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all application of electro-

optic glassidevices;
-“UV-poling®“and Permanent (2

4) Recent topics of our research works
-New EO glasses and fiber-type devices
-“Plasmonic Glass”, light localization/propagation
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Novel nonlinear
for photonic applications
.

7 Glass m» key material

- High and wide range of transparency
- Good connectivity to glass fiber

- High environmental durability

- Easy shaping to fiber and films

... but not applicable for signal processing
such as optical switching and moadulation etc.




Advanced Photonic Communication

o —
Electrical Signal Processing

Optical Fiber Optical Fiber
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Optical Signal Processing

[ Light i (®)) -WO W @ (DetectorJ

Source J Optical Fiber 'OpticaI'FiberL

Optical Devices

Functional Photonic Devices/Components
with excellent connectivity to the fiber

E/O-Switch, Modulator, Converter, etc
drived by Second-Order Optical Nonlinearity



SEsoRUEOreEROptical Nonlinearity in Glass
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optical nonlinearity
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2'9-order nonlinearity is NOT allowed

In glasses with inversion-symmetry

Permanent connection to
glass-fibers

« DNRNWNN Photonic Glass

W connection Glass with 2"7-order
S nonlinearity




\J‘t@ﬂ%&r'f Description of An
) | EO effect (Pockels effect)

Electric field of angular frequency:E(w)
Applied electric field:E(O)
Nonlinear susceptibility: x @

If E(0) > E(w), at E=E(0)
P2 = A x E(w)
where A X =2 x ““E(0) represents an increase in the
susceptibility proportional to the electric field E(0).
The corresponding incremental change of the

refractive index is obtained by the relation n=1+ x,
to obtain 2nAn=A X , from which
An = ( x @/n)E(0)

An= -rn®E/2 is defined in the Pockels effect, thus,

EO coefficient r is described by
r=—2x@ /n*




rme_:P; Pnciples Boundary Refraction

Speed of light:
V=C,/n

small n (fast V)

refractive I

-
large n —V:slow

small » —V :fast large n (slow V)

Light rays travel along the path of least time by
refraction in this case (Snell’ Law: sin 8 /sin¢=n,/n.)




ContioING Light with EO Effect

- "’. | . -’-.
CHaNUEIBITEiECtIVE Index (An)
. -

AngIEvitrefiraction changed by E,

Optical Fiber

EO medium

Cotrolling light with EO devices
through 2"9 order optical nonlinearity
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Directional Coupler

2x2 Optical Switch

optical waveguides

electrodes *Q /\ -

ON

Coupled-mode theory :
“Optical waves in crystals”

NLO substrates A. Yarivand P. Yeh



ACVaRtEIgES O /Phrotonic Glass”
—
Photonic glass™ is the

best solution for glass-
Glasses  Wmorganic  Organic fiber networks.

materials  materials

Advantages & Disadvantages

2nd-Order NL
Optical Loss

*Second-Order Optical
Nonlinearity

Transparent Range

Material Design

Connection

Shaping
Durability

OO0 OO0 o X
B> X % B O 0O

>D>OOoOb>D>O

-Long-term stability
-Low excess loss

-Easy to connect
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27%-grder nonlinearity induced in glass
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. Poling with UV/heating

- Crystallization
- —

Poling Crystallization

¥ value ~1 pm/V
patterning No
stability (no decay) No

LINDO; : =28 pm/V




Qg Ir __Iass/Fiber

—

Breaking of inversion symmetry
INn glass

ele'ctrodes. (+) ‘ Poling in glass...

. glass Applied electric field
-At elevated temperature
-With UV-laser irradiation

Field-Induced Microstructuring
INn Glass Materials
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Thermal Poling

nle

grGlass/Fiber

™
The Optical Fibre Technology Centre (OFTC)
University of Sydney, Australia

E

Poling Techniques

Composition
and Form

¥ orr
(pm/V)

References

Photoinduced
Poling

Ge-P-doped
SiOz Fiber

%2 ~10-4

Osterberg
(1986)

Room-Temperature
Poling

Ge-P-doped
SiO, Fiber

r~10-3

Li (1989)

Poling at Elevated
Temperature
(Thermal Poling)

-Fused Silica
-Ge-doped
SiO; fiber
-Ge-doped
Si0,

waveguide

X{I) el
¥x@ ~0.2
2 ~0.5

I(\dvers et al.

1991)

Kazansky
(1991)

Liu (1994)

v(2) was limited by
<lpm/V

-UV-Poling In Ge:Si0O, Fiber

UV-irradiation
(193 nm. 10 Hz)

-Larger y®@ : ~10pm/V
-Periodic structure: 3@ gratings

- /mechanisim?




Orientation of (2
agents
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UV-Falinl

UV-poling in bulk glass

Grooves for
electrodes

-VAD preforms: 15Ge0O,-85Si0,
-£ -field: 0—3x10° V/cm

-UV-laser: 193 nm

i Ge:SIO, Glass

Maker-fringe SHG measurement

Nd : YAG Laser
(A=1.06 um)

Rotational Stage Monochromator

X2 ND Filter

Polarizer
Polarizerl:l T [I Photo-Detector

IR-Cut
Filter
P

Rotational axis Jf E 1:

Fundamental

(w) / N
i N

3 Poling electric field

4 B

-Quantitative evaluation of SHG
d () coefficients

-Values of d,;, d;,

-Refractive index: n,, n,




Qrea@?‘on P @ in UV-Poled Glass
- .

UV-poling electric field dependences in Ge-doped SiO,

/

Fundamental (w) : extraordinary
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e e

A

D

'f'

(D

h’)

s-s polarizations —» dj;

0'7 -I_[[l Ll II[-II]_III T |.|_ .In."ﬁ"“t_‘_,‘.“. . Al e : o

Tl R e ol T ]

SHG Intensity (arb. units)
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Absorptmn Spectra and defects
In Ge -doped SIO, Glass
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Photon Energy

GeE'
(Germanium E' Center)

NOMV
D Qe
(Germanium Electron- :
trapped Center)

O-(Neutral Oxygen
Di-Vacancy)

o (0]
B Vi hv
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—— : experiment

— : fitting

Aa(t)/ Aa(0)

| | |. I i

40 45 50 55 6.0 ] = RTEER SR 30 el e o
2.0 3.0 4.0

I

Photon Energy (eV) Ti (10 sec)
ime sec

v@ decay is similar to GEE™ !




1/t (1/sec)

——=—GeE!
~==sznan (GO

--e---- (3e(2)

---@---d coefficient

1/t (1/sec)

rEn | SR TR

1.6

1.8 2.0

2.8

2.4

2.0

2.2 1.6

103/ T (K)

activation energy
(eV)

0.41+0.05

0.40%+0.10

0.21+0.09

O 22009

103/T (K7)

Decay time constant of (2
Induced In UV-poled glass

. B

—280 days at RT
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WIEEaIsm of =) Decay

Comparison of Values of E,
activation energies

v(?) decay and GeE’
—0.4 eV

Activation Energy
€V) ‘
Decay of d Coefficient

bulk (untreated) *(0.41+0.05 Dark CondUCtiVity

bulk (heat treated) 0.38+0.05 —0.4 eV

Dark Conductivity
bulk (untreated) * 0.44+0.05

bulk (heat treated) 0.37+0.05
Defects

Ge-E' ¢ 0.40+0.10

*Ge—relate((l} (]jli:ron trapped centers e F O r I O n g —te r m
stability

|

Hydrogen doping




ACHIEVERIERT: Of Stable (=)

—-

d_(t) / d(0)

at room temperature

0.6 |

® Ge:Si0,
® H-doped Ge:SiO,

PO I SO ) O S LY (0 W

T T O T T TR EEE R SO PP PRNRTORS:

t~18 years*
d(0) = 4.5 pm/V

application to
real field

T~280 days*
d(0) = 3.4 pm/V

For 20 years,
>90%6 performance

2 4 6

Time (10° sec)

10

1 : decay time constant
extrapolated from Arrhenius plot



) tﬁrough third-order
neRliRearty

Z(Z) ~Z(3) Esc
e V4 N\

7 susceptibility: increased Esc : space-charge field
by crystallization caused by defect formation

SPermanent 22 ?
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Fresnoite Crystalline Structure

- Origin of P.(spontaneous polarization)

:.
8 caxis © '
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;r stallized Glass—BTG
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znePEdeERINenlinearity in BTG

/_\03 T | | T | ! |
= 720°C, 3 h
= |
e 202 | d =25 pm/V
(. YAG > n

m‘ A=1064 nm C
SNl
=
I

. 0
BTG crystallized glass

Appl. Phys. Lett., 81, 223(2002). Angle of incidence / deg.

Maker fringe measurement:

The largest d-value in glass ever reported



Transparency / %
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Crystalline layer of BTG55 Is more dense

and homogeneous than those of BTG50.



metil, nano-particles
J. R. Krenn (2001)

-electron beam lithography (EBL)

-1TO doped glass substrates with
electric conductivity for EBL (C)
-gold nano-particles with 100 nm

Optical intensity image of Au nano-

diameter and 40 nm height for a
plasmon resonance wavelength particles ordering in glass substrate

of about 630 nm
-plasmon coupling observed by
photon scanning tunnelling
microscope (PSTM)

A AL I TITY

J. of Microscopy, 202, (2001) 122




afiace Plasmon (SP)

P
ou
' -

d

P _poton coupling
b)

Dielectric Surface
£3 Plasmon

a) Kretschmann configuration and b) ray tracing of an Attenuated
Total Reflection (ATR) setup for coupling surface plasmons.

In the case, the surface plasmon propagates along the metal/dielectric
Interface.



EEE * non-radiative

P ———

)1/2

plasmon

Wave number of SP: k,
Dielectric constants (relative): ¢, and ¢,
for metal and dielectric, respectively.

- 205

1 15 2
kg (arbitrary units)
c : speed of light, ® : frequency of the wave

Since g, < 0 in metal, for the solution of Dispersion curve for surface plasmons. At low Kk,
k, (plasmon), the surface plasmon curve (red) approaches the
g,(m) < —¢,, below o, photon curve (blue).
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Te1|urite-based glasses Periodic Structure with PM

Nano-crystallization by laser heating XeCl excimer
. . laser (A=308nm)
Selective crystallization of metal Te?

Large nonlinearity: d ~ 30d (LiNbO,) ‘ l ‘ ‘ l ‘ ‘ l
v® ~ 103 (Au)

0
-200
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-800 o g lass

-1000
-1200
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Photo-Induced Nano-Crystallization by
UV-Laser Irradiations




Strtictures of Nano-Particles 2

s

ucture Ordering in Glass

p—

AFM image (enlarged) SEM image

£ g -

ordered structure of
nano-particles




VIMIaees of Surface Cross-Section
UV-Irra

-Creation of nano-particles
with =100 nm diameter
-Laser intensity dependence
of nano-particles density
-Te metal confirmed by
electron diffraction pattern

Metallic Nano-Structures on
Glass Surface

Plasmonic Glass




PlasmenIc Glass for Nano-Circuit

. Photo-Induced Nano-Particles Structure

Incident
photon

Ordered Nano-Particle Structure Nano-particles




Py
C

~r
4 _—
@ Ex(d =30 nm)

O Ex(d =100 nm)
A Ex (d =300 nm)

flzL g:}'of =liield Intensity (FDTD)

¢4
N

O
O time: 63 step

—
0
=
c
>
o
S
©
N—r
x
L
°
()
N
©
=
-
@)
Z

®
© a

A , A N N . E_field A
= = - Normalized Ex =
200 300 400 500 600 700 800 E-field:B

Wavelength (hm)

Low Degradation of E-field in 100 nm




Controlling Light with Nonlinear Optical
Glasses and Plasmonic Glasses

"Devel ts el new nonlinear optical glasses

o) =@ pgﬁt c devices
=1 Tyoe Blayieels

eRSIgRAINEIGEESSIRgNR Optical Communication

Formation of UV-laser induced metallic nano-
particle structures on glass surface

Plasmonic Glass 5,
for Propagation/Localization ofi Light %"‘w}?

TOHOKU
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