
Lehigh University
Lehigh Preserve

Theses and Dissertations

2017

Aspect Identification and Sentiment Analysis in
Text-Based Reviews
Sean Byrne
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Industrial Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Byrne, Sean, "Aspect Identification and Sentiment Analysis in Text-Based Reviews" (2017). Theses and Dissertations. 2535.
http://preserve.lehigh.edu/etd/2535

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228660267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2535&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2535&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2535&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F2535&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2535?utm_source=preserve.lehigh.edu%2Fetd%2F2535&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Aspect Identification and Sentiment Analysis in Text-Based

Reviews

by

Sean Byrne

A Thesis

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Industrial & Systems Engineering

Lehigh University

May 2017

ii

© Copyright 2017

Sean Byrne

This thesis is accepted and approved in partial fulfillment of the requirements for

the Master of Science.

Date

Martin Takáč, Thesis Advisor

Tamás Terlaky, Chairperson of Department

iii

Acknowledgements

I would like to express my gratitude to Professor Martin Takáč for his guidance and

encouragement throughout my research and my time at Lehigh. I’d also like to thank

my parents, Kevin and Jenifer Byrne, and my brothers Matthew and Jake for their

constant support in everything I do. In addition, I’d like to thank Dr. Ali Yazdanyar,

physician at Reading Hospital, for allowing me to apply what I’ve learned in a real-world

setting.

iv

Contents

Acknowledgements iv

List of Figures vii

List of Tables viii

Abstract 1

1 Introduction 2

1.1 Automatic Aspect-Based Review System 2

1.2 Natural Language Processing . 5

1.3 Application: Reading Hospital . 6

2 Dataset Structure and Text Features 8

2.1 Datasets . 8

2.2 Text Features . 13

2.2.1 Token-level Features . 13

2.2.2 Sentence-level Features . 13

2.2.3 Review-level Features . 14

2.2.4 Other Possible Features . 14

3 Aspect Identification 16

3.1 Problem Description . 16

3.2 Sequential Labeling: Conditional Random Fields 17

3.2.1 Labeling Method . 18

3.2.2 Background: Naive Bayes and Maximum Entropy Models 18

3.2.3 Hidden Markov Models . 20

3.2.4 CRF Model Description . 22

3.2.5 CRF Training . 23

3.2.6 CRF Evaluation . 24

3.3 Association Mining Method (Hu and Liu) 29

3.3.1 Association Mining Method Description 29

3.3.2 Association Mining Method Evaluation 32

4 Aspect-Based Sentiment Analysis 34

4.1 Problem Description . 34

v

Contents vi

4.2 VADER-based Method . 35

4.2.1 Evaluation . 37

4.2.2 Ratings-Based Evaluation . 38

5 Conclusion 40

Bibliography 42

Appendix - Data Processing and Test Functions 45

Appendix - Class Definitions 49

Appendix - Aspect Identification 60

Appendix - Sentiment Analysis 75

Biography 81

List of Figures

2.1 An example of the dataset format in SemEval 2014. 10

2.2 An example of the dataset format in SemEval 2015. 11

2.3 An example of the dataset format in SemEval 2016. 12

vii

List of Tables

3.1 The results for CRFs using distinct aspect terms. 26

3.2 The results for CRFs using instances of aspect terms. 27

3.3 The results for CRFs using distinct aspect terms across domains. 28

3.4 The results for CRFs using instances of aspect terms across domains. . . . 28

4.1 The results using VADER on aspect terms in the Laptop domain. 38

4.2 The results using VADER on aspect terms in the Restaurant domain. . . 38

4.3 The results using VADER on aspect categories in the Restaurant domain. 38

4.4 True and predicted ratings for each category in the Restaurant domain. . 39

viii

Abstract

Online text-based reviews are often associated with only an aggregate numeric rating

that does not account for nuances in the sentiment towards specific aspects of the re-

view’s subject. This thesis explores the problem of determining review scores for specific

aspects of a review’s subject. Specifically, we examine two important subtasks - aspect

identification (identifying specific words and phrases that refer to aspects of the review

subject) and aspect-based sentiment analysis (determining the sentiment of each as-

pect). We examine two different models, conditional random fields and an association

mining algorithm, for performing aspect identification. We also develop a method for

performing aspect-based sentiment analysis based on VADER, a sentence-level senti-

ment analysis algorithm built for sentiment analysis of social media. We identify key

problem considerations, including other important subtasks and ideal training dataset

qualities, for future development of a full aspect-based review system.

1

Chapter 1

Introduction

1.1 Automatic Aspect-Based Review System

Text-based reviews found online have become a common way to evaluate options when

making a decision. These reviews span subjects from a variety of topics - products avail-

able for purchase online, downloadable applications, movie and music releases, restau-

rants, hotels, and more. Oftentimes, these reviews are associated with an overall numeric

rating (typically on a 5-point or 10-point scale), which can be aggregated to form an

average rating for a given subject. However, these ratings oftentimes hide the details

present in the text of the reviews. For example, by examining a set of laptop reviews

with an average rating of 3.0 out of 5.0, one might find that the screen of the laptop

is mostly referred to positively, but the keyboard is mostly referred to negatively. This

nuance is not reflected with an overall 5-point numeric rating, despite the fact that users

oftentimes have preferences that require a more detailed view of the subject.

2

Introduction 3

In order to more accurately reflect how reviewers feel about different aspects of

a subject, it is desirable to develop a system to rate the major features of a subject

separately, providing more meaningful information to those who may have specific pref-

erences. A shopper looking to purchase a laptop, for example, may desire a high screen

quality while not caring much about the processing power. This shopper would benefit

from finding a laptop with a highly-rated score for the aspect ”Screen” and may not

mind if the laptop’s overall score is dragged down by a lower rating for the aspect ”Pro-

cessing Power”. It’s possible that websites aiming to have a more comprehensive set of

ratings could force users to rate specific qualities on a numeric scale, rather than just

the overall product. However, this requires more effort on the end user, and ignores the

vast amount of text-based review data that already exists.

One way such a system can be developed using existing product reviews is to utilize

sentiment analysis (also known as opinion mining). Sentiment analysis attempts to

derive measures of subjectivity from written text, typically labeling text using either the

labels ”subjective” and ”objective” (ignoring polarity of subjective text), or the labels

”positive”, ”negative”, and ”neutral” (where ”positive” and ”negative” are opposite

categories of subjectivity, and ”neutral” is equivalent to ”objective”). Text-based reviews

are an important source of data for sentiment analysis because they consist primarily of

subjective opinions, making them particularly useful for building models with the ability

to determine sentiment polarity.

However, rather than attempting to determine the sentiment of the review as a

whole, the sentiment of particular attributes of the product would be measured. If a

particular attribute is found to be associated with positive or negative polarity for most

instances within a set of reviews, then it is given a high or low rating, respectively, for

Introduction 4

that particular attribute. These attributes (or aspects) can be found through aspect

identification - determining what words and phrases (terms) refer to specific aspects of

the subject. For example, in the sentence ”The battery life is quite strong and lasts all

day long,” the phrase ”battery life” is an aspect term of the subject.

Once these aspect terms have been identified, sentiment analysis can be used to

determine the sentiment polarity of each aspect term. Specifically, aspect-based senti-

ment analysis attempts to determine the sentiment of each aspect term. Accurately

determining the polarity of aspect terms is more challenging than the typical sentiment

analysis task. Sentiment analysis relies heavily on sentiment lexicons that classify ad-

jectives based on their sentiment polarity, but an adjective that has a positive sentiment

when used to describe one aspect may have a negative or neutral sentiment when used

to describe another aspect. For example, “long” tends to have a positive sentiment

when used to refer to “battery life” in a laptop, but a negative sentiment when used to

refer to “wait times” at a restaurant. Another significant issue is when multiple aspect

terms are mentioned within the same sentence. If one aspect has a positive sentiment

and another has a negative sentiment, determining these sentiments accurately requires

understanding which portions of the sentence apply to a given aspect term.

In the remainder of Chapter 1, we examine a brief background of natural language

processing and mention an ongoing application of the methods describes in this thesis. In

Chapter 2, we describe the datasets used and qualities of a useful dataset for the problems

of aspect term extraction and aspect-based sentiment analysis, as well as important

features that can be derived from the text. In Chapter 3, we examine methods for

extracting aspect terms from these datasets, and in Chapter 4, we examine methods for

determining the sentiment of aspect terms.

Introduction 5

1.2 Natural Language Processing

Natural Language Processing (NLP) is a field of study within computer science and

artificial intelligence that focuses on analyzing and deriving meaningful information from

human (natural) language. Natural language processing developed as a result of interest

in machine translation (MT), the problem of translating sentences automatically from

one language to another, in the 1950s. Research was severely limited due to the relatively

undeveloped state of computers at the time. Initial research started as dictionary-based,

with attempts to translate sentences word-for-word, but issues with determining the

correct syntax (the arrangement of words) and semantics (the meaning of words) in

translation quickly showed the limitations of such an approach. Despite technological

limitations, research of this time period was able to effectively identify the importance

of developing an explicit structure and definition for language that could allow methods

to be generalized and implemented with computers [16]. The low quality of the methods

developed, however, led a committee commissioned by the United States government

called ALPAC (Automatic Language Processing Advisory Committee) to express doubts

in the merit of continued MT research in a report in 1966 [8]. The committee suggested

that significant improvements in computational linguistics was needed before MT could

be effectively tackled, leading to a significant shift away from MT in the late 1960s. This

shift allowed other problems within NLP to be explored, eventually leading to the broad

range of problems studied within the field today.

The massive amount of data and processing power that are accessible today has

opened the door to new heights in the world of natural language processing. Modern NLP

research examines problems such as converting speech to text [12], answering text-based

Introduction 6

questions [13], automatically summarizing large documents, automatic spell-checking,

determining grammatical relationships between words, and much more. NLP has been

utilized in a large variety of business contexts as well. Lawyers use NLP software to

analyze large sets of legal documents to find meaningful information. Spam filters utilize

NLP to find patterns within email text that indicate a high likelihood of being spam,

and Google uses NLP in their language-translation software. Various social media sites

utilize natural language processing so that advertisements can be customized to the

interests of each user.

In this thesis, we utilize some commonly-used software for natural language pro-

cessing. In particular, we make extensive use of the Natural Language Toolkit (NLTK)

[6] and Stanford’s CoreNLP toolkit [18]. These are packages for Python that provides a

large set of functions and datasets useful for natural language processing.

1.3 Application: Reading Hospital

With the rise of electronic medical records, applications have started to appear within

the medical field. Taking text-based data from the past (in this case, from physicians’

notes) and data related to the eventual treatment of the patient’s medical issues (for

example, procedures done, diagnoses given, and success/failure rates), patterns can be

found within the text of the doctors’ notes. In this way, physicians’ notes can be analyzed

to determine signs of postsurgical complications, or to determine the procedure with the

highest likelihood of success for a given diagnosis and set of physical traits.

One potential area for the application of natural language processing techniques is

a project recently started at Reading Hospital. Because of the nature of this work, the

Dataset Structure and Text Features 7

specific details cannot be shared in this paper. However, a basic problem outline can

be shared. When a scan is done to examine a particular portion of the body, secondary

information can be gathered. For example, in a CT scan where the primary objective is

to examine a tumor, secondary nodules could be found on the scan that aren’t directly

related to the tumor. In this case, the doctor often suggests that the patient make

a follow-up appointment with another practitioner; however, there is no easy way to

connect the patient to the appropriate office for a follow-up appointment, and oftentimes

patients end up ignoring these secondary findings until their next appointment months

or even years later. Complications that could have been treated easily, if dealt with

earlier, can end up becoming much more serious medical issues because of this.

The project’s goal is to use NLP techniques to identify keywords in the notes of these

scans that suggest a secondary finding should be examined or a follow-up appointment is

needed. The details of these patients and scans could then be routed to the appropriate

place automatically. In this way, the methods discussed in this paper can have a real

impact on the patients at Reading Hospital.

Chapter 2

Dataset Structure and Text

Features

2.1 Datasets

There is a great deal of text-based review data available online - however, the raw data

alone isn’t enough. In order to perform the three major tasks associated with aspect-

based sentiment analysis, the data provided must contain information about which words

are aspect terms, which words are a part of which aspect categories, and whether each

instance of a term is referred to positively or negatively. This requires human tagging

of datasets, along with cross-validation measures to ensure that the tags are consistent

across multiple people.

The difficulty of creating adequate data sources causes significant issues when tack-

ling the problem of aspect-based sentiment analysis. It significantly limits the effective-

ness of methods that rely heavily on domain-based features, since each subject (spanning

8

Dataset Structure and Text Features 9

all categories of online products, media, restaurants, and others) may require a different

set of training data for these methods to be effective. Thus, the importance of develop-

ing a model that is not overly reliant on the domain of the training data is particularly

important.

SemEval (also known as the International Workshop on Semantic Evaluation) is

”an ongoing series of evaluations of computational semantic analysis systems” hosted

annually by SIGLEX (Special Interest Group on the Lexicon of the Association for

Computational Linguistics) [1]. Each year, a set of tasks related to semantics within

natural language processing are developed, with the goals of developing methods of

discerning meaning from language and identifying issues worth exploring further. From

2014 to 2016, one of the tasks was ”Aspect-Based Sentiment Analysis” [5] [4] [24]. In

this task, participants were given data annotated with aspect terms, aspect categories,

and their polarities. The goal of the task was to predict each of these for a set of testing

data as accurately as possible.

We utilize datasets from the 2014-2016 SemEval competitions. They have been

cross-validated to ensure that inter-annotator agreement is high [23], and there is data

available from two different domains: laptop and restaurant reviews. The sentences

in each years’ data are largely the same, but the format they’re stored in (as well

as their aspect term and aspect category annotations) vary. In all formats, aspect

terms and/or aspect categories are associated with a sentiment polarity from the set

{”positive”, ”negative”, ”neutral”}, though the 2014 and 2016 formats also allow for

a fourth ”conflict” value that represents subjective statements without clear overall

positive or negative sentiment.

Dataset Structure and Text Features 10

Figure 2.1: An example of the dataset format in SemEval 2014.

The 2014 datasets are stored as sentences (without review context) in two different

domains: laptop reviews with 3,141 sentences and restaurant reviews with 3,145 sen-

tences. Aspect terms are provided for sentences in the datasets of both domains, and

aspect categories are provided for sentences in the dataset of the restaurant domain. The

sentiment polarity fields in this dataset support the ”conflict” value when the dominant

sentiment polarity is not clear. For each aspect term, character offsets are provided (in

two fields: ”from” and ”to”, representing the beginning and end of the term, respec-

tively) to identify the location of each aspect term within the sentence. Offsets start at

index 0 within a sentence, and the ”to” field stores the index of the offset immediately

after the last character of the aspect term. Each sentence contains zero or more aspect

terms and zero or more aspect categories.

The 2015 datasets are stored as reviews in two different domains: laptop reviews

and restaurant reviews. Each review is provided as a list of sentences in order, and each

sentence is associated with zero or more aspect categories. Aspect categories are stored

as pairs of entities (E) and attributes (A) in the following format: ”E#A”. Entities

are components of the overall topic - for example, entities in the set of Laptop reviews

include ”CPU”, ”Software”, ”Shipping”, and ”Support”. Attributes are specific features

or qualities of the entities - for example, attributes in the set of laptop reviews include

”Price”, ”Quality”, and ”Portability”. This dataset does not support the ”conflict” value

Dataset Structure and Text Features 11

Figure 2.2: An example of the dataset format in SemEval 2015.

for sentiment polarity. For reviews in the Restaurant dataset, an opinion ”target” can be

specified - this happens when an entity E is explicitly referenced through a target word

or phrase in the sentence. This allows aspect terms to be linked to aspect categories.

The keyword ”NULL” is used if an aspect category’s entity is not explicitly referenced

through a target. If an opinion target is specified, ”from” and ”to” fields are used to

specify the location of the target within the sentence. These are set to 0 when the target

is ”NULL”.

The 2016 dataset is provided in two different formats. One is identical to the 2015

dataset format. The other is a review-based format that stores sentences and aspect

categories separately. Each review consists of a list of sentences and a separate list

of the aspect categories within the review. This means that polarity ratings for each

aspect category are review-level rather than sentence-level, and so each aspect category

is assigned the sentiment polarity that is dominant within most sentences that contain

Dataset Structure and Text Features 12

Figure 2.3: An example of the dataset format in SemEval 2016.

the aspect category. Aspect categories are defined in a similar way to the 2015 dataset,

using an entity-attribute pair to represent each category. In cases where the dominant

sentiment polarity is not clear, the polarity is defined as ”conflict”. Opinion targets are

not provided.

The formats can be summarized as follows. The 2014 dataset identifies specific as-

pect terms and their associated polarities, as well as aspect categories for the Restaurant

dataset that are not explicitly linked to aspect terms. The 2015 dataset is somewhat

more specific - it identifies specific entity-attribute combinations that form aspect cat-

egories, as well as target aspect terms for the Restaurant dataset that explicitly link

aspect terms to aspect categories. It also provides context information by grouping

sentences by each review. The 2016 dataset is more general - it identifies specific entity-

attribute combinations that form aspect categories that are found within a review as a

whole, rather than individual sentences. By comparing methods across dataset formats

with very similar data, the value of creating training datasets with a higher or lower

level of detail can be found.

Dataset Structure and Text Features 13

2.2 Text Features

2.2.1 Token-level Features

We break each sentence down into tokens consisting of words and punctuation using

the Penn Treebank tokenizer within NLTK [20]. This tokenizer splits contractions (for

example, “don’t” will become the separate tokens “do” and “n’t”) and stores punctuation

as separate tokens.

Some features can be extracted from individual tokens without the need for infor-

mation from the rest of the sentence or corpus. We store the original token text, as well

as a lowercase version of the token. Several binary features are stored - whether or not

the token is punctuation, whether or not it is in ”titlecase” (the first letter of the token

is capitalized, and the following letters are all lowercase), and whether the token is a

digit. We use a popular word stemmer, PorterStemmer, to store the stem of a given

word, removing all prefixes and suffixes from the token [25].

2.2.2 Sentence-level Features

Some features require sentence-level context. The index of each token within the sentence

is stored, with 0 being the first token of the sentence. A part-of-speech (POS) tagger

using the Penn Treebank tagset is used to tag the part-of-speech for each token in a

sentence [20]. The full POS tag and the first 2 characters of the POS tag are stored as

separate features, as the first two characters are indicative of a broader category that the

following characters are part of (for example, “NN”, “NNP”. “NNS”, and “NNPS” are

all tags to describe nouns). Each token also stores information about the previous and

Dataset Structure and Text Features 14

next tokens in the sentence - the text, lowercase text, stem, and both POS tag features

of the previous and next tokens, storing a default value if the previous or next token

doesn’t exist.

2.2.3 Review-level Features

Oftentimes, text-based reviews are associated with an overall numeric rating. Our

datasets do not have contain numerical rating information, but utilizing these review

ratings in an aspect-based sentiment analysis model may yield positive results, and is

worth future consideration when designing annotated datasets from online reviews.

2.2.4 Other Possible Features

Many other features are commonly used for natural language processing purposes. Word-

Net is a lexical database designed to store words based on their word sense (the meaning

of the word) rather than the word itself [21]. It contains over 155,000 words and 117,000

synonym sets (sets of words with the same meaning), with over 206,000 word-sense pairs

in total [2]. Several other semantic relations are stored as well, such as antonyms. Hy-

pernyms, a semantic “parent” of a given word, and hyponyms, semantic “children” of

a given word, are stored - for example, the pair “sport” and “baseball” is a hypernym-

hyponym pair. Meronyms and holonyms refer to component parts and the collective

whole, respectively - for example, the pair “car” and “wheel” is a holonym-meronym

pair. Using WordNet in a natural language processing model, particularly the prob-

lems of aspect identification and aspect-based sentiment analysis, would give the model

a greater understanding of the relationships between words in a sentence. However,

Aspect Identification 15

WordNet has been found to not significantly impact the performance of text classifica-

tion models [19], and the limited tests we performed showed little benefit. Despite this,

usage of WordNet in other models for aspect identification and aspect-based sentiment

analysis may still be worth exploring.

Word2Vec is a deep learning algorithm that takes sentences as inputs and out-

puts a vectorization of each distinct word within the training data. This can be used

to determine the similarity of one word from another word. Word2Vec also allows

for accurate operations among words, meaning syntactic and semantic patterns can be

accurately generated. For example, suppose vec(word) is the Word2Vec vector represen-

tation of a word. vec(‘brother’) - vec(‘man’) + vec(‘woman’) results in a vector similar

to vec(‘sister’). As a result, relationships among words are encoded in the vectors.

Word2Vec was designed for massive datasets, ranging from tens of millions to billions of

words, and so attempts to train Word2Vec on the datasets available (with only several

thousand sentences available) were unsuccessful. Training Word2Vec on larger datasets

available, such as the full English Wikipedia, has resulted in positive results in other

aspect identificaton models [23].

Chapter 3

Aspect Identification

3.1 Problem Description

In some texts, particularly text-based reviews, there is an overall subject being discussed

throughout the text. Aspect identification (or aspect term extraction) is the process of

identifying what words and phrases (terms) refer to specific aspects of a subject in these

texts.

Aspect identification typically refers to extracting aspect terms explicitly men-

tioned within the sentence, rather than implied terms. For example, the sentence ”The

restaurant was quite expensive” does not explicitly mention price, but ”expensive” is an

adjective referring to the price of the food, an implicit aspect within the sentence. We

consider only explicit aspect terms in this paper.

An ideal system would not rely heavily on the domain of the training data, as

otherwise a new set of training data would be required for each new domain examined.

Identifying aspect terms requires human identifiers to manually record these aspect terms

16

Aspect Identification 17

and their sentiment, and requires a consistent approach so that these human identifiers

mostly agree with each other. When each set of training data requires potentially hun-

dreds of reviews (thousands of sentences), this task becomes infeasible to complete for

the many domains available for text-based reviews.

One of the most significant challenges in aspect identification is balancing accuracy

with robustness. The most accurate models will likely require more detailed training

data - accurate sentence-level datasets identifying aspect terms and their respective

polarities (positive, negative, or neutral). But the most domain-neutral models will rely

on more general features and potentially unsupervised methods. Thus, we examine both

supervised and unsupervised approaches, and test across domains to see how applicable

each supervised method is to training data from a different domain.

3.2 Sequential Labeling: Conditional Random Fields

Aspect term extraction can be modeled as a sequence labeling problem, where each sen-

tence is examined as a sequence of tokens, taking the context of an individual token into

account. This framework is used for problems such as part-of-speech tagging, named

entity recognition, and shallow parsing [26]. We describe and implement a common

sequence labeling model called a Conditional Random Field (CRF), a generalization of

another model called a Hidden Markov Model. These are sequential labeling models

based on generalizations of the single-label models described with the naive Bayes clas-

sifier and Maximum Entropy models. The goal of a CRF is to determine the conditional

distribution of potential labels (in our case, using the IOB2 tagging format) given the

output (each token’s text). Using the framework for Maximum Entropy models and

Aspect Identification 18

CRFs, feature functions can be defined that can allow a vector of output features to be

associated with each word in a sentence.

3.2.1 Labeling Method

We use the IOB2 tagging format, where each token is associated with one of three labels

- inside an aspect term (”I”), outside an aspect term (”O”), or the beginning of an

aspect term (”B”). All aspect terms start with a ”B”, so only multi-token aspect terms

utilize the ”O” label.

3.2.2 Background: Naive Bayes and Maximum Entropy Models

The naive Bayes classifier is used to predict a class label y given a feature vector x. It is

based on the assumption of conditional independence of the individual features given the

class label. The model attempts to maximize the joint probability p(x, y) of the features

and the class label, which due to their conditional independence can be described as

follows:

p(x, y) = p(y)
n∏

i=1

p(xi | y). (3.1)

The Maximum Entropy classifier (also known as multinomial logistic regression)

makes the assumption that log(p(y | x)) can be represented as a linear combination of

the features and a constant. This is useful in that the features are not assumed to be

independent, and so the relationships among the output features are considered. The

Maximum Entropy classifier models the conditional probability p(y | x) as follows:

Aspect Identification 19

p(y | x) =
1

Z
exp(βyx + βy,0). (3.2)

Z =
∑

y exp(βyx + βy,0) is a normalization constant which adjusts to ensure valid

probabilities. The parameters βy and βy,0 can be chosen based on the training data

using the expectation-maximization (EM) algorithm [11].

Naive Bayes is a generative model, meaning that the model estimates the joint

probability distribution of the state and the feature vector and uses this learned dis-

tribution to predict the likelihood of a feature vector x being assigned a class label y.

Maximum Entropy models, on the other hand, are discriminative - they learn the con-

ditional probability p(y | x) of being in a state x given an output y . This is important

because unlike generative models, the probability distribution of outputs p(x) does not

need to be learned. In the case of natural language processing where the observed out-

puts are words, there are almost certainly words that don’t exist in the training corpus

that may occur when using the model, meaning p(x) cannot be accurately estimated

without training data that contains every possible word - an unfeasible task.

Because these classifiers only predict a single class label for a set of features, they

cannot model the relationships among the hidden states. Graphical models such as

Hidden Markov Models and CRFs, on the other hand, are able to account for the

dependencies between the nodes’ labels.

Aspect Identification 20

3.2.3 Hidden Markov Models

One model for labeling sequences of inputs is called a Hidden Markov Model (HMM).

The system is assumed to be a Markov process, where the state of the current node is

dependent only on the state of the previous node in the sequence. However, instead of

observing the state of a given node directly, we observe an output that is dependent on

the state, and each state has a probability distribution over the set of outputs. HMMs

also assume conditional independence of the output features given each node’s state,

making them a generalization of the Naive Bayes classifier. Given a sequence of outputs

and information about each state’s distribution of possible outputs, we can predict a

sequence of hidden states.

In our problem, the sequence of words or tokens within the sentence is the se-

quence of outputs, and the sequence of labels, using the IOB2 standard, are the hidden

states. Our goal is to predict the IOB2 labels of each token within a sentence, using the

sentence’s tokens as the sequence of output features.

Let X = (x1, x2, ..., xn) be the sequence of observed outputs and Y = (y1, y2, ..., yn)

be the sequence of hidden states. xi can be any value within a set of possible outputs

O and yi can be any value within a set of possible state labels L. We define the tran-

sition probability p(yi|yi−1) of the current state given the previous state. The emission

probability p(xi|yi) is the probability of observing the current output given the state of

the node. The joint probability distribution of a sequence of outputs x and a sequence

of hidden states y can be defined as follows, denoting p(y1) as p(y1 | y0) for simplicity:

p(x,y) =
n∏

i=1

p(yi | yi−1)p(xi | yi). (3.3)

Aspect Identification 21

This is a generalization of the joint probability distribution defined in the naive Bayes

classifier, and can be rewritten as follows:

p(x,y) = exp

[
n∑

i=1

log(p(yi | yi−1) +

n∑
i=1

log(p(xi | yi))

]
. (3.4)

If we by replace log(p(yi | yi−1)) with a parameter βyi,yi−1 , log(p(xi | yi)) with a param-

eter µxi,yi , and adjust by a normalization factor Z, we can rewrite this further as:

p(x,y) =
1

Z
exp

[
n∑

i=1

βyi,yi−1

n∑
i=1

µxi,yi

]
. (3.5)

These parameters can be indexed based on the set of labels by using indicator functions

to determine the appropriate parameter:

p(x,y) =
1

Z
exp

 n∑
i=1

∑
j,k∈L

βj,k1{yi=j}1{yi−1=k}

n∑
i=1

∑
o∈O

∑
l∈L

µo,l1{xi=o}1{yi=l}

 . (3.6)

Finally, feature functions can be defined to simplify the notation used. Allow fj,k(yi, yi−1, xi) =

1{yi=j}1{yi−1=k} and fo,l(yi, yi−1, xi) = 1{xi=o}1{yi=l} Under this notation, each pair of

possible labels (j, k) and each observation-label pair (o, l) has a feature function defined.

By indexing these feature functions and their corresponding parameters βj,k and µo,l

using q (with F total functions), we can write the joint probability as follows:

p(x,y) =
1

Z
exp

 n∑
i=1

F∑
q=1

λqfq(yi, yi−1, xi)

 . (3.7)

This notation will allow the differences between HMMs and CRFs to be highlighted.

Aspect Identification 22

3.2.4 CRF Model Description

As with HMMs, we define X as the sequence of hidden states and Y as the sequence of

outputs. However, unlike HMMs, feature functions can be defined that can account for

other output features. In the case of aspect term extraction, this means that the token

features defined in the previous chapter can be used to train the model. [27]

Consider the joint probability distribution for HMMs. The conditional probability

p(y | x), derived from the joint distribution, is:

p(y | x) =
exp

[∑n
i=1

∑F
q=1 λqfq(yi, yi−1, xi)

]
∑

y’ exp
[∑n

i=1

∑F
q=1 λqfq(y

′
i, y
′
i−1, xi)

] . (3.8)

This is equivalent to a linear-chain Conditional Random Field with feature functions

corresponding to each output. This is a specific sub-case of linear-chain CRFs; more

generally, we can describe each output xi as a vector of features. In our case, this

means that rather than using only the word itself as a feature, we can use various

features related to the word (such as prefixes/suffixes, part-of-speech tags, or whether

capitalization is used). A feature function and corresponding parameter can be defined

for any function of the current features, the current label, and the previous label. The

general model is described below:

p(y | x) =
exp

[∑n
i=1

∑F
q=1 λqfq(yi, yi−1,xi)

]
Z(x)

, (3.9)

where Z(x) =
∑

y’ exp
[∑n

i=1

∑F
q=1 λqfq(y

′
i, y
′
i−1,xi)

]
is the normalization constant,

computed by summing the feature functions multiplied by their weights over the possible

Aspect Identification 23

label combinations. The number of possible label combinations becomes very large, but

it will be shown that this problem can be averted during training.

3.2.5 CRF Training

Training requires a set of training data
{

(x(i),y(i))
}N
i=1

consisting of N ’documents’ - in

our case, sentences. Each sentence has ni tokens. For sentence i, y(i) = {y(i)1 , y
(i)
2 , . . . , y

(i)
ni }

is a sequence of IOB2 labels for a sentence and x(i) = {x(i)
1 ,x

(i)
2 , . . . ,x(i)

ni
} is a sequence

of feature vectors, with one feature vector for each token in the sentence. The goal of

training is to maximize the conditional log-likelihood for a set of parameters θ = {λq}Fq=1.

l(θ) =

N∑
i=1

log(p(y(i) | x(i))). (3.10)

In addition, a technique called regularization is often used to smooth the parameters by

making a penalty for overfitting:

l(θ) =
N∑
i=1

log(p(y(i) | x(i)))−
F∑

q=1

λ2q
2σ2

. (3.11)

This assumes a Gaussian prior on the parameters θ, each with a mean of 0 and variance

σ2. The gradient of l(θ) is:

∂l

∂λq
=

N∑
i=1

ni∑
j=1

fq(y
(i)
j , y

(i)
j−1,x

(i)
j)−

N∑
i=1

∂

∂λq
log(Z(x(i)))− λq

2σ2
. (3.12)

where

∂

∂λq
log(Z(x(i))) =

N∑
i=1

ni∑
j=1

∑
y,y′∈L

fq(y, y
′,x

(i)
j)p(y, y′ | x(i)). (3.13)

Aspect Identification 24

The partial derivative with respect to λq can be interpreted as follows: the first com-

ponent is the number of observed occurrences of the feature fq, the second component

is the expected number of occurrences of the feature fq, and the third is the regular-

ization adjustment. At the maximum likelihood solution, the expected and observed

occurrences should be equal.

The maximum likelihood function l(θ) with regularization is strictly concave, and

so a global optimum can be found [27]. This can be done with nonlinear optimization al-

gorithms such as L-BFGS, stochastic gradient descent, and others. CRFsuite, a software

implementation of conditional random fields, allows various optimization algorithms to

be used for this purpose [22].

3.2.6 CRF Evaluation

An important consideration is the method with which ATE systems are evaluated. One

key question is whether to apply these methods to distinct aspect terms or to each

occurrence of an aspect term. If we evaluate based on distinct aspect terms, then we

take the set of predicted distinct aspect terms and compare them to the list of actual

distinct aspect terms. However, aspect terms with higher frequency are more valuable,

given that our eventual goal is to determine polarity scores for a few most common

terms/categories. A model that is able to accurately predict high-frequency aspect

terms, but is less effective at predicting low-frequency aspect terms, is more valuable

than a model that is better at predicting low-frequency terms than high-frequency terms.

Aspect Identification 25

On the other hand, evaluation based on instances of each aspect term can lead to

overconfidence in models that can identify some of the most common terms with accu-

racy, but cannot accurately identify most other terms. Aspect terms with the highest

frequencies in the dataset aren’t always more important to accurately identify than as-

pect terms with lower frequencies. An individual aspect term may be more frequent than

other aspect terms simply because it has few or no synonyms (for example, ”Microsoft

Office” has no synonyms, while ”price” has several different words representing the same

concept).

Thus, we evaluate the methods described in the previous sections with respect to

both distinct aspect terms and instances of each aspect term. We use 70% of the data

available in each domain for training and 30% for testing. As a review, three of the most

common methods of evaluating models are precision, recall, and F-measure. Precision

describes the fraction of predicted aspect terms that actually exist in the dataset. Recall

is the fraction of true aspect terms that are predicted by the model. F-measure is the

harmonic mean of precision and recall.

CRFsuite implements several algorithms to solve for the CRF parameters. Two of

the most common optimization algorithms for solving CRFs are provided: L-BFGS and

stochastic gradient descent. L-BFGS is a common quasi-Newton method that avoids

storing a full approximated Hessian, making is useful for problems such as CRFs where

there are often a large number of parameters to be found [17]. Stochastic gradient descent

(SGD) is an extension of gradient descent that moves in the direction of a random data

point at each iteration. In the CRFsuite implementation, SGD is performed with `2

regularization to prevent overfitting. Both of these algorithms have been shown to be

successful when utilized to solve conditional random fields [28].

Aspect Identification 26

Table 3.1: The results for CRFs using distinct aspect terms.

Algorithm Dataset Precision Recall F-measure

L-BFGS Restaurants 0.7003 0.5224 0.5984

SGD Restaurants 0.6095 0.4187 0.4964

AP Restaurants 0.6701 0.4004 0.5013

PA Restaurants 0.6526 0.5346 0.5877

AROW Restaurants 0.4399 0.5423 0.4859

L-BFGS Laptops 0.5969 0.3793 0.4639

SGD Laptops 0.3357 0.3522 0.3438

AP Laptops 0.5682 0.2463 0.3436

PA Laptops 0.5935 0.4064 0.4825

AROW Laptops 0.4349 0.3867 0.4094

Three other algorithms are implemented in CRFsuite as well: Averaged perceptrons

(AP), passive aggressive (PA), and Adaptive Regularization of Weight Vectors (AROW).

Averaged perceptrons iterates over the training data, updating the feature weights of a

perceptron whenever the model cannot make a correct prediction and updating the av-

erage feature weights. The final averaged feature weights are returned by the algorithm

[7]. Passive-aggressive algorithms define a loss function on predicted instances, aggres-

sively shifting the current parameter estimate when the current training instance has a

positive value for the loss function and making no adjustment when the loss function is

zero [9].AROW is a variation of confidence-weighted learning, which maintains a Gaus-

sian distribution to measure the confidence in each parameter estimate. It adjusts the

model to prevent overly aggressive shifts that can occur when using passive-aggressive

updates [10].

The results for distinct aspect terms for both Restaurant and Laptop datasets

(using the 2014 format described in Figure 2.1) can be seen in Table 3.1. The best

training algorithms for both datasets evaluated with distinct aspect terms were L-BFGS

and PA. Overall, CRFs were more effective on the restaurants domain (with a best

Aspect Identification 27

Table 3.2: The results for CRFs using instances of aspect terms.

Algorithm Domain Precision Recall F-measure

L-BFGS Restaurants 0.8491 0.7231 0.7810

SGD Restaurants 0.8036 0.5629 0.6621

AP Restaurants 0.8246 0.6127 0.7030

PA Restaurants 0.8182 0.7574 0.7867

AROW Restaurants 0.6664 0.7430 0.7026

L-BFGS Laptops 0.8025 0.6119 0.6944

SGD Laptops 0.4668 0.4268 0.4459

AP Laptops 0.7460 0.3895 0.5118

PA Laptops 0.7715 0.6436 0.7018

AROW Laptops 0.6510 0.6312 0.6409

F-measure of 0.5984 when using L-BFGS) than on the laptop domain (with a best

F-measure of 0.4825 when using PA).

The results for instances of aspect terms can be seen in Table 3.2. The best training

algorithms for both datasets evaluated with aspect term instances were L-BFGS and

PA, with F-measures of 0.7810 and 0.7867 respectively for the Restaurant domain and

0.6944 and 0.7018 respectively for the Laptop domain. Again, the CRF seems to be

more effective on the Restaurant domain than the Laptop domain.

The model seems to have significantly higher precision than recall regardless of

algorithm and across both distinct and instance-based evaluation methods. This sug-

gests that the models may have difficulty identifying some aspect terms; however, the

significant increase in both precision and recall when evaluating the instances of each

aspect term suggests that much of this may come from failing to identify infrequent

aspect terms.

To see how effective the model would be on data outside of the training domain, we

attempt to train each model on one domain and evaluate its performance using testing

data from the other domain. These results can be found in Table 3.3 and Table 3.4.

Aspect Identification 28

Table 3.3: The results for CRFs using distinct aspect terms across domains.

Algorithm Train Domain Test Domain Precision Recall F-Measure

L-BFGS Restaurant Laptop 0.4354 0.1576 0.2315

SGD Restaurant Laptop 0.5272 0.0714 0.1258

AP Restaurant Laptop 0.3656 0.1675 0.2297

PA Restaurant Laptop 0.4084 0.1921 0.2613

AROW Restaurant Laptop 0.1635 0.1921 0.1767

L-BFGS Laptop Restaurant 0.6176 0.1280 0.2121

SGD Laptop Restaurant 0.3918 0.3089 0.3455

AP Laptop Restaurant 0.5350 0.1707 0.2589

PA Laptop Restaurant 0.5509 0.1870 0.2792

AROW Laptop Restaurant 0.3221 0.2134 0.2567

Table 3.4: The results for CRFs using instances of aspect terms across domains.

Algorithm Train Domain Test Domain Precision Recall F-Measure

L-BFGS Restaurant Laptop 0.4900 0.1699 0.2523

SGD Restaurant Laptop 0.5795 0.0704 0.1256

AP Restaurant Laptop 0.4247 0.1754 0.2483

PA Restaurant Laptop 0.4935 0.2113 0.2959

AROW Restaurant Laptop 0.1909 0.1851 0.1879

L-BFGS Laptop Restaurant 0.8216 0.1792 0.2942

SGD Laptop Restaurant 0.5581 0.2824 0.3750

AP Laptop Restaurant 0.7289 0.1801 0.2888

PA Laptop Restaurant 0.7765 0.2516 0.3800

AROW Laptop Restaurant 0.5040 0.2308 0.3166

Overall, the quality of the results suffered significantly, suggesting that the model doesn’t

perform well on data outside of the domain of the training data. However, some of the

algorithms used seem to suffer less reduction in quality than others. Using SGD on

the Laptops dataset for training, the F-measures for distinct and instances (0.3438 and

0.4459, respectively) for the Laptop testing set are relatively close to their values when

using the Restaurant testing set (0.3455 and 0.3750, respectively). Though the overall

results were still poor, this suggests that some methods and training datasets may be

more generalizable than others. Discovering than area that may worth exploring in the

future.

Aspect Identification 29

3.3 Association Mining Method (Hu and Liu)

A method based on association mining to find frequent itemsets was defined in [14].

It is a rule-based method that builds a list of candidate itemsets consisting of nouns

and noun phrases in each sentence, then prunes them to identify aspect terms. This is

based on the notion that reviewers tend to use similar words when describing aspects

of a review topic, and so frequently-occurring sets of words are more likely to be aspect

terms.

3.3.1 Association Mining Method Description

First, a set of initial candidate itemsets are generated. A list of nouns and noun phrases

N , ordered by their placement within the sentence, are extracted from each sentence i as

initial itemsets. Pairs and triples of these nouns and noun phrases within each sentence

are also considered candidate terms. This is only done for adjacent nouns and noun

phrases. More specifically, the extracted pairs and triples can be described as

Pairs = {Ni ∪Ni+1 : i ∈ {1, 2, ..., |N | − 1}}

Triples = {Ni ∪Ni+1 ∪Ni+2 : i ∈ {1, 2, ..., |N | − 2}}

At this point, we have an initial set of candidate terms. We reduce the set of

candidate terms down to a set of “frequent” itemsets, as defined by a minimum support

level m. This can also be based off a specified percentage of the dataset. All other

candidate terms are eliminated.

Aspect Identification 30

Two additional pruning measures are taken to reduce the set of candidate terms.

An adjusted frequency measure called “p-support” is found that only counts a candidate

term in a sentence if it is not a subset of another candidate term within the sentence.

For example, if a sentence contained the phrase “ham sandwich” and both “ham” and

“ham sandwich” were candidate terms, then this sentence would not count towards the

support of “ham” , since it’s a subset of another candidate term “ham sandwich” that

exists within the sentence. If the p-support of a candidate term is low, and it appears as

part of a larger candidate term, the candidate term is likely a component of the larger

term. We define a minimum p-support threshold p - if the p-support of a candidate term

is less than p and the candidate term is a subset of some other term, we remove it from

the set of candidate terms.

Another pruning measure attempts to correct for issues that can arise from using

frequent itemsets. When the initial set of candidate terms is created, pairs and triples

of nouns and noun phrases are considered candidate terms. However, these words may

be relatively far apart within a sentence, suggesting that they might not be part of the

same aspect term. For a term within a given sentence, we find the maximum distance

between any two adjacent words in the term. Their distance is measured by how many

tokens apart they are in the sentence. If this value exceeds a token distance threshold

w, then we consider the term non-compact within the sentence. If a term is found to be

non-compact in a greater number of sentences than a maximum non-compact frequency

threshold c, then the term is discarded.

Aspect Identification 31

Algorithm 1 Association Mining Method (Hu and Liu)

Require: List of sentences S, minimum support threshold m, a token distance thresh-
old w, a maximum non-compact frequency threshold c, and a minimum p-support
threshold p.

1: T = {}
2: for sentence ∈ S do
3: N = getNounsAndNounPhrases(sentence)
4: T = T ∪ {term ∈ N , getAdjacentPairs(N), getAdjacentTriples(N)}
5: end for
6: Support = Dictionary() // Default key value is 0
7: for sentence ∈ S do
8: for term ∈ (T ∩ sentence) do
9: Support[term] = Support[term] + 1

10: end for
11: end for
12: T .remove({term : (term ∈ T) and (Support[term] < m)})
13: P-Support = Dictionary() // Default key value is 0
14: Non-Compact = Dictionary() // Default key value is 0
15: for sentence ∈ S do
16: for term ∈ (T ∩ sentence) do
17: if maxTokenDistance(term, sentence) > w then
18: Non-Compact[term] = Non-Compact[term] + 1
19: end if
20: if (term 6⊂ term2) ∀ term2 ∈ ((T − {term}) ∩ sentences) then
21: P-Support[term] = P-Support[term] + 1
22: end if
23: end for
24: end for
25: for term ∈ T do
26: if (Non-Compact[term] > c) then
27: T .remove(term)
28: end if
29: if ((P-Support[term] < p) then
30: for term2 ∈ T − {term} do
31: if term.contains(term2) then
32: T.remove(term)
33: end if
34: end for
35: end if
36: end for
37: return T

Aspect Identification 32

3.3.2 Association Mining Method Evaluation

An important consideration in aspect term extraction is the idea that aspect terms are

likely to be nouns and noun phrases. In the case of one-word aspect terms that are

nouns, identification is as simple as finding nouns from each sentence using a part-of-

speech tagger, then using other methods to filter out nouns that aren’t actually aspect

terms. For the case of multi-word aspect terms, noun phrases must be identified. Any

unsupervised method for aspect identification must somehow identify these noun phrases

without the benefit of training data. The general problem of identifying grammatical

structures such as noun phrases is called shallow parsing [3]. Three different methods

were explored for identifying noun phrases. We attempted to use NLTK’s ”Regexp”

(regular expression) feature, which finds specific patterns in text using a pre-defined

search pattern [6]. However, noun phrases take many possible forms, and defining all the

possible search patterns that noun phrases may exist in is unfeasible. We also examined

bigram and trigram classifiers, trained on a portion of Treebank data available in NLTK

[20]. Finally, we examined the default named-entity chunker within NLTK.

In the testing of the Association Mining algorithm, it became clear that noun

chunking was a significant issue that hindered the performance of the algorithm as a

whole. After tuning the input parameters for the Restaurant domain dataset, the best

model using the named-entity chunker had a precision of 0.3777, recall of 0.2480, and

F-measure of 0.2994. This is with a minimum support threshold m of 6, a minimum

p-support threshold p of 2, a max token distance threshold w of 2, and a maximum non-

compact frequency threshold of 1. We examined the full list of candidate terms before

pruning (consisting of all nouns and noun phrases in the sentence, as well as all adjacent

Aspect-Based Sentiment Analysis 33

pairs and triples of nouns and noun phrases) and found that only 61.18% were detected

- this provides an upper bound on the recall of the model. In the future, examining

effective ways to identify noun phrases is an important step in improving unsupervised

methods, particularly those based on frequent itemsets.

Chapter 4

Aspect-Based Sentiment Analysis

4.1 Problem Description

This chapter is focused on estimating the sentiment of the aspect terms in a sentence,

assuming the aspect terms are known. We also examine the case where aspect categories

are provided for each sentence rather than individual aspect terms.

Given a set of reviews with aspect terms identified, we would like to accurately

estimate the sentiment of each occurrence of an aspect term in a sentence. With one

aspect per sentence, an assumption can be made that polarity within the sentence is

associated with the polarity of the aspect. When multiple aspect terms are present in

one sentence, words associated with one aspect term may incorrectly be associated with

another aspect term, causing the polarities of each aspect term within the sentence to

affect each other.

An issue with using aspect terms individually is that oftentimes, multiple aspect

terms will refer to the same of similar aspects. For example, ”price” and ”cost” refer

34

Aspect-Based Sentiment Analysis 35

to the same aspect, yet are considered separate aspect terms. This suggests that a

way to categorize aspect terms is desirable when designing a system to accurately rate

important aspects of a review’s subject. As such, we will focus on accurately identifying

the sentiment of instances of aspect terms, rather than the problem of aggregating these

terms to provide a more accurate view of a more general “aspect category”.

A secondary formulation of the problem can be given for aspect categories (pre-

defined categories that collectively contain the most important or commonly-discussed

aspects of a review’s subject). Given a set of reviews with sentence-level aspect cat-

egories, we would like to accurately estimate the sentiment of each occurrence of an

aspect category in a sentence. There are multiple benefits to using aspect categories

rather than specific aspect terms. Typically there will be a much smaller number of

aspect categories than aspect terms, and these categories will be present in a larger

number of sentences than individual aspect terms. This means a smaller amount of data

is needed to have enough instances of an aspect category to provide an accurate rating.

However, identifying these aspect categories in the first place can be difficult, and re-

quires a predefined list of categories for each domain. As such, the results provided here

are predicated on the availability of a method to identify these aspect categories.

4.2 VADER-based Method

VADER, or the Valence-Aware Dictionary for sEntiment Reasoning, is a rule-based

model for performing sentiment analysis on a per-sentence basis. The system was trained

on online media text, some of which included movie and product reviews. VADER uti-

lizes a sentiment lexicon constructed with the purpose of being generalizable to multiple

Aspect-Based Sentiment Analysis 36

domains. This makes VADER particularly suitable for analyzing online review data. In

addition, by classifying on a per-sentence basis and performing unsupervised, VADER

can easily be applied and tested on newly-seen data and data across domains.

Their sentiment lexicon was based on several existing sentiment lexicons, as well

as common emoticons and acronyms. It includes valence scores (between -4 and 4)

that contain information about sentiment intensity (how strongly a word expresses a

sentiment) in addition to sentiment polarity.

Given a sentence, VADER calculates a valence score to measure the sentiment

intensity and polarity. Five major heuristics are used to determine the valence score of

a given sentence:

1. Some types of punctuation, specifically exclamation points, increases the magni-

tude of the valence score. For example, “The keyboard is great.” is rated with a

lower magnitude than “The keyboard is great!”

2. Full-word capitalization, especially when other nearby words aren’t fully capital-

ized, increases the magnitude of the valence score. For example, “The keyboard is

great!” is rated with a lower magnitude than “The keyboard is GREAT!”

3. A set of adverbs called ‘degree modifiers’ is used to increase or decrease the mag-

nitude of the valence score, depending on the word. For example, “The keyboard

is great.” is rated with a lower magnitude than “The keyboard is very great.” and

with a higher magnitude than “The keyboard is kinda great.”

4. The conjunction “but” signals a shift in sentiment polarity. The sentiment of the

portion of the sentence after “but” is considered to be the dominant sentiment, and

Aspect-Based Sentiment Analysis 37

contributes a greater amount (two-thirds) to the valence score than the portion of

the sentence before “but” (one-third).

5. The trigram before an occurrence of a lexical feature (as determined by the sen-

timent lexicon) is examined to determine whether a negation is used to express

the opposite polarity. For example, “The keyboard is not great” would be given a

negative valence score, since “not” is a negation that flips the polarity of “great”.

VADER returns a set of four scores: one each for “positive”, “negative”, and “neu-

tral” (which together sum to 1.0), as well as a “compound” score (ranging from -1.0 to

1.0) reflecting the intensity of the polarity within the sentence. Negative scores are as-

sociated with negative polarity within a sentence, and positive score are associated with

positive sentence polarity. Larger magnitudes of the “compound” score are associated

with higher intensities.

In order to compare these scores with the available data, for each sentence we return

a single label (“positive”, “negative”, or “neutral”) depending on the scores returned

by VADER. If a sentence’s “neutral” score is 1.0, we return the label “neutral”. If a

sentence’s “negative” score is greater than its “positive” score (or if the “compound”

score is less than 0), we return “negative”. Otherwise, we return “positive”. We do not

attempt to classify ”conflict” values.

4.2.1 Evaluation

We keep track of the predicted and true label values for each occurrence of an aspect

term (and additionally for each occurrence of an aspect category, in the case of the

restaurant domain dataset). Accuracy is the primary measurement we use to evaluate

Aspect-Based Sentiment Analysis 38

Table 4.1: The results using VADER on aspect terms in the Laptop domain.

Accuracy: 0.5855

Label Precision Recall F-Measure

Positive 0.8140 0.6543 0.7254

Negative 0.3362 0.2916 0.3123

Neutral 0.4535 0.7104 0.5536

Table 4.2: The results using VADER on aspect terms in the Restaurant domain.

Accuracy: 0.6501

Label Precision Recall F-Measure

Positive 0.8235 0.7558 0.7882

Negative 0.4028 0.3287 0.3620

Neutral 0.3730 0.6423 0.4719

Table 4.3: The results using VADER on aspect categories in the Restaurant domain.

Accuracy: 0.6535

Label Precision Recall F-Measure

Positive 0.7918 0.7974 0.7946

Negative 0.5226 0.2942 0.3765

Neutral 0.3674 0.6570 0.4713

our model; and Precision, recall, and F-Measure are also calculated with respect to the

labels “positive”, “negative”, and “neutral”. The term-based results can be found in

Table 4.1 for the laptop domain dataset and in Table 4.2 for the Restaurant domain. The

accuracy is reasonably high for an unsupervised model, though it is somewhat lower for

the Laptop domain (0.5855) versus the restaurant domain dataset (0.6501). Evaluating

based on aspect categories for the restaurant domain dataset provides similar results,

without significant variation in any of the evaluation measures. These results can be

found in Table 4.3.

4.2.2 Ratings-Based Evaluation

Given the number of positive (p), negative (n), neutral/objective (o), and conflict (c)

labels for a given aspect term or aspect category, a rating (r) from 1 to 5 can be

Conclusion 39

Table 4.4: True and predicted ratings for each category in the Restaurant domain.

Category True Rating Predicted Rating Rating Error

food 4.15 4.42 -0.27

ambience 3.81 4.42 -0.61

price 3.44 4.48 -1.04

anecdotes/miscellaneous 3.92 4.15 -0.23

service 3.38 4.05 -0.67

determined as follows:

r = 4

[
p+ 0.5c

p+ n+ c

]
+ 1. (4.1)

This model assumes that “conflict” labels are associated with an equal split between pos-

itive and negative sentiment, and assumes that positive occurrences should be weighted

the same as negative occurrences. This assumption is based on the idea that a review

with n out N stars has a fraction of positive to negative sentiment of n−1
N−1 . However,

this may not be true in practice. Given a dataset with quantitative review scores in ad-

dition to annotated aspect terms or categories, more accurate proportions of positive to

negative sentiment may be developed. Using these proportions, weights can be used to

more heavily skew an occurrence of a particular sentiment label versus other sentiment

labels.

We use the restaurant domain dataset’s aspect categories to calculate ratings, since

there are significantly more occurrences of each aspect category than any one aspect

term. The ratings based on the adjusted VADER model’s predictions and based on the

true sentiment labels can be found in Table 4.4. Overall, the predicted ratings tended

to overestimate the true rating by an average of 0.564; this suggests that VADER is

somewhat skewed towards positive ratings, at least on our available dataset.

Chapter 5

Conclusion

In this thesis, we explored some of the key tasks in the development of an aspect-based

review system. We outlined the considerations required for developing an annotated

dataset for the purpose of training models for aspect identification and aspect-based

sentiment analysis. For the task of aspect identification, two algorithms were described

and tested: a supervised sequential learning model called a conditional random field and

an unsupervised association mining algorithm. The results for conditional random fields

suggest that they are an effective classifier for identifying aspect terms, particularly

when the parameters are learned using L-BFGS or a passive-aggressive algorithm. The

results for the association mining algorithm were relatively poor due to issues with iden-

tifying noun phrases, but illuminated a future area for further exploration: accurately

identifying noun phrases. For the task of aspect-based sentiment analysis, we describe a

modified version of VADER, a rule-based sentiment intensity analyzer, to estimate the

sentiment of aspect terms and aspect categories. [15]. The results for this model were

40

Conclusion 41

A significant area of future exploration is aspect aggregation - identifying aspect

terms that are synonyms of each other (for example, ”price” and ”cost”) and aspect

terms that are a part of an overarching category (for example, ”water” and ”wine”

might be part of an overarching category called ”beverages”). This can be done with pre-

defined categories, which can allow for a supervised approach to the clustering problem.

Review-level and sentence-level training data is difficult to generate for a large number

of domains, but having a small number of predefined categories to capture the most

common aspect terms for each domain is much more feasible. Unsupervised clustering

methods may also be explored, given a fixed number of clusters. In this case, clusters

can be identified by their most frequent aspects.

Bibliography

[1] SIGLEX (ACL Special Interest Group). http://alt.qcri.org/siglex/. Ac-

cessed: 2017-04-21.

[2] WNSTATS(7WN) manual page. http://wordnet.princeton.edu/wordnet/man/

wnstats.7WN.html. Accessed: 2017-04-27.

[3] S. P. Abney. Parsing by chunks. In Principle-based parsing, pages 257–278. Springer,

1991.

[4] I. Androutsopoulos, D. Galanis, S. Manandhar, H. Papageorgiou, J. Pavlopou-

los, and M. Pontiki. SemEval-2015 Task 12: Aspect Based Sentiment Analysis <

SemEval-2015 Task 12. http://alt.qcri.org/semeval2015/task12/. Accessed:

2017-04-15.

[5] I. Androutsopoulos, D. Galanis, S. Manandhar, H. Papageorgiou, J. Pavlopou-

los, and M. Pontiki. Task Description: Aspect Based Sentiment Analysis (ABSA)

< semeval-2014 task 4. http://alt.qcri.org/semeval2014/task4/. Accessed:

2017-04-15.

[6] S. Bird. NLTK: the natural language toolkit. In Proceedings of the COLING/ACL

on Interactive presentation sessions, pages 69–72. Association for Computational

Linguistics, 2006.

[7] M. Collins. Discriminative training methods for hidden markov models: Theory

and experiments with perceptron algorithms. In Proceedings of the ACL-02 Con-

ference on Empirical Methods in Natural Language Processing-Volume 10, pages

1–8. Association for Computational Linguistics, 2002.

[8] N. R. Council, A. L. P. A. Committee, et al. Language and Machines: Computers

in Translation and Linguistics; A Report. National Academy of Sciences, National

Research Council, 1966.

[9] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-

aggressive algorithms. Journal of Machine Learning Research, 7(Mar):551–585,

2006.

[10] K. Crammer, A. Kulesza, and M. Dredze. Adaptive regularization of weight vectors.

In Advances in Neural Information Processing Systems, pages 414–422, 2009.

42

http://alt.qcri.org/siglex/
http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html
http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html
http://alt.qcri.org/semeval2015/task12/
http://alt.qcri.org/semeval2014/task4/

Bibliography 43

[11] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-

plete data via the EM algorithm. Journal of the Royal Statistical Society. Series B

(methodological), pages 1–38, 1977.

[12] J. J. Godfrey, E. C. Holliman, and J. McDaniel. SWITCHBOARD: Telephone

speech corpus for research and development. In Acoustics, Speech, and Signal

Processing, 1992. ICASSP-92., 1992 IEEE International Conference on Acoustics,

Speech, and Signal Processing, volume 1, pages 517–520. IEEE, 1992.

[13] L. Hirschman and R. Gaizauskas. Natural language question answering: the view

from here. Natural Language Engineering, 7(04):275–300, 2001.

[14] M. Hu and B. Liu. Mining and summarizing customer reviews. In Proceedings of the

tenth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 168–177. ACM, 2004.

[15] C. J. Hutto and E. Gilbert. Vader: A parsimonious rule-based model for sentiment

analysis of social media text. In Eighth International AAAI Conference on Weblogs

and Social Media, 2014.

[16] K. S. Jones. Natural language processing: a historical review. In Current Issues in

Computational Linguistics: In Honour of Don Walker, pages 3–16. Springer, 1994.

[17] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale

optimization. Mathematical Programming, 45(1):503–528, 1989.

[18] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. McClosky.

The Stanford CoreNLP Natural Language Processing Toolkit. In ACL System

Demonstrations, pages 55–60, 2014.

[19] T. N. Mansuy and R. J. Hilderman. Evaluating WordNet Features in Text Classi-

fication Models. In FLAIRS Conference, pages 568–573, 2006.

[20] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated

corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330,

1993.

[21] G. A. Miller. WordNet: a lexical database for English. Communications of the

ACM, 38(11):39–41, 1995.

[22] N. Okazaki. CRFsuite: a fast implementation of conditional random fields (CRFs).

2007.

[23] I. Pavlopoulos. Aspect based sentiment analysis. Athens University of Economics

and Business, 2014.

[24] M. Pontiki, D. Galanis, H. Papageorgiou, S. Manandhar, and I. Androutsopoulos.

Task 5: Aspect-Based Sentiment Analysis < SemEval-2016 Task 5. http://alt.

qcri.org/semeval2016/task5/. Accessed: 2017-04-15.

http://alt.qcri.org/semeval2016/task5/
http://alt.qcri.org/semeval2016/task5/

Appendix - Data Processing and Test Functions 44

[25] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[26] F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Pro-

ceedings of the 2003 Conference of the North American Chapter of the Association

for Computational Linguistics on Human Language Technology-Volume 1, pages

134–141. Association for Computational Linguistics, 2003.

[27] C. Sutton and A. McCallum. An introduction to conditional random fields. arXiv

preprint arXiv:1011.4088, 2010.

[28] S. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. P. Murphy. Ac-

celerated training of conditional random fields with stochastic gradient methods.

In Proceedings of the 23rd International Conference on Machine Learning, pages

969–976. ACM, 2006.

Appendix - Data Processing and
Test Functions

1 import time

2 from collections import defaultdict

3 import xml.etree.ElementTree as ET

4 import libraries.structure as st

5 from libraries.structure import Corpus

6 import aspect_identification as ai

7 import sentiment_analysis as sa

8 from stanford_corenlp_python import jsonrpc

9

10

11 def sentimentAnalysisTest(data):

12 instances = data.corpus

13 trueTermPolsBySent = sa.getTermPolarities(instances)

14 trueCatPolsBySent = sa.getCategoryPolarities(instances)

15

16 predictedTermPolsBySent = sa.vaderTermPolarities(instances)

17 print "Evaluate By Terms:"

18 sa.evaluatePolarities(trueTermPolsBySent, predictedTermPolsBySent)

19

20 if len([i for j in trueCatPolsBySent for i in j]) > 0:

21 predictedCatPolsBySent = sa.vaderCategoryPolarities(instances)

22 print "Evaluate By Categories:"

23 sa.evaluatePolarities(trueCatPolsBySent, predictedCatPolsBySent)

24 print "True Ratings:"

25 print sa.computeRatings(st.fd2([i for j in trueCatPolsBySent for

i in j]))↪→

26 print "Predicted Ratings:"

27 print sa.computeRatings(st.fd2([i for j in

predictedCatPolsBySent for i in j]))↪→

28

29 def aspectIdentificationTest(dataR, dataL, HL = True, CRF = True):

30 # Split into train/test data

31 trainR, testR = dataR.split(threshold=0.7)

32 trainL, testL = dataL.split(threshold=0.7)

33 train = trainR

45

Appendix - Data Processing and Test Functions 46

34 test = testR

35

36 testFD = st.fd([" ".join(a.tokenized_term) for i in test for a in

i.aspect_terms])↪→

37 testBySent = [i.adjustFormat() for i in test]

38

39 numMethods = 0

40 if HL == True:

41 # H&L settings

42 minSupports = [0]

43 minPsupports = [0]

44 maxWordDist = [10.0]

45 maxNonCompact = [10.0]

46 params = [(i,j,k,l) for i in minSupports for j in minPsupports

for k in maxWordDist for l in maxNonCompact]↪→

47 numMethods += len(params)

48

49 if CRF == True:

50 # CRF settings

51 algs = ['lbfgs', 'l2sgd', 'ap', 'pa', 'arow']

52 numMethods += len(algs)

53

54 predictedFDs = range(numMethods)

55 predictedTermsBySent = range(numMethods)

56 methodNames = []

57 count = 0

58

59 if HL == True:

60 for p in range(len(params)):

61 # Run Association Mining (Hu & Liu) algorithm

62 i = params[p][0]

63 j = params[p][1]

64 k = params[p][2]

65 l = params[p][3]

66 predictedFDs[count], predictedTermsBySent[count] =

ai.HuLiu(dataL.corpus, minSupport = i, minPsupport = j,

maxWordDist = k, maxNonCompact = l)

↪→

↪→

67 methodNames.append("H&L:

(minS="+str(i)+",minPS="+str(j)+",maxWD="+str(k)+",maxNC="+str(l)+")")↪→

68 count += 1

69

70 if CRF == True:

71 for k in algs:

72 # Run Conditional Random Field algorithm

73 crfLabels = ai.crf(train, test, k)

74 predictedFDs[count], predictedTermsBySent[count] =

ai.IOB2toAspectTerms(crfLabels, test)↪→

75

Appendix - Data Processing and Test Functions 47

76 methodNames.append(k)

77 count += 1

78 # Evaluate methods

79 ai.evaluateAspectTerms(testFD, testBySent, predictedFDs,

predictedTermsBySent, methodNames, True)↪→

80

81

82 def process_semeval_2015():

83 # the train set is composed by train and trial data set

84 corpora = dict()

85 corpora['laptop'] = dict()

86 train_filename =

'datasets/ABSA-SemEval2015/ABSA-15_Restaurants_Train_Final.xml'↪→

87 trial_filename =

'datasets/ABSA-SemEval2015/absa-2015_restaurants_trial.xml'↪→

88

89 reviews = ET.parse(train_filename).getroot().findall('Review') + \

90 ET.parse(trial_filename).getroot().findall('Review')

91

92 sentences = []

93 for r in reviews:

94 sentences += r.find('sentences').getchildren()

95

96 # TODO: parser is not loading aspect words and opinioss

97 corpus = Corpus(sentences)

98 corpus.size()

99

100

101 def process_semeval_2014(type = "R"):

102 # the train set is composed by train and trial dataset

103 # corpora = dict()

104 # corpora['data'] = dict()

105 if type == "R":

106 train_filename =

'datasets/ABSA-SemEval2014/Restaurants_Train_v2.xml'↪→

107 trial_filename =

'datasets/ABSA-SemEval2014/restaurants-trial.xml'↪→

108

109 elif type == "L":

110 train_filename = 'datasets/ABSA-SemEval2014/Laptop_Train_v2.xml'

111 trial_filename = 'datasets/ABSA-SemEval2014/laptops-trial.xml'

112 corpus =

Corpus(ET.parse(train_filename).getroot().findall('sentence') +↪→

113

ET.parse(trial_filename).getroot().findall('sentence'))↪→

114 # corpora['data']['trainset'] = dict()

115 # corpora['data']['trainset']['corpus'] = corpus

116 return corpus

Appendix - Class Definitions 48

117

118 def main():

119 # TODO: start corenlp server "python corenlp.py"

120

121 # interface for Stanford-Core-NLP server

122 start = time.time()

123 server = jsonrpc.ServerProxy(jsonrpc.JsonRpc20(),

124

jsonrpc.TransportTcpIp(addr=("127.0.0.1",↪→

125 8080)))

126

127 #result = loads(server.parse("Hello world. It is so beautiful"))

128 #print "Result", result

129

130 # Load corpus

131 dataR = process_semeval_2014("R")

132 dataL = process_semeval_2014("L")

133

134 print 'The restaurant corpus has %d sentences, %d aspect term

occurrences, and %d distinct aspect terms.' % (dataR.size,

sum(dataR.aspect_terms_fd[a] for a in dataR.aspect_terms_fd),

len(dataR.top_aspect_terms))

↪→

↪→

↪→

135 print 'The laptop corpus has %d sentences, %d aspect term

occurrences, and %d distinct aspect terms.' % (dataL.size,

sum(dataL.aspect_terms_fd[a] for a in dataL.aspect_terms_fd),

len(dataL.top_aspect_terms))

↪→

↪→

↪→

136

137 end = time.time()

138 print "Load Corpus: " + str(end - start) + " seconds"

139 start = end

140

141 aspectIdentificationTest(dataR, dataL, HL=True, CRF=False)

142 sentimentAnalysisTest(dataR)

143

144 if __name__ == '__main__':

145 main()

Appendix - Class Definitions

1 import xml.etree.ElementTree as ET, getopt, logging, sys, random, re,

copy↪→

2 from xml.sax.saxutils import escape

3 import nltk

4 from nltk.tokenize import WordPunctTokenizer

5 from nltk.tokenize import TreebankWordTokenizer as Tokenizer

6 from nltk.stem.porter import PorterStemmer as Stemmer

7

8 import string

9 from collections import defaultdict

10

11 def fd(counts):

12 '''Given a list of occurrences (e.g., [1,1,1,2]), return a

dictionary of frequencies (e.g., {1:3, 2:1}.)'''↪→

13 d = defaultdict(lambda:0)

14 for i in counts: d[i] = d[i] + 1 if i in d else 1

15 return d

16

17 freq_rank = lambda d: sorted(d, key=d.get, reverse=True)

18 '''Given a map, return ranked the keys based on their values.'''

19

20 def fd2(counts):

21 '''Given a list of 2-uplets (e.g., [(a,pos), (a,pos), (a,neg),

...]), form a dict of frequencies of specific items (e.g.,

{a:{pos:2, neg:1}, ...}).'''

↪→

↪→

22 d = {}

23 for i in counts:

24 # If the first element of the 2-uplet is not in the map, add it.

25 if i[0] in d:

26 if i[1] in d[i[0]]:

27 d[i[0]][i[1]] += 1

28 else:

29 d[i[0]][i[1]] = 1

30 else:

31 d[i[0]] = defaultdict(lambda: 0)

32 d[i[0]][i[1]] += 1

33 return d

49

Appendix - Class Definitions 50

34

35 def validate(filename):

36 '''Validate an XML file, w.r.t. the format given in the 4th task of

SemEval '14.'''↪→

37 elements = ET.parse(filename).getroot().findall('sentence')

38 aspects = []

39 for e in elements:

40 for eterms in e.findall('aspectTerms'):

41 if eterms is not None:

42 for a in eterms.findall('aspectTerm'):

43 aspects.append(Aspect('', '').createEl(a).term)

44 return elements, aspects

45

46

47 fix = lambda text: escape(text.encode('utf8')).replace('\"','"')

48 '''Simple fix for writing out text.'''

49

50 # Dice coefficient

51 def dice(t1, t2, stopwords=[]):

52 tokenize = lambda t: set([w for w in t.split() if (w not in

stopwords)])↪→

53 t1, t2 = tokenize(t1), tokenize(t2)

54 return 2. * len(t1.intersection(t2)) / (len(t1) + len(t2))

55

56 # Find the index of the nth occurrence of a word within a tokenized text

57 def findNthOccurrence(tokenized_text, word, n):

58 if n < 1:

59 print "Error: n must be an integer > 1"

60 exit()

61 k = 0 # How many occurrences we've seen so far

62 for index in range(len(tokenized_text)):

63 if word in tokenized_text[index]:

64 k = k + 1

65 if k == n:

66 return index

67 print "Error: Could not find nth occurrence"

68 return -1

69

70 def generate(sentences):

71 features = [[token.toDict() for token in s.tokens] for s in

sentences]↪→

72 labels = [[token.actualIOB2 for token in s.tokens] for s in

sentences]↪→

73 return features, labels

74

75 class Category:

Appendix - Class Definitions 51

76 '''Category objects contain the term and polarity (i.e., pos, neg,

neu, conflict) of the category (e.g., food, price, etc.) of a

sentence.'''

↪→

↪→

77

78 def __init__(self, term='', polarity=''):

79 self.term = term

80 self.polarity = polarity

81

82 def createEl(self, element):

83 self.term = element.attrib['category']

84 self.polarity = element.attrib['polarity']

85 return self

86

87 def update(self, term='', polarity=''):

88 self.term = term

89 self.polarity = polarity

90

91 class Token:

92 ''' Token objects contain information about an individual token -

usually a word or punctuation. '''↪→

93

94 def __init__(self, text='', index=-1):

95 self.text = text # The text of the

token↪→

96 self.index = index # Index of the token

in the tokenized sentence↪→

97 self.isBOS = not index # isBOS (Beginning

of sentence): True if index = 0, False otherwise↪→

98 self.lower_text = text.lower() # The lowercase text

of the token↪→

99 self.isTitle = text.istitle() # True if token is

"titlecased" (first letter is uppercase and other letters

are lowercase)

↪→

↪→

100 self.isPunct = text in string.punctuation # True if the token

is punctuation rather than a word↪→

101 self.isDigit = text.isdigit() # True if the token

is a digit rather than a word↪→

102 self.stem = Stemmer().stem(text) # Word stem of the

token (Ex: the stem of "running" is "run")↪→

103 self.actualIOB2 = "O" # "O" if token is

outside, "I" if token is inside, "B" if token is the

beginning of an aspect term

↪→

↪→

104 self.polarity = "" # Positive ("pos"),

negative ("neg"), or neutral ("neu")↪→

105 self.POS = "" # Part of speech of

the token↪→

106 self.POS2 = "" # First 2 characters

of the POS tag↪→

Appendix - Class Definitions 52

107

108 def toDict(self):

109 features = dict(self.__dict__)

110 features.pop('actualIOB2')

111 return features

112

113 def setIndex(self, index):

114 self.index = index

115

116 def setPrev(self, prev):

117 self.prev_text = prev.text

118 self.prev_lower_text = prev.lower_text

119 self.prev_POS = prev.POS

120 self.prev_POS2 = prev.POS2

121 self.prev_stem = prev.stem

122

123 def setNext(self, next):

124 self.next_text = next.text

125 self.next_lower_text = next.lower_text

126 self.next_POS = next.POS

127 self.next_POS2 = next.POS2

128 self.next_stem = next.stem

129

130 def setActualIOB2(self, IOB2):

131 self.actualIOB2 = IOB2

132

133 def setPredictedIOB2(self, IOB2):

134 self.predictedIOB2 = IOB2

135

136 def setPOS(self, POS):

137 self.POS = POS

138 self.POS2 = POS[:2]

139

140 def setPolarity(self, polarity):

141 self.polarity = polarity

142

143

144 class Aspect:

145 ''' Aspect objects contain information about each aspect term. '''

146

147 def __init__(self, term='', id='', tokens=''):

148 self.term = term # The text of the aspect term

149 self.id = id # The sentence id

150 self.offsets = '' # The offsets within the sentence

{'from':startIndex, 'to':endIndex}↪→

151 self.polarity = '' # The polarity (pos, neg, neu,

conflict)↪→

Appendix - Class Definitions 53

152 self.lower_term = '' # The lowercase text of the aspect

term↪→

153 self.tokens = '' # An ordered list of Tokens

representing the sentence↪→

154 self.tokenized_term = '' # An ordered list of Strings

representing the sentence↪→

155 self.termSize = '' # Number of elements in

tokenized_term↪→

156 self.headIndex = '' # The index of the term's first

token↪→

157 self.endIndex = '' # The index after the term's last

token↪→

158 if tokens != '':

159 self.createFromTokens(tokens)

160 elif len(term) > 0:

161 self.lower_term = self.term.lower()

162 self.tokenized_term = Tokenizer().tokenize(self.term)

163 self.lower_tokenized_term = [t.lower() for t in

self.tokenized_term]↪→

164 self.termSize = len(self.tokenized_term)

165

166 def createFromTokens(self, tokens):

167 ''' Create an Aspect from tokens (used after initial file

processing) '''↪→

168 self.tokens = tokens

169 self.tokenized_term = [t.text for t in tokens]

170 self.lower_tokenized_term = [t.lower for t in

self.tokenized_term]↪→

171 self.termSize = len(tokens)

172 self.headIndex = tokens[0].index

173 self.endIndex = self.headIndex + self.termSize

174

175 def createEl(self, element):

176 ''' Create an Aspect from an XML element (used when reading from

file)↪→

177 '''

178 self.term = element.attrib['term']

179 self.lower_term = self.term.lower()

180 self.polarity = element.attrib['polarity']

181 self.offsets = {'from': str(element.attrib['from']), 'to':

str(element.attrib['to'])}↪→

182 self.lower_term = self.term.lower()

183 self.tokenized_term = Tokenizer().tokenize(self.term)

184 self.lower_tokenized_term = [t.lower() for t in

self.tokenized_term]↪→

185 self.termSize = len(self.tokenized_term)

186 return self

187

Appendix - Class Definitions 54

188 def compareWithinSentence(self, otherAspect):

189 ''' Comparison based on same sentence - only returns true if the

aspects are in the same position within the sentence (ex:

the first occurrence of the aspect "keyboard" does not equal

the second occurrence of the same aspect term within the

sentence)

↪→

↪→

↪→

↪→

190 '''

191 if self.headIndex == otherAspect.headIndex:

192 if self.termSize == otherAspect.termSize:

193 return True

194 return False

195

196 def compare(self, otherAspect):

197 ''' Comparison based on the words within the aspect - returns

true if all Tokens within the aspect are equivalent.↪→

198 '''

199 result = False

200 if self.termSize == otherAspect.termSize:

201 result = True

202 for i in range(termSize):

203 if self.tokenized_term[i].text !=

otherAspect.tokenized_term[i].text:↪→

204 result = False

205 break

206 return result

207

208 def setTokens(self, tokens):

209 self.tokens = tokens

210

211 def getHeadToken():

212 return self.tokens[0]

213

214 def setIndices(self, headIndex):

215 self.headIndex = headIndex

216 self.endIndex = headIndex + self.termSize

217

218 def setOffsets(self, offsets):

219 self.offsets = offsets

220

221 def setPolarity(self, polarity):

222 self.polarity = polarity

223

224 class Instance:

225 '''An instance is a sentence, modeled out of XML (pre-specified

format, based on the 4th task of SemEval 2014). It contains the

text, the aspect terms, and any aspect categories.

↪→

↪→

226 '''

227

Appendix - Class Definitions 55

228 def __init__(self, element):

229 self.text = element.find('text').text

230 self.id = element.get('id')

231 self.generateTokens()

232 self.aspect_terms = [Aspect('', id=self.id).createEl(e) for es

in↪→

233 element.findall('aspectTerms') for e in es

if↪→

234 es is not None]

235 self.aspect_categories = [Category(term='',

polarity='').createEl(e) for es in

element.findall('aspectCategories')

↪→

↪→

236 for e in es if

237 es is not None]

238 self.updateAspectFields() # Updates Aspect features related to

Tokens, and vice versa↪→

239

240 def generateTokens(self):

241 ''' Generate tokens based on the tokenization of the sentence.

242 '''

243

244 # Tokenize text and create Token object list

245 self.tokenized_text = Tokenizer().tokenize(self.text)

246 self.tokens = [Token(self.tokenized_text[i], i) for i in

range(len(self.tokenized_text))]↪→

247

248 # Update the POS tag for each Token object

249 tagged_text = nltk.pos_tag(self.tokenized_text)

250 for i in range(len(self.tokens)):

251 self.tokens[i].setPOS(tagged_text[i][1])

252

253 # Update the next and previous tokens for each Token object

254 for i in range(len(self.tokens)):

255 token = self.tokens[i]

256 if i == 0 and i == (len(self.tokens) - 1):

257 token.setPrev(Token())

258 token.setNext(Token(index=len(self.tokens)))

259 elif i == 0:

260 token.setPrev(Token())

261 token.setNext(self.tokens[i+1])

262 elif i == (len(self.tokens) - 1):

263 token.setPrev(self.tokens[i-1])

264 token.setNext(Token(index=len(self.tokens)))

265 else:

266 token.setPrev(self.tokens[i-1])

267 token.setNext(self.tokens[i+1])

268

269 def updateAspectFields(self):

Appendix - Class Definitions 56

270 ''' Update some token-based fields of Aspects, and aspect-based

fields of Tokens↪→

271 '''

272 for at in self.aspect_terms:

273 # Find the aspect term within the sentence, then update the

indices of the tokens.↪→

274 at.setIndices(self.findHeadIndex(at))

275

276 # Update the tokens' IOB2 fields

277 self.tokens[at.headIndex].setActualIOB2("B")

278 for i in range(at.headIndex+1, at.endIndex):

279 self.tokens[i].setActualIOB2("I")

280

281 # Add a list of the Token objects for the aspect term

282 at.setTokens(self.tokens[at.headIndex:at.endIndex])

283

284 ''' NOTE: No longer needed

285 def predictedFromIOB2(self):

286 Given an instance with predicted IOB2 tags, return a list of

predicted Aspects↪→

287

288 term = []

289 termList = []

290 i = 0

291 while i < len(self.tokens):

292 t = self.tokens[i]

293 if t.predictedIOB2 == "B":

294 term.append(t)

295 while i+1 < len(self.tokens):

296 if self.tokens[i+1].predictedIOB2 == "I":

297 term.append(self.tokens[i+1])

298 i = i + 1

299 else:

300 break

301 termList.append(term)

302 term = []

303 i = i + 1

304 return termList

305 '''

306

307 def findHeadIndex(self, at):

308 ''' Two challenges here: we must account for multi-word aspect

terms, and we must account for duplicates of the term that

may exist in the sentence. '''

↪→

↪→

309 headToken = at.tokenized_term[0] # The first token of

the aspect term(if multiple tokens are in the word/phrase)↪→

310 headCount = self.text.count(headToken) # Count how many times

the first word in the aspect term appears in the sentence↪→

Appendix - Class Definitions 57

311 index = -1 # The index we're

looking for - will eventually be returned↪→

312

313 # If there is only one occurrence of the aspect term's first

word:↪→

314 if headCount == 1:

315 return findNthOccurrence(self.tokenized_text, headToken, 1)

316

317 # If there are multiple occurrences, find the correct occurrence

and then find its' index in the token list↪→

318 else:

319 n = 1 # The nth occurrence of the word is the one

we're searching for↪→

320 loc = -1 # The current location within the sentence

string↪→

321 while n <= headCount:

322 # Find the next occurrence and check if it matches the

listed beginning offset.↪→

323 loc = self.text.find(headToken, loc+1)

324 if loc == int(at.offsets['from']):

325 # Find the index in the tokens of the nth occurrence

of the term↪→

326 return findNthOccurrence(self.tokenized_text,

headToken, n)↪→

327 n = n + 1

328 return -1

329

330 def adjustFormat(self):

331 ''' For evaluation purposes. Returns a list of (Term, Indices)

tuples, where Indices is a tuple↪→

332 '''

333 output = []

334 for at in self.aspect_terms:

335 term = " ".join(at.lower_tokenized_term)

336 indices = tuple([token.index for token in at.tokens])

337 output.append((term, indices))

338

339 return output

340

341 def get_aspect_terms(self):

342 return [a.lower_term for a in self.aspect_terms]

343

344 def get_aspect_categories(self):

345 return [c.term.lower() for c in self.aspect_categories]

346

347 def get_predicted_terms(self):

348 return [a.lower_term for a in self.predicted_terms]

349

Appendix - Class Definitions 58

350 def get_predicted_categories(self):

351 return [c.term.lower() for c in self.predicted_categories]

352

353 def add_aspect_term(self, term, offsets='', id=''):

354 a = Aspect(term, id)

355 if offsets != '':

356 a.setOffsets(offsets)

357 self.aspect_terms.append(a)

358

359 def add_aspect_category(self, term, polarity=''):

360 c = Category(term, polarity)

361 self.aspect_categories.append(c)

362

363 def add_predicted_term(self, term, id=''):

364 a = Aspect(term, id)

365 self.predicted_terms.append(a)

366

367 def add_predicted_category(self, term, polarity=''):

368 c = Category(term, polarity)

369 self.predicted_categories.append(c)

370

371 class Corpus:

372 '''A corpus contains instances, and is useful for training

algorithms or splitting to train/test files.'''↪→

373

374 def __init__(self, elements):

375 self.corpus = [Instance(e) for e in elements]

376 self.texts = [t.text for t in self.corpus]

377 self.size = len(self.corpus)

378 self.aspect_terms_fd = fd([" ".join(a.tokenized_term) for i in

self.corpus for a in i.aspect_terms])↪→

379 self.top_aspect_terms = freq_rank(self.aspect_terms_fd)

380

381 def __iter__(self):

382 for i in self.corpus:

383 yield i.tokenized_text

384

385 def top_text_terms(self):

386 ''' Old version of top_aspect_terms

387 '''

388 aspect_terms_fd = fd([a for i in self.corpus for a in

i.get_aspect_terms()])↪→

389 return freq_rank(self.aspect_terms_fd)

390

391 def clean_tags(self):

392 for i in range(len(self.corpus)):

393 self.corpus[i].aspect_terms = []

394

Appendix - Aspect Identification 59

395 def split(self, threshold=0.8, shuffle=False):

396 '''Split to train/test, based on a threshold. Turn on shuffling

for randomizing the elements beforehand.'''↪→

397 clone = copy.deepcopy(self.corpus)

398 if shuffle: random.shuffle(clone)

399 train = clone[:int(threshold * self.size)]

400 test = clone[int(threshold * self.size):]

401 return train, test

402

403 def getPolarityTermDict(self):

404 ''' Returns a dictionary where each aspect term is associated

with a dictionary,↪→

405 '''

406 return fd2([(at.term, at.polarity) for at in s.aspect_terms for

s in self.corpus])↪→

407

408 def getPolarityCategoryDict(self):

409 ''' Returns a dictionary where each aspect category is

associated with a dictionary↪→

410 '''

411 return fd2([(ac.term, ac.polarity) for ac in s.aspect_categories

for s in self.corpus])↪→

Appendix - Aspect Identification

1 import time

2 import math

3 from collections import defaultdict

4 import xml.etree.ElementTree as ET

5 from libraries.structure import Corpus

6 from libraries.structure import fd

7 from libraries.structure import freq_rank

8 from libraries.structure import generate

9

10 from stanford_corenlp_python import jsonrpc

11

12 import nltk

13 import nltk.corpus, nltk.tag

14 from nltk import word_tokenize

15 from nltk.tokenize import WordPunctTokenizer

16 from nltk.tokenize import TreebankWordTokenizer as Tokenizer

17 import nltk.chunk as chunk

18 from nltk.stem.porter import PorterStemmer as Stemmer

19

20 import pycrfsuite

21

22 #################### Association Mining Method ####################

23

24 def HuLiu(instances, minSupport = 1.0, minPsupport = 2, maxWordDist =

1.0, maxNonCompact = 1):↪→

25 ''' Hu and Liu's algorithm for aspect term extraction. Returns two

arguments: a dictionary containing all predicted terms with

their associated p-support, and a list of sentences with the

aspect terms in each sentence.

↪→

↪→

↪→

26 instances = a list of Sentence

27 minSupportPercentage = the percentage of sentences the term must

appear in to be considered "frequent"↪→

28 minPsupport = the minumum number of sentences in which a

candidate term must occur (ignoring any times another candidate term

in the sentence subsumes the current candidate term)

↪→

↪→

29 maxWordDist = the maximum distance allowed between words in a

candidate term↪→

60

Appendix - Aspect Identification 61

30 maxNonCompact = the maximum number of sentences within the

corpus in which a candidate term can violate the maximum word

distance

↪→

↪→

31 '''

32

33 # We store the terms by sentence and as a set.

34 terms = dict() # Stores terms in a

variety of formats↪→

35 terms['sent'] = dict() # Stores the terms of

each sentence separately↪→

36 terms['sent']['(Term,Indices)'] = [] # Stores the terms of

each sentence as a tuple: (FullString, IndicesTuple). FullString

has " " between tokens. IndicesTuple is a tuple containing the

indices of the tokens in String.

↪→

↪→

↪→

37 terms['all'] = dict() # Stores terms in one

group, not as a list of sentences↪→

38 terms['all']['set'] = set() # The entire set of

distinct terms↪→

39

40 tbc = 0

41 # treebank chunking

42 if tbc:

43 treebank_sents = nltk.corpus.treebank_chunk.chunked_sents()

44 train_chunks = conll_tag_chunks(treebank_sents)

45 u_chunker = nltk.tag.UnigramTagger(train_chunks)

46 ub_chunker = nltk.tag.BigramTagger(train_chunks,

backoff=u_chunker)↪→

47 ubt_chunker = nltk.tag.TrigramTagger(train_chunks,

backoff=ub_chunker)↪→

48 ut_chunker = nltk.tag.TrigramTagger(train_chunks,

backoff=u_chunker)↪→

49 utb_chunker = nltk.tag.BigramTagger(train_chunks,

backoff=ut_chunker)↪→

50 # Find nouns and noun phrases in each sentence - these are

initial candidate terms. Nouns are lists of (String, Index)

tuples

↪→

↪→

51 nounsBySentence = [nounsAndPhrasesInSentence(s,

chunker=ub_chunker, tbc=True) for s in instances]↪→

52 else:

53 # Find nouns and noun phrases in each sentence - these are

initial candidate terms. Nouns are lists of (String, Index)

tuples

↪→

↪→

54 nounsBySentence = [nounsAndPhrasesInSentence(s, ne=True) for s

in instances]↪→

55

56 # Include combined pairs and triples of nouns / phrases within

sentences as candidate terms, then get a dictionary of their

frequencies (support)

↪→

↪→

Appendix - Aspect Identification 62

57 temp = [[t2list(term) for term in (s + getPairs(s) + getTriples(s))]

for s in nounsBySentence]↪→

58

59 support = fd([term[0] for s in temp for term in s])

60

61 # Get all frequent candidate terms - those that meet the minimum

support.↪→

62 terms['sent']['(Term,Indices)'] = [[term for term in s if

support[term[0]] >= minSupport] for s in temp]↪→

63

64 # Update support

65 support = fd([term[0] for s in terms['sent']['(Term,Indices)'] for

term in s])↪→

66

67 # Store the set of current candidate terms

68 terms['all']['set'] = set(support.keys())

69

70 nonCompact = dict.fromkeys(terms['all']['set'], 0)

Stores occurrences of non-compact form for each term↪→

71 pSupport = fd([term[0] for s in terms['sent']['(Term,Indices)'] for

term in removeSubsets(s)]) # Stores p-support of each term↪→

72 isSubset = dict.fromkeys(terms['all']['set'])

73

74 for term in terms['all']['set']:

75 isSubset[term] = False

76 for term2 in terms['all']['set']:

77 if term in term2:

78 if term != term2:

79 isSubset[term] = True

80 continue

81

82 # Check to see if the distance between words exceeds maxDist

83 for sentence in terms['sent']['(Term,Indices)']:

84 for term in sentence:

85 indices = term[1]

86 if len(indices) <= 1:

87 # Term has only one word - skip to next term

88 continue

89 max = maxDist(indices)

90 if max > maxWordDist:

91 nonCompact[term[0]] = nonCompact[term[0]] + 1

92

93 # Remove terms that appear in non-compact form more than

"maxNonCompact" times. Also, remove terms below the minimum

p-support threshold that are a subset of some other term.

↪→

↪→

94 newTerms = set()

95 sub = 0

96 nc = 0

Appendix - Aspect Identification 63

97 for term in terms['all']['set']:

98 if nonCompact[term] > maxNonCompact:

99 # Condition violated, term is removed

100 nc += 1

101 continue

102 if pSupport[term] >= minPsupport:

103 # Term meets minimum p-support; term is kept

104 newTerms.add(term)

105 else:

106 if isSubset[term]:

107 # Term is a part of another aspect term; term is removed

108 sub += 1

109 continue

110 else:

111 # Term is not part of another term; term is kept

112 newTerms.add(term)

113

114 terms['all']['set'] = newTerms

115

116 # Update terms['sent']['(Term,Indices)']

117 newTermSents = []

118 for sentence in terms['sent']['(Term,Indices)']:

119 newSent = []

120 for term in sentence:

121 if term[0] in terms['all']['set']:

122 newSent.append(term)

123 newTermSents.append(newSent)

124 terms['sent']['(Term,Indices)'] = newTermSents

125

126 # Update p-support values

127 pSupport = fd([term[0] for s in terms['sent']['(Term,Indices)'] for

term in removeSubsets(s)]) # Stores p-support of each term↪→

128

129 return support, terms['sent']['(Term,Indices)']

130

131 def nearestNoun(sentence, adjIndex):

132 ''' Returns the nearest noun to a given term in a sentence. Sentence

is an Instance, adjIndex is the index of the adjective in the

sentence.

↪→

↪→

133 Returns None if there are no nouns in the sentence'''

134 nouns = [(token.text, token.index) for token in sentence if

token.POS2 == "NN"]↪→

135 if len(nouns) == 0:

136 return None

137 adjIndex = adj[1]

138 nearest = None

139 minDist = float("inf")

140 for noun in nouns:

Appendix - Aspect Identification 64

141 dist = abs(adjIndex - noun[1])

142 if dist < minDist:

143 minDist = dist

144 nearest = noun

145 return nearest

146

147 def maxDist(indices):

148 ''' Takes a list of indices (ex: [1, 3, 4, 5]

149 Returns the max distance between any 2 adjacent indices '''

150 maxDist = 0

151 for i in range(len(indices)-1):

152 dist = indices[i+1] - indices[i]

153 if dist > maxDist:

154 maxDist = dist

155 return maxDist

156

157 def neChunker(instance):

158 tagged = [(token.text, token.POS) for token in instance.tokens]

159 rawChunks = nltk.chunk.ne_chunk(tagged)

160 (tags, chunks) = zip(*(conll_tag_chunks([rawChunks])[0]))

161 return chunks

162

163 def nounsAndPhrasesInSentence(instance, chunker='', reg=False,

tbc=False, ne=False):↪→

164 ''' Input: A sentence instance

165 Returns a list of lists, each containing the (String, Index)

tuples corresponding to the tokens of a noun or noun phrase↪→

166 '''

167 # Get tagged sentence in the form of a list of (token, POS) tuples

168 tagged = [(token.text, token.POS) for token in instance.tokens]

169 # Create a list of (String, Index) tuples for each noun / noun

phrase↪→

170 nouns = []

171 if reg==True:

172 # Find noun phrases using regex

173 pattern = r"""

174 NBAR:

175 {<NN.*|JJ>*<NN.*>} # Nouns and Adjectives, terminated with

Nouns↪→

176 NP:

177 {<NBAR>}

178 {<NBAR><IN><NBAR>} # Above, connected with in/of/etc...

179 """

180 NPChunker = nltk.RegexpParser(pattern)

181 tagged = NPChunker.parse(tagged)

182 # cTagged = chunk.ne_chunk(tagged)

183 nounIndices = chunkParse(tagged)

184

Appendix - Aspect Identification 65

185 for n in nounIndices:

186 nList = []

187 for i in n:

188 nList.append((instance.tokens[i].lower_text,

instance.tokens[i].index))↪→

189 nouns.append(nList)

190 elif tbc==True and chunker == '':

191 print "ERROR: Chunker must be provided."

192 exit()

193 else:

194 if ne == True:

195 chunks = neChunker(instance)

196 elif tbc == True:

197 (words, tags) = zip(*tagged)

198 (tags2, chunks) = zip(*chunker.tag(tags))

199 else:

200 print "Error"

201 exit()

202 n = []

203

204 # Iterate over tokens

205 for i in range(len(instance.tokens)):

206 # Add nouns outside of noun phrases

207 if chunks[i] == 'O':

208 if tagged[i][1].startswith('NN'):

209 nouns.append([(instance.tokens[i].lower_text, i)])

210 # Start or continue building noun phrase

211 else:

212 n.append((instance.tokens[i].lower_text, i))

213

214 # Check if current token is the last token

215 if i+1 >= len(instance.tokens):

216 # If we were building a noun, add it

217 if len(n) > 0:

218 nouns.append(n)

219 n = []

220 #

221 elif chunks[i+1].startswith('I') == False:

222 nouns.append(n)

223 n = []

224

225 return nouns

226

227 def getPairs(terms):

228 ''' Given a list of terms stored as lists of (String, Index) tuples,

return all pairs (e.g. [1,2], [2,3], [3,4], etc.)↪→

229 '''

230 pairs = []

Appendix - Aspect Identification 66

231 if len(terms) >= 2:

232 for i in range(len(terms)-1):

233 pairs.append(terms[i] + terms[i+1])

234 return pairs

235

236 def getTriples(terms):

237 ''' Given a list of terms stored as lists of (String, Index) tuples,

return all triples (e.g. [1,2,3], [2,3,4], etc.)↪→

238 Input example: [[('Microsoft',2), ('Office',3)],

[('Word',5)], [('Key',8), ('Board',9)]]↪→

239 Output example: [[('Microsoft',2), ('Office',3), ('Word',5)],

[('Word',5), ('Key',8), ('Board',9)]]↪→

240 '''

241 triples = []

242 if len(terms) >= 3:

243 for i in range(len(terms)-2):

244 triples.append(terms[i] + terms[i+1] + terms[i+2])

245 return triples

246

247 def removeSubsets(terms):

248 ''' Given a list of (Term, Indices) tuples, return a list of (Term,

Indices) tuples without any subsets (strings that are substrings

of another string in the list)

↪→

↪→

249 '''

250 newTerms = []

251 for i in range(len(terms)):

252 subset = False

253 for j in range(len(terms)):

254 if i != j and set(terms[i][1]) < set(terms[j][1]):

255 subset = True

256 if subset == False:

257 newTerms.append(terms[i])

258 return newTerms

259

260 def t2list(term):

261 ''' Given a term stored as a list of (String, Index) tuples, return

a tuple: (Full_String, Index_Tuple)↪→

262 '''

263 if len(term) == 0:

264 return term

265 t = zip(*term)

266 return (" ".join(t[0]), t[1])

267

268 def chunkParse(cTagged):

Appendix - Aspect Identification 67

269 ''' Given a sentence tagged with chunks (using nltk.pos_tag and

RegexpParser), return a list. Each element is a list itself,

containing the indices of each noun / noun phrase;

single-element lists are a single index and correspond to

single-word nouns. Multi-element lists store a list of indices

in sequence, and are noun phrases.

↪→

↪→

↪→

↪→

↪→

270 '''

271 index = 0

272 parsed = []

273 for i in range(len(cTagged)):

274 if type(cTagged[i]) is nltk.tree.Tree:

275 parsed.append(range(index, index + len(cTagged[i])))

276 index = index + len(cTagged[i])

277 else:

278 if cTagged[i][0].startswith('NN'):

279 parsed.append([index])

280 index = index + 1

281 return parsed

282

283 def conll_tag_chunks(chunk_sents):

284 tag_sents = [nltk.chunk.tree2conlltags(tree) for tree in

chunk_sents]↪→

285 return [[(t, c) for (w, t, c) in chunk_tags] for chunk_tags in

tag_sents]↪→

286

287 #################### Conditional Random Fields ####################

288

289 def crf(train, test, alg = ""):

290 # Convert sentences to appropriate feature/label format

291 train_features, train_labels = generate(train)

292 test_features, test_labels = generate(test)

293

294 # Train CRF

295 trainer = pycrfsuite.Trainer()

296 for x,y in zip(train_features, train_labels):

297 trainer.append(x,y)

298

299 if alg != "":

300 trainer.select(alg)

301 trainer.set_params({

302 # 'c1': 1.0, # coefficient for L1 penalty

303 # 'c2': 1e-3, # coefficient for L2 penalty

304 # 'max_iterations': 50, # stop earlier

305

306 # include transitions that are possible, but not

observed↪→

307 'feature.possible_transitions': False

308 })

Appendix - Aspect Identification 68

309 trainer.train('conll2002-esp.crfsuite')

310 trainer.logparser.last_iteration

311

312 # Test CRF

313 tagger = pycrfsuite.Tagger()

314 tagger.open('conll2002-esp.crfsuite')

315

316 predicted_labels = [tagger.tag(s) for s in test_features]

317 print "# Sentences: " + str(len(test_labels))

318 confusion = dict()

319 confusion['B'] = {'actual':0, 'predicted':0, 'truePos':0,

'falseNeg':0, 'falsePos':0}↪→

320 confusion['I'] = {'actual':0, 'predicted':0, 'truePos':0,

'falseNeg':0, 'falsePos':0}↪→

321 confusion['O'] = {'actual':0, 'predicted':0, 'truePos':0,

'falseNeg':0, 'falsePos':0}↪→

322 for s in range(len(test_labels)):

323 for t in range(len(test_labels[s])):

324 actual = test_labels[s][t]

325 pred = predicted_labels[s][t]

326 confusion[actual]['actual'] = confusion[actual]['actual'] +

1↪→

327 confusion[pred]['predicted'] = confusion[pred]['predicted']

+ 1↪→

328 if actual == pred:

329 confusion[actual]['truePos'] =

confusion[actual]['truePos'] + 1↪→

330 else:

331 confusion[actual]['falseNeg'] =

confusion[actual]['falseNeg'] + 1↪→

332 confusion[pred]['falsePos'] =

confusion[pred]['falsePos'] + 1↪→

333 return predicted_labels

334

335

336 #################### ATE Evaluation Methods ####################

337

338 # Evaluate ATE methods

339 def evaluateAspectTerms(trueFD, trueSent, predictedFDs, predictedSents,

methodNames = [], toScreen = False):↪→

340 ''' Evaluate ATE methods

341 '''

342

343 distinct = {"TP":{}, "FN":{}, "FP":{}, "P":{}, "R":{}, "F":{}}

344 instances = {"TP":{}, "FN":{}, "FP":{}, "P":{}, "R":{}, "F":{}}

345 weighted = {}

346 if len(methodNames) == 0:

347 methodNames = [str(i) for i in range(1,len(predictedFDs)+1)]

Appendix - Aspect Identification 69

348 for i in range(len(predictedFDs)):

349 predictedFD = predictedFDs[i]

350 predictedSent = predictedSents[i]

351

352 # Distinct

353 TP, FN, FP, P, R, F =

evaluateAspectTermsDistinct(set(trueFD.keys()),

set(predictedFD.keys()))

↪→

↪→

354 distinct["TP"][methodNames[i]] = TP

355 distinct["FN"][methodNames[i]] = FN

356 distinct["FP"][methodNames[i]] = FP

357 distinct["P"][methodNames[i]] = P

358 distinct["R"][methodNames[i]] = R

359 distinct["F"][methodNames[i]] = F

360

361 # Instances

362 TP, FN, FP, P, R, F = evaluateAspectTermsInstances(trueSent,

predictedSent, trueFD, predictedFD)↪→

363 instances["TP"][methodNames[i]] = TP

364 instances["FN"][methodNames[i]] = FN

365 instances["FP"][methodNames[i]] = FP

366 instances["P"][methodNames[i]] = P

367 instances["R"][methodNames[i]] = R

368 instances["F"][methodNames[i]] = F

369

370 # Average weighted precision

371 weighted[methodNames[i]] = evaluateAspectTermsWeighted(trueFD,

predictedFD)↪→

372

373 if toScreen:

374 print "------------------- Distinct: -------------------"

375 for m in methodNames:

376 print m

377 print "TP: " + str(distinct["TP"][m])

378 print "FN: " + str(distinct["FN"][m])

379 print "FP: " + str(distinct["FP"][m])

380 print "P: " + str(distinct["P"][m])

381 print "R: " + str(distinct["R"][m])

382 print "F: " + str(distinct["F"][m])

383 print ""

384

385 print "------------------- Instances: -------------------"

386 for m in methodNames:

387 print m

388 print "TP: " + str(instances["TP"][m])

389 print "FN: " + str(instances["FN"][m])

390 print "FP: " + str(instances["FP"][m])

391 print "P: " + str(instances["P"][m])

Appendix - Aspect Identification 70

392 print "R: " + str(instances["R"][m])

393 print "F: " + str(instances["F"][m])

394 print ""

395

396 print "------------------- Average Weighted Precision:

-------------------"↪→

397 for m in methodNames:

398 print m

399 print str(weighted[m])

400 print ""

401

402 return distinct, instances, weighted

403

404 # Evaluate by distinct aspect terms

405 def evaluateAspectTermsDistinct(trueSet, predictedSet, toScreen =

False):↪→

406 ''' Input: two sets of distinct aspect terms (the predicted set and

the true set) for a corpus↪→

407 Output: Evaluation metrics for distinct aspect terms'''

408

409 truePos = predictedSet.intersection(trueSet)

410 falseNeg = trueSet.difference(predictedSet)

411 falsePos = predictedSet.difference(trueSet)

412 TP = len(truePos)

413 FN = len(falseNeg)

414 FP = len(falsePos)

415 if TP == 0:

416 P = 0.0

417 R = 0.0

418 F = 0.0

419 else:

420 P = float(TP)/(TP + FP)

421 R = float(TP)/(TP + FN)

422 F = 2.0*P*R/(P+R)

423

424 '''

425 print "\nEvaluate by Distinct Term: "

426 print "Predicted: " + str(len(ptSet))

427 print "Actual: " + str(len(atSet))

428 '''

429

430 if toScreen:

431 print "True Positive: %f -- False Negative: %f -- False

Positive: %f (P = %d, R = %d, F = %d)" % TP, FN, FP, P, R, F↪→

432

433 return TP, FN, FP, P, R, F

434

Appendix - Aspect Identification 71

435 def evaluateAspectTermsInstances(trueTermsBySent, predictedTermsBySent,

trueFD="", predictedFD="", toScreen = False):↪→

436 ''' Input: predictedTerms (a list of sentences, where each sentence

is expressed as a list of its predicted aspect terms in (Term,

Indices) format) and actualTerms (same as predictedTerms, but

with the human-annotated terms). If true and predicted frequency

dictionaries are not specified, they are computed.

↪→

↪→

↪→

↪→

437 Output: Evaluation metrics for instances of aspect terms'''

438

439 if trueFD == "":

440 trueFD = fd([term[0] for s in trueTermsBySent for term in s])

441 if predictedFD == "":

442 predictedFD = fd([term[0] for s in predictedTermsBySent for term

in s])↪→

443

444 # Below is a version of the code that gives frequencies for true

positive, false negative, and false positive for each word:↪→

445

446 truePosList = [] # List for terms in both actual and predicted

447 falseNegList = [] # List for terms in actual but not predicted

448 falsePosList = [] # List for terms in predicted but not actual

449

450 # Check whether terms are in actual, predicted, or both

451 for i in range(len(trueTermsBySent)):

452 # Get true and predicted sets of term indices tuples from

sentence↪→

453 trueIndices = set([term[1] for term in trueTermsBySent[i]])

454 predictedIndices = set([term[1] for term in

predictedTermsBySent[i]])↪→

455

456 # Update TP, FN, and FP using sets

457 truePosList.extend([term[0] for term in trueTermsBySent[i] if

term[1] in trueIndices.intersection(predictedIndices)])↪→

458 falseNegList.extend([term[0] for term in trueTermsBySent[i] if

term[1] in trueIndices.difference(predictedIndices)])↪→

459 falsePosList.extend([term[0] for term in predictedTermsBySent[i]

if term[1] in predictedIndices.difference(trueIndices)])↪→

460

461 truePos = fd(truePosList)

462 falseNeg = fd(falseNegList)

463 falsePos = fd(falsePosList)

464 '''

465 print "------TruePos-------"

466 print list(truePos.keys())[:100]

467 print "------FalseNeg-------"

468 print list(falseNeg.keys())[:100]

469 print "------FalsePos-------"

470 print list(falsePos.keys())[:100]

Appendix - Aspect Identification 72

471 '''

472

473 TP = sum(truePos.values())

474 FN = sum(falseNeg.values())

475 FP = sum(falsePos.values())

476

477 if TP == 0:

478 P = 0.0

479 R = 0.0

480 F = 0.0

481 else:

482 P = float(TP)/(TP + FP)

483 R = float(TP)/(TP + FN)

484 F = 2.0*P*R/(P+R)

485

486 '''

487 print "\nEvaluate by Instance: "

488 print "Predicted: " +

str(sum(train_data.predicted_terms_fd.values()))↪→

489 print "Actual: " + str(sum(train_data.aspect_terms_fd.values()))

490 '''

491 if toScreen:

492 print "True Positive: %f -- False Negative: %f -- False

Positive: %f (P = %d, R = %d, F = %d)" % TP, FN, FP, P, R, F↪→

493

494 return TP, FN, FP, P, R, F

495

496 def evaluateAspectTermsWeighted(trueFD, predictedFD, toScreen = False):

497 ''' Inputs: dictionaries of term frequencies, both true and

predicted. toScreen specifies whether to print output or not↪→

498 Outputs: the average weighted precision

499 '''

500 trueFD_sorted = freq_rank(trueFD)

501 trueRanked = {trueFD_sorted[i]:(i+1) for i in

range(len(trueFD_sorted))}↪→

502 awp = avgWeightedPrecision(trueRanked, freq_rank(predictedFD))

503 if toScreen:

504 print "Average weighted precision: " + str(awp)

505 return awp

506

507 def weightedPrecision(trueSet, predictedFreqRank, m):

508 ''' Inputs: a set of true aspect terms, a list of predicted terms

(in order of decreasing frequency), and a parameter m.↪→

509 Output: the weighted precision of the first m predicted terms.

510 '''

511 predicted = predictedFreqRank[0:m]

512 wp = 0.0

513 denom = 0.0

Appendix - Aspect Identification 73

514 for i in range(m):

515 denom = denom + 1.0/(i+1.0)

516 if predicted[i] in trueSet:

517 wp = wp + 1.0/(i+1.0)

518 return wp/denom

519

520 def weightedRecall(trueRanked, predictedFreqRank, m):

521 ''' Inputs: a dictionary of true aspect terms, where values are

their frequency rank (ex: the kth most frequent term has value

k), a list of predicted terms, and a parameter m.

↪→

↪→

522 Output: the weighted recall of the first m predicted terms.

523 '''

524 predicted = predictedFreqRank[0:m]

525 wr = 0.0

526 denom = 0.0

527 # Compute the numerator

528 for i in range(m):

529 if predicted[i] in trueRanked:

530 # Sum the reciprocal of the

531 wr = wr + 1.0/trueRanked[predicted[i]]

532 # Compute the denominator

533 for i in range(len(trueRanked)):

534 denom = denom + 1.0/(i+1.0)

535 return wr/denom

536

537 def avgWeightedPrecision(trueRanked, predictedFreqRank):

538 ''' Inputs: a dictionary of true aspect terms, where values are

their frequency rank (ex: the kth most frequent term has value

k), a list of predicted terms, and a parameter m.

↪→

↪→

539 Output: the weighted recall of the first m predicted terms.

540 '''

541 awp = 0.0

542 wr = [weightedRecall(trueRanked, predictedFreqRank, m) for m in

range(1, len(predictedFreqRank) + 1)]↪→

543 wp = [weightedPrecision(trueRanked, predictedFreqRank, m) for m in

range(1, len(predictedFreqRank) + 1)]↪→

544 for i in range(11):

545 r = i/10.0

546 max = 0.0

547 for m in range(0, len(predictedFreqRank)):

548 if wr[m] >= r:

549 if wp[m] > max:

550 max = wp[m]

551 awp = awp + max

552 return awp

553

554 #################### Data Processing ####################

555

Appendix - Sentiment Analysis 74

556 def IOB2toAspectTerms(IOB2labels, sentences):

557 ''' Input: A list of IOB2 labels corresponding to sentences, and a

list of sentences (Instance objects)↪→

558 Output: support (a dictionary of aspect terms, each token

separated with " ", and frequencies) and predictedSentences (a list

of sentences, each stored as a list of (Term, Indices) tuples.

↪→

↪→

559 '''

560 predictedTermsBySentence = []

561 for i in range(len(sentences)):

562 predictedTermsBySentence.append([])

563 labels = IOB2labels[i]

564 sentence = sentences[i]

565 term = ""

566 indices = []

567 for j in range(len(sentence.tokens)):

568 token = sentence.tokens[j]

569 if labels[j] == "B":

570 term = token.lower_text

571 indices.append(token.index)

572 if labels[j] == "I":

573 term = term + " " + token.lower_text

574 indices.append(token.index)

575 if ((j+1) == len(sentence.tokens)) and (len(term) > 0):

576 predictedTermsBySentence[i].append((term,

tuple(indices)))↪→

577 term = ""

578 indices = []

579 continue

580 if (labels[j] != "O") and (labels[j+1] != "I"):

581 predictedTermsBySentence[i].append((term,

tuple(indices)))↪→

582 term = ""

583 indices = []

584 support = fd([term[0] for s in predictedTermsBySentence for term in

s])↪→

585 return support, predictedTermsBySentence

Appendix - Sentiment Analysis

1 import time

2 from collections import defaultdict

3 import xml.etree.ElementTree as ET

4 from libraries.structure import Corpus

5 from libraries.structure import fd

6 from libraries.structure import freq_rank

7 from libraries.structure import generate

8

9 from stanford_corenlp_python import jsonrpc

10

11 import nltk

12 from nltk import word_tokenize

13 from nltk.tokenize import WordPunctTokenizer

14 from nltk.tokenize import TreebankWordTokenizer as Tokenizer

15 from nltk.corpus import sentiwordnet as swn

16 import nltk.chunk as chunk

17 from nltk.stem.porter import PorterStemmer as Stemmer

18 from nltk.corpus import wordnet as wn

19 from nltk.sentiment.vader import SentimentIntensityAnalyzer

20

21 import pycrfsuite

22

23 #################### Extracting adjectives from text

####################↪→

24

25 def getOpinionAdjs(instances, terms):

26 ''' Input: a list of Instances (corpus) and terms (organized as a

list of sentences, where each sentence is a list of terms with

the format (Term, Indices)

↪→

↪→

27 Output: the nearest opinion adjective to each term, organized as

a dictionary where frequency is the value↪→

28 '''

29 # Create a dictionary of opinion adjectives

30 opinionAdjs = defaultdict(lambda:0)

31 for i in range(len(terms)):

32 sentence = terms[i]

33 for term in sentence:

75

Appendix - Sentiment Analysis 76

34 adj = nearestAdj(instances[i], term)

35 if adj != None:

36 opinionAdjs[adj[0]] = opinionAdjs[adj[0]] + 1

37 return opinionAdjs

38

39 def getTermsFromAdjs(sentences, terms, opinionAdjs):

40 ''' INCOMPLETE

41 '''

42 # Update candidate terms based on set of adjectives

43 for i in range(len(terms['sent']['(Term,Indices)'])):

44 # Check if there are any candidate terms - if so, move on

45 if len(terms['sent']['(Term,Indices)'][i]) > 0:

46 continue

47 sentence = sentences['ins'][i]

48 adjs = [(token.text, token.index) for token in sentence.tokens

if (token.POS2 == "JJ" and token.text in opinionAdjs)]↪→

49 for a in adjs:

50 noun = nearestNoun(sentence, a)

51 # If there are multiple opinion adjectives in a sentence,

they may return the same nearest noun↪→

52 if noun != None and noun not in

terms['sent']['(Term,Indices)'][i]:↪→

53 terms['all']['set'].add(noun)

54 terms['sent']['(Term,Indices)'][i].append(noun)

55 return terms

56

57 def nearestAdj(sentence, term):

58 ''' Returns the nearest adjective as a tuple (Adj, Index) to a given

term in a sentence. Sentence is a list of Token objects, term is

a (Term, Indices) tuple.

↪→

↪→

59 Returns "" if there are no viable adjectives in the sentence'''

60 # Find all adjectives in sentence

61 adjs = [(token.text, token.index) for token in sentence if

token.POS2 == "JJ"]↪→

62 if len(adjs) == 0:

63 return None

64 # Find the term's "average" index value (ex: a term with indices [1,

2, 3, 5] would have a center of 3.75)↪→

65 termIndices = map(list, term[1])

66 termAvgIndex = sum(termIndices) / float(len(termIndices))

67 # Find the adjective closest to the term's "average" index

68 nearest = ""

69 minDist = float("inf")

70 for adj in adjs:

71 # Don't count an adjective if it's already within the candidate

term↪→

72 if adj in term:

73 continue

Appendix - Sentiment Analysis 77

74 dist = abs(termAvgIndex - adj[1])

75 if dist < minDist:

76 minDist = dist

77 nearest = adj

78 return nearest

79

80 #################### Extracting polarity scores ####################

81

82 def polaritiesByCluster(polarityDict, clusters):

83 clusterPolarityDict = {}

84 for c in clusters:

85 clusterPolarityDict[c] = defaultdict(lambda: 0)

86 for term in clusters[c]:

87 for polType in polarityDict[term]:

88 clusterPolarityDict[c][polType] +=

polarityDict[term][polType]↪→

89 return clusterPolarityDict

90

91 def getTermPolarities(instances):

92 ''' Input: A list of instances

93 Output: A dictionary of terms, where each term contains a

dictionary with counts for each polarity category (positive,

negative, neutral, conflict)

↪→

↪→

94 '''

95 return [[(aspect.term, aspect.polarity) for aspect in

instance.aspect_terms] for instance in instances]↪→

96

97 def getCategoryPolarities(instances):

98 ''' Input: A list of instances

99 Output: A list of sentences, where each sentence is a list of

(category, polarity) tuples, where polarity is one of (positive,

negative, neutral, conflict)

↪→

↪→

100 '''

101 return [[(category.term, category.polarity) for category in

instance.aspect_categories] for instance in instances]↪→

102

103 #################### VADER ####################

104

105 def vader(sia, sentence):

106 polarity = sia.polarity_scores(sentence)

107 return polarity

108

109 def vaderAdjusted(sia, sentence):

110 polarity = vader(sia, sentence)

111 if polarity['compound'] < 0:

112 return 'negative'

113 elif polarity['neu'] == 1.0:

114 return 'neutral'

Appendix - Sentiment Analysis 78

115 #elif abs(polarity['pos'] - polarity['neg']) < 0.05:

116 #return 'conflict'

117 elif polarity['pos'] > polarity['neg']:

118 return 'positive'

119 else:

120 return 'negative'

121

122 def vaderAdjusted2(sia, instance, aspect):

123 polarity = vader(sia, context(instance, aspect))

124 if polarity['compound'] < 0:

125 return 'negative'

126 elif polarity['neu'] == 1.0:

127 return 'neutral'

128 #elif abs(polarity['pos'] - polarity['neg']) < 0.05:

129 #return 'conflict'

130 elif polarity['pos'] > polarity['neg']:

131 return 'positive'

132 else:

133 return 'negative'

134

135 def context(instance, aspect, r=12):

136 avgIndex = aspect.headIndex + (aspect.termSize - 1)/2

137 beg = max(avgIndex - r, 0)

138 end = min(avgIndex + r, len(instance.tokens))

139 return " ".join([token.text for token in instance.tokens[beg:end]])

140

141 def vaderTermPolarities(instances, adjusted = True):

142 ''' Input: A list of instances

143 Output: A list of sentences, where each sentence contains a list

of (term, polarity) tuples. These polarities are estimated from the

VADER sentiment analyzer.

↪→

↪→

144 '''

145 polarities = []

146 sia = SentimentIntensityAnalyzer()

147 for instance in instances:

148 '''

149 if adjusted:

150 p = vaderAdjusted(sia, instance.text)

151 else:

152 p = vader(sia, instance.text)

153 polarities.append([(aspect.term, p) for aspect in

instance.aspect_terms])↪→

154 '''

155 polarities.append([(aspect.term, vaderAdjusted2(sia, instance,

aspect)) for aspect in instance.aspect_terms])↪→

156 return polarities

157

158 def vaderCategoryPolarities(instances, adjusted = True):

Appendix - Sentiment Analysis 79

159 ''' Input: A list of instances

160 Output: A list of sentences, where each sentence contains a list

of (category, polarity) tuples. These polarities are estimated from

the VADER sentiment analyzer.

↪→

↪→

161 '''

162 polarities = []

163 sia = SentimentIntensityAnalyzer()

164 for instance in instances:

165 if adjusted:

166 p = vaderAdjusted(sia, instance.text)

167 else:

168 p = vader(sia, instance.text)

169 polarities.append([(category.term, p) for category in

instance.aspect_categories])↪→

170 return polarities

171

172 #################### Ratings ####################

173

174 def computeRatingsVader(polarityDict):

175 ''' Inputs: a dictionary of aspect terms/categories or clusters,

where each value is a dictionary describing aggregate polarity

scores (ex: {"keyboard":{"positive":4.534, "negative":2.386, "

↪→

↪→

176 '''

177 ratings = {}

178 for term in polarityDict:

179 p = polarityDict[term]

180 ratings[term] = 4.0*p["positive"] / (p["positive"] +

p["negative"]) + 1↪→

181 return ratings

182

183 def computeRatings(polarityDict):

184 ''' Inputs: a dictionary of aspect terms/categories or clusters,

where each value is a dictionary describing polarity counts (ex:

{"keyboard":{"positive":5,"negative":7,"neutral":2,"conflict":1}})

↪→

↪→

185

186 Outputs: Ratings are scored as follows: 4 * ((P + 0.5*C)/(P + N

+ 0.5*C)) + 1↪→

187 '''

188 ratings = {}

189 for t in polarityDict:

190 p = polarityDict[t]

191 ratings[t] = 4.0*(float(p["positive"] + 0.5*p["conflict"]) /

(p["positive"] + p["negative"] + p["conflict"])) + 1↪→

192 return ratings

193

194 #################### ABSA Evaluation Methods ####################

195

196 def evaluatePolarities(trueBySent, predictedBySent):

197 # Create dictionary where confusion[i][j] is the count where a

term/category with true polarity i is predicted to have polarity

j.

↪→

↪→

198 confusion = defaultdict(lambda:defaultdict(lambda:0))

199 tot = 0

200 for i in range(len(trueBySent)):

201 for j in range(len(trueBySent[i])):

202 confusion[trueBySent[i][j][1]][predictedBySent[i][j][1]] +=

1↪→

203 tot += 1

204 polTypes = ['positive', 'negative', 'neutral'] #, 'conflict']

205 tot -= sum([confusion['conflict'][j] for j in polTypes])

206 print confusion

207 accuracy = sum(confusion[i][i] for i in polTypes) / float(tot)

208 print accuracy

209 precision = {i:float(confusion[i][i])/sum([confusion[i][j] for j in

polTypes]) for i in polTypes}↪→

210 recall = {i:float(confusion[i][i])/sum([confusion[j][i] for j in

polTypes]) for i in polTypes}↪→

211 f = {i:(2.0*precision[i]*recall[i]/(precision[i]+recall[i])) for i

in polTypes}↪→

212 print "Precision:"

213 print precision

214 print "Recall:"

215 print recall

216 print "F-measure:"

217 print f

218

219 def evaluateRatings(trueRatings, predictedRatings):

220 ''' Input: true and predicted ratings in a dictionary (keys are

terms or cluster labels, values are ratings)↪→

221 Output: Evaluation metrics

222 '''

223 if trueRatings.keys() != predictedRatings.keys():

224 print "Error: keys don't match"

225

226 diffs = [abs(trueRatings[t] - predictedRatings[t]) for t in

trueRatings]↪→

227 MSE = sum([d^2 for d in diffs])/float(len(trueRatings))

228 print "Number of terms/clusters: %d", len(trueRatings)

229 print "MSE: %f", MSE

80

Biography

Sean Byrne was born in 1994 in the state of Pennsylvania. He attended Lehigh University

for his undergraduate education, and was highly involved in the Industrial & Systems

Engineering department through various projects with professors and as a member of

the ISE Student Council. He graduated from Lehigh University with a Bachelor of

Science in Industrial & Systems Engineering and a Bachelor of Science in Mathematics

in May 2016. He is now completing a Master of Science degree in Industrial & Systems

Engineering through the President’s Scholars program, and will graduate in May 2017.

81

	Lehigh University
	Lehigh Preserve
	2017

	Aspect Identification and Sentiment Analysis in Text-Based Reviews
	Sean Byrne
	Recommended Citation

	Acknowledgements
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	1.1 Automatic Aspect-Based Review System
	1.2 Natural Language Processing
	1.3 Application: Reading Hospital

	2 Dataset Structure and Text Features
	2.1 Datasets
	2.2 Text Features
	2.2.1 Token-level Features
	2.2.2 Sentence-level Features
	2.2.3 Review-level Features
	2.2.4 Other Possible Features

	3 Aspect Identification
	3.1 Problem Description
	3.2 Sequential Labeling: Conditional Random Fields
	3.2.1 Labeling Method
	3.2.2 Background: Naive Bayes and Maximum Entropy Models
	3.2.3 Hidden Markov Models
	3.2.4 CRF Model Description
	3.2.5 CRF Training
	3.2.6 CRF Evaluation

	3.3 Association Mining Method (Hu and Liu)
	3.3.1 Association Mining Method Description
	3.3.2 Association Mining Method Evaluation

	4 Aspect-Based Sentiment Analysis
	4.1 Problem Description
	4.2 VADER-based Method
	4.2.1 Evaluation
	4.2.2 Ratings-Based Evaluation

	5 Conclusion
	Bibliography
	Appendix - Data Processing and Test Functions
	Appendix - Class Definitions
	Appendix - Aspect Identification
	Appendix - Sentiment Analysis
	Biography

