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 The pH Low Insertion Peptide (pHLIP) is able to unidirectionally insert itself in 
membranes at low pH, a physiological marker of cancerous cells. Thus, the pHLIP peptide 
has potential use as a dual targeting and delivery system for cancer therapeutics. We are 
investigating pHLIP-protein constructs to further our understanding of protein-membrane 
interactions and pHLIP dynamics in an attempt to target proteins to cancer cell 
membranes. 
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Cancer - An Introduction 

 Cancer can be broadly defined as the unregulated growth and proliferation of cells. 

Cancer has an extremely high disease burden and currently is the subject of very active research. 

Oncogenesis, the birth of a tumor, is usually caused by a failure of normal metabolic and growth-

regulating factors in a cell. In a healthy cell, there exists a dynamic interplay between growth-

promoting factors (mitogens) and inhibitory signals. Mutations that disrupt this delicate balance, 

either by generating hyperactive growth signals or preventing anti-proliferative activity of tumor-

suppressor genes, often lead to cancer. Typically, such deleterious DNA mutations are rapidly 

corrected by DNA proofreading machinery; however, mutations or cellular injuries that impair 

these crucial repair mechanisms can leave individuals suspect to cancerous growths. 

 Cancer cells may be differentiated from healthy tissue in several regards. Tumor cells 

typically over-express certain receptors, which are unique to the particular type of cancer. 

Identifying these receptors is often difficult, as the target proteins are also expressed by other 

somatic cells. Therefore, determining a threshold of over-expression compared to healthy tissue 

can be challenging. Even if a majority cells within the tumor may have a given cell-surface 

proteome, others will not. There is evidence that cancer cells may be capable of evolving in 

response to environmental factors, changing their cell-surface proteome over time (Tomlinson et 

al., 1996). Thus, receptor targeting is a prevalent but flawed tumor targeting and identification 

technique. 

 Another relatively unique physiological marker of cancerous cells is an acidic external 

microenvironment, resulting from a highly active metabolic state. Typically, the presence of 

oxygen inhibits glycolysis in favor of oxidative phosphorylation, an effect known as Pasteur's 

effect (Gatenby et al., 2004). However, in cancerous tissue, even in ample O2 supply, rates of 
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glycolysis are significantly elevated; this "aerobic glycolysis" is referred to as the Warburg effect 

(Barar and Omidi, 2013). This effect is believed to be a response to the intermittent hypoxia 

experienced in early tumorigenesis, as vascularization may be poor, leading to inadequate 

oxygen supplies. The increased reliance upon glycolysis results in high levels of lactic acid and 

requires high levels of glucose uptake, further aiding the Warburg effect (Jang et al., 2013). 

 The rapid metabolism results in the accumulation of protons and acidic byproducts within 

the cytoplasm. To maintain a proper internal pH, cancer cells up-regulate proton transporters to 

shunt protons across the cell membrane, where they accumulate in the local extracellular space. 

The resulting increase in acidity can drop the pH of the external microenvironment while 

alkalizing the internal environment. While direct characterization at this external 

microenvironment has proven to be experimentally difficult, current estimates show a local pH 

that is likely within a range of 6.0-6.5. Other highly active cells, including those involved in 

inflammatory responses and immune mobilization, may exhibit similar physiological markers.  

However, in vivo studies have shown minimal off-target tagging of systems capitalizing upon 

this physiomarker of cancerous tissue. 

Cancer Therapy 

 Current cancer therapies, while effective at prolonging the lives of patients, often 

represent stop-gap solutions; complete tumor recession is rare. The current approaches to 

treatment are a balancing act between controlling tumor growth and minimizing collateral 

damage. Each approach has its limitations, and there exists no singular optimal approach to the 

treatment of cancer. Surgical removal, radiation therapy, and chemotherapy stand as three 

current pillars of cancer treatment. 
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 Surgical resection, often the preferred method of treatment for complete tumor removal,  

provides the added benefit of allowing biopsy of surrounding tissue to assess the invasiveness of 

the tumor. However, surgery may be difficult or impossible in the cases of deep tissue tumors 

and does not provide a therapeutic benefit against undetected metastases. Additionally, patients 

may be unfit for surgery due to general illness. Radiation therapy is often used to shrink tumors 

prior to surgical removal or as a standalone therapy. A limiting constraint is the ability of 

radiation to be targeted to specific regions of the body to target the tumor while sparing healthy 

tissue.  

 Chemotherapy, the use of cytotoxic molecules to kill proliferating cells, is routinely used 

but causes severe systemic damage. Monoclonal antibody (mAb) therapy, a subset of 

chemotherapy, currently stands as a frontline therapeutic for cancer patients. mAbs are designed 

to stimulate an immune response to cancerous cells by selectively targeting particular over-

expressed membrane proteins, leading to a more finely tuned strategy for specific cancer types. 

 While immortalized cell lines may be homogeneous, primary cancer tissue tends to be 

composed of a variety of cell types. If a few tumor cells remain untargeted, the tumor could 

simply regenerate post-treatment. Targeting  a given receptor with mAbs can also induce a 

selective pressure upon the tumor tissue, which may then respond via microevolution to avoid 

the therapeutic (Tomlinson et al., 1996). Therefore, complete eradication of the tumor often 

requires other adjuvant therapies in addition to the primary treatment. Another key drawback to 

monoclonal antibodies is the presence of off-target activity. While tumor cells may overexpress a 

given receptor, it is likely present on a variety of other somatic cell surfaces (Thévenin et 

al.¸2009). Thus, a dose needed for efficacious tumor recession may also significantly impact 

healthy tissue. In general, chemotherapy tends to have a major cost upon quality of life. 
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 There are several new areas of active research focused upon improving cancer therapeutic 

delivery and targeting. Drug-loaded lipid vesicles, sometimes tagged with particular targeting 

proteins, have been used to shuttle drugs into cells. Other approaches have attempted to 

capitalize upon endocytosis and later endosomal drug release. Recently, two antibody-drug 

conjugates (brentuximab vedotin and trastuzumab emansine) have been approved for use in 

human patients (Haddley 2012; LoRusso et. al., 2011). These approaches, however, still rely 

upon biomarkers that are not wholly unique to tumor tissue and may lead to incomplete 

therapeutic action. Given the heterogeneity of receptor expression in target and off-target cells, a 

universal marker of cancer would be a preferable target. The use of cell-penetrating peptides and 

selective membrane translocators are also currently being investigated as delivery vehicles for 

small-molecule therapeutics (Thévenin et al., 2009). 

pHLIP: Discovery, Characterization, and Properties 

 The study of membrane proteins is integral to elucidating biological function at a 

molecular and cellular level. Membrane proteins may span the entire bilayer, protrude through 

one face of the bilayer, or exist in a peripherally associated state. Membrane proteins play a role 

in a wide variety of cellular functions, including cell-cell recognition, cell adhesion, signal 

transduction, regulation of ion transport, mediation of endoytosis and exocytosis, enzymatic 

catalysis, and structural scaffolding. 

 The first member of the pH-Low-Insertion-Peptide (pHLIP) family was identified via the 

isolation and characterization of each of the seven transmembrane (TM) helices of 

bacteriorhodopsin. While six of the seven helices showed properties characteristic of membrane-

spanning domains, helix C showed novel properties in aqueous solution (Hunt et al., 1997a). 

While typical TM domains are highly hydrophobic, helix C showed solubility up to micromolar 
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concentrations. The pHLIP peptide was derived from this bacteriorhodopsin helix C (Hunt et al., 

1997b). pHLIP variants consist of small cytoplasmic and extracellular domains flanking a 

membrane-spanning TM domain, whose structure is typically highly conserved. 

 Further characterization led to identification of a pH mediated helical transition in the 

presence of liposomes. In solution, the pHLIP peptide exists in one of three states. In 

concentrations in the low micromolar range, the pHLIP peptide exhibits a random coil formation 

In the presence of cell membranes (or mimetics, such as liposomes), the pHLIP peptide 

associates with the phospholipid bilayer in a semi-structured state, an interaction mediated by 

hydrophobic residues within the TM region. At lower pH, the pHLIP peptide can undergo a 

helical transition as the C-terminus of the peptide is inserted across the bilayer. This transition is 

facilitated by protonation (charge neutralization) of key carboxylates within the TM region. 

 The three states of the pHLIP peptide have been confirmed via biophysical assays: 

circular dichroism (CD), oriented CD, and Fourier-Transform Infrared (FTIR) Spectroscopies, as 

well as Tryptophan (Trp) fluorescence assays. CD assays of the pHLIP peptide determined that 

the random coil state was primarily unstructured and the peripherally-associated state only 

moderately more structured. However, reduction of pH in the presence of a lipid membrane 

showed a distinct helical transition in the secondary structure. Follow-up studies monitoring Trp 

fluorescence showed an increase in intensity following the helical transition and reduced access 

of the Trp residues to soluble quenchers. These results, taken in conjunction, verified helical 

insertion into the membrane and ruled out a simple peripheral helical state. Additional studies 

confirmed the directionality of the insertion; the C-terminus inserts across the membrane while 

the N-term remains externally present in all cases. 
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 The mechanism of pHLIP insertion was quickly elucidated and several functional 

variants were found. In the TM region of the inserted helix lie two aspartic acid residues, located 

at positions 14 and 25 (Musial-Siwek et al., 2010). Upon lowering of pH within the membrane's 

microenvironment, protonation of the carboxylate sidechain of D25 leads to a semi-helical 

transition and burrowing of the peptide's C-terminus into the hydrophobic membrane core. 

Subsequent protonation of D14 facilitates complete helical formation as the TM region inserts 

fully across the membrane. This process is reversible, as pH increases beyond the pKInsertion show 

extraction of the pHLIP peptide from membranes. In native pHLIP, the transition pH has been 

found to be approximately ~6.0 (Reshetnyak et al., 2007). Variants using glutamic acid (E) 

residues in place of either D14 or D25 show similar properties, with a transition pH in the range 

of 6.5-7.0 (Barrera et al., 2011). Modification of insertion characteristics has proven difficult, as 

the pHLIP peptide is relatively intolerant of modifications to key residues within the TM region. 

 A significant finding related to this pH-dependent membrane insertion was the exergonic 

nature of the process, the magnitude of which hinted at potential uses of this insertion process. 

Investigation of this phenomenon led to the discovery of pHLIP-mediated membrane 

translocation of small molecules (Reshetnyak et al., 2006).  

 pHLIP has promise as a dual targeting-delivery system for small molecule and peptide 

theranostics to highly metabolic cells, including tumor cells and cells at the sites of inflammatory 

response. The pH-dependence of insertion presents a novel mechanism by which these types of 

tissue can be targeted, without necessitating the use of specific receptors. Since the targeting 

mechanism is physiological in nature, the use of pHLIP-targeting should be applicable to a wide 

variety of cancers and inflammatory states, more-so than the standard Ab-mediated targeting 

systems.  
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 pHLIP can be modified in a variety of ways to incorporate functional ligands, including 

small molecules and peptides.  pHLIP can be genetically engineered to be expressed as a fusion 

protein construct. Addition of cysteine residues at either terminus can facilitate thiol-mediated 

linkage. If translocated into the cytosol, reducing conditions release the disulfide-linked drug. 

Traceless linkers have been used to deliver drugs without any covalent modifications after 

cytoplasmic release. 

 pHLIP has been shown both in vitro and in vivo to translocate small molecules tethered to 

the C-term of the peptide. Initial studies showed efficacy in delivering small macrocycles and 

heterocycles, including taxol and doxirubicin, to cancerous cells. Studies using phalloidin 

constructs were also able to show successful targeting and delivery to cancer cells. A variety of 

small molecules have now been shown to be feasible pHLIP cargoes. Additionally, C-term 

tethering may be used to localize a particular molecule to the intracellular membrane surface. 

Recent work has expanded this model to include small peptides and potential inhibitors of 

transmembrane protein dimerization. The use of C-term tethering and delivery is well established 

in the scientific literature (Thevenin et al., 2009) 

 The use of pHLIP to localize compounds to the external surface of target cell membranes 

has not been investigated as heavily as C-term tethered delivery. In vivo studies have used N-

term tethered fluorophores to image tumors and areas of inflammatory responses with minimal 

off-target accumulation. Whole-body imaging in rats has shown pHLIP constructs to be stable 

enough to reach and identify various types of pathology in vivo (Andreev et al., 2007). While 

pHLIP constructs can be cleared from circulation within 24 hours of administration, 

accumulation in tumors has been observed for over a week (Fendos and Engelman, 2012). 

Alexa750-pHLIP has shown the ability to preferentially target metastatic lesions, allowing 
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relative assessment of tumor aggressiveness within a patient. Additionally, Alexa750-pHLIP 

constructs have been able to identify spontaneous tumours (Reshetnyak et al., 2011). pHLIP 

constructs have also been used to create novel positron-emission tomography (PET) technology, 

which capitalizes upon pHLIP insertion to aid in tumor imaging (Vāvere et al., 2009). 

The Present Study 

 A potential use of pHLIP that has yet to be reported in the literature is the use of N-term 

pHLIP constructs to deliver large, bulky proteins to cancer cell membranes. In the present study,  

GFP-pHLIP constructs were used as a model system to elucidate the properties of pHLIP-protein 

constructs. Enhanced green-fluorescent protein (eGFP), a fluorescent protein that has been used 

as a reporter protein in numerous protein dynamics assays, served as a stand-in for an 

functionally relevant protein. GFP's fluorescence is dependent upon its proper folding and is pH 

and temperature dependent. Therefore, disruptions of normal GFP structure caused by pHLIP 

conjugation or subsequent membrane tethering may manifest as alterations in normal eGFP 

fluorescence. eGFP excites at 488 nm and emits at a maximal wavelength of 510 nm. 

Methods 

Preparation of GFP-pHLIP Constructs 

 An eGFP-containing pET 28a plasmid was engineered to contain a pHLIP peptide 

sequence following the N-terminus of the eGFP, with a His-tag for purification purposes. Two 

different H-GFP-pHLIP constructs were prepared;  H-GFP-pHLIP, and one with a short glycine-

glycine-serine (GGS) linker to allow flexibility between the two portions. The GGS linker was 

chosen as it is not believed to be recognized by any major family of proteases. GFP-pHLIP 

constructs were produced via standard E. coli protein expression. Briefly, the recombinant pET-

28a plasmid with GFP-pHLIP was introduced into E. coli cells using standard heatshock 
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techniques. Recombinant E. coli was cultured and grown up; proteins were harvested and target 

constructs were isolated via nickel-NDA column purification and characterized subsequently via 

MALDI-TOF mass spectrometry. 

Preparation of Silica-Bead Supported Bilayers (SBSBs) 

 Stock solution of 25 mg/mL 1-palmitoyl,2-oleoyl-sn-glycero-3-phosphocholine (POPC) 

was dried via vaccuum in a desicator. POPC was solubilized in 5 mM Na2HPO4 (pH 8.0) with 

gentle mixing and heating to a final concentration of 3 mg/mL. Large unilamellar vesicles 

(LUVs) were converted to small unilamellar vesicles (SUVs) via sonication. The POPC solution 

was sonicated to clarity using a Branson tip sonicator on ice, pulsed 10s on/off (power level ~3, 

duty cycle 20%, 30-60 minutes). 

 Once SUVs had been obtained, they were mixed with monodispersed silica nanoparticles 

(bath sonicated in Branson 4500 bath sonicator, ~1 minute) and shaken for an hour, with 

intermittent, gentle vortexing (once every ten minutes). A typical sample consisted of 650 µL 3 

mg/mL SUV solution and 500 µL 25 mg/mL silica; 6-8 samples were prepared per batch. Total 

vesicle and particle ratios were calculated to have an Av/Ap (total vesicle surface area to total 

particle surface area) ratio of at least 30 (Nordlund et al., 2009). Newly prepared SBSBs were 

washed twice, with centrifugation (quick tabletop spins, <1 minute), and resuspended in buffer 

for storage. 

 To verify protocol success, a carboxyfluorescein-containing POPC lipid sample was used 

in the synthesis of control SBSBs. Green-field fluorescent microscopy was used to assess the 

presence of the fluorescent probe on silica microparticles. Images were processed using the 

ImageJ software. 

GFP-pHLIP and SBSB Assays 
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 SBSB aliquots were spun down and resuspended in 200 uL of 2.5 µM GFP-pHLIP 

construct. After an initial 20-min equilibration period at pH 8.0, the pH was lowered to pH 5.0 

for 20 minutes. Afterwards, the SBSBs were washed and spun down 3x  at pH 5.0, resuspended 

in 200 µL buffer, and adjusted to pH 8.0. Fluorescence readings were taken at multiple points 

during the process: baseline (t=0), post-equilibration (t=20), after pH adjustment (t=20 pH 5.0), 

after low pH incubation (t=40), and after washing, resuspension, and pH neutralization (t=40 pH 

8.0). Supernatants from each wash were also adjusted to pH 8.0 and assessed as needed. Control 

samples were treated similarly, though with a constant pH of 8.0. Readings from the control 

samples were taken at the same relative time points. 

 Fluorescence was measured using a Cary Eclipse fluorometer, set to emission mode. 

Samples were excited at λ = 488 nm and emission spectra obtained from 500-650 nm. Emission 

maxima were confirmed at 510 nm for all samples; this intensity peak was isolated for further 

analysis and graphical representation. 5 slits were used for both excitation and emission. 

In Vitro Cell Assays 

 HeLa cells grown in DMEM complete media were seeded in 4-well glass plates 

approximately 48 hours prior treatment and allowed to grown to confluence. Once cells were 

ready for treatment, growth media was removed and treatment applied. Treatment consisted of a 

30 minute incubation of the construct diluted in media. After treatment had been completed, cells 

were washed 3x rapidly, bathed in recovery media (DMEM complete),  and assessed under a 

fluorescence-enabled microscope. Initially, 5 and 10 µM GFP-pHLIP were used at pH 6.0 and 

pH 7.4; after confirming the feasibility higher concentrations in these assays, 10 µM construct 

was used exclusively. DMEM buffered with bicarbonate was used in the pH 7.4 treatment, while 

DMEM buffered with citric acid was used at pH 6.0. 
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 Images were taken using a Nikon camera attachment. Photographs were initially taken 

using auto-exposure settings; subsequent imaging used this exposure period to ensure 

consistency across images. Optical (brightfield) and fluorescent (green-field) images were taken 

of each sample at various locations to allow comparison of cell location and fluorescence 

localization. Images were processed using the ImageJ software. 

Results 

Verification of Supported Bilayer Synthesis 

 Imaging of carboxyfluorescein-containing POPC lipid bilayers confirmed the successful 

synthesis of SBSBs. Bright field imaging clearly identified the location of beads, while follow-

up fluorescent imaging showed a distinct localization of fluorescent signal to the beads. This 

confirms that SUVs collapsed onto the silica beads to create supported bilayers. 

 
Figure 1. Bright field image showing silica microparticles (left). Green-field fluorescent capture confirms presence 
of carboxyfluorescein tag on silica nanoparticles, indicating bilayers are collapsed upon beads (right). Fluorescent 
image was pseudocolored in ImageJ. 
 
SBSB Assays 

 In several of the assays, initial fluorescence declined dramatically before reaching a time-

stable baseline (data not shown). As a general trend, fluorescence declined dramatically after 

lowering of pH with minimal recovery after readjustment to pH 8. Control samples did not show 
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major loss of signal post-washing, contrary to the hypothesized results. One set of experiments, 

however, stand as an exception to these general trends. 

 In one trial, the hypothesized behavior of GFP-pHLIP was observed: GFP-pHLIP was 

retained upon low pH treatment, while controls showed a nearly complete loss of signal upon 

washing, with GFP-pHLIP presence detected in the supernatants. Fluorescence recovery of the 

experimental sample was also observed in this trial, though the intensity is less than 20% of its 

original value, even upon prolonged incubation at physiological pH. The lost fluorescence was 

not detected in the supernatants obtained after washing, even after incubation at pH 8 for over 20 

minutes. The results of this experiment are shown graphically in Figure 2. Emission maxima 

values at λ = 510 nm are shown to allow facile comparison of readings. 

 
Figure 2. Results of an initial SBSB GFP-pHLIP fluorescence assay. C denotes the control sample, while E denotes 
the experimental sample (subjected to pH adjustments). Emission values at λ = 510 nm, the maxima of eGFP, are 
shown along the y-axis. Low pH treatment led to retention of GFP-pHLIP, though the signal was greatly reduced, 
while the construct washed out of control samples. 
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 The results of a representative GFP-pHLIP characterization assay using SBSBs are 

shown in Figure 3. The control sample showed a fairly consistent fluorescence, with moderate 

decline post-washing. The experimental sample showed a pH-dependent decline in fluorescence, 

but did not show a significant recovery after pH readjustment. The lost signal was not present in 

supernatants, pointing to a lasting effect of lowered pH on sample structure in the presence of 

SBSBs. It is also important to note the low fluorescence values, in general, compared to the free 

construct and the specific trial reported previously in this paper. It is unknown why fluorescence 

values were so highly variable across experiments. 

 

 
Figure 3.  Results of a representative SBSB fluorescence assay. After pH adjustment, there is a noticeable loss of 
signal. Upon pH readjustment, there is a slight return of fluorescence. It is important to note that, in the control 
condition, there is only a moderate loss of signal after washing and centrifugation. 
 
In Vitro Cell Assays 
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 Results of HeLa cell culture assays were promising. Brightfield microscopy confirmed 

location of cells, while fluorescent microscopy confirmed GFP-pHLIP presence in the vicinity of 

cells. Sample fluorescence was clearly visible in all conditions. Compared to control cells, those 

treated at pH 6.0 showed greater levels of fluorescence after washing. The enhanced 

fluorescence was observed in distinct spots of brightness. Cell distribution appeared consistent 

throughout the four wells, though initial studies showed what appeared to be construct 

aggregation peripherally in each well. This may have been due to culture quality, as later 

experiments using healthier and more confluent cells did not yield suspected peripheral construct 

aggregation. 

 Given the nature of fluorescence microscopy, we are unable to determine the exact 

location of fluorescent signals relative to cell membranes or the nature of clustering. A moderate 

clumping of cells was observed at later times during imaging, likely a result of cells leaving 

optimal culture conditions during imagine. This was effect was captured in several images (data 

not shown).  

 Figure 4 shows images of HeLa cells treated with GFP-pHLIP. Fluorescent images were 

not quantitatively analyzed. Enhanced fluorescent signal, represented by green pseudocoloring, 

is indicative of membrane insertion and resultant retention of construct post-washing.  
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Figure 4. Captured images of GFP-pHLIP in HeLa cell assays. Top images are of cells treated with GFP-pHLIP at 
pH 6.0; bottom images are of control cells (treated at pH 7.4). Brightfield imaging (left) verifies the presence of 
cells. Green-field fluorescent imaging (right) shows a distinct difference between the two conditions, with enhanced 
signal obtained from the low pH treatment. Fluorescent images pseudocolored in ImageJ. 
 
Discussion 

 The use of pHLIP as a targeting system to deliver proteins selectively to cancer cell 

membranes requires further study to validate. In the present studies, preliminary data suggests a 

degree of selectivity of membrane insertion and maintenance of pHLIP properties when linked to 

GFP, a larger, bulkier cargo than has been reported before. In vitro studies in HeLa cultures 

show clustering and what appears to be localization to cell membranes, effects enhanced by 

lowering the pH. Similarly, in vitro studies using supported bilayers show a slight increase in 

membrane insertion at lower pH. The data, however, do not conclusively show a pH-dependent 

insertion of GFP-pHLIP without loss of function of either constituent. 
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 The supported bilayer studies require further elaboration to conclusively show pH 

dependent insertion of GFP-pHLIP. As it currently stands, GFP fluorescence is our sole indicator 

of enhanced membrane insertion. There are two major limiting factors that arise given this 

constraint. First, the presence of GFP makes impossible the use of CD and oriented CD, 

traditionally used to confirm pHLIP transition to a helical state. Thus, given the presence of GFP 

fluorescence post-washing in most trials, it is difficult to discern whether pHLIP insertion or 

simple bilayer interactions and aggregation are responsible for the increased pHLIP retention in 

lower pH conditions.  

 The second factor is a difficulty in recovering baseline GFP fluorescence after low pH 

treatment. Control studies of free GFP-pHLIP in standard buffers showed a quick, clear 

transition in fluorescence intensity in the range of ph 6: below pH 6, fluorescence was virtually 

absent, while at physiological pH, fluorescence was clear and intense. However, similar studies 

performed in the presence of supported bilayers (essentially the assay without washing and 

centrifugation steps), were unable to replicate this recovery. When recovery was observed, 

emission intensity peaked at roughly 20% of the baseline values. Prolonged incubation at higher 

pHs did not significantly enhance fluorescence recovery, pointing to a lasting loss of structure 

upon pH adjustment. A requirement of our assay design is the recovery of GFP fluorescence 

after returning to physiological pH. Thus, if GFP-pHLIP fails to properly refold after low-pH 

treatment, even if it has inserted into membranes in a pH-dependent fashion, we would be unable 

to detect its presence or retention in membranes. 

 A lurking variable may be the particular supported bilayers used in the study. While most 

studies use silica nanoparticles with diameters in the 100-600 nm range, the beads used here 

were significantly larger (3 µm). Thus, while full bead coating was confirmed in earlier stages 
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using fluorescent lipid tags, it may have followed that subsequent preps did not successfully 

synthesize uniformly coated beads. 

 To expand on the present work, there are several factors that can be modulated. The use 

of smaller beads, preferably in the 600 nm diameter range, would greatly increase the surface-

area-to-volume ratio of supported bilayers, allowing the use higher concentrations of protein 

construct without the risk of overloading bilayer surfaces. This change would also further align 

the given studies with previous work reported in the literature investigating protein and 

supported bilayer interactions. 

 The assays of GFP-pHLIP in cell culture appear to be more promising, as a noticeable 

increase in fluorescent signal was seen in lower pH conditions. Further studies are needed to 

address two concerns, which may be related: the presence of a significant baseline signal in 

control conditions (in which minimal pHLIP insertion should be observed) and the possibility of 

pH-induced construct aggregation. The use of confocal microscopy would allow both issues to 

be addressed; confirming the membrane to be the site of fluorescence would provide evidence 

pHLIP insertion is the reason for enhanced construct retention at lower pHs. 

 While the assays performed in cell culture yielded promising results, cell viability was of 

concern. As the imaging process continued and cells remained outside their preferred incubation 

conditions, clustering and clumping was observed. Cells that react unfavorably to changing 

conditions may very well interfere with concurrent imaging and skew the obtained results. 

Therefore, the use of fixed cells in similar studies is a potential next step. Alternatively, 

analyzing the insertion of GFP-pHLIP via flow cytometry may aid in confirming pHLIP 

insertion in target membranes. 
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 One cause for concern in both assays, which may point to construct aggregation and not 

membrane insertion as the cause of increased retention at low pH, is the presence of a moderate 

signal in the control conditions. At pH 8.0, pHLIP membrane insertion should be minimal, below 

the threshold needed to see the amount of signal observed in control conditions. As such, further 

characterization of the GFP-pHLIP constructs is needed. During sample preparation, it was also 

noticed that constructs were difficult to solubilize, and in some cases, may have been aggregating 

at the concentrations used; this was noted to be unusual, as pHLIP constructs are typically 

soluble well above the concentrations used in the present study.  

 Given the difficulties in solubilizing the constructs initially and the propensity for pHLIP 

conjugates to aggregate in abnormal conditions, it may be the case that GFP-pHLIP is 

aggregating, either with itself or in association with supported bilayers. Such aggregates, if 

tethered strongly enough to supported bilayers, would be retained even through washing and 

centrifugation. These aggregates, even in the prolonged presence of heightened pH, would be 

less likely to dissociate and refold to their native states, hampering fluorescence recovery. 

 Dialysis of prepared constructs appeared to aid solubility; further studies using processed 

constructs may be able to address the aggregation issues noted here. If aggregation is eliminated 

and the baseline retention rates of GFP-pHLIP drop significantly, concerns of nonselective 

targeting can be allayed. 

 Once GFP-pHLIP has been established as a model for pHLIP-mediated protein delivery 

to cell membranes, pHLIP-enzyme constructs would be the logical next step in the development 

of this technique. One could envision a construct in which an enzyme that is deficient in 

cancerous tissue is localized via pHLIP to the cell's external microenvironment, possibly 

facilitating production of a compound that would slow the tumor's growth. Another scheme 
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would use the localized enzyme to locally cleave a systemically administered pro-drug to its 

active form in select locales. Immune adjuvants, such as key regulators of the complement 

system, may also be of interest.  
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