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Abstract 
 

 This report presents results for correlations between coal data derived from laboratory 
analysis and Laser Induced Breakdown Spectroscopy analysis. LIBS data were used to predict 
higher order properties of coal using artificial neural network models. Higher order coal 
properties such as heating value and ash fusion temperature are predicted using LIBS analysis 
and compared against standard laboratory measurements. Selected formulas for the prediction 
of coal properties are also presented and compared against the neural network and laboratory 
results. 
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Introduction 
 

Coal is a complex fuel due to its heterogeneous composition and varied properties. Over 
the past few years, coal fired power plants have begun to burn cheaper and off-design coals in 
order to reduce their operating costs in order to meet new environmental regulations. A 
consequence of this is a higher incidence of slagging and fouling of coal ash in the power plant 
boilers, which poses maintenance problems for power plants. As a result, there has been 
increased demand for rapid and on-line technology that can be used to measure and monitor 
the composition and properties of the coal being burned in the power plant boilers.  

  The composition and related properties of coal are typically characterized by a number 
of laboratory-based analysis methods collectively known as ultimate analysis, proximate 
analysis, ash analysis, etc. Each different coal analysis method focuses on determining distinct 
and specific properties of the coal sample. For example, ultimate analysis is used to determine 
the elemental composition of coal, and proximate analysis is used to determine properties such 
as moisture content and heating value of coal. While applying these techniques provides an 
accurate measurement of the desired parameters, they are also time intensive measurements. 
In the general case, each of these techniques requires thorough and representative sampling of 
the batch of coal to be analyzed. Furthermore, depending on the technique to be applied, the 
samples may require some form of pre-processing prior to combustion and measurement. 
Using these techniques, it is not possible to both rapidly and accurately obtain measurements 
of coal properties.  

 An alternate method of characterizing the higher order properties of coal involves an 
analysis of the relationships between coal properties and coal composition. In the literature, 
many such correlations have been reported in the form of formulas or statistical and artificial 
intelligence-based models. An advantage of this method of characterizing the properties of coal 
is that given information about the composition of coal, the other useful properties of coal can 
be quickly estimated to reasonable degree of accuracy.  

This report will focus on determining correlations between several higher order coal 
properties and coal composition data that were collected using Laser Induced Breakdown 
Spectroscopy (LIBS). In particular, algebraic and statistical correlations from the literature will 
be compared against Artificial Neural Network (ANN) based models using LIBS data as their 
input. While ANN models have been successfully used to correlate coal properties with the 
elemental composition of coal, the analysis presented in this report differs by attempting to 
directly correlate LIBS spectral data to coal properties using ANN models. 

 

  



4 
Note: The information contained in this report is proprietary and owned by the Lehigh University Energy Research Center and 
the Energy Research Company (ERCo). 

 

Description of Related Theoretical Concepts and Physical Principles  

 
Literature Survey for Coal Property Correlations 
 

Heating Value 
 

The heating value (HV) of a fuel is an important property that gives the energy content 
contained within the fuel. Heating value is usually reported in two forms, which are known as 
higher heating value (HHV) and lower heating value (LHV). The primary difference between 
these two values is that the HHV takes water vapor into consideration as a combustion product, 
while the LHV assumes that water vapor is removed. The heating value of coal that is typically 
reported is the gross heating value (GHV), or higher heating value (HHV). As this property is 
important in determining the energy content of the fuel, it is often estimated from the 
elemental composition of the fuel (Speight, 2005). 
 
             Many formulas relating the heating value of coal to its elemental composition are 
reported in the literature. As part of a survey of formulas for heating values, a list of several 
common formulas for heating values of different fuels has been compiled by Channiwala and 
Parikh. In their paper, they list common formulas with the basis and assumptions behind them. 
All of the formulas compiled by Channiwala and Parikh are published correlations for HHV 
(MJ/kg) reported on a dry basis. The percent composition values are reported as percent by 
mass and on a dry basis. 
 
            The first reported formula for coal HHV in the literature is the Dulong formula (Eq. 1). 
The Dulong formula is based on empirical analysis of combustion reactions and the concept of 
available hydrogen. This formula is reported to be accurate to 1.5% for low oxygen coals. The 
Dulong formula was developed from an analysis of all coal ranks, however the majority of 
samples considered in the Dulong study came from bituminous and subbituminous coals. This 
formula is reported to deviate by 5 – 7%. 
 

          (  )       (   
 

 
(  ))        (  )                                             (    ) 

 
             The next formulas for coal heating values that are reported in the literature are 
modifications of the Dulong Formula. Strache and Lant (Eq. 2) better accounts for variances in 
oxygen content. Steuer (Eq. 3) modifies the Dulong formula by considering the association of 
oxygen with both hydrogen and carbon. Both of these modifications of the Dulong formula are 
reported to be accurate to within 2% for all coals. Both of these studies built upon the Dulong 
study and considered similar coal sampling data as the Dulong study. 
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             The Vondrecek (Eq. 4) correlation considers the bond energy of carbon and a higher 
availability of hydrogen in coal as compared to the Dulong Formula. The Vondrecek study 
considered coal samples from the entire range of coal ranks. The predictions of the Vondrecek 
formula are reported to be accurate to within 1.5% for all coals; however a listing the specific 
ranks of coal considered in this study could not be found. 
 

         (  )         (  )       (   
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    The Schuster correlation (Eq. 5) is based on an assumption that the heat evolved from 
combustion of fuels is proportional to the amount of oxygen consumed, and that the constant 
of proportionality is dependent on the oxygen content of the fuel. This correlation is based on 
similar coal sample data as the Dulong formula, and therefore is primarily based on a study of 
bituminous and subbituminous coals. In the literature, this correlation is reported to be 
superior to the Dulong Formula. 
 
    

(                 (  ))  (
  

 
    

     

 
)                                                            (    )  

 
             A similar correlation was proposed by Grummel and Davis (Eq. 6). Grummel and Davis 
made the same assumption regarding the proportionality between the heat evolved and the 
oxygen content of fuels. Their correlation differs from Schuster’s in that the constant of 
proportionality is assumed to be dependent on the hydrogen content rather than the oxygen 
content of the fuel. The Grummel and Davis correlation is reported to be accurate within 1.3% 
for all coals, however, the majority of the coal samples in this study are bituminous and 
subbituminous. 

    (      (  )        )  (
  

 
    

     

 
)                                              (    ) 

 
             Another major correlation reported was proposed by Seyler (Eq. 7). This correlation is 
based on the finding that the ratio between the heat of formation and the oxygen content of 
the fuel is a linear function of the oxygen content of the fuel. Seyler reports that this correlation 
accurately predicts HHV to within 1%. The specific coal ranks for which this correlation is 
appropriate were not given in the Channiwala paper. 
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         (  )       (  )       (  )                                                            (    ) 
  
             The Boie correlation (Eq. 8) is a more general correlation that is based on the properties 
of hydrocarbon fuels. Predictions for HHV from the Boie correlations are reported to be within 
1.8% of the true HHV for bituminous and subbituminous coals. 
 
          (  )       (  )        (  )       (  )                                       (    ) 
 
             Another general correlation for HHV is the IGT correlation (Eq. 9). The IGT correlation 
was derived from analyses of the properties of over 700 coal samples. This correlation is 
reported to be accurate to within 1.2% for all coals. One major difference for the IGT 
correlation is that it considers the percent ash content of coal. The IGT correlation is primarily 
based on a study of coals from Illinois. 
 
         (  )       (  )               (    )        (     )  (    ) 
 
             The final reported correlation for HHV of coal is the Dulong-Bertherlot correlation (Eq. 
10). This correlation modifies the original Dulong formula by introducing the effect of nitrogen 
in the fuel. This correlation is claimed to be superior to the Dulong correlation and is based on a 
similar coal sample set as the Dulong formula. 
 

          (  )        (  )  
(       )

 
      (  )                           (     ) 

 
             In addition to their survey of correlations in the literature, Channiwala and Parikh also 
worked to develop a unified correlation for heating value based on all the others reported. In 
order to achieve their unified correlation, Channiwala and Parikh collected data from various 
fuels including coal, natural gas and biomass from the literature. The resultant compendium of 
data for all fuels was verified by back-checking with the most proven correlations for the fuels. 
In this case, the Boie correlation (Eq. 8), the IGT correlation (Eq. 9), and the Grummel and Davis 
correlation (Eq. 6) were used to verify the data. 

 
             To determine the unified correlation, Channiwala and Parikh attempted to fit a number 
of algebraic expressions to the data using regression methods. The best correlation for HHV 
that was determined from this analysis is listed below (Eq. 11). This correlation is reported by 
the authors to be accurate to within 3% for all hydrocarbon fuels. It is important to note that 
the unified correlation (Eq. 11) has been developed as a general formula for HHV for 
hydrocarbon fuels and not for specific ranks of coal (Channiwala & Parikh, 2001).  
 
           (  )        (  )        (  )        (  )        (  )

       (    )                                                                                                    (     ) 
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Calculations of heating value have also been achieved using Multivariate Regression and 
Artificial Neural Network (ANN) techniques. A paper written by Mesgroghli, Jorjani, and 
Chelgani considers the use of both approaches, and puts forward a comparison of the results 
from the application of the two techniques. 

The regression based techniques used by Mesgroghli, Jorjani and Chelgani consider the 
multivariable relationships between the HHV of coal and various parameters determined from 
ultimate and proximate analyses. All of the coals considered in this study were sampled from 
coal mines in the United States, with the majority of the samples coming from bituminous and 
subbituminous coals. Using a least square regression method, the correlation coefficients for C, 
H, Hex (Hydrogen exclusive of moisture), N, O, Oex (Oxygen exclusive of moisture), sulfur, ash, 
moisture and volatile matter with HHV were determined.  Then, using a stepwise procedure, 
multivariable equations between the various parameters and the HHV were determined. The 
three best recorded equations are presented in Table 1.  

Table 1: Best-Correlatated Multivariable Equations for HHV (MJ/kg). All parameters are in %mass. Source: (Mesgroghli, 
Jorjani, & Chelgani, 2009).

   

HHV (MJ/kg) equations R2 
                ( )       ( )       (  ) 0.97 

                 ( )       ( )       ( )      ( )       ( ) 0.99 
               ( )       ( )       ( )       (   )      (   )      ( ) 0.995 

 
             In addition to considering equations derived from multivariable regression, the paper 
also develops ANN-based models for the estimation of HHV of coal. Three specific ANN-based 
models are developed in this paper. The ANN based models developed in this study are feed 
forward networks that execute training using error back propagation (EBP). The ANNs 
developed consist of an input layer, a single hidden layer and EBP training. In order to validate 
the ANN models, their performance is evaluated by considering the correlation between the 
predicted HHV and the actual HHV. More detailed information regarding the three ANN models 
is provided in Table 2 below. 

Table 2: Details for ANN models for HHV. Source: (Mesgroghli, Jorjani, & Chelgani, 2009). 

Inputs Training 
Set Size  

Testing 
Set Size 

Validation 
Set Size 

No. of Input 
Nodes 

No. of Hidden 
Layer Nodes 

R2 

Ash, VM, M 2000 1740 800 3 10 0.95 

C,H,N, O, S, 
Ash 

2000 1740 800 6 10 0.92 

C, Hex, N, Oex, 
S, Ash, M 

2000 1740 800 7 10 0.97 

 
             In order to achieve valid comparisons between the two general methods of estimating 
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HHV, Mesgroghli, Jorjani and Chelgani developed three specific models for each method using 
similar input parameters. Then, using the correlation coefficients, the developed models could 
be reasonably compared. Based on the results from their analysis, the paper concludes that 
both techniques provide highly reliable correlations, however the regression technique is 
preferred due to its relative simplicity as compared to the ANN-based method. That being said, 
the ANN-based method has an advantage in that it can better handle nonlinear relationships 
between input parameters and HHV (Mesgroghli, Jorjani, & Chelgani, 2009). 
 

Volatile Matter 
 

The volatile matter of coal is defined as the constituents of coal, excluding moisture, 
that depart in the form of gases and vapors during pyrolysis (Speight, 2005).  A number of 
correlations have been proposed between volatile matter and other constituents of coal. Many 
such correlations between volatile matter and the hydrogen-carbon ratio in coal are proposed 
by C.H. Fisher. Fisher surveyed literature for volatile matter correlation and used petrographic 
data to plot curves relating volatile matter content to various Hydrogen-Carbon ratios. Fisher 
noted that the relationships were linear for coals containing anthraxylons and constituents such 
as fusains, attrital matter, durains and spores, which he termed as ‘bright coals’. The samples of 
the ‘Bright Coals’ that were used by Fisher were stated to be from a Pittsburgh, PA coal mine. 
The linear equations of the observed correlations have fair accuracy for anthraxylons of all 
ranks and for the other constituents.  
             Fisher starts his study by introducing a formula developed by Seyler (Eq. 12), which 
characterizes ‘bright coals’ containing anthraxylons, vitrains and clarains. The Seyler formula 
applies for these coals if constituents are reported on a dry, mineral matter free basis. 
 
         (  )      (  )                                                                                        (     ) 
 
             Other formulas from the literature that were put forward in the Fisher paper are the 
Seyler logarithmic formula (Eq. 13), Diederich’s formula (Eq. 14), and Seyler’s quadratic 
formulas (Eq. 15), (Eq. 16). These formulas were applied to the same coal samples as the rest of 
the correlations in the Fisher study. 
 
          (   )                                                                                                              (     ) 
 

       (
    

      
)                                                                                                 (     ) 

 
         (   )         (   )                                                                         (     ) 
 
        (   )         (   )                                                                           (     ) 
 
             In addition to the formulas in the literature, Fisher noted relationships between the 
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square of a hydrogen to carbon ratio and volatile matter for coals containing high amounts of 
vitrains and clarains (Eq. 17), and coals containing other banded constituents (Eq. 18) (Fisher, 
1938). 
 

    
  

  
(
   (  )

  
)

 

                                                                                                         (     ) 

 

    
  

  
(
   (  )

  
)

 

                                                                                                         (     ) 

 
             More recently, Vassilev, Vassileva, Baxter and Andersen authored a paper that outlines a 
number of correlations between many different constituents of coal. Using a broad database of 
coal sampling data from 37 separate sites (majority are bituminous or subbituminous coals), the 
paper presents correlations between specific properties or elemental compositions such as 
fixed carbon versus hydrogen. In particular, the paper finds that Volatile Matter is positively 
correlated with moisture, oxygen, and hydrogen, and negatively correlated with ash, carbon, 
and nitrogen (to name a few). The paper lists positive and negative correlations, as well as their 
correlation coefficients. Table 3 below is an excerpt from a table in the paper, which notes 
significant correlation coefficient values for coal constituents with volatile matter (Vassilev & 
Vassileva, 2010). 

Table 3: Significant Positive (+) and Negative (-) correlation coefficient values for Volatile Matter (97
th

 and 95
th

 Confidence 
Interval). Source: (Vassilev & Vassileva, 2010). 

Symbol Significant Correlation Coefficient Values 

VM H(+0.58), O (+0.55), Mineral Matter(+0.43), K(-0.52), Ash(-0.46), C(-0.42) 

 
Percent Ash Content 
 

The Ash content of coals is defined to be the residue that is found after coal is 
combusted. The ash follows from the remnant of the incombustible matter in coal after it is 
burned. In general, the ash content of coal is comprised of mineral matter. One potential 
correlation for ash content is with Silicon. In a paper written by Hicks O’Reilly and Koppenaal, 
the percent ash content in coal is proposed to be strongly correlated with the percent silicon 
content in coal. Using various spectroscopic techniques to analyze coal ash samples from West 
Virginia and Kentucky, Hicks, O’Reilly and Koppenaal produced linear-least fit (Eq. 19) and 
logarithmic (Eq. 20) correlations for percent ash content as a function of silicon content. The 
logarithmic correlations are reported to be accurate to within 1.8%. Reported values for the 
constants and the correlation coefficients can be found in Tables 4 and 5 (Hicks, O'Reilly, & 
Koppenaal).   

      (   )                                                                                                                            (     ) 
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      (   )                                                                                                                                (     ) 
 

Table 4 Linear Correlations for %Ash from %Si. For equation 19. Source: (Hicks, O'Reilly, & Koppenaal). 

Coal Ash% Slope (p) Intercept (q) Error in Estimation of %Ash Correlation Coefficient 

4.6-27.3 2.48 4.33 2.41 0.890 

6.5-27.3 2.94 2.88 1.73 0.941 

6.5-27.3 3.00 2.69 1.71 0.943 

 

Table 5 Logarithmic Correlations for %Ash from %Si. For Equation 20. Source:  (Hicks, O'Reilly, & Koppenaal) 

Constant (a) Constant (b) Correlation Coefficient 

6.82 0.525 0.917 

5.82 0.652 0.919 

5.72 0.663 0.902 

 

 In addition to this proposed correlation, the paper written by Vassilev, Vassileva, et al, 
reports a number of positive and negative correlations for Ash in coal. The paper states that the 
current understanding of correlations for ash yield in coal is poor due to its complex character 
as Ash is simultaneously produced from mineral matter, organic matter, and fluid matter during 
coal combustion, and it is therefore difficult to determine the source of the ash. The significant 
correlations for ash content are shown in Table 6 below (Vassilev & Vassileva, 2010). 

Table 6 Significant Positive (+) and Negative (-) correlation coefficient values for Ash content (97th and 95th Confidence 
Interval). Source: (Vassilev & Vassileva, 2010). 

Symbol Significant Correlation Coefficient Values 

A S (+0.57), K (+0.50), Al (+0.47), FC (-0.66), VM (-0.46)  

 

Ash Fusion Temperature 
 

The Ash fusion temperature of coal is a measure of the behavior of the ash residue of 
the coal at high temperatures such as those that exist in furnaces. Generally, at high 
temperatures, the ash residue tends to fuse into a glass-like slag material which needs to be 
periodically cleaned out of the furnace. A measure of the ash fusion temperature is important 
in determining the operating conditions of the coal fired boiler. There are four temperatures 
that are measured and reported as ash fusion temperatures. First, there is the initial 
deformation temperature (IT), which is the temperature at which a sample of coal ash first 
starts to deform. The next measure is the softening temperature (ST), at which the ash sample 
fuses down to a spherical lump. The third measure is the hemispherical temperature (HT), at 
which the ash sample fuses down to a hemisphere such that the height is half the width of the 
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base. The final measure is the fluid temperature (FT), at which the ash sample fuses into a flat, 
glassy layer (Speight, 2005). 

The majority of sources in the literature reported correlations between ash fusion 
temperatures and ash composition. This approach is reported in a paper by Ozbayoglu and 
Ozbayoglu, who conducted a study on ash fusion temperatures for Turkish coals. This study 
developed both linear and nonlinear correlations for the estimation of ash fusion temperature. 
The linear correlation developed in this study is shown as Equation 21, and the nonlinear 
correlation for ash fusion temperature is shown in Equation 22. The inputs for these two 
equations are listed in Tables 7 and 8. The constants li and ci are equation constants for the 
linear and nonlinear correlations respectively. These equation constants were determined using 
statistical methods (Ozbayoglu & Ozbayoglu, 2005). 

  (  )        (  )    ( )    ( )    (  )    (    )    (   )    (  )  
  (   )     (  )     (    )     (     )     (     )     (   )     (   )  
   (   )     (    )                                                                                                                      (     )   
 

  (  )    (  )
  ( )  ( )  (  )  (    )

  (   )  (  )  (   )  (  )   (    )
    

 (     )
   (     )

   (   )   (   )   (   )
   (    )

                                                 (     ) 

Table 7 : Parameters considered for linear and nonlinear correlations for Ash Fusion Temperature. Source: (Ozbayoglu & 
Ozbayoglu, 2005). 

Parameter Symbol Parameter Definition 

SV – Silica Value SV = SiO2/(SiO2+Fe2O3+CaO+MgO) 

B – Base B = Fe2O3+CaO+MgO+K2O+Na2O 

A – Acid A = SiO2+Al2O3+TiO2  

R250 R250 = (SiO2+Al2O3)/(SiO2+Al2O3+Fe2O3+CaO) 

DR – Dolomite Ratio DR = (CaO+MgO)/(Fe2O3+CaO+MgO+K2O+Na2O) 

Ash % Ash composition 

SG Specific Gravity of Coal 

HGI Hardgrove Grindability Index of coal 

MM  % Mineral Matter Composition 

SiO2 % SiO2 composition 

Al2O3 % Al2O3 + TiO2 composition 

Fe2O3 % Fe2O3 composition 

CaO % CaO composition 

MgO % MgO composition 

K2O % K2O composition 

Na2O % Na2O composition 
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Table 8 : linear and nonlinear regression equation constants for three ash fusion temperatures. Source: (Ozbayoglu & 
Ozbayoglu, 2005). 

 T (°C) = Softening Temp T (°C) = Melting Temp. T (°C) = Fluid Temp. 

No. (i) li ci li ci li ci 

1 1516.9 1159.4 1518.8 522.74 3040 335.17 

2 -1123 -0.731 -121 -0.597 -3327 -0.452 

3 -561.4 -0.067 -1288 -0.117 -1101 -0.009 

4 2087.3 -0.372 2816.1 3.1897 4149.7 3.855 

5 -53.41 -0.103 0 0 -72.07 0.0547 

6 -2767 0.819 -4166 -0.394 -4900 0.445 

7 284.71 0.0841 -107.5 -0.021 -213.9 -0.033 

8 310.6 0.2787 355.82 0.0963 363.41 0.1116 

9 -2.46 -0.108 2.55 0.0374 3.28 0.0518 

10 -30.65 -0.003 0.0083 0 120.16 0.0155 

11 1140.1 0.3625 857.98 -1.983 -3.017 0 

12 949.64 -0.013 1960.5 -0.242 2224.6 -0.37 

13 -539.6 -0.034 266.24 0.056 -1539 0.0708 

14 -293.1 0.0728 524.64 0.0171 -1526 -0.013 

15 1341.8 -0.031 282.3 -0.008 942.69 -0.071 

16 -2448 -0.004 -7105 0.0078 -3231 0.023 

17 1379.9 -0.031 2194.6 0.0076 4254.5 0.0042 

R - coeff 0.874 0.955 0.864 0.963 0.84 0.934 

 

 The only paper to provide direct correlations between various ash fusion temperatures 
and coal composition was the one written by Vassilev, Vassileva, et al. In this paper, significant 
correlations and their correlation coefficients for elements in coal and the ST, HT and FT 
(softening, hemispherical and fluid ash fusion temperatures) are reported. These correlations 
are provided in Table 9 (Vassilev & Vassileva, 2010).  

Table 9 Significant Positive (+) and Negative (-) correlation coefficient values for three Ash Fusion Temperatures (97th and 
95th Confidence Interval). Source: (Vassilev & Vassileva, 2010). 

Symbol Significant Correlation Coefficient Values 

ST Al (+0.69), Ti (+0.67), C (+0.56), FC (+0.56), Gp (-0.52), Mg (-0.46), O (-0.46) H (-0.43)  

HT Al (+0.70), Ti (+0.66), C (+0.58), Si (+0.52), FC (+0.46), Ca (-0.65), Mg (-0.47), O (-0.58) 

FT Al (+0.69), Ti (+0.69), C (+0.64), FC (+0.48) Si (+0.44), SO3 (-0.72), Ca (-0.57), O (-0.56) 

 

Slagging and Fouling Indices 
 

Slagging and fouling are the two main types of deposits that form within coal fired 
boilers. Slagging deposits typically occur in the parts of the boiler where coal ash deposits are 
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easily exposed to radiation from the flame.  Fouling deposits tend to occur as the coal fly ash 
cools down, and typically form in areas that are not directly exposed to the flame of the boiler. 
The occurrence of these deposits results in a reduction in the effectiveness of heat transfer 
between the combustion in the boiler and the water used to produce steam. Due to the 
consequences that slagging and fouling deposits have on the operation of a coal-fired power 
plant, it is important to estimate the propensity of coal to form such deposits. The estimation of 
the slagging and fouling propensity of coal is done using slagging and fouling indices (Manton, 
Williamson, & Riley, 1996). 

 Common slagging indices for coal are reported in a paper written by McLennan, Bryant, 
Bailey et. al. This paper reports three common indices for coal slagging, along with an 
estimation of the slagging potential for each index considered. The study was conducted using 
samples of high rank Australian coals. The three common coal slagging indices are shown in 
Table 10. For the ash fusibility, the IDT is the initial deformation temperature and the HT is the 
hemispherical ash fusion temperature of the coal. For the coal ash viscosity, the T250(ox) and the 
T1000(red) values are the 250 poise temperature of coal for oxidizing conditions and  the 1000 
poise temperature for coal for reducing conditions respectively. The Fs value is a correlating 
factor for viscosity, however its value was not reported in the study (McLennan, Bryant, Bailey, 
Stanmore, & Wall, 1999). 

Table 10: Three slagging and fouling Indices for high rank coals. Source: (McLennan, Bryant, Bailey, Stanmore, & Wall, 1999). 

Slagging Potential 

Index Calculation Low Medium High Severe 

Ash 
Fusibility 
(T °C) 

 (   )    

 
 

>1343°C 1232-
1343°C 

1149-
1232°C 

<1149°C 

Viscosity 
(poise) 

    (  )       (   )

     
 

<0.5 0.5-0.99 1.0-
1.99 

>2.0 

Ash 
Chemistry 
(% comp.) 

(                      )   

               
 

<0.6 0.6-2.0 2.0-2.6 >2.6 

 

Trace Elements 
 

Trace elements in coal are general inorganic constituents of coal that are not part of the 
organic coal substance. The trace elements in coal form the majority of mineral matter in coal, 
but can also take the form of heavy metals. A number studies have been performed to 
determine trace element affinities in coal.  In general, these studies relate trace element 
concentrations to total sulfur, sulfur compounds, and organic or inorganic matter (Speight, 
2005). 
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 In their paper, Xiao-hua, Han-cai, and Lu-xian modeled the relationship between trace 
elements and 3 species of sulfur in coals, namely, organic sulfides, inorganic sulfides and 
sulfates. The study reported regression models (Eq. 23) between trace elements and the three 
types of sulfur compounds. This study used samples from Chinese bituminous coals. These 
relations are presented in table 11 below. The form of the regression models is shown in 
Equation 23, where X1, X2 and X3 are percentages of sulfates, inorganic sulfides and organic 
sulfides respectively, a1, a2, and a3 are constants. Y represents the concentration (µg/g) of the 
trace element in the coal (Xiao-hua, Han-cai, & Lu-xian, 1998). 

                                                                                                                          (     ) 

Table 11 Regression Models for Trace Elements and Three species of sulfur. Source: (Xiao-hua, Han-cai, & Lu-xian, 1998). 

Trace Element Regression Equation Correlation Coefficient 

Be             (  )        (  )       (  )     0.776 

Cd               (  )      (  )      (  )       0.9966 

Co             (  )      (  )      (  )                   0.9671 

Pb               (  )      (  )       (  )      0.990 

Cu              (  )        (  )       (  )   0.997 

Cr               (  )      (  )       (  )      0.6278 

Ni              (  )      (  )       (  )         0.9871 

As               (  )       (  )       (  )   0.3934 

 

 Another study on trace element affinities in coal was performed by Conaway.  In his 
thesis, Conaway briefly outlines basic affinities of trace elements to organic matter, mineral 
matter, and sulfur compounds. He then presents correlation coefficients and regression models 
for a number of trace elements for three separate coal samples. The Parr Formula (Eq. 24) is 
used to estimate mineral matter and organic matter concentrations in the study. Conaway 
developed a multiple regression model (Eq. 25) relating trace element concentration to the 
concentration of ash, pyritic sulfur and organic matter forming materials. Ci represents the 
concentration of a specific species of trace element I, and the constants Ma, Mpyr, MOM are 
regression coefficients for each of the three input values. Table 13 shows the regression 
coefficients for samples from the Coalburg WV coal mine (Conaway, 2001).  

                    (               )

     (   (    )      (  ))                                                                  (     ) 

     (    )      (               )     (               )                       (     ) 
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Table 12 Normalized Regression Coefficients for Coalburg WV coal samples. Source: (Conaway, 2001). 

Normalized Regression Coefficients 

 Sb As Be Cd Cr Co Pb Mn Hg Ni Se 

Ash forming 
materials  (Ma) 

0 0 0 0.2766 0.8146 0 1.0 0.004 0 0.0062 0 

Pyritic Matter 
materials (Mpyr) 

1.0 1.0 0 0.7197 0 0.3101 0 0.996 1.0 0.9894 1.0 

Organic Matter 
materials (MOM) 

0 0 1.0 0.0037 0.1854 0.6899 0 0 0 0.0142 0 

 
Laser Induced Breakdown Spectroscopy 
 

 Laser Induced Breakdown Spectroscopy (LIBS) is a form of atomic emission spectroscopy 
that can be used to determine the composition of a sample. In principle, LIBS systems operate 
by exciting a sample using a high energy pulsed laser (typically a Nd:YAG 1064nm laser) to 
atomize it. For most LIBS systems, the laser is pulsed at its targets for time intervals on the 
order of ~ 4 ns, releasing optical 
radiation as a small portion of the 
sample is burned off. This optical 
radiation is typically analyzed through 
the use of optical emission spectrometry. 
As seen in Figure 1, the spectral data that 
are obtained from LIBS measurements 
can be output as a plot of intensity 
versus wavelength, where the different 
wavelengths correspond to different 
elements and the intensity of each 
spectral line corresponds to the relative 
concentration of the element in the 
sample. The intensity measurement 
follows from a detector that measures 
counts of photons of different 
wavelengths that are released when the 
sample is excited by the laser.  It is important to note that as opposed to a single wavelength, a 
spread of wavelengths typically corresponds to an element. This can be seen in Figure 1 where 
multiple peaks are shown to correspond to Silicon and Iron respectively. In order to obtain a 
single measurement for the concentration of a particular element, the spectra data are typically 
normalized by integrating across a spread of wavelengths that are known to correspond to a 
particular element. Once the spectral measurements are taken, they must then be interpreted 
to determine the elemental composition of the sample. 

Figure 1: Coal LIBS Spectrum 
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 The LIBS measurement technique is particularly advantageous for rapid on-line coal 
analysis as measurements are taken without destroying or heating the sample. In addition, the 
LIBS technique does not require the samples of coal to be specially prepared for analysis. In 
addition, the LIBS technique has been proven to be relatively accurate with a high degree of 
repeatability. The primary limitation of the LIBS technique is the sensitivity of the detector that 
is used for the spectral analysis. (Fortes and Moros, 2012). 
 

Artificial Neural Networks 
 
 In addition to the algebraic and statistical correlations between coal properties and coal 
composition that are reported in the literature, this report will consider correlations that are 
derived from artificial neural network (ANN) models. The ANN models were used to correlate 
the spectral data from LIBS measurements with the relevant higher order properties of coal. 

 Artificial neural networks (ANNs) are a set of computational models that are inspired by 
the operation of central nervous systems. In natural nervous systems, neural signals are 
transmitted to and received by neurons through synapses. If the strength of the signal is 

beyond a certain threshold, then the 
neuron is activated, making it send new 
signals to other neurons. In ANN modeling, 
the natural neural system is modeled 
computationally. In the ANN case, input 
signals are both sent and received by 
nodes. These signals are all assigned 
weights, which represent the strength of 

the signal. Depending on the weight 
assigned to an input signal and an 

activation function, the node to which it travels may or may not be activated, resulting in the 
transfer of an output signal. This is illustrated in Figure 2. 

 Artificial neural networks are formed by combining several layers of nodes. The 
operation of an ANN model will differ depending on the weights assigned to the signals that are 
input and output to and from nodes. ANN modeling requires the use of algorithms to 
determine the appropriate weights in order to obtain the output that is desired. The process of 
altering the weights is called training. The primary applications for artificial neural network 
modeling are in pattern recognition, and forecasting. There are many different types of 
algorithms that can be used in ANN modeling. The differences between them typically lie in the 
activation functions, or in the architecture of the network. For the LIBS data that are analyzed in 
this report, two common ANN models were used. The two models that were considered were 
Error Back Propagation (EBP) and Radial Basis Function (RBF) networks. 

A general mathematical algorithm for artificial neural networks is shown in Equation 26 
below. In Equation 26, vi are the output neurons that are being fed information from input 

Figure 2: Artificial Neural Network Node. (Gershenson) 
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neurons vj through the use of weights, wij and a transfer function or activation function g(ai). 
For an EBP network, the transfer function g is typically linear or sigmoid. For an RBF network, g 
is a radial basis function. The primary difference between an EBP network and an RBF network 
is how the weights are updated using activation functions. (Peterson and Rognvaldsson, 1991). 

    (  )∑ (     )                                                                                                                (     )      

 The EBP algorithm is a supervised learning algorithm that can be used to model patterns 
within a data set. The term ‘supervised learning’ refers to the fact that the training dataset that 
is input to the system consists of paired sets of inputs and outputs. An ANN that operates on an 
EBP algorithm will first consider the training data to infer a function between the input and the 
output, and then use a testing set to validate the function. EBP algorithms are also known as 
feed forward networks in that the training pattern that is generated is fed forward through the 
network in order to generate the desired output. Back propagation is then used to calculate the 
error for the outputs for individual inputs against other such pairs in the training set. The 
network is trained until the level of error falls below a specified value.                 

 A radial basis function network (RBF) operates by calculating radial basis functions of the 
inputs to individual nodes in the network. The output from each node is determined by the 
linear combination of the radial basis functions of the inputs to the node. A radial basis function 
is a function whose output is only dependent on the distance between its input and a ‘center’. 
In the case of ANN modeling, the ‘center’ is typically the desired output value that is specified in 
the data set. RBF networks are considered a fast alternative to EBP networks (Neusciences, 
2000).  

Determination of Data used in Analysis 
 
 In order to determine correlations between higher order properties of coal and coal 
composition, it was first necessary to select the appropriate input and output data for the 
different models to be considered. The output data comprised of higher order properties of 
coal such as the higher heating value and the ash fusion temperature of coal. The input data for 
the various models differed depending on the type of model and the availability of data.  

 Data for a total of 50 samples of coal across 10 separate sampling locations was used for 
data analysis. For these samples, the coal data were collected in two forms: Standard 
Laboratory data and LIBS data. The standard laboratory data followed from coal analysis 
techniques such as ultimate analysis and proximate analysis and provided information for both 
the composition and the properties of the coal sample. The LIBS data were collected from LIBS 
experiments that were conducted on the coal samples. The LIBS data were more limited in that 
the spectral information could only be used to predict the composition of elements such as Al, 
Ca and Fe. While in theory it could be possible to determine the concentration of many other 
elements in the coal sample, the LIBS dataset in this case was limited to carbon and metals. 
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 In the case of the algebraic correlations between coal composition and coal properties, 
the input data for the algebraic models depended on the requirements of the model that was 
selected. One such algebraic model is Fisher’s vitrain formula for volatile matter in coal (Eq. 17). 
In the case of this model, the inputs are specified as the dry percent composition values for 
Oxygen and Hydrogen in coal sample. These values were then directly input into the formula in 
order to estimate a value for the volatile matter of the coal sample. 

 For the ANN models that were considered, the input dataset that was used was limited 
to spectral data for a few metals and for carbon, while the output data remained the same (coal 
property information derived from laboratory measurements). Instead of converting the 
information in the spectral data to the elemental composition of coal, the spectral data were 
input into the neural networks. This was done in order to reduce the amount of error in the 
estimation of the output value. In terms of ANN modeling, the nature of the input data was not 
a factor due to the fact that the spectral data were directly paired with the appropriate output 
data. The LIBS models were then trained to determine patterns between the input and output 
data and use the patterns to estimate the value of the output given new inputs of the same 
form. 

Procedure for Artificial Neural Network Modeling 
 

The analysis using artificial neural network models for LIBS spectra data was performed 
using Neuframe Professional 4. Neuframe is a software package for data analysis using artificial 
intelligence methods such as ANNs. While Neuframe is capable of data analysis using a number 
of different algorithms for pattern recognition, clustering, and data mining, the analysis that 
was performed on the LIBS data was restricted to only two of the available algorithms. The two 
algorithms for neural network training that were selected were the Error Back Propagation 
algorithm and the Radial Basis Function algorithm. The primary reason why these particular 
algorithms were selected was that they are both particularly applicable for pattern recognition 
in datasets where the input values are clearly paired with the output values. In other words, the 
EBP and RBF algorithms allow for the creation of general purpose supervised learning neural 
network models. 

Preparation of Datasets for Input to Model 
 

In order to perform data analysis using Neuframe, it was first necessary to select the 
appropriate data set to be input to the software program. This meant selecting the input 
parameters and the desired output parameters for the modeling. The input parameters used 
were quantities such as the Dolomite Ratio and Silica Ratio, which were calculated from the 
LIBS spectral data. The parameters that were determined from laboratory analysis, such as 
Heating Value and Ash Fusion Temperature were selected as the desired outputs for the neural 
networks. 
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Before data can be input to Neuframe for analysis, it needs to be separated into a 
training set and a query set. This is 
illustrated in Figure 3.  The training set 
consists of randomly selected rows of 
paired input and output parameters. For 
the 50 samples that were used for this 
analysis, the training set that was 
chosen typically consisted of between 
30 and 40 rows of data. The purpose of 
the training set is to pass data into the 
neural network in order for it to learn 
patterns between the input parameters 

and the output parameters. The query 
set consisted of all 50 rows of data. After 
the neural network is trained using the training set, the query set is used to test the network. 
The outputs for running the neural network using the query set are the neural network 
predictions of the output parameters. 

Training the Artificial Neural Network 
 

In order to train a neural network model to accurately predict a desired output 
parameter, a number of options are available in order to optimize the network’s performance. 
The first condition that can be varied is the size of the training set. By increasing the size of the 
training set, the pattern between the input and output parameters that is determined by the 
neural network can be improved as it is developed using more of the overall data set. Another 
consequence of increasing the size of the training set is a decrease in the number of output 
data points that were predicted by the network without being used to train the network. It is 
important to ensure that enough data points are not used for training in order to ensure that 
the model can be adequately validated. The best test for an ANN model is to apply a trained 
model to a new set of data for prediction. 

Another set of conditions that can be varied are the specific algorithm parameters for 
the different models that can be 
created. In the case of the EBP model, 
the algorithm parameter that can be 
altered is the maximum percent error 
between the output target and the 
output prediction that is acceptable 
during training. By reducing the 
maximum acceptable percent error, the 
accuracy of the ANN model should 
increase, however, the time that is 
required to train the model will 

Figure 3: Example Neuframe DataView 

Figure 4: Training Error Plot in Neuframe 
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Figure 5: Example Neural Network in Neuframe 

increase. Figure 4 shows how the error in training can be monitored while the network is 
training. For ANN models using the RBF algorithm, the corresponding algorithm parameter is 
the size of the acceptable radius between points. In the case of the RBF model, the radius 
operates as a control on the maximum allowable difference between the desired output and 
the model’s prediction. By lowering the acceptable radius, the RBF model is expected to be 
more accurate, however, the training time for the model will be increased accordingly. 

A third option that can be used to optimize a neural network is to modify the network 
architecture. Figure 5 shows an example neural network in Neuframe. When modifying a neural 
network in this manner, the parameters that can be modified are the number of hidden layers 
in the model, the size of the hidden layers, or the transfer functions between the network 
layers. 

The ANN model shown in Figure 5 is a standard 3 – layer EBP neural network. This 
means that it has a single input layer, a single hidden layer and an output layer. As can be seen 
in the Neuframe screenshot, the 
program gives the user the ability 
to modify the number of nodes in 
each layer and the transfer 
function between the layers. By 
modifying the number of hidden 
layers, or the number of nodes in 
the hidden layers, the complexity 
of the neural network can either by 
increased or deacreased 
accordingly. The other parameter 
that can be modified is the transfer 
function between the nodes in 
different layers of the network. The 
available transfer functions are 
linear, sigmoid and tanh. Modifying the transfer function between layers changes how weights 
are applied to different quantities in the model. While it was not possible to determine the 
exact effect of modifying the network architecture on the results obtained from the neural 
network, the general observation that could be made was that more complex networks tended 
to be, the longer it took to train the networks.  
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Presentation and Discussion of Results 
 

 Artificial neural network models were developed for a total of eight output parameters. 
The parameters that were predicted using ANNs were Heating Value, Volatile Matter, Ash 
Content, Ash Fusion Temperature, Slagging Index, Iron content and Sulfur content. In 
developing ANN models, the input parameters used were all calculated values from the LIBS 
spectral data, and consisted of the silica ratio, base, acid, R250, Dolomite Ratio and intensity 
values for Carbon. Definitions for these input parameters can be found in Table 7. The ANN 
models that were developed for these 8 output parameters were used to predict values for the 
output based on the LIBS input values and were directly compared against values that were 
measured using the standard laboratory analysis techniques. In addition to ANN models, where 
possible, algebraic correlations from the literature were also used to predict the output 
parameters and were compared against laboratory measurements. 

 The general results for the ANN correlations are shown in Table 13. In all cases, the 
ANN models that were developed were 3 – layer models. Given the spread of the ANN model 
predictions, the plots showing the results all display the spread of the ANN data to ± 2σ. Both 
the R2 correlation coefficient value and the root mean square error (RMSE) values shown were 
used to assess the performance of the ANN models. Root mean square error is a measure of 
the difference in the values predicted by a model versus values determined through actual 
observation. The formula for RMSE that was used is shown in Equation 27 below, where yi and 
 ̂  are actual and predicted values respectively for a total of n sets of predictions.  

      √
∑ (     ̂) 
 
 

 
                                                                                                                 (     ) 

Table 13: Summary of ANN model results 

ANN Model 
(model type) 

No. of 
Input 
Nodes 

No. of Hidden 
layer nodes 

Training 
Set Size 

Testing 
Set Size 

R2 
coefficient 

RMSE 
value 

HHV - (EBP) 6 3 30 20 0.988 76.16 

VM – (EBP) 6 3 35 15 0.910 3.68 

Ash – (EBP) 6 5 35 15 0.903 2.38 

Tf – (EBP) 6 3 30 20 0.951 101.684 

Fe2O3 – (RBF) 6 23 40 10 0.992 0.759 

Slagging Index 
– (EBP) 

6 3 40 10 0.96 0.171 

S – (EBP) 6 3 40 10 0.95 0.261 

 

The analysis for Heating Value of coal was conducted for the HHV of the samples on a 
moisture and ash free basis (MAF). The predictions from the ANN model were directly 
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compared against actual heating value data from laboratory analysis and the Dulong Formula 
(Eq. 1) from the literature. The Dulong Formula was selected for this comparison as it showed 
better results as compared to other formulas in the literature. In addition, the Dulong Formula 
is a more general formula and is applicable to many types of coal. In the case of the Dulong 
Formula, the output needed to be corrected for ash content as the formula predicts HHV on a 
dry basis only. The R2 correlation coefficient value for the Dulong formula is 0.952. The results 
for the analysis for Heating Value can be seen in Figure 6. 

  

 

Figure 6: Results for HHV 

 
 Similarly, the ANN model for Volatile Matter was developed using the LIBS inputs and 
laboratory data for percent volatile matter on a dry basis. The ANN model predictions were 
compared against laboratory data and the Fisher-Vitrain correlation from the literature (Eq. 17). 
The results for the Volatile Matter are shown in Figure 7. The R2 correlation coefficient for the 
Fisher correlation is 0.912. 
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Figure 7: Results for %VM 

 The results for the ANN model for percent ash content are shown in Figure 8. In the case 
of ash content, the data from the ANN model were only compared against standard laboratory 
data for ash percent. 

 

Figure 8: Results for Ash Content 
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 Figure 9 shows the results for Ash Fusion Temperature (Tf). While there are 4 different 
types of ash fusion temperatures, the only one that was considered was the initial ash 
deformation temperature (IDT).  

 

Figure 9: Results for Ash Fusion Temperature 

 
 The percent iron content in coal was determined by measuring the content of Fe2O3. 
The ANN model that was created to predict output values for Iron differed from the other 
models in that it was a RBF neural network. The model for Fe2O3 is compared against standard 
laboratory analysis for the same. Results are shown in Figure 10 below. 

 

Figure 10: Results for Iron Content 
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 The results for the model developed for the slagging index are shown in Figure 11 
below. The predictions from the slagging index model were compared with standard laboratory 
data. The slagging index that was used in this analysis is comprised of the product between the 
base/acid ratio and the % Sulfur content of coal. 

 

Figure 11: Results for Slagging Index 

 The final ANN model that was created was for the percent sulfur content. Once again, 
the predictions from the ANN model were compared directly against the laboratory data. 
Results for Sulfur are shown in Figure 12 below. 

 

Figure 12: Results for Percent Sulfur 
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Conclusions 
 

 Based on the results shown in the previous section, it is possible to conclude that 
for the most part, the ANN models for the output parameters are good estimators of the actual 
values of the parameters. While the values for the Pearson correlation coefficient (R2) were 
relatively high, the spread of the data shows that the results from using these models will vary. 
The results show that the LIBS data, when input to an ANN model can be used to predict useful 
properties of coal. Further work will be required in order to optimize the ANN models by testing 
the models with a new LIBS dataset. By testing the ANN models with an entirely new data set 
that is removed from the sets used to train the networks, it will be possible to better determine 
the effectiveness of the neural network models’ capability to make accurate predictions about 
the properties of coal. 

In the case of HHV and % VM, where formulas from the literature were also compared, 
the results show that the predictions from the literature-based do not agree with conclusions 
that were drawn in the literature regarding these correlations. One possible reason why this is 
the case is that the data sets used to generate the correlations from the literature were both 
larger and less broad in terms of sampling as compared to the data used in this report. This 
difference could partially explain why the results in this report do not show the literature 
correlations to be as favorable as they are advertised to be. 
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ME 310 Project Summary 
 

 This project was completed in order to satisfy the requirements for the ME 310 project 
course in the Mechanical Engineering Department at Lehigh University. While this project did 
not require collaboration with other undergraduate or graduate students at Lehigh University, 
the work was completed with the Lehigh University Energy Research Center and required 
collaboration with faculty and staff from the same. Members of the Lehigh University ERC that 
were consulted for this project were Dr. Carlos Romero, and research scientist, Mr. Zheng Yao. 

 The initial conditions for this project included the testing setup for and data obtained 
from LIBS measurements and standard laboratory measurements.  These earlier tests were 
conducted by the Energy Research Center, in collaboration with the Energy Research Company 
(ERCo). This project did not contain any data collection and was primarily focused on 
determining correlations between coal data and coal properties from the literature and using 
ANN models.   
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