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ABSTRACT 

Partial differential equations can be approximated with systems 

of simultaneous ordinary differential equations by replacing one or 

more of the partial derivatives by appropriate finite differences. 

The resulting ordinary differential equations can sometimes be solved 

directly by an analog computer. 

Simulation of the partial differential equation of heat con­

duction with the PACE TR-10 analog computer and theoretical solution 

of the problem are described and compared. When the slab of material 
0 at temperature T C is suddenly iounersed into an ice-water bath at 0 

o° C the slab temperature varies with distance x from the face of the 

slab. Simulation is shown to be of more practical use than analytical 

solution for examining the heat conduction. 
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1. INTRODUCTION 

1.1 Purpose 

The prime objectives of this investigation are the study of the 

heat equation for a slab with or without a thermal insulator coating 

.when exposed to heat and the simulation of the equation using the finite 

difference method by means of an analog computer. The accuracy of the 

analog solution will be compared to a theoretical solution. 

When a slab (coated with or without a thermal insulator) is 

exposed to heat, the slab temperature change is a function of time, 

distance from the surface, and the properties of the surface coating. 

1 Since the analytical solution of the coated slab is tedious, an analog 

simulation is proposed in this thesis. 

1. 2 Approach 

The analog computer is an important tool for engineering design. 

Since an analog computer integrates analysis with respect to only one 

variable, namely time, it is fundamentally limited to the solution of 

ordinary differential equations. To solve a partial differential 

equation, it is necessary first to convert the equation to one or more 

ordinary differential equations. If the partial differential equation 
'(, • r 

is linear, this can often be done by separation of variables, which 
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2 3 4 results in ordinary differential equations of the eigenvalue type.' ' 

The above method of separating variables and obtaining a series 

type of solution can be carried out fairly efficiently on an analog 

computer. 

Simulation can be done by replacing some of the partial de­

rivatives by finite differences in order to convert the original partial 

3 

. ' 5 6 7 8 
differential equations into a system of ordinary differential equations! ' ' 
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2. PREPARATION AND PROCEDURE 

2.1 Basic Heat Equation 

The equation of heat flow through a continuous medium involves 

second order special-derivatives and only first order time derivatives. 

The basic heat equation in the x direction is given by 

fc ?T - 0 (i !JJ + f (2 .1) -~t ~x 
where 

c = specific heat 

f= density 

k - thermal conductivity -
f = heat generated in the material 

0 Tm T t) temperature at position x and time tin C (x, 
t == time 

The heat flux F across a unit surface normal to the x direction 

is defined by the equation 

F•-k:; (2.2) 

In this problem no heat was generated, therefore 

f • 0 (2. 3) 

For analog solution the partial differential equation (2.1) must be 

reduced to a series of ordinary differential equations with constant 

coefficients. This reduction is ordinarily made by using a finite 

9 4lfference approximation for all derivatives with respect to x. 

,, ' 
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2.2 Finite-Difference Approximation 

The equation becomes 

cP 'c) T (x,t) = 1, 
J 1't 1'x 

where 

the heat capacity C • cf 

b T (x 1 t) J 
1r X 

5 

(2.4) 

Instead of measuring the temperature Tat all distance x we 

can measure T only at certain stations along x (Fig. 1). Let T
1 

be the 

value of Tat the first x station (x = x1), T
2 

be the value of Tat the 

second x station (x = x2) and TN be the value of Tat the nth x station 

(x = ~). Further, let the distance between stations be a constant 6x. 

Thus T (x,t) is replaced by T1 (t), T2 (t), etc. and we can approximate 

the heat flux FN _ 112 at the N - 1/2 station as 

. - ~ T - T 
- 1/2 N Ax N - 1 (2.5) 

In fact the limit of (2.5) as llx - 0 is just the definition of the 

partial ·x derivative at that point, In the same way we can approximate 

the gradient of the flux at the nth station as 

(2.6) 

The equation of heat~flow balance at the nth station can now be written. 

Thus 
d TN 

C • k__ 
N d t -'N + 1/2 (2. 7) 



. +, 

6 

Where~ is the heat capacity at the nth station. It is now clear that 

d TN/d tis a ordinary derivative and not a partial derivative, since 

by definition xis fixed for T • TN • 

2.3 The Pace TR-10 Analog Computer 

The PACE TR-10 Analog Computer is a fully transistorized, 

general purpose analog computer. Solid state circuit elements are 

used throughout the computer to eliminate vacuum tubes, thereby achieving 
-·- 1\ 

' .. 
a compact design which requires very little power. It is able to 

operate stably and accurately in normal office surroundings. Reliable 

with simplicity in functional design, it is easy to use and can be 

a powerful tool for the individual engineer in the rapid solution of 

scientific and engineering problems. 

To solve mathematical equations, one interconnects the com­

puting components -- the building blocks of the electrical model. These 

blocks perform the following operations on variable d - c voltages: 

multiplication by a constant; algebraic sununation; integration with 

respect to time; nrultiplication of two variables; generation of known 

functions of a variable; combinations of these operations. Each com­

ponent has input and output terminations which are readily accessible 

at the front face of the computer for interconnection by plugs and 

patch cords. 

Below the patching area lies the monitoring and control panel. 

This contains features which permit (a) switching the computer on and , 
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off, (b) controlling the operational mode of the computer, (c) setting 

the values of problem parameters to tru-place accuracy, (d) reading 

out stationary values of problem variables, and (e) periodically 

adjusting the balance of the d - c amplifiers to ensure their accurate 

operation. 

The front face of the computer is divided into three five-

7 

inch high rows of computing components and their corresponding inter­

connecting terminations. This will be referred to as the "patch panel". 

In the top row there are attenuators for multiplying voltages by 

positive constants less than unity. In the bottom row there are high­

gain d - c amplifiers unconnnitted in their form of operation and 

capable of performing many tasks. In the middle row there is an 

assortment of components and terminations - integrator networks for 

use with the d - c amplifiers, fixed and variable function generators, 

quarter-square multipliers, comparators, and terminations for additional 

control panels, mounted attenuators, function switches, the reference 

voltages of ±10 volts, and ground potential. 

2.4 Simulation of H@at Equation of Slab 

For purposes of illustration, let us assume the following 

boundary conditions for our conducting slab: at x = 0 the temperature 

remains fixed at T and at x = L = ~x (N + 1/2) the heat flow is zero. 
0 

The space between x = 0 and x =Lis therefore broken into N cells. 

Assume the initial condition, which is the initial temperature dis­

tribution in the slab, is such that 

T 
1 

(o) = 9, - - - - , TN (o) • \ 

.. 

.- . ' .... __.... 



'lhus we have 

1. Zero temperature at x • 0 • • T • 0 
0 

2. Zero heat flux at x a L • (N + 1/2) 6x : FN + 
112 

• 0 

3. T1 = Ql' T2 = g2 - - - - TN= QN at t = 0 

Therefore we can write the complete set of differential equations for 

N cells: 

(2.8) 

For equation (2.7) 

(2.9) 

The computer arrangement for solving the difference equations is shown 

in Fig. 3. Note that the outputs of each successive row of amplifiers 

are reversed. Thus the temperature T and heat flux F across the slab 

can be observed directly as a function of time. 

8 

\ 

, 
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Pig. 3 is simpler despite the increased number of amplifiers. 3 

To vary the conductivity k or heat capacity Cat any station, only the 

appropriate resistors are varied. Changes in initial temperature 

distribution across the slab are made by setting the T1 , T2 , - - - -

TN voltages to the desired values • 

./ 

, 
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3. ANALOG SOLUTION FOR SLAB WITH DIFFERENT MATERIAL 

3.1 Introduction 

Thermal conductivity k, specific heat c, and density pare 

functions of the x coordinate. When a slab is composed of one type 

of material then~_ 112 and CN Eq. (2.9) and Fig. 2 are; 

= - - - - - k__ • k 
-~ - 1/2 

I ' (3.1) 

C = C = - - - - - -1 2 

where 

C • Pc 

We are only interested in temperature Tin different positions of the 

2 slab; therefore, we can combine the constants CN and~_ 
112

/(~x) ; 

and the new constant is called thermal diffusivity a. Thus we have 

k k a•--=-
Pc C (3.2) 

Therefore equation (2.9) becomes 

= 

., (3.3) 

10 

•\ 
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d TN a -- ----
d t (6x) 2 

If the number of cells are 12 then equation (3.3) will be given by 

11 ordinary differential equations. The division of slab thickness 

and the computer arrangement for the 11 ordinary differential equations 

are shown in Figs. 3 and 4. 

3.2 Analog Computer Setup 

The following slab materials and their combinations of 

aluminum, cast iron, aluminum oxide, and asbestos were tested. These 

values of the thermal conductivity. constants are shown in Table 1. 

We have the following four cases for analog solutions. 

Case 1 

0 The slab having a temperature of 100 C is suddenly immersed 

in 0° C water (Fig. 5). 

0 Initial condition of the analog computer is 100 C. We have 
I~ 

to choose voltages that depend on thermal diffusivity a and the 

boundary conditions fixed at x = 0 and x = L = 6x N. 

The space between x • 0 and x =Lis therefore broken into 

R + 1 cells. In our problems, it was broken into 12 cells with 

--.~--1;,.•L -.. ~ 
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6x • 0.1 cm. 

Case 2 

, ,I 

Therefore x becomes x = L • 1.2 cm and a 
(6x) 2 

a =--• 
0.01 

One face of the slab having initial temperature of o° C is 
suddenly heated to 100° C with a side of the face at o° C (Fig. 6) 

Case 3 

0 The composite slab having initial temperature of 100 C is 
suddenly innnersed into o° C ice-water (Fig. 7). Here we considered 
one material from x = 0 to x = 0.55 cm and a second material from 

x = 0.55 cm to x = 1.2 cm. al The two materials have constants of ------
(6x)2 az 

and 2 , respectively, where 
(6x) 

a 1 is thermal diffusivity of one 

material from x = 0 to x = 0.55 cm, and a2 is thermal diffusivity of 

another material from x = 0.55 cm to x = 1.2 cm. 

Case 4 

,•le_ On f f h i 1 b f Oo C is e ace o t e compos te s a at a temperature o 
0 suddenly heated to 100 C, with the other side of the face remaining 

0 at O C (Fig. 8). 

3.3 Analog Solutions 

~11 dimensions are expressed in c.g.s. Slab thickness Lis 
1.2 cm, ~xis 0.1 cm and the number of cells is 12. For values of 

3 4 thermal conductivity constants used, see Table 1. ' 

'·I 

i1 I 
;,, 



An x - y recorder was used to plot the solutions. 

Case 1 

Analog solutions for the slab with different materials 

(aluminum, cast iron, aluminum oxide, and asbestos) are shown in Figs. 

9, 10, 11 and 12. In this case temperature change shows symmetry 

in the right and left sides from the center of the slab. Hence, 

measurements at only six stations are actually required for this 

particular problem and the figures show only half of the 12 stations. 

Case 2 

Analog solutions are shown in Figs. 13, 14, 15 and 16. 

Temperature changes in 11 stations are shown. 

Case 3 ' J 

Analog solutions are shown in Figs. 17, 18, 19 and 20. 

this case temperature change shows no synnnetry with respect to the 

In 

center of the slab since the slab is composite. Measurements in 11 

stations are shown. 

Case 4 

Analog solutions are shown in Figs. 21, 22, 23 and 24. 

Temperature change of 11 stations is shown. 

lrom the analog solutions of Case 3 we can observe the 

13 

unsteady state temperature distribution of composite slab against the 

distance for the time parameter. These graphs are shown in Figs. 30 to 32. 

' i : 

~.~. 
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From Cases 2 and 4 we can observe the unsteady-state temperature 

distribution of single and composite slab. These are shown in Figs. 

33 to 41. 

3.4 Analog Solutions with 4, 61 8, 10 and 12 Cells 

The accuracy of the finite-difference·approximation depends 

on the number of cells. Let us now examine the error of the analog 

solution for the problem of Case 1. The slab material was aluminum 

and the problem was solved with 4, 6, 8, 10 and 12 cells. These 

analog solutions are shown in Figs. 25 to 29. Digital solutions are 

also plotted on the same graphs. From these graphs we can observe 

the temperature distribution against the distance for the time 

parameter. These graphs are shown in Fig. 42. 

Referring to these figures, consider the center of the slab 

14 

at a time t. We can now plot the percentage error in the temperature 

as a function of the number of cells. This is shown in Fig. 43. It 

follows that the accuracy of the analog solution improves with the 

number of cells. There is obviously a limit in the number of 

amplifiers available. Thirty-four amplifiers were used in this problem 

for 12 cells. 

i· 
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4. THEORETICAL SOLUTION OF HEAT TRANSFER EQUATION 

4.1 Introduction 

In order to evaluate the accuracy of the differenc technique, 

it is worth-while to solve the partial differential equations of heat 

fl b i · bl 2 ' 3 ,4 · h L 1 h d l F ow y separat ng var1a es or using t e apace met o. or 

simplicity we will solve the problem of the temperature distribution. 

Assume that the medium has constant conductivity k and con­

stant specific heat capacity C. ~lso assume that there are no .heat 

sources within the medium. Using the complete solutions we will show 

the numerical results obtained by means of the digital computer for 

Case 1 and Case 2. 

4.2 Case 1, Fig. 5 r, .. 

The region O < x < L 

Ends kept at zero temperature 

Initial temperature 100° C 

1 l T = - O<x<L 
a l, t - - (4.1) 

The thermal diffusivity a which appears in all unsteady-heat-conduction 

problems is a property of the material. Qualitatively we observe that, 

in a material that combines a low thermal conductivity with a large 

•,I 

.. -'L.,.- "-· :.---

' 

I 
1, 

( 
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specific heat per unit v~lume, the rate of temperature change will 

be slower than in a material that possesses a large thermal dif­

fusivity. Since the temperature T must be a function of time t and 

distance x, we begin by assuming a product solution, i.e., nrultiplying 

one function, which only depends on time, @ (t), by another function 

which only depends on distance X(x). 

The nature of these functions is not known at this point, 

but will be determined as we proceed. 

Thus, if 

T (x,t) = X(x) @ t (4.2) 

it follows that 

1 /ff\ a2 X 
a\:.:/= ® 2 (4.3) -

a at ax 

We can now separate the variables, i.e., bring all functions which 

depend on x to one side of the equation and all functions which depend 

on t to the other. 

By dividing both sides of Eq. (4.3) by X @, we obtain 

1 a@ 1 2 
X a . - (4.4) 

a@ a t X 2 a X 

Now observe that the left-hand side is a function oft only and, there­

fore, is independent of x. Similarly the right-hand side is a function 

of x only and will not change as t varies. Since neither side can 

16 

change as t and x vary, both sides are equal to a constant which we shall 

callµ_ Hence, we have two ordinary and linear differential equations 

with constant coefficients. 

... ' 

t 



.·, 

,. 
l. 

-r'" . 
; 

/ 

and 

d@(t)=aµ@(t) 
d t 

d2 X -- = µ, X (x) 
dx2 

The general solution for Eq. (4.5) is 
' ~t 

17 

(4.5) 

(4.6) 

(4. 7) 

Ifµ, were a positive number, the temperature of the slab would become 

infinitely high as t increased which is contrary to physical conditions. 

Therefore, we must reject the possibility that~> 0. Ifµ were zero, 

then we would find that the function expressing the time dependence of 

the temperature in the slab would be a constant. Again, this possibility 

must be rejected because it would not be consistent with the physical 

conditions of the problem. We therefore conclude thatµ must be a 

negative number and for convenience we let~= - A
2 

• 
n 

The time-dependent function, then becomes 

@ -a "A.
2 

t H (t) = c
1 e n (4.8) 

The general solution of Eq. (4.6) can be written in terms of a 

sinusoidal function. Since this is a second-order equation, there must 

be two constant~ of integration in the solution. The solution to the 

equation 

'tJ2 X (t) 2 
2 = - A. o X (t) 

t) X 

is usually written as 

X (x) = c2 cos \ x + c3 sin \ x (4.9) 

'I 

' .... 

l 
i ,, 

II 
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Returning to the original product solution as expressed by 

Eq. (4.2), the temperature, as a function of distance and time in the 

slab, is given by 

T (x, t) X2 t = c1 e - 8 n cc2 cos \x + c3 sin \x) 

18 

- a X2 t 
(4.10) 

== e n <~: cos An.x + Bn sin \.x) 

where 

Both~ and B_ being const~nts, they must be evaluated from the h n 

boundary and initial conditions. In addition we must also determine 

the value of the constant A in order to complete the solution. 'nle 

initial and boundary conditions, stated in symbolic form, are: 

At· t = 0, T (x,O) = T0 = 100° C (initial condition) 

( 0 < x < L) - -

At x = 0 and x = L 

T (O,t) = 0° C 

T (L,t) = 0° C 
(boundary condition) 

(4 .11) 

(4 .12) 

(4 .13) 

Substitute boundary conditions of Eq. (4.12) into Eq. (4.10), then 

we get for x = 0 
2 

A nt (A,, cos O + Bn sin 0) 
• 

2 
a A n·t 

So A • 0 

:.•, 
·,' r 
f:i 

F 
f 

I 
1 
' 



. . 
The solution for T (x,t) becomes 

2 
-a A t sin AX 

T (x,t) = B e n 
n 

For x = L this becomes 

-a A2t B sin AL 
0 = e n 

'' '-If' 

I' 

In order to satisfy the equation, sin A L nnJSt be equal to 
n 

zero, so that 

and 

A L = n TT 
n 

A 
n 

n n 
= --L 

The general solution is the sum of the solutions corresponding to each 

characteristic value, or 
2 2 

19 

T (x, t) = l e -a n L; t n TT 
Bn sin L x (4.14) 

n=l 

The constant B is evaluated by substituting the initial condition 
n 

0 T (x,O) = 100 C into Eq. (4.14). We have 

T (x,O) = 100° C = ~ B
0 

sin nLTI x 
n=l 

n n 
It can be shown that the characteristic functions, sin L x, are 

orthogonal between x = 0 and x =Land therefore 

L 
n TIX 

sin --­L 
m 1T X 

sin L = 0 if m :I n 

:I O if m = n 

\ 

; .... , 

(4 .15) 

(4.16) 



'J' 

(, 
I, 
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To.obtain a particular value of B, we multiply both sides of 
n 

Eq. (4.15) by sin m ~ x and integrate between O and L. In accordance 

with Eq. (4.16) all terms on the right hand side disappear except the 

one involving the square of the characteristic function, sin nLTI x, 

and we obtain 

L L 

20 

n n 
100 (sin L x) d x = Bn 

n TT 2 
(sin L x) d x (4.17) 

0 0 

The left hand side of Eq. (4.17) becomes 

-lOO L (cos n TT - 1) 
n TT 

= lOO L (1 - cos n n) 
n TT 

The right hand side of Eq. (4.17) reduces to 

B 
n 

Hence 

and 

L 

0 

n TT 2 
(sin L x) d X = B 

n 

L 

0 

1 - cos 
2n n 

L X 
-------d X 

2 

L 
B 

n -2 
L 2n n 

x - 2n n sin L x = Bn L -0 2 

lOO L (1 - cos n n) 
n n 

L 
= - B 2 n 

B = 200 (1 - cos n n) 
n n TT 

(n • 1, 2, 3, •••• ) 

= 

(4.18) 

.... ·; . .. . 

,, 



For n even (n = 2, 4, 6 

n odd (n = 1, 3, 5 •••• ) 

.... ) ' 

1 - cos n 1T = 2 

and hence 
r . 

B is clearly zero, and for 
n 

21 

400 
B = -­

n n TT 
for n • 1, 3 , 5 , • • • (4.19) 

Finally we obtain the complete solution, 

T (x,t) = 4~o 
00 

I l i nTT 
- S n X 
n L 

• 

2 2 
- a n TT t 

e L2 (4. 20) 

"~ I 
C": o"'1) 

4 . 3 Case 2 , Fig • 6 

The region O < x < L 

Ed k 100° C and 0° C n s ept at temperatures 

Initial temperature zero 

_ 1 l T - -a 
(4.1) 

a t 
The slab is initially at zero temperature 

TO = T (x,O) = 0 (4.2) 

and fort> 0, the end x =Lis kept at zero temperature, while the 

temperature of the end x = 0 is varied in a prescribed way with time. 

T (O,t) = 100° C, T (L, t) = 0 (4.3) 

The temperature distribution throughout the slab is required as a 

function of x and t. The temperature distribution is expressed as 

the sum of two distributions, one of which is to represent the limiting 

steady-state distribution (independent oft) and the other is to 



I, 

'• 

represent the transient distribution (which must then approach zero 

as t -+o0). 

T (x,t) = T
8 

(x) + TT (x,t) (4.4) 

The function T (x) must be a linear function of x datisfying 
s 

T (O,t) = 100° C , T (L, t) = 0° C 

and hence is of the form 

T (x) = 100 - 100 ! 
s L (4.5) 

and TT (x,t) is a particular solution of (4.1). The function TT must 

be determined in such a way that it vanishes when t ~ 00 

TT (x, o0) = 0 (4.6) 

and so that the sum Ts+ TT satisfies the initial condition (4.2). 

Also, since Ts (x) satisfies (4.3) it follows that TT must vanish at 

the ends x = 0 and x = L for all positive values oft. 

TT (O,t) = TT (L,t) = 0 (4.7) 

22 

Thus the transient distribution satisfies the homogeneous end conditions. 

Product solutions of (4.1) satisfying (4.6) and (4.7) are 

obtained in the form similar to that of Case 1. 
2 2 

- an n 
2 t (n • 1 , 2 , •••• ) 

L 

'l'h.us, combining (4.5) and a superposition of solutions of this type, 

the required function T (x,t) may be assumed in the form 

.--:..,.. ; 

-,_ ·.-- - ""---- -



!• 

T (x, t) • 100 -

00 

100 ! + \ A 
L L n 

n=l 

n TT X 
sin L e -

.-·:- , .. ··,: 

2 TT2 an 

,--,-:c, h -- -=---~ 
', ••• i_. __ 11' • 
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t (4.8) 

We may verify that (4.8) satisfies the end conditions (4.3), and also 

that this solution approaches the proper steady-state solution as t ~ "'°· 
It remains then to determine the coefficients A in such a way that the 

n 

initial condition (4.2) is satisfied. Hence, 

or 

~ 

T (x,O) = 0 • 100 - 1001 + I An sin n ~ xe -
0

, 

80 

100 ! - 100 •\'A 
L /_J n 

n=l 

n•l 

n T,: X 
sin L 

11 TT X 
Multiplying by sin L and integrating from x = 0 to x • L 

L .L 

(4. 9) 

100 (.! - 1) Sin m U X dx = 
L L 

m1Tx nTTx 
sin L sin L d x 

0 

From this, we obtain 

A = 1 100 
n L 

• - 200 
n TT 

t 

0 

0 

(f - 1) sin n ~ X d X 

(n • 1, 2, 3 .-•. ·• • ·• ••. · .::) . . . ·-

' .. 
. ,-_-.. ~-.-...-,..,~ 'Al"-..-·~-·-

1-,, 



Finally we obtain the solution of Eq. (4.1) with initial and boundary 

conditions (4.2) and (4.3) 

T (x,t) • 100 - 100 r - "° an2 TT2 
200 \ ! sin n TT x e - 11 t 

TT l n L 
n•l 

(n • 1, 2, 3 . . . ) 

'\ I , I • ,~ 
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5 • SUMMARY AND CONCLUSI<lfS 

This thesis is concerned with the simulation of the heat 
equation by an analog computer, and with the accuracy of the solution. 
The general form of analog solutions of the temperature distributions 
of slabs are discussed, both the simple uncoated and also the more 
complex coated slab situations. 

The investigation consists of the following: 

1. Simulation of f '.nite differences of the heat equation. 

2. Analog solutions of the heat equation under different 

initial and boundary conditions for the following slab 

materials: aluminum, cast iron, aluminum-oxide, 

aluminum with asbestos, cast iron with aluminum-oxide, 

and cast iron with asbestos. 

3. Digital solutions of the heat equation and comparison 

with the analog solutions. 

4. Analog solutions for aluminum slab with 4, 6, 8, 10 and 

12 cells to establish accuracy of analog simulations. 

5. The temperature distribution curves of the slabs. 

The following conclusions are drawn: 

The simple and straightforward solutions of the heat 

,quation with the analog computer has been shown. The 

solution of the heat equation shows good agreement with 

that obtained by digital computer solutions based on 

2S 
~. .I 
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separation of variables. 

As far as percent of error is concerned, it is shown 

that if an error of 5% is tolerable, only four cells need 

be used, or that if an accuracy of one percent is required, 

the minimum of ten cells are required. 

26 
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6. APPENDIX 

The methods to get the theoretical solutions used in the 

preceding cases may be said to be immediate consequences and extensions 

of Fouries classical work. An alternative method of dealing with the 

differential equations of applied mathematics follows from the work 

of Heaviside. This method is adapted to the solution of problems in 

conduction of heat. All the solutions previously obtained for heat 

conduction in the unsteady-state can be derived with the Laplace 

Transformation method. Since, however, the advantage of the method 

increases with the complexity of the problem it is reasonable to 

apply it to the most difficult cases, which in this case is the 

composite solid heat conduction. 

Consider the finite slab with one medium - .t < x < 0 and 

with parameters k, P1 , c
1
, a1 , T1 and a second medium O < x < a and 

parameters k2, P2 , c2 , a 2, T2• Zero initial temperature x = - t 
maintained at T0 , constant and x = a at zero fort> O. (Case 4, 

Fig. 8) 

The differential equations to be solved are 

,2 T 
1 -- 0 - ~ < x < O, t > 0 (1) 

.. , ·1 

! 

f. 
! 
r 
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., 

?J2 T 1 'I T2 2 0 0 < X < a, - - = -2 ~x " t a2 

The boundary conditions there are 

, 

, 

X • 0 , t > 0 

x=O t>O , 

28 

t > 0 (2) 

(3) 

(4) 

We apply the Laplace transformation at (1) and (2), that is, multiply 

bye-pt and integrate with respect tot from • This gives 

1 
- -

a 

' 
Since 

PO 

-pt 
e 

a T 
- dt • 0 
a t 

L {~ !} = p L {T) - To .. p T - To 

and 
{ 

n T' n -T a . a 
L a xnf = a xn 

where 
- -T • T (P) = L (T) = 

this gives 

d2 r P 1 
1 -----T =--T 

d x2 a 1 a O 

Since initial temperature T = 0 
0 

-Pt 
e T dt 

-,t < X < 0 (5) 
I { 

- -- 1a¥ieie•-•· -A •~·-:.-

I 

k 
! 

', . 
I 
I 

I 
I . 
I 
i 



and similarly, Eq. (2) gives 

d2 T 
2 2 -

-- - q2 T2 = 0 
d x2 

where 
p 

ql = -
al 

p -q2 - -
a2 

These have to be solved with 

-T • 0 
2 

, 

,. 

- -

X • -,t 

X = a 

A solution of (5) which satisfies (9) is 

o<x<a 

J at X = 0 

and a solution of (6) which satisfies (10) is 

29 

(6) 

(7) 

(8) 

(9) 

(10) 
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The unknowns A and Bare found from (8) 

X • 0 

-
. -

X m 0 

and 

® 
-A sin h q1 t + B sin h q2 a= p cos h q1 t 

® 
- cos p 

A=----------------------

- sin h q1 t sin q2 a 

~l q1® . q2@ 
p sin h q1 t sin h q2 a+ p k2 cos h q1 t cos h q2 a 

•----------------------------
-ql k1 cos h q1 t sin h q2 a - q2 k2 sin h q1 t cos h q2 a 

·-------------------------

. ' 

. --· -·-~--- •-- ~_..,._.,-.;,...,,.~-'-'"·'-'·',..,_·-,--::-, .. -.... ,e-,--f···-~~-.,,-',-- ,>•-:~,~··--•·'--·-
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- sin h q1 t @cos h ql t p 

B == 

kl { cos h q1 t sin h q2 
k2 q2 

• h q 1 .f., cos h q2 a} - q a+ k sin 1 ql 1 

kl q1®{ 2 2 
p - (sin q1 t) + (cos h q1 t) ---------------------------

- ® T1 = p cos h q1 (t + x) 

+ 

) 
' 

® 
= -

and similarly 

@ sin h q2 (a - x) 
-
T2 • P { cos h q1 .t sin h q

2 
a + (} sin h q

1 
.t cos h q2 a } 

• -;.--• ....... --'"<1). 
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The solutions obtained from the Inversion Theorem 

-

OC) 

2 H) (cos Bm x sin a a Bm -

ai=l Bm { (,f,+ cr a)sin Bm t 

k 1@ (a - x) 

T2 • kl a+ k
2 

.t -

2 
0 sin Sm X cos Ct a em) e -al B111_J t 

sin Cl' a Brn 

- (at+ Ct a) cos em t cos k a em} 

2 
-a a t 

sin a am (a - x) e 1 m 

32 

C1 Ci a) sin a t sin O! s - (a t + (X a) cos e t cos O'a am) m m m 

where 

6 ( m • 1, 2, 3 , •.• ) are the roots of m 

cos e t sin a e a + a sin e t cos a f:3 a • 0 

and k2 a• - a 
kl 

a• -

., 
_;,I 

' - -·-,·--·-,-.,.- .,_- .. ---··----------_- .. - .. ··---· . 

I 
~ ,( 

t 

I' ' 
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Material 

(Metal) 

Aluminum 

Cast Iron 

(Non Metal) 

Aluminum 

Asbestos 

,, 

TABLE 1 

Thermal Conductivity, Specific Heat, Density and 
·-· ,--; 

Thermal Diffusivity of Various Materials 

k C 

{cal/ sec. 
2 oC) 0 cm (cal/gm C) 

0.484 

0.124 

0.064 

0.00036 

0.208 

0.10 

0.28 

0.25 

k: thermal conductivity 

c: specific heat 

P : density 

a: thermal diffusivity 

p 

3 (gm/cm) 

2.71 

7.29 

3.20 

0.58 

a 

(cm/ sec.) 

0.86 

0.171 

0.0714 

o. 00248 

34 
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TABLE 2 DIGITAL SOLUTION OF THE HEAT EQ'UATION WITH 10 CELLS 

CASE 1 

Time 
(sec) 

Station 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

Aluminum 

Tl T2 T3 T4 TS 

(x = 0.12) (x = 0.24) (x = 0.36) (x = 0.48) (x = 0.60) 

31.74 

21.99 

16.26 

12.10 

9.01 

.. 6.71 

5.00 

3.72 

2.77 

2.07 

a = O. 86 

58.58 

41.71 

30. 93 

23.02 

17 .15 

12.77 

9.51 

7 .08 

5.27 

J. 93 

L = 1. 2 cm 

~x = 0.12 cm 

: ... ' 

77.62 

57 .20 

42.55 

31.69 

23.60 

17.58 

13. 09 

9.75 

7.26 

5.41 

,·. 

88.42 

67 .04 

50. 01 

37.25 

27.74 

20.66 

15.39 

11.46 

8.53 

6.36 

91.85 

70.41 

52.58 

39.17 

29.17 

21.72 

16.18 

12.05 

8.97 

6.68 

. 35 
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TABLE 3 DIGITAL SOLUTION OF THE HEAT EQUATION WITH 8 CILLS 

CASE 1 

Time 
(sec) 

Station Tl T2 

(x = 0.15) (x = 0.30) 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

39.07 

27.22 

20.14 

14. 99 

11.16 

8.31 

6.19 

4.61 

3.43 

2.56 

Aluminum a = 0. 86 

L = 1.20 

Ax = 0.15 

69.15 

50.08 

37.20 

27.70 

20.63 

15.36 

11.44 

8.52 

6.34 

4.73 

TJ 

(x = 0.45) 

86.45 

65.16 

48.58 

36.19 

26.95 

20.07 

14. 95 

11.13 

8.29 

6.17 

T4 

(x = 0.60) 

91.85 

70.41 

52.58 

39.17 

29.17 

21.72 

16.18 

12. 05 

8.97 

6.68 
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TABLE 4 DIGITAL SOWTION OP THE HEAT EQUATION WITH 6 CELLS 

CASE 1 

Station 
Time 
(sec) 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

Tl T2 

(x • 0.2) (x • 0.4) 

50.41 

35.52 

26. 31 

·19.59 

14.59 

10.86 

8.09 

6. 02 

4.49 

3.34 

82 .12 

61.16 

45.54 

33. 92 

25.26 

18.81 

14. 01 

10.43 

7.17 

5.79 

Aluminum a• 0.86 

L • 1. 20 cm 

Ax • 0. 20 

T3 

(x • 0.6) 

91.85 

70.41 

52.58 

39.17 

29.17 

21. 72 

16.18 

12. 05 

8.97 

6.68 
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TABLE 5 DIGITAL SOLUTION OF THE HEAT EQUATION WITH 4 CELLS 

Time 
(sec) 

Station 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

.. 

Tl 

(x • 0.3) 

69.15 

50.08 

37.20 

27.70 

20.63 

15.36 

11.44 

8.52 

6.34 

4. 73 

Aluminum a• 0.86 

L • 1. 2 cm 

6x • 0. 2 

T2 

(x • 0.6) 

91.85 

70.41 

52.58 

39.17 

29.17 

21.72 

16.18 

12.05 

8.97 

6.68 

· 38 
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TABLE 6 DIGITAL SOLUTION OF THE HEAT EQUATION WITH 12 CELLS 

CASE 1 

Time 
(sec) 

Station 

0.05 

0.10 

0.15 

0.20 

0. 25 

0.30 

0.35 

0.40 

0.45 

0.50 

Aluminum 

26.67 

18.43 

13.62 

10.14 

7.55 

5.62 

4.19 

3.12 

2.32 

1.73 

a• 0.86 

50.41 

35.52 

26.31 

19.59 

14.59 

10.86 

8.09 

6.03 

4.49 

3.34 

L = 1. 2 cm 

flx a 0.1 

69.15 

50.08 

37.20 

27.70 

20.63 

15.36 

11.44 

8.52 

6.35 

4. 73 

82.12 

61.16 

45.55 

33.92 

25.26 

18.81 

14. 01 

10.43 

7.77 

5.79 

89.48 

68.06 

50. 79 

37 .83 

28.18 

20. 98 

15.62 

11.64 

8.67 

6.46 

91.85 

70.41 

52.58 

39.17 

29.17 

21.72 

16.18 

12.05 

8.97 

6.68 
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TABLE 7 DIGITAL SOLUTION OF THE HEAT EQUATION WITH 12 CELLS 

CASE 1 

Station 
Time 
(sec) 

0.1 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

1.6 

1.8 

2.0 

Cast Iron 

Tl 

41.13 

29.78 

21.06 

16.37 

12. 91 

10.21 

8. 07 

6.39 

5.05 

4.00 

3.16 

T2 

72. 05 

55.54 

40.46 

31.59 

24. 93 

19.72 

15.60 

12.34 

9.76 

7.72 

6.11 

a• 0.171 

L = 1. 2 cm 

l:!.x = 0.1 

TJ 

89 .5'2 

74.81 

56.78 

44.62 

35.26 

27.89 

22.06 

17.45 

13.80 

10.92 

8.64 

T4 

98. 07 

87.23 

69.00 

54.58 

43 .18 

34.15 

27. 02 

21.37 

16.91 

13.37 

10.58 

TS 

· 99. 30 

93.67 

76.52 

60.82 

48.15 

38.09 

30.13 

23.84 

18.86 

14. 92 

11.80 

T6 

99.76 

95.64 

79.05 

62.95 

49.85 

39.44 

31.20 

24.68 

19.52 

15.44 

12.22 

. i :~ .. ~-/·-.:c·~······, .. ·-:-·\ 
'-. ' 
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TABLE 8 DIGITAL SOLUTION OF THE HEAT EQUATION WITH 12 CELLS 

CASE 2 

Time 
(sec) 

Time 
(sec) 

Station Tl T2 

0.1 80.95 62.96 

0.2 86.46 73.29 

0.3 88.84 77.88 

0.4 90.11 80.32 

0.5 90.80 81.66 

0.6 91.19 82 .41 

0.7 91.40 82.82 

0.8 91.52 83.05 

0.9 91.58 83.18 

1.0 91.62 83.25 

Station T7 TS 

0.1 9.14 5.36 

0.2 2.29 1.66 

0.3 3.12 2.39 

0.4 3.58 2.81 

0.5 3.84 3.04 

0.6 3.99 3.17 

0.7 4.07 3.24 

0.8 4.11 3.28 

0.9 4.14 3.31 

1.0 4.15 3.32 

Aluminum a• 0.86 

.L = 1. 2 cm 

Az • 0.1 cm 

T· 
3 T4 TS 

46.95 33.48 22.80 

60.87 49.46 39.27 

67.29 57.24 47. 83 

70. 74 61.45 52.51 

72.64 63.77 55.10 

73.69 65.06 56.54 

74.27 65.78 57.34 

74.60 66.17 57.78 

74.78 66.39 58. 03 

74.88 66.51 58.16 

T9 TlO Tll 

2.97 1.52 0.63 

1.14 7.12 3.41 

1.73 1.13 5.54 

2. 07 1.37 6.78 

2.26 1.50 7.47 

2.37 1.57 7. 85 

2.43 1.62 8. 07 

2.46 1.64 8.19 

2.48 1.65 8.25 

2.49 1.66 8.29 

41 

'l6 

14.69 

30.41 

39.14 

43.98 

46.66 

48.15 

48.97 

49.43 
• 

49.68 

49.82 
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TABLE 9 DIG ITAL SOLUTION OF THE HEAT EQUATION WITH 12 CELLS 

CASE 2 - ·• -11 • 

ij 
,_._, 

Station Tl T2 T3 T4 T5 T6 
.,i; 

!·.',:! 

Time .!•. 
b; . 

:t~) (sec) ~i,:~: 
,- <-". • ~,: 
,. 
;,-· 

70.22 44.44 0.2 25.11 12. 26-- 5.59 0 

0.4 78.69 58.87 41. 73 27.94 17.64 10.16 

0.6 82. 53 65.88 50. 78 37.72 26.97 18.48 
.·, 0.8 84.84 70.22 56.62 44.43 33.88 25.07 

;.{:fz 
.,.·:: 
i"i, . 
. ,ij,. 

1.0 86.42 73.22 60. 76 49.33 39.14 30.28 

1.2 87. 57 75.43 63.86 53.05 43.21 34.40 
4. 

1.4 88.45 77. 12. 66.23 55.94 46.39 37.66 

1.6 89. 13 78.44 68.08 58.20 48.90 40.24 

1.8 89.66 79.47 69.53 59.97 50.87 42.28 

2.0 90. 08 80.28 '70. 68 61.37 52.43 43.89 

;;, 

• 

Station T7 TB T. TlO Tll 
.~:, Time 

9 
.{ 
·• 

. -,(sec) 
- --

0.2 0 0 0 0 0 

0.4 5.84 3.06 1.49 0 0 

0.6 12. 21 7. 70 4.60 2.53 1.11 

0.8 17. 97 12. 39 8.12 4.85 2.25 
~. 

1.0 22. 77 16. 51 11.34 7.06 3.38 .1:::. 
,,. 

, .... 
~r ·~ 
~· 1.2 26.66 19.92 14. 08 8.97 4.35 'r 
)< 

1.4 29. 77 22.69 16.32 10.54 5 .16 
. --~ 1.6 32. 25 24. 90 18.12 11.80 5.82 I .i 

I ' 

' 
,-, 

\\~ 1.8 34.21 26.65 18.55 12 .81 6.34 
;,: 

- :1 

2.0 35. 77 28.05 20.68 13.62 6.75 
,·: 
r 
·;·: 

i 

\ 
Cast Iron 0.171 \•· a • 

·' 

\:;1 L = 1.2 cm 

6x • 0.1 cm 
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