the first child of Toyomatsn and Chika Ogawa. He attended primary and secondary schools in Tokyo, Japan and graduated from Yasuda Gakuen High School in 1955. He then worked as an electrical technician in the Faculty of Engineering University of Tokyo from 1955 to 1961. He enrolled at Waseda University in Tokyo in 1960, receiving his Bachelor of Science Degree in Electrical Engineering in April, 1963.

From 1961 he worked part time as a Research Assistant in the National Aerospace Laboratory in Tokyo. During his undergraduate years he passed the examination of Government Man in 1961.

In September, 1963 he came to Lehigh as a Research Assistant in Civil Engineering to pursue graduate work in Electrical Engineering.

