Lehigh University
Lehigh Preserve

Theses and Dissertations

1966

A study in the construction of a precision
arithmetic pro ramming system using list
processing tec niques

Andrew J. Kasarda
Lehigh University

Follow this and additional works at: https://preservelehigh.edu/etd
b Part of the Applied Mathematics Commons

Recommended Citation

Kasarda, Andrew J., "A study in the construction of a precision arithmetic programming system using list processing techniques”
(1966). Theses and Dissertations. 3413.
https://preservelehigh.edu/etd/3413

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F3413&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F3413&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F3413&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=preserve.lehigh.edu%2Fetd%2F3413&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/3413?utm_source=preserve.lehigh.edu%2Fetd%2F3413&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

—— — ot et e e

e L
ST

[oo

A STUDY IN THE CONSTRUCTION OF A
PRECISION ARITHMETIC PROGRAMMING SYSTEM

" USING LIST PROCESSING TECHNIQUES

by
Andrew James Ki%grda

\%ﬁlfjﬁ@gg

L £ L R R g gL G B T L e SR T S e DL e e (T g 2 E TR T e P fr i LT T P A T R i .
SR T RS AT g e T b I e -‘Jfrj,"j"-)f" AT ‘!'317."}5'.'\:'}’4'::{"«"1 f:'-‘.‘*‘["l;r.?'-““ll"fh A ',‘»“)J.llr‘"r"-", ;.'x.ykjf.‘.“' g T T e [N
SR N e R B e e e e T S e L e dwnr il e T s R e e T .

)
A
»
&
o
&

A Dissertation

Presented to the Graduate Faculty

of Lehigh University

in candidacy for the Degree. of

e R L P

‘Master of Science
in

~ Mathematics

Lehigh University

1966

L

This thesis is accepted and approved in partial

fulfillment of the requirements for the degree of

Master of Science.

/oy 27, 1J66

\//(dafé)

o, _44ﬂ6'>// R it
ofessor in char;%

S

£ 5. Cotle. for Bitibe.

Head of the Department

ii

%

ACKNOWLEDGEMENTS -

‘The author wishes to express his sincere apprecia-

tion to Professor G. Rayna for his valuable suggestions

and helpful criticisms.

¢ -
i; - TABLE OF CONTENTS
? Acknowledgements «eeeeesescasocnccncons.
f List of Figures et eeetetateeteta e
: 'I. INTRODUCTION +eevvevnennnnse.
é‘ ﬁ Integgfﬁﬁgg;EEEHEEtion e
E Integer AddressSing ..ceeee..
III. THE SUBROUTINESccevecen.
Utility Routines ..eeeceesecss
Input and Output Routines ..
Arithmetic Routines
IV.. DISCUSSION AND CRITICISM
APPENDIX T .vceececocccccccacscncsccccscs
APPENDIX II,..,..Q...........
BIBLIOGRAPHY +vevvvveveeeeennnnnnnnnnns
“ViTA'J;.................;.......;....;¥
_ : B e ,

iv

11
11
23
30
53

58

)

The DATA Array and LOASvArray
Integer Representations

The:Utility Routines

12

The READ Subroutine 28
- J 3 T e

RPN

ABSTRACT

This repor£ describes the construction and imple-
mentation of the Precision Arithmetic Programming System
designed for use on the GE - 225 Data Processing System.
The system was written as a collectibh'of subroutines in

the LEWIZ programming language. Various list processing

‘techniques were applied in the structuring of the data

for the system to provide efficient and dynamic memory

allocation. The Precision Arithmetic Programming System

provides the ability to perform ordinary arithmetic

'Voperations,on integer data of any order of magnitude

without any loss of precision in the final result.

S

o ~~ INTRODUCTION

'E&ﬁputersmhevevé,well established reputatien'fer
their ability to carry out‘%arious arithmetic operations
on numbers With:great speed and eccuracy. Recently,»how-
ever, digital computers have been applied, witf varying
degrees of success, to non-numeric types of data process-
ing such as 1nformatlon retrleval pattern recognltlon,

and de0131on maklng. Although the use of digital com-

‘puters in these areas i§~still_mostly'in'thé'ékperimental

stage, various studies have produced some rather useful

intermediate results. The studies beihg carried on by

‘H. Gelernter,l Je. McCarthy,2 and others dealing with the

processing of lists of non-numeric data have produced

a variety of list processing techniques, as well as list

mpreeessingwpregramming~languagesnlike.LiSPiilPL—V,and_h

SLIP. Although.these‘techniques were used on lists of
non-numeric data, they can also be applied quite easily
to lists of numeric data.

The purpose of this study was to construct a Preci-
sion Arithmeticérogramming Systemt(PAPS)-for 0peteting
exactly on arbitrarily large, but finite, inteéers.

Certain list processing techniques such as push down lists,

‘threaded lists, and stacking proved to be quite useful

in the implementation of the Precision Arithmetic Program-

ming System.

TECHNIQUES

e INTEGER REPRESENTATION

The Precision Arithmetic Programming System was

-written in the LEWIZ programming language for the GE-225

dd

W}\

digitai_coﬁputer. Thé'ba§i87uhi£of”ihfdfmationAin the
GE-225 computer is a word whiChﬁcbnéists of 20 binary
digiﬁs; Two kinds.df.numbérs can be uséd in LEWIZ,
fixed point numbers which require one word of storage
and floating-point numbers which require two words of
storage. The largest fixed point~number that is allow-
able in LEWIZ is in absolute value the integer 262,143
while the largest floétinéipoint number allbwed in‘LEWIZ
76 |

is approximately 10 .

Since the PAPS was designed to perform arithmetic

“on arbitrarily large, finite integers, a system.of

e ———

storing these integers in a manner that would permit

- .~ —each decimal digit to be preserved in contex;Whéd;Lmeg-

each integer into three digit pdrtions and store these -

portions, by place-value, as fixed point numbers. That
'1s, each three digit portion of an integer would require
one word of storage. -

Before going any farther in this discussion, it
will be useful to make.some definitions. In the PAPS,

devised. The convention that was adopted was to factor

SO LR P YA TR TR 1R A C e A sy 1T U P R A
‘\'5??/13&“\?7, ”3‘;;‘&,’,‘,‘4.:&.‘,‘, s e R ENINEGA AT

e wrere s

- -

4

the‘basic storage unit is called'a data cell. A dataT

- cell Can store anyﬁintegéifﬁéVing up to three decimal

digits along with a sign. It requires.one word of

storage. An integer, or number, will refer to an ordered

collection of data Cells,.each containing a three-digit

___portion of some decimal integer. The ordering is by &

place wvalue of the decimal-integer portions. An integer
may consist of just one data cell or it may consist of R
“many data cells. Each data cell canirepresent any

decimal integer whose absolute value is less than or

equal to the integer 999.

-~ INTEGER ADDRESSING T c

In order to be_able to store integers of arbitrary
size, it is necessary to construct an addressing scheme

which will permit storage of decimal integers of various

P I

ulation, while using as little available memory space as

-

- possible.

- The method of addressing that this system uses is)
~similar to addressing schemes used in certain list o T

oo T p'r‘oc‘essbrs . A given data cell is assigned three kinds
J) | |

of addresses: an index, a preceding link, and a next

link. The index address is the actual location of a given

data cell within a single dimension data array called the

o

o / |
DATA array. AThe Ereceding link address is the location

(within the DATA arraY) of the data céll just preceding

‘“the'given data cell. The preceding link is also a member

of a single dimension array called the PLNK array, and

this link has the same index within the PLNK array as the

‘given data cell has w1th1n the DATA array. The third

~the DATA array) of the data cell’ Just folloW1ng the

klnd of address, the next 11nk is the location (within

‘given data cell. The next link belongs to a 51ngle

dimension array called the NLNK array, and its index is
the same as the index of the given data cell. This

addressing scheme is known as a threaded list structure.

All addresses are three dlélt -f'ix’e;drpoint numbers ranging -

in value from 001 to 500, s1nge each of the arrays, the
DATA array, the PLNK array, and NLNK array consist of up
to 500 words of storage. This is actually an upper limit

to the size of the arrays and one may specify the size

--array desired within this range. A fourth array which is

actually part of the DATA array is also required It is

'called the list of avallable space (LOAS) array. This:

array contalns all those indices referen01ng data cells
in the DATA array. Initially, the LOAS array will contain
every index in the DATA array, but as integers are input

to the system, the DATA array fills up and the LOAS array

empties. However, the LOAS array is actually dynamic in

~ the top of the LOAS, the next available address "pops up" -

operation since as integers are no longer needed in the

system, they dre'deleted and their data cell indices are

returned to the LOAS array for use by new integers. The

LOAS array is a pushdown list: *hat is, when an address

is returned to the LOAS, the other addresses are pushed
down one place and the returned address is put at the top

of the LOAS array. Also, as an address is removed from

to the top of the list. In other words, the LOAS array
is a "first-in-last-out" type of list. Figure 1 illus-
trates the list structure of the DATA and LOAS arrays.

When refering to an integer it will be necessary to

be able to distinguish between two representations. - The

-actual or decimal representation of an integer refers to

its familiar &drithmetic form, sign preceding its high

order digit followed by decimal digits with either a

comma or a blank marking successive powers of a thousand.

For instance, the integers

-64,721,805 or -64 721 805 .

100,216 - - or .. 100 216

are given in their actual form. The internal representa-

tion of an integer is its cellular form along with its
thread addresses. Figure 2 illustrates the internal and

actual representations of an integer. Here it can be

LOAS Top —=96 0

PLNK

NLNK

- 95 0

94 0

93 .

JELIEC T S -

Z. -

100

99

96

98

97

95
94

93

THE DATA ARRAY AND LOAS ARRAY

l

\

\

Used part

of
DATA
Array

(showing

2 numbers)

(LOAS)

Unused
part of
DATA
Array -

~y

INTERNAL, REPRESENTATION

INDEX DATA PLNK NLNK
408 -076 0 327
328 ~201 327 329
329 000 328 035
035 ~536 329 036
036 =771 @ 035 265
261 -809 036 508
508 ~334 561 429

429 -001 508 0

* Actual Representation

-076 439 201 000 536 771 809 344 001

- T —Fig’dre—%: *”“I*nteg erRepresentatlons T

o e sk £ o . - sty

sgenathatwdata*CellMAQEMchtainghthe_high|9€§er three

- digits (-076) of the above integer. ‘Since no higher

- order ‘digits exist for this integer, its PLNK value is

0, while the next lower three digit part of the integer
is located at data cell 327, that is, its NLNK value is
327. Similarly, data cell 429 contains the lowest order

three digit part of the integer. Since no lower digits

(=

~exist for the integer, its NLNK value is 0, while its

PLNK value is 508, that is, the next higher order three

digit part of the integer (-334) is stored in the data

--cell 508. The data cells between these end cells each

contain the other three digit parts of the integer. It

is clear that this method of integer storage is quite
useful since it provides simple accessibility of an
integer frbm either of its ends, its high order end or
its low order end, depending on which is needed or

desired.

 A number is usually a value assigned to a variable

by some arithmetic operation. The PAPS system provides

- the capability of‘labeling,integers with reference names

isatisfying the rules for naming variables described in
the LEWIZ manual).3 HoWéver, the actual value assigned
to the reference name is not the value of the integer,
since this would not be possible for such a large number.

Instead, a reference key is constructed from the index

™~

of the high order data call and the index of the low

order data cell of the integer by performing the follow-

ing calculation:

Reference key = 1000 X high order cell index + low order
| cell index

This reference key is the value that given to the integer's

reference name. ®ince this value often would be larger

 than the maximum fixed point number allowable, the key

~then the point number 4.0842900+05. Thus the system pro- . |

is stored in floating point form. Referencing an integer

is accomplished by using the reference name whenever the
integer is required. The PAPS system will decode the
reference key‘and locate the requested integer. This
produces the same effect as though the actual integer was
called direcEi&. For instance, if it were desired to
name the integer given above in Figure 2, the reference

-name MAXN, then the key that would be assigned to MAXN,

vides the same flexibility in selecting variable names as

~that which exists in LEWIZ.

of 0 is then assigned as the variable key and an exit

11

THE SUBROUTINES
The precision‘arithmetic system is implemented
through a collection of LEWIZ subroutines which perform «

various required tasks such as input and output, arith-

metic, and file maintenance. The subroutines are
classified according to the kind of task which -they
perform:

Utility Routines
Input and Output Routines
Arithmetic Routines

The Utility Routines

There are three subclasses of utility routines whose
task is to perform the necessary file maintenance opera-
tions. Figure 3 gives a complete listing of the sub-
routines within each'thhe three subclasses.

The first subclass, the Link Address Routines, are

those Utility routines which operate only on link addresses.

They locate variable addresses, remove variables from

memory, or put new ones into memory. The D V F A. sub-

routine, when called, will remove a variable from memory.

It has one argument, the reference label to be removed
3 . L IR

from memory, as input. It removes the variable presented

simply by returning all link addresses assigned to the

variable to the List of Available Space (LOAS). A value

\

12

Link Address Routines

DVFA. (Ref. Name)
'GETE.. (Ref. Name)
GETS. (Ref. Name)
LKIN. (Link Address)

LKOT. (0O)
Data Cell Routines

CHOP. (Link Address)
- PREZ. (Count, Ref. Name)
RELZ. (Link Address)
REPK. (Ref. Namé)
- REST. (Count, Ref. Name) e
P | - & '~ SIGN. (Ref. Name) N

i} Program Initialization Routines

'SLAT.(Array Diméngionl“m_

Figure 3. THE UTILITY ROUTINES

lX(

from the subroutine is made. (A variable whose key is 0

will be recognized as an undefined variablé).w.

Q‘J?v

ExamEle : Let

INDEX DATA PINK NLNK

91 609 0 85
85 . 751 91 77
77 012 85 0

be the internal representation of the integer
609 751 012
Let X be the variable referencing this integer. The key
assigned to X would be
X = 9.1077000+04
To remove X from use, the instruction

DVFA.. (X)

would be used. The indices 91, 85} and 77 would be return-
ed to the LOAS, and the variable X would be assigned a

zero key value, and X would no longer be recognized as a

valid variable in the system.

The GETE. subroutine performs the function of obtaining

the link address of the data cell containipg the low order
3-digits df the integer‘;pecified as the input argument
to the GETE. sﬁbroutine.| The'GETE;”subroutine performs
the calculation |

KEY - [integer part of (KEY/1000) X 1000]

and obtains as a result a 3-digit number which is the

14

address of the desired data cell. This address is the
output value of the subroutihe. x | | o 'é

Examgle:

N |
If Y = 3.7105900+05 were the key of an integer, then

the instruction

GETE. (Y)

would resultin an output wvalue

GETE (1) = 059.

The GETS. subroutine has the function of obtaining the
other end of the integer referenced, that 1is, it gets the
link address of the data cell containing the high order
3 digits ef the number referenced. |
The GETS. subroutine takes the key of“the'variable speci-
fied and pefforms the calculation I
Integer part of (KEY / 1000)
obéaining a 3-digit number which is the address of the
desired data cell. This address is.the outpﬁt valﬁe of

the subroutine.

Example: If JOE = 4.3127900E5 were the key of some

.integer, then the instruction
' GETS. (JOE) ’
wou%g result in an output value;
‘GETS (1) = 431

The next two subroutines are most often used by the system.

They are the LKIN. and LKOT. subroutines.

15

The Link-In (LKIN.) subroutine has the task of returning

.

a freed link address to the List of Available Space. Its

input argument is the line address that is to be returned
to the LOAS. There is no output value from the LKIN. sub-
routine.

Example: If the "top" of the LOAS array were

INDEX DATA PLNK NLNK
LOAS = 541 0 362 0
362 0 508 541
508 0 etc 362

before the LKIN. subroutine call, and if the link address

to be returned were LINK = 677, then the instruction

th»‘

LKIN. (LINK)

would result in the following modification of the LOAS

LOAS = 677 0 541 | 0 (new LOAS top)
541 0- 362 677
32 0 508 541

508 -0 etc. 362

The Link-Out (LKOT.) subroutine does just the bpposite
of the LKIN. subroutine. The LKOT subroﬁtine,gets thé\
next available link address from the "t0p“ of the LOAS.
This subroutine has no inputgatgument, but its output is

the next available address in the LOAS. The "pointer"

i

(B Wo—— S-S

ol s = = = Jiignel s =8
11

“b-i' u_

referencing to "top" of the LOAS is reset to the next

available number in the LOAS array. If the LQAS‘is'—
amptied, the errorimessage o |

LOAS EMPTY - PROGRAM STOP
is printed out on the printer and the program is termin-
ated. |

Example: If the LOAS were

- INDEX DATA PLNK .- -NLNK e s

TOP
LOAS 444 0 501 0

501 0 . 226 444

226 0 etc 501 |

before the statement LKOT. (0) then the result after

the instruction would be
INDEX DATA PLNK NLNK

new top : |
. Loas 501 0 . 226 . O

226 0 etc. 501

LY o \:
®
°

The second subclass of subroutines listed in the Utility | W

e e e e

“rﬁaﬁiines §fbupingfaféfthemﬁatafﬁkdifﬁbﬂfiﬁes; They -pro=-

) vide the ability to modify the.data cells in various ways. %
on \ ‘l]\

The PREZ. subroutine, Provide Ending Zeros, performs %
B ~the task of attaching a given number of zero data cells

1 = i T T rrir g

=
D s e ——a

BV TR L e L !
IR b T

17

to the low order end of an integer. This, in effect,

multiplies a given integer by the number lO3N

, where N
specifies how many zero data cells are to be attaéhed.
The PREZ. subroutine also generates the appropriate
address linkage for the modified integer and resets its
reference key. The PREZ. subroutine has to input argu-

ments. The first argument specifies the number of zero

data cells to be attached, and the second argument is

the reference name of the integer that is to be modifiéd.
As output, the PREZ, subroutine returns a floéting point
%f number which is the new key value that is to be assigned
to the reference name. The PREZ. subroutine is used by
the system in the Multiplication subroutine to modify
interﬁediate pioducts generated By the Multiplication

subroutine.

Example: Let the reference name and key
VOLT = 2.7932100+05
;p;wwmwbemassigneéwto~the integer -
167 208 441 |
\'?henﬁto attach one zerédata.cell, the-LEWIngtatement
| VOLT = PREZ. (N, VOLT),

where N = 1, would be used. If the topmost address in

f!-*‘~“4+~;W~Lthe‘LGAS-were<221~the'extefnal result WOuld be f T
VOLT = 2.7922100+05
while internally, the cell line NLNK (441) would become

221, PINK (221) would become 441, and NINK (221) = O.

1
] In certain instances, an arithmetic routine can
s -—f1-~~a;generate»aresultncontaining zero-valued high order data
‘ cells. Such a result would waste a great deal of valuable
space. The Release Leading Zeros (BEE&,) subroutine hasl-
the task of removing these zero-valued data cells from a
result and returning their indices to the LOAS. The in-
pﬁt argument is thelabel.re%erencingtheaddressthhg—_ﬁ
hiéh order data cell of the result of an arithmetic opera- é
tion. Its.output is the address of the first non-iero ﬁ
data cell. However, if the result of an arithmetic opera- |
g | " tion were zero, then the RELZ. subroutine would return, | N ﬁ
{ ‘as output, the address of the last or low order data cell
whose value would be Zero. 1
Example: Let the result of.an.arithmetic'operation be | |
the integer * | - %
000 021 359, }
 wher¢§he §ddr§§§59f thgh;gho;der zero data cell~is_A -L
244(and let the address of the data.cell céntaining‘thé 1 I
value 021 be 119. Then the LEWIZ statement R L(
RELZ. (ADRS) | 'ﬁ;
N vwhe;e:ADRS = 244 at input, would result in . t : - E
- @ =u9 ‘ |

as output. The index 244 would be returned to the LOAS.

' The RELZ. subroutine is used by the ADD subroutine to

release leading generated zeros. However, since all of

>

the arithmetiq subroutines use the ADD. subroutihelto

~generate a result, they each, in effect, use the RELZ.

subroutine to remove leading generated zeros.

The SIGN. subroutine is used to homogenize the

algebraic sign of each data cell of the internal repre-
sentation of an integer. The éubroutine when called
examines the high order data cell for its algebraic sign.
If the sign of that data cell is plus, then each remaining
data cell of the given integer is given a plus sign as
part of its internal representation. Similarly, if the
sign of‘the high order data cell is minus, then each of
the remaining data cells of the given integer is given

a miﬁus sigh as part of its internal representation.'

Note however, that the sign of a zero-valued data cell

is always plus.

As input, the SIGN. subroutine is given the reference

name of the integer- to be adjusted. After the signs have

been set in each data cell of that integer, an exit is

made from the subroutine. The SIGN. subroutine has no

output so that the input argument is unaltered.

Example: If

_ INDEX DATA PLNK NLNK
58 =140 0 64
64 059 58 71
71 326 64 0

were in internal representation of an integer that had

W

- 20
been input to the system, then before it is freed as a
valid internal integer, the SIGN. subroutine is called_
to maké the sign of the integer homogeneous in its inter-
nal representation. The statement
- “'S*I”G_I\T.‘ x), _ _

where X = 5.8071000+05 is the reference name of the integer,
would cause the following internal result.
- INDEX DATA PLNK NLNK

58 -140 -0 64

65 -059 58 71 *

71 -326 64 0

The SIGN. subroutine is called by the system in the
READ. subroutine to perform the operation of making the
aigebraic signs of data cells of an integer uniform.

The FRAK. subroutine is used to obtain the indivi-

- dual numeric digits of the data cell referenced as the

second input argument of the subroutine. The first in-

put argument specifies which of the three digits is gotten.

A number one signifies the low order digit of the data

cell, a number two obtains the middle digit, and the

s the high order digit of the data cell

as output of the FRAK. subroutine.

The REST. subroutine is used by the division sﬁb-

Youtine to restore the result of the product of the trial

quotient with the divisor in a form which can be correctly

21

subtracted from the dividend. This is done by placing

put is 2 and'if-the_hundréds position is non-zero, the

‘-

result is 3.

.....

low order single place value zeros at the low order end E
of the above product to give the same order of magnitude _é
as the dividend. The number of zéros required to do
this is given as the first input argument of the REST.
- subroutine. The second argument of the REST. subroutine
is the reference name of the product. The output of the .
REST. subroutine is a reference key of the re-stored :]
product,wheré§§estoration of the product into data cells
-~ - -begins at the low order end starting with the low order -
zeros. For example, if the dividend was the number
123 456 789 000
and if the product to be subtractedniditially was the
integer | o ;
1203 104 ”5?
Ehen”this productFWould be repacked as
—— ' 120 310 400 000. R
~The'CHOP’.subroutinedetermines the position of’the h
highest non-zero place value in a given n on-zero data cell.
If the units place value is the only nonjéero'place value
of the data cell, theldufput of the CHOP. subrdutine isii. . -
’“-d‘IfthetenEhﬁasitienof—thedéEagCell'is non-zero, the out—

22

to repack the quotient. The quotient as generated by

the DIV.uSubfbutine.jsstored one digit per data cell.

Before the quotient is released, it is repacked three

digits per data cell beginning with the low order digit
of the unpacked quotient. The result of the REPK. sub-
routine is the reference key of the repacked quotient.

The Program Initialization grouping of the sub-

~-routine performs the function of introducing'the system

to all variables and arrays that will be used.

The SLAT. subroutine sets the initial values of

the link and data arrays for the system. It has one in-

put.argument, a label whose value is the Data Array

©

dimension defined in the main program. It has no external

1

output. The statement | \
SLAT. (DIM),
where DIM 1is the dimension of the Data Array, causes the

system initiadlization to begin. First, the SLAT. sub-

. = routine generates the List of Available Space -Array; which

at this time would be full while the Data Array would be

empty. The number of available spaces assigned to the

]
111 e D et b

~LOAS is equal to the dimension value of the Data Array

which is the SLAT. subroutine input argument.

Example: If DIM = 5, then the LEWIZ statement

SLAT. (DIM)

would initialize the LOAS array as follows:

i ——

. 23

 INDEX DATA "PLNK NLNK

- o '0 4
4 0 5 3
3 0 4 2
5 . . "
1 0 2 0

The top of the LOAS array is the index address 5. This
- value is stored under the reference name LOAS.
(Noé%: The LOAS array is.actually the unused portion of
the Data Array.) The reference name LOAS always contains
a value which is the address of the next available (unfill-
ed) data cell.

The SLAT. subroutine must be called by the main
program before any input or processing with the Precision

Arithmetic System can take place.

- The-Input/Output Routines

The second major classification of.subroutines in

the Precision Arithmetic Programming System is the

Input/Output grouping listed as:

CREAD. (0) R —

RITE. (Variable)

T ———e

LIST. (Variable)
These subroutines perform all input and output operations

for the syStem.

b bina bl s SR, 2 LlindiEd b el i g A Dl 270 G AR U1 0 2 a0y 1 P e B 000 kb by e e i A Aot o o 5 - o,

.24

‘All input to the Precision Arithmetic System is
via‘the'READ. subroutine. The LEWIZ statement

REFERENCE NAME. = READ. (O)

~ in the main program when processed with cause the punched

card data to be read and stored by the system. An integer
being entered must be broken up into pieces which are

factors of 1000 and entered in descending value from the

‘ﬂighest three digit factor of 1000 to the lowest order

Ve

three digit piece. Actually, the input integer would be

punched into the card exactly as it would be written,

except that in place of the commas which are used to set

off successive powers of 1000, one or more blanks are used. -

- for separation.

Example: The integer

61,235,960,001
could be punched as
_ 061b235b960b001 -
or | o 61b2355§?ﬁﬁ$xj?ﬁ*glﬁ<
or D 61bb235bbb960bb1

where the lower case "b" represents a blank space (or

card column). Note that high/order zero need not be.

Wbuhéﬂéa;wmbﬁéuatﬂérwhﬁmber must be punched at the;nnﬂ'

of each input integer, the number 9999; This defines the
end of an input integer, but it is not stored as part of

the integer. Thus, the integer listed above would be

25

,punehed as
61b235b960b001b9999 ; ', A

Note that at least one blank card.column:must be placed
between the low order 3- dlglt piece of ‘the input integer

and the sentinel 9999. If the 9999 does not appear after

an input integer, the system will continue to read the

[

following numbers until either a 9999 is found or until

the END OF DATA card is read If any one of the portions

of an 1nput integer is greater in absolute value than
999 an error is generated and the error message
ERROR - DATA OUTSIDE ALLOWABLE RANGE
will be printed on the printer and the program will be
terminated. 1If the integer is negative only the high | ﬁ
order factor need have a minus sign. If the integer is L
positive, no sign is required.
The READ. subroutine will accept and store correct
integer pleces, one at a time, in.the Data Array in the

order in which they are read in. The subroutine obtains

the next available data cell from the LOAS and stores

the first integer factor in the data cell. It generates

ahzero address for.its_precedinglink (PLNK) address and » _ .
...then looks.ro'see if there is_anether integer factor to |
be stored. If there is, the subroutire returns to the

LOAS for the next available data cell address. The next

link (NLNK) address of the first integer factor is the

address of the second data cell. The READ. subroutine

26

continues storing successive integer faeters and genefat-
.ing their respective PLNK and NLNK addresses until a 9999
has been read. When the number 9999 has beeh read, the
READ. subroutine assigns a zero address to the NLNK
address of the last integer factor that was stored in

the DATA array before the number 9999 was read. Thesub-
routine then generates a reference'key for the input
integer. This key is computed by taking the address of
the data cell containing the first integer factor input.
to the system, multiplying it by 1000, and then adding

to this product the address of the data cell containing -
the last integer factor input to the system before the
number 9999 was read. This result is often too large

to be stored as a fixed point number so it is stored as

a floating point number. This floating point number is
the reference key of the input integer, and it is the
output of the READ. subroutine. The READ. subroutine then
calls on the SIGN. subroutine to make the sign of each |

factor of the integer the same as the sign of the first

————————factor of the integer. This representation however;fis

only internal to the system. After exit has been*maae

- from the READ. subroutine, the value that the reference
name will have will be the floating point integer refer-

ence key generated by the READ. subroutine. From that

point on in‘:the main program the integer that was input

= L — . ™Y | —~ A,

T it

——

{8 e o = » i i i s e = e e

, , B
PR ; AT LA . T L sl s S e
e e i e L L L T e et At i e i et e WA SRR A) Bt 5 T3 1L M

27

to the system is referenced by the reference name given

to the integer by the READ. subroutine. Figure 4 gives

an example of the processing of an integer.
The Precision Arithmetic Programming System has- two
output routines, the RITE. subroutine and the LIST. sub-

routine. The RITE. subroutine is used for most output

operations to display integer dath in its ordinary form.

~As input, this subroutine requires the reference key

supplied by the reference name of the integer to be printed
as output. The LEWIZ statement

RITE. (X)
when processed would cause the integer refereﬁced by the
reference name X to be printed on the'printer. The sub-
rdutine locates the,high order data cell of the requested
integer and stores this data cell, charactér by character,
into a fixed point output array of 120 words. Each
character is stored in one word of this array. After a

data cell has been stored in the array, a blank is stored

- ~~—£ellewingwthe_%ew—erdercharacterefﬂthe—data:cell; ~The~”~w~
subroutine then returns to the system to get the next

data cell of the ihtéger‘ahd stores it in the manner des-

““"“é}ibéa”abo§e. Thié contihuééﬁntilweither the entire ’ .

integer is stored in the output array or until the array

has been filled. 1In either case, the RITE. subroutine

calls on the LEWIZ library subroutine ALFOUT. which then

Input Integer: -432 017 635 900 000 010

Reference Name: X
Subroutine Call:
X = READ. (O)

Internal Representation

- INDEX ~ DATA ~ PLNK NLNK

095 -432 0 094
094 = =017 - 095 081
081 -635 094 123
123 -900 081 149
149 000 123 201
201 -010 201 0

Reference Name and Key
After Exit From

The READ. Subroutine:

Figure 4. THE READ. SUBROU?INE

B e S

E
i
Il “.
)
i

- 29

"ﬁrints'the 120 word output array on one printer line.

If the entire‘integer could not be stored in one output

| | red 11
line, the RITE. subroutine returns for the remaining data

cells storing them character by character in the output

array and printing the output array using the ALFOUT. sub-

routine until the entire integer has been listed. When
this occurs, an exit is(made from the RITE. subroutine
returning Control to the main program. The output integer
is listed with a sign appearing only before the high order

digit if the integer is negative. Otherwise no sign is

listed. The internal structure of the integer remains
unchanged by the RITE. subroutine and is available for

further processing by the system.

Examgle:

If X were the reference name of the integer

'given in Figure 4, then the LEWIZ statement

RITE. (X)

- would produce the following print-out:

-432 017 635 900 000 010

‘For debugging and testing purposes, the system has

~an outpyr subroutine called the LIST. subroutine. The

statement

LIST. (X)
would list as output the entire internal representation
of the integer referenced by the name X. This listing

prints in separate columns the data cell index, data cell

A30

~value, the address of the precediﬁg data cell, and the

address of the next data cell respectively. The listing

<

begins with the high order data cell and continues listing

through the low order data cell.

The LIST. subroutine

———call given above would result in the listing of the

integer referenced by X as shown in Figqure 4.

The Arithmetic Routines

s

All of the subroutines tha

- e

.

t have been described so

far in this paper are basically system support routines.

Their purpose is to support the Precision Arithmetic

Operations that the system has been created to perform;

that. is, they were designed to support the Arithmetic

Routines.

The Arithmetic Routines are a grouping of four major

arithmetic subroutines along with several minor sub-

routines. They are:

—.___ADD..

SUBT.
MULT.

DIV.
IRGR.
CSIN.
QKAD.
DASN.

DOOM.

(Dummy, Ref. Name -1, -

(Dummy, Ref. Name

(Dummy, Ref. Name

(Dummy, Ref. Name

Ref.-Name 2) -
Ref. Name 2)

'Ref. Name 2)

Ref. Name 2)

(Ref. Name 1, Ref. Name 2)

(Ref. Name)

(Address 1, Address 2)

(Ref. Name)

(Ref. Name)

|
IR Y s) s, s G R
.

31

Since the LRGR, CSIN., and QKAD subroutines support
the major arithmetic routines, they will be described

first. The LRGR. subroutine finds the "larger of two

integers in absolute value. That is, it determines which
of two integers has the greatest absolute value. If the
integers have the same absolute value, then the LRGR. sub-
rbutine selects as the larger number, the integer whose
- reference name is given as the first. grgument of the sub- = = -,
. routine. If the integers have the saﬁe:absolute value,
but have opposite signs, then the LRGR. subroutine selects
the other integer as the larger number. The smaller of
the two numbers is also available as an output of the |
~ LRGR. subroutine since the subroutine always placeé the |
key of the larger value as the first output argument and

the key of the smaller value as the second output argu-

ment. Examples (1), (2), below give an illustration of

the LRGR. subroutine operation. | | '{
. |

T U Eyample (1) Let NUM1=3.U4152900E+05 and-NUM2=2.6111000E+05 -

be the reference names and reference keys of the integers

? Ny I
< hed T -

213 408 611 001
‘and . =106 259 340 321 459"

respectively. Then the LEWIZ subroutine | EER ":?{
LRGR. (NUM1l, NUM2) m

‘will produce as output

LRGR(1) 2.6111000E+05 (NUM2)

LRGR(2)

i
ll
3.4152900E+05 (NUM1) o m
?
]]
|

‘:3%,‘
Exaﬁii)le A (2)
4 If VARl#9.6095000E+04 and VAR2=4,3059000E+04
reference the integers
1 009 |
and ' -1 009 respectiveiy;_ﬁhen
the LRGR. subroutine
(- LRGR. (VARL, VAR2)
will produce as output ~ . | S T
| LRGR (1) = 9.6095000E+04 (VARI1)

'LRGR (2) = 4.3059000E+04 (VAR2)

The CSIN. subroutine performs the operation of

changiﬁg the sign of a given integer. In the process,
the sign of each data cell is complemented. This, in -
effect, makes the CSIN. subroutine the unary minus
operation, since if X is an integer, then CSIN. (X)
replaces X by‘—X. This subroutine finds use in the

~ system in the SUBT. subroutine.

~--- -~ Rather than using up space in the data array it would

In certain instances it is necessary to add two
data cells together to obtain a sum which is only an

intermediate result to some more complex calculation.

 be more convenient to use temporary memory locations

not in the data array to store this sum. Both the sum
and carry, if one occurred, would be made available to

system, and no data cells would have been used. This

‘sort of thing is‘dbneby the QKAD..subroutine a "quick"
addition is performed on the two data cells whose addresses
are given as arguments to the' QKAD. subroutine. The sum,
~a 3-digit number, and the carry become the first and @
second output arguments, respectively of the QKAD. sub-
| routine;
Example:- Let ADRS1 reference the data cell containing
the number 321, and letﬁ%PRgg reference the data céll con-
taining the number 864. Then the LEWIZ statement
QKAD. (ADRS1, ADRS2)
produces the output |
| QKAD (1) = 185
| QKAD (2) =1
| Note that had the statement
| - ADRS1 = QKAD. (ADRS1, ADRS2)
; been given, the result would have been
E ADRS1 (= QKAD (1)) = 185
| OKED (2) =1
; -_ﬂwww—_“”}%wADRS2 was to be'repiacedbyAthe carry value then the
f statement | ﬁ
e ADRS2 = _QKAD (2) .. B -~

e must be written before the QKAD. subroutine is called

again.

B . e e g

The QKAD subroutine is used by the MULT. subroutine

to generate an intermediate sum as described above.

‘34

The DASN. subroutine determines the algebraic

sign of the integer referenced by the subroutine's input
argument. This is done by examining the sign of the
nonzero high order data cell of“theiinteger referenced.
If the sign of this data cell is plﬁs, theh as output
the DASN. subroutine yields the number zero. If the
sign of this data cell is minus, the number plus one

| o D e
is the output. /

The DOOM. subroutine determines the order of

- magnitude of an integer in terms of the number of

data cells it required for storage. The input

argument is the reference key of the integer whose

order of magnitude islto be determined. The output, -
then, is the number of data cells that integer required

for storage.

0f all the subroutines in the Precision Arithmetic

- System, none is more important than the addition (ADD.)

subroutine. The ADD. subroutine is the workhorse of
the system. Each of the other main arithmetic sub-

routines require it, either directly or indirectly, in

~ the performance of its operation.

The ADD. subroutine performs the addition of two
integers adding one data cell at a time from each
integer, beginning with the low order data cells and

continuing until the sum of the two integers is completed.

The resultant sum caﬁ be placed‘in any on one of three
- possible locations depending on which is desired. If
X and Y were the referenqe.names of two integers whose
éum is to be found, then the three possible storage
locations are Z, X, and Y, where Z is a new reference
name different from X and Y. Thus, the possible sums
are

e

Z=X+Y, X=X+7Y,¥=X+Y.

Because bf these possible different sums, it is necessary
“to inform the ADD. subroutine which one it is to generate
beforehand. This is done by providing the ADD. sub-
routine with three'input arguments. The first input
argument is a dummy reference name whose value is either
the number 1, 2, or 3. These,numbers tell the ADD. sub-
routine that the sum 2 = X + Y, X =X+ Y, or Y = X + Y

respectively is to be generated. The second and third

~ input arguments are the reference names of the two integers
that are to be added. For instance, if it were desired
to compute the sum ¥ = X + Y, then the LEWIZ statemeng;

Y = ADD. (DUM, X, Y)

 w§§i§%é§:u§ed, where the value of DUM would bei£heLn%, er

3.
Once called, the ADD. subroutine immediately calls

on the LRGR. subroutine to determine which of the two

integers is the larger. It then determines which sum is

36

to be generated by examining the value of the first input

o argument of the ADD. subroutine. Depending on whether

this value is 1, 2, or 3, the subroutine branches to one
of three parts of the subroutine. That is, the ADD. sub-
routine is divided into three sections, one to generate

the sum Z = X + Y if ADD (1) = 1, another to generate the

C%@P\Wié + Y if ADD (‘1)

2, and a third to generate the

-

sum Y = X + Y if ADD (1) = 3. The first section, Z =
X + Y, requires é new set of data cells for storage%of -
the sumAand thus’requires one method of address genera-
tion. -

i Since the sum being generated will be stored at

g - a new place in the Data Array, it removes data cells

g ~from the LOAS to store the integer pieces generated by

g m the addition of X and Y. An entirely new set of data

% cells is used to store the sum, and a new integer is

g -ereated.— The B7—subroutine—then“ccmpﬁtes the ¥Yeference

§ 'kéy for.this new integer and étores it as its oﬁtput

§ argument ADD (l1); and an exit is made. §

The second and third sections, X=X+ Y and

“f*'*“Yf:“X'+Y;“éééh_féturn'the~Sﬁmfte*X—efw¥mdependingAupenmm_

which section has been called. However, the address -
generation in these sections becomes more complicated

than that used in.the first section. In the second

i

section, the sums generated by adding the values in the

37

consecutive data cells of X and Y beginning with the low

order data cells of X and Y replace the values in the.
data cells used by the integer X. The integer that was

referenced by the reference name X before the addition

is destroyed and in place of that integer is a new integer
which is the sum of X and Y. The three-digit integer
pieces that make up the sum X + Y replace the three-digit
ihteger pieces Ehétwﬁade up”the integer X; The same dat;
cells that were used to store X are used to store the sum
X + Y. If the sum requires'more data cells than were
used by X, theyAare taken from the LOAS. If thelsum
requires fewer data cells than were used by X, high

order zero cells would.have’been_éenerated. At this
point, the ADD. subroutine calls on the RELZ. subroutine
to release these useless data cells and return them to

the LOAS. Then a reference key is.generatedAand becomes

ut of the subroutine.

The third section of the ADD. subroutine performs
‘the.address‘generation of the sum factors the same way

as the second section, however, the location of the data

—The

gellwiactors—e£fX~ané—¥%beeamewmﬁrewcempiieated;

= | ~ ADPD. subroutine has—adopted the convention of always

making the larger number the primary addend and the

i

smaller number the seéondary addend. That is, the larger

number always appears as the top number of the Sum,,and

38

the smaller number is always the bottom number. This

convention makes it necessary to use a more complex

switching process to obtain the proper data cell addresses

of the addends. When the sum has been completed, the
reference key is_generated’in the same way as described
for the second section of the ADD. subroutine and an exit
is made to the main program.

The actual calculation of';he sﬁm,“régardléés of
the form that is to be the result, is accomplished by
adding a data cell of the smaller number to the corres-
ponding data cell of the larger number. This sum may
or may not result in the generation of a carry; which
may be +l‘ot -1. If a carry does occur it is'accounted
for by adding it to the sum of the next pair of consecutive

data cells of the addends. Addition begins with the low

order data cells of the addends and continues until the

high order data cell of the primary addend has been pro-

cessed. The secondary addend may or may ndt have had

as many factors as the primary addend. If it did not,

then zero-valued data cells are added to the remaining

highorder primary addend data —cells to—complete-the-

sum. If both numbers were of the same order of magnitude,

H

corresponding data.célls would be addedtogether,_provid—
ing for any carries generated, until the high order data

.ceils of each addend are added. If no carry occurred

© e—

39

with this last sum, the process would terminate. If a.

- carry were generated, one more data cell would be called

for from the LOAS to store it, and proceésing would ter-

- minate. 1In all of the above situations, the sign that

would be assumed by the sum would be the sign of the
larger or primary addend. The problem of carry generation,

as can be seen, has also added to the complexity of the

- ADD. subroutine structure.

An example of the ADD. subroutine's various output

forms is given below.

'Example: Let X and Y reference thé integers 123 456 789

and 879 644 213 respectively. Let‘their'intgrnal repfeé
sentation be as follows:
X = 1.0014300E+5

INDEX DATA PLNK NLNK

100 123 0 143

143 456 100 146

146 789 143 0 L

Y = 2.3345100E45

INDEX ~ DATA PLNK NLNK

233 879 0 234

234 544 233 | 451

451 213 234 0 .

g— '

Each of the three possible sum forms are to be generated.

For the first sum Z = X + Y, the value of the first in-

x P AR B wX 7t 3 e ok W IR I N o TN e fork 1y X el TR R i e Lt i by T ——_—— ==, e s ety e ——— - N
S ARG PEEATLI S ?\? T : 4 '%.n.ilé:’p e g T ?i-lv.» WEE S AN T A TR) T AT e et A Vo A e R T P R L T TR A it TR B et LT s T e ke, € et e T Ayt 1L B pr T 1 0 T B\ bt o Rty QI s G 1 in s T T T———— -
: [Pl (et g mi ity Y E e A L T S R AT e e AV RO U e N e e A P T LT 2 e L R B R e (T i N e T T PR R ST I (TR ey e e
S e T A R A L R s DU R e --‘sl-j‘fi ol Gl s L b R S RO L R s R i ‘L’{‘, i ,{m Tt S L S o NEE ,“ : (E et S 11(RNl H E‘E’.'L‘ a;“x T '--;‘. i s ! b R
2 ' i PR L Wl IS

40

put-argument, DUMMY, is 1. Then the LEWIZ statement

Z = ADD. (DUMMY, X, Y)
when proceSSed Wiii“cause-tﬁe foildwing intétnal an&m_
'exférnél resﬁité;‘
INDEX DATA‘ PLNK - NLNK
301 001 0 326
326 003 301 519
519 . 001 , 326 477
477 002 519 0
Z = X+Y = 3.0147700E+05
Here it can be seen that all index addresses of the sum
are different from those of both X and Y.
If the value of DUMMY is chaﬁged to the number 2,
processing of the LEWIZ statement
X = ADD. (DUMMY, X,Y)
would have the following result:
INDEX. DATA PLNK NLNK
296 001 0 100

100 003 - 296 143

143 001 100 146

owene -

146 - 002 143 — N

WW ig;=fX_+'Y_= 2{9611666E+05‘
Notice that in this situation the index addresses of

X + Y are the same as the index addreéses of the initial
integer X except for the high order index of X + Y. This

data cell was needed to store the carry from the sum of

1
!
i
|
1
il |
i
i
!
\
o
I
I
i
'
o
&
o
o]
i
i
i
i
B
B
N
S
‘:=.’;
)
¥
wy
i
;"f
|
|
¥
A
iy
2
"l
1
A
A
?',
i
8
i
i
é‘,‘
Y

S oo WG e
s et b i g VAN A LT T R e

o - 41
the two preceding datacelis. ThlS data cell was removedm_wd"
- ““from.the top of the LOAS and given to the new integer
. X=X + Y The reference key of X has also been adjusted
to the appropriate high order address.
‘ Finally, if DUMMY is given the value -3, then the
% ADD. subroutine call statement ' .
g Y = ADD. (DUMMY, X, Y)
; N : wouid'prqduce the following result:
f INDEX DATA PLNK NLNK
ﬁ 296 001 0 233
- 233 003 296 234
234 001 233 ‘ 451
451 002 234 0
Y = X+Y¥Y = 2.9645100E+05
As 1n the second sum form, the sum X + Y replaces the
original integer Y by the sum X +-Y. It too, requires
one more data cell than was required for the original
integer Y. The reference key.of the sum is then adjusted
and stored at Y.
- o It is quite possable that 4 zero sum or a sum
B 'smaller,than.erther 1nteger~could be generated by the !
- — addition if the numbers had opposite signs. In this
o situation, the second and third sum forms. would have

‘required fewer data cells for storage of the sum than

their respective original factors. In this case, they

[P R

42

would have returned data cells to the LOAS. If the
result were zero in any case, one data cell would be
required for storage.

Subtraction is also provided for as one of the
Precision Arithmetic Programming System's basic arithme-
tic'0perations. When two integers X1 and X2 are to be

subtracted, the LEWIZ statement

Ref. Name = SUBT. (DUMMY, X1, X2) .. :

-

<

is used. The}input argument,jDUMMY, performs the same
task as was described in the ADD. subroutine. It tells
where the result is to be stored. The other two inputs
to the SUBT. subroutine are reference names of the
integers to be subtracted. The label, Ref. Name, on the
left-hand side of the equal sign in the SUBT. subroutine
call statement is the reference name into which the
reference key of the result of the subtraction is ‘to be

stored.

After the SUBT. subroutine ha§ 5;;H»ealléa:PEhé -

CSIN. subroutine is called to change the algebraic sign

.‘.fg'.‘.. - . .y - e e e e et e e e e e o

.....

the third input argument of the SUBT. subroutine. The
minuend remains unchanged. Once the sign has been
altered, the SUBT. subroutine calls on the ADD. subroutine

to add the two integers. This sum gotten from the ADD.

subroutine is,;in‘reality,_the.difference of the two

43

integers since the sign of the integer to be subtracted

was complemented before the addition occurred. The

- SUBT. also provides for three various result storage

forms:

7=X-Y, X=X-Y,¥Y=X-Y
where 72 # X and Z # Y. After the difference has been
computed, the’referenCe key of the difference is calculated
and- stored at the appr0priate*referénce name. This ref-
erence key is the output of the SUBT. subroutine. ‘Before

9

exit from the SUBT. subroutine is made, the sign of the
subtrahend is again complemented, but only if the
difference has been stored at a reference name different

from the subtrahend. Then exit 1s madevto the main

program. Since the results are similar to those gotten

from the ADD. subroutine, no example will be given for

the SUBT. subroutine.
The third arithmetic operation incorporated into
the Precision Arithmetic Programming System is the opera-

tion of multiplication. It is performed by the MULT.

subroutine which -also-has three input arguments. The

first'wtghmeht is the DUMMY.which is used to specify

the place where the product key is stored after the

calculation has been made. As before the values the label
DUMMY can assume are the integers 1, 2, .Or 3. The other |

two input arguments to the MULT. subroutine are the

44

reference names of the two'integers to be multiplied

together. The'MULT. subroutine is called by the LEWIZ

e - e ere e e o e S SR s M Sl e T e

e gtat ement
Ref. Name = MULT. (DUMMY, A, B)

where A and B are the reference labels of the integers

to be multiplied together, and the label on the left-hand

side of the equal sign, Ref. Name, is the reference name

~J

.. of the resultant product.)
Operationally, the MULT. subroutine adopts the
convention that the iarger number is to be the multipli-

cand and the smallest number is to be multiplier. The
LRGR. subroutine is used to determine which input
argument is the larger. Then the generation of the
~product begins. The low order data cell multiplies each
data cell in the multiplicand starting with the low order
data cell of the multiplicand and continues .through the
consecutive higher order daté‘cells until the highest

order factor has been processed. The product is stored

in data cells that were taken from the LOAS as each 3

| »,_1.___'_*____.digii:ﬁ.faqj:orp_was__-gene;garte-dj—---—-—The-—--MU—Lﬂ}.—smreatine-— then e

‘looks for the mext higher order factor of the multiplier.
If none exists, the MULT. subroutine generates a new
reference key and stores it at the requested reference

name. If another factor exists for the multiplier, the

U my

LU=

l_]nl—l | N [W R SN | I—I -

MULT. subroutine generates a reference key,fbr the first

product calculated and then proceeds to generate the

e ,preduet~~=ﬁf-—th\efse:cond-*‘factor'fdf*“tﬁe“mu];tipli er with the
multiplicand in the manner described above. This Second_
product is also stored in new data cells taken from the
LOAS. When this product has been éompleted, the.PREZ.
subroutine is called to adjust the magnitude of~this
" second product by the factor 103N, where in this case .. .
N = 1. Then a reference key is generated and the ADD.
subroutine is called to form the sum of these two inter-
mediate products. The sum is stored by the ADD. sub-

routine in the data cells that were used to store the

first of the intermediate prbducts, and the reference-

key of the sum is then adjusted to the appropriate wvalue.
Since the éecond intermediate prodﬁct is no longer needed,
the DVFA. subroutine is called to remove it from the Data
Ar;ay, and the links it used to store,phe factors are
returned to the LOAS to be available for use again.

'After this has been accomplished, the ADD. subroutine

__obtains the next factor-of the multiplier, formsitsi —— —
product with the multiplicand, adjusts this product by“““"“““**?“ff‘

the factor 103N,

N = 2, and adds this result to the sum
of the first two intermediate products. Then that last
product is removed from the Data Array, and procéssing

- of the next higher order multiplier factor is initiated.

46

This process continues in the manner described above
until the last factor of the multiplier has been pro-
cessed. The resulting integer which was accumulated at

the location of the first product is the desired product.

the MULT. subroutine then generates a reference key for

this integer and stores it at the appropriate reference

name, and exit to the main program is executed. If the

_product terminated after processing only one multiplier

portion, that is, if the multiplier contained only one

three digit portion, the MULT. would generate a reference

key and store it at the appropriate place. If the

reference name of the product happened to be either one

of the input reference names, then the MULT. subroutine

"~ deletes that integer from the Data Array and replaces the

0ld reference key by the one generated for the product.

An example of the accumulation technique and result is -

~given below.

ExamPle:

Let X = 1.0009900+05 and Y = 9.8096000+04 be the

respective reference names and reference Keys of the

following integers.

222333
and 754 368 951

The LEWIZ statement

Z = MULT. (DUMMY, X, Y), DUMMY = 1

ST LA
3‘1‘, | N

would perform the following internal calé&lations:

INDEX
92
93
94
95

DATA
-251
- 204

860

683

PLNK
0

92
93

94

NLNK
93
94
95

0

This is the result of the product of the factor 333 with

the integer 754 368 951. The accumulation of inter-

mediate products would be

251

167 469

204

907

860

122

47
(MULT (1))

683 (MULT (1) before)

000 (intermediate product)

167 721

111

982

683 (MULT (1) after)

Since there aréhbnly two factors in the multiplier, this

last sum stored at MULT (1) is the product of the two in-

put integers. The internal storagé representation of

the product is

INDEX

DATA

PINK

NLNK

86

92

(r
Oh
~J

721

Q9
—da

93

93

111

94

95

982
683

94

95

'MULT (1)=Product

- 48

The reference key would be generated from the top and

-

~bottom indexhaddreSSes and would be stored as
z = 8.6095000+04
The last of £he arithmetic operations in the PAPS
1s the division operation. It is performed by the arith-
metic routine called DIV. The DIV. subroutine has three

input arguments, the first is the Dummy value referencing

- the location of the quotient. The second and third- -

“arguments are respectively the reference names of the

dividend and the divisor. The DIV. subroutine is called)

by the LEWIZ statement |

Quotient = DIV. (Dummy, Dividend, Divisor). | J‘ | L

When the DIV. subroutine is caliéd, itifirst I m
determines the sign of each number in order to define %
the sign that will be assigned to the quotient and E

remainder. The DIV. subroutine then proceeds to perform

the division with the absolute value of the divisor and

—the dividend. The order of magnitude'of the divisor and

the dividend is determined. .This is used to locate the

trial division point of the first digit of the quotient;);

_ | T EEET L R — < quo ;

I that is, the order of magnitude of the quotient. For 5
- | j
instance, let L

DIVD = 6 993 207 143, DIVR = 53 214.

B ~-ﬂnm:‘é

The order of magnitude of DIVD is four, since it contains

four data cells, while the order of magnitude of DIVR is

| I | !
U oS n—_

= 1 . .u
g —— i ==
L “I-J u Elﬁ.__J u I_n_J

49

two. The difference of these two numbers gives a trial

estimate of where the division point is located. Since,

"in the above exampié,_the difference is 2, the location

of the division point is tentatively over the last digit
of the data cell whose place value is second from the
high order data cell. In this case the division point
is over the low order digit of the data cell cohtaining
the portion 993. When this has been done, the DIV, sul;;E

routine then examines the magnitude of the divisor. If

~

the divisor is composed of only.one data cell, division

is carried on cell by cell, generating a.quotient. This

is the simple case. If it happehs that ‘the divisor is

o~

composed of more than one data cell, an entirely different

method is used to obtain the quotient. A trial quotient

must be obtained which will approximate as closely as

possible the correct qﬁotieﬁt digit. The DIV. subroutine

breaks this task into three cases each of which is

examined by the QUES. subroutine. This subroutine has

not been defined separately since it is really an integral

part of the DIV. subroutine. Its description is given now

aS'part of the definition of the DIV. subroutine. The

QUES. subroutine first obtains that number of%gigits of

the dividend as are contained in the divisorykgggh order

zeros excluded. These digits are then re-stored, start-

ing with the low order digit of those obtained, three

50

P

:digitsvto a cell. When‘that has been campléted, the
QﬁES. subroutine determines which of the two numbers,
the divisor or the partial dividend, is the larger.

The result of this cbmparisdn is used to decide upon

a quotient value. If the divisor is the larger number,
the output of the QUES. subroutine is the number -1. If

they are equal, its.output is the number 0, and if the

dividend is "the larger number,; the output of QUES; is the

number 1. Using the information received from the QUES.
subroutine, the DIV. subroutinelbroceeds to obtain a
qguotient wvalue. First;'the high order four digits of
the divisor are stored in a temporary location called
TDVR. Then the Div. subroutine generates a gquotient

using the first four or five digits of the dividend

depending on whether the output of QUES. was non negative

(0 or 1) or negative (-1). If the first four digits of

- the dividend (called TDVD) are used, a quotient value

leés than 10 is obtained. In the other case, however,

using the first five digits of the dividend, it is possible

to obtain a quotient equal to 10 (but not greater). If
the quotient obtained in this instance were 10, the DIV.

subroutine changes the quotient value to the number 9.

Once the quotient is obtained, the DIV. subroutine pro———

ceeds to form the product of the divisor and the quotient.

Before this result is subtracted from the dividend, the

R e IR

51

DIV. subroutine determines the location of the division ~

~ point. This point was obtained by the QUES. subroutine

When it generated a temporaj:y dividend from the high
order digits of the dividend equal to the number of digits
contained in the divisor. Thus, the division point 1is
loceted at a point thatn;‘any digits from the high order
digit or that many plus one depending upon whether the
output of QUES. ‘'was non negative or negative, reépectiﬁ?e?ly;f
This point position is then subtracted from the magnitude
value of the dividend to obtein the nilmber of low order
zero digits have to be attache_\d to the product generated
above. This is necessary for the_-subtraction-to be done
correctly. Once the product has been prepared, it 1is
subtracted from the dividend by.the SUBT. subroutine.

The difference then replaces the original dividend. The

DIV. subroutine then examines the sign of the remainder.

If it is negative, the trial quotient was off by at most

one. Thus, the divisor is added to the remainder and the

/ - “

correct remainder. Then one is sub-

result replaces the-%

tracted from the_.q.uotie-nt valuemakin.g the correction

complete. Now the Div. subroutine loops back, using the
remainder as the new dividend and continues the division.

When the remainder finally becomes smaller than the

divisor, the division has been completed. However, the

52

quotient was'stored one digit per word and so it must

be repacked. This isaccomplishédzby the REPK. sub-
routine. The remainder‘isfﬁhen,given the global reference
name REMAiN; and the DIV. subroutine‘then determines the
sign of the quotient and remainder. 1In any case, the
quofient and remainder have the same sign. Finally,'thé
DIV. subroutine storg; the quotiént at the location

- % specified by the'inputDummy, and an exit 1is madé to the

main program.

v

53

DISCUSSION AND CRITICISM

The Precision Arithmetic Programming System as des-
cribed in this paper will permit the basic operations of

addition, subtraction, multiplication, and division, as

~well as certain data manipulations that can be performed

on integers of varioys magnitudes. The actual size of

the integers that can be used by the system is restricted.

The system allows a maximum of 500 three digit integer
piéces to be stored. As the number of different integers
incré;ses, the average size of each integer decreases.

“ The MULT. and DIV. subroutines each require a tempor-
ary work space that is taken from the DATA array. The
product of two thirty digit integers is at maximum a
sixty digit integer. Since the MULT. subroutine uses an
accumulator to generate intermediate products, the
accumulator Would require up to 20 data cells of tempor-
ary storage‘for operation.

Division requires a good deal of temporary storage

to perform its various manipulations and intermediate

I

~generated stores only one digit per data cell. The

calculations. For instance, the quotient as it is being

QUES. subroutine also generates the partial dividend

-

by taking the dividend apart digit by digit before

i T = i « 1T T T e P TR e A o R Y
AR . T " B B R R R L T e s weaT g Ty Wty

PRb TR T o R g L T P P A T ey M o C M e) . - T — -
it 3t L S ‘!f]"""if.n“.‘.'f_\‘L'l'y'k' G ARy, A A T T I e L L e R R A e e " G ee S et Ty s o

NS o T T W
e
[

o TR IR T e

SRRk

54

j
7
i

,‘ .

repacking it.

The efficiency of the arithmetic routines varies.
The ADD. and SUBT. subroutines bdth use accumulators S0
as not to waste space. The manner in which the calcula-
tions are made works well, although complementing a
~generated sum is not used. Instead, the larger number
; is always made the primary addend, and the sign of the

sum is always the same as the sign of the primary addend.

Carries were a major eoncern in the ADD. and SUBT. sub-
routines. Because of the. convention adopted of always

making the larger number the primary addend, two possible

carry values had to be accounted for. An examination of ?

=

the listing of the ADD. program will show the manner in

which testing was performed.

The MULT. subroutine uses two accumulators, one to
‘generate intermediate products, and the other to accumu-

late the sums of the intermediate products. After each Q

intermediate product is generated, it is no longer needed T '
and hence, it is disregarded and the space it used 1is

returned to the available space array. o - g

L.

ThéMDIV;subroutiﬁeiS‘péfhaps the most complicated

of the routines. Tt is ags efficieht as cambe made as~— " — "W
g = far as 1its requirement for work space is concerned. f

However, efficiency of the DIV. subroutine is dependent |

B upon its initial and intermediate results. In order to

ot v
&

POEETG, e

ST NRRITE

55

be at all efficient in perforﬁing a division of the type
required, the DIV. subroutine must be able to.generate‘a
reasonabie”trial quotient to begin division, for other-
wise, it wouid spend most of its time adjusting the
incorrect quotient. That this is a problem can easily
be demonstrated with an example. Suppose the DIV. sub-
routine was required to perform the'following‘division:

L e - ”

Ry

~—~

199900 /100000000 ,

Choosing 1 as an initial trial quotient would result in
a rather larger error, 80%. However, by examining the
succeeding digits in the'divisor, it would become obvious
that the correct trial quotient should be 5. ' There are
other similar marginal cases that could cause trouble if
the initial trial quotient is incorrect. This error
must be kept as low as possible.

The system that is used by the DIV. subroutine seems

e ——

‘to account for these marginal cases, as well as, for

ordinary situations without causing any significant error

o in generating a trial guotient. For.example, the division .

150099 / 150000999)
would be handled in the following manner by the DIV. sub-

routine. First, the order of magnitude is used to

iE b e L,y T ——— : MOEIRITOCTARS, - o ok e
o S L I M T e e R T e D LR S T Ty T S A T A e 1 HASIN i e ey T N ML Lo D, - PG
T o s R R b R T ‘ B R I sapimisisp R AR = g
. ‘ N) .

T S L o

determine_ah initialvpositioning of the division point.
-fiis would be located over the low orderMZéro,of the .vi
dividend. The QUES. subroutine then compares the divisor
with the six high order digits of the dividend and finds
thé divisor to be larger. As a resulf, the division
point is moved one place value to the right of the
original estimate. Since the divisor is-nOW'ﬁpaller than
» 2 . the modified dividendfbeing-usedf~the.first four digits - - 7|

of the divisor and the first five digits of the modified |

E dividend are used to obtain an initial quotient value. r

n, 1500 /15000 {

§ yields 10 but 10 is too large so it is reduced to 9.

This becomes the trial quotient. Then ‘the product
150099 *9
- 1s formed yielding 1350891. This then is subfracted
from .the mddified'dividend yielding 149 118. This value
i .now-becomes the modified dividend, and it is then compared

with the divisor by the QUES. subroutine. The divisor is

larger so the.hext,digit of the dividend is attached

;#"“,m__wm yielding the new modified divid€n§ﬂ%4§}l§?;m_Thé QUES.

subroutine then takes the number 1500 and diwvides it into

"

14911 obtaining 9 as the next trial divisor. This multi-

plies the divisor and the product is subtracted from the

LN
-J

A

modified dividend yiélding 140 298. This process céntihues
in this manner untilkthe final quotient is obtéined.

No error is generated, and hence, no unnecessary calcula-
tions are made.

Although the PAPS is relatively fast, it lacks the
necessary~storage space to be very useful in larger .
applications. If the subroutines were linked and stored
\6h~eiéher’magnetgh\tapéROra disk;mit'wéuldlbe'much méfe
useful. Linking would also permit various other‘routinés
such as the G. D. D., L. C. M., and some matrix opera-
tions to be included to amke the system more powerful.

‘The Precision Arithmetic Programming System in its
present state of development is available for use and

further development through the Lehigh University Computer

Center., A complete deck listing and outputs of the

system are on file.

58

APPENDIX I

LIST OF ILLEGAL SYMBOLS -

ADRS
BARO
BET
CSIN
CELL1
DATA
DVFA
DO
DRS1
FRAK

FINL

" GETE

G2
HOLD
DIG

INPT

63

- FJON

DIVR
IFRST
ADRS1
AFTR
BLANK

CHOP
CELL2
DASN

DIV

‘DRS2

FINS
DM2

GETS

HLOC

DIVID

I
FON

BUOT

CNTR

ADRS2

BOX

CARY
CAR
DOOM
DUM

CYCL

CM1

FIRST

DVD

IT

IL
10
END

INT

-DIVD

INDX
ABS
IZIP
BAX
IG
LKOT
LOC2

MEMR2

- MAKE

LOC

FRST

IK

.MbEVMMWWWMMMUWH

DOMS

DVR

HNBR |

G4

“LCI

LOAS
LT

PREV

=

= " =
om0 m T elals n_u_

| T R AR Sl [e (L AN .
f S P A e O i ._,,1.;.\4,4-‘. DL LN KR] P ASET e m aaen raeE— " . - —
. Ryt o : o SRy At O TR e L RERITE Dl PRl SR A W T AN 3 PRy et) e LI Py) G v SRR AT X
S oni pr s R AR RA AT Wl U B e Ay i SR R | S S Gty 2 Y ST KL LA I s T e ’
P AT e e A p e T b R e T A e g e R S AR el S R A TR e s Bl . . f
L ,’.—.'i,E‘J‘ig A v ! GRLPPINES e ' 1P LR R X)
x

T i vty ey

Y T P T T Ly ey s T

YT ST e

iy
A
i
Ty
IS
v
o
Hy
i
i
&Ly
Nl
¥
1%
i
Py
."‘!
24
ies
=
e
t.
4
i

PLAS2

PVD

STAR2

= ,-,--:,—‘GM:D.‘,, semnm e

REST

RS1

R2

RIG1
PLT

Q2

REMAIN

RADR

M2

SIGN.

STRT1

~ TEMP

SBT1
SON

STL

VAR

TR

WIG

STOR

MEMR1

MINUS

ALFOUT

BIG

KOUNT
LIST
LRGR
LAST
NLNK
NI
oC

LS

PLNK

PRES

QUES

PVR

READ

RITE

RS2
R3

RIG2

REMP

LOT
SLAT

STRT2

SBT2
TYPE

SP

SL1

TDVR
SMALL
TAR2
QUS

RST

ZIP .

ISTL
IFT
KT
LKIN

LOC1

o ‘ . ' atiipreg vinos gt s
e e e A T A P L NI o1

59

NﬁMf“
MOT
LC2
NADR
PREZ
PLAS1
QKAD

LK

REPK

RELZ
RPT
R4

OMR

LEST

MPY

THOW

* | SET

M . e 2 e e pe e s Wby A o Y bR 5 L A O T 3

SYPE

SL2

i SUM

TDVD

! TAR1

~ STARI1

\

MQUS

!
{

-~ IR

N

¢
k)

T gy

2

O O

-y e el A =T -
4 : iy

o O

005 339
27 66

MAY

Tl

001,
- Que,

003,

Dué,
bub,

QL7
o0&,
0L9,
010,
011,
012,
013,
014,
016,
- 0les,
017,
018,
019,
00,
Uel,
022,
03,
024,

™~ g

N e R wou |
(RS AR
~5 O

9

]

™D

D
® o 3 © o °

Lo s B s T v T8 wons T svver Y cnnt 20 e IO s Y s

O G (A QY O G O RO
DTN GO BN oD
[~] <] © o

o o

sE0

000010

00U010
000020

no0G0E0
000040
000050
0ovbeon
000070
000075

00U010

006015

Gouieo0

600025

. 000030

000035
00C0490
nplo04s
0000%0
npCt0Bs
000060
000065

000070

DoG080

0004100

000110
notiza

J KASAQPA
15 29,0

ANDREW

LABL TYP

PV

_SL S

FIXDATAI3001,PLNKI300T,NLNKI300]
ALD.[661,CSIN.{10),DASN.[10],D00M. 011}
[141,FRAK, [12),GETE.[31,GETS, 3]
LIST.[10),LKINS[3)aLKOT.(101,LRGR.[15]1
MLLT.[23),FREZ,[1€6),READ.[16]1,D1V,[50] T A
[141,REST, [14,RITE. [191,516N. r11) ,
S;AT0£11]QSUBTq[113a@U&S [16],CHOP,[15)
FIXLCRY,L0CP, TEMP; ADRSY, ADRS25CARY, BARG s INPT
~kIXHLLDQHLOCQVARpADngFstasTﬁTlgsTRTa MEMR1
FIXMEMR2 ,NUM,EREV,FIRST,PREQ.AFTR,LLAST
FIXBLANK,MINUS,KOUNT,8,T»A[1201, MAKE&LOC 1K, TEM
CFIXIT,SRT1,SBT2,HNBR, THOW, SON s NL
CFIXDC,PLAS1,PLAS2,Z21F,BOX,QKAD.[2],MOT
FIXTYPE,FINL,CELLY»CELL?,SET-CARsSTL,C,CYCL
[2),LOAS,LS A
FIXRS1,61-,62,635SP-SYPE,SL1,SL2,DM1,DM2,DVD _MWMM]
FIXDVR,NIG,NAPR,FRST,KT,RET,RS2,G4
Ro,LT,R3,R4,FR,PVD,PVR,DPV, TR
FIXRI@ipRIGEaJKpLKaWIG OMD,OMRLPLT,IL,TL,ET,DOMS

DVFA,

REPK,

TO T oToOCO T

FIXLC1,LC2,DR81L,DRS2,RELZ,

FIXRFT,

FI1XQ0,01,02,0n,30,FT,LEST

PL TFE PRECISION ARITHMETIC SYSTEM
PV >

N2300,SLAT.[N]

PVLX=READ. [0]

LIST.[X1,RITE.[X]

'PVL;YEQEAD (01

LI%TOIY],RYTE.iY]

PVL,A)=REAL.ID]

LIST.[AJYV,RITE, [AV])

PVLyEqQFAD TO1

L197.[B],RITE,IB] -
PVL,FAJ=READ.T0] |
LIST.IPAJI,RITE.[FAJ]

SL

PVLZ31,SUM=ADP, [ZWX,Y]),

LIgT.SUM)

RITE.[SUM]

STATEMENT

" SAMPLE INPUT AND OUTPUT OF THE PAPS

, DuM, 0C

Cc ZERO

{

|

T J

L s e l_.au....-n_.an_a Sl Gl Cd bl Ced S t-'-lt—l PP
1 ; |

I

|
|

5

NOT 0O

PAGE 1.

'PLUS

g
{

{
Gl e Senicd G . Gt S

§

|
|

MAY 27 6

. MINUS

ﬂ

|

L. b
| 5
{[

FLSE

ll
_i _ﬂ

ey, i

A C

[l i C

NET AR I
#

®

T}ﬁ

T e e e e

- ‘. . L JETN ' ' . s . - ; . o

o i) 'L . R Ats 1 g .. : -
ST Ctaa e T T
| AR R .

|

o Tl NPT TETC L AT o

PR i A R PGS S
- I TR A e R L
. R T TR
! B NIRRT e

?- H

: 3

s 4
oy w
: :

O

000730
000140
000150

Py
000260

PVLZ=3%,R=SURT.
LI@T [B)

r2,AJ,B1,

RITE.[B]

¢

[

¥

_u,jﬁvr

a

o AT
gyg'hq»ﬁq,ga o

068370

000180
p00150

~gpb26p .

0002190
000220
000220
000240
000250
opbzen
0pLe7n

0pl280

'QL

PVLZ=1,MPY=MUI T, [Z,SUM,AJ],

LIST.[MPY)
PV

PI%n
SL

[MPY)

PvLz=1, DIVID=FIV 1z, PAJ B]:

LIeT.tDIVINY
Pv
- RITF.IDIVIP)
SL
PYLREMAIN,

[
[
(
[
[
[
[
[
{
[
[
[
|
(
(
[
[
[
[
[
[
[
[
[
[
(
{
[
{
(
[
!
[
[
[
[
[
[
|
[
[
[
[
|
(
[
[
(
[
[
[
(
[
[
(

|
!

: !
_;q'-F!Hfﬁlﬂrgap‘nqﬂwq-'lFﬂuquirﬂ’fﬂlﬂFiﬁrﬂlH-.“FﬂH#H-'FHIH-QFHIHHI*FNIM—-ﬁF-'F1Hf-’F‘Hv-.‘FI‘liuf—“rﬂp'c—‘v—-c'—‘l—nﬁrjﬂkqltg—n.—g t—-1ﬂ.tc~‘1—‘:‘lqu-|'—ginnc'ﬁ.'—qq—‘a'—..—‘:
i l ’ y v

1
)
]
]
]
1.
)
]
-
)
)
]
]
]
X
)
]
]
)
]
]
]
]
)
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
1.
]
]
1
]
]
]
]
]

' . } . . .
L e B B o Y RV B R kﬁ«ﬂw'rﬁ' g e ey B e T W Bl e O T YR S S P . : iy . . :

: . : - ' ST | -

(
i . : |
. s .

} o .
!

ne
-1
-t
i
S
-
-
B
-t
(
[
[
-
— 1
|
A
(
(
{
(
[
(
[
[
[
-l
o
[
[
[
t
[
[
(
(
[
[
[
(
[
[
(
[
r
(
(
[
(
(
N
(
(
(
[
[

;-:" e I - .: .J.\ s
R Cod
[R

N - ,: —_ ‘j‘t;‘;;:‘«_ - is - :v‘_ ‘A , L :

S0

NpL2sn
NQu3nn
000310

L= S S
E 86,
QRO

LAEL T

15
16

059. OODU?UADD
0e0. QQUO4Q -~
061. 000080 -
062, 0000%1
- 063.- 00002 51
064, 000053 &2
065, 00U0&0 53
066. 0p0070
067. 000U0B0 13
068, 00L09Q |
069, AQ0100Q
070. o©600i10 17
071. 000120
072. 0800130
073. 00U140 - -
074, 000150 18
075. 000160
076. 000170 19 -
077. 000180 20
078. 000190 21
079. 000200 22
080, 000210 23
061, 000220 <24
0&2. 00U230. 25
063, 00U240 26
084, 000250 27
065. 0Q0Uz60 28
086. 000270
087. 00U280
-oee, «o0p02%p
000300 —29—
09C. 000310 31
091, 000320 20
092, 0003%n 32
0930 000340 33
N Qhwﬂaggqgmwﬂ
094, 000347
0¢5, 000350
uy@a 00U370 40
067. 000G38n 41
ps&. 0003¢p 42
049, 00U3%5 43
160. 000400

~LCeg1=PLNK(LOCL)

~ PAGE 2, MAY 27 66
'STATEMENT C ZERO NOT 0 PLus MINus ELSE 2
LIST.[REMAIN] [1t | 1 A A
o [1 I !t 1 ot oy
~ RITE.[REMAIN) 1 ¢t 1 oo] (END D
~ LROR.[ADDIZ]1,ADD[3])) [) | A I ¢ I 1 ADD .
LOC1=GETE.[LRGR[1]] 1] [) [o1 1 '} ADD .
- LCe?=GETF.TLRGR[2]) [1 ; B) t) [1 ADD .
" DATAIGETS.TLRGR[1]])] o] [1t] [511 ¢ 52 ADD
TH@K=-1000,S0N==1 Ty o YT Y T) [531 ~ ADD
TROW=1000,S0N=1 [) [] [] [] [53] ADD
CARY=BAROSVARSPLNK{0]=NLNK[01=0 {] ' ' [] [] - ADD
~ADDI[11=2 [40) [] [401 -1 131 [] ~ ADD
ACRS1=LKOT.[VAR),ADRS2=LKOT.[VAR] [] |] [] [] [1. ADD
LAST=ADRS1, TEMP=.CC1 t] [] 0] [] [1. ADD
PLNK[LASTI=ADRS2,NLNKILASTI=0 [1o] 1t]t 157 ADD .
PLNKIADRS11=ADRS2,NLNKIANRS1]=TEMP [: | R S I |] [] ADD .
PLNKILOC1) [167 I] [1 't 181 ADD .
HCLP DATA[L0C1!+DATAfLOC?]*CARY BARO [] —-[] . [1; fi' . i. fw ”M],MW%DD,‘
BARC=0 l) [] [I §) [191 ADD .
HCLn=(DATACLOCL]+THOWI+DATA[LOC2]+CARY=BARD [] r] [] [] [] ADD .
~ BARC=SON | i) [] [) (] [1 ADD ,
- HCLD=2000 L. 2u) [] [20) [21] [] ADD .
 CARY=2,DATA[ADRS1)aHoLD=2000 [) [] [] [] [28] ADD .
HCLL-1000 | [22) [) [22) [23] [] ADD .
CARY=1-DATA[ADRS1]2HOLD=-1000 L) [] [] [) [28] ADD .
"HCLD+2000 [24] [] [25] [24] [] ADD .
CARY==2,DATA[ADRS1)= HOLD+2000 [] t] :] : | . 287 ADD |
—-HCLD+1000 [26] [1 [27] [26] (1 ADD .
- CARy==1,DATA[ADRS1)= HOLD+1000 | [] [] [] (] [28] ADD .
~— CARY=0,DATA[ADRS1]sHOLD [A A I I 1 ADD ,
- HLOC=TEMP,TEMP=sADRS1 l] [1) [] [1. ADD .
LIS EEE [49 [1. [43) { 1t 1 ADD .
ADRS1=ADRS2, ADRS2= LKOT.[VAR] L] [~ 71 [] [1] ADD «
LCeg=PLNKELOCLY [301 ¢ -}] 0} ol 29FADD
teeo=PLNKTLOC2Y ” [31 [] S N [171 ADD
DATAILOC?1=0 !] [1.1 | I S [171 ADD
CARY L33t) -t} }—t—321—ADD-
DATA[LOC1]-O,PLNK[L001J-D LOC2=0 [) [1] [] [311 ADD
~PLNK[TEMP1=0,FIRSTaTEMP, | KIN. [ADRS2], C m e . S
TLKIN.[ACRST) [] S B] [] [)] ADD .
IFIRST=RFL7.[FIRST] [] t) []] L 1 ADD .
ADﬁ[i]:EiﬁﬂU@I?IRST¢LAST1 []) t] [] [. 1., ADD ,
I=ACDI1),ACDII)1=LRGR[1] [41) [Yoo 1] [611 ADD .
LAST=L0C1,TEMP=L0C1 [) S I |] [.1 ADD .
ACRS1=LcCL [] [] S R |] [15) ADD .
ACDIIJ-LRGRI[1] [] [63) 11 10 '] ADD .
[451 | I I ¢] L 1 ADD..

i

102,
103,
164,

105,

106 .
1[}79

U6,
109,

110,
111,
112,
113,
114,
118,
116,
117,
118,

{19

Sk

bptalo
not4zo
00L43n
D0U440
00450
pou4a60
Noli4és
00u4des
000469
npué47on

- 00u4y(

600500

000510

00ubz0
000530
00U540
npi55g
000560

n00570

LABL TYP

A

£6
45
47

48

50
49

€l
é2
€3

66

65
f'FIﬁST TEMP,PLNKIFIRST)=0,NLNK.IFIRST1=HLOC

B T

 PLNKIHLCC)=FIRST

120.

1lel.

122,
124.

000020
000030
0000490
600050

00001OCHCP. |

STATEMENT

LCC2=PLNK[LOC2]

DATAILOC2)=0
CARY
LCC2=0,DATALLOCL)=DATALLOC2) = PLNK[LOCiJ 0

ADRS1=LKOT.rVAR]

NLNKI[TEMP]

PLNKITEMPI=0sNLNK[TEMP])=HLOC
FIRST=TEMP

" IFI1RST=RELZ. [FIRST)

ADP[1)=[1000%IFIRST+LAST]
LAST=TEMP=L.0C2,TEN=LKOT.[VAR],IK=0
ADrsi=zLeC?

LOA1=PLNKILOCL

LGE2=PLNK[LOC2]

DATAILOC21=0,ADRS1sTEM
TEM=PLNK[TEMI=LKOT,[VAR]),NLNK[ADRS1)=HLOC
CARY

INT, [DATA[CHOP(11)/400)
INT.[DATA[CHOPI1]J/101

 CkePI1]=1
15
10

CHOP[1]1=2
CHOP[1]=3

V)

r=t;
t
[

Y.
“eb,
127,

000C30
000040

006G20CSTN.

ACRS=GETS.ICSINI1))
DATA[ADRQJ--DATA[ADRQJ
ADRS=NLNK[ADRS)

NOT 0

ot
(
{
!_
[
!
(
i
z
[
;
!
[
(
[
.r
;
[

o |
: : ' : : .

PAGE 3.
PLUS

o

1
j :

MAY 27 66

MINUS

|
|

¢ .)
‘ - 'S ’ : .

S

!

| H B
| . !

!
|

I] CHOPO
{) CHOP.
L‘] CHOPo
t. 1 CHOP,
[] CHOP.

l—’-f—.f-"

ELSE O

421 ADD . -

42) ADD . O ;

471 ADD . N
] ADD -

15) ADD
] ADD

(

(

(

(

(

[

[] ADD .
[) ADD .
[1 ADD .
[« 1 ADD .,
(I ADD .
(] ADD .
(] ADD .
(] ADD .
[) ADD
[15] ADD
(1 ADD
[49 ADD

e @ e e e

: ._“_,]__, MWGSI N . . e
] CSIN, D S
L0p o CSING

o o

W | § - —..—ll! I [
' : P 4
|
I
. : . 1
} i } "-l'! r. !
g el = A oo
o . I
|
o
;
D

O O O

3@@

LAEL TYP

COLODASN.

0
00ulz«D
No003(D

10

no0010DIv .

000020
000030
NOG040
000U050

0o00é&0

00U070
00C00€&n
notoeo

00ULO0

3001190

oouliais

000117
000120
000130
0100140
000150
000160
000170
0001890

0obico

00u1ls5

. 000200

00uzio

o 0ouU220
000230 |

000240
-~ Q0ue4s

. 0pb2sg
. 006260
. 000270
apozvs

10 PL
11

. L e

13

DATA[GETS.[DASNlllll

DASN([1])=0

CSTN.(DASNT1]1],DASN[1]=1

'DATA[GETQ.TDIV!3]]J
ERROR - DIVISIEN BY 7ERO

SYRE=DIVI1]

SL1=DASN.
DME=DOOM,
DVA=GETS.

DM2=1

[PIVIZ2]]Y,

DIG=NLNK[DVD]

- FION=LKCT,.r0)»PLNK[FIONI= NLNK[FIONJ-

- DATAIFICNI=INT,[DATAIDVD1/DATAIDVR])

(0], PLNKIFONI=NLNKIFONI]=0
DATArFON]m?ATAEDVElarDATA[FION]*DATA[DVRJJ
REMAIN=[1000*FON«FQON]

FCN=LKOT,

. SL1=5L2

12

20

DATAIFION]==DATACFION]»CSIN. [REMAIN]
DIyI11=01000*F ION+FION]
NADR=FRSTELKOT (0], NXT=LKOT « (0]

PLNKIFRSTI=0,NLUNKIFRST)=NXT
Ki=3,DIVD=DATA[DVL)

DIVD=DATALTVR]
DIVp= DIVN#q10+FRAK, [KT, DATA[DIG]]

DIVD=DATA[LCVR]

0o02Rg

000330
00us40
00u510

_WODOBEOMWWWwWMM

00340
D0USE7Q
gol3Rp
N003KS
00039
Gou40gQ

{KT=KT=1]

_DATAINACR] =0
DATA[NADRI=INT,[DIVD/DATAIDVRI]]
DIVD=DIVD=CATA[NACR]*DATA[DVR]
- BET=NADR,NADR=NXTsNXT=LKOT.[0]
'PLNK[NAPREQQETQNLKKINAERT"NXT

KTe3,DIG=NLNK[DIG]
CLKINJINXTI i KIN.INADRISNLNKIBET]=0
FoeBNs LKCTor@]9ﬁLNK[FJON]-NLNK[FJON] 0

DATAIFJCNI=DIVD

REMAIN={1000%FJCN+FJON)

NADR=FRST=LKOT.[0],NXT=LKOT.[0]
PLNKI[NACR]=0,NLNK[NADRI=NXT .

-PVR=3#[pM2-1)+CHOP. [NVR)
RIG1=DVR-RYG2=sNLNK[RIG1]

CFREF.[RIGL]=2

TLVR=1000+~CATAIRIG1])+DATAIRIG2]
TR=3,TDVR= ﬂﬁO@PATAfRTGil+10*FRAK.[TR DATAIRIGC
[TR=1,DATA[RIG21)

21 1+FRAK,

Th=3,TDVR= 10WDATA[RIGIJ+FRAK.[TR DATA[RIG2]]
DIVD=DIVI2],PLT=1

STATEMENT

SL2=DASN. [DIVI3]]
[DIVI21),DM2=DOOM. [DIVI3]T
[PIVI2]1,DVR=GETS, [DIV(3])

: i
i

NOT 0

N e
NN

MAY 27 66
MINUS

PAGE 4,

PLUS ELSE

DASN.
DASN .
DASN,

b . Bt (Gt |
ulll _

v .
[J * & L] L J
« :

‘s e e °
: ,
{

LS

St Sl Sl bl Cived foel i Sl e

P =

j
]
1

® O O O 0°0 O O

173,
174,
175,
176,
177,
178,
179,
180,
181,
167,
1838,
184,
166,
1be,
Lev .
188,
169,

190,

191,
192,
163,
194,
195.
196,
197,
198,
199,

2000

201,
202,

- 2 K o

204,

205

206.
207,
208,
209

211,
212,

213. | | | |
214, no0650 48 2 REMAINSDIVD o

T

215,

' = 2 1 é -3

217,
218,

- 00uL490 45

0p053p.

9. 000617 14
210,

‘OﬂﬂééomeM%

gEQ LARL TYP' STATEMENT

C ZERO

OMP=3%[pPM1=1)+CHOF . NVD]

731 ,MAX=SUBT,.[Z,DIVD,DIV(3]]

Z=PASN.[MAX),MAX=DVFA, [MAX]

=1

TCVD=-TDVR .

TCVD=TDVD*10+FRAK, [TR,DATA[DIG]]

TLYyC=TDYR

[lL=1L*11=TL

DATAINADRI=0»,TRSTR=1

TR=Z,DIG=NLNKIDIG]

TRaTR=1

- BET=NADR,NADR=NXT,NxT=LKoT.([0]

PLNKINARR) =RETLNLNK INADR=sNXT

DATAINACRI=INT,[TCVD/TDVR)»RADR=LKOT. (0]

DATA[RADR)=DATAINADR],PLNKIRADRI=NLNK[RADRI]=0

BUAT=[1000=RADR+RACR

JK=QUES.PVR,DIVD],LK=QUFSI(2] |

DFV=3«[D0OV,[DIVD]=1 1+CHOP«[WIGI~LK - ~ - -

DATA[RARR] =10 '

ooLb40 DATA[RADR] =9

np0550 46 E=1,DIVQ=MQLTe[EaBIV[SJ:BUOT]

-~~~ BLBT=DVFA,IBUOT]

” DIVR=REST.IDPV,DIVR)

LIST.[DIVR]
D=2,DIVD=SLUBT.[D,C1IVD, DIVR]

PVLDIVR=DVFA.IDIVR]),DASN.tDTVDI-1
DATA[RACRI=DATAIRADR]}=1,AX%=3
DIVD=ADD. [AX,DIVIZI,NIVD]

- WIG=GETS.([DIVD]
TCVD=DATALWIG],ETS CHOP. (WIG],TR=3
DIG=NLNKIWIG)

o PVLPLT =P T=1
IL=0,ET=?
TL=4
TL=FET+1
TL=2 '
OMR = %w[noov [DIVDJ-1]+ET

PYLDCMS=0QMD~-0OMR,OMReF VR
OVP=COMR, TL=[[PYR=CEMSI+1]1=ET

L
U o
fond lead louad

00L440 43
45

| S]

000458
Nogl4eq
nol4es 26,
fol466 25
000470 44
nplden

n
o
—t el St

00U492
npl500
000520

e oAt s P o

000535

000560

00U570
000580
000590
000600
000610 47
000611

D
o

00U612
n00613
no0et14
00615 27
000616 28

N
~

[

oouéls .
Nol619

tonld Sl Cd

Sl

- PAGE 5

NOT 0

PLUS

[
/

o |
K -

.
O\ !

=

H
~J

@]
-b .

o

N
ao

N H
A | | N

| : .
1

MAY

MINUS

e

|

|
":3

27 66

" FLSE

S
~J

H
Qo

& e

@)

!

H ;::; ‘ ‘ o

41

|
|

2 1 : o RS S
< S R : I . - .y
PR . L . . ’ ! :
3 v ; .:4] A X B . i ;‘ . " -

411

i
H
i
i
|
i

RET=NADR,NADRSNXT,NXT=LKAT. (0]
PLNK [NADR]=BET,NLNK [NADR]=NXT

000620
00630

41

Sl

S

DIV
DIV
DIV

DIV

DIV
DIV

DIy
DIV
DIV
DIV
DIV

DIV
DIV
DIV

DIV
DIV
DIV

DIV

DIV
DIV

DIV

DIV
DIV

DIV

DIV

DIV

DIV

DIy
DIV

DIV

© DIV
DIV

DIV
DIV
DIV
DIV

DIV

DIV
DIV

DIV

DIV

D06660 14~ - IFRST=RELZ, [FRST]aGUOT=[1000*IFRST*BtTJ |

- Dlyril= REPK., [QUOTJ

DIV

@

o <] 1<) 2 o

® » & @ e ¢ © © @w ® 8 @ ©

DIV .

-

e R ——

“SL1-SL2
o) YRJIDJthllyESIA.IREMAINJ

B S
O

000690

[!
: : - ;

. 2 1 . . E . S ! | . ‘ . i . ‘ :r" p :’ . ‘3 . }:-: : — , v._A' B - 41 .:::'_:I‘.:;.v‘. . ;_-: — o e i‘- e v o ‘4{ - .
: : : R i . i PR g e e . ; i - A : o f
i : . . . 1~ . f - R s NBTE .

'DIV
LV

219,

220,

“nglfmm

000700 49/

0007z0

i

~TYRE=2 - -
DVFA. [DIV[?]]nDIVIQ]“DTVrll
DVFA.IDIVIZ)),DIVI3)=DIVrl]

ﬂDG?jgw%,

[
[
[
[
(
(
(
[
[
-
[
0
[
[
[
[
[
[
[
L
[
[
L
[
[
[
3
1
[
{
[
|
(
[,
:
[.
[
!
[
[
[
O
.
— 1
[
{,,
[
[

of

Fel

- -) ‘
H Lanee R ann BN s BN e THR R . BN crn TR sae B oun JEE tn TR oon Ko AR ae TN o SN ae JON o AR BN o BN 0 I B B o W B e W e e e e R e R X e e X XN a L o B aan A ae il e R o0 KX o IBE o0 B . W . W o RN BF o BN o B o B

, .
i: : i . ¢
2 : . : i - R

e g e =y ree | ¢y ey f"?‘ [ame B ane BN oo TR e Kom TN o BN TP T o T e T o B) Hl"'ﬂ Lamn B ane B onn IR s 0 . R o IR e TR e IR o l-.i‘-H’F‘"H"‘HH'H"H‘H’H‘F“ | o BN comn B e B o B0 on AN 0 B o0 TN
; o ! * . . « .
. . .
. |

N
o

. .
¢ ‘
e v - n

|

MR AT e AP W ey e 1 A AT oY g stmwn: < W TR e Ty

= .

2 s e e e
-

D Nl ool e [l tomed St | e

‘DIV-

DIV

DIV .

PAGE ¢, MAY 27 46

SEQ LARL TYP N ~ STATEMENT ~° 0 ZERO - NOT O PLUS MINUS ELSE

Eva

DooM,
DOOM,
DOOM,
DOOM,
DOOM,

2¢2, 000070DOCMe CNTR=1 | o
2¢3, 000020 RS1=GETS.(rooMI1]]
2¢4., NOGO30 10 RS1:=NLNKIRS1]

225. 000040 ~ CNTR=CNTR*1 .
2¢6, 000050 11 DCOMI11=CNTR | o

~—— 3 ™ T ™™
5

o Rt o 3% 0 BF T

el ol bl Buel St

H'-‘.C-‘Hﬁ

o)
5 227. 000010DVFA, LO&=GETS.(DVFAI1]) i]t 1t I] t__.1 DVFA.
2¢B. 000020 10 OCaNLNK(LOC) | 1oty ot 3 L1 U 1 DVFA.
229, 000025 LKINSTLOC) T e 1t I U Y T UTTTT ODVRA, T
O 250, 000030 LCe=0C [11 [) R ¢] [} (103 DVFA.,
7 2%1. 000040 11 DVFAl1]=0 [3) ¢t} . 1 [. 1 DVFA,
®
'23g;“00001oFRAK. M1=INT.(FRAK[2)/100) [1 [] [] [1 [f]]
28d. 000020 Me=sINT.([FRAK[2]/10]1-M1%10] l S T S S T
234, 000020 MZ=INT.(FRAK[2]-[M1«100+M2410]] L S A
@ 292 Qouo4c FRAK[L1s2 L 11 1 12 0 101] . FRAK.
2;6. 00U050 10 FRAK[11=M3 [] (] [] [] L.] FRAK.
~ 257. 000060 11 FRAK[11=M2 []t o~ b] [. 1 FRAK,
__..MLZSBz__DOUO70 12 FRAK[1]=M1 [i B N S R S B 1 FRAK., =

T T R T S o R S R T i N i

‘gj) , X . : “ J— . 1
. L. . ,) " - . - - - J N \ . N

PAGE 7. MAY 27 66

5 gko LARL TYP - STATEMENT € ZERO NOT O PLUS MINys ELSE

69, 0D0UOZ0GETE. FINS=GETE[1)=[INT,(GFTE[1]1/2000]1%1000 l 1o 10 11 U1 GETE,
240. 00LG30 ~ GETE[11=FINS l | R A R ot . 1 GETE.

g

241. 000010GETS. GEwst1)=INT,(GETS([11/1000] - S T S T]t 1 (. 1 GETS.

"1 LIsST.

242, 000010LIST.FIXINDX u

1 LIST.
¥
]

243, 000020 ~ INBX=GETS.ILISTI[1]}
244, 000030 410 PV INPX, DATA[TNDX!,PLNKrINDX] NLNK[INDXJM
245, 800040 -~ - INAX= NLNK[TNDX!

i i L
Lo f -
s ‘ o i |
! - . { ' - .
. P IR B BT - -
W x4 - - i - a . .

LIST,
LIST.

e e e - - . B et L

D et et | s ——t
T rﬂlt—“o—-'
el S| e L
~— -~

. : . . f
| . L ! .-
. A
. : R N Y
R { .
. ; !
- . . .
. . . Lo . N - " : B .
S TR A SRS TP : oLy
. E gt A H N .

T246. 000010LKIN. _ PLNKTLKIN{111=U'OAS,NLNKILKIN(L)I=0 [-y]t 1ot ot LKING

247, 000015 DATAILKIN[I111=0,NLNKILOAS)=LKIN([1) T T T T T T T KIN,
248, 000020 - LOAS=LKINt1) “ T 1 1t U 1 . 1 LKIN,

}
|
.
|
|

{
A
a
4

: B ’ Lo . .
;' L i P <

, P S : : ,
H ; i N B : ¥ .

o L . . o7 . ’ P ! SR : L ; . e
: B : - i H o ! ot :
R . . :] Lo ¢ : :
. ! s . . i
) H . ki { b .
- - . - - i N [. ! R
. 4 i : g ' Lo L
P . ; o H H R : H . .
. i 1 : t : - e g .
- . i i [S . ! R _
- . . S [H S [. Co RPN BT
. . . - Lo o Bl el T - . h - c F 3 . [. - ' - B P N

PAGE 8. MAY 27 46

5 SEQ LAPL TYP _STATEMENT , € zERO NOT O PLUS MINuS FLSE

249, 000010LKCT. LKOTI11=L0AS T | [

250, 000020 ~ LCAS=PLNK[LOAS) [10}
[
[

E 251, 000030 ~ NLNK[LOAS]=p
%1 ‘D 252, ﬂ00340 10 PL LOAQ EMPTY - PROGR‘M STOP

Gt Gl G G
Gl Q) Gl Ad

il b el G
oy gy Py - ey

1. LRGR.

1 LRGR.

Lo 1 LRGR.
127 LRGR.

1 253, 00U0ZOLRGR. — MEMR1=GETE.[LRGR(1]] !

[

L

[_

[141 LRGR,
t

i

r

i

(

[
|~ 2%4, 000020 - MEMR2=zGETE.(LRGR[Z2]) [
; 255, 000035 15 STRT1=MEMR1,STRT2=MEMR2 [
; - 256. npl04p . . MEMR1=PLNKIMEMR1] - SR [
1 ~ 257. 000050 11 MEMR2=PLNK([MEMR2] [13]
[
l
[
[
[

O

.I ©

1~ 228, 000060 13 AES , [DATAISTRT111-ABS,(DATAISTRT2]) 141 LRGR.
| 259, 000070 14 STOR=LRGR[1]

260. 000080 ~ LRGR(11=lL RERI[2])

261, 800050 LRGRI2)=STOR

262. 000100 12 MEMR2=PLNK [MEMR2)

] LRGR,

:
&
€
@
o
@
o
@
o
@
¢
@

.1 LRGR.
151 LRGR.

L W R B o B R R e e B
: ’
..‘ v.' r . | o "‘. .Ii .'.' . '..‘:' '-.T- .‘"“.".';
,
4
" . ..I . «
I8 N
1 -
1

263, 000010MULT. -LRGR.IMULTI2]1,MULTI3]] CMULT.

264, 000015 47[BIG=LRGRI1),SMALL=LRGRI[2)] |

265, 000020 . LC1=GETE.[RPIG),PLNKIO0]=NLNK[0]=0

| 266, 00U030 L C2=GETE.([SMALLI,CYCL=VARSC=0

- 267000040 TYPE=MULTIT]

. 268, 000060 410 DATAILC?2)

¢c9. 000070 . FINL=DRS1=LKOT, [VAR),DRS2=LKOT.[VAR]»CAR= 0
270, 0Q0UDEO - PLNKIDRS11=pRS2sNLNK pRS1]=0

y /1. 00U0B2 TAR1=DATA[LCL].TAR2=sDATA[LC2]_

< 272, 900064“”““*“W STAR1=TARL=TAR?

| 278, oQui00 "DATA[DRS1]=GETE. [STAR1]

?stf‘w2f4;'wlﬂﬂi1n’ CELL1=GETS.[STARY]

| % 275, 000420 11 LC1=PLNK(LC1] A

MULT.
1 MULT.
COMULT.

-MQEIj

MULT,

N
'_) .

[]

[]

[]

[)

[]

(]

[] "MULT.
(] MULT- B T '3
[] MULT
()] " MULT.
[~] MULT.
t]

[]

[]

[)

[]

[]

[]

[)

()

[]

= e ~ee e e | o, |
|
H :
! i

b’v—-f—n

| | MULT.
| &/6., 00Uls0 SET=DRS1,DRS1s= DRS:,DRSQ LKOTW [VAR) oo Y p MULT.
f“‘.”f7277§ G0ULE2 | - TAR1=DATAILCLl),TAR2=pATALILC2]

. 278, 000124 - STAR2sTARL®TAR®

[
[
{
[MULT.,
[

279. 000150 CELL2=GETE.[STAR2] ‘ {
[
[
[
L
[

o
o
wer, 0 @
MuLT.
® 260. 000160 DATAIDRS11=0KAD. [CEL L1,CELL2]+CAR MULT. ®
~ 261. 000170 ~ CAR=QKADT21,CELL1=26ETS.[STAR?] LT
262, 000189q “ PLNK[DRS11=pRS2, NLNKDRS9]=SET IO
ebd. 00010 12 SET=DRS1,DRS1=DRSZ,DRS2=LKOT.[VAR])

284, 000200 DATA(DRS1)=QKAD.[CELL1,CAR]

MULT,
MULT.
MULT.
MULT,

-1 . - .
- . !_ ~ i ¥ M
L " - i i s
' : ; o - ‘
i | ? X , 3
1) ’ ' Co ’ . v
) " ! !
. - i .
. . . i

| | . . .
T |) P '
e o . o .’ 1 H . ea
' S i . . S ;
. K i o ¥

g
o o

u I_|_L]_ M '—-_

| N —
LT _][lj"_u

Hl_J (S —
O R o R
i
|
i
d B |

O O

1

|

L [
&
B 5
i

o
=

265,
266 .
267

2686,

2&9 o
290,
291,
2%2ﬁ

293,
29é

295,

2vé,
2%7 .
296 .

29@ L3

300.
S01,
S02,

MBEba

SU4.

okl

0grolQ
npl220
Q0LZ2&0
G0LZ2s5

00L2s8

LABL TYP

138

14
17

000239 -

gplz4p
apl24s
0ouU250
No02ss
Nolz2ép
000270

00U2E0

000290
N00300
NoU310

0060320

000340
000350

000010PREZ,

000015
000020
00uG&o

15

16
18

~LC1=GETE,

19

20.
22
23

12
‘15.‘

TYPE=2

. STATEMENT

CAR=QKAD([2)

CELL1=0
STL=nRS1,PLNK(STL)=0, NLNK[STL]-SET
Lﬁiho[DRS2] | |

1=1c=c+1)

-1STL=RELZ.ISTL)

MULTI1]=(1000*1STL*FINL]
ISTL=RELZ.rSTLY
PROD=[1000=1STL+FINL.

1-0
LC2=PLNKTLC?2]

[EIG],CYCL=CYCL+1
P=3,MULTI11=ADD.(F,PROD,MULTIL]]

PROD=DVFA, TPROD]
FINL=STL=LKOT., P VAR)

PLNKIFINL]= NLNK[FLNL1=DATA[FINL]=0

DVFA.IMULTI21),MULTI2)=MULTI1]
DVFA.IMULTI3)I,MULTI3)=MULTIL]

PREZI1] | o l
PREZ111=PREZ(2)

[
DC=1,PLAS1=LKOT.[VAR],PLAS2=LKOT, [VAR] (

PLNKI[PLAS11=BOX=GETE, [PREZ(2]1,ZIP=GETS, [PREZC

000040
00U050
00U060
000070
. 000080
OOfDGOw_lﬂ——f—NLNKfDLAQiTQO»LKIh.[PLAS?]

16

T p00100

- {LO=DO+11-FREZ(1])
PLAS1=PL AS2,PLAS2=LKOT, [VAR]

- 121P=7IP

[€11,NLNK[ROX)=FLAS"
DATA[PLASL11=0,MCT=PLASL,NLNK[PLASL]=PLAS2

PLNKTPLAQiTQM@T

(

[

[

(

[

(

(

(
PROD=PREZ.(CYCL,PRQOD] | - E
: . [
[

(

|

[

[

[

[

(

[

'
i
" '
I

C ZERO

131

! .
g
|

- 000110

PRFZ[il‘[iﬂoﬂ*!ZIFtplA511

— NS S —_—
e e o e s e e
’ A
Y

t
i
!
[
:
[
t
z
t
i
[
t
[
(
z
r
r
r
(
i

1
; .

- NOT 0

|

) i .

PAGE 9,

PLUS

23

2 - . v
- ,‘. .

'—l
O

)
)
]
]
)
)
)
]
]
]
]
)
)
]
)
]
]
)
)
)

t
[
[
[
[
[
[
[
[
{
[
[
[
[
[
[
[
[
[
[

MAY 27 66
MINUS

]
]
]
]
)
]
]
]
]
]
.
)
]
)
)
)
]
]
)
)

 ELSE

121
]
)
15,
]
161
)

]
] .

]

2 10)
]
187
]

15]

-
o

] ;

19)

141

i
§

MULT.

MULT.
MULT.
MULT.,
MUL T,
MUL T,
MULT,

MULT.

MUL T,

MULT .

MULT.

MULT.
MUL T
MULT.

MULT.,

MULT.

~ MULT.

PREZ.

PREZ,

PREZ.,

"PREZ.,

PREZ.
PREZ.,

“PREZ:

woLT.
MULT.

PREZ,

-, ~— =y -y
t

P el e Ctl el Bl Cd Snd Bs
! |

|
r . -

9 % R e N ey e e

—PREZ:
PREZ.

. i
. g
] el et et d e e s t—ai

__Pﬁez,.ff;wam; _

O O O

o

: .
;
/ . . : d b i
\ ¥ % -] M T, 1 1 b
| : .
: : ;
) ; . : ;

o O

319,
320,
321.
322,
323,
3&4}0
325,
526
327.
398,
329,
3‘500
331,

o 3:{320

383,
334,
335,

Sk LAeRL TYP

T00010CKAD o
oobo=0
000030

O0U010GUES,
000020
00003
ngooeg -
nolosp 12
QOouUl60
000070
o0000e0
00009p 11
gg0inp
npgli110 10
goulis

Np0120

000130

000140 -
no0i1s0 15

000170 16

. 'ODOOQUREAD-
15 CRDINPT

000030
800040 W
000050

NgC0én
00U070 10 PL.
an00es 11
soulso 12

0gulio 13

000150

00013n 14
0O0ULl40 16

000145

~ DATAIFIRSTI=INPT,FLNKIFIRSTI=PREV, C
PRES=AFTR,AFTR=LKCT , [DUM] , L]

~ PREV=PRES

IFIRST=FIRST

, fo“- ", o | PAGE 100

STATEMENT C ZERO NOT © PLUS

LCT=CKADI1140KAD[2) 1 S N A R S

OKAR(11=GETE, [LOT] o | e [] I S

OKADI2)=GETS, [LOT) - e N A R T |

QU=QUEST11,KTe0 gi\\f_ |) : L)
Ql=FT=LKOT,[0]),G25LKOT.[0] |] (] [

~ PLNKIFT)=0,NLNKIFT)=z02 [I S N e
- Gn=GETS.TCUEST2)1,10=CHOP.(QD] [S e
‘DATAIQL1=FRAK.FIQ,DATALQN]] [1] [)
[KT=KT+1]=CU [10} [) []
16=10-1 (] t 113 ¢]

16=3,0D=NLNKIQD) [) [| I
0501,01=02,02=LK0T. (0] [] [] t]
- PLNKIQ11=Q.,NLNK[Q11=02 (IR] t]
NLNKIQLI=0,LKIN.[G2) l) [] t]
IFT=FT-GUS=[1000%]FT+Q1] l] [) []
MGUS=REFK, rQUS [] [) []
BAX=LRGF, (MQUS,DIVI31],BAX=DIV(3) (1 r 15 []
QUES[11=-1,QUES[2]=sQU+1 [) [) [)
OUFSI1)=1,CUESE2)=0U [) () []
MGUS=DVFA.IMQUS] [] t I § 1

]
]_,‘

NUM=DUM=0

9696=INFT 16

MAY 27 &6

"MINUS

|
. - . - \

t

R Y S

?
i,

HHHHHHHHHHHHHF“C—’“H

ELSE

QRAD.

1 QUES,
QUES.,

|

GUES.,

]

]

]

]

]

] QUES.

] QUES,
%] QUES.
1 QUES.
~] :QUESQ

] QUES.,

] ‘“QUESQ

]

]

J

]

)

. QUES,
 QUES.

QUES.

QKAD .

QKAD .

QUES.,

GUES.

] QUES.

;%;ﬂ. READ'f @»é&WW,f
7 READ, —

" READ.

@
|
i

® & &

QUES. . w-9
P s e - B U 4 { =
a

[
| [
NUM=NUM+1 | [S
| [
(

1000- ABS.IINPTJ 10

H‘;
of

READ,

NUM=1q { 1)

READ-

- o ' e e i—-*r_—.&c—. © y—
[WS Y - S) R — b ndil S

.
s e f—.c—!r—-lc—nﬁ r~—

ERRCR-DATA-OUTSIDE ALLOWABLE RANGE 1]
o [
PREV=0,FIRSTsPRES=L.KOT.[DUM],AFTR=LKOT, [DUM] I]

NLNKIFIRST1=AFTR []

""!"'-‘.
[==]

—
e

DATA[PRQQ]”INPT»PLNK[PRES]=PREV: c
NLANKIPRESI=AFTR

-‘.' ~
~ - e s

[

| [
LAST=PRES,NLNK[LAST1=0,LKINJ[AFTR) L

(

. 2E o R 3

St S Bt Gk fed Ch Cmd s}
' 1,

I T

Ll e

— e~ -

a
- ot HH!‘!-I'—‘C—!'—'
! !
: ,‘
i

t

i

()
ft—— AEAD—

[

i

[

i

]

1 READ,
.
] READ,

-~ READ,
o READO

1 READ,
15) READ,
] READe
)

READ,

= - G, U U ULIS
H|_]' LE."x'u_u_]E, ". S L

oo

SEQ LARL TYP

goul=p
notiéeg

O0UO10RELZ.
N00020 2
600030
000040

SIGN, [READT1]])

STATEMENT
REAR(1)=(1000#1FIRST+LAST]

5

SHELEASE LEADING ZEROS
DATAIRELZ1])
NL=NLNK[REL Z (1]

 LKIN.IRELZI11]
- 000050 -

RO UI) S,

REL7[11=NL,PLNK[REL71111=0

~_.,,__.G[1{)‘.,0.;91.-!2)«‘.#

n000Z0
00u030
000040
000050
oouben
000070
000080 11

10

 OO0UO0L1OREPK, G1sGETE.[REPKI[1]),LEST=G2=LKOT. (0)

G3=LKOT.101,PLNKILESTI1=G3,NLNKILEST]I=0
DATAIGZ)=DATA(GL]) G1=PLNKI[G1]

DATAIG2)=10+DATALIGL]+NATA[IG2),G1=PLNK[G1]

DATA[GZ)=100=DATA(GL]1+DATALG2]),G1=PLNK[G1]

G4=2G2,G2=03,G3sLKCT, (0]

~ PLNKIG21=GZ,NLNK[G21=G4
REPK([1)=DVFA.IREPKE111,LKIN.[G3],PLNK[G2]=0

1G2G2,REPKI11=2t1000«TG+LFST)

TR Py pey gy,
L J
'u L u_ . — . “." .
; o

11)

11
11]

.

[

[

[
ot

TR . TR e ™ e i ee

o B T e I e

i N B I)

Lo I B T R N R I S
N}

368,
366,
370,
371.
3/2.
373
54,
375,

367,

_ovbzo
000030
000040
000050
N0006D
006070
no00&o
00LGS0
000100

11
12

13

R I

RFT=RS1=GETE . [RESTI217,R25LT=LKOT, (0]

. RSEaLKOT,[0),PLNK[R2)=R3,NLNK[R21=0

FRe1, (RSTaRESTI1]] =1
DATAIR21=0,RSTsRSTm1 |
R4=RZ2,R2=RZ,R3cLKCT.101,PLNK[R2]=R3
NLNK[R2]=R4
R43R29R2:R39REELKCT.iO].PLNK[R2]=R3

- NLNK(RZ1=Ra,DATALR2]=FRAK. [FR,DATA[RPT]

[FR;FR+1]“4
FR=1,RPT=P| NK[RPT]

——

3566. 00UGOLOREST., -

j

N it ot i) Cimid

B ¢
om
j
N

|

—Mv P WY

B e
i <c'

| ; :
] REPK. S |
] REPK. . |
] REPK. Q@;ﬂ ,%
]_ wREPK- ";;% i
] REPK. o

]

] F

1 RE

i
Lomed)

Lan RN o) Hﬂ"__“-ﬂ"“'"*ﬁ ~~%

e ‘ s
i

: | !

L) -
: |

'—‘r—yo—‘v—‘f—-ﬁt—-'i—‘c—sc—.,

N e 1

MAY 27 66

skqQ LABL TYP STATEMENT wNOs ELE

O

u
SR Sy

Q

376,
377,
378,
579,

000110

NO0T15
00U120
00UL30

14

PLNK[R21=0 '
IR=RELZ. [R2),REMP=[1000%{R+LT]

REST[2)=DVFA,[REST[21]1,RESTI[1)=REPK, [REMP]

DATAIR2)=FRAK.[FRsDATAIRPT)],FR=FR+1 "

el Samd Gand Somal

360. DOUOZ2ORITE,
- 381.
.- dbe.
. 383,

384,

385,

366,

387.
368,
366,
360,
391,
392,
393.
394,
3965,
396,

- 398

000020
000040

000050
nol0éen

NOCOES

000070

00U0RD
000085

000UGS0

000100

000110
000120

N00130
100140
0001%0
000160
000175
000180

10 .

12

T21,BLANK=48,MINUS532,L0C=GETS, (RETE(1]]

DATAILOC)
AlD)=MINUS

Aln1=BLANK

11

14

15

16
17

13
18

19
| T

MAKFE=ABS . [DATA[LOC])]
ALTI=INT . IMAKE/100],
CAlT+1)=INT. [[MAKE/10)~A[TI*10]
AlT+2]1=INT, [MAKE=[A(T)«100+A[T+1)w101]]
1T+21-119
AlT+3]1=BLANK
KCUNT=121+1T3T+4)
LCe=NLNkTILCC)
S=T
AlQ1=BLANK
12R8-1S=8+1]
LCe=NLNKTILCC)
T34
ALFCUT. [%AY)

-
. x
M
‘
.

i i P Y R R Sy W N N S R W S —
: ;)
. i .) .
EE | .
: | .
Q ?; ‘ ‘ . 'l ¥ : f O
atis o . ! i 0 1 &
X :
; i
: : ; . ! .
i
N |

400,

401,

402 .

406,
404 .

-np0030
-~ 00u040

000050
00U0&0
00U070

11

399. 000020SIGN. = | Ce=GETS.[SIGN[1]))

- _1‘._,O,';'L;;'.;,;.'Zf;:';LD A T A r L 0 C) . L
~— DATA[LOC]=ABS.[DATA[LOC]]
LCe=NLNKTLCC “
DATAITLOCI=-rABS.(DATA[LOC]]]
LEC=NLNKILCC]

e
Luni e BN ans BN st BN 05 ann B aae DR oo B oo ST Ty Y Y Yy ey L poe B e

g
. . .
) 1

P
H

- e
e S X

[SSSS I W)

-
\O O

—

1e)

Sl ol Gl b

| gy ey ey . gy

o0

e N rY-n &~ .
[}

1
e - B - ’

1

11) -

1 RITE. |
1o RITE, — = |
RMIEL @
RITE,

RITE.

RITE.
RITE.
RITE.

RITE.

RITE.

RITE.

RITE.
RITE.

RITE.

RITE.

RITE.

SIGN.

B e Y N e N B

B beell Gl G Sl S

|

i

Lo 3K o TN o TR o W,

-
Gt Cnadd Rl et gl el

STGN,

SIGN.

SIGN,”'W‘“"M~-

~SIGN,M‘f”1TJM~mM
SIGN.,

[
I
|
|
|
|
|
f:‘i;
‘g
i
|
!
|
i
{

410, 000070SUBT.
411, |
412,

gkEQ LAEL TYP STATEMENT
LCAS=SLATI1),ITs1
DATA[ITI=0 - o
PLNKIIT)=IT=1,NLNK[IT]I=IT+1
[IT=1T+11=IN+1}
NLNKI[]T=1)=0

e e A

405,
406,

A0U0PNSLAT.
0é&, 000030 11
457, 000040

a0g, 0ooO0sgp-
409, np0CEQ

__HNAR=SUBTI(11,C8IN.ISUBTI[3]]

K " SUBTI[1)=ADD.[SUBTI[1]),SUBT[2],SUBT[3]]
00u040 ~ HNBR=2 |
no0osp 11 CcSIN.ISUBT(3)]

0QuUOZD

418,

414, O00U320ENC END

et = T e R S e T ——

ke x*SYMBOL TARLE*ww»r
| o ADD
_ RDRs
~ BARO
BET
-~ CSIN__

CELL1
DATA
DVFA

DRST -

GETE
G2

DIG
INPT

ET

FT
IFIRST
FION
FJON
DIVR
IFRST

HOLD

- DpV

ADRS1
AFTR
BL ANK
AJ
CHOP
CELL?2

DASN

DIV

_DRS2

FINS
DM2
GFETS
63
HLOC
FRST
1K

i - bt A R - s s ey R o A Rt S TR s 54) .

| . MINUS

. .=
1 ! ‘
. | |

T — g—) g——
-
-
s
-
.
[

ADRSZ2
BOX

CARY
CAR
| | DOOM
S DUM
| CYCL
DM1
FIRST
DVD
G1

o HNBR
G4
IT

DOMS
DIVID

FON
BUoT

CNTR

10
END
INT
DIvD

INDX

" 4
(.

- [I I—.— L LUl

s et 2 e R e T e i W Sl = M ok {——

ELSE

. ¢=u N -

®

SLAT,
SLAT.
SLAT 0

Y A At nd St

SLAT.

f

s . - ‘ B
T e e e e e R L SRR LA .

31 suBT.

] SUBT.
SUBT.
'SUBT.
SUBT.

g

. . ti : E : : ’ : . :
} . .- . N

. . B . ! . i

. : | :

!]
|
1 ’ :
} . Ty SPRLDSTTULDY TR Rhuil, o :

Lo
. . . H N
. : i 4
! o) i ' :
. ; ‘ .
. ; ‘ |
; . ‘ ‘
- ‘ - :

. wpVD
 om

 ABS

171P
BAX
16

- LKOT
- LoC2 o
MEMRZ2

MAKE
LoC
LC1
LOAS
LT
PREV
PLAS2

RS1
R2
R1G1

Y 2 L L
‘ S : i : : "
; : : . |
. :) o ~ : .
: . : R) T [l
] . . ST . . [ﬁ :ﬁ L
[- : . i ‘ :
:) ; | ; :]
. ! . 8 , . { |-
. . i R B N
: - R . . i - ' * i : {
. : .) . : 1 . . L : !

- REMAIN

Q2

N
RADR

M2

P

816N
STRT1

TEMP

*SBT1

‘SON

~ 8TL

VAR
“TR

WIG

‘B1G
JK

KOUNT
_LisT.

LRGR
MULT

NLNK

0c
*LS

PLNK

PRES

QUES

PVR
READ
RITE
*RQ2
R3
R1G2

ap
PAJ
NxT

QuoT -

M3
LoT
SLAT

STRT2

tSBT?
TYPE

*SP
SL1
TL
TDVR

PAGE 14,

- MAY 27 66

18TL

IFT
KT
LKIN
LOC1
MEMR1

MINUS

NUM
MOT
LO2
NADR

PREZ

PLAS1
QKAD

LK

REPK
RELZ
RPT
R4
OMR
01
LEST
MPY
MAX
M1
PROD
QU

SUBT

TEM
THOW
SET
SYPE
SL2
SUM
TDVD

. STOR SMALL TAR1
X TAR? ” STAR1
B STARZ | QUS MOUS

— Y - - ~ RST IR .
v wf%iﬁjALFOUTwmm““1. . N '

{
|

:
T
! v
A P '
!
[
i1 . B H
! . i
; : i :
N

|

 UNUSED MEMORY FROM [OCTAL] 14223 TO [OCTAL] 14325. s e

o's

3.0029500+05 §Y=

SO0
2908
298

297
296
29

210 359 640 001 000 021

READ.10]

210

359
660
1

21

2.9429100+05 $YsREAL.(0)

294
293
297
291

W:p§3,610 599f087;;

© 290
286
721 399

-33
-610
-599

-87

© 2.9028900+05 $AJZREAD, (0]

721
399

2.8828700+05'$B=READ.[0]

288
| 287
721 200

 2.8628200+05 $PAJU=RE

286

285
284
283 “
282 o

=500 000 100 637 119

721
200

=500

S 0

-100
-637
-119

s ek ol iy iR

THE PRECISTION ARITHMETIC SYSTEM

AD.[O0)

Y
iy
mp——
¢

300

299
298

297

296

204
293

292

290

288

286

- 285

284
283

299.
298
297
296

295

293
292
291

" 289

287

285
284
283
282

e i prR———— RRFSSAPSPAL T R B B P T S L A N P ST NS SN AP SRS 3 S

1) : ‘ ‘ [
o _ R B
. B ") l

| . -
(e h
|
i
. ¥ |
ey . iR : '
el |
i [
i
a |
. : !
o i
I
: |
i ' . Il
{
. VI
|
|
—qr
: 1
. il
) . |
p— = . =
. . I
1
1]
- N
N oL
E
:
]
[l
|
’l
AAAAA — l . I

Lo
oGt el

'
¢ Q
T e

SRR RTIEI

1.6000000+00 $2=1 2,7628400+05 $SUM=ADD.(Z,X,¥Y] . e IR

27 o 210 0 | 279 S - R -
e77. -~ 359 276 278 u - T |

o 27R f § 626 277 | 270 - | «
279 290 278 280 ~ - o
€8 400 | 279 281 . s |

|

J b K i
B S U - T :
| ' w) B i S) - o o - \ . <

I - T T T . o T -

i) ' N e ez e e e T T T T T T P ,] .
Ly o SR
J 1 . ; . : . o A

Iy ‘ : . . - -
| 210 359 676 4 X " u
} 59 62 34 - , o

i .

_— . L .
=5 .
J p ‘ X .
|]|| . -)
i .
!." .
" . -
- .
:- : .

! . : ‘ :
] , | . :
1 . . . ‘ e o L

) oy e - - g
—; o e I e et ¥ - . . b‘\ - . d - ? - T e .- i ~ Pita] .) . S . e
] KR |
" . g . ' .
§ o N . o |
) . . .
E PP
'I‘.' W) v
O - ; 7_‘ » ~) -
7) ’ : ' . £3
’ : o ~h N)‘
. i e i
- i L o - [
- :) . . ‘3
5 N ; . -
i ' .
r b‘ ' ’
. h ' & ‘ h) % '
f - c1h,
J - - " -
; JR e e T __._'___._...__,..*,_.__‘ . .
* i . -
- —— 4 4 -
NS, - ; . ' .
¢ : - v . :
' ’) de
B : h T B o e
) ' .I = . V
-* I"l L
. | B h | | |
Bl
E | .
b
| g : S T LTTIATLLLIL .
——— - x 2t -
‘ !)) " ’
r» e - - “74 . .
. ' ‘v
B N- .]
o i o) —) e - ';r
N e . ' R - N .
N . oo - E — .
s Bamiiias A - _ _ _—) —ooTrTTT —_— . PR
'— N -
L i T - N - e e voae e
- o) T~ . .
. o e e
: . : o :
, ‘
r -) ‘ . A
. e w -
- ' t“~\
4 . g
- " ' . y .
o R T S U . e . .. - o C e ey)) s e e
' 1 ' - l
¥ "’ ' . y .
E P . ' .
i _! , .
. ! P
. . . 4
B .
\

e

Kot e

sAJ,B]

-

2.8728700+0% SB=SUBT. |

=3

/A

(on+00 @

0000

3

3

0

l
1
I

4 |

2

!

| I ——
T e o e e o B —

|
)
1

B R w0 IO A S

dea

e A m = _ & =

)
; .
.
i -
3 s)
{ ' s
. .
v ¥ -
A M
t ! "
L - -
1 N . - .
3 |
L .
t
3 . R '
' < " -
: ! w
j Do N !
' B 47
P
1 - A)
' - . p
{ - - T
P . .
! i
T 1
t i "
H ' .
; !
i -
§
i _ 1
'
.
‘
\
1
3
.
.
H
-
N
1
1
;
IR
H
1
1
'
t
1%
H
i
i
1
|
!
{
;
1
i
A
!
H
H
!
o1
i
. H
1
]
!
f
‘
. i -
H
i
1
¢
i
H ~
f

.
3
V7 s .
- -
Y

et = N — =, Lo

(1]

|

-t endd - Msumaiy

1.0000000+00 $7=1

.

REE AN
i3

LD # J 2.3

D

*
.

N R R RS

=

\ERAN B

8-

/
\

{

2.6028800405 SMPY=MULT.[Z,SUM,AJ]

151
753
224
118
408
843

666 .

st

PRI

0

260

269

270

271
2792

274

u 269
270

271

2702

© 273

- 274
T 288
0

a5
- . . ~ SR
~
a
<
.
e

ey ’

TT

RS

R

§
:

Nt ot o

—

o P s
i

T

ieGDBQQQQ%OG %2?1 2‘5025300*05 SDIVIDéDIVJIZoPAJqﬂl" IL*J].T" °*§? f7 ’*“*' | ;j'fﬁ; Tf‘f | S

2510 o . =254 0 L o | - N _
T S » oo "
251t = .ok | 250 : 25 | |
T 257 o o 2 s o |
pen £2f D | 251 3 , | |
. esx -121 2 : : o
- , e | ? ‘ . 59 0 f |
v - : - - ‘-;
. 2 5 2 . - . 4,.,.. ,.,‘_.‘ . g . - ,
 Te>1 256 787 121 e o T e R |
2 £ a :
¢ 4 .
- : v .
A
> e
’ l . :
= . o
i ~
| , el P o
= By - . - o -
| I' - ¢ ‘ ' -
_|l‘ e . T - N - . . . i ~ - N - 5 - RS A - —, nJ R = e _ i ") B
J!. N
! b .
- W i
o (3 ~ . _ e _ o _ - _ . = = - - -
| - . ki ! & T
) p) H .
’] . . ——— f - - . . ;
h -] T
R
2 , .
=l ‘ . x
D
] -
It " o
3 .) S
I] 1) B : i -
’ | . e . . . - ’ A 7
Iy ‘ .- ’: #
_ - - .
7] - . . T T - e
]r , tE he ’ . '
} i ; - ‘ .) il e ' - B Tt b R LYV Y - ST L
E — SRR . |
_ . : _—
j e d . “ -
| | RS ’
| N
] - :
o
=l - - . -
7 S A
1 -
= e . ¥ e - "
i - . IS T .
’) o« e . . -
8 o - e ‘ -) ’) . _
i i - , ¢ —~— — S Gm e o
n — T T T T T T T T .) —— s . e S '
i —em B [e e e : Lo et s e e) rrnn
| R - o e e e+ .. S
o . e et - [. A ; .
[. T ‘ S 1 - ' :
. ¢ 1 . i) - M
I ’ . : - ———— e e e : . .
] ! R L 1 \«
Lo : o : B . 1 "t . ¥ B
: ' ’ Y : v : ‘. k 5.7 K i B '
| ot N i - * . ' p - S K ' .
: - : o " p : ! e o
' » E ! !
' . ' a too
‘ ’ % v,) : o
. o i B ; l :
' ! [. ; .
St ‘." N Sr . 1 ‘ ‘ g |
2 a] " . x ¢ o ; _| »
: ot i N i ..H Ts I ' t E
o . , T : s) (-
e . L -
. YN , . I
. Bl ’ . ‘ J
: . ! o
) : =
| [d
i = TR I e e —_ o T . e ——
— —_ . . —_— —_ t i q.. h il el E
— T :_E - —I'I||'|'_| n L ll c
— .1
- - NN — " nn_m I
i nr

B e e = T - T

- 2.5425400+05 GREMAIN o S e I L
254 ‘;4ﬁ4 | : | 6: o '_,.. o | 3 N
-04n o i e - | . o o |
TYFE #END# STATEMENT EXECUTER.+ o . S | |
CARDS REMATNING IN DECK AREw= — . I e
W S o
J MAY 27 66 15 31.2 | .. |
| | | | - |
:|j | ‘ | - | —- l- - . i 3 3 N .
14 B e
| : e e R ‘ . ‘ ~ " .
&) J Lo ’ ; = .
| b | . , - | SR
ju-'; —_ oy) ‘ - | |) T T ~ ‘ e) o A e T P N - # : - i .) N p
jf-, B B : C | - ’ | '”"f; EET o) ‘ o .
E! : . 7 — s ;
| - - B - e
j . - ’ 9 ‘

- _Fq_ﬁeﬂ_ﬂ_fﬁ_ﬂ_q r_ﬂ_ﬂ r_fﬂ_fﬁl IrLﬂ_f—l

-\"——/

|
i
|

'BIBLIOGRAPHY

Berkeley, E. C. "The'Programming Language;LISP:

An Introduction and Appraisal." Computers and

Automn. 13, Sept. 1964, 16-23.

Comfort, W. T. "Multiword List Items." Commun.
ACM, 7, June 1964, 357-362.
Gelernter, H., Hansen, J. R., and Gerberich, C. L.

"A Fortran-Compiled List Processing Language."

J. Assn. Computing Mchy., 7, April 1960, 87-101.

McCarthy, J. "LISP-I-5 Programmers Manual."

.@.
M.I.T., 1960.
Noonan, R. E., Smith, W. A. Jr., Rayna, G. "LEWIZ
Programmer's Reference Manual." Lehigh Univ.

‘Computing Lab., Sept. 1963, revised Oct. 1965.

Weizenbaum, J. "Symmetric List Processor.' Comm.

ACM 6, Sept. 63, 524-544,

Q T 62
. VITA
Andrew J. Kasarda was born on July 13, 1940, in
the town of Phoenixville, Pennsylvania. His parents
are Mr. and Mrs. Andrew Kasarda Sr. He attended the
Pennsylvania State University and recelved a B. A.
Degree in Mathematlcs in June 1962 He taught R
"Mathematlcs and Computer Programmlng at Shlppensburg - §
State College from September 1962 to August 1964. ?
S J

	Lehigh University
	Lehigh Preserve
	1966

	A study in the construction of a precision arithmetic programming system using list processing techniques
	Andrew J. Kasarda
	Recommended Citation

	tmp.1528232050.pdf.JLI2Y

