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Objective

To discuss the validity and utility 
of the CNT using relevant findings on 

crystal nucleation in deeply 
undercooled liquids reported in the 

last 50 years…
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T. Pusztai, G. Bortel, L. Gránásy,
Europhys. Lett. 71 (2005)

Simulation of nucleation 
and growth

Courtesy of László Gránásy

....
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63°C, ΔT=6min. Surface nucleation 63°C , ΔT=4min. Internal nucleation

Real nucleation and 
growth in PDMS
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Outline
i) The CNT: Theory and tests in the last

50 years
a) the diffusion mechanism ?
b) surface energy = f (T, size) ?
c) metastable phases ?
d) what is next ?

ii) How useful is CNT to the understanding of 
glass-formation and to the development of GC ?
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Importance and motivation

If crystallization is averted on the
cooling path any liquid can vitrify to a 
glass;

The development of useful glass-
ceramics with designed micro/nano 
structures...
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Theory and tests in the 
last 50 years

CNT
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CNT Researchers Gallery

Gustav TammannIwan Stranski Yakov Frenkel

Rostislav Kaischew Yakov Zeldovich David Turnbull

Josiah W. Gibbs

Max Volmer

Ladislau Farkas

Richard Becker
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Spec.volume

TmTg
12

Temperature

liquid

supercooled
liquid

glass

glass-ceramic

Undercooling viscous liquids followed by isothermal crystallization

Treatment of glasses at deep undercoolings – direct measurement of I

Zero4
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Types of nucleation

Homogeneous: spontaneous formation from the 
melt; any volume element of the undercooled liquid 
is equally prone to nucleation;

Heterogeneous: nuclei form preferentially on a 
'foreign' surface: solid impurities, crucible walls, 
bubbles, seeds, etc.
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CNT: Expression and 
main assumptions

• Homogeneous nucleation of the stable phase
• Driving force = that of a stress free macroscopic crystal; ΔG(T)= ΔG0(T)
• Interfacial energy = independent of nucleus size (R) and temperature, σ = σ0

Transport Thermodynamic

If molecular rearrangements 
controlled by viscous flow &
the SE eq. is valid

σ ≠ σ (R,T)
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Let us then test CNT’s 
predicting power
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P. F. James: Advances in Ceramics 4 (1982)

Using experimental I (T), η(T) and ΔGv (T)

ln (I.η/T) vs. 1/(T.ΔGv
2) should give a straight line:

Intercept = K1

Slope = σ0             (unknown) σ0 ~ α.ΔHm
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Parameters needed to test
CNT

Viscosity (T) & I(T)
... in the same temperature range using

a glass of the same batch/ melting
operation!

Deltha G (T) – measured or
calculated (see next slide)
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L2S and diopside in wide 
range of temperatures.

Li2O⋅2SiO2

CaO⋅MgO⋅2SiO2
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Tests of CNT

Homogeneous nucleation in supercooled liquid metals

1948-50: Vonnegut, Turnbull and others: droplet
technique for liquid metals.

The maximum undercoolings and crystal growth rates 
were measured and then the nucleation rates were 
estimated.

David Turnbull
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only 2 oC!

D. Turnbull, J. Chem. Phys. 20 (1952)

Liquid metals (1950’s)

Homogeneous nucleation rates 
in liquid mercury.
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Straight lines:

Liquid metals (1950’s)

K. Kelton, Sol. State Phys. 45 (1991)

Kenneth Kelton

Pre-exponential 7 o.m. 
higher than predicted
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Droplet technique: 
isothermal nucleation 
rates of unfractionated
linear polyethylene

The pre-exponential constant
was 12 orders of magnitude
larger than the theoretical 
value

Increased to 3 oC!

F. Gornick, J. D. Hoffman, Ind. Eng. Chem. 58 (1966)

Polymers (1960’s)
Homogeneous nucleation rate in polyethylene.
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Glassy metallic alloys (1970-80’s)

The linear portion with σ0
gives pre-exponential 
factor 20 o.m. larger than 
predicted.

R. S. Tiwary, J. C. Claus, M. Vonheimendhal, Mat. Sci. Eng. 55 (1982)

Fe40Ni40P14B6.
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Very few silicate glasses spontaneously display 
internal homogeneous nucleation (+ surface)

Na2O⋅2CaO⋅3SiO2

Li2O⋅2SiO2

Homogeneous Nucleation in 
Stoichiometric Silicate Glasses
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number of  crystals per
unity volume nV

nV

time

Fixed temperature

I [1/m3s]

Li2O.2SiO2

Measurement of nucleation 
rates

τ
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Fokin, Kalinina & 
Filipovich; Neilson & 
Weinberg; Rowlands, 
Gonzalez-Oliver, Ito, 
Zanotto & James; 
Hishinuma&Uhlmann
and others have 
tested CNT using
direct measurements 
of homogeneous 
nucleation rates in 
glasses in wide 
temperature ranges.
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Testing CNT for Oxide Glasses

BS2

ln(I η/T) vs.(1/ΔG 2T) for BS2. ln(I η/T) vs. (1/ΔG 2T) for NC2S3.

NC2S3

G. F. Neilson, M. C. Weinberg, J. Non-Cryst. Solids 34 (1979)
P. F. James, E. G. Rowlands, Phys. Chem. Glasses 20 (1979)
C. J. R. Gonzalez-Oliver, P. F. James, J. Non-Cryst. Solids 38-39 (1980)
E. D. Zanotto, P. F. James, J. Non-Cryst. Solids 104 (1988)
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Results for LS2 glass
S. Manrich, E. D. Zanotto, 

Cerâmica 41 (1995).

..............30 om
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Results

Reduced surface energy, α , was fit to give the best T
dependence.

Varying ΔGV

26 - ?0.40 - ?B2TS2

25 - 550.43 - 0.47N2CS3

15 - 550.39 - 0.41NC2S3

16 - 360.44 - 0.48LS2

13 - 320.51- 0.56BS2

Discrepancy 
in Imax (o. m.)

α
Turnb ΔCp

exp

Silicate 
Glasses

3 2
mA

m

VN

HΔα
=σ
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Summary
With a constant σ0 , CNT describes the 
temperature dependence, but not the 
magnitude of I(T).

Possible problems: diffusion mechanism 
(breakdown of the SE?), size and 
temperature dependent surface energy, 
metastable phase formation, effect of elastic 
stresses, etc…?


	Lecture 9, Part 1: Nucleation, growth and transparent glass-ceramics - Nucleation theory in glass
	Recommended Citation

	Microsoft PowerPoint - WS09AB_Zanotto.ppt

