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A FINITE ELEMENT METHOD FOR CALCULATl~G 
STRESS INTENSITY FACTORS AND ITS 

APPLICATION TO COMPOSITES 

by Spiros George Papaioannou 

ABSTRACT 

A concept which allows the development of efficient 

finite element techniques for the analysis of plane elastic 

structures containing cracks is discussed. It consists in 

combining a special finite element covering a small area 

around each crack tip, with conventional CST ·elements in the 

rest of the r·eg:ion ... :F·o·.r· ·t..:he special element a pair of dis-

·.·p.lacement f.(rncti:o:ns. is cha.sen·, which adequately represents 

t·.h e :·s: i n·g u l a r ch a ra ·ct e;r· ·o· f t: he el as ti ,c sol u ti on at the ti p • 

The application of th·t~ concept is illus~rated through 

a specific numerical method developed by W. K. Wilson for 

the calculation of mode I stress intensity factors . 
.. ,-' 

Wilson's method was coded and used to analyze an infi

n·itely long strip under tension with a line cr,ack perpendic

ular to its axis of symmetry. Circular inclusions of dif

ferent material properties were assumed to~ b.e present near 

the tips of the crack and their effect on the mode I stress 

intensity. factor w~s investigated. 
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It was found that more flexible inclusions increase 

the intensity factor while more rigid inclusions decrease 

it. These results are quite similar to those obtained by 

analytical methods in an analogous problem involving an 

infinite sheet, but in the case, of a strip, the influence 

of inclusions on the intensity factor was found to be more 

pronounced. 
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A FINITE ELEMENT METHOD FOR CALCULATING 
STRESS INTENSITY FACTORS AND ITS 

APPLICATION TO COMPOSITES 

by Spiros George Papaioannou 

I 

ABSTRACT 

A concept which allows the development of efficient 

finite element techniques for the analysis of plane elastic 

structures containing cracks is discussed. It consists in 
l 

combining a special finite element covering a small area 

ar·o.und each cra·ck tip., with convention.al ·c_·ST elements in the 

res:t of the region .. :F:o:·r· ·t:he special element.: a p.ai.r· pf dis-

•:p··lac·e:ment func;:t_i·ons i"s chosen, which adequa·te.l_y re.pr:e .. s:e:n·t.·s 

the :s t.n g·u la r c::f1 a ·r.a.ct::.e.-r ·of the el as tic s :o .. J.q t. i :·o.n Q ·t ·t h-e t. f p. 

T: h e.· a p p l i c. a: t l o n :o f -t;n ;: s :c·.o n c e p t i s i ·1 l u s t r a t e d t h r o u g h 

·:a :s:pecific :n·u.:nre·ri·cal. :me·t·h·-od developed by ·W:_. K. Wilson for 

the ca l cu 1 at i :on of. m o·d·e· I s tr es s i n tens i ty fa ct ors . 

.... 

Wilson's method was coded and used to analyze an infi

nitely long strip under tension with a line crack perpendic

ular to its axis of symmetry. Circular inclusions of dif-
. 

ferent material properties were assume~ to be present near 

the tips of the crack and their effect on the mode I s~ress 
p 

intensity factor was investigated. 

1 
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It was found that more flexible inclusions increase 

the intensity factor while more rigid inclusions decrease 

it. These results are quite similar to those obtained by 

analytical methods in an analogous problem involving an 

infinite sheet, but in the case of a strip, the influence 

of inclusions on the intensity factor was found to be more 

pronounced. 
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1. INTRODUCTION 

The distribution of stresses in bodies containing 

cracks is always characterized by stress concentration in 

the vicinity of each crack tip. In general, the stress 

field around the tip of a crack has received the utmost 

attention, since progressive increase in the magnitude of 

the stresses at this point eventually results in additional 

growth of the crack and catastrophic material failure. 

For plane elasticity loading conditions, the stress 

field associated with the tip is described by the asymptotic 

.. equations 

-Kr 8[l .. e . 38] 
1 c o s 2 - s 1 n:2s 1 n 2 - l -(27rr) 2 

1 -( 21rr ): 2 

1 - . 

(21rr) 2 

(21rr) 2 

, .. f T.) 

Cost[· l +s ,· n!s ,· n3t,J··._. + J(I I • .e . e 38 c. t. .1·· s , n:2c o s '2"c o s 2 
{:21rr )-~-

(2} 

. e e . 3e s, n-cos-co,.s. · · · + 2 · 2 .· ... 2 
. ... 

, I· 
.. _"? -

. :S': [ 1 • e . 3 e J 
CO·S:z·.: -s1n2s1n 2· . 

(21rr) 2 

The term "asymptotic 11 comes from the fact that these 

equations become increasingly more accurate as one approaches 

I . . 3 

1. 1 

.... ;~ 

·, 
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the tip. 

K1 and KIi are the mode I and mode II stress intensity 
factors. These factors do not depend on the coordinates r 

and e and their magnitude is a measure of the intensity of 

the stress field. Thus, the prediction of strength requires 

that the stress intensity factors be known and, therefore, 

considerable effort is currently being devoted to the devel

opment of computational techniques for their determination. 

Analytical techniques are very important, but they are 

applicable only to idealized geometries. In many practical 

situations, as for example the problem of a cracked elastic 

strip under tension with inclusions examined in this thesis, 

analytical solutions are very difficult or even impossible 

·t.o. obtain. For these pr·o'.·b·J-e,ms ·nu:,meri:,c.al: techniques are 

i n c r e a s i n g l y b e i n g u s e d ., :b e c, a :u s ·e o f t h e i r a b i l i t y t o t r e a t 

:quite gener~l g·e·.om·et·rit· -and: loading conditi·ons. These 

techniques .are almos·t ·fnvariably based oJi t·h·e method of 

finite elements. 

. ~-

r. 
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2. THE·METHOD OF FINITE ELEMENTS 

Since most numerical techniques for the computation of 

stress intensity factors are essentially variations of the 

method of finite elements, a brief description of this basic 

method is necessary. A more detailed discussion of the 

method can be found in reference [l]. 

The two-dimensional contihuum is divided by imaginary 

lines into a number of "finite elements". Usually these 

elements are triangular but many other shapes are possi.bl·e: 

and may be found useful for special purposes. 

The elements are assumed to be intercon'nected at .a. di.s:-

c r e t e n u m b e r o f n o d ~ s l o c a t e d o n t -h e i r b o u n d a r i e s • I n t h e 

c a s e o f t r i a n g_ u l a· r . e· ·1 em e n t s , t h e o o. d Efs .cc, i :n c i d e w i t h t h e 
,. 

corners of t·he- :tr'i .. a:n·g_l es. 

Within each element, a pa:ir of displacement fun'·cti·ons: 

is chosen, defining the displacement components u,v at each 

point, in terms of the displacements at the nodal points of 

the element. 

Through the displacement functions, the state of strain 

within each element is uniquely defined. Since the elastic 

properties of the material ~re assumed to be known, the 

state of stress is also defined. -~· --

.5 



The principle of minimum potential energy can then be 
expressed in mathematical form and this leads to a system 
of simultaneous equations 

a rr 
= 0 a [ w. J 

1 

i = l , ... , fl· • 

These equations finally assume the form 

arr 
a[w;] 

arr 
= I [ e] - [R.] = 0 a w; l 

. . 1 . , = ., ••.•. , n 

where rre is the potential energy of each element e 

[Ri] is the external load vector acting on node i 

a[w J ~e.........,... ( [ K J [w J - :[.R:· ];) a[w
1
J e e ·· ~·· · 

LweI = [u1v;uJVJ···umvmJ 
T: 

i ,j, ... ,m the nodal 

po·i: n ts :o::f .e·J:em:en t. e. 

[Ke] is the stiffness matrix of eJ:enret1l e 

.... T . .... [Re] = f [N][Xe]d(surf) 

[Re] is the generalized load vector 

[Xe] is the surface traction vector 

and the matrices [NJ, [BJ and [DJ are defined by the, 
equations 

( 4) 

. . . . 

:( 7: )· 

:·f8) 



(w] = [uv]T = [N][w ] 
e (9) 

( 1 0) 

[a]= [a a T ]T = [D][e] . 
X y XY ( l 1 ) 

For the coefficient matrix in system (4), the term 

.. total stiffness matrix" is used. This matrix is formed by 

combining the stiffness matrices of the individual elements 

in a systematic way . 
• 

System (4) is then -s:oJ:ved numerica:·lly for the nodal 
: . ··.: T 

d i s p l a c em e n t s [ w ,: ]: ::·· [ u ; v ; J i = 1 , • • . ; n • 0 n c e t h e n o d a 1 

displacements are. kn:ow:n, ·the strains and the stre:s:.ses· with·i:n 

each element ca:n: .a:fs:o be determined. 
·. -:.:- .. . . .··· .. ·. 

·rhe s.olut·ion t.hu:s ·.o-:btained corfv.·er·:ge.s t·o t·he ex:a:c·t.. e:las ... 

t·.;.· c -~·o l ~:t·i :on· p·ro vi d ed that the dis p.l a:c·em.~.n t. fun.ct i-on s s:.a: tis:-

~-y th,~; f:o.llowing re·g..-uirements 

' ,. 

·(.a)= · the d·1: s p J.a:c·e·-me n t bo:u-n··d·a·· r_y co nd·i; t "i' o:·n s a re s:a t ;: s f'f e ·d 

. . . 

.tJ.i.s ,p· 1.a-ce:me·n t cont t nu,· t.y ·a:c :r:os s element b.o u n d a r i es 

i.- :S p.:r·e=s e r v e d 

(t·) the displacement field and its first· derivatives 

(strains) tend to the true fields everywhere as 

t h e n Um b e r O f e l em e n t S t ·e n d S t O i n f i n i t y . 

tf triangula.r elements and linear displacement 
' .. 

7 
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functions are chosen, the resulting element type is desig

nated as CST (constant strain triangular elen1ent). This is 

t h e m o s t f r e q u e n t l y u s e d t y p e o f e l e n1 e n t , s i n c e i t c o n1 b i n e s 

simplicity, flexibility and adequate accuracy for a wide 

range of applications. 

.. 

·'' 

.,· 
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3. SPECIAL FINITE ELEMENT TECHNIQUES 

Early attempts to compute stress intensity factors by 
i 

the method of finite elements have only met with partial 

success due to the presence of a mathematical singularity 

at the crack tip. Indeed, from equations (1 ), (2) and (3) 

it follows that the stresses become infinite as one ap

proaches the tip (r~o). Since for elastic bodies the 

strains are linear functions of the stresses, it follows 

that they also become unbounded. 

The same con c l us i on can be ·r e·-a ch e d from the e q u a t i on s 

.d-escri.bing the :d.isp:],a,c:.ement fi:e-ld associated with the crac.k 

t·:j ·p ~- They a r'e. :: 

:u ··= 

·., 1 
K 'I-_- . :2 -_e·--· e· 2 : · -.. · .. ; - .. (. -r: ·. _)· [ 1 2 h ( · -.. · · J· .. · ·]· :µ ·_ .:2II :·c:o·-~2 ·. -. -· .--- .· + . -- :s: T n:2.: _-

2'h, '·:_.··: :.~ 

... 

·a.·- 2 ·-. 
( CiO S--_2·. -_.) ] 
'' . . . . ' . . . . 

I t i s- e v i dent th a t the di s p 1 ace men t de r i v a ti v es 

( l-2) 

'!, 

(strains) contain the factor r- 1 / 2 which tends to infinity 

1-: 

9 

,.:::,--.~- ... 



for r-+O. / 

As a result, in the vicinity of the tip, one of the 

basic assumptions which ensure convergence of the finite 

element solution to the exact elastic solution is no longer 

valid. This is the assumption that the approximate dis

placement field and its first derivatives (strains) can be 

made arbitrarily close to the true fields everywhere in the 

region by increasing the number of elements. For standard 

CST elements this assumption i.s violated since, by defini

tion, the strain within each element is constant and as 

s u c h i t c a n n o t a d e q u a t e 1 y r e p r e s e n t t h e t r u e s t r a i n w h i c· h • 

i n c r e a s e s i n d e f i n i t e 1 y a s o n e a p p r o a c h e s t h e t i :P .•: 

Clea.rly, for the method o.f finite elements to StJcc.:e.ed., 

a ··more .accu:rate represe·n·tatio·n of the displacement field 

:a:roq:.n:-d. ·th:e tip is ·n-ee:d.ed.. T:h ts l i n:-e .a.f reasoning led· i n·ves

t i. g.-~to·r·s. t-o com.bi: n e a :$._p-:e ¢i:.a:l el enre-n t. (,o.r e·1 e,me n ts) covering 

the. vtci-.nity :of th·e: tip,. w:i'th sta.n·dard c·sr element-s covering 

·t:he, rest of the body. F·or the. sp·ec.ial .e,1.ement a p,air of 

displacement functions is chosen which provid~.s :a more ac,c·u·~ 
rate representation -of the tip singularity. 

Depending on the choice of displacement functions and 

the shape of the special element several variations of this 

basic technique are possible and some of them have yet to be 

explored., Those which were· investigated so far, however, 

l.O· ,. 
" 

··. 
' ., 
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succeeded in determining stress intensity factors with suf-

ficient accuracy. Moreover, nurnerical procedures are now 

a v a i 1 a b l e f o r t he c on s t r u c t i o n o f t h e t o t a l s t i f f n c s s 111 a t r i x 

and these can be utilized for the development of more power

ful techniques . 

. v 

...... 

l l 
,ry.· 



4. WILSON'S METHOD 

In order to illustrate the idea of combining a special 

element with standard CST elements, a specific technique 

will be described which is due to W. K. Wilson [4] and uses 

a circular element centered at the crack tip. 

One important consideration is the choice of appropri

ate displacement functions to be used in connection with 

this element. Initially, Wilson [2] and Hilton and Hutchin

son [3] utilized t-he asymptotic equations (12) and (13) 

which perhaps is a natural choice. For a special element 

of this type they found that sufficient accuracy is obtained 

;·f ·the diameter of the circular element is less than 2% of 
' t h e . c r a c k l e n g t h . T h i s m-e -a :n s t h a t a h i g h l. y· r e f i n e d e 1 e m e n t 

representa.t-i'_on ·1:s. re:quj re,d: ~-round ·t·h·e. ·c·rack tip f.or aidequa-t~ 

estimat:es. o·f t_he ·t.nte·n:si·t.y fa:c·-tor .. -F·o·:r· :ge:ornetric:ally com

ple">< bo·d·ie-s o.r for ·bodies: :co .. n--t:ai_n.i .. ng· more t'han o:ne crack, 

·t:ne total number of elements r·equ:ired may outgrow the memor·y 

capacity of normally available computer facilities. 

The necessity 

caused by the fact 

placement functions 

of • u·s, n g 

that the 
~ 

( 1 2) and 

a small circular element is 

accuracy of the approximate dis

(13) deteriorates rapidly as 

In fact, each of the~e func

tions contai-ns only the leading terms of an asymptotic 

one moves away from the tip. 

12 



expansion. Hence, an improvement in accuracy can be ex
pected if a few higher order terms are retained in the 

• expansion. 

Such an improved technique was developed by Wilson [4] . ... 
The displacement field within the circular element is repre-

• 
sented by the following functions 

u = ( 1 4) 

( 1 5) 

.F .·· =(·:e.· .. )•·· .. 1 . . ·• .. 

F .. ( .e.·). ·=· :( 2. - 4 h): +: 2·.:·c·o s ,-2.:H •. 2: ·.·. . . . 

F
4
(SJ ·::!,. - (1 - 4h)cose - 3tosae 

. 7 1 36 G 1 Ul) :::c ( z - 4 h) sin! .,. 2 sin 2 

:G, . (. .e } ·=· ~. · 2 s i. n 2 e ' :2 

9 · e 1 . se· = t2 .... 4 h ) s i n2 - 2 s , n 2 

G 
4 

( e ) = .. ' { 5 - 4 h ) s i n e + Js i n) e. • 

.... 



·~ r c 1 s t h e r a d i u s o f t h e c i r c u 1 a r e 1 em en t a n d 6 i ( i = 1 , . • • • 4 ) 
a r e u n k n o .,, n p a r a 111 e t e r s . 

As explained in Wilson's paper, the four terms in each 
displacement component correspond to the first four symmet
ric terms of the William's stress function. It must be 
pointed out that since only symmetric terms are used, the 
displacement functions defined by (14) and (15) are appli
cable only to a mode I type of stress field. The resulting 
high order circular element is designated as SSC-4. 

The stiffness 

to the vector [cc] 

matrix of the 
T 

= [ 0 1 cS 2 0 3 cS 4 ] 

SSC-4 element with respect I 

is obtained from equation 
( 7 ) • Th i s i s a s ymm e tr i c f o u r by f o u r ma t r i x a nd i t s e 1 e -
ments are 

·a1 :3·· = · µ · ,· ~;~rr- ) :( ·-~· l + ,2 h J . . . . 

a 2 4 =· O 

a 3 3 = µ :(:n: / 2 ) ( l 5 -

..... 
,,· 

24h) 
·• 
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a,~ = µ(128/35)(-6 + Sh) 

a~~ = µ(16n)(3 - h) . 

• The advantage of the SSC-4 element lies in the fact 

that the approximate displacement functions (14) and (15) 

provide adequate accuracy over a larger area around the 

crack tip. Hence, a larger SSC-4 element and a less refined 

triangular representation around it may be used and, as a 

result, significant savings in computer memory and process

ing time can be realized. 

A.~J .CONSTRUCTION OF THE TOTAL STIFFNESS MATRIX 

p··o r a :f i n: i t e e l em en t represent a t i on cons i s t i n g o- f a 

high order ·cirtular crack tip element (SSC-4) and constant 

s t r a i n t :r j ·:a.r1.-g: u: 1 a; r e 1 e me n t s ( .C S T ): ·; n t h e re s t o f t h e, re g i o n , 

the total: st'iff.nes.s matrix c.an :b-e: constructed in t.h·e.: u.:s:"u·al 

Wi).'Y ··b·y comb in· f n: 9, the ·i. n d ·t v:t·d:.ua 1· e l.e:rne·n t stiffness mat r·i c es • 

I f a C O n V e n t i O n a 1 ·c: s r· p r·o g :r &to i :s· a Va i 1 a b I e , h Owe V e r , a 
( } 

·s i mp 1 e r a ppr o a c h m.a:y) ·b·.e l1 s.:e:d: • ·· Fi rs t , the CST program i s 
. ' applied to the tri·~ngular elements only. Th~n, the total 

' stiffness matrix of the combined representation is obtained 

by modifying the total stiffness matrix generated by the 

CST program. A description of this last procedure in math

ematical terms is presented below. 

1:5 



The total potential energy of the system is the sum of 
~ the potential energy of the triangular elements and the 

potential energy of the circular element 

(18) 

The parameters of the system must be chosen so as to 

minimize rr. There are three sets of parameters. The first 

set includes the displacement components ui,vi of all nodes 

i (i=l, ... ~n 1 ), lying outside the circumference of the cir

cular element. The second set includes the displacement 

components uj,vj of the nodes j {j=l, ..• ,n
2
}, which are 

located on the circumference of the circular element. The 

third set contains the parameters Ok (k;:1,.,. ,4} of the cir

cular element. 

r·nese par:am:eters ~'r·e,· ·,n fact, no:t: a:11 l-n,d:ependent ·fr·o:m 

ec1-c.b. other. Those ·o:f· th:·e· second set .&:r~. _r·e:lated to those of 

:th.e third through ·th·~ e:qu·atio-ns 

4 
u.J·_· = I r kte_J.1J-0k 

R=·-·1 

4· 

vj = krl gk(B5)0,k 

where ej is the angular position of node j/and fk(e 5), 

gk{ej) are defined by equations {16) and {17}. 

{ 19.} 

The d~pendence of the potential energies ~t and Ile ~n 

16 



the system parameters is described by the following func

tional relationships 

nt = nt{ui, v1 , uj(cSk), vj(cSk)} 

rrc = nc{uj(cSk), vj(cSk)J . 

{ 21 ) 

{22) 

The principle of minimum potential energy for the com

bined representation requires that the following system be 

satisfied 

a II 
u . = 0 , 

1 

From ( 1 8:) , 
. 

arr - ant 
+ -au . au. 

1 1 

.a1t ant: - ·+ ... ·.·. .... 

:a.v··. - . av .. ... 1 .. .,. 

( 

arr 
av. 

1 

21 ) 

arrc 
au • 

1 

a ITC 

av • 
1 

= 0 

an.d ;(.2.'2.) 

ant -- au • 
1 

arr: . 
't -- av,. 
l 

a11 . an-t . arrc 
a ~ = a· ~ . +· . ~ ,.; 

Uk .Uk: auk 

•. . 1· ,.= '.,· ...•. ,n . . . . 1 

k=l, ... ,4. 

we have 

( 
anc 

- ·0·1 -au ·• 
l 

/. 

arr 
-( ·c - OJ -av . 

1 

' 
:h,ence, equa·t·i·.o:n:s: (:2 .. 3) and (24) :may· be written 

ant_ 
-- 0 au . :, 

1 

ant_ 
- - 0 av. 

1 
i = l , ... ·, n 

1 

k=l, ... ,4. 

l 7 

{23) 

(24}-

.(. 2: 5: :) 

:f 2 6.) 

{28) 

[, 

(29) 



.J. 

Let us now neglect the presence of the circular element 

a n d d e v e l o p a s y s t e n1 o f e q u a t ; o n s f o r t h e t r i a n g u 1 a r e 1 e -

ments only 

= 0 ' = 0 1 =1 , ••• , n 
1 (30) 

= 0 t = 0 (31·J 

It is apparent that this system results from the appli

tation of a conventional finite element program on the 

triangular elements only. 

The desired system of equations (28) and (29) is 

derived by applying the following two operations on equa

tions (30) and (31): 

( 1) a 11 u j and v j in equations {30) a'nd {31} are substi• 

tut.ed: 'b:y the right--h·a'ti .. d =si:d·es of eqtr~,:t_·ions (19) -an:d 

{20)-.. At the .e.nd: ,of· th,s .. operation ·equations (28) and 

( .3 0) w i l l b' e· ·t de ·n:t i ca l • 

(:2) In view of the functional relationship (21), equations 

:(,29) ~ay be written 

k=l, ... ,4. (32) 

From (19) and (20) we have 

1:8:' . ~· ,, 

,. 



-

(33) 

(34) 

Moreover, let (6] = (6 6 6 6 ]T and also let 
C 1 2 3 4 

[A]= [a 1j] be the 4x4 stiffness matrix of the circular 

element. Then(\. 

from which 

a TIC .. 
.".\ ~- ·.. = a k ·6 · :+ a k o + a k o + a k o ·ou·- ··1 · ·1 2 2 3 3 4 4 ... R (36) --

4 .n __ .. ·· .2 · :a,JI._t· @Ji 

ark= t~l atk6k + j·~l . d!Jj fk{e5) + ai; gk(e5} 

k~ 1 , .•. : ... · .. , 4· • (.3:z:). 

Equation (37) def·fne·:s the se··c:ori"d o.:p·eratio:n. that must be 

.Performed on the left-hand sides arrt/auj and arrt/avj of 
I 

equations (31) in order to obtain the left-hand sides 
.. 

of equations (29) . 

.. 

4.2 MATRIX FORMULATION 

Wilsbn's method as described above was then implemented. 

Utilizing a conventional CST finite element program written 
\ 

l.9 
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... 

-

by E. L. Wilson* [5) as a starting point, a computer program 

was developed for the calculation of the mode I stress 

intensity factor . 
• 

A basic feature of E. L. Wilson's program lies in the 

fact that, as system parameters serve the vectors, [wi] = 

T 
[u.v.] rather than the individual displacement components 1 1 

u . , v . . As a res u l t, the el em en ts of the total st i ff n es s 1 1 

matrix generated by this program are 2x2 submatrices. 

We will now present a formulation of Wilson's method 

which is specially adapted to this particular CST program. 

In place of the four circular element parameters 6
1

,6
2

,0
3 

T 'cl. n d O 4 We i n t r O d U C e t h e V e C t O r pa ram e t er S [ 0 I ] = [ Q .JO 
2 

] a n d 
·T 

[611 ] = [0 3 6,J . Equations (19) and (20} become 

Cw5J = 
f 
.. . . 

. ' . J'•.: :1 
. : . 

··g· 
•- 'j i 

f. 
J 2 

,[ or:J .+ 
9.j:z: 

•' . g ... 
·J·.3 

f. : ,J 4.: 

.· • for 1J . 
gj 4 . 

The· ,system· :of. :e.:q.1..ra t i·c>:"n .s: ·f:o,r the tr i an gu J:a·r efl e::m·e·:n t:s 

:f,eq.u··a ti on s ( 3 o) .~tlcf: :{ 3 T)) .m·:·a .. y b.e written 

ant 
- 0 a[w.J -

1 

-arr 

/ 

;· = 1 , .••• , n 
1 

(:a:s.) 

(39) 

__ t_ = 0 
q [wj J j=l, ... ,n

2
• (40) 

* n o t t o ·b e c o n f u s e d w i t h W • K • W i l s o n , t h e a u t h o r o f t h e 
method being described. 

,_. J .... ~ .. .. , 

::2·0 

( 



:·. •. 

Also, equations (37) may be written in matrix form as 
follows 

a 1 1 a i " 

a 2 i+ 

f j 1 f j 2 
T 

n a IT t l2 + ( 4 l ) a[wj] j=l g . l g j 2 J 

a3'+ 

a 1+ 1 

'._n. f .. . . J 3 ... x2 
j ;::: l g j 3 

{42) 

The system of eq\Jatiol'.ls for the combined representation 
(. eq:u at ions· :(·2a) and .( :2 9}) b e.c om:e:s 

:a·nt ·o· --· BI W;J. -
.. ., ·,:_ = . ·. . '. •. •. •:· ,: : n . . 1 

(44) 

This system is obtained by applying the following two 
operations on equations {39) and {40): 

{l) for all [wj] in equations {39) and {40) the substitu
tion defined by equation {38) is made. At the end of 

. ' t 



j)' 

this operation, equation~ (39) and (43) are identical. 

(2) the left-hand sides of equations (44} are derived by 

combining the left-hand sides of equations (40) accord

ing to equations (41) and (42). 

4 .. 3 DISPLACEMENT OF THE CRACK TIP 

The displacement components at any given point (r,e) 

within the circular element, as defined by equations (14) 

and (15), are in fact relative displacements with respect 

to the crack tip. For r=O (crack tip), both displacement 

components become equ.al to zero. Thus, in effect, equations 

(14) and (15) do not allow any movement of the crack tip. 

_In pr.a._ct.·ic·e, however, the crack tip may not be a fixed 
.-. . 

:po·,;·nt,: :·a.s.~ f:or example, in the s.trtp problem t·o: b·e: investi

·_g:a. t,.-e:·ci .• :·Fro .m =_p·h.y. s- i ca 1 cons id er at: i on s i t i s a p. parent th a t , 

a :s a -r·:e··s:-u J t of t _he tens i l e :l o-a d ,. ·t:h e c r a c. k ti p i s·: h:9 r ·f .z ot1 -

t= a: 1 ·1 y . d i .. s ·p: 1-a -c e· d ( F i g u r e l .) • 

It then becomes n-ecess:ar_y to ·1110-:dify tb·e·: m:a·t-hetoat"i"_ca·l 

model of the system, so that displacements of the crack tip 

are permitted. This is done by.introducing the displacement 

vector of the crack tip [wt]= [utvt]T as an additional 

parameter and writing equation (38) in the form 

; 



' 

f j l f j 2 f j 3 f j ~ 1 0 
[wj] - [ t5 I ) + (cI I] + [wt] 

-
• 

0 1 g j 1 g j 2 g j 3 g j i. 

(45) 

The parameters of the system are determined by solving 
the linear system 

1 = l , . . . , n 
1 {46) 

= 0 ' 0 ' 0 • (47) 

The left-hand side of the additional equation 

·fs: obtained by c-omb:i.:ning the left-ha·nd sides of equations 
( 4 0) :a. c.c o r·d:i. n g· t:o 

(48) 
@JI.t. 

l . 3fw'j] • 

Otherwise, the procedure for deriving equations (46) 

a.nd {47) is exactly the same. 

4.4 CALCULATION OF THE MODE I STRESS INTENSITY FACTOR 

The mode I stress intensity factor KI is directly 

related to the crack tip element parameter o
1

• This is~only 

natural since KI is the constant coefficient of the first 

23 
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term in equation (12), 6 1 is the constant coefficient of the 

first terrn in equation (14) and both these equations are two 

d i f f e r e n t t r u n c a t e d f o rm s o f t h e s a m e a s y n1 p t o t i c e x p a n s i o n • 

In order to derive this relationship let us develop the 

first term of equation (14). We have 

1
/

2 s e 1 3e 
= 01 (;) {[-(2 -4h)cos2 + ~os 2 Jcose 

C 

and after some algebra 

-· ., ·.~ - .·r·1/2 e e 2 
2' cS . .:(· · .·· ··. · ... · .): c o s -2 [ l - 2· h + { s i n ;sr) J • . "-1 . r,. .· c.. . C 

C-on1p.ar·1.ng t.his r~.$tJ.l t wit:-h ·t-:he ·firs:t ·t.·e··r·m: .p·f· .eq·U.a.tfo·n. 

(T:a·J ,we s.ee .t·hat ·t:·h:e·y ·ar,e: the sam.e 'i.f 

(49) 

The procedure for computing K1 may now be summarized 

a·s follows: 

(1) A ftnite element representation is prepared for the 

cracked body consisting of one circular SSC-4 element 
·, 
\'.:;,,. 

24 
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centered at each crack tip and triangular CST elements 

everywhere else in the region. 

(2) Data cards describing this representation are prepared 

and read by the computer program. 

(3) For the adopted representation the program develops 

first the linear system of equations (39) and (40) and 

then the linear system of equations (46) and (47). 

(4) The system of equations (46) and (47) is solved and 
) 

the values of the parameters c. ( i=l, ... ,4) of each 
l 

crack tip element are determined. 

(5) Using the computed value_of 6
1 

at each crack tip, the 

mode I stress intensity factor K1 is calculated from 

equation (49). 

_11· 

i· 

~- ·2:.s: .. ·: ,.' 
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5. APPLICATION TO A CRACKED STRIP UNDER TENSION 

The effectiveness of Wilson's method was demonstrated 

in the case of an infinitely long strip under tension with 

a line crack perpendicular to its axis of symmetry (Figure 

1). The method was used to investigate the influence of 

circular inclusions of different material properties on the 

stress intensity factor. This information is of consider

able practical significance. In practice, such inclusions 
' 

may actually be defects in an otherwise homogeneous material 

or fibers in a fiber-reinforced material. 

For simplicity, ·two identical inclusions centered on 

:t ... he extension of the crack line and symmetrically located 

with respect to the crack were assumed t:o :b-e· presen.t. Q·n 

account of symmetry, only on.e fo1l"rth -of t:h·e s.t.rip· :a·rea :wcl~. 

considered. 

All numeri:._c:al cal-c_ula:·t"iQ.n.s. Mter:e based ,on t·hie f.0·1.i:-o·w-i:n.9·· 
.. · 

l o ad i n g a n.d: .g_:e o m:e tr i- c C:O n:·_d ft. f o. ri s: ( Fi g u re l ) 

·20, 000 
.. • ·a: - ps·1.: ·-

5 • 
C - l n -

d 25 • - l n -·. 

The finite element layout is illustrated in Figures 2 

and 3. It may be noted that most o·f the nodes lie on 
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Figure 1. Infinitely long cracked strip 
under tension with inclusions. 
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Figure 2. 

.. 

,,_ ____ __ 

--· -·"~ 

Finite element layout of one 
f~urth of the strip area. 
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Figure 3. Typical finite element layout 
with inclusion. 
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concentric circumferences centered either at the crack tip 
or at the center of the inclusion. By utilizing this prop
erty, simple computer progran1s were created and used to 
generate the bulk of the data cards for the finite element 
program on the computer. Thus, a great deal of time was 
saved considering the great number of cards needed to de
scribe the finite element patterns arising from all differ
ent positions and sizes of the inclusion. 

S, •. ·1 EVALUATION OF THE METHOD'S ACCURACY 

T h e a c c u r a c y o f t h e m e t h o d w a s d e t e rm i n e d ~-y: a p p l y i n g 
·i·t -to the case where no inclusion or - which is the same -
inclusions of the same material pro·perties exist. According 
t·o· an.a:lytical resuJts obtained by J..~i.da [6:]·, t·he· :.st.ress 
int:~·n,s 1:·t.·y facto.r in this case: i·s· 

(50) 

w h e re f ( A· ) i s .a c o r r e c t i o:,rt fa c to r d e t-e rm i n e d fr o m Ta b l e l . 

·- ... 
· .. '. - - . ... 

. ,' ·A·~c/d f ( \) 
. 

I 

... • .. 

0.074 l . 00 
0.207 1 . 03 
0.275 l • 05 
0.337 l . 0 9 
0.410 1 . 1 3 
0.466 1 . 18 
0.535 1 • 2 5 
0.592 1 • 3 3 

, ... -. 
Ta b 1 e 1 . C o r r e c t i O n fa c to r f ( A ) ( e q u a t i o n ( 5 ff} ) • 

·-~--
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For the adopted loading and geometric conditions, equa

tion (50) gives 

KI = 81565 psi•in 1
/

2 
• 

In order to realize a certain level of accuracy, some 

numerical experimentation is always needed to determine the 

necessary degree of refinement in the finite element repre

sentation around the crack tip. For a circular element 

radius re= 0.4 in and number of nodes on its semicircum

ference N = 25 (Figure 4), the numerical value of the stress 

intensity factor was found to be KI= 84531 psi•in 1 / 2 (error 

3.5%). For re= 0.3 in and N = 49 (Figure 5), the numerical 

value was K1 = 81095 p1i•in 112 (error 0.57%)~ This last 

error is very small and, therefore, further decrease in re 

br increase in .N :was considered unnecessa-r:y .. 

.q. 2 INFLUEN:C.iE O.:F· 1·N,C:LUSIONS ON THE INTENSITY F:Ac··r:OR· . '. . . . . . . . . 

The stress intensity f.acto.r is obviously affected: by 

t·he .p·resence of inclusions :of different material properties 

in the vicinity of the crack tip. From analytical investi

gations on a similar problem involving an infinite sheet 

carried o~t by Tamate [7] and Sih, Hilton and Wei [8], it 

has been established that the geometric parameters in this 

relationship are the ratios b/a and R/a (Figure 1). It is 

·reasonable to assume that the same parameters also exist in 
' 
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r . C, 

Figure 4. Element pattern around the crack 
tip with re= 0.4 in and N = 25. 

)Figure 5. Element pattern around the crack 
tip with re= 0.3 in and N = 49. 

32 



~ 

the case of a strip. 

The results of the numerical calculations for the strip 

are shown in Tables 2, 3 and 4. For each pair of values of 

the geometric parameters, a sufficiently refined element 

pattern was constructed within and around the inclusion and 

integrated with the overall pattern of the strip (Figure 3). 

For each pattern, the program was run for seven different 

values of the shear modulus ratio: µ;/µ = 0, 0.3, 0.6, 1 .4, 

2.0, 3.0, 00 • The first value corresponds to a hole and the 

last one to a fixed inclusion. 

I n F i g u r' e s, 6 , 7 a n d 8 t h e n o r ma 1 i z e d s t r e s s i n t e n s i t y 

facto.r-:, ;· .e., t:he ratio of the stress intensity factor with 

in_.c:"lusio·ns to the stress intensity factor withou-t ·inclusions 

w·a:s pl:o·tte:~r v-e·rs:us the shear modulus ratioµ;/.µ • 

. Some approximate an.a:1·ytfcal results obtained by Sih, 

Hilton and Wei [8] for t·h~ case of an infinite sheet are 

:al s .o shown i n Fi g u re 6 for c .om.par i son . 

It may be noted that in both cases the presence of a 

more flexible inclusion {µ 1<µ} increases the stress inten

sity factor, while a more rigid inclusion {µi>µ) decreases 

it. Moreover, in the case of a strip the ·effect of the 
~-inc 1 us ion is more pronounced .. Thus, for example, a hole 

with a radius of 5 in (R/a = 0.5) increases the stress i_n-~ 

tensity factor by 4_9% in the ~se of a strip but only by 
~ 

11% in the case of an iMfinite sheet. 
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b/a • 2.0. d a 25 in 

µ./µ R/a - 0.7 R/a - 0.5 ~/a - 0.3 - - -1 

0.0 184,952 121,541 92,755 

0.· .•. 3· 119,393 97,454 86,422 

0.6 95,827 87,744 83,363 

l • 4 72,524 77,317 79,819 
. 

2.0 65,406 73,940 78,589 

3.0 59,151 70,875 
'' 

77,419 
' 

co 54,289 68,432. 76,209 
' . 

' 

' . 

... 

-

Table 2. Stress Intensity Factor Kin psi in
1

/
2 

versus the Shear Modulus Ratioµ;/µ for 
.various values of R/a, b/a=2.0, d=25in. 
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b/a • 3.0, d • 25 in 

µ./µ R/a - 0.7 R/a - 0.5 R/a - 0.3 - - -l 

0.0 139,999 103,522 88,233 

:Q •. 3 105,866 91 , 203 84,591 

0 5: . . . 91 , 051 85,246 82,636 

.. 

l.4 74,884 
' 

78,294 80,230 
' 

2::.:0: 69,606 •' 75,898 79,352 
' 

: 

' 

' . 

3.0 ', 64,817 73,652 78,488 

00 62,621 72,794 77,953 = .. 

: 

' .. 

: 

,. 

' 
' 

Table 3. Stress Intensity Factor Kin psi in 1
/

2 

versus the Shear Modulus Ratioµ;/µ for 
various values of R/a, b/a=3.0, d=25in, • 

. P 
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b/a • 4.0, d a 25 1n 

µ. /µ R/a - 0.7 R/a - 0.5 R/a - 0.3 - - -, 

0.0 130.171 103,508 87,036 

0.3 102,287 91,327 84,047 

' 0.6 89,754 85,418 
I 

82,407 

1 • 4 75,745 78,504 80,373 . 
' .. 

. 
: .. 2.0 71 , 081 7 6, 11 6· 79,622 -

.. 

3.0 66,802 73,873 78,878 
. 

. 

00 66.049 73,105 .. 78,221 ' 
I 

I 

. . 
• 

: 
' . .. 

- 0 

T bl 4 St It ·t F t K . . . 1
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6. FINAL REMARKS 

This thesis has analyzed the basic ideas which underlie 

the development of efficient finite element techniques for 

the calculation of stress intensity factors. In that re

spect, Wilson's method must be viewed only as a specific 

example of the application of these ideas. It is apparent 

that special elements for mode II, mode III or mixed mode 

stress fields can be developed in a quite analogous manner. 

With respect to the strip problem, the numerical 

results verified the conclusions that were reached by ana

lytical methods for an infinite sheet. Moreover, in the 
. 

ca s e of a s t,r i :P ,. t:.h:.e; i :n fl u enc e of i n cl u s i ·on s o n the i n ten -

sity factcJr w-as found t:o- be stronger. (Jb.vi:ously-, in this 

case, o.t1e rn·o-re ,g·.e,o·.me:t:·r·;c :parameter is p.,res .. ent and this is 

t he r a t ;- o o. f t,.h:e ·s t-r' i '.P w i d t h to t h e ·c :r a :c.k 'l en g t h . The 

effect of· this. parameter can be· de.ter-mf.ned ·by using the 

same cor11p·:u·ter p-rogram. 

Another interesting case arises when the inclusions 

are not centered on the extension of the crack line. This 

is a mixed mode problem, however, and its investigation 
... 

would require the development-of a mixed mode program . 

" 
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7. COMPUTER PROGRAM 

The digital computer program performs four major tasks 

for the analysis of a cracked structure. First, a system 

o f 1 i n .e a r e q u a t i o n s f o r t h e t r i a n g u l a r e l em e n t s i s f o rm e d 

from a basic numerical description of these elements. Sec

ond, this system is modified and transformed into a system 

of linear equations for the combined representation. Third, 

this last system is solved for the nodal displacements and 

the crack tip element parameters o1 , o2 , o3 and o4 • Fourth, 

the mode I stress intensity factor is calculated from 

equation (49). 

T h e p r o g.r· c1or1t l s c, o d :e:d ;. n t h e F ORT RA N I V l a n g u a g e a :n·d 

Oh,a.s been ru.n o:n :L.e:h·ig·h University's CDC 6400 computer. r·h·e· 
program is ·r,es·tri·ct.ed ·to plane structures u.nder conditl,ons 

of plane stress. :.b·:u.t it can ·a.TS'C> ·.b·e used for' plane strai'.n 

conditions t·f the e·las.··t'ic;· consta:nts :a.re mo.dified as f·oJ low·s 

·*: E. = 
' ·1· . -2 

'.' --\)'. 

·* \) . ·= \)" 
. . .~ . . ·._ ··. 

.T .-·v - ~. 

On a CBC 6400 computer with an avail~ble maximum net 

storage of 130K, structures containing as much as 750 ele

ments and 450 nodes can be analyzed. 

The input deck is prepared as follows: 
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A. Control card (714, 2E12.5, 1Il) 

Cols. 1-4 Number of triangular elements 

5-8 Number of nodes 

9-12 Number of nodes on the semicircumference 

of the circular element 

13-16 Number of restrained boundary nodes 

17-20 Cycle interval for the print of the force 

unbalance 

2.1 - 2 4 Cy c 1 e i n t e r v a 1 f o r t h e p r i n t o f t he d i s -

placements and the circular element 

parameters 

25-28 Maximum number of cycles per run 

29-40 Tolerance limit 

4 1 - 5 2 0 v err e 1 ·ax a ti on fa c- tor 

5:.3 :N:o n - z e r o p u n c h t o s u p p r e s s· p r i n t i n g o f 

input data 

a-·~ c: i r c u 1 a r e l em e n t d a ta ( F 4 • 2 , E l 2: .. 5. ) 

Cols:.·•. 1-4 Circular element radius 

:5>-: l 6i Yo. u n g ' s mo d u l u s 

C • E 1 em e n t a r r a y - l c a r d p e r e l em e n t .( ·-4.X ., 3 t 4 , ·E t- 2·, .•: -5. ) 

Cols. 1-4 Element.number 
,l 

5-8 Nodal point number • ·,: l 
I' 

9-1-2 Nodal point number • 
J 

13-16 Nodal point number k 

17-28 Young's modulus 
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D. Nodal point array - 1 card per point (4X, 2F8.2, 

2F8.0, 2Fl2.0) 

Cols. 1-4 Nodal point number 

5-12 X-ordinate 

13-20 Y-ordinate 

21-28 X-load 

29-36 Y-load 

37-48 X-displacement (initial guess) 

49-60 Y-displacement (initial guess) 

E • B o u n d a r y po i n t a r ray - l c a r d p e r p o i n t ( 2 I. 4 ·, :F,8 • 3 J 
Cols. 1-4 Nodal point number 

5-8 Blank if nodal point ts fixed in both 

directions 
.. 

l • fix.e.d_: f noda l • nt • • x-.d.i.re:ct:i 1 po l l s 1 n on 
2 • f noda l • nt • f·ree: t.'·o· a·lo.ng l po 1 1 s move 

line of slope S 

·-g··., , ·.6. : . ~ :I': . Slope_ S. (:·fo.·.r- t'yp.-.e z: b:o:u:-n:·d·:.ary points) 

. :N··u.:r11b e r i n g r u l e ~- :: :B-o- t h: e l em e n t s a n d n o d e s m u s t b e 

assigned consecutive integer numbers starting fro~ l 
-

and placed in the input deck in the same order. The 

circular element need not be numbered. In addition, 

all nodes lying on the semicircumference of the cir

cular element must be numbered last. 

I, 

a· 

Listings of the program may be obtai.-ned from th-e: L:_ehi.:tfh: 
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