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ABSTRACT

The United States Navy has constructed four half-scale models of a naval surface combatant
using fiber reinforced plastics (FRP) for the purpose of investigating the advantages of using
fiber reinforced materials over traditional materials for ship construction. Lehigh University is
conducting a series of tests on two of these models, which are composite ship hull and deck
structures. The objectives of the test program include the execution of low-level tests to
determine the stiffness properties of the hull structures and collapse-level tests to determine the
strength and failure modes of the hull structures.

The focus of this report is the test system developed to execute the test program. The test
system consists of the test fixture (i.e. the physical hardware used to apply forces to the hull

structures, and the control system). The control system is the hardware and software used to
orchestrate the tasks of load application and data acquisition during the tests.

The development of the control system software (control program) involves an analysis of the
kinematics and statics of the test fixture to determine the forces applied to the hull structure.
The net axial force and primary and secondary bending moments in the hull structure are
critical parameters used in the control software. Specifically, these parameters are used in the
portion of the program called the decision algorithm to make decisions regarding how the
Joading of the hull structure should proceed. These decisions are based on a set of loading
objectives, one of which is to maintain a zero net axial force in the hull structure. The control
software incorporates closed-loop displacement control of five independently operating
actuators into an external loop that allows for user interaction. The user has the ability to
change critical program parameters.

Testing to be performed on the hull structures by Lehigh University will determine whether
hull structures constructed from fiber reinforced materials provide stiffness and strength
properties comparable to those exhibited by their steel counterparts.



CHAPTER 1
INTRODUCTION

1.1 COMPOSITE SHIP HULL TEST PROGRAM

The United States Navy is investigating the use of fiber reinforced plastics (FRP) for
construction of its naval surface combatants. Previously, the use of FRP was limited to small
craft and naval minehunters. However, due to cost and quality improvements in fabrication of
large composite structures, the use of FRP for surface ships has become more feasible.

Several advantages arise from fiber reinforced material construction (Nguyen and Critchfield,
1997). The use of FRP would result in hulls of increased performance due to reduced weight. In
addition, the Navy foresees a reduction in life cycle costs because of the material’s resistance o
fatigue and salt water corrosion.

Four half-scale midship section models of a corvette class surface combatant were fabricated by
four different processes in order to assess the applicability of these processes to naval combatant
ship construction. The processed used were: an ultra-violet light curing resin with vacuum
assisted resin transfer molding (UV-VARTM); a non-vacuum-bag consolidation of UV light
curing prepreg system (UV-Prepreg); a non-vacuum-bag, non-autoclave consolidation of low
temperature curing prepreg system (LTC-Prepreg); and, a patented vacuum assisted resin
infusion process known as SCRIMP™ (Nguyen and Critchfield, 1997).

Lehigh University is presently conducting an experimental program consisting of a series of tests
on two of the composite ship hull and deck structures. Testing will be performed on these
models for the purpose of comparing them to their steel counterparts. The testing will include
Jow-level tests to determine the stiffness properties of the hull structures, and collapse-level tests
to determine the strength and failure modes of the hull structures. The two composite ship hull
and deck structures to be tested by Lehigh University are shown in Figure 1.1. Each hull
structure is approximately 26 feet long, 20 feet wide, 10 feet high and weighs about 20 kips.
Figure 1.1(a) shows the LTC-Prepreg hull structure and Figure 1.1(b) is the hull structure
fabricated by the UV-Prepreg process.

1.2 OBJECTIVES
The test program being performed by Lehigh University has the following objectives (Pessiki

and Sause, 1997):

1. To design, fabricate, and assemble a test fixture for testing large-scale models of hull

structures.
7. To conduct low-level load tests of the hull structures in order to determine their

elastic flexibility in primary bending.
3. To conduct collapse-level tests of the hull structures in order to determine their
ultimate strength and failure mode in primary bending.

The chief loading objective is to apply a primary sagging moment while maintaining zero net
axial force in the hull structure. Under the action of a sagging moment, the deck is in

2



compression and the keel is in tension. The LTC-Prepreg hull structure will be used as a
calibration specimen to ensure that the test fixture and test control system can successfully
accomplish the loading objectives.

1.3 OUTLINE OF REPORT

Figure 1.2 is a schematic drawing of the rest system. The test system is comprised of the fest
fixture and the control system. The fest fixture refers to the physical hardware used to provide
forces and reactions to the hull structures. The control system refers to the hardware and
software used to orchestrate the tasks of load application and data acquisition during the tests.

The focus of the research presented in this report is the development of the control system
software (control program) and the coordination of the control system hardware, which together
provide test control for the low-level and collapse-level tests. The control program, written in
the BASIC computer language, incorporates closed-loop displacement control of five actuators
into an external loop that allows for user interaction.

Chapter 2 describes the test system. This includes brief physical and functional descriptions of
the test fixture and control system hardware and software. Chapter 3 presents the theory
developed for the conirol program’s decision-making algorithms. Chapter 4 describes in detail
the hardware and software that make up the control system.

1.4 NOTATION
The following is a list of the notation used in this report. Note that vectors are written with bold

text.

A =  actuator position vector

ay = icomponentof A; the length of actuator or bottom link in X direction

ay = jcomponent of A; the length of actuator or bottom link in Y direction

a; = kcomponentof A; the length of actuator or bottom link in Z direction
C'x = vector from point r'y to the north end of an actuator

C = icomponent of C'n; the length of actuator or bottom link in X direction
¢; = jcomponentof C'n; the length of actuator or bottom link in Y direction
¢; = kcomponent of C'n; the length of actuator or bottom link in 7 direction
C’s = vector from point r's to the south end of an actuator

D'y =  vector from pointr'y to bottom of vertical link

d; = icomponent of D'y; the length of vertical link in the X direction

d, = jcomponentof D'y; the length of vertical link in the Y direction

d; = kcomponent of D'y; the length of vertical link in the Z direction

Exy =  vector from point r to the north end of a top actuator or bottom link

Ex, = vector defining original coordinates of the north end of a bottom actuator
Es = vector from point r to the south end of a top or bottom actuator

En, =  vector defining origipal coordinates of the north end of a bottom actuator
e} = i component of Eno; X distance from r to north end of a bottom actuator

3



) =
€3 =
€4 ==
€5 =
Cs =
(FporiN
(Fror)s
(Frop)n
(Fror)s
(Fre)n
(Fre)s
(Frwn
(Frw)s
(Fx)ene
(Fx)snw
(Fx)mse
(Fx)psw
Fxn
(FxOne
(Fsonw
(Fxn)re
(Fxw1e
(Fxn)rw
Fxs
(Fx)se
Fxdsw
(Fxs)rc
(Fxs)tE
(Fxs)rw
(Fy)sng
(Fy)mnw
(Fy)ese
(Fy)ssw
Fyn
(Fy)ne
(Fynw
(Fyn)te
(Fyn)re
Fyn)rw
Fys
(Fy)se
(Fy)sw
(Fys)tc
(Fys)re
(Fyshrw

j comp
k component of Eno;
i component of En,
j component of Eno; Y dist.
k component of Eno; Z distance from r to north end of a botto

i

onent of En,; Y distance from r to north end of a bottom actuator

: X distance from r to north end of a bottom actuator
ance from r to north end of a bottom actuator

sum of the X direction forces in the bottom links

sum of the X direction forces in the bottom actuators

sum of the X direction forces in the top actuators at north grillage
sum of the X direction forces in the top actuators at south grillage
total force in top east actuator at the north grillage

total force in top east actuator at the south grillage

total force in top west actuator at the north grillage

total force in top west actuator at the south grillage

X direction force in bottom north east horizontal link

X direction force in bottom north west horizontal link

X direction force in bottom south east actuator

X direction force in bottom south west actuator

X direction force in any actuator or bottom link at north grillage
X direction force in north east vertical link

% direction force in north west vertical link

¥ direction force in top center actuator at north grillage

X direction force in top east actuator at north grillage

X direction force in top west actuator at north grillage

X direction force in any top or bottom actuator at south grillage
X direction force in south east vertical link

X direction force in south west vertical link

% direction force in top center actuator at south grillage

X direction force in top east actuator at south griliage

X direction force in top west actuator at south grillage

Y direction force in bottom north east horizontal link

Y direction force in bottom north west horizontal link

Y direction force in bottom south east actuator

Y direction force in bottom south west actuator

¥ direction force in any actuator or bottom link at north grillage
X direction force in north east vertical link

X direction force in north west vertical link

Y direction force in top center actuator at north grillage

¥ direction force in top east actuator at north grillage

Y direction force in top west actuator at north grillage

Y direction force in any top or bottom actuator at south grillage
Y direction force in south east vertical link

Y direction force in south west vertical link

¥ direction force in top center actuator at south grillage

¥ direction force in top east actuator at south grillage

Y direction force in top west actuator at south grillage
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Fan

Fzs
(Fz)sne
(Fz)enw
(Fz)se
(Fz)Bsw
(Faorc
(Fzn)te
(Fz)rw
(Fzs)re
(Fzs)e
(Fzs)rw
ik
i'n, j'Nn K'n
i's, s, K's
Ix

Iy

Iz

L

L1

1.2

L2y

L2y

L2v
My~
Mys
Mzn
Mys
(Mo)max

i

i

I

7 direction force in any actuator or bottom link at north grillage
7 direction force in any top or bottom actuator at south grillage
7 direction force in bottom north east horizontal link

7 direction force in bottom north west horizontal link

7 direction force in bottom south east actuator

7 direction force in bottom south west actuator

7 direction force in top center actuator at north grillage

7 direction force in top east actuator at north grillage

7 direction force in top west actuator at north grillage

7 direction force in top center actuator at south grillage

7 direction force in top east actuator at south grillage

7 direction force in top west actuator at south grillage

basis vectors for X, Y, Z global coordinate system

basis vectors for X'n, ¥'n. Z'n local coordinate system at north grillage
basis vectors for x's, ¥'s, 2's local coordinate system at south grillage
i component of L; the length of vertical link in the X direction
j component of L; the length of vertical link in the Y direction
k component of L; the length of vertical link in the Z direction
vertical link position vector

vector from point r to bottom of vertical link

vector from point r to top of vertical link

i component of L2; X distance from r to top of vertical link

j component of L2; Y distance from r 1o top of vertical link.

k component of L.2; Z distance from r to top of vertical link
moment about Y axis at north grillage -

moment about Y axis at south grillage

moment about Z axis at north grillage

moment about Z axis at south grillage

maximum moment due to self weight of hull structure and grillages
axial force in hull structure; average of Pn and Pg

axial force in hull structure measured at the north grillage

axial force in hull structure measured at the south grillage

three points whose coordinates define a plane

X coordinate of point Pln

X coordinate of point P2y

X coordinate of point P3n

Y coordinate of point Ply

Y coordinate of point P3x

X coordinate of point Plg

¥ coordinate of point P2

X coordinate of point P3g

Y coordinate of point Pls

Y coordinate of point P3s

X coordinate of point P1

X coordinate of point P2



XIN =
X =

X3n

= X coordinate of point P3

= original X coordinate of point P1

= original X coordinate of point P2

= original X coordinate of point P3

Y coordinate of point P1

Y coordinate of point P2

Y coordinate of point P3

= original Y coordinate of point P1

= original Y coordinate of point P2

= original Y coordinate of point P3

= 7 coordinate of point P1

= Z coordinate of point P2

= 7 coordinate of point P3

= original Z coordinate of point P1

= original Z coordinate of point P2

= original Z coordinate of point P3

origin of global coordinate system

origin of north grillage local coordinate system
vector from point r to point t'n

origin of south grillage local coordinate system
vectot from point r to point r's

entry i, of transformation matrix Txor Ts
transformation matrix for north grillage
transformation matrix for south grillage

vector normal to the plane of the north grillage
vector normal to the plane of the south grillage
vector from point Py to P2y

vector from point Plg to P25

vector from point P2y to P3n

vector from point P2g to P3s

X translation of point C at a given loading step
transducer which measures AP1xX

transducer which measures AP2nX

transducer which measures AP3nX

XN, YN, Z2n=  north grillage local coordinate system axes

Xlsg
X2
X3g

= transducer which measures AP1gX
= transducer which measures AP2sX
= transducer which measures AP3sX

X's, ¥'s, z's = south grillage focal coordinate system axes

Yin
Yi3n
Yis
Y3g

= transducer which measures APInY
= {ransducer which measures AP3nY
= transducer which measures AP1sY
= transducer which measures AP3gY
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AP1X
AP2ZX
AP3X
AP1Y
APZY
AP3Y
AP1Z
AP2Z
AP3Z
Oyn
Bvs
Ozn
Ozs

1

angle that X direction grillage transducer makes with the horizontal
change in X direction coordinate of point P1
change in X direction coordinate of point P2
change in X direction coordinate of point P3
change in Y direction coordinate of point P1
change in Y direction coordinate of point P2
change in Y direction coordinate of point P3
change in Z direction coordinate of point P1
change in Z direction coordinate of point P2
change in Z direction coordinate of point P3

rotation about Y axis at north grillage
rotation about Y axis at south grillage
rotation about Z axis at north grillage
rotation about Z axis at south grillage
combined distributed weight of grillages and hull structure
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CHAPTER 2
TEST SYSTEM

2.1 INTRODUCTION
This chapter presents an overview of the test system. Included is a description of the test fixture

and the notation associated with its components. Also described here are the loading objectives
and an explanation of how the configuration of the test fixture accomplishes those objectives.

2.2 SCHEMATIC AND NOTATION

A schematic drawing of the elevation view of the test fixture is shown in Figure 2.1. The hull
structure is connected to a rigid steel grillage at each end through an attachment fixture (not
shown). Fach grillage is comprised of 11 vertical W40%249 steel sections. Seven W sections are
positioned vertically in one plane, and four W sections positioned horizontally in another plane
are connected to the vertical sections.

Each grillage is suspended by two vertical pinned links from an overhead frame (not shown).
The grillages are linked together by a series of actuators and links. Above the hull structure,
three 600 kip capacity actuators span the length of the hull structure in parallel. Below the hull
structure, two 1000 kip capacity actuators are attached to the south grillage. These actuators are
in turn attached to two bottom links that are restrained against any movement except transiation
in the X direction. A second set of bottom links connects the center links to the north grillage.
The overhead frame reacts against the strong wall at the south end of the test fixture and is

supported by four columns attached to the strong floor.

All actuators and links are given names which refer to their relative locations in space. The
notation is illustrated in Figure 2.2. The top actuators are called TE, TC and TW, for Top East,
Top Center, and Top West, respectively. The bottom actuators are BSW, or Bottom South West,
and BSE, or Bottom South East. The bottom links attached to the north grillage are called BNE
and BNW, while the second set of bottom links are BCE and BCW. The vertical links are named
NE and N'W at the north grillage, and SE and SW at the south grillage. These acronyms are used
as subscripts for variables. For example, the total force in actuator BSE is written (F)ggg-

The clevises on the actuators and links employ spherical bearings which are intended to allow
free rotation about the Z axis. However, these bearings also allow a limited range of free rotation
about the Y axis. Figure 2.3(a)isa photograph of a clevise and bearing, showing the primary (Z)
and secondary (Y) axes of rotation. Figure 2.3(b) is a view of the clevise which shows the
limited amount of secondary rotation permitted. Note that when the actuator is in position in the
test fixture, the clevise will be rotated 90 degrees about the primary axis of rotation from the
position shown in the figure. In Figures 2.1 and 2.2 and in following figures, a circle is used to
represent the clevise in the XY plane, where rotation occurs about the Z axis (i.e. primary axis of

rotation). A diamond is used to represent the clevise in the XZ plane, where rotation occurs
about the Y axis (i.e. secondary axis of rotation).
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2.3 SPECIMEN LOADING

2.3.1 Objectives
The main loading objective is to apply primary bending moment M, to the hull structure. If the

top actuators act in tension and the bottom actuators act in compression, the result is a primary
sagging moment M, causing compression in the deck and tension in the keel. In order to
maintain a constant applied moment throughout the hull structure, it is required that the shear in

the Y direction be equal to zero.

Another objective is to keep the axial force applied to the hull structure approximately equal to
zero, Roughly speaking, if the total force in the top actuators is equal and opposite to the total
force in the bottom actuators, then no net axial force is applied to the hull structure. Asa result,
the elastic neutral axis remains at the centroid of the cross-section.

In order to accomplish these loading objectives, it is required that when the top actuators are to
be moved (extended or retracted), they must all be moved the same amount. Likewise, when the
bottom actuators are to be moved, they must both be moved the same amount. The reasons for
this requirement will be explained later.

2.3.2 System Statics
A simplified explanation of the statics of the loading system is presented here. Consider that the

top actuators act in tension and the bottom actuators act in compression. The north grillage
rotates through some angle 0, about the Z axis, the south grillage rotates through an angle Oy,
and the hull structure is subjected to a positive bending moment Mz. As shown in Figure 2.4(a),
all actuators and links are free to rotate in the X-Y plane. The resultant forces are shown in
Figure 2.4(b). As a result, the actuator and link forces can have X and Y components which are
illustrated in the free body diagrams of Figure 2.4(c).

Now consider that a bending moment occurs about the Y axis as in Figure 2.5(a). The reason for
the occurrence of M, will be discussed later. Figures 2.5(b) and (c) show that in this situation, a
7 component of force can develop as well in the top actuators. A similar situation occurs in the
bottom actuators as well. Therefore, if the hull structure is subjected to both M, and My, each
actuator and link may have X, Y and Z components of force. Note that the forces on the hull
structure, which are required for equilibrium, are not shown in Figures 2.4 and 2.5.

Figure 2.6 shows a free body diagram of the test fixture and hull structure, with the top actuators
acting in tension and the bottom actuators acting in compression. (Frop)y is the total X-direction
force exerted on the north grillage by the top actuators. (Fyop)ss Fporhe and (Fyoy)s are similar X
direction forces. Clearly, (Frop)y and (Frop)s are always equal and opposite because the top
actuators must exert the same force on both the north and south grillages. The arrangement of
the bottom links and actuators causes (Fgor)y = (Feor)s: Figure 2.7 illustrates the kinematics of
the bottom actuators and links due to extension of the bottom actuators. The four pins are
labeled A, B, C, and D. Points A and D are free to move in any direction. Points B and C are
restrained against translation in the Y direction by the rollers shown and are restrained against Z
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translation by rollers in the XZ plane not shown in the figure. The statics of the system are
illustrated in Figure 2.8. The free body diagrams show that the X-direction forces in the north
links are equal to the X-direction forces in the south actuators and therefore (Fporn = (Fror)s:

Although Y and Z components of force may exist, they are typically small compared to the X
component. (For the vertical links, the Y component is largest). The reason for this is that the
actual expected grillage rotations about the ¥ and Z axes are very small (less than 5 degrees) and
therefore the rotations of the actuators and links will be small. In the simplified explanation of
the statics of the system presented here, only the X force component of the actuators and the Y
components of the vertical links are considered. As explained above, (Froohe = (Frop)s and
(Fpoon = (Fpors. Later, in Chapter 3, all components of force in each actuator and link are
considered in the explanation of the theory behind the control algorithm.

The chosen actuator configuration allows the loading objectives to be accomplished. Refer to
Figure 2.9(a), in which the top actuators act in tension and the bottom actuators act in
compression. The combined weight of the hull structure and grillages is distributed along the
length L shown and is called o. Fyy is the sum of the forces in the vertical links at the north
grillage, while Fyg is the sum of the forces in the links at the south grillage. Summing moments
about point A, we have

L.
(Brop v * Y1 ~ (Frop)s - V1 + (Fgor)w Y2 —{(Fuor)s " Y2 + oL (“2‘) ~Fyg - (L) =0.

Because (Fyop)y and (Frop)s are equal and opposite forces and (Fpophy and (Fyor)s are likewise
equal and opposite, the above equation reduces to

oL
Fyg = ——.
Y5 9
From summing forces in the Y direction,
ol
B =5

Thus, the shear in the Y direction is due only to the self-weight of the hull structure.

Figure 2.9(b) shows a free body diagram of each grillage and of the hull structure with some
assumed forces. The sum of the X direction forces in the top actuators is given as 500 kips and
the total X direction force in the bottom actuators and links is 400 kips. It is noted that this state
of forces does not satisfy the condition of zero net axial force in the hull structure. The shear and
moment diagrams that result from this loading configuration are given in Figure 2.10. The shear
and moment diagrams due to self-weight are shown in Figures 2.10(a) and (b). As illustrated in
the free body diagrams of Figure 2.9(b), the applied moment about the Z axis at the north
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grillage, My, 1s equal to the applied moment at the south grillage, Mys, because there is no shear
in the Y direction due to loading. Thus, the applied moment diagram is as shown in Figure
2.10(c). Then the total moment diagram, given in Figure 2.10(d), is the superposition of the
applied moment (Figure 2.10(c)) and self-weight moment diagrams (Figures 2.10(b)). However,
if the maximum moment due to self-weight (M )yax is small compared to the applied moment,
then the actual moment diagram can be approximated by Figure 2.10(c). Therefore, neglecting
self-weight, we can say that the shear in the Y direction is zero and M, is constant. Zero shear
and constant moment results from the condition that (Froph = (Frop)s and (Fpopn = (Fpor)s- This
condition is achieved by the actuator configuration even for the example presented here where a
net axial force exists in the hull structure. The same situation occurs if the net axial force is zero.

2.3.3 Biaxial Bending

Although the chosen actuator configuration facilitates constant moment M, throughout the hull
structure, it also permits secondary bending moment My to occur. Consequently, the hull
structure may be subjected to biaxial bending. My results when the forces in the top actuators arc
not equal to each other and/or when the forces in the bottom actuators are not equal to each other.
This secondary moment exists without shear in the Z direction, i.e. is constant along the length of
the hull structure. To illustrate this, Figure 2.11(a) is a plan view (or X-Z plane) of the test
structure with only top actuator forces shown. V., and Vg are the shear forces in the Z direction

at the north and south grillages, respectively, the existence of which we are investigating.
Summing moments about point A,

(Fepon -z —(Freds 21+ (Frw )y 2~ (Fre)s 22— Vi L=0.
Since (Fygy = (F)s and (Fryhn = (Frw)s, this equation reduces to
V,s =0

By summing forces in the 7, direction, we see that Vyy is also equal to zero. A similar situation
results from an analysis of the bottom actuators and links.

Figure 2.11(b) illustrates a case in which the forces in the top actuators are unequal. The free

body diagrams show that because the shear in the Z direction is zero and the forces applied to the
north and south grillages by the actuators are the same, the moment about Y is constant.
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Figure 2.3 Actuator clevise and bearing

16



(a) Rotation about Z
axis

(b) Actuator force
resultants

(FX)SW

(¢) XandY force
components

(F oo Fdpsw
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CHAPTER 3
EXPERIMENTAL CONTROL THEORY

3.1 INTRODUCTION

This chapter presents the concepts that provide the basis for the control program. The main
parameters involved in controlling the loading of the hull structure are the applied primary
bending moment (Mz) and the axial force. Control of a test is achieved by determining the
magnitude and directions of the force in each actuator and link in the test fixture, and writing the
equations of equilibrium to determine the forces applied to the hull structure. If the total tension
force applied by the top actuators is larger in magnitude than the total compression force applied
by the bottom actuators, then a net compressive force develops in the hull structure, as shown in
Figure 3.1(a). However, it is desired that the axial force be equal to zero, as explained in Section
73.1. Therefore, to increase the applied moment but reduce the net axial compression force, the
bottom actuators are extended until the sum of their forces is equal and opposite to the sum of the
forces in the top actuators (Figure 3.1(b)). It is noted here that as the bottom actuators extend, the
forces in both the bottom and top actuators are affected.

In order to write the equilibrium equations that determine the axial force and moments applied to
the hull structure at any given step during the test, the actuator forces in all directions must be
known. As explained in Section 2.3.2 and shown in Figure 2.3, if the north and south grillages
have different rotations about the Z axis, the actuators will have both X and Y components of
force. Figure 2.4 similarly showed that when the grillages rotate .about the Y axis, a Z
component of force develops as well.

The total force in each actuator is measured by a force transducer. Determining the components
of this force can be accomplished by representing each actuator by a vector A, as illustrated in
Figure 3.2. Note that these are position vectors, not force vectors, whose coordinates simply
represent the length of the actuator in each direction. Given the total force in the actuator and the
position vector A, simple calculations can then be performed to find the three components of the

force,

First, in Section 3.2, an explanation of the grillage kinematics is given. Then, in Section 3.3, the
method for determining the actuator vectors and forece components is described. From these
force components, the equilibrium equations which determine the net axial force and moments in
the hull structure are found (Section 3.4). The actuator force components and net axial force and
moments in the hull structure are necessary for the control logic algorithm, which is explained in

Section 3.5.

3.2 SYSTEM KINEMATICS

3.2.1 Coordinate Systems

The first step in determining the actuator vectors is to establish a global coordinate system with
axes X, Y, and Z. The origin 1 of this global system, which is called the global reference point,
is located on a fixed reference plane in space behind the north grillage as shown in Figure 3.3.
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Fach grillage also has its own local coordinate system. The north grillage has axes labeled X'n,
v'n, and 2’y and has an origin r'n, while the south grillage has axes X's, y's, and 7’5 and origin 1's.

3.2.2 Grillage Kinematics

The next step in determining the actuator vectors is to determine the orientation of each grillage
in space with respect to the global reference point. With each loading step, the grillages can
change position. The grillages are assumed to be rigid bodies, and as such they each have 0
possible displacements that are defined with respect to their local coordinate axes. The north
grillage, for example, has 3 translations, Ax'y, Ay'nx and Az'n, and 3 rotations, 0x'n, 0y'n, and

QZ'N.

Because grillage deformations are neglected, each grillage can be represented as a plane. Three
non-collinear points define a plane; therefore, if the location of three points on the grillage are
known the orientation of the plane in space is known. Let these points be called P1, P2 and P3.
At any point during the test, the coordinates of P1, P2 and P3 with respect to the global origin, r,

are given by:

P1: PIX=PIX,+APIX; PlY= P1Y,+AP1Y; Pl1Z= Pl1Z,+APlZ
P2: P2X =P2X,+ AP2X; P2Y = P2Y,+ AP2Y; P27 = P2Z,+AP2Z
P3:  P3X =P3X,+AP3X; P3Y= P3Y¥,+ AP3Y; P3Z= P3Z,+AP3Z

where the X,,Y,, and Z, terms are the known original coordinates and the AX, AY, and AZ terms
are the unknown changes in position.

As a grillage undergoes some movement during a test, each point has three unknown A's, thus
nine total measurements are needed to define the new coordinates of P1, P2, and P3. However,
as explained below, the grillages are restrained against some movements, reducing the number of
measurements needed. Also, the location of points P1, P2, and P3 on the grillage are chosen so
that additional measurements are eliminated. Refer to Figure 3.4. Let P2 coincide with r'y and
P1 be collinear with P2 along the y' axis. Likewise, let P3 be collinear with P2 along the 2’ axis.
These points define the plane of the grillage. Note that in the following discussion, the grillage
displacements are defined in the local coordinate system, but the changes in position of points
P1, P2, and P3 due to the grillage displacements are defined in the global system because we are
interested in the global coordinates of these points.

Case 1  First consider Case 1, in which a grillage translates in its local x' direction. This
translation, shown in Figure 3.5, occurs due to axial shortening of the hull structure. The x’
translation gives rise to a y' translation of the grillage because the vertical links are of fixed
length and rotate on a radius. As mentioned above, grillage deformations are neglected, so the
orillage moves as a rigid body. Therefore, given the movement shown in Figure 3.5,

AP1X = AP2X = AP3X
and AP1Y = AP2Y = AP3Y.
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The grillage does not move in its z' direction, therefore,
AP1Z = AP2Z = AP3Z = 0.

Case 2 Now consider Case 2, in which a grillage rotates in its X'y’ plane due to a primary
bending moment, Mz, in the hull structure. This rotation is called 8z', but the rotation may not
occur about the actual z' axis, rather about some axis parallel to z'. In Figure 3.6, the rotation is
shown to occur about the point where the vertical Tinks attach to the grillage. The figure shows
that as a result of this condition,

APZX = AP3X
and AP2Y = AP3Y.

In addition, since a rotation about z does not cause a displacement of any point in the Z
direction,

AP17 = AP2Z = AP3Z = 0.
The above equations are true regardless of the location of the axis of rotation.

Case 3 Finally consider Case 3, in which a grillage rotates about its ¥’ axis due to a secondary
bending moment, My, in the hull structure (Figure 3.7(2)). The rotation is shown to occur about
the local y' axis of the grillage, where points P1 and P2 lie. The test fixture is constructed to
restrain points P1 and P2 from displacement in the Z direction, which forces the rotation to occur

about this point. (Rotation about any other point would cause points P1 and P2 to move in the Z
direction). As a result,

AP1Z = AP2Z =0
and AP1X = AP2X = 0.

Restraining points P1 and P2 from Z displacement: disallows rigid body displacement of the
grillage in its local 2 direction. This restraint is imposed in order to eliminate transverse
shearing forces in the hull structure. Figure 3.7(b) illustrates how the grillage is restrained
against 2/ translation. The horizontal and vertical W sections that make up the grillage are
represented as line elements in the same plane. Restraints are placed on either side of the center
vertical section as shown and anchored by the testing frame. As a result, points Pl and P2
cannot iranslate in the Z direction. In addition to being restrained against rigid body
displacement in the z’ direction, the grillages are also restrained against 6X.

Point P3 does translate in the Z direction due to ' rotation, but this translation is small and can

therefore be neglected. This assumption can be made because the largest possible 6y’ permitted
by the spherical bearings at the actuator clevises is plus or minus 5 degrees and for a Z distance
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of 150 inches between points P2 and P3, the resulting AP3Z is less than 0.5 inches. As a
comparison, AP3X due to this rotation is greater than 10 inches. It is then concluded that

AP3Z =0.

When y' rotation of a grillage occurs, it must also translate in the y’ direction in order to
accommodate the fixed-length vertical links. The grillage translates as a rigid body, such that

AP1Y = AP2Y = AP3Y.

If all of the allowable grillage displacements (AX!, Ay', Oy, and 0z2) are permitted
simultaneously, the consequences will be those that Cases 1, 2, and 3 have in common.
Therefore, given any permissible grillage motion,

AP1Z = AP2Z = AP2Z =0
and AP2Y = AP3Y.

Now, the coordinates of P1, P2 and P3 are given by:

Pl PiX= P1X,+APIX; PlY= P1Y,+APLY; PlZ= PlZ,
P2 P2X = P2X,+AP2X; P2Y = P2Y,+ AP3Y; P2Z= P2Z,
P3: P3X= P3X,+AP3X; P3Y= P3Y¥,+ AP3Y; P3Z= P3Z,

The number of unknowns has been reduced from nine to five. P1Z, P2Z, and P3Z are always
equal to their original values and AP2Y is always equal to AP3Y. Therefore there are now five
unknowns and only five measurements need to be made to determine the coordinates of P1, P2,
and P3. Figure 3.8 shows the configuration of the displacement transducers needed to make the
necessary measurements for the north grillage. The transducers are labeled X1y, X2, X3n, YN,
and Y1x. (Note that P1, P2 and P3 and their coordinates have now been given subscripts of N on
the north grillage and S on the south grillage). Transducer X1y measures AP1yX, transducer
X2y measures AP2yX, and so on.

Consider that the north grillage undergoes X'n and y'y translations and a rotation about z'n. AS
shown in Figure 3.9, transducer X1y rotates through an angle p and as a result does not measure
the true change in X position of point P1, AP1yX. However, the larger we make PInX, (or the
greater the distance between the grillage and the fixed reference frame), the smaller f is and
AP 15X can be approximated by the X1n transducer measurement. The same holds true for the Y
transducers.  Given this approximation, the equations that determine the five unknown
coordinates of Pln, P2y, and P3y are:

PInX =PlnX, + AP1X PInY =PInYo + APINY

P2nX = P2Xo + AP2uX
P3nX = P3nXo + AP3NX P3nY = P3nY, + AP3NY.
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Figure 3.10 shows the configuration of the transducers that make the necessary measurements for
the south grillage. The unknown coordinates of Plg, P2g, and P3g are then given by

Pl1gX =PlsX, + APIsX PigY = PlsY, + APlsY
P2sX = P2sX, + AP2gX )
P3sX = P3sX, + AP3sX P3gY = P3sY, + AP3sY

3.2.3 Coordinate System Transformation

Refer to Figure 3.11. Let C'n be a vector defining the coordinates of the north end of an actuator
with respect to the local reference point r'x. Assuming that deformations of the grillage are
negligible, this vector remains constant in the local coordinate system. However, the global
coordinates of the actuator end change due to translations and rotations of the grillage. These
global coordinates can be determined if the vector transformation between the local and global

systems 1s known.

Let i, j, and k be the mutually orthogonal unit vectors that form the basis of the X, Y, Z global
coordinate system. Likewise let i'n, i'n, and K'y be the basis vectors of the X'n, ¥'n, Z'n local
system for the north grillage (see Figure 3.12(a)). Just as any vector v in the i, j, k basis can be
written in the form v = tji + tj + t3k, the unit vectors i'n, j'n. and k'y can be expressed in the
form

iy =t i+t,j+tpk

v = talttyi+ink (3.1

ki =tyi+t,i+tk

Writing these equations in matrix form, the vector transformation from the global to local basis is
given by

iy i
J;q = TN ‘1]
ki k

where the transformation matrix Ty is defined as

t by by
Ty =1ty tyty
tyy ty Ty

Since the vector C'x is known in the local system, it can be expressed

Clo = @iy + @i+ Ky (:2)
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where ¢'1, ¢, and ¢'; are known constants. C'y can also be written using the global basis in the
form
Cy = (¢ )i+ (c)i+(e3)k (3.3)

where ¢y, ¢y, and ¢ are unknowns that vary with grillage movement. Substituting Equations
(3.1) into Equation (3.2) gives

Cy = (e[t i+ t,j+t:Kl+ (e ta i+ 1yi+ t, K]+ (e[t i+ ty, o+ t3K]
Rearranging,
Cy = [eity, +Chty + ety Ji+[cit, + chty +e3ty i +{eity, +Chtyy + ity K (3.4)

Equating the ci, ¢z, and ¢3 terms of Equation 3 with the bracketed terms of Equation 3.4 and
arranging into matrix form, we have

¢ 1y ty <

. '
Ce=thtptn |8 p

. [

Cs tiytys ta | 1©s

and the vector C'y can now be expressed in the global basis using the transpose of the
transformation matrix Tn.

The selection of points P1, P2, and P3 to be along the local axes allows us to directly determine
the transformation matrix Tn. As shown in Figure 3.12(b), let v'n be a vector from point Ply to
point P2y and w'y a vector from P2 to P3n. These vectors are given by:

v = (P1 X —P2y X+ (Pl Y - P2, Y)j+ (Pl Z- P22k
or vy = (Vl)i+(vz)j'§‘(v3)k
and

wh = (P3 X - P2, X)i+(P3,Y - P2, Y)i+(P3y Z-P2,2)k

or Wiy = (w )i+ (wy)j+ (w,)k.

The vector normal to the plane, called u'y, is then calculated by taking the cross product of v'n
and w'y as follows:

uy =[(v, W) (W, v Ji [V, Wy )+ (W, vli+I(v W, )~ (W, vk
or uy = (u )i+ (uy)j+ (u)k
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The vectors wn, V'n, and w'y are defined in the global basis because the coordinates of Ply, P2n,
and P3y ate global coordinates. Figure 3.12(b) shows that the unit vectors i'n, i'n, and k'n that
define the local basis for the north grillage are the unit vectors associated with u'n, v'n, and w'n.
If we define

lu;w'l = \R‘Hz '*"uzz + uaz)a
lV;;l = \/(V12 +v," +50),

Wi =AW, + W,  + W),
1 t\[(2+ 2 2)

then
iy = ;’] li+ l:'fi}%— lzflk = t1§i+t12j+ti3k5
N N N '
iy = l:’l1i+l:? j*l-lv,3 k=t i+t + K,
N N N
iy = R e el
b N

Thus, the transformation matrix is defined and C'y can be found.

This same method can be applied to the south grillage. Let C's be the vector that goes from r's to
the south end of the actuator. As shown in Figure 3.13(a), the south grillage has its own local
basis i's, I's, K's. C's is known in the local basis but can be transformed to the global basis
through the calculation of w's, V's, and w's (Figure 3.13(b)) and their corresponding unit vectors.
As for the north grillage, the final result is a transformation matrix Ts. C's can be determined in
global coordinates using the transpose of Ts.

1.3 ACTUATOR FORCE COMPONENT CALCULATIONS

3.3.1 Actuator Vectors

Top Actuators Now that the coordinate transformations have been defined, the actuator vectors
can be determined. Let Ry be the vector from the global reference point r to the local reference
point r'n on the north grillage (see Figure 3.14). Point r'y coincides with point P2y thus,

Ry = (P2 X)i+ (P2, V)j+ (P24 D)k.
Also let En be defined as the vector from point r to the north end of an actuator. Since Ry is
known in global coordinates and C'n has been transformed to global coordinates, Ex can be

determined from the vector addition

E, =Cy + Ry
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Figure 3.15 shows that similar vectors can be established for the south grillage. Point 1's
coincides with point P2g so the vector Rs from r to r's is given by

R, = (P2, X)i+ (P2 Y)j+ (P2 L)k

C’s is known in global coordinates therefore the vector Eg from point r to the south end of the
actuator can be determined by the equation

E, =C{ +Rg.
Now, knowing Ex and Es, the actuator vector A can be found. As shown in Figure 3.16,
A=E;-Ey.
If A is written in the form
A = (ay)i+(@y)i+ @)k

then ay, ay, and az represent the components of the length of the actuator in the X, Y, and Z
directions, respectively.

Bottom Actuators The calculation of the A vectors for the bottom actuators is similar to that for
the top actuators. The only difference is in the calculation of Ex, which.is shown in Figure 3.17.
As described in Section 2.3.2, point C, which represents the north end of a bottom actuator, is
restrained against translation in the Y and 7 directions. The only permissible motion is
translation in the X direction. If the magnitude of this translation is measured directly at point C,
the Ex vector can be determined without the use of C'n and Ry vectors. Let Eno be a vector
which represents the original coordinates of the north end of the actuator with respect to point r
and is defined as

Ey =(g)i+(e,)j+ (e k.
If the X translation of point C at a given loading step is called Xc then Ex at that step is given by
E, = (e, + X )i+ (e)] +{e;)K.

Eg is determined in the same manner as it was for the top actuators, as is A. See Figures 3.18
and 3.19 for illustrations of these vectors.

Bottom Links  The forces in the bottom links that are attached to the north grillage are also
measured by force transducers. The components of these forces are needed in order to write the
equilibrium equations for the north grillage. Therefore, A vectors are found for these links as
well. Enis determined in the same manner as it was for the top actuators. However, point B (see
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Figure 3.17), which represents the south end of these links, is subjected to the same constraints
as point C. The X translation of point B is equal to the X translation of point C, while its Y and
7 translations are zero. If a vector Es, representing the otiginal location of the south end of the

actuator is given by
Eq, = (eg)i+(e5)j+(es)k
then
E, = (e, + X )i+ (e5)j+ (g4 )k
and A can be determined for the bottom links.

3.3.2 Actuator Forces
The actual force components can now be determined using the actuator vectors. Refer to Figure

3.20, which shows the top actuators acting in tension. At the north grillage, the X component of
the actuator force is acting in the positive X direction, while the Y component acts in the
negative Y direction. At the south grillage, these forces act in the opposite directions. This is
also true for the Z force component. The forces Fxn, Fyn, and Fan will first be determined for
use in the north grillage equilibrium equations. Then Fxs, Fys, and Fzg, which are equal in
magnitude but opposite in sign to Fxn, Fyn, and Fzn, will be found for use in the south grillage
equilibrium equations. The bottom link forces at the north grillage and the bottom actuator forces
at the south grillage are found independently of each other.

North Grillage Again consider the loading shown in Figure 3,20, where the top actuators act in
tension and the bottom actuators act in compression. Also consider that 67 is larger for the south
grillage than for the north grillage and that By is zero for both. Figure 3.21 shows the actuator
and link position vectors that would result from this configuration. As evident in Figure 3.21,
the X direction component of the A vector, or ax, is always positive because A originates at the
north end of the actuator or link and terminates at the south end. Therefore the sense of the
force, which is measured by the force transducer, is what determines the direction of its X
component. For example, if the force in the top actuator is measured as positive, we can
conclude that the force is tensile and that the X component of the force at the north grillage acts
in the positive X direction, as shown in Figure 3.20. Likewise, if the force in the bottom link is
negative, the force is compressive and its X component acts in the negative X direction. Thus
the magnitude and direction of the X component of force for any actuator or fink is given by

Fyu = Fror ‘Tai‘l'

The equation for |A|,which represents the total length of the actuator, is

|Al = \/(a,f tayt+a, ).
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Unlike ax, ay can be either positive or negative. The direction of the Y component of force is
then dependent on both the sense of the total force and the actuator vector direction. Refer to
Figure 3.22, which again shows the force in the top actuators is tensile and thus is positive. As
shown in Figure 3.22(a), if Oz is larger for the south grillage than for the north grillage, then the
Y component of force at the north grillage is negative. However, Figure 3.22(c) shows that if 67
is larger for the north grillage, the Y component of force is positive. Therefore, the sign of Fy is
dependent on direction of the actuator vector. Figure 3.22(b) shows that ay is negative when the
situation in 3.22(a) occurs. Although the total force is positive, when multiplied by the negative
value of ay, the resulting Fy is negative. The equation for Fy is then

FYN = Fror ‘fil‘- (3.5)

Clearly this equation is valid for the case illustrated in Figure 3.22(c) and (d). It can also be
shown that the equation works when the actuator is acting in compression. Figure 3.23
summarizes the four possible cases that can occur for the top actuators. Since the last two
columns of this figure agree, Equation 3.5 is valid for all cases. Equation 3.5 also applies to the
bottom links at the north grillage.

The Z component of force can be determined by the same method. Figure 3.24(a) and (b)
illustrate that when the top actuators are in tension and az is negative, the Z component of force
is negative at the north grillage. When the top actuators are in tension and az is positive, the Z
component of foree is in the positive Z direction (Figure 3.24(c) and (d)). It can be shown that

the equation
2 (3.6)

applies given any sense of force and any direction of actuator vector. Equation 3.6 is also valid

for the bottom links at the north grillage.

South Grillage The X, Y, and Z components of force in the top actuators at the south grillage
are equal in magnitude but opposite in sign to those at the north grillage. Therefore,

a
FXS = WFXN = _F'ro'r : Tfi—,

a
FYS = _FYN = "FTo'r '|‘A'Ls

and
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a
Fps = —Fp = ~Fror l“j'l’
for the top actuators.

The X components of force in the bottom actuators are determined as follows. Since ax is
always positive (Figure 3.25(a)), the sign of Fx depends on the sense of the force. Figures
3.25(b) and (c) show that if Fror is compressive (negative) Fx acts in the positive X direction,
while if Fror is tensile (positive) Fx is negative. Therefore,

Ey = —Fror '”l%A”}Ll

for the bottom actuators.

The Y and Z force components in the bottom actuators are determined by the same method used
for the top actuators and bottom links at the north grillage. The resulting equations are

Fy = —Feor '“Ei"l
and
F, = "FTOT '?j-

3.3.3 Vertical Link Vectors and Forces

The components of the forces in the vertical links are also needed in order to write the
equilibrium equations for each grillage. These forces can be found using a procedure like that
used for the actuators. Each link will first be represented by a position vector L, then its force
components will be calculated. This vector is analogous to the position vector A used for the

actuators.

As shown in Figure 3.26, let L1 be the vector from point r to the point where the vertical link
attaches to the north grillage. Also, let 1.2 be the vector from point r to the point where the link
attaches to the overhead frame. L2 is constant and is given by

L2 = (L2,)i + (L2 )i+ (L2)k.

However, vector L1 changes as the grillage translates and rotates and its global coordinates are
unknown. Just as we defined a vector C'n in local coordinates for the actuators, we can define a
similar vector D'y that goes from the local reference point t' to the bottom of the link (see Figure
3.27). This vector is constant in the local coordinate system and is given by
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D}, = (dDiy +(d5)iy + @)k,
where d'y, d'2, and d'; are known. D'N can be expressed in the global basis as
Dy = (d)i+(d,)j+(dy)k".

The values d, da, and d; are determined by the transpose of the transformation matrix Ty given
earlier:

d, ty ty by di
dz =ttty lsy | drz .
ds tis T s dg

L1 can now be determined from
L1=R, +Djy
and L is then
L=12-L1=()i+({j+{)k
The total forces in the vertical links, which are always tensile forces, are measured by force
transducers. Since the algebraic sign of Fror is always positive, the sign of the force components
are dependent on the direction of the L vector. Given the grillage movement illustrated in Figure

3.28(a), Fx is negative. The value of Ix is negative, as evident in Figure 3.28(b), therefore

/
Fy = Fror Tﬁ

where

L= + 1+,
Figure 3.28 also shows that Fy is positive, as is the value of Iy, therefore

l
F = Fror Tﬁ
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These equations apply for the links on both the north and south grillages. Because the translation
of the bottom link point in the Z direction is assumed to be very small, the Z component of force
in all vertical links is neglected.

3.4 EQUILIBRIUM EQUATIONS

3.4.1 XY Plane Equilibrium

The X, Y and Z forces for all actuators and links are now known and equilibrium equations can
be written for each grillage the XY plane. The equilibrium equations will be used to determine
the net axial force and moments in the hull structure, which are parameters needed for the control

algorithm.

North Grillage Refer to Figure 3.29, which shows the north grillage and all forces acting upon
it. Al] force components have been given subscripts corresponding to their actuator or link name
assigned in Section 2.2 (see Figure 2.2). For example, actuator TE (or Top East) has forces
(Fx)re, (Fy)re, and (Fz)re. The axial force Py, shear Vyn, and moment Mgy have also been
defined. All actuator and link forces are shown in the positive sense. However, if a given force
is negative (as determined from the equations in Section 3.2.2), its direction and sign will be
opposite from that shown. From YFx =0,

P, + (Fooms + Exo)ze + B drw + Edms + Exdoww Fxhe + Eww = 0.
Solving for the axial force, we get
P, = —(Fra)re ~ T )re = Boacdaw = Fdmne = (B mw = (Fyne = i dww-
From EFy =0,
Vo + Fo e + Fdre + o drw + B e + Evdaw

'Y
+Fy s + (Fy g +’§” = ().

Solving for the shear force, we get

VYN = “(FYN)TE - (FYN)TC - (FYN)TW . (FY)BNE - (FY)BNW

W

SUSNEILRRES 3

Moments are summed about the local reference point r'n. This point is convenient because the
moment arms from r'y are known from the transformed C'n and D'y vectors. For example, if

(Ci) = (C st + (€ i+ () Ko
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then (cy)7g is the moment arm for (Fyw)te and (C2)1e is the moment arm for (Fxn)re in the XY
plane. A positive moment is counter-clockwise about 'y, The shear force, Vyn, passes through

r'n. From XMz =0,

M — (Fp ) 1e (€2)1e —Fa)re(C2)1e — (Fo)rw (€2 )1w
— (Fy ) mer (€2 mes — (Fy ) ew (C2 ) eavw — (Fy)we (G2 s = Fxdnw (dy)ww
Py dre ) me + Favdre (e )5c + Fy drw (©1 )
+ By Yo (C) g + (Fy)enw (S aw + (B e (dy e + (Fy raw () yw =0 (3.7

The signs of the terms in the Equation 3.7 are determined as follows. The (Fx) terms for the top
actuators, for example, are shown as positive in Figure 329, Their moment arms, or the (Ci)
terms, are also positive. However, the moment of these forces about point r'y are negative (or
counter-clockwise). Therefore these terms need a negative sign in the moment equation. If an
(Fxw) force is calculated as negative, then the moment of this force about point 1’y is positive (or
clockwise). The product of the negative sign in Equation 3.7 and the negative sign of the force
results in the necessary positive sign for the moment term.

Upon inspection, it is seen that certain forces may cause positive or negative moments depending
on the position of the grillage. For the rotation shown in Figure 3.29, the moment caused by the
Y component of the vertical link force is positive (counterclockwise). For the case shown, both
the force and the moment arm are positive, so the sign of the term in Equation 3.7 is positive. If
the grillage is rotated counterclockwise until the bottom link point is to the left of point r'y, the
moment of this force about r'y is negative (clockwise). For this configuration, the Y component
of the force is positive and the moment arm (d;) is negative, so the product of the two is
negative, as needed. Solving Equation 3.7 for Mzx,

My = P (C2) e + (Fyoo )7e (©2)1¢ + B (Cy)rw
+ (Fy ) p (€2 )one + (Fx D anw (€2 Jmmw + Fy)ae(dy)ns + (Fy ow (A2 ) rew
= (Fyn Y1 )1s ~(Fa e (©1 1o — {(Fon dyw (€1 1w
- (FY)BNE (CI)BNE - (F\’)BNW (C’] )BNW ~ (FY)NE(di)NE - (FY)NW (dl)NW‘

South Grillage Figure 3.30 shows the south grillage and all forces acting on it. Using the same
metihod as for the north grillage, the equilibrium equations for axial force Ps, shear Vys, and

moment Myzg are as follows:

Ps = ”(FXS)TE —(Fxs)rc ”'(Fxs)Tw "”(FX)BSE ”(FX)BSW “"(FX)SE “‘(Fx)SEa
VYS = "(FYS)TE - (F‘{S)TC - (FYS)'E‘W “(Fy)iasﬁ - (FY)BSW ”"(FY)SE - (FY)SE “\’gf_s

and
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Mg = —(Fyg s (€2 )1 ~ Frs)re (€2)1e (Fes ) w (€2) 1w
- (Fx )BSE (CZ)BSE . (Fx )BSW (Cz )BSW - (Fx )SE (dz )SE - (Fx )sw (dz )sw
+ (Fy)rg (€)1 + (Bygdre (€ )1c + Fys drw (€1 mw
+(Fy )pss (€ mse + Fy Dasw (©1)psw + Fy )se (d))se + EFy dsw (A )sw-

where a positive My is clockwise at the south grillage. The shear force in the Y direction should
be approximately equal to zero therefore Mzx should equal Mzs (see Section 2.2).

The axial force in the specimen, which should be equal to or close to zero, is determined in the
following manner. If a net tensile force develops in the specimen, as shown in Figure 3.31, P
will be calculated as positive and Ps will be calculated as negative. Their magnitude should be
equal because the axial force in the specimen is constant. However, Py and Pg may differ
slightly for a variety of reasons. First, the moments in all clevises are assumed to be zero, buf,
because of friction, this may not be true. Secondly, the grillages are not rigid as assumed, so the
lines of action of forces may change. Finally, error can be introduced by force transducer
measurements. As a result, the average of Py and Ps is taken. The net axial force in the

specimen is thus,

b By =P)
2

If the net force is positive it is tensile; if negative, it is compressive.

3.4.2 XZ Plane Equilibrium

North Grillage Equilibrium equations are written for the XZ plane in order to find the bending
moment My and shear V7 at each grillage. Figure 3.32 shows the XZ plane of the north grillage
and all forces acting on it. All forces are shown in the positive direction. Shear in the Z

direction is given by
Voo =—(Fpy e = Fade ~ Faedrw — (F ) o — Fz ) mnw -
From ZMy =0,

My = ~Fo)ms €)1 ~ Fad e (€3)rc — Fadrw (C3)rw
— (Fy e (©3) e — B dmnw (C3 ) prw — Fy e () e = Fxdnew (€3) 0w
+ Fp e (€)1 + Fadre ©0re *+ Faddrw (€0 mw
+(F, ) g (€1 ) + Fz Yanw (1 ) mnw -

A positive Myy is counter-clockwise. The signs of the terms in the above equation are
determined in the same manner as for the XY plane moment equations.

39



South Grillage Figure 3.33 illustrates the XZ plane of the south grillage and all forces acting
upon it. From YFz =0,

Vs = _(Fzs)m = (Fys e — (Fzs)'rw ~(Fz)pse — (F, Yssw -
From ZIMy =0,

My = Fys)pe (€5)7 + Fxsdzo (€3)e + (Fysdrw (€3)rw
+ (Fy Yase (€3 )mss + (FxDmsw (©5)psw T Frdse(da)ss + T )sw (©3)sw
— (Fpe)re (©)1s — Fzs e (©)1e = Frdrw ©)1w
— (F,)mse (€1 )pse ~(F)psw (C1)psw e

where a positive Mys is clockwise. The shear force in the Z direction should be approximately
equal to zero therefore My should equal Mys (see Section 2.2).

3.5 CONTROL LOGIC
3.5.1 Objectives
The loading objectives, which were presented in Section 2.3.1 and need to be considered in the

control logic, are as follows:

1. Apply primary bending moment My to the hull structure.

5 Maintain zero net axial force in the hull structure. This ensures that the elastic neutral
axis remains at the centroid of the cross section. The axial force is kept at or near zero by
selective movement of the actuators.

Additional objectives to be considered in the control logic are:

3. Keep the Y rotation of the north grillage equal to the Y rotation of the south grillage (Byn
- Oys = 0). This is achieved by selective movement of the top actuators and by always
keeping the strokes of the bottom actuators equal to each other. This is explained further
below.

4. Keep the shear forces in the Y and Z directions equal to zero (Vyn=Vys =0 and Vzn =
Vzs = 0). It follows from these equalities that the moment about Z at the north grillage 1s
equal to the moment about Z at the south grillage and the moment about Y at the north
grillage is equal to the moment about Y at the south grillage (Mzx - Mzs = 0 and My -
Mys = 0). This objective is accomplished by the actuator setup, as explained in Section
2.2.

3.5.2 The Control Algorithm

The control algorithm decides which actuators to move in order to simultaneously reduce the net
compression force or net tension force in the hull structure and increase the rotation (if the hull
structure is being loaded) or decrease the rotation (if the hull structure is being unloaded). The
following scenarios explain how this is done.
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Consider the situation shown in Figure 3.34(a), where 6 is positive and the hull structure is in
net compression. Reduction of the compressive axial force can be accomplished in two ways.
Figure 3.34(b) shows that extending the top actuators reduces the net compression while also
reducing the rotation 8z. Extending the bottom actuators, as illustrated in Figure 3.34(c), also
reduces the axial force but increases 6;.

In Figure 3.35(a), 0z is again positive and the axial force is tensile. The axial force can be
eliminated by either retracting the bottom actuators, which decreases 0z, or by retracting the top
actuators, which increases 07 (see Figures 3.35(b) and 3.35(c)).

In the situations described in Figures 3.34 and 3.35, it is assumed that the forces in the top
actuators are equal to each other. In other words, there is no imbalance of forces across the
width of the grillage. If this is true, then when the fop actuators are to be moved, they are all
moved the same amount. However, when an imbalance of forces does occur, it is possible in
some instances to selectively move certain actuators to reduce the imbalance. This is explained
below in greater detail. If the forces in the bottom actuators are not equal to each other, neither
actuator can be moved on its own to eliminate the imbalance. Doing so would cause Byn # Oys.
Anytime the bottom actuators are to be moved, they must be moved together.

It is unlikely that the force in the top actuators will ever be exactly equal to each other.
Therefore, a tolerance is computed using one of the outer actuators, say actuator TE. This
tolerance is a user-specified value in the software, as explained in Chapter 4. If the tolerance
factor is 0.1 and (Fxn)re = 100 Kips, the tolerance is (0.1)-(100 kips) = 10 kips. Then if (Fxn)rc =
(100 + 10) kips and (Fx)tw = (100 % 10) kips, the three forces are assumed to be
approximately equal to each other. As a result, if the top actuators are to be moved they are all
extended or retracted the same amount.

If the forces in the top actuators are not equal to each other within the tolerance, then the forces
are considered imbalanced. This may occur due to localized softening, or a reduction in stiffness
at some location in the test specimen. The result is moment and rotation about the Y axis.

Figure 3.36 shows two types of imbalances that may occur. In Figure 3.36(a), the forces in the
outer actuators are approximately equal to each other, while the force in the center actuator is
larger. If the goal is to increase the rotation then the outer actuators should be retracted, thus
increasing their forces, As long as actuators TE and TW are moved the same amount, the
requirement that 8yy - Oys = 0 is still satisfied. If the goal is to decrease the rotation the center
actuator should be extended, this decreasing its force. Again, this will satisfy 8y - Oys = 0.

The same process can be used if the force in the center actuator is smaller than those in the outer

two.

In Figure 3.36(b), the forces in actuators TE and TC are equal, but the force in actuator TW is
larger. In order to eliminate the imbalance of forces, actuator TW must be moved on its own or
actuators TE and TC must be moved simultaneously. However, this type of movement causes a
violation of the condition that 8yy - Oys = 0. In this situation, all actuators must be moved. If the
forces are different in all three actuators, the same problem occurs and all actuators should be
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extended or retracted. The imbalance of forces cannot be corrected unless the forces in the outer
actuators are equal. Note that moving the outer actuators only or the center actuator only
violates the assumption that the grillages are rigid, because doing so forces them to deform.
However, it is recognized that the grillages are going to deform in any event, and that these
deformations are small.

The decision algorithm is shown in Figure 3.37. First, it is determined from user input whether
the primary rotation 0z is increasing (the hull structure is being loaded) or decreasing (the hull
structure is being unloaded). Then, it is determined whether the axial force is compressive or
tensile. As shown in the figure, if the rotation is increasing and the axial force is compressive,
the are actuators are extended. If the axial force is compressive, the action depends on whether
the user has specified that top actuator force imbalances should be corrected, or that the top
actuators should all be moved the same amount, regardless of the existence of an imbalance of
forces. If the user specified that the imbalance should be corrected, then at this point the forces
in the outer actuators are compared. If they are not equal (within the tolerance), all actuators are
retracted. If they are equal within the tolerance, then the force in the center actuator is checked.

Depending on its value, vatious decistons are made, as shown in Figure 3.37.

42



TIOT}O21100 90X0] TRIXE JO UOURnSn{[l ['¢ am3ig

20107 [RIXE 19U ON (9) wo1ssa1dwod [eIXe 10U JOpUn dIjonns [N (&)

O “ i Z s «Wmmwm

e

.

................,O

1 00¥ 5007 I o0y A1 00F

43



18
TonoRal

V 103904 TORIsOd © AQ JOJET]OR UB JO vonmuasaxdey 7'¢ am81]

o83
INos
oFeyju3 surex
quou QOURINJAI
paxy

44



Trem
ToRoB3l

oFequid
nos

STIeISAS SJBUIPIO0)) €' SIMBL]

2313
qou

aurely
Ealieh eI
paxy}

A+

43



P1 (P1X,[P1Y, P1Z)

P2 (P2X,P2Y, P27)
——

P3 (P3X, P3Y, P3Z

fixed
reference
frame

north
grillage

Figure 3.4 Location of points P1, P2, and P3
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4 AP Y=AP2Y=AP3Y

AP1Z=AP2Z=AP37=0

AP1X=AP2X=AP3X

Figure 3.5 Case 1 Grillage translations in local ¥ and y' directions
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axis of rotation

% AP2Y=AP3Y

AP17=AP2Z=AP3Z~0

—

AP2X=AP3X

Figure 3.6 Case 2: Rotation of grillage in x'y' plane
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| =Y= AP3Z

AP1X=AP2X

(a) Rotation of grillage about its local ¥’ axis

e

=restraints

(b) Restraints that disallow AZ

Figure 3.7 Case 3
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Figure 3.8 Configuration of north grillage transducers

50



P1X

N
/]
/ B P]'NXG
g 7o,
/
/]
/1
/|
/|
/]
/] displaced grillage
location
/]
/]
/1
/]
/] original grillage
A T e location
fixed reference
plane

Figure 3.9 Approximation for P1,X
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Figure 3.11 C'y vector
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(b) North grillage transformation vectors

Figure 3.12 North grillage vectors
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(b) South grillage transformation vectors

Figure 3.13 South grillage vectors
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Figure 3.20 Top actuator force components -
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Figure 3.21 A veciors resulting from 6,5 > O,
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Total Sign of Geometric | Signof | Actual Sign Sign of Fy
Force Fror Condition ay of Fy using Eq.(5)
Tension + Ozn>02z8 - + +
+ O75>02n - - -
Compression - Ozn>0zs + - -
- 0z5>02n - + +

Figure 3.23 Determining sign of Y component of force for top actuators
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Figure 3.31 P, and P when hull structure is in net tension
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(¢) Bottom actuators extended; rotation 8, increased

Figure 3.34 Methods for eliminating net compression force in hull
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(c) Top actuators retracted; rotation 6, increased

Figure 3.35 Methods for eliminating net tension force in hull
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CHAPTER 4
CONTROL SYSTEM

4.1 INTRODUCTION

As described in Chapter 1 and Figure 1.2, the test system is comprised of the physical hardware
used to provide forces and reactions to the hull structures (fest fixture) and of the electronic
hardware and software used to orchestrate the tasks of load application and data acquisition
during the tests (control system). The entire test system was developed to accomplish the
loading objectives outlined in Section 2.3.1.

During testing, the hardware acquires data from various transducers. The software then uses this
data in decision-making algorithms to determine commands that specify actuator movements.
The hardware then implements these commands and the cycle repeats.

In this chapter, the hardware is first presented. The software and its functions are then discussed
in detail.

4.2 CONTROL SYSTEM HARDWARE

Figure 4.1 is a schematic drawing of all major components of the control system hardware. The
control system includes five servo-controlled hydraulic actuators operating in closed-loop
displacement control. For clarity, only one of the five actuators is included in the figure.
Additional components of the control system hardware that are not shown in the figure include
various power supplies and two hydraulic service manifolds.

As shown in Figure 4.2, three different types of transducers are included in the control system
hardware:

1. Feedback transducers provide displacement feedback directly to the controller for
each actuator. This signal is used in the closed-loop displacement control of the
actuator. There are a total of 5 feedback transducers in the control system.

2 Control transducers provide information about the current state of actuator forces,
link forces, and grillage movements. There are a total of 21 control transducers in the
control system. This includes 5 force transducers for the actuators, 4 force
transducers for the vertical links, 2 force transducers for the horizontal links, and 5
displacement transducers for each grillage.

3 Data transducers are not directly a part of the control system. These transducers
provide additional information about the behavior of the test specimen. Many of the
data transducers are strain gages attached to the hull structure. Signals from these
transducers are acquired by an auxiliary data acquisition system which is triggered by
the control system. When the auxiliary data acquisition system is triggered to sample
and save information from the data transducers, the control transducers are also
sampled and their values are saved to the control computer. This assures
simultaneous readings of the data transducers and control transducers for later

processing.
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As shown in Figure 4.1, the analog signals from feedback transducers are sent directly to the
controllers. The analog signals from control transducers are first conditioned if necessary, then
converted to digital signals by an analog-to-digital (A/D) converter, and finally received by the
computer software. Here, the command signals are determined. They are then converted to
analog signals by a digital-to-analog (D/A) converter and sent to the controller. The controllers
compute error signals and send them to the servovalves, causing the actuators 1o move.

Up to 32 channels of differential voltage input from control transducers can be sampled by the 12
bit A/D converter. The 12-bit converter divides the +10 volt (20 volts total) range of the input
into 2'2 = 4096 parts. Thus the theoretical voltage resolution of the A/D converter is 20
volts/4096 parts = 0.005 volts. Up to 16 channels of analog voltage output are provided by the
12-bit D/A converter. Five of these are reserved for outgoing actuator command signals. A sixth
channel is used for sending a voltage signal which triggers the data acquisition system to sample
and save data. The 12-bit D/A conversion divides the +10 volt (20 volt total) range of the output
into 212 = 4096 parts, providing an output voltage resolution of 0.005 volts. The theoretical
resolution of each actuator is computed as the total calibrated displacement range of the actuator
divided by 4096 parts. The top actuators are calibrated for a displacement range of 36 inches,
and thus they have a theoretical positioning resolution of 0.0088 inches. The bottom actuators
are calibrated for a displacement range of 24 inches, and thus they have a theoretical positioning
resolution of 0.0059 inches.

4.3 CONTROL SYSTEM SOFTWARE

4.3.1 Overview

Figure 4.2 shows a simplified block diagram that outlines the basic flow of the control system
software during the execution of a test. First, the control transducers are sampled and their
values are used by the control software to compute desired parameters such as the positions of
the grillages and the forces applied to the hull structure. These computations are made using the
approach described in Chapter 3. These parameters are then used in decision-making algorithms
(aided by user input) to compute new commands. The decision algorithm was discussed in
Section 3.5.2 and presented in Figure 3.37. New commands (actuator positions) are then issued
by the computer to the controllers and the controllers compute €rrox signals. The error signal for
each actuator is the difference between the feedback signal (its current position) and the
command signal (its desired position). Finally, the servovalves receive the error signals and
implement the new desired actuator positions. This figure represents one loading step.

The control software is designed to perform multiple loading steps autonomously in order to
expedite testing. However, the user still has ultimate control over the entire loading process
because of her ability to specify (and modify during the test) many of the critical parameters that
govern the test. For example, the user can specify the number of loading steps 10 be performed
in one program loop (one loading step is given in Figure 4.2 and a program loop consists of a
user-specified number of loading steps). The user can also specify the number of loading steps
to execute before saving data. The force tolerance, defined in Section 3.5.2, is also changeable.
These parameters, and others, are further described in Section 4.3.4.
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When the program is first executed, the user is presented with a main menu. It is from this menu
that the major functions of the program are chosen. Figure 4.3 is a diagram of the structure of
the control program. Shown in the figure are the main menu options. The available options are

as follows:

1. Load Channel Setup from File
2. Check Currently Loaded Values
3. Initialize Actuators

4. Run Main Program Loop

5. Display Raw Voltages

6. Exit Program

Options 1 and 2, collectively called the Channel Setup, are described in Section 4.3.2. Option 3,
or Initialize Actuators, is discussed in Section 4.3.3. The Main Program Loop, accessible
through Option 4, is described in Section 4.3.4. It is through the main program loop that the
loading and unloading functions are performed and program parameters.are changed. Figure 4.3
shows the functions accessed through the main program loop which will be discussed later.
Option 5 simply allows the user an opportunity to view the A/D channel raw voltages for the
purpose of verifying that all channels and transducers are working properly. This screen is
shown in Figure 4.4. Through Option 6, the user can exit the program.

4.3.2 Channel Setup
When the program is first executed, the user must load the channel setup from a previously

created input file by choosing Option 1. This file contains information regarding the number of
A/D and D/A channels to be used and the calibration constant for each control transducer. This
step must be done first in order to continue with other program options. After loading the data,
the user can then view, verify, and modify it if desired by choosing Option 2.

4.3.3 Actuator Initialization

After loading the channel setup, the next step is actuator initialization. The initialization process
ensures that the system will remain at rest when hydraulic pressure is first applied. The user is
prompted to enter an initial command signal for each actuator. The value entered for each
actuator should be equal to its current feedback signal, which can be selected for display on the
controller console. The operator is then presented with another screen, shown in Figure 4.5,
which permits her to make adjustments to the command signals until they are equal to the
feedback signals as nearly as possible. Since the command signal is made equal to the feedback
signal for each actuator, the error signals computed by the controllers all equal zero. At this
point, hydraulic pressure is applied and the actuators do not move.

4.3.4 Main Program Loop
After test setup and initialization are complete, the user can choose Option 4 from the main menu

to run the main program loop. This is where the loading and unloading processes, as well as
other program functions, are performed. Upon running the main program loop, the program
begins to sample the control transducers, determine the grillage locations, compute actuator and
link vectors, and finally calculate the forces and moments applied to the hull structure. However,
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the program does not make decisions (or compute new actuator commands). In this stage, the
program is said to be pausing. In the pausing mode, the program repeatedly makes all of the
calculations just described, allowing the user to monitor the state of the system. Figure 4.6
shows the parameters that are displayed. As shown in the figure, the main graphics screen has
four viewports. In the upper right portion of the screen is a graphic drawing of the hull structure
with actuator and link forces displayed at appropriate locations on the drawing. At the bottom
right is a moment versus rotation graph which plots both primary moment (Mz) and secondary
moment (My). The upper left portion of the screen is reserved for the display of the numerical
values of key reduced data. In addition to displaying pertinent force and displacement values
here, parameters important to the loading process are displayed. A few of these are the loading
step number, the total number of loading steps to be executed In one program loop, and the
number of steps to execute before data is saved (this parameter is called the save data step size).

When the user specifies for loading of the hull structure to begin, the program enters the
execution mode. Now, the program samples transducers, calculates the grillage positions and
forces applied to the structure, and makes decisions. The program will go through one loading
Joop, executing the number of loading steps that the user specified. During the execution phase
of the test, the user interacts with the program through the viewport in the lower left part of the
screen. This viewport is used to present two menus that are accessed via function keys. These
are the Program Functions menu (F5 key) and the Program Parameters menu (F3 key). The
Program Parameters menu and its options are described first.

Program Parameters Through the Program Parameters menu, the user has the option to change
six test parameters. Parameters that can be modified include the scale used for the moment
versus rotation graph, the number of loading steps in a program loop, (called loop steps) and the
number of loading steps executed before data is saved (called the save data step size). For
example, if there are 20 loading steps in a program loop and the save data step size is 5, then data
will be saved 4 times, or every 5 loading steps, of the program loop. A parameter called the
DAC step size can also be altered through the screen shown in Figure 4.6. A DAC step size of 1
corresponds to the smallest actuator movement that can be made (DAC is shorthand for Digital-
to-Analog Conversion). As discussed in Section 4.2, this is 0.0088 inches for the top actuators
and 0.0059 inches for the bottom actuators. The user can make the DAC step sizes for each
actuator any integer multiple of'its resolution.

A parameter called the tolerance is changeable through the Program Parameters menu as well.
At the end of each loading step, the program pauses until the control transducer values settle and
the system comes into equilibrium. To determine whether this has happened, data is sampled
twice and actuator forces are calculated at each sampling. If the difference in force values for all
actuators between the two samplings is equal to or smaller than thé tolerance, loading can
continue. If not, data is again sampled twice and the process is repeated until equilibrium occurs.
This tolerance, which has units of kips, can have any user-defined value, and, as noted above,
can be modified during execution of the test.
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As described in Section 3.5.2, the user has the ability to specify whether an imbalance of force in
the top actuators should be corrected, or if all of the top actuators should be moved the same
amount. This specification can be made through the Program Parameters menu.

All six parameters are given initial default values. During testing, they may be modified
between loading loops, or by exiting a loading loop in progress through a function key and
“accessing the Program Parameters menu.

Program Functions The Program Functions (see Figure 4.3) menu contains options that allow
the user to initiate loading or unloading, as well as to execute other program functions. In order
to begin the application of a primary sagging bending moment, Jncrease Rotation is chosen from
this menu. At this point, the program will execute the program loop comprised of a preset
number of loading steps and a preset DAC step size. In other words, if the loading loop has 10
steps, the program will acquire data, make decisions, and send commands ten times without user
interaction. Data is saved at the interval specified by the save data step size.

While looping, two function keys remain active for use. One function key (F9), permits the user
to exit the program loop. This may be done so certain parameters that govern the test may be
modified, or this may be done simply to pause the test during execution. The second function
key (F7) causes data to be saved to disk when it otherwise would not be saved automatically.

Function key F7 also triggers the auxiliary data acquisition system 1o sample and save data, thus
preserving the simultaneous sampling and storage of the control transducers and data

transducers.

Decrease Rotation is another choice that can be made from the Program Functions menu. The
same loading loop and parameters are used as for increasing rotation, but the decision algorithms
are modified to cause the loads and rotation to be decreased. Once the specimen has been loaded
to the desired extent, Decrease Rotation can be selected to unload the hull structure.

Also available through the Program Functions menu is the ability to monitor the A/D channel
input voltages and to manually specify any user-defined adjustments to actuator command
signals outside of the main program loop. The user can also choose to view a full screen version
of the moment versus rotation plot. Sufficient data is written to arrays to allow this plot to be
recreated in its entirety as often as desired.

Appendix A of this report contains the source code for the control program. Appendix B
contains definitions for the variables used in the program.
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Figure 4.5 Manual command adjustment screen
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CHAPTER 5
SUMMARY AND FUTURE WORK

5.1 SUMMARY
This report presented research focusing on the development of the test system for a test program

being conducted by Lehigh University on two composite ship hull and deck structures. The
objectives of the test program are to perform low-level load tests to determine the elastic
flexibility of the hull structures and collapse-level tests to determine the ultimate strength and
failure mode in primary bending. These test objectives were outlined in Chapter 1, along with an
overview of the test system.

The test system is comprised of the test fixture and the control system. The control system is
comprised of hardware and software used to coordinate the load application and data acquisition

during the tests.

In Chapter 2, the components of the test system, and more specifically the test fixture, were
described. Also included in Chapter 2 was a description of the loading objectives and how they
are achieved. The loading objectives are to maintain zero net axial force in the hull structure,
while applying a primary bending moment (Mz) to the hull structure. A secondary bending
moment (My) can also occur in the hull structure. The statics of the test fixture were explained,
with a description of how the actuator configuration accomplishes the loading obj ectives.

Chapter 3 outlined the theory developed for the control program. A method was developed for
determining the components of all forces applied to the hull structure. Due to the configuration
of the test fixture, each actuator and link is permitted to develop three components of force.
From these forces, equilibrium equations were written to find the net axial force in the hull
structure and the moments applied to the hull structure. All of these parameters (actuator forces,
net axial force, and moments) are then used by the software in a decision algorithm to control the
loading of the hull structure.

In Chapter 4, the control system was described, The control system incorporates closed-loop
displacement control of five actuators into an external loop that allows for user input in order to
control the test. This chapter included detailed descriptions of the hardware and software. The
control software, or control program, consists of three main parts, the channel setup, actuator
initialization, and the main program loop. Through the main program loop, the user is permitted
to interact with the program, giving her ultimate control over the testing.

5.2 FUTURE WORK

The test program being executed by Lehigh University on the composite ship hull and deck
structures is currently in progress. Upon completion of the erection of the test fixture, testing of
the hull structures will begin. The LTC-Prepreg hull structure will be tested first as a calibration
specimen in order to ensure that the test fixture and control system can successfully accomplish
the loading objectives. The UV-Prepreg hull will then be tested. As described in Section 1.2,
both low-level load tests and collapse-level tests will be performed.
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APPENDIX A
CONTROL PROGRAM SOURCE CODE

DECLARE SUB Graph ()

DECLARE SUB Decision. Algorithm ()
DECLARE SUB Pause ()

DECLARE SUB Correct.Imbalances ()
DECLARE SUB Save.Data ()
DECLARE SUR Save.Data.Step.Size ()
DECLARE SUB Change.Loop.Steps ()
DECLARE SUB Equilibrium.Eqns ()
DECLARE SUB Save.Data.Check ()
DECLARE SUB Tolerance.Size ()
DECLARE SUB F5Flag.Check ()
DECLARE SUB F3Flag.Check ()
DECLARE SUB Clear. Window ()
DECLARE SUB Force.Comp.Cales ()
DECLARE SUB Actuator. Vectors ()
DECLARE SUB Calc.Engr.Values ()
DECLARE SUB Initialize. Vars ()
DECLARE SUB Run.Program ()
DECLARE SUB Check.New.Commands ()
DECLARE SUB Compute.New.Commands ()
DECLARE SUB Move.Actuators ()
DECLARE SUB DAC.Step.Size ()
DECLARE SUB Volt.Command. Adj
DECLARE SUB Initialize. Acts ()
DECLARE SUB Main.Display
DECLARE SUB Zero ()

DECLARE SUB Main.Menu ()
DECLARE SUB Load.Setup ()
DECLARE SUB Constants ()
DECLARE SUB Initialize. Boards ()
DECLARE SUB Sample.AD (}
DECLARE SUB Raw.Voltages ()
DECLARE SUB Large.Graph ()
DECLARE SUB Choose.Graph.Scale ()

?********$******************************************************************

' control3.BAS
QuickBasic Test Control Program

This program utilizes a 64 channel Keithley-Metrabyte DAS1802HC A/D board and a 16 channel
Keithley-Metrabyte DDA 16 D/A board to acquire and transmit voltages for closed loop

module contains additional subroutines and is a part of the library
LIBRARY.QLB. The program must be linked with this library before running

' displacement control. This is the main module of the program. A second
" the program. The source code of the second module is called controld.bas.

'***************************************************************************

' The following variables are declared as common because they are common

' to one or more subroutines. If a certain COMMON variable is used in

' various subroutines, it must be listed in the SHARED statements at the

' beginning of each subroutine.

' The common group /navy?2/ are those variables which are used in both this

' module and the second module in the library. The commeon group /navy/ are
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' those variables used only in the subroutines in this module.

COMMON /navy2/ Loop.Steps, Tolerance, scale, Save.Data.Step, Correction

COMMON /navy2/ CommandError, Command. TE%, Command. TC%

COMMON /navy?2/ Command. TW%, Command BSE%, Command. BEW%

COMMON /navy2/ Command. 16%, Command. Trigger AS INTEGER

COMMON /navy2/ Delta. TE%, Delta. TC%, Delta TW%, Deita. BSE%, Delta BSW%
COMMON /navy2/ DACStep. TE%, DACStep. TC%, DACStep. TW%, DACStep.BSE%, DACStep BSW%
COMMON /navy/ [dent$, QutFilel$, OutFile2$, QutFile3$

COMMON /navy/ F5Flag, F10Flag, F3Flag, F7Flag, F4Flag, nPass, F9Flag, nData
COMMON /navy/ NChannel, Pause. Execution

COMMON /navy/ nStep, Direction, nPlot, nSave

COMMON /navy/ LAMBDA.N, LAMBDA.S, Save Data.Counter

COMMON /navy/ CommandV.TE, CommandV.TW, CommandV.BSE, CommandV.BSW, CommandV.TC
COMMON /navy/ FORCE.X.BNW, FORCE.X.BNE, FORCE.X.BSW, FORCE.X.BSE
COMMON /navy/ FORCE.Y.BNW, FORCE.Y.BNE, FORCE.Y .BSW, FORCE.Y.BSE
COMMON /navy/ FORCE.Z.BNW, FORCE.Z BNE, FORCE.ZBSW, FORCE.Z.BSE
COMMON /navy/ FORCE.XN.TW, FORCE.XS.TW, FORCE.XN.TC, FORCE.XS.TC
COMMON /navy/ FORCE.XN.TE, FORCE.XS.TE, FORCE YN.TW, FORCE.YS.TW
COMMON /navy/ FORCE.YN.TC, FORCE.YS.TC, FORCE.YN.TE, FORCE.YS.TE
COMMON /navy/ FORCE.ZN.TW, FORCE.ZS.TW, FORCE.ZN.TC, FORCE.ZS.TC
COMMON /navy/ FORCE.ZN.TE, FORCE.Z5.TE

COMMON /navy/ FORCE.TE, FORCE.TW, FORCE.BSE, FORCEBSW, FORCE.BNE
COMMON /navy/ FORCE.BNW, FORCE.TC

COMMON /navy/ FLINK NE, FLINK. NW, FLINK.SE, FLINK.SW

COMMON /navy/ FLINK.X.NE, FLINK.X.NW, FLINK.X.SW, FLINK.X.SE, FLINIC.Y.NE
COMMON /navy/ FLINK.Y.NW, FLINK.Y.SW, FLINK.Y.5E

COMMON /navy/ TEMPO.INX, TEMPO.2NX, TEMPO.3NX, TEMPO. INY, TEMPO.3NY
COMMON /navy/ TEMPO.18X, TEMPO.2SX, TEMPO.35X, TEMPO.ISY, TEMPO.38Y
COMMON /navy/ DELTA.X.BSE, DELTA.X.BSW

COMMON /navy/ CN.X.TE, CN.Y.TE, CN.X.TC, CN.Y.TC, CNX.TW, CNY.TW
COMMON /navy/ CS.X.TE, CS.Y.TE, CS. X.TC, C8.Y.TC, CS X.TW, CSY.TW
COMMON /navy/ CN.X.BNE, CN.Y.BNE, CN.X.BNW, CN.Y.BNW

COMMON /navy/ CS.X.BSE, CS.Y.BSE, CS.X.BSW, C5.Y BSW

COMMON /navy/ D.X.NE, D.Y.NE, D.X.NW, D.Y.NW, D.X.SE, D.Y.SE, D.X.SW,DY.SW
COMMON /navy/ P.N, P.S, MZN, MZ.S, MY .N, MY.§, P

COMMON /navy/ THETA.ZN, THETA.Z.S, THETA.Y.N, THETA.Y.S
'************************************************&**************************
" The following include statements are necessary, and the files listed must

'be in the directory in which you are operating.

' $INCLUDE: ‘QB4DECL.BI'

' $INCLUDE: DASDECL.BI'

' $INCLUDE: 'DAS1800.BI'

'$INCLUDE: 'DDA16.BI'

' The following statements are necessary for allocating memory.

CLEAR

* FarHeapSize& = SETMEM(0)

* NewFarHeapSize& = SETMEM(-FarHeapSizede / 2)
'SDYNAMIC

'************%**************************************************************

' The varibles declared below can be used by all subroutines. Arrays are
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' declared here, as are the variables used by the D/A and A/D boards.

DIM SHARED DataBuf{32) AS INTEGER

DIM SHARED nDasErr AS INTEGER

DIM SHARED szCfgName AS STRING

DIM SHARED hDev AS LONG

DIM SHARED hAD AS LONG

DIM SHARED wStatus AS INTEGER

DIM SHARED dwCount AS LONG

DIM SHARED dwFactor AS LONG

DIM SHARED ACommand(16) AS INTEGER

DIM SHARED DERR AS INTEGER

DIM SHARED hDDA16 AS LONG

DIM SHARED hDA AS LONG

DIM SHARED ChData(0 TO 20, 1 TO 32) AS LONG

DIM SHARED ChVoli(l TO 32) AS SINGLE

DIM SHARED SensCon(1 TO 32) AS SINGLE

DIM SHARED M(100) AS SINGLE

DIM SHARED GTHETA(100) AS SINGLE
‘****************************************************************************
' The following values are constanis used throughout the program. They can
' be used by any subroutine.

CONST CPN.X.TW = 100, CPN.X.TC = 100, CPN.X.TE = 100
CONST CPS.X.TW = -100, CPS.X.TC = -100, CPS. X.TE = -100
CONST CPN.Y.TW = 70, CPN.Y.TC = 70, CPN.Y.TE = 70

CONST CPS.Y.TW =70, CPS.Y.TC =70, CPS.Y.TE = 70

CONST CPN.Z.TW = 100, CPN.Z.TC = 0, CPN.Z.TE = -100

CONST CPS.Z.TW = 100, CPS.Z.TC = 0, CPS.Z.TE = -100

CONST CPN.X.BNW = 50, CPN.X.BNE = -50

CONST CPN.Y.BNW = -240, CPN.Y.BNE = -240

CONST CPN.Z.BNW = 80, CPN.Z.BNE = -80

CONST CPS.X.BSW = -50, CPS.X.BSE =-50

CONST CPS.Y.BSW = -240, CPS.Y.BSE = -240

CONST CPS.Z.BSW = 80, CPS.Z.BSE = -80

CONST LINKLENGTH = 150

CONST ENO.X.BSE = 300, ENO.Y.BSE = -200, ENO.Z.BSE = -50
CONST ENO.X.BSW = 300, ENO.Y.BSW = -200, ENO.Z BSW = 50
CONST ESO.X.BNE = 230, ESO.Y.BNE = -200, ESO.Z.BNE = -50
CONST ESO.X.BNW =230, ENO.Y BNW = -200, ENO.Z.BNW = 50
CONST L2.X.NE = 100, L2.Y.NE = 150, L2.Z.NE = 40

CONST L2.X.NW = 100, L2. Y NW = 150, L2.ZNW = -40

CONST L2.X.SE = 400, L2.Y.SE = 150, L2.Z.SE = 40

CONST L2.X.SW =400, L2.Y.SW = 150, L2.Z.SW = -40

CONST PIN.X.0 = 60, PIN.Y.O = 80, PIN.Z.O =0

CONST P2N.X.0 = 60, P2N.Y.O =0, P2N.Z0 =0

CONST P3N.X.0 = 60, P3N.Y.O = 0, PAN.Z.0 = 100

CONST P1S.X.0 = 360, P18.Y.0 = 80,P18.Z.0=0

CONST P28.X.0 =360, P2S.Y.0=0,P28.Z.0=0

CONST P3S.X.0 =360, P3S.Y.0 =0, P38.Z.0 =100
!$**********$****************************************************************
' Here is where the program begins. The following statements enable the
' function keys used in the program.

93



KEY(10) ON

ON KEY(10) GOSUB 515
KEY(9) ON

ON KEY(9) GOSUB 516
KEY(7) ON

ON KEY(7) GOSUR 517
KEY(5) ON

ON KEY(5) GOSUB 520
KEY(3) ON

ON KEY(3) GOSURB 525
KEY(4) ON

ON KEY(4) GOSUB 530
KEY(6) ON

ON KEY(6) GOSUB 535
SCREEN 9

WIDTH 80, 43

VIEW PRINT

CALL Initialize.Vars
CALL Main.Menu

" This is the end of the main program. All of the functions of the program
' are accessed by the main menu subroutine.

510 END
‘************************************************************************$$=€=

515 FiOFlag =1
RETURN

516 F9Flag =1
RETURN

517 FiFlag =1
RETURN

520 F5Flag =1
RETURN

525 F3Flag =1
RETURN

530 F4Flag=1
RETURN

535 F6Flag =1
RETURN

REM $STATIC
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SUB Actuator.Vectors
'***********$***********#*********************&*****************************

SHARED TEMPO.INX, TEMPO.2NX, TEMPO.3NX, TEMPO.INY, TEMPO.3NY, TEMPO.15X
SHARED TEMPO.28X, TEMPOQ.38X, TEMPO.18Y, TEMPO.38Y, FORCE.X.BSW

SHARED FORCE.Y.BSW, FORCE.ZBSW, FORCE.X BSE, FORCE.Y.BSE, FORCE.Z.BSE

SHARED FORCE.X.BNW, FORCE.Y. BNW, FORCE.Z BNW, FORCE.X.BNE, FORCE.Y .BNE

SHARED FORCE.Z.BNE

SHARED FORCE.XN.TE, FORCE.YN.TE, FORCE.ZN.TE, FORCE.XS.TE, FORCE.YS.TE, FORCE.ZS.TE
SHARED FORCE.XN.TC, FORCE.YN.TC, FORCE.ZN.TC, FORCE.XS.TC, FORCE.YS.TC,
FORCE.ZS.TC

SHARED FORCE.XN.TW, FORCE.YN.TW, FORCEZN.TW, FORCE.XS.TW, FORCE.YS.TW,
FORCE.ZS.TW

SHARED DELTA.X.BSW, DELTA.X.BSE
SHARED FORCE.X.NE, PFORCE.Y.NE, FORCE.Z.NE, FORCE.X.NW, FORCE.Y.NW, FORCE.ZNW

SHARED FORCE.X.SE, FORCE.Y.SE, FORCE.Z.SE, FORCE.X.5W, FORCE.Y.SW, FORCE.Z.SW
SHARED FORCE.NE, FORCE.NW, FORCE.SE, FORCE.SW
SHARED CN.X.TE, CN.Y.TE, CN.X.TC, CN.Y.TC, CN.X.TW, CN.Y.TW
SHARED CS.X.TE, CS.Y.TE, CS.X.TC, CS.Y.TC, CS X.TW, CS.Y.TW
SHARED CN.X.BNE, CN.Y.BNE, CN.XBNW, CN.Y. BNW
SHARED CS.X.BSE, CS$.Y.BSE, CS X.BSW, CS.Y BSW
SHARED D.X.NE, D.Y.NE, D.X.NW, D.Y NW, D.X.SE, D.Y.SE, DX.SW,D.Y.SW
'***********************************************************$**************
' This subroutine calculates the coordinates of points P1, P2, and P3 on
' the north and south grillages, calculates the vectors U, V, and W, and then
' finds the actuator vectors and force components for all actuators and finks.
' First, the coordinates of poiats P1, P2, and P3 are found. They are equal
' to their original positions (constants) plus their changes in position, as
* measured by the grillage transducers. (Note that some coordinates are simply
' equal to their original distances).

PIN.X = PINX.O + TEMPO.INX

TP2N.X = PZN.X.0 + TEMPO.2ZNX

P3N.X = P3N.X.0 + TEMPO.3NX

PIN.Y = PIN.Y.O + TEMPO.INY

PINY =P2N.Y.O

P3N.Y =P3N.Y.O + TEMPO.3NY

PIN.Z=PIN.Z.O

P2N.Z =P2N.Z.0

PIN.Z=P3IN.ZO

P1S.X = P1S.X.0 + TEMPO.ISX
P28.X = P28.X.0 + TEMPO.28X
P3S.X = P38.X.0 + TEMPO.38X
P18.Y =P1S.Y.O + TEMPO.18Y

P258.Y =P28.Y.O0
P38.Y = P38.Y.0 + TEMPO.38Y

P1S.Z=P18.Z.0
P2S.Z=P28.2.0
P38.Z=P38.Z.0

‘Now, the U, V, and W vectors are found for each grillage using the coordinates
" of points P1, P2, and P3.

VN.X = PIN.X - P2N.X
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VN.Y =PIN.Y - P2N.Y
VN.Z=PIN.Z-PIN.Z
WN.X =P3N.X-P2N.X
WN.Y =P3N.Y - P2N.Y
WN.Z=P3N.Z-P2N.Z

V8. X =PISX-P2SX
V8. Y =PISY-P28Y
V8.Z=PI18.7-P28.Z
WS.X=P35X-P28.X
WS.Y = P3S.Y - P28.Y
WS.Z=P35.Z2-P25.2

UN.X = (VN.Y * WN.Z) - (WN.Y * VN.Z)
UN.Y =-((VN.X * WN.Z) - (WN.X * VN.Z))
UN.Z = (VN.X * WNLY) - (WNLX * VN.Y)
USX = (VS.Y * WS.Z) - (WS.Y * VS.Z)
US.Y = -((VS.X * WS.Z) - (WSX * VS.Z))
US.Z=(VS.X * WS.Y) - (WS.X * VS.Y)

' Here, the length of each U, V, and W vector is found.

VNL=(VN.XA2+VN.Y A2+ VNZA2)".5
WNL =(WNX A2+ WNY "2+ WNZA2)" .5
UNL=(UNXA2+UNY A2+ UNZ*2) .5
VSL=(VSX 2+ VSY " 2+VSZA2)".5
WSL=(WSX"2+WS.Y 2+WSZ 2" .5
USL=(USX"2+USY "2+USZ"2)".5

' Calculate the components of the transformation matrices for both grillages.

tN.11 =UNX/UN.L
N, 12 =UNY/UN.L
tN.13 =UN.Z/UN.L
iN21=VNX/VNL
tN.22 =VN.Y / VN.L
tN.23 = VN.Z/VN.L
tN.31=WN.X/WN.L
tN.32 = WN.Y / WN.L
iN.33 = WN.Z/ WN.L

15.11 =USX/US.L
tS.12=US.Y/USL
tS.13=US.Z/USL
tS.21 = VS.X/VSL
tS.22=VS.Y/VSL
t8.23=VS.Z/VS.L
t8.31 = WS.X/WSL
15.32 = WS.Y /WS.L
£5.33 = WS.Z/WS.L

* Calculate the RN and RS vectors. The components of these vectors are
"equal to the coordinates of points P2N and P28, respectively.
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RN.X = P2NX
RN.Y = P2N.Y
RN.Z=P2N.Z
RS.X=P28.X
RSY =P28Y
RS.Z=P25.2

"The CN and CS vectors are found for the top actuators by multiplying the
' transformation matrix by the CPN and CPS vectors (these are constants).

CNX.TW =tN.11 * CPN.X.TW + tN.21 ¥ CPN.Y. TW + tN.31 * CPN.ZTW
CNY.TW = tN.12 % CPN.X.TW +tN22 * CPN.Y.TW + t{N.32 * CPN.Z. TW
CN.Z.TW =N.13 * CPN.X. TW +tN.23 * CPN.Y.TW + (N.33 * CPN.Z.TW

ONX.TC=tN.11 * CPN.X.TC +tN.21 * CPN.Y.TC +tN.31 * CPN.Z.TC
CN.Y.TC =1N.12 * CPN.X.TC + tN.22 * CPN.Y.TC + tN.32 * CPN.Z.TC
CN.Z.TC =tN.13 * CPN.X.TC + tN.23 * CPN.Y.TC + tN.33 * CPN.ZTC

CN.X.TE =N.11 * CPN.X.TE + tN.21 * CPNLY.TE + tN.31 * CPN.Z.TE
CN.Y.TE =tN.12 * CPN. X.TE + tN.22 * CPN.Y.TE + tN.32 * CPN.Z.TE
CN.Z.TE =tN.13 * CPN.X.TE + tN.23 * CPN.Y.TE + tN.33 * CPN.Z.TE

CSX.TW =1S.11 * CPS.X.TW +t$.21 * CPS.Y.TW +1t8.3]1 * CPS.ZTW
CSY.TW =1S8.12 * CPS.X.TW +18.22 * CPS.Y.TW + 1832 * CPS.ZTW
CS.Z.TW =18.13 * CPS.X.TW +18.23 * CPS.Y.TW +8.33 * CPS.Z.TW

CS.XTC=18.11 * CPS.X.TC +18.21 * CPS.Y.TC +t8.31 * CPS.Z.TC
CS.Y. TC =1S.12 * CPS.X.TC +18.22 * CPS.Y.TC +t8.32 * CPS.Z.TC
CS.Z.TC =18.13 * CPS.X.TC +8.23 * CPS.Y.TC +18.33 * CPS.Z.TC

CSX.TE=t8.11 * CPS.X.TE +t8.21 * CPS.Y.TE +S.31 * CPS.Z.TE
CS.Y.TE =15.12 * CPS.X.TE +8.22 * CPS.Y.TE +18.32 * CPS.ZTE
CS.Z.TE =1S.13 * CPS.X.TE +15.23 * CPS.Y.TE +8.33 * CPS.Z.TE

' Calculate the CN vectors for the bottom links.

CN.X.BNW ={N.11 ¥ CPN.X.BNW + tN.21 * CPN.Y.BNW + {N.31 * CPN.Z BNW
CN.Y.BNW = tN.12 * CPN.X.BNW + {N.22 * CPN.Y.BNW + tN.32 * CPN.Z BNW
CN.Z.BNW = tN.13 * CPN.X. BNW + tN.23 * CPN.Y.BNW + {N.33 * CPN.Z.BNW

CN.X.BNE = tN.11 * CPN.X.BNE + fN.21 * CPN.Y.BNE + tN.31 * CPN.Z.BNE
CN.Y.BNE = tN.12 * CPN.X.BNE + tN.22 * CPN,Y.BNE + tN.32 * CPN.Z.BNE
CN.Z.BNE = N.13 * CPN.X.BNE + tN.23 * CPN.Y.BNE + {N.33 * CPN.Z.BNE

' Calculate the CS vectors for the bottom actuators,

CS.X.BSW =18.11 * CPS.X.BSW +t8.21 * CPS.Y.BSW +15.31 * CPS.ZBSW
CS.Y BSW =1S.12 * CPS.X.BSW +18.22 * CPS.Y.BSW +15.32 * CPS.Z.BSW
CS.Z.BSW =18.13 * CPS.X.BSW +18.23 * CPS.Y.BSW +15.33 * CPS.Z.BSW

CS.X.BSE =1S.11 * CPS.X.BSE + tS.21 * CPS.Y.BSE +18.31 * CPS.Z.BSE

CS.Y.BSE = S.12 * CPS.X.BSE + 18,22 * CPS.Y.BSE +t5.32 * CPS.Z.BSE
CS.Z.BSE =1S.13 * CPS.X.BSE +18.23 * CPS.Y.BSE +8.33 * CPS.Z.BSE
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* Caleulate the D vectors for the vertical links.

DXNE=N.11 * DP.X.NE +{N.21 * DP.Y.NE + tN.31 * DP.ZNE
DY NE=tN.12 * DP.X.NE + tN.22 * DP.Y.NE + fN.32 * DP.ZNE
D.ZNE =tN.13 * DP.X.NE + tN.23 * DP.Y NE + {N.33 * DP.ZNE

DX.NW =1N.11 * DP.XNW + (N21 * DRYNW + fN.31 * DP.ZNW
DYNW=tN.12 * DP.XNW + tN.22 * DP.Y NW + {IN.32 * DP.ZNW
D.ZNW = tN.13 * DP.XNW +{N.23 * DP.Y.NW +iN.33 * DP.ZNW

DXSE=18.11 * DP.X.SE +18.21 * DP.Y.SE +t8.31 * DP.Z.SE
D.Y.SE=18.12 * DP.X.SE +t5.22 * DP.Y.SE + 18.32 * DP.Z.SE
D.ZSE=18.13 * DP.X.SE +15.23 * DP.Y.SE +t8.33 * DP.Z.SE

D.X.SW=18.11 * DP.X.SW +15.21 * DP.Y.SW +15.31 * DP.Z.SW
D.Y.SW=18.12 * DP.X.SW + 1522 * DP.Y.SW + 532 * DP.ZSW
DZSW=15.13 * DP.X.SW +t5.23 * DP.Y.SW +S.33 * DP.Z.SW

' The EN {(north end) and ES (south end) vectors are calculated for all
* actnators and bottom links.

ENXTW=RNX+CNXTW
ENY.TW=RN.X+CNY.TW
EN.ZTW =RN.Z+CN.ZTW
ES X TW =RS.X + CSX.TW
ESY. TW=RS8Y +CS.Y.TW
ES.ZTW=R8Y +C8ZTW

EN.X.TC=RN.X+CN.X.TC
EN.Y.TC =RN.X + CN.Y.TC
ENZTC=RN.Z+CNZTC
ESXTC=RS.X+CS.X.TC
ESY.TC=RS.Y +CSY.TC
BS.ZTC=RS.Y + CS8.Z.TC

ENX.TE=RN.X + CN.X.TE
EN.Y.TE=RN.X+CN.Y.TE
EN.Z.TE =RN.Z + CN.ZTE
ESX.TE=RS.X +CS.X.TE
ES.Y.TE=RS.Y + C8.Y.TE
ESZTE=R&8Y + C8.ZTE

ENX.BSW = ENO.X.BSW + DELTA X.BSW
EN.Y.BSW =ENO.Y.BSW

EN.ZBSW = ENO.ZBSW
ESX.BSW=RSX +CS.X.BSW

ES.Y.BSW =RS.Y + CS.Y.BSW

ES.Z.BSW = R8.Y + CS.Z.BSW

EN.X.BSE = ENO.X.BSE + DELTA.X.BSE
EN.Y.BSE = ENO.Y.BSE

EN.Z.BSE = ENO.ZBSE
ES.X.BSE=RS.X +CS.X.BSE
ES.Y.BSE=RS.Y + C5.Y BSE
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ES.Z.BSE=RS8.Y + CS.Z.BSE

EN.X.BNE = RN.X + CN.X.BNE
EN.Y.BNE = RN.Y + CN.Y.BNE
EN.Z.BNE = RN.Z + CN.Z.BNE
ES.X.BNE = ESO.X.BNE + DELTA.X.BSE
ES.Y . BNE =ESO.Y.BNE

ES.Z.BNE = ESO.Z.BNE

EN.X.BNW = RN.X + CN.X.BNW
EN.Y.BNW =RN.Y + CN.Y.BNW
EN.ZBNW = RN.Z + CN.ZBNW
ES.X.BNW = ESO.X.BNW + DELTA.X.BSW
ES.Y.BNW = ESO.Y.BNW

ES.Z.BNW =ESO.ZBNW

' Calculate the A vectors for all actuators and bottom links.

AXTW=ES.X.TW-ENXTW
AY.TW=ESY.TW-ENY.TW
AZTW =ESZTW-ENZTW

AX.TC=ESX.TC - EN.X.TC
AY.TC=ES.Y.TC - EN.Y.TC
AZTC=ES.ZTC-EN.ZTC

AXTE=ESXTE-ENXTE
AY.TE=ESY.TE-ENY.TE
A.Z.TE =ES.Z.TE - EN.Z.TE

AXBSW = ES.X.BNW - ENX.BNW
A.Y.BSW = ES.Y.BNW - EN.Y. BNW
A.ZBSW =ES.ZBNW - EN.Z.BNW

A X.BSE = ES.X.BNE - EN.X.BNE
A.Y BSE = ES.Y.BNE - EN.Y.BNE
A.ZBSE = ES.Z.BNE - EN.ZBNE

AX.BNW =ES.XBNW - ENXBNW
A.Y.BNW = ES.Y BNW - EN.Y BNW
AZBNW =ES.ZBNW - EN.ZBNW

AXBNE = ES X.BNE - EN.X.BNE
A.Y.BNE = ES.Y.BNE - EN.Y . BNE
A.ZBNE = ES.Z.BNE - EN.Z.BNE

ATW=(AXTW" 2 +AYTW/2+AZTW " 2)*.5
ATC=(AXTCA2+AY.ICA2+AZTIC 2.5
ATE=(AXTE*2+AYTE2+AZTE 2" 5

ABSE =(A.XBSE~2+AYBSE~2+AZBSE"2)".5
ABSW = (A.XBSW "2 +AYBSW 2 +AZBSW"2)".5
ABNE = (AXBNE/2+AYBNEA2+AZBNE 2)" .5
ABNW = (A.ZBNW A2 + A YBNW 2 + AZBNW " 2) .5
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' Calculate the L1 and L vectors for vertical links.

LLXNE =RN.X +D.X.NE
LIYNE=RNY +DYNE
L1.ZNE=RN.Z +D.ZNE
LI.XNW=RN.X+DXNW
LLYNW=RN.Y +D.Y.NW
L1LZNW=RN.Z+DZNW
LIX.SE=RS.X +D.XSE
L1LYSE=RS.Y +D.Y.SE
L1.Z.SE=RS.Z+D.Z.SE
LIXSW=RSX +DXSW
LLY.SW=RS.Y +D.Y.SW
L1L.Z.SW=RS.Z +D.Z.SW

LXNE=L2XNE-LLXNE
LYNE=L2YNE-LLYNE
LZNE=L2ZNE-LLZNE
LXNW=L2XNW-LLXNW
LYNW=L2YNW-LLYNW
LZNW=L2.ZNW-L1LZNW
LXSE=1L2X.SE-LLXSE
LYSE=L2YSE-LLY.SE
LZSE=1L2Z8E-L1LZSE
LY SW=L2.X.SW-LLXSW
LYSW=L2Y.SW-LLYSW
LZSW=12Z8W-LLZSW

' Calculate total length of the L vectors for vertical links.

LNE=(LXNE"2+LYNE"2+LZNEA2}".5
LNW =(LXNW"2+LYNW"2+LZNW"2) .5
LSE=(L.XSE"2+LYSE"2+LZSE~2}" .5
LSW=(LXSW"2+LYSW"2+LZSW"2}".5

' Force component calculations for actuators and bottom links.

FORCE.XN.TW =FORCE.TW * AX.TW/ATW
FORCE.XS.TW =-FORCE.TW * AX.TW/ATW
FORCE.YN.TW =FORCE.TW * AY.TW/ATW
FORCE.YS.TW =-FORCETW * AY.TW/ATW
FORCEZN.TW =FORCETW * AZTW/ATW
FORCE.ZS.TW =-FORCE.TW * AZTW /A TW
FORCEXN.TC =FORCE.TC * AX.TC/ATC
FORCE.XS.TC = -FORCE.TC * AX.TC/ATC
FORCE.YN.TC =FORCE.TC * AY.TC/ATC
FORCE.YS.TC=-FORCE.TC * AY.TC/ATC
FORCE.ZN.TC =FORCE.TC * AZTC/ A TC
FORCE.ZS.TC =-FORCE.TC* A.ZTC/ATC
FORCE.XN.TE =FORCE.TE * AX.TE/ATW
FORCE.XS.TE=-FORCE.TE* AX.TE/ATW
FORCE.YN.TE =FORCE.TE* AY.TE/ATW
FORCE.YS.TE=-FORCE.TE* AY.TE/ATW
FORCE.ZN.TE = FORCE.TE * AZTE/ATW
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FORCE.ZS.TE = -FORCE.TE * A.Z.TE/ ATW

FORCE.X.BSW = FORCE.BSW * A X.BSW /A BSW
FORCE.Y.BSW = FORCE.BSW * A.Y. BSW / ABSW
FORCE.ZBSW = FORCEBSW * A.Z BSW /A BSW
FORCE.X.BSE = FORCE.BSE * A.X.BSE / A.BSE
FORCE.Y.BSE = FORCE.BSE * A.Y.BSE/ A.BSE
FORCE.Z.BSE = FORCE.BSE * A.ZBSE / A.BSE

FORCE.X.BNW = FORCE.BNW * A X BNW / A BNW
FORCE.Y.BNW = FORCE.BNW * A.Y. BNW/ABNW
FORCE.Z.BNW = FORCE.BNW * A Z.BNW/ A BNW
FORCE.X.BNE = FORCE.BNE * A X.BNE / A BNE
FORCE.Y.BNE = FORCE.BNE * A.Y.BNE / A.BNE
FORCE.Z.BNE = FORCE.BNE * A.ZBNE / A.BNE

* Calculations for force components in vertical links.

FORCE.X.NE = FORCE.NE * L.X.NE/L.NE
FORCE.Y.NE = FORCE.NE * L.Y.NE/ L.NE
FORCE.ZNE = FORCE.NE * L.Z.NE /L.NE
FORCE.XNW = FORCENW * LXNW/LNW
FORCR.Y.NW = FORCENW * L.Y NW/LNW
FORCE.ZNW = FORCENW * LZNW /LNW

FORCE.X.SE = FORCE.SE * L. X.SE/L.SE
FORCE.Y.SE = FORCE.SE * L.Y.SE/L.SE
FORCE.Z.SE = FORCE.SE * L.Z.SE/L.SE
FORCE.X.SW = FORCE.SW * LX.SW /L.SW
FORCE.Y.SW = FORCE.SW * L.Y.SW /L.SW
FORCE.Z.SW = FORCE.SW * L.ZSW /L.SW

END SUB
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SUB Calc.Engr.Values

v o sk sk sl e o o o ot ok s sk o o sk o ok R ROl R R sk ORSORR R R
SHARED FORCE.TE, FORCE.TC, FORCE.TW, FORCE.BNE, FORCE.BNW, FORCE.BSE, FORCE.BSW
SHARED FORCE.NE, FORCE.NW, FORCE.SE, FORCE.SW, DELTA.X.BSW, DELTA X.BSE

SHARED XDUCER. INX, XDUCER.2NX, XDUCER.3NX, XDUCER.INY, XDUCER.ANY

SHARED XDUCER.18X, XDUCER.28X, XDUCER.35X, XDUCER.15Y, XDUCER.38Y, THETA.Z.N
'**************************************$*************
' This subroutine takes the channel voltages from sub Sample.AD and

" multiples each by its calibration constant, which gives the engineering
' values for that channel. The constants are in the form of engineering

funit/volt.

t

FORCE.TE = ChVolt(1) * XducerCon(1)
FORCE.TC = ChVolt(2) * XducerCon(2}
FORCE.TW = ChVolt(3) * XducerCon(3)
FORCE.BSE = ChVolt(4) * XducerCon(4)
FORCE.BSW = ChVolt(5) * XducerCon(5)
FORCE.BNE = ChVolt{6) * XducerCon(6)
FORCE.BNW = ChVolt(7) * XducerCon(7)

FORCE.NE = ChVolt(8) * XducerCon(8)
FORCE.NW = ChVolt(9) * XducerCon(9)
FORCE.SE = ChVolt(10) * XducerCon(10)
FORCE.SW = ChVolt(11) * XducerCon(11)

XDUCER.INX = ChVolt(16) * XducerCon(16)
KDUCER.2NX = ChVolt(17) * XducerCon(17)
XDUCER.3NX = ChVolt(18) * XducerCon(18)
XDUCER.INY = ChVolt(19) * XducerCon(19)
XDUCER.3NY = ChVolt(20) * XducerCon(20)
XDUCER.18X = ChVolt(21) * XducerCon(21)
XDUCER.2SX = ChVoli(22) * XducerCon(22)
XDUCER.3SX = ChVolt(23) * XducerCon(23)
XDUCER.1SY = ChVolt(24) * XducerCon(24)
XDUCER.3SY = ChVolt(25) * XducerCon(25)

DELTA.X.BSW = ChVolt(26) * XducerCon(26)
DELTA.X.BSE = ChVolt(27) * XducerCon(27)

THETA.Z.N = ChVolt(28) * XducerCon(28)

END SUB

******************************************
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SUB Constants

'***************************************************************************

SHARED NChannel .
’*******$******$*******************************************************$****
" This subroutine allows the user to view the calibration constants which
" were read from the input file and to correct them if necessary. The
' constants must be in the form of engineering unit/volt.
IF NChannel < 19 THEN
550 CLSO
PRINT "A/D> Board Calibration Constants”
PRINT "CH # Constant"
FOR j =1 TO NChannel
PRINT USING "##"; ;
PRINT " " SensCon(j)
NEXT j
LOCATE NChannel +4, 1
INPUT "Modify channel constants(Y or N)"; rsvp$
IF (UCASES$(rsvp$) = "Y") THEN
LOCATE NChannel + 5, 1
INPUT "Enter channel # to modify: ", ch%
LOCATE NChannel + 6, 1
INPUT “Enter calibration constant: *, SensCon(ch%:)
LOCATE NChanne! + 5, 1
PRINT " "
PRIN’T n "
GOTO 550
ELSEIF (UCASES$(rsvp$) = "N") THEN
GOTO 551
ELSE
GOTO 550
551 ENDIF .
ELSEIF NChannel > 17 AND NChannel <33 THEN
560 CLSO
PRINT "A/D Board Calibration Constants”
PRINT "CH # Constant CH # Constant”
FORj=1TO 18
PRINT USING "##"; j;
PRINT ™ " SensCon(j)
NEXT j
FOR j = 19 TO NChannel
LOCATE 3 +j- 19,25
PRINT USING "##"; j;
PRINT " " SensCon(j)
NEXT j
LOCATE 22,1
INPUT "Modify channel constants(Y or N)"; rsvp$
IF (UCASES(rsvp$) = "Y") THEN
562 LOCATE 23,1
INPUT "Enter channel # to modify: ", ch%
IF ch% > NChannel OR ch% < 1 THEN
LOCATE 23,1
PRI’NT " "
GOTO 562
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END IF
INPUT "Eater calibration constant: ", SensCon(ch%)
LOCATE 23,1
PRIN"I“ L 1
PRINT " "
GOTO 560
ELSEIF (UCASES$(rsvp$) = "N") THEN
GOTO 561
ELSE
GOTO 560
561 ENDIF
END IF

END SUB
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SUB Decision. Algorithm
Fefe i o age e o ok o o ek K e 3 e e 2 ok oK e e o ok e ok ok o s e o o o o kR e e sk sk R R R o ok o ok o 7 o sk o ok e Rl R R R R Aolok R ROR
SHARED Delta. TE, Delta. TC, Delta.TW, Delta. BSE, Delta BSW
SHARED Direction, Correction
SHARED FORCE.TE, FORCE.TC, FORCE.TW, FORCE.BSE, FORCE.BSW
'******************************************************* e b o o ok s o e oK R Sk sk sk RO OR
' This subroutine takes the computed axial force and some user input to
' make decisions about which actuators to move. First, the force tolerance
*is computed. This factor is used if the force imbalances in the top
 actuators are to be corrected. Then the program looks at whether the
‘ rotation is being increased or decreased, and goes to the appropriate
" branch of the if-then statement. Then, the axial force is analyzed and
' the program decides which actuator to move. If an actuator is to be
' extended, its Delta factor is given a value of 1, ifit is to be
' retracted, its Delta factor is given a value of -1. These are used in
*the calculations for new actuator commands.
* The following factor that is computed is used to determine whether the
' forces in the top actuators are equal to each other or not. The factor
' is a tolerance,
Factor = .05 * FORCE.TE
IF Direction > .5 AND Direction < 1.5 THEN
IF P <0 THEN
Delta TE=0
Delta TC=0
Delta. TW =0
Delta. BSE = 1
Delta. BSW = |
ELSEIF P > 0 AND Correction = -1 THEN
Delta. TE = -1
Delta, TC=-1
Deita. TW = -1
Delta.BSE = 0
Delta.BSW =0
ELSEIF P > 0 AND Correction = 1 THEN
IF ABS(FORCE.TW) < ABS(FORCE.TE + Factor) AND ABS(FORCE.TW) > ABS(FORCE.TE -
Factor) THEN
IF ABS(FORCE.TC) < ABS(FORCE.TE + Factor) AND ABS(FORCE.TC) > ABS(FORCE.TE -

Factor) THEN

Delta. TE=-1
Delta. TC = -1
Delta. TW = -1
Delta BSE =0
Delta BSW =10

ELSEIF ABS(FORCE.TC) < ABS(FORCE.TE - Factor) THEN
Delta, TE=0
Delta, TC = -1
Delta. TW =0
Delta. BSE = {
Delta BSW =0

ELSEIF ABS(FORCE.TC) > ABS(FORCE.TE + Factor) THEN
Delta TE=-1
Delta. TW = -1
Delta TC =0
Delta BSE =0
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Delta BSW =0
END IF
ELSEIF ABS(FORCE.TW) < ABS(FORCE.TE - Factor) OR ABS(FORCE.TW) > ABS(FORCE.TE +
Factor) THEN
Delta. TE = -1
Delta TC = -1
Delta, TW = -1
Delta BSW =0
Delta. BSE=0
END IF
END IF
ELSEIF Direction <0 THEN
IF P <0 THEN
Delta. TE = 0
Delta, TC=0
Delta. TW =0
Delta BSE = -1
Delta BSW = -1
ELSEIF P> 0 AND Correction = -1 THEN
Delta TE = 1
Delta. TC=1
Delta. TW =1
Delta. BSE =0
Delta. BSW =0
ELSEIF P > 0 AND Correction = | THEN
{F ABS(FORCE.TW) < ABS(FORCE.TE + Factor) AND ABS(FORCE.TW) > ABS(FORCE.TE -
Tactor) THEN
IF ABS(FORCE.TC) < ABS(FORCE.TE + Factor) AND ABS(FORCE.TC) > ABS(FORCE.TE -
Factor) THEN
Delta TE=1
Delta. TC=1
Delta. TW =1
Delta. BSW =0
Delta BSE=0
ELSEIF ABS(FORCE.TC) < ABS(FORCE.TE - Factor) THEN
Delta. TE =1
Delta TC=0
Delta. TW = 1
Delta. BSW =0
DeltaBSE=0
ELSEIF ABS(FORCE.TC) > ABS(FORCE.TE + Factor) THEN
Delta. TE=0
Delta TC = 1
Delta. TW =0
Delta. BSW =0
Delta BSE = {
END IF
ELSEIF ABS(FORCE.TW) < ABS(FORCE.TE - Factor) OR ABS(FORCE.TW) > ABS(F ORCE.TE +
Factor) THEN
Delta. TE = 1
Delta TC=1
Delta. TW =1
Deita BSW =0
Delta. BSE =0
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END IF
END IF
END IF

END SUB
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SUB Equilibrium.Equs

'***********************#*********************#*****************************

SHARED FORCE XN.TE, FORCE.XN.TC, FORCE XN.TW, FORCE.X.BNE, FORCE X BNW
SHARED FORCE.X.BSE, FORCE.X.BSW

SHARED FORCE.XS.TE, FORCE.XS.TC, FORCE.XS.TW

SHARED FORCE.X.NE, FORCE.X.SE, FORCE. X NW, FORCE.X.SW

SHARED FORCE.YN.TE, FORCE.YN.TC, FORCE.YN.TW, FORCE.Y.BNE, FORCE.Y BNW
SHARED FORCE.Y.BSE, FORCE.Y.BSW :

SHARED FORCE.Y NE, FORCE.Y.SE, FORCE.Y.NW, FORCE.Y.SW

SHARED FORCE.YS.TE, FORCE.YS.TC, FORCE.YS.TW

SHARED CN.X.TE, CN.Y.TE, CN.X.TC, CN.Y. TC, CN.X.TW, CN.Y. TW

SHARED CS.X.TE, CS.Y.TE, CSX.TC, C5.Y.TC, CS.X.TW,CS.Y.TW

SHARED CN.X.BNE, CN.Y.BNE, CN.X.BNW, CN.Y.BNW

SHARED CS.X.BSE, CS.Y.BSE, CS.X.BSW, CS.Y.BSW

SHARED D.X.NE, D.Y.NE, D.X.NW, D.Y.NW, D.X.SE, D.Y.SE, D.X.SW, D.Y.SW
SHARED PN, P.§, P, MZ.N, MZ.S, MY N, MY.3

'***********#***************************************************************
' This subroutine takes all of the actuator and link force components and
' computes the axial force and moments applied to the structure using

' yvarious equilibrium eguations.
' First, the axial force at the north and south grillages are computed, then

' averaged.
r

PN = -FORCE.XN.TE - FORCE XN.TC - FORCE XN.TW - FORCE.X.BNE - FORCE.X.BNW -
FORCE.X.NE - FORCEX.NW

P.S = -FORCE.XS.TE - FORCE.XS.TC - FORCE.XS.TW - FORCE.X.BSE - FORCE X.BSW -
FORCE.X.SE - FORCE X.5W

P=(PN-P8)/2

' Next, the moment about the Z axis at each grillage is computed. Note that
' the equation for each of these is broken up into two equations, simply

" because of their length. The final values for moment are converted to
"kip-t

MZ.N.1 = FORCE.XN.TW * CN.Y.TW + FORCE.XN.TE * CN.Y.TE + FORCEXN.TC * CN.Y.TC +
FORCE.X.BNE * CN.Y.BNE + FORCE. X BNW * CN.Y. BNW + FORCE.X.NE * D.Y.NE + FORCE.X.NW

*DYNW

MZ.N.2 = FORCE.YN.TW * CN.X.TW + FORCE.YN.TE * CN.X.TE + FORCE.YN.TC * CN.X.TC +
FORCE.Y BNE * CN.X.BNE + FORCE.Y.BNW * CN.X.BNW + FORCE.Y.NE * D.X.NE + FORCE.Y NW

*DXNW

MZN=(MZN.1 -MZN.2)/12

t

L

: MZ.S.1 = RORCE.XS.TW * CS.Y.TW + FORCE XS.TE * CS.Y.TE + FORCE.XS.TC * CS.Y.TC +
FORCE.X.BSE * CS.Y.BSE + FORCEX.BSW * CS.Y.BSW + FORCE.X.SE * D.Y.SE + FORCE.X.SW *

DY.SW

MZ.5.2 = FORCE.YS.TW * CS.X.TW + FORCE.YS.TE * CS.X.TE + FORCE.YS.TC * CS X.TC +
FORCE.Y BSE * CS.X.BSE + FORCE.Y.BSW * CS.XBSW + FORCE.Y.SE * D.X.SE + FORCE.Y.SW *

D.X.5W
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MZ.S=(MZS.2-MZS.1)/12

' Now the moments are found about the Y axis at the north and south
' grillages. Note again that the moment equations are split into two
' equations each because of their length.

MY N.] = FORCEXN.TW * CN.Z.TW + FORCE.XN.TC * CN.Z.TC + FORCE.XN.TE * CN.ZTE +
FORCE.X.BNE * CN.Z.BNE + FORCE.XBNW * CN.Z.BNW

MY.N.2 = FORCE.ZN.TW * CN.X.TW + FORCE.ZN.TC * CN.X.TC + FORCEZN.TE * CN.X.TC +
FORCE.Z.BNE * CN.X.BNE + FORCE.ZBNW * CN.X BNW

MYN=(MYN2-MYN.1)/12

MY.S.1 = FORCE.XS.TW * CS.Z.TW + FORCE.XS.TC * CS.Z.TC + FORCE.XS.TE * CS.ZTE +
FORCE.X.BSE * CS.Z.BSE + FORCE.X.BSW * CS.ZBSW

MY S.2 = FORCE.ZS.TW * CS.X.TW + FORCE.ZS.TC * C8$. X.TC + FORCE.ZS.TE * CS.X.TE +
FORCE.ZBSE * CS.X.BSE + FORCE.Z.BSW * CS. X BSW
MY.8 = (MY.S.1 - MY.8.2)/ 12

END SUB

109



SUB F3Flag.Check

'*****************#**********************$*

SHARED nPass, F3Flag

'******************************************

st ot o 8 ok e R e s sl e ok ok kil ook Bk sR Rk dekodokok

*********************************

* This subroutine checks to see whether the F3 key has been pressed, and if
* 50, the Program Parameters menu is displayed in the menu box. This allows
" the user to change several of the program's key parameters.

IF F3Flag = 1 THEN
COLOR 15,0
150 LOCATE35,3
PRINT" PROGRAM PARAMETERS "
LOCATE 36,3
PRINT " 1-DACSTEP SIZE Y
LOCATE 37,3
PRINT" 2-SAVE DATA STEP SIZE "
LOCATE 38,3
PRINT " 3 - NUMBER OF LOOP STEPS "
LOCATE 39,3
PRINT" 4 - MORE PARAMETERS "
LOCATE 40, 3
PRINT " 5 -EXIT MENU "
LOCATE 42,3
INPUT " DESIRED ACTION: *, resp
CALL Clear. Window
LOCATE 37,5
IF resp > .5 AND resp < 1.5 THEN
PRINT" CHANGE DACSTEP"
BLSEIF resp > 1.5 AND resp < 2.5 THEN

PRINT "CHANGE SAVE DATA STEP SIZE"

ELSEIF resp > 2.5 AND resp < 3.5 THEN

PRINT "CHANGE NUMBER OF LOOP STEPS"

ELSEIF resp > 3.5 AND resp <4.5 THEN
PRINT" MORE PARAMETERS "
ELSEIF resp > 4.5 AND resp < 5.5 THEN
PRINT"  EXIT MENU"
ELSE
CALL Clear. Window
GOTO 150
END TF
LOCATE 38,5
PRINT " HAS BEEN CHOSEN."
LOCATE 39, 3

INPUT "IS THIS CORRECT (¥ ORN)?: ", ans§

IF UCASES$(ans$) = "Y" THEN
GOTO 152

FLSE
CALL Clear.Window
GOTO 150

END IF

152 CALL Clear. Window
IF resp > .5 AND resp < 1.5 THEN
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157

156

CALL DAC.Step.Size
nPass =0
CALL Main.Display
ELSEIF resp > 1.5 AND resp < 2.5 THEN
CALL Save.Data.Step.Size
ELSEIF resp > 2.5 AND resp < 3.5 THEN
CALL Change.Loop.5teps
ELSEIF resp > 3.5 AND resp <4.5 THEN
CALL Clear. Window
LOCATE 36,6
PRINT" MOREPARAMETERS "
LOCATE 37, 6
PRINT " 1 - TOLERANCE SIZE "
LOCATE 38, 6
PRINT " 2 - GRAPH SCALE "
LOCATE 39, 6
PRINT " 3 - CORRECT IMBALANCES "
LOCATE 40, 6
PRINT " 4 - EXIT MENU "
LOCATE 41, 6
INPUT " DESIRED ACTION: ", resp2
CALL Clear. Window
LOCATE 37,5
IF resp2 = 1 THEN
PRINT " CHANGE TOLERANCE SIZE "
ELSEIF resp2 = 2 THEN
PRINT * CHANGE GRAPH SCALE "
ELSEIF resp2 = 3 THEN
PRINT * CORRECT IMBALANCES "
ELSEIF resp2 =4 THEN
PRINT"  EXITMENU"
ELSE
GOTO 157
END IF
LOCATE 38,5
PRINT " HAS BEEN CHOSEN."
LOCATE 39,3
INPUT "IS THIS CORRECT (Y OR N)?: , ans$
IF UCASE$(ans$) = "Y" THEN
CALL Clear.Window
GOTO 156
ELSE
CALL Clear.Window
GOTO 157
END IF
IF resp2 = 1 THEN
CALL Tolerance.Size
ELSEIF resp2 = 2 THEN
CALL Choose.Graph.Scale
ELSEIF resp2 = 3 THEN
CALL Cotrect.Imbalances
ELSEIF resp2 = 4 THEN
GOTO 155
END TF
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ELSEIF resp > 4.5 AND resp < 5.5 THEN
GOTO 155
END IF

155 CALL Clear.Window
nPass =0
F3llag=-1
END IF

END SUB
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SUB F5Flag.Check

‘**********************************************************************$*$**

SHARED Direction, nPass, F5Flag
'***************************************************************************
' This subroutine checks to see if 5 was pressed, and if so, the Program
* Functions menu is brought up in the menu box. The user is given several
* options and based on her choice, a separate subroutine is called to
' execute it.
IF F5Flag = 1 THEN
COLOR 15,0
160 LOCATE35,3
PRINT" PROGRAM FUNCTIONS "
LOCATE 36,3
PRINT "1 - INCREASE ROTATION *
LOCATE 37,3
PRINT "2 - DECREASE ROTATION "
LOCATE 38,3
PRINT "3 - VIEW RAW VOLTAGES "
LOCATE 39,3
PRINT "4 - VIEW FULL GRAPH "
LOCATE 40, 3
PRINT "5 - MANUAL COMMAND ADJUSTMENT"
LOCATE 41,3
PRINT "6 - EXIT MENU "
LOCATE 42, 3
INPUT" DESIRED ACTION:", resp
CALL Clear. Window
LOCATE 37,5
IF resp > .5 AND resp < 1.5 THEN
PRINT " INCREASE ROTATION "
ELSEIF resp > 1.5 AND resp < 2.5 THEN
PRINT " DECREASE ROTATION"
ELSEIF resp > 2.5 AND resp < 3.5 THEN
PRINT " VIEW RAW VOLTAGES"
FLSEIF resp > 3.5 AND resp <4.5 THEN
PRINT " VIEW FULL GRAPH"
ELSEIF resp > 4.5 AND resp < 5.5 THEN
PRINT "MANUAL COMMAND ADJUSTMENT"
ELSEIF resp > 5.5 AND resp < 6.5 THEN
PRINT"  EXIT MENU"
ELSE
CALL Clear. Window
GOTO 160
END IF
LOCATE 38, 5
PRINT" HAS BEEN CHOSEN."
LOCATE 39,3
INPUT "IS THIS CORRECT (Y ORN)?: ", ans§

IF UCASE$(ans$) = "Y" THEN
GOTO 162

ELSE
CALL Clear.Window
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GOTO 160
ENDIF

162 CALL Clear.Window

IF resp > .5 AND resp < 1.5 THEN
Direction =1

ELSEIF resp > 1.5 AND resp < 2.5 THEN
Direction = -1
nPass =0

ELSEIF resp > 2.5 AND resp < 3.5 THEN
CALL Zero
nPass = 0
CALL Main.Display

FELSEIF resp > 3.5 AND resp <4.5 THEN
nPlot=0
CALL Large.Graph
nPass = 0
CALL Main.Display

ELSEIF resp > 4.5 AND resp < 5.5 THEN
CALL Volt.Command.Adj
nPass =0
CALL Main.Display

ELSEIF resp > 5.5 AND resp < 6.5 THEN
nPass =0
GOTO 165

END IF

165 FSFlag = -1
END IF

END SUB
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SUB Graph

Vg s e o ok ke o ok ok ok ok e st ok o s e o ok ok o ook ok e ok ol e ok sk ek okl

VIEW (260, 175)-(630, 345), 0, 15

WINDOW (0, 105)~(100, 0)

' Plot the main axes lines.

LINE (13, 22)-(13, 102), 15
LINE (13, 22)-(93,22), 15

' Draw the vertical lines.

LINE (23, 22)-(23, 102), 15
LINE (33, 22)-(33, 102), 15
LINE (43, 22)-(43, 102), 15
LINE (53, 22)-(53, 102), 15
LINE (63, 22)-(63, 102), 15
LINE (73, 22)-(73, 102), 15
LINE (83, 22)-(83, 102), 15
LINE (93, 22)-(93, 102), 15

' Draw the horizontal lines.

LINE (13, 32)-(93, 32), 15
LINE (13, 42)-(93, 42), 15
LINE (13, 52)-(93, 52), 15
LINE (13, 62)-(93, 62), 15
LINE (13, 72)-(93, 72), 15
LINE (13, 82)-(93, 82), 15
LINE (13, 92)-(93, 92), 15
LINE (13, 102)-(93, 102), 15

' Print the text.

COLOR 15
LOCATE 30, 34
PRINT "M"
LOCATE 31, 34
PRINT "O"
LOCATE 32, 34
PRINT "M"
LOCATE 33, 34
PRINT "E"
LOCATE 34, 34
PRINT "N"
LOCATE 35, 34
PRINT "T"
LOCATE 42, 53

*************************************

SHARED nData, THETA.Z.N, MZN, nPass, scale, Direction

'****************************************************************************

' This subroutine sets up the graphics for the moment vs. rotation plot and
 plots the small graph on the main display.
' First, allocate the area for the plot and redefine the coordinates.
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PRINT "ROTATION"
COLOR 15,0
LOCATE 49, 39
PRINT "0"

' Print the values on the axes, depending on the scale chosen.

JF scale = 1 THEN
LOCATE 38, 36
PRINT "1E3"
LOCATE 36, 36
PRINT "2E3"
LOCATE 34, 36
PRINT "3E3"
LOCATE 32, 36
PRINT "4E3"
LOCATE 30, 36
PRINT "5E3"
LOCATE 28, 36
PRINT "6E3"
LOCATE 26, 36
PRINT "7E3"
L.OCATE 24, 36
PRINT "8E3"
LOCATE 40, 46
PRINT ".0025"
LOCATE 40, 56
PRINT ".005"
LOCATE 40, 65
PRINT ".0075"
LOCATE 40, 75
PRINT ".01"

ELSEIF scale =2 THEN
LOCATE 38, 36
PRINT "2E3"
LOCATE 36, 36
PRINT "4E3"
LOCATE 34, 36
PRINT "6E3"
LOCATE 32, 36
PRINT "8E3"
LOCATE 30,35
PRINT "10E4"
LOCATE 28, 35
PRINT "12E3"
LOCATE 26, 35
PRINT "14E3"
LOCATE 24, 35
PRINT "16E3"
LOCATE 40, 47
PRINT ".005"
LOCATE 40, 57
PRINT "01"
LOCATE 40, 65
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PRINT ".015"
LOCATE 40, 75
PRINT ".02"
ELSEIF scale = 3 THEN
LOCATE 38, 36
PRINT "3E3"
LOCATE 36, 36
PRINT "6E3"
1.OCATE 34, 36
PRINT "9E3"
LOCATE 32, 35
PRINT "12E3"
LOCATE 30, 35
PRINT "I5E3"
LOCATE 28, 35
PRINT "18E3"
LOCATE 26, 35
PRINT "21E3"
1.OCATE 24, 35
PRINT "24E3"
LOCATE 40, 47
PRINT ".0075"
LOCATE 40, 56
PRINT ".015"
LOCATE 40, 65
PRINT ".0225"
LOCATE 40, 75
PRINT ".03"
ELSEIF scale = 4 THEN
LOCATE 38, 36
PRINT "4E3"
LOCATE 36, 36
PRINT "8E3"
LLOCATE 34, 35
PRINT "12E3"
LOCATE 32, 35
PRINT "16E3"
LOCATE 30, 35
PRINT "20E3"
LOCATE 28, 35
PRINT "24E3"
LOCATE 26, 35
PRINT "28E3"
1L.OCATE 24, 35
PRINT "32E3"
LOCATE 40, 46
PRINT ".0125"
LOCATE 40, 56
PRINT ".025"
LOCATE 40, 65
PRINT *.0375"
LOCATE 40,75
PRINT ".05"
END IF
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' The following two statements take the present MZ.N and THETA.Z.N values and
" add them to the M() and Theta() arrays so that these values can be

" plotted.

GTHETA{nData} = THETA.Z.N
MinData) = MZ.N
COLOR 2

* The following if-then block plots the graph. Different equations are

' needed, depending on the scale chosen and depending on whether the main
' display was just called (if nPass = 0, the entire graph needs to be re-

' plotted) or if we are just plotting the present values of moment and

' rotation.
' The first part of the if-then plots the moment range of 0-8000 k~ft and rotation
"range of 0 - 0.01 rad.
IF scale = 1 THEN
IF nPass = 0 THEN
FOR i=1TO nData

IFi=1THEN
LINE (13, 22)-(GTHETA(1) * 8000 + 13, M(1)/ 100 +22)

END IF
LINE (GTHETA( - 1) * 8000 + 13, M(i - 1)/ 100 + 22)-(GTHETA() * 8000 + 13, M(i) / 100 + 22)

NEXT i

ELSEIF nPass > 0 THEN
LINE (GTHETA(mData) * 8000 + 13, M(nData) / 100 + 22)-(GTHETA(nData - 1) * 8000 + 13,

M(nData - 1)/ 100 + 22)

END IF
' The following are the equations for the moment range of 0 — 16000 -t
' and rotation range of 0 -- 0.02 rad.

ELSEIF scale = 2 THEN
IF nPass = 0 THEN
FOR i=1TO nData

IF i=1THEN
LINE (13, 22)-(GTHETA(1) * 4000 + 13, M(1) / 200 +22)

END IF
LINE (GTHETAG - 1) * 4000 + 13, M(i - 1)/ 200 + 22)-(GTHETA(i) * 4000 + 13, M(i) / 200 + 22)

NEXT i

ELSEIF nPass > 0 THEN
LINE (GTHETA(nData) * 4000 + 13, M(nData) / 200 + 22)-(GTHETA(nData - 1} 4000 + 13,

M(nData - 1) /200 +22)
END IF

‘ The following are the equations for the moment range of 0 — 24000 k-ft
' and rotation range of 0 — 0.03 rad.

KLSEIF scale = 3 THEN
IF nPass = 0 THEN
FOR i=1TO nData
1IF i =1 THEN
LINE (13, 22)-(GTHETA(]) * 2667 + 13, M(1)/300+22)
END IF
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LINE (GTHETA( - 1) * 2667 + 13, M(i - 1)/ 300 + 22)-(GTHETA(D) * 2667 + 13, M(i) / 300 + 22)

NEXTi
ELSEIF nPass > 0 THEN
LINE (GTHETA(nData) * 2667 + 13, M{(nData) / 300 + 22)-(GTHETA(nData - 1) * 2667 + 13,
M(nData - 1)/ 300 +22)
END IF

‘ The following are the equations for the moment range of 0 — 32000 k-ft
" and rotation range of 0 — 0.04 rad.

ELSEIF scale = 4 THEN
IF nPass = 0 THEN
FOR i=1TOnData
IFi=1THEN
LINE (13, 22)-(GTHETA(I) * 2000 + 13, M(1)/ 400 +22)
END IF
LINE (GTHETAC( - 1) * 2000 + 13, M(i - 1)/ 400 +22)-(GTHETA() * 2000 + 13, M{i}/ 400 + 22)
NEXT i
FLSEIF nPass > 0 THEN
LINE (GTHETA(nData) * 2000 + 13, M(nData) / 400 + 22-(GTHETA(nData - 1) * 2000 + 13,
M(nData - 1)/ 400 + 22)
END IF
END IF
230 WINDOW

END SUB
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SUB Initialize. Acts

!********************#*****************************************$************

SHARED Command. TE%, Command. TC%, Command. TW%, Command BSE%, Command BSW%
SHARED Command.16%, Command. Trigger AS INTEGER
'***************************************************************************
' This subroutine is used for initializing the actuator positions before
' hydraulic pressure is applied. The voltage value from each feedback
' transducer is read from the MTS 458 MicroConsole. These voltages are then entered
' as the initial command voltages for the corresponding actuators. Once
*all 5 initial voltages are entered, the subroutine calls Volt.Command.Adj,
* which will allow the user to fine tune these voltages so that the error
' between the command signals and the feedback signals are zero (as
' measured by the MicroConsole). Then hydraulic pressure may be applied.
* The initial command limits are set as +/- 9.95 volts.
CLS
WIDTH 80,25
COLOR 15,4
LOCATE 1,25
PRINT "Initialize Actuator Positions”
LOCATE 3,1

PRINT " Enter the output voltage for the actuator specified "
PRINT " Voltage must be between -9.95 and 9.95 V"
PRINT “ "

PRINT " T="Top B =DBottom N =North §= South "
PRINT " E = Hast W= West"

PRINT " "

460 LOCATE 10, 15

INPUT "Use Default (0.00 V) for all Actuators? (Y or N): ", rsvp$

IF UCASES$(rsvp$) = "Y" THEN
CommandV . TE =0
CommandV.TC = 0
CommandV.TW =0
CommandV.BSE=0
CommandV.BSW =10
GOTO 466

ELSEIF UCASE$(rsvp$) = "N" THEN
GOTO 461

ELSE
GOTO 460

END IF

461 LOCATE 10, 15
PRINT " "
PRINT " | "
PRINT " "
LOCATE 10, 15

INPUT "Actuator TE: *, CommandV.TE

LOCATE 11,15

PRINT USING "Actuator TR command is +##.## V "', CommandV.TE
LOCATE 12,15

INPUT "Is this correct (Y or N)? ", rsvp$

IF UCASES$(rsvp3$) = "Y" THEN
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IF CommandV.TE > 9,95 THEN
CommandV.TE = 9.95
ENDIF
IF CommandV.TE <-9.95 THEN
CommandV.TE = -9.95
END IF
GOTO 462
ELSE
GOTO 461
END IF
462 LOCATE 10,15
PR}"NT " L]
PRINT 1t 1"
PR_]'NT A1 1"
LOCATE 10, 15

INPUT "Actuator TC: ", CommandV.TC
LOCATE 11, 15
PRINT USING "Actuator TC command is +#.### V "; CommandV.TC
LOCATE 12, 15
INPUT "Is this correct (Y or N)? ", rsvp$
IF UCASES(rsvp$) = "Y" THEN

IF CommandV.TC > 9.95 THEN

CommandV.TC =995
END IF
IF CommandV.TC <-9.95 THEN
CommandV.TC = -9.95

END IF

GOTO 463
ELSE

GOTO 462
END IF

463 LOCATE 10,15

PRINT " "
PRINT 1t n
PRINT n L1

LOCATE 10, 15
INPUT "Actuator TW: ", CommandV.TW
LOCATE 11,15
PRINT USING "Actuator TW command is +H##£.### V "; CommandV.TW
LOCATE 12,15
INPUT "Is this correct (Y or N)? *, rsvp$
IF UCASE$(rsvp$) = "Y" THEN
IF CommandV.TW > 9.95 THEN
CommandV.TW = 9.95
END IF
IF CommandV.TW <-9.95 THEN
CommandV, TW = -9.95
END IF
GOTO 464
ELSE
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GOTO 463
END IF
464 LOCATE 10, 15
PRJ:NT " "
PRINT " "
PRINT " "

LOCATE 10, 15
INPUT "Actuator BSE: ", CommandV.BSE
LOCATE 11, 15
PRINT USING "Actuator BSE command is +####H V ", CommandV.BSE
LOCATE 12,15
INPUT "Is this correct (Y or N)? ", rsvp$
IF UCASE$(rsvp$) = "Y" THEN

IF CommandV BSE > 9.95 THEN

CommandV.BSE = 9.95
ENDIF
IF CommandV BSE <-9.95 THEN
CommandV.BSE = -9.95

END IF

GOTO 465
ELSE

GOTO 464
END IF

465 LOCATE 10, 15

PRI’NT [L] "
PRINT " "
PRINT 1 1

LOCATE 16, 15
INPUT "Actuator BSW: ", CommandV.BSW
LOCATE 11,15
PRINT USING "Actuator BSW command is +#f ### V CommandV.BSW
LOCATE 12,15
INPUT "Is this correct (Y or N)? *, rsvp$
IF UCASES$(rsvp$) = "Y" THEN

IF CommandV.BSW > 995 THEN

CommandV .BSW = 9.95
ENDIF :
IF CommandV.BSW < -9.95 THE
CommandV .BSW = -9.93

END IF

GOTO 466
ELSE

GOTO 465
END IF

466 Command. TE% = CommandV.TE / 004883 + 2048

Command. TC% = CommandV.TC / .004883 + 2048
Command. TW% = CommandV.TW / .004883 + 2048
Command. BSE% = CommandV.BSE / .004883 + 2048
Command BSW% = CommandV.BSW / .004883 + 2048
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Command. 16% = Command. Trigger

CALL Move Actuators
CALL Voit.Command.Adj
END SUB

SUB Initialize. Boards

'***************************************************************************

SHARED NChannel

'*********************************$*****************************************

*In this subroutine, the A/D and D/A boards are initialized. It establishes

* such parameters as the base address for each, the number of A/D channels
* and their gain. The only parameter that may need to be changed is the

* sampling rate of the A/D board. The rest of this subroutine should not

' be changed.

szCfeName = "DAS1800.CFG" + CHR$(0)
nDasErr = DAS1800DEVOPEN%(SSEGADD(szCfgName), 1)
IF nDasBrr <> § THEN
BEEP
PRINT "ERROR ": HEX$(nDasErr); " OCCURRED DURING 'DASI 00DEVOPEN"™: STOP

END IF

" This step establishes communication with the driver through the device
' handle.

nDasBrr = DAS1800GETDEVHANDLEY(0, hDev)
IF (nDasErr <> 0) THEN
BEEP
PRINT "ERROR "; HEX$(nDasFir); * OCCURRED DURING DAS1800GETDEVHANDLE": STOP

END IF

' To perform any of the A/ operations, you must first get a handle to an A/D
' frame (Data tables inside the driver pertaining to the A/D operations).

nDasErr = K GetADFrame%(hDev, hAD)
IF (nDasErr <> 0) THEN
BEEP
PRINT "ERROR "; HEX$(nDasExr); " OCCURRED DURING "KGETADFRAME™: STOP

END IF

' Assign the data array declared above to the frame handle. This says that

' the data sampled by the board will be stored in the array DataBuf. It also
" specifies how many samples to take in one interrupt step, here this is the

* number of channels. (Will take one sample per channel, then stop). If the
* rumber of samples is twice the number of channels, it will sample each

' channel twice, but the first sample for each channel is overwritten.

nDasErr = KSetBufl%(hAD, DataBuf(0), NChannel)
IF nDasErr <> 0 THEN

BEEP
PRINT "ERROR "; HEX$(nDasErr); " OCCURRED DURING ‘KSetBuf": STOP

END IF
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* Set up the conversion clock rate: 5000000/dwFactor (Hz). This controls the
* speed at which the board will sample. Smaller dwFactors mean a faster
* sampling rate.

dwFactor = 10000
nDasErr = KSetClkRate%(hAD, dwFactor)
IF nDasErr < 0 THEN
BEEP
PRINT "ERROR "; HEX$(nDasErr); " OCCURRED DURING "KSetClkRate'™: STOP
END IF

' Set the channels at which to start and stop and their gain. The gain is

" set for one (gain code is 0) but when the voltage is calculated in sub

' Sample.AD, the "gain", or voltage range, that was entered by the user is
' part of the equation.

nDasErr = KSetStartStopG%(hAD, 0, NChannel - 1, 0)
IF nDasErr < (0 THEN

BEEP

PRINT "ERROR "; HEX$(nDasErr); " OCCURRED DURING KSetStartStopG™': STOP
END IF

' Now, initialize the D/A board. This step initializes the internal data

' tables according to the information contained in the configuration file

' DDA16.CFG. Make sure that the configuration of the board matches that of
 the file, that the settings are correct for the application, and that the

* file is in the directory in which you are running the program.

A$ = "DDA16.CFG" + CHRS(0)

DERR = DDAJ6DEVOPEN%(SSEGADD(AS), 1)

IF DERR <> 0 THEN
BEEP
PRINT "ERROR "; HEX$(DERR); " OCCURRED DURING '.DEVOPEN™
STOP

END IF

' This step establishes communication with the driver through the Device
' Handle for board 0.

DERR = DDA16GETDEVHANDLEY%(0, hDDA16)

IF {DERR < () THEN
BEEP
PRINT “ERROR "; HEX$(DERR); " OCCURRED DURING '..GETDEVHANDLE™
STOP :

END IF

" To perform any D/A operations, you must first get a Handle to a D/A frame
' (the data tables inside the driver pertaining to D/A operations).

DERR = KGetDAFrame%%(hDDA16, hDA)
IF (DERR <> 0) THEN
BEEP
PRINT "ERROR "; HEX$(DERR); " OCCURRED DURING 'KGETADFRAME™

STOP
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END IF

" Assign the data array to the Frame Handle. This tells the board what
' count values to assign to the channels.

DERR = KSetBufl%(hDA, ACommand(1), 16)

IF DERR <> (0 THEN
BEEP
PRINT "ERROR "; HEX$(DERR); " OCCURRED DURING KSetBufl"
STOP

ENDIF

' Set the desired channels for D/A operation. The first number is the first
' channel in the group and the second number is the last channel to be
* sampled, Note that the board calls the first channel ¢ and not I,

DERR = KSetStartStopChn%(hDA, 0, 15)

IF DERR < 0 THEN
BEEP
PRINT "ERROR "; HEX$(DERR); " OCCURRED DURING K SetStartStopChn'™
STOP

END IF

* Specify the internal clock rate: 1000 tics at 1MHz/tic is a | KHz rate.
" The number of tics is how many clock tics will be counted until the
' channels are updated with new values (smaller number means faster

' execution).

DERR = KSetClkRate%(hDA, 1000)
IF DERR <> 0 THEN

BEEP
PRINT "ERROR "; HEX$(DERR); " OCCURRED DURING KSetClkRate"

STOP
END IF

“The following Joop initializes the array ChData to zero. These are the
' count values that are sampled by the A/ board before they are converted

' to voliages.

FOR N = 1 TO NChannel
ChData(0, N) =0

NEXTN

FOR N =0 TO NChannel - 1
DataBufiN} = 0

NEXTN

END SUB
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SUB Initialize.Vars
‘**3&************************************************************************
SHARED Direction, F10Flag, F3Flag, F9Flag, I'5Flag, nData, nPass
SHARED scale, Loop.Steps, nStep, Save.Data.Step, Tolerance, F6Flag, F4¥lag
SHARED DACStep.TE%, DACStep. TC%, DACStep. TW%, DACStep.BSE%, DACStep.BSW%
SHARED Delta. TE%, Delta. TC%, Delta, TW%, Delta. BSW%, Delta.BSEY, Correction
SHARED Command. Trigger AS INTEGER, Save.Data.Counter, Pause.Execution
SHARED F7Flag, nPlot, nSave
’:é(***********************************%‘**************************************
" This subroutine is called at the beginning of the program. It simply
' initializes many of the program's variables giving them default values.

Direction = 0

Correction = -1

F10Flag = -1
F5Flag = -1
F4Flag = -1
F3Flag = -1
F9Flag =-1
F7Flag = -1
F6Flag = -1

DACStep. TE% = 1
DACStep. TC% = 1
DACStep. TW% =1
DACStep BSE% =1
DACStep.BSW% =1
Delta. TE% = 0
Delta. TC% = 0
Delta. TW% =0
Delta. BSEY% = 0
Delta BSW% =0
nData = 1

nSave = §

nPlot=10

nPass = 0

scale = 1
Pause.Execution =0
Loop.Steps =20
Save.Data.Step = 10
Save.Data.Counter = |
ndtep = 1

Tolerance = 1!
Command. Trigger = 3072

END SUB
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SUB Large.Graph

'****************************************************************************

SHARED nPlot, scale, nData, F10Flag, nPass
’********************************************************$*******************
* This. subroutine sets up the graphics for the large moment vs. rotation

" plot and graphs the values.

' If the subroutine is called for the first time, nPlot = ( and the graphics

" must be set up. If not, nPlot>0 and the graphics setup can be skipped.

' Only one scale can be plotted on this graph, the entire moment range of

“ 0 — 32,000 k-ft and entire rotation range of 0 —0.04 k-ft.

206 1¥ nPlot> 0 THEN

GOTO 200

END IF

CLS 0

WIDTH 80, 43

VIEW (0, 0)-(639, 349), 0,0

VIEW PRINT

WINDOW (0, 240)-(600, 0)

COLOR 15, 4

' Plot Border.

LINE (55, 20)-(55, 220)
LINE (55, 20)-(575, 20)
LINE (575, 20)-(575, 220)
LINE (55, 220)-(575, 220)

' Plot Gridlines.

FOR i =30 TO 210 STEP 10
LINE (55, i)-(575, 1)

NEXT i

FOR i =120 TO 510 STEP 65
LINE (i, 20)-(i, 220)

NEXT i

LOCATE 2,24

PRINT " F10: Exit Subprogram”

*X - Axis Label.

LOCATE 16,2
PRINT "M"
LOCATE 19,2
PRINT "o"
LOCATE 22,2
PRINT "m"
LOCATE 25,2
PmT l!ell'
LOCATE 28,2
PRINT "n"
LOCATE 31,2
PRINT "t"
LOCATE 43, 30
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PRINT" Rotation "

LOCATE 3, 3
PRINT "32000"
LOCATE7, 3
PRINT "28800"
LOCATE 10, 3
PRINT "25600"
LOCATE 14, 3
PRINT "22400"
LOCATE 18,3
PRINT "19200"
LOCATE 21, 3
PRINT "16000"
LOCATE 25, 3
PRINT "12800"
LOCATE 29, 4
PRINT "9600"
LOCATE 32, 4
PRINT "6400"
LOCATE 36, 4
PRINT "3200"
LOCATE 40, 4
PRINT "0"

LOCATE 41, 8
PRINT "0"
LOCATE 41, 13
PRINT "0.005"
LOCATE 41, 23
PRINT "0.01"
LOCATE 41, 31
PRINT "0.015"
LOCATE 41, 41
PRINT "0.02"
LOCATE 41, 48
PRINT "0.025"
LOCATE 41, 58
PRINT "0.03"
LOCATE 41, 65
PRINT "0.035"
LOCATE 41, 76
PRINT ".04"

200 COLOR 1

IF nPlot = 0 THEN
FOR i=1TO nData
IFi=1THEN
LINE (55, 22)-(GTHETA(1) * 13000 + 55, M(1) / 220 + 20)
END IF
LINE (GTHETA( - 1) * 13000 + 55, M(i - 1)/ 220 + 20)-(GTHETA() * 13000 + 55, M(3) / 220 + 20)
NEXT i
ELSEIF nPlot> 0 THEN
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LINE (GTHETA(nData) * 13000 + 55, M(nData) / 220 + 20)-(GTHETA(nData - 1) * 13000 + 55,
MnrData - 1)/ 220 + 20)
END IF

KEY(10) ON

IF F10Flag = 1 THEN
205 LOCATE?2, 24
PRINT L "
LOCATE 2,24
COLOR 15
INPUT "Exit Program {Y or N):", ans$
ans$ = UCASES$(ans$)
IF ans$ ="Y" THEN
F10Flag = -1
GOTO 210
ELSEIF ans$ = "N" THEN
LOCATE 2,24
PR_}NT " L
F10Flag = -1
ELSE
GOTO 205
END IF
ELSEIF F10Flag = -1 THEN
nPlot=nPlot + 1
GOTO 206
END IF

210 WINDOW

END SUB
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SUB Load.Setup

'**********************************$****************************************

SHARED Ident$, NChannel, OutFile1$, OutFile2$, OutFile3$
'***************************************************************************
' This subroutine allows the user to load a file already containing the
* chanme] setup data into the program.
CLS
COLOR. 15,8
LOCATE 4, 10
PRINT " Load Channel Setup From File "
LOCATE 6, 10
INPUT "Enter name of file to retrieve Channel Information from: * filein$
LOCATE 7, 10
PRINT "Information will be loaded from file: *; filein$
LOCATE 8, 10
INPUT "Modify Filename (Y or N)"; rsvp$
IF UCASES$(rsvp$) = "Y" THEN
LOCATE 9, 10
INPUT "Enter Correct Drive, Directory and Filename: ", filein®
ENDIF

OPEN filein$ FOR INPUT AS #4
INPUT #4, Ident$
INPUT #4, NChannel
FOR j = 1 TO NChannel
INPUT #4, SensCon(j)
NEXT j
INPUT #4, OutFilel$
INPUT #4, OutFile2$
INPUT #4, OutFile3$
CLOSE #4

END SUB
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SUB Main.Display

'***************************************************************************

SHARED nPass, scale, nStep, Loop.Steps, Save.Data.Step, nData, Save.Data.Counter

SHARED FORCE.TE, FORCE.TC, FORCE.TW, FORCE.BNE, FORCE.BNW, FORCE.BSE, FORCE.BSW
SHARED FLINK.NE, FLINK.NW, FLINK.SE, FLINK.SW, Correction

SHARED P, P.N, P.S, MZ.N, MZ.S, MY.N, MY.5

SHARED THETA.Z N, THETA.Z.S, THETA.Y.N, THETA.Y.S

’***************************************************************************

* This subroutine sets up the graphics of the main screen.
KEY(10) OFF
KEY(5) OFF
KEY(3) OFF
IF nPass > 0 THEN
GOTO 430
END IF
421 CLSO

' Set up graphics viewport.

WIDTH 80, 43

VIEW (0, 0)-(639, 349), 15
VIEW PRINT

VIEW (260, 5)-(630, 170), 0, 15

' Draw main straight Jines of hull.

LINE (80, 20)-(290, 20), 2
LINE (80, 20)-(40, 60), 2
LINE (290, 20)-(330, 60), 2
LINE (40, 60)-(330, 60), 2
PAINT (100, 40), 2

LINE (90, 120)-(280, 120), 2

' Draw curved ends of hull.

LINE (40, 60)-(45, 80), 2
LINE (45, 80)-(55, 95), 2
LINE (55, 95)-(70, 110),2
LINE (70, 110)-(90, 120), 2
LINE (330, 60)-(325, 80), 2
LINE (325, 80)-(315, 95), 2
LINE (315, 95)-(300, 110), 2
LINE (300, 110)-(280, 120), 2
PAINT (100, 100), 2

LINE (40, 60)-(330, 60), 15

' Draw top of bulkheads.

LINE (150, 20)-(137, 60), 15
LINE (220, 20)-(234, 60), 15

* Designate area to left for text viewport and menu viewport.
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VIEW (10, 5)-(250, 345),0, 15

LINE (0, 255)-(240, 255), 15
430 CALL Graph

COLOR 4,0

' Print transducer values 1o screen.

LOCATE 5, 52

PRINT USING "+#### k"; FORCE.TE
LOCATE 6, 52

PRINT USING "+#### k"; FORCE.TC
LOCATE7, 52

PRINT USING "+#### k"; FORCE.TW
LOCATE 20, 40

PRINT USING "+#### k"; FORCE.BNW
LOCATE 18, 42

PRINT USING "+#### k"; FORCE.BNE
LOCATE 20, 66

PRINT USING "+#### k"; FORCE.BSW
LOCATE 18, 64

PRINT USING "+#### k", FORCE.BSE

COLOR 15,0
LOCATE 12,74
PRINT "South"
LOCATE 12,34
PRINT "North"

" Print values to data viewport.

COLOR 15,0

LOCATE3, 5

PRINT USING " P.N: +###H# K"; PN
LOCATE4, 5

PRINT USING * P.S: +##Hi K"; P.S
LOCATES, 5

PRINT USING " AXIAL FORCE: +#### K", P
LOCATE17,5

PRINT USING " MZ.N:  #### K-FT", MZN
LOCATESR, S

PRINT USING "MZ.S:  +#i### K-FT"; MZ.S
LOCATE9, 5

PRINT USING * MY.N: -+l K-FTV, MY N
LOCATE 10,5

PRINT USING "MY.S: -+ K-FT"', MY .S
COLOR 4,0

LOCATE 12,13

PRINT "Link Forces"”

LOCATE 13,4

PRINT USING "NE: +##HH K", FLINK.NE
LOCATE 13,19

PRINT USING "SE: +#### K"; FLINK.SE
LOCATE 14,4
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PRINT USING "NW: +##H## K"; FLINK.NW
LOCATE 14, 19
PRINT USING "SW: +#### K"; FLINK.SW

COLOR 15,0

LOCATE 16, 6

PRINT USING "THETA.Z.N: +.### RAD"; THETA.ZN
LOCATE 17,6

PRINT USING "THETA.Z.S: +# ### RAD"; THETA.Z.S
LOCATE 18,6

PRINT USING "THETA.Y.N: +#.### RAD"; THETA.Y.N
LOCATE 19,6

PRINT USING "THETA.Y.S: +#.### RAD"; THETA.Y.S

COLOR 8,0
LOCATE 21,5
PRINT USING "nData: #####"; nData

LOCATE 22,5
PRINT USING "PRESENT LOADING STEP: ##"; nStep
LOCATE 23,5
PRINT USING "TOTAL LOOP STEPS: ##"; Loop.Steps
LOCATE 24,5
PRINT USING "SAVE DATA COUNTER: ##", Save.Data.Counter
LOCATE 25,5
PRINT USING "PRESENT SAVE DATA STEP: ##"; Save.Data.Step
COLOR 15,0
LOCATE 27,5
PRINT "CORRECT IMBALANCES"
LOCATE 27, 26
IF Correction = 1 THEN
COLOR 2,0
PRINT "ON"
ELSEIF Correction = -1 THEN
COLOR4, 0
PRINT "OFF"
END IF

KEY(10) ON
KEY(5) ON
KEY(3) ON
nPass = nlrass + 1

439 END SUB

133



SUB Main.Menu

'****************************************************************************

SHARED nPass

?*********************************************************************$******

* This subroutine ailows the user to view the channel data, run the program,
* initialize the actuators, view the raw voltages, or exit the program.

401 CLS

WIDTH 80, 25
COLOR 15,8
L.OCATE 4, 21
PRINT" MAIN MENU
L.OCATE 6, 13
PRINT " 1 - Load Channel Setup from File "
PRINT TAB(13); " 2 - Check Currently Loaded Values "
PRINT TAB(13); " 3 - Initialize Actuators "
PRINT TAB(13); " 4 - Run Program
PRINT TAB(13); " 5 - Display Raw Voltages
PRINT TAB(13); " 6 - Exit Program "
LOCATE 15,13
INPUT " Enter Selection: ", choice$
SELECT CASE choice$
CASEIS="1"
CALIL Load.Setup
CALL Initialize.Boards
GOTO 401
CASE IS = "2"
CALL Constants
GOTO 401
CASE IS ="3"
CALL Initialize. Acts
GOTO 401
CASE I8 ="4"
nPass =0
CALL Run.Program
GOTO 401
CASE IS = "5"
ILOCATE 18, 13
CALL Zero
GOTO 401
CASE IS ="g"
GOTO 402
END SELECT

]

L

402 END SUB
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SUB Move.Actuators

?$*************$*************************************************************

SHARED Command. TE%, Command. TC%, Command. TW%, Command. BSE%, Command.BSW%
SHARED Delta. TEY%, Delta. TC%, Delta. TW%, Delta.BSE%, Delta. BSW%
SHARED Command.16%
‘***$****$**************************************************#****************
' This subroutine takes the command signals previously determined in sub
' Compute.New.Commands and sends them to the D/A board. Channels 1 through
' 5 are the actuator commands and channel 16 is the data acquisition command
'frigger.
' Here, the commands are written to the array that can be sent to the D/A board.

ACommand(1) = Command TE%

ACommand(2) = Command. TC%

ACommand(3) = Command. TW%

ACommand(4) = Command.BSE%

ACommand(5) = Command BSW%

ACommand(6) =0

ACommand(7) =0

ACommand(8) =0

ACommand(9) =0

ACommand(10} = 0

ACommand(11}=0

ACommand(12) =0

ACommand(i3)=0

ACommand(14)=0

ACommand(15}=0

ACommand(16) = Command.16%

' The following step is the communication with the D/A board and sends the
' commands.

DERR = KSyncStart%(hDA)

IF DERR <> 0 THEN
BEEP
PRINT "ERROR ": HEX$(DERR); " OCCURRED DURING "KSyncStart™
STOP

END IF

' Here, the Delta factors are reinitialized to zero.
Delta. TE% =0
Delta TC% =0
Delta TW% = 0
Delta. BSE% = 0
Delta BSW% =0

END SUB
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SUB Pause

'$*****$*********************************************************************

SHARED FORCE.TE, FORCE.TC, FORCE.TW, FORCE.BSE, FORCE.BSW, Tolerance
'****************************************************************************
" The purpose of this subroutine is to provide a pause in the program to

* allow for equilibrium to be reached after the actuators are moved.

" The A/D board is sampled and the forces in the actuators are found. The

* A/D board is sampled again and the forces found. These two consecutive

" values are then compared and if their difference is larger than a

" specified tolerance the loop is repeated.

" If this process is repeated 10 times and a tolerance could not be reached,

' a message prints to the screen and the subroutine is exited so that the

' program does not get stuck here. The execution loop continues.

'

nPause = 0

300 CALL Sample.AD
CALL Calc.Engr.Values
FORCE.L.TE = FORCE.TE
FORCE.L.TC = FORCE.TC
FORCE.1L.TW = FORCE.TW
FORCE.1.BSE = FORCE.BSE
FORCE.1 BSW = FORCE BSW

CALL Sample. AD

CALL Calc.Engr.Values
FORCE.2.TE = FORCE. TE
FORCE.2.TC = FORCE.TC
FORCE.2.TW = FORCE.TW
FORCE.2.BSW = FORCE BSW
FORCE.2.BSE = FORCE.BSE

nPause = nPause + 1

IF ABS(FORCE.1.TE - FORCE2.TE) > Tolerance THEN
GOTO 305

ELSEIF ABS(FORCE.1.TC - FORCE2.TC) > Tolerance THEN
GOTO 305

ELSEIF ABS(FORCE.1.TW - FORCE2.TW) > Tolerance THEN
GOTO 305

ELSEIF ABS(FORCE.1.BSE - FORCE2.BSE) > Tolerance THEN
GOTO 305

ELSEIF ABS(FORCE.1.BSW - FORCE2.BSW) > Tolerance THEN
GOTO 305

ELSE
GOTO 304

END IF

305 IF nPause > 9 THEN
COLOR 4
LOCATE 32,4
PRINT "EQUILIBRUIM NOT REACHED"
GOTO 304
ELSEIF nPause < 10 THEN
LOCATE 32, 4
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PRINT " "
GOTO 300
END IF

304 END SUB
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SUB Raw.Voltages
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SHARED nPass
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“ This subroutine displays the raw voltages of the A/D channels.
KEY(10) OFF
KEY(5) OFF
I¥ nPass > 0 THEN
GOTO 600
END IF
CLS
WIDTH 80, 25
COLOR 15,1
LOCATE 24,22
PRINT " F10: Exit Subprogram"”
LOCATE 2, 17
PRINT " CHANNEL RAW VOLTAGES"
LOCATE 4, 14: PRINT "Channel # Voltage"
LOCATE 4, 42: PRINT "Channel # Voltage"
600 FORj=1TO 16

LOCATES +j, 16

PRINT j

LOCATE 5 +j, 27

PRINT USING "+## 44", ChVolt(j)
NEXT j
FOR }=17TO 32

LOCATE 5+ (j - 16), 44

PRINT j

LOCATE 5+ (j- 16), 55

PRINT USING "+ ###";, ChVolt()
NEXT j
KEY(10) ON
KEY(5) ON
nPass = nPass + 1

END SUB
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SUB Run.Program

'****************************************************************************

SHARED F9Flag, nStep, Direction, nData, Loop.Steps, F10Flag, Save.Data.Counter
SHARED F4Flag, Pause.Execution, F6¥lag, F7Flag
'****************************************************************************
' This is the subroutine that runs the main program loop. There are two

" separate loops in this subroutine, the Pausing loop and the Executing loop.

' When this subroutine is first called, the Pausing loop begins. In this

' Toop, data is sampled and all calculations are made, but the decision

* algorithm is not called. During the Pausing loop, two menus are displayed

*in the menu box, the Program Parameters menu and the Program Functions

“menu. Through the Program Functions menu, the user can choose to

*increase or decrease the rotation, which will cause the program to enter

 the Executing loop. In the Executing loop, data is sampled, calculations

' are made, and the subroutine Decision.Algorithm is cailed. The Executing

' Joop executes a user defined number of times (Loop.Steps) or stops upon

' a function key(F9) being pressed.

' Here is the beginning of the Pausing loop. If the subroutine is called
" for the first time (nData = 0) or the screen changed and the main display
“needs to be redisplayed (nPass = 0), then Main.Display is called.

IF nData = 0 OR nPass = 0 THEN
CALL Main.Display
END IF

810 KEY(3) ON
KEY(5) ON
KEY(7) ON
KEY(10) ON
KEY(6) ON
KEY(9) ON
KEY(4) ON

* Write the menu options for the Pausing loop in the menu box.

800 CALL Clear.Window
COLOR 15,0
LOCATE 37,5
PRINT " F3 - PROGRAM PARAMETERS "
LOCATE 38,53
PRINT " F5 - PROGRAM FUNCTIONS "
LOCATE 39,5
PRINT "F7 - SAVE DATA "
LOCATE 40,5
PRINT " F16 - EXIT PROGRAM "

'1f the Executing loop was paused, then the variable Pause Execution was
' given a value of 100. In this case, the additional menu option of F6

' needs to be displayed in the menu box. If the Executing loop stopped

' because it finished executing the number of Loop Steps prescribed, this

" option is not displayed (Pause.Execution = 0}.

211 IF Payse.Execution = 100 THEN
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LOCATE 41, 5
PRINT " Fé - RESUME EXECUTION "
ELSEIF Pause Execution = 0 THEN
LOCATE 41, 5
PRI‘NT 1 4
END IF

* Call the subroutines that sample data, make calculations, and update
' the screen.

CALL Sample.AD
CALL Calc.Engr.Values
CALL Actuator.Vectors
CALL Equilibrium.Eqns
CALL Main Display

LOCATE 31,21
PRINT"  *
LOCATE 32, 4
PRINT " y

* Call the subroutines that check to see if the user wants to access the

" Program Parameters or Program Functions menu. If the user chooses from
' the Program Functions menu to start loading or unloading (increase or

* decrease the rotation), the parameter Direction will be given a value of

"1 or-1. This will cause the program to enter the Executing loop below.

CALL F3Flag.Check
CALL F5Flag.Check

' Check to see if the F7 key has been pressed to save data. If so, Save.Data
'is called, the parameter Command.Trigger is given the voltage value that
" triggers the auxiliary data acquisition system, and Move.Actuators is

* called to send this voltage (the actuators will not move because their

" command has not changed from the previous step.

IF F7FFlag = 1 THEN
CALL Save.Data
Command. Trigger = 1229
CALL Move.Actuators
COLOR 15
LLOCATE 29,5
PRINT "DATA IS BEING SAVED"
F7Flag = -1
ELSEIF F7Flag = -1 THEN
Command. Trigger = 3072
CALL Move.Actuators
LOCATE 29, 5
PRINT t "
END IF

' Here, the F10Flag is checked to see if the user wants to exit the program.

IF F10Flag = 1 THEN
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890 CALL Clear. Window
COLOR 15,0
LOCATE 38,5
INPUT "EXIT PROGRAM? (Y or N): ", ans$
ans$ = UCASES(ans$)
IF ans$ = "Y" THEN
F10Flag=-1
GOTO 899
ELSEIF ans$ = "N" THEN
F10Flag = -1
ELSE
GOTO 890
END IF
ENDIF

nData =nData + 1

* Check the F6 key to see if the user wants to resume execution (if the
' Executing loop was paused). If execution should resume, the parameter
' Pause.Execution is given a value of 0.

IF F6Flag = 1 THEN
807 CALL Clear, Window
COLOR 15,0
LOCATE 38,3
INPUT "RESUME EXECUTION?(Y or N): ", ans$
ans$ = UCASE$(ans$)
IF ans$ = "Y" THEN
Pause.Execution = 0
F6Flag = -1
GOTO 801
ELSEIF ans$ = "N" THEN
GOTO 808
ELSE
GOTO 807
808 ENDIF
END IF

' Now, check to see if we need to continue pausing or begin executing. If

' Pause.Execution = 0 and Direction = -1 or 1, this means that the previous

" Joop was completed and we want to start a new one. The program goes to
'fine 801, the beginning of the Executing loop. If Pause.Execution = 0

* but Direction also = 0, the previous loop was completed but we don't want
' to begin another one yet. The program goes to line 800, the beginning of

' the Pausing loop. If Pause.Execution = 100, the previous loop was paused
' using the F4 key, and the program goes back to the beginning of the

' Pausing loop.

IF Pause.Execution = () THEN
IF Direction > 0 OR Direction < 0 THEN
GOTO 801
FLSEIF Direction > -.5 AND Direction <.5 THEN
COLORA4,0
LOCATE 31,4
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PRINT " PAUSING "
GOTO 800
END IF
ELSEIF Pause.Execution = 100 THEN
COLGOR 4,0
LOCATE 31,4
PRINT " PAUSING "
GOTO 800
END IF

' Here is the end of the Pausing loop and the beginning of the Executing
" loop.
' Print the menu options for the Executing loop in the menu box.

801 CALL Clear.Window
COLOR 15
LOCATE 37,5
PRINT "F4 - PAUSE EXECUTION "
LOCATE 38,5
PRINT " ¥7 - SAVE DATA "
LOCATE 39,5
PRINT "F9 - EXIT LOOP "

' Calt the subroutines that sample data, make calculations, save data,
" make decisions, and move actuators.

805 CALL Sample. AD
CALL Cale Engr. Values
CALL Actuator.Vectors
CALL Equilibrium.Eqns
CALL Main.Display
CALL Save.Data.Check

COLOR 2,0
LOCATE 31,21
PRINT " EXECUTING"

CALL Decision. Algorithm
CALL Compute.New.Commands
CALL Check.New.Commands
CALL Move Actuators

CALL Pause

' Check the F9 key to see if the user wants 1o stop executing the Joop. If
* this is done, the nStep and Save.Data.Counter values are reset, which
* means that the loop cannot be reentered at its previous state.

IF F9Flag = 1 THEN
802 CALL Clear, Window
LOCATE 38,7
COLOR 15
INPUT "EXIT LOOP? (Y or N): ", ans$
ans$ = UCASES(ans$)
IF ans$ = "Y" THEN
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nStep = 1
Save.Data.Counter = 1
F9Flag =-1
Direction = 0
LOCATE 31,21
PRJNT tr "
GOTO 800

ELSEIF ans$ = "N" THEN
FOFlag = -1

ELSE
GOTO 802

END IF

END IF

LOCATE 31,21
PRINT" "

" Upate the values of nData, nStep, and Save.Data.Counter.

nData = nData + 1
nStep =nStep + 1
Save Data.Counter = Save.Data.Counter + |

' Check to see if the Executing loop is finished (the prescribed number of
" Joop steps have been executed). If so, the program resets nStep and

* Save.Data.Counter and goes to the beginning of the Pausing loop. Ifnot,
' the Executing loop continues on.

IE nStep = Loop.Steps + 1 THEN
Direction =0
nStep = 1
Save.Data.Counter = 1
GOTO 8190

ELSEIF nStep < Loop.Steps + 1 THEN
GOTO 804

END IF

' Check to see if F4 has been pressed to pause execution. If so, the

' parameter Pause.Execution is given a value of 100 and the program goes to
' the beginning of the Pausing loop. If not, it returns to the beginning

' of the Executing loop.

804 IF F4Flag = 1 THEN
802 CALL Clear, Window
LOCATE 38, 4
COLOR 15
INPUT "PAUSE EXECUTION?(Y or N): ", ans$
ans$ = UCASES$(ans$)
IF ans$ = "Y" THEN
Pause.Execution = 100
F4Flag = -1
GOTO 810
ELSEIF ans$ = "N" THEN
F4Flag = -1
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ELSE
GOTO 803
END IF
ELSEIF F4Flag = -1 THEN
GOTO 801
END IF

899 END SUB
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SUB Sample.AD
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SHARED NChannel
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" This subroutine samples each channel 20 times and then averages the 20
' readings. The averaged values are then converted to voltages. Each block
' of code is separately commented. This subroutine should NOT be changed.

" The first step tells the A/D board to start sampling the data

FORK=1TO20
nDasErr = KintStart%(hAD)
IF nDasErr <> 0 THEN

BEEP
PRINT "ERROR "; HEX$(nDasErr); " OCCURRED DURING KintStart™: STOP

ENDIF

" This block monitors the status of the sampling rate and sample transfer
* count until done.

100  nDasFrr = KIntStatus%(hAD, wStatus, dwCount)
IF nDasBrr <> 0 THEN

BEEP
PRINT "ERROR ": HEX$(nDasErr); " OCCURRED DURING KintStatus™: GOTO 105

END IF
IF ({(wStatus AND 1) =1} THEN GOTO 100

* Stop Interrupt operation in case user interrupted or an error occurred.

105 nDasErr = KIntStop%(hAD, wStatus, dwCount)
1F nDasErr <> (0 THEN

BEEP
PRINT "ERROR "; HEX$(nDasErr); " OCCURRED DURING 'KlntStop™: STOP

ENDIF

“ The sample for each channel at step 'I' throught the loop (DateBuf) is
* added to all the samples for that channe] from all previous steps.

FOR i=1 TO NChannel
ChData(K, i) = DataBuf{i - 1) + ChData(K - 1, )
NEXTi
NEXTK

* The channel data is averaged and converted to voltages. First, dividing
" by 20 finds the average count value over the 20 samplings. Then,

* multiplying by the span of 20 volts and dividing by 4096 (the resolution
' for 12-bit boards) determines the voltage.

FOR j = 1 TO NChannel
ChVolt(j) = ChData(20, ) / 201 * 20 / 4096!
NEXT j

ENDIY SUB
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SUB Save.Data

‘****************************************#***********************************

SHARED FORCE.TE, FORCE.TC, FORCE.TW, FORCE.BNE, FORCE.BNW, FORCE.BSE, FORCE.BSW
SHARED FORCE.XN.TE, FORCE.YN.TE, FORCE.ZN.TE, FORCE.XS.TE, FORCE.YS.TE, FORCE.ZS.TE
SHARED FORCE.XN.TC, FORCE.YN.TC, FORCE.ZN.TC, FORCE.X3.TC, FORCE.YS.TC,
FORCE.Z8.TC
SHARED FORCE.XN, TW, FORCE.YN.TW, FORCEZN.TW, FORCE.XS.TW, FORCE.YS.TW,
FORCE.ZS.TW
SHARED FORCE.X.BNE, FORCE.Y.BNE, FORCE.Z.BNE
SHARED FORCE.X.BNW, FORCE.Y.BNW, FORCE.ZBNW, FORCE.X BSE, FORCE.Y.BSE
SHARED FORCE.Z.BSE, FORCE.X.BSW, FORCE.Y.BSW, FORCE.Z.BSW
SHARED FORCE.NE, FORCE.NW, FORCE.SE, FORCE.SW
SHARED OutFilel$, OutFile2$, OutFile3$, nData, nSave
SHARED P.N, P.§, MZN, MZ.S, MY.N, MY S, P
SHARED THETA.ZN, THETA.Z.S, THETA.Y.N, THETA.Y.S
'****************************************************************************
* This subroutine saves data to three different files, the names of which
“ are read as input from the data file loaded at the begining of the test.
' The first file saves the actuator and link forces. The second file saves
 grillage transducer vales and the bottom link transducer values. The
" third file saves the calculated axial forces and moments.
" The first time data is saved, the following if-then writes column headings
' for the data for each file.
IF nSave = 0 THEN

OPEN OutFile}$ FOR OUTPUT AS #2

PRINT #2," " "FORCE.TE", "FORCE.TC", "EFORCE.TW", "FORCE.BNE", "FORCE.BNW",
"FORCE.BSE", "FORCE.BSW",

PRINT #2, "FORCE.NE", "FORCENW", "FORCE.SE", "FORCE.SW",

PRINT #2, "FORCE.XN.TE", "FORCE.YN.TE", "FORCE.ZN.TE",

PRINT #2, "FORCE.XS.TE", "FORCE.YS.TE", *FORCE.ZS.TE",

PRINT #2, "FORCE.XN.TC", "FORCE.YN.TC", “FORCE.ZN.TC",

PRINT #2, "FORCE.XS.TC", "FORCE.YS.TC", *RORCE.ZS.TC",

PRINT #2, "FORCE.XN.TW", "FORCE.YN.TW", “FORCE.ZN.TW",

PRINT #2, "FORCE.XS.TW", "FORCE.YS.TW", "FORCE.ZS.TW",

PRINT #2, "FORCE.X.BNE", "FORCE.Y.BNE", "FORCE.Z.BNE",

PRINT #2, "FORCE.X.BNW", "FORCE.Y BNW", "FORCE.Z.BNW",

PRINT #2, "FORCE.X.BSE", "FORCE.Y.BSE", "FORCE.Z BSE",

PRINT #2, "FORCE.X.BSW", "FORCE.Y .BSW", "FORCE.Z.BSW"

CLOSE #2

OPEN OutFile2$ FOR OUTPUT AS #3

PRINT #3," " "XPDUCER.INX", "XDUCER.2NX", "XDUCER.3NX", "XDUCER.INY",
"XDUCER.3NY",

PRINT #3, "XDUCER.18X", "XDUCER.25X", *XDUCER.3SX", "XDUCER.INY", "XDUCER3NY",
PRINT #3, "DELTA X.BSW", "DELTA. X BSE" .
CLOSE #3
OPEN OQutFile3$ FOR OUTPUT AS #5
PRINT #5," " YPN", "P.S", "MZN", "MZ.S", "™MY.N",
PRINT #5, "MY.S", "P", "THETA.Z.N", "IHETA.Z.8", "THETA.Y.N", "THETA.Y.S"
CLOSE #5
nSave = 1
END IF
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' Write data to the first file.

OPEN OutFile1$ FOR APPEND AS #2
PRINT #2, USING "nData; #H#H"; nData

PRINT #2," * FORCE.TE, FORCE.TC, FORCE.TW, FORCE.BNE, FORCE.BNW, FORCE.BSE,
FORCE.BSW,
PRINT #2, FORCE.NE, FORCE.NW, FORCE.SE, FORCE.SW,
PRINT #2, FORCE.XN.TE, FORCE. YN.TE, FORCE.ZN.TE,
PRINT #2, FORCE.XS.TE, FORCE.YS.TE, FORCE.ZS.TE,
PRINT #2, FORCE.XN.TC, FORCE.YN.TC, FORCE.ZN.TC,
PRINT #2, FORCE.XS.TC, FORCE.YS.TC, FORCE.ZS.TC,
PRINT #2, FORCE.XN.TW, FORCE.YN.TW, FORCE.ZN.TW,
PRINT #2, FORCE.XS.TW, FORCE.YS.TW, FORCE.ZS.TW,
PRINT #2, FORCE.X.BNE, FORCE.Y .BNE, FORCE.Z.BNE,
PRINT #2, FORCE.X.BNW, FORCE.Y . BNW, FORCE.Z.BNW,
PRINT #2, FORCE.X.BSE, FORCE.Y.BSE, FORCE.Z.BSE,
PRINT #2, FORCE.X.BSW, FORCE.Y.BSW, FORCE.Z.BSW
CLOSE #2

" Write data to the second file.

QPEN OutFile2$ FOR APPEND AS #3
PRINT #3, USING "nData: #HH###"; nData

PRINT #3, " " XDUCER.INX, XDUCER.2ZNX, XDUCER.3NX, XDUCER.INY, XDUCER.3NY,
PRINT #3, XDUCER.18X, XDUCER.28X, XDUCER.358X, XDUCER.INY, XDUCER.3NY,

PRINT #3, DEL.TA.X.BSW, DELTA X.BSE

CLOSE #3

' Write data to the third file

OPEN OQuitFile3$ FOR APPEND AS #5
PRINT #5, USING "nData: #####"; nData

PRINT #5, " " PN, P.S, MZN, MZ.S, MY N,
PRINT #5, MY.S, P, THETA.ZN, THETA.Z.S, THETA.Y.N, THETA.Y.S
CLOSE #5

END SUB
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SURB Save.Data.Check
‘**’Iﬂiﬁ*****************************************************************$*****
SHARED nData, Save.Data.Step, F7Flag, Loop.Steps

SHARED Command. Trigger AS INTEGER, Save.Data.Counter
'***************************************************************************
' This subroutine is called from Run.Program after all calculations are done

" and the main display is updated. Its purpose is to check whether data

' should be saved for either of two reasons. First, data is automatically

* saved at an interval called Save.Data.Step. 1f nData (the # of times

* that the loop has been executed) is a multiple of Save.Data.Step, then

' data is saved automatically. If data is not to be saved for this reason,

" then the F7 flag is checked to see if the user wants data to be saved

"anyway. Whenever data is to be saved, the parameter Command. Trigger is

' set to the correct voltage for triggering the auxiliary data acquisition

' system.

' Fiest check to see if the Save.Data.Counter is a multiple of Save.Data.Step.
FOR i= 1 TO Loop.Steps
Multiple = i * Save.Data.Step
IF Save.Data.Counter = Multiple THEN
Save.Data.Flag = 1
GOTO 355
ELSE
Save.Data.Flag =-1
GOTO 354
END IF
354 NEXTi

'If data is to be saved, give Command. Trigger the correct voltage and
' call Move.Actuators and Save.Data. If not, give Command. Trigger the
' value that will not cause the auxiliary system to be triggered.

355 IF Save.Data.Flag =1 THEN
CALL Save.Data
COLOR 15,0
1.OCATE 29, 5
PRINT "DATA IS BEING SAVED"
Command. Trigger = 1229

CALL Move.Actuators
Save Data.Flag = -1
GOTO 360

ELSEIF Save.Data Flag = -1 THEN

" Command. Trigger = 3072
LOCATE 29,5
PRIN H ”
GOTQ 350

ENDIF

' Check the F7 key to see if the user wants to save data.

350 IF F7Flag=1 THEN
! CALL Save.Data
Save.Data.Counter =0

148



Command. Trigger = 1229
CALL Move. Actuators
COLOR 15,0
LOCATE 29,5
PRINT "DATA IS BEING SAVED"
F7Flag = -1
ELSE
Command. Trigger = 3072
LOCATE29,5
PRINT " e
END IF

360 END SUB
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SURB Volt.Command.Adj

’****************************************************************************

SHARED DACStep. TE%, DACStep. TC%, DACStep. TW%, DACStep.BSE%, DACStep.BSW%
SHARED Delta. TE%, Delta. TC%, Delta. TW%, Delta.BSE%, Delta BSW%
SHARED CommandError

'*********$******************************************************************

' This subroutine allows the command signals to be modified once the

' initial voltages are entered in sub Initialize.Acts or to perform

' manual command adjustment during the test. The DAC step sizes can be
' changed by entering a command that will call sub DAC Step.Size.

470 CLS
WIDTH 80, 25
COLOR 15,4
VIEW (0, 0)-(639, 349)
VIEW PRINT

' Square border around screen.

LINE (7, 5)-(630, 5), 15
LINE (7, 5)-(7, 340), 15

LINE (630, 5)-(630, 340), 15
LINE (7, 340)-(630, 340), 15

' Horizontal lines.

LINE (7, 50)-(630, 50), 15
LINE (7, 100)-(630, 100)
LINE (7, 150)-(630, 150)
LINE (7, 200)-(630, 200)
LINE (7, 250)-(630, 250)
LINE (7, 300)-(630, 300)

* Vertical lines.

LINE (102, 5)-(102, 300)
LINE (179, 5)-(179, 300)
LINE (260, 5)-(260, 300)
LINE (338, 5)-(338, 300)
LINE {475, 5)-(475, 300)

' Write text {0 screern.

LOCATE 2,4
PRINT "Actuator"”
LOCATE 2, 15
PRINT "DAC Step"
LOCATE 3, 16
PRINT "Size "
LOCATE 2,24
PRINT "Disp Step"”
LOCATE 3, 26
PRINT "Size"
LOCATE 2, 34
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PRINT "Volt Step"
LOCATE 3, 36

PRINT "Size "

LOCATE 2, 44

PRINT "Increase Voltage”
LOCATE 3,45

PRINT "(Extend Act.) "
LOCATE 2, 62

PRINT "Decrease Voltage"
LOCATE 3, 62

PRINT "(Retract Act.)"

LOCATE 1,24
PRINT " ACTUATOR COMMAND ADJUSTMENT "
LOCATE 6, 5
PRINT "1 - TE"
LOCATE 10,5
PRINT "2 - TC"
LOCATE 13,5
PRINT "3 - TW"
LOCATE 17,3
PRINT "4 - BSE"
LOCATE 20, 5
PRINT "5 - BSW"

' Print codes for changing commands.

LOCATE6, 51
PRINT "1"
LOCATE 6, 69
PRINT "-1"
LOCATE 10, 51
PRINT "2"
LOCATE 190, 69
PRINT "-2"
LOCATE 13, 51
PRINT "3"
LOCATE 13, 69
PRINT "-3"
LOCATE 17, 51
PRINT "4"
LOCATE 17, 69
PRINT "-4"
LOCATE 20, 51
PRINT "5"
LOCATE 20, 69
PRINT "-5"

" Show the present DAC step size.

471 LOCATE 6, 17
PRINT DACStep. TE%
LOCATE 10, 17
PRINT DACStep. TC%
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LOCATE 13, 17

PRINT DACStep. TW%
LOCATE 17, 17

PRINT DACStep.BSE%
LOCATE 20, 17

PRINT DACStep.BSW%

' Show the corresponding voltage step size.

LOCATE 6, 36

PRINT USING "#.###"; DACStep.TE% * .004883
LOCATE 10, 36

PRINT USING "#.##4#": DACStep.TC% * .004883
LOCATE 13, 36

PRINT USING "####"; DACStep. TW% * .004883
LOCATE 17, 36

PRINT USING "####"; DACStep.BSE% * .004883
LOCATE 20, 36

PRINT USING "# 4" DACStep.BSW% * .004883

' Show the corresponding displacement step size.

LGCATE 6, 26

PRINT USING "# ###"; DACStep. TE% * .0088
LOCATE 10,26

PRINT USING "####"; DACStep. TC% * .0088
LOCATE 13,26

PRINT USING "####"; DACStep. TW% * .0083
LOCATE 17,26

PRINT USING "#.4##"; DACStep.BSE% * 005859
LOCATE 20, 26

PRINT USING "#.###"; DACStep BSW% * .005859

* Print text that prompts user input.

472 LOCATE 23,5
PRINT " "
LINE (7, 5)-(7, 340), 15
LOCATE 23, 56
PRINT "10 - Exit"
LOCATE 24, 56
PRINT "11 - Change Step Sizes"
LOCATE 23,5
PRINT "Enter the number corresponding "
LOCATE 24,5
INPUT "to the desired action : ", mvmt
LOCATE 23,5
P'R-I'NT 11 n
LOCATE 24,5
PRI’NT 1" L
LOCATE 23,5

" Use user response from the prompt to determine the Delta factor for
* whichever actuator is to be moved.
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IF mvmt < 1.5 AND mvmt > .5 THEN
INPUT "Increase Voltage of Actuator TE? (Y or N): ", rsvp$
IF UCASES(rsvp$) = "Y" THEN
Delta, TE% = 1
ELSEIF UCASE$(rsvp$) = "N" THEN
GOTO 472
END IF
BLSEIF mvmt < -5 AND mvmt > -1.5 THEN
INPUT "Decrease Voltage of Actuator TE? (Y or N): ", rsvp$
IF UCASES$(rsvp$) = "Y" THEN
Delta, TEY = -1
ELSEIF UCASES$(rsvp$) = "N" THEN
GOTO 472
END IF

ELSEIF mvmt < 2.5 AND mvmt > 1.5 THEN
INPUT "Increase Voltage of Actuator TC? (Y or N): rsvp$
IF UCASES(rsvp$) = "Y" THEN
Delta. TC% =1
ELSEIF UCASES$(rsvp$) = "N" THEN
GOTO 472
END IF
ELSEIF mvmt <-1.5 AND mvmt > -2.5 THEN
INPUT "Decrease Voltage of Actuator TC? (Y or N): *, rsvp$
IF UCASES(revp$) = "Y" THEN
Deita. TC% = -1
ELSEIF UCASES(rsvp$) = "N" THEN
GOTO 472
END IF

ELSEIF mvmt < 3.5 AND mvmt > 2.5 THEN
INPUT "Increase Voltage of Actuator TW? (Y or N): ", rsvp$
IF UCASES$(rsvp$) = "Y" THEN
Delta. TWS% =1
BLSEIF UCASES$(rsvp$) = "N" THEN
GOTOQ 472
END IF
ELSEIF mvmt <-2.5 AND mvmt > -3.5 THEN
INPUT "Decrease Voltage of Actuator TW? (Y or N): ", rsvp$
IF UCASES$(rsvp$) = "Y" THEN
Delta. TW% = -1
ELSEIF UCASES$(rsvp$) = "N" THEN
GOTO 472
END IF

ELSEIF mvmt < 4.5 AND mvmt > 3.5 THEN
INPUT "Increase Voltage of Actuator BSE? (Y or N): ", rsvp$
IF UCASES(rsvp8) = "Y" THEN
Delta.BSE% =1
ELSEIF UCASES(rsvp$) = "N" THEN
GOTO 472
END IF
ELSEIF mvmt < -3.5 AND mvmt > -4.5 THEN
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INPUT "Decrease Voltage of Actuator BSE? (Y or N} ", rsvp$
[F UCASES$(rsvp$) = "Y" THEN
Delta. BSEY = -1
ELSEIF UCASE$(rsvp$) = "N" THEN
GOTO 472
END IF

ELSEIF mvmt < 5.5 AND mvmt > 4.5 THEN
INPUT "Increase Voltage of Actuator BSW?7 (Y or N): ¥, rsvp$
IF UCASE$(rsvps) = "Y" THEN
Delta BSWo% =1
ELSEIF UCASE$(rsvp$) = "N THEN
GOTO 472
END IF
ELSEIF mvmt < -4.5 AND mvmt > -5.5 THEN
INPUT "Decrease Voltage of Actuator BSW? (¥ or N): ", rsvp$
IF UCASE$(rsvp$) = "Y" THEN
Delta BSW% = -1
FLSEIF UCASES$(rsvp$) = "N" THEN
GOTO 472
END IF

ELSEIF mvmt < 10.5 AND mvmt > 9.5 THEN
INPUT "Exit Subprogram? (Y or N): ", rsvp$
IF UCASES(rsvp$) ="Y" THEN
GOTO 473

ELSEIF UCASES(rsvp$) = "N" THEN
LOCATE 23,5
P'RI'NT 1 "
PRINT n 1"
GOTO 472

END IF

BLSEIF mvmt < 11.5 AND mvmt > 10.5 THEN
INPUT "Change DACStep Sizes? (Y or N): ", rsvp$
IF UCASE${revps) = "Y" THEN
CALL DAC. Step.Size
GOTO 470

ELSEIF UCASES$(rsvp$) = "N" THEN
LOCATE 23,5
PRINT " "
Pm " 1L
GOTO 472

END IF

ELSE
GOTO 472

END IF

' Call the subroutines that take the determined Delfa factor and compute
' and check the new commands.

CALL Compute New.Commands
CALL Check.New.Commands
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' 1f Check New.Commands found that a command was beyond the limits of the
' allowable voltage range, print a warning to the screen.

IF CommandError = 1 THEN
LOCATE 23,5
})MN"I“ Tt i
LOCATE 23,2
PRINT "Invalid Command: Beyond Limits of Voltage Range."
LOCATE 24,2
[NPUT "Press any key to continue: ", rsvp2$
LOCATE 23,2
PIUNT n "
LOCATE 24,2
PRINT " "
CommandError =0
GOTO 472

END IF

' Move the actuators.

CALL Move.Actuators
GOTO 472

473 END SUB
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SUB Zero

'*****************************************$*********************************

SHARED nPass, F10Flag
'****************************************$$*********************************
' This subroutine is used for the display of raw voltages. It calls sub

' Sample.AD and sub Raw.Voltages, which contains the graphics code.

nPass =0
417 IF F10Flag = -1 THEN
CALL Sample.AD
CALL Raw.Voltages
ELSEIF F10Flag = | THEN
L.OCATE 24, 1
418 INPUT "Exit Subprogram (Y or N):", ans2$
ans2$ = UCASE$(ans2$)
IF ans2$ ="Y" THEN
F10Flag =-1
GOTO 420
ELSEIF ans2$ = "N" THEN
LOCATE 24,1
PRINT i "
F10Flag = -1
ELSE
GOTO 418
END IF
END IF
GOTO 417

420 END SUB
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DECLARE SUB Clear.Window ()

DECLARE SURB Change.Loop.Steps ()

DECLARE SUB Tolerance.Size ()

DECLARE SUB Choose.Graph.Scale ()

DECLARE SUB Save.Data.Step.Size ()

DECLARE SUB Correct.Imbalances ()

DECLARE SUB Check.New.Commands ()

DECLARE SUB Compute.New.Commands ()
'******************************************************ic*********************
* This is the second module that is part of the control program. It contains

“ the subroutines declared above and uses the variables in the common

“ block /navy2/ declared below. This module is part of the library

‘LIBRARY.QLB, which is comprised of this module and the library COMBO.
f***$***********#************************************************************
COMMON /navy2/ Loop.Steps, Tolerance, scale, Save.Data.Step, Correction

COMMON /navy2/ CommandError, Command TE%, Command. TC%

COMMON /navy2/ Command. TW%, Command.BSE%, Command BSW%

COMMON /navy2/ Command.16%, Command Trigger AS INTEGER

COMMON /navy2/ Delta. TE%, Delta. TC%, Delta. TW%, Delta. BSE%, Delta BSW%
COMMON /navy2/ DACStep. TE%, DACStep.TC%, DACStep. TW%, DACStep. BSE%, DACStep. BSW%
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SUB Change.Loop.Steps

?***************************************************************************

SHARED Loop.Steps

’***************************************************************************

* This subroutine is called when the user chooses to change the number of
" Joop steps through the Program Parameters menu.
]

COLOR 15
170 LOCATE 37, 3
PRINT USING "PRESENT NO. OF LOOP STEPS: ##"; Loop.Steps
LOCATE 39,3
INPUT "NEW NO. OF LOOP STEPS: ", Loop.Steps2
CALL Clear, Window
LOCATE 37,3
PRINT USING "NEW NO. OF LOOP STEPS IS ##"; Loop.Steps2
LOCATE 39,3
[NPUT "IS THIS CORRECT (Y OR N} ", rsvp$
IF UCASES$(rsvp$) = "Y" THEN
Loop.Steps = Loop.Steps2
GOTO 175
ELSE
CALL Clear.Window
GOTO 170
END IF

175 END SUB
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SUB Check New.Commands

!***************************************************************************

SHARED CommandError, Command. TE%, Command. TC%

SHARED Command. TW%, Command.BSE%, Command. BSW%
'***************************************************************************
' This subroutine checks the new commands to make sure they are not beyond the

' allowable voltage range of 9.95 to -9.95 volts. If the command is invalid, a

' flag called CommandError is given a value of I which is used in a separate

' subroutine to print an error warning to the screen. Also, if the command

'is invalid, it is recalculated as its previous value, which was in the

' correct range.

)

CommandError =0

IF Command.TE% > 4086 OR Command. TE% < 10 THEN
CommandError = 1
Command.TE% = Command. TE% - Delta. TE% * DACStep. TE%
END IF

IF Command. TC% > 4086 OR Command.TC% < 10 THEN
CommandError = 1
Command. TC% = Command. TC% - Delta. TC% * DACStep. TC%
END IF

1F Command. TW% > 4086 OR Command. TW% < 10 THEN
CommandError = 1
Command. TW% = Command. TW% - Delta. TW% * DACStep. TW%
ENDIF

IF Command.BSE% > 4086 OR Command.BSE% < 10 THEN
CommandError = 1
Command.BSE% = Command BSE% - Delta. BSE% * DACStep.BSE%
END IF

IF Command. BSW% > 4086 OR Command. BSW% < 10 THEN
CommandError = 1
Command . BSW% = Command BSW% - Delta. BSW% * DACStep BSW%
END IF

END SUB
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SUB Choose.Graph.Scale

’***********************************************************************&***

SHARED scale

‘*****************************************************$*********************

" This subroutine allows the user to choose which scale is to be used for the
' moment-rotation graph on the main display screen. It is called from the
' Program Parameters menu.

COLOR 15
LOCATE 35,3
PRINT " CHOOSE GRAPH SCALE "
LOCATE 36,3
PRINT " Moment Range Rotation Range”
LOCATE 37,3
PRINT "1: 0 - 8,000 0-0.01"
LOCATE 38,3
PRINT "2: 0- 16,000 0-0.02"
LOCATE 39,3
PRINT "3: 0 - 24,000 0-0.03"
LOCATE 40,3
PRINT "4: 0 - 32,000 0-0.04"
704 LOCATE 41, 3
INPUT " DESIRED SCALE: ", scale
LOCATE 42, 3
PRINT USING "YOU WANT SCALE # 7"; scale
LOCATE 42,21
INPUT "(Y or N).", rsvp$
IF UCASES$(rsvp$) = "Y" THEN
GOTO 705
BLSEJIF UCASE$(rsvp$) = "N" THEN
LOCATE 42, 3
PRI'N"]" " tr
GOTO 704
ELSE
LOCATE 42, 3
PRINT " "
GOTO 704
END IF

705 END SUB
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SUB Clear. Window

'**************************************$************************************

' This subroutine clears the menu viewport when a new menu is to be printed.
'***************************************************************************
LOCATE 34,3
PRI'NT " L
LOCATE 35,3
PRINT " "
LOCATE 36, 3
PRIN’I“ i1 "
LOCATE 37,3
PRINT " it
LOCATE 38,3
PRINT " [}
LLOCATE 39,3
PRINT Lt [L
LOCATE 40,3
PRINT " ”
LOCATE 41,3
PRINT o i
LOCATE 42,3
PRINT ™ "
END SUB
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SUB Compute.New.Commands
’********#‘******************************************************************
SHARED Command. TE%, Command. TC%, Command. TW%
SHARED Command.BSE%, Command. BSW%, Command.16%, Command.Trigger AS INTEGER
SHARED Delta. TE%, Delta. TC%, Delta. TW%, Delta. BSE%, Delta. BSW%
SHARED DACStep. TE%, DACStep. TC%, DACStep. TW%, DACStep. BSE%, DACStep.BSW%
W*******************************************$******************************
* This subroutine calculates the new commands by adding the old command to the
" product of the current DAC step and the delta factor (1,-1, or 0).
'If delta is one, the command is being increased; if delta is -1 the command
' is being decreased; if delta is zero the command does not change.
* Also, the data acquisition voltage, or Command.16%, is set equal to the
' Command. Trigger value and is sent to the auxiliary data acquisition system.

Command. TE% = Command. TE% + DACStep. TE% * Delta. TE%

Command. TC% = Command. TC% + DACStep. TC% * Delta. TC%

Command. TW% = Command. TW% + DACStep. TW% * Delta TW%

Command.BSE% = Command. BSE% -+ DACStep.BSE% * Delta. BSE%

Command. BSW% = Command. BSW% + DACStep BSW% * Delta. BSW%

Command.16% = Command. Trigger

END SUB
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SUB Correct.Imbalances
'********************************************************************#***#**

SHARED Correction

'******#********************************************************************

' This subroutine allows the user to activate or deactivate the ability to
' correct the force imbalance in the top acutators. The subroutine is
"accessed by the Program Parameters menu.

197 CALL Clear. Window
COLOR 15
LOCATE 37,3
IF Correction = 1 THEN
PRINT " CORRECT IMBALANCES = ON"
ELSEIF Correction = -1 THEN
PRINT " CORRECT IMBALANCES = OFF"
END IF
LOCATE 39,3
INPUT " IS THIS CORRECT? (Y or N). ", ans$
ans$ = UCASE$(ans$)
IF ans$ = "Y" THEN
GOTO 159
ELSEIF ans$ = "N" THEN
GOTO 198
ELSE
GOTO 197
END IF

198 IF Correction = 1 THEN
Correction = -1
ELSEIF Correction = -1 THEN
Correction = |
END IF
CALL Clear. Window
LOCATE 37,3
IF Correction = 1 THEN
PRINT " CORRECT IMBALANCES = ON"
ELSEIF Correction = -1 THEN
PRINT " CORRECT IMBALANCES = OFF"
END [F
LOCATE 39,3
INPUT " IS THIS CORRECT? (Y or N): ", ans$
ans$ = UCASES$(ans$)
IF ans$ = "Y" THEN
GOTO 199
ELSEIF ans$ = "N" THEN
GOTO 198
ELSE
GOTO 197
END IF

199 END SUB
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SUB DAC. Step.Size

'***************************************************************************

SHARED DACStep.TE%, DACStep. TC%, DACStep. TW%, DACStep.BSE%, DACStep. BSW%
e o e oo ot e R o ol s e R o s ek R s sl R sk R R R okl R Ok R R ol R

' This subroutine allows the user to change the DAC step size for any or

" ali of the command channels.

CLS

WIDTH 80, 25
COLOR 15,1

VIEW (0, 0)-(639, 349)
VIEW PRINT

' Square border around screen.

LINE (10, 5)-(630, 5), 15
LINE (10, 15)-(630, 15)
LINE (10, 5)-(10, 340), 15
LINE (630, 5)-(630, 340), 15
LINE (10, 340)-(630, 340), 15

' Horizontal lines.

LINE (10, 50)-(630, 50), 15
LINE (10, 100)-(630, 100)
LINE (10, 150)-(630, 150)
LINE (10, 200)-(630, 200)
LINE (10, 250)-(630, 250)
LINE (10, 300)-(630, 300)

' Vertical lines.

LINE (102, 15)-(102, 300)
LINE (278, 15)-(278, 300)
LINE (454, 15)-(454, 300)

' Print text to screen.

LOCATE 1,27

PRINT " CHANGE DAC STEP SIZES "
LOCATE 3,4

PRINT "Actuator”

LOCATE3, 18

PRINT "DAC Step Size"

LOCATE 3, 40

PRINT "Disp Step Size"

LOCATE 3,61

PRINT "Volt Step Size"

LOCATE 6, 5
PRINT "1 - TE"
LOCATE 10, 5
PRINT "2-TC"
LOCATE 13,5
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PRINT "3 - TW"
LOCATE 17,5
PRINT "4 - BSE"
LOCATE 20, 5
PRINT "5 - BSW"

' Show the present step sizes.

481 LOCATE 23, 5
PRINT " t
PRINT 1t "
LINE (10, 5)-(10, 340), 15
LOCATE 6, 23
PRINT USING "##Hi#"; DACStep. TE%
LOCATE 10,23
PRINT USING "####"; DACStep. TC%
LOCATE 13,23
PRINT USING "##t##"; DACStep. TW%
LOCATE 17,23
PRINT USING "###ti"; DACStep.BSE%
LOCATE 20, 23
PRINT USING “####"; DACStep.BSW%

' Corresponding voltage step sizes. These are calculated by multiplying th
' DAC step size by the voltage range and dividing by 4096.

LOCATE 6, 66
PRINT USING "# ###"; DACStep. TE% * .004883
LOCATE 10, 66

PRINT USING "# ###"; DACStep.TC% * .004883
LOCATE 13, 66

PRINT USING "f ###"; DACStep. TW% * 004883
LOCATE 17, 66

PRINT USING "#.###"; DACStep. BSE% * .004883
LOCATE 20, 66

PRINT USING "# #4#"; DACStep. BSW% * .004883

* Corresponding displacement step sizes. These are found by multiplying the
'DAC step size by the displacement range and dividing by 4096.

LOCATE 6, 43

PRINT USING "#.###"; DACStep. TE% * .0088
LOCATE 10, 43

PRINT USING "#.###"; DACStep.TC% * .0088
LOCATE 13,43

PRINT USING "#.###", DACStep.TW% * .0088

LOCATE 17,43
PRINT USING "#.###"; DACStep.BSE% * .005859
LOCATE 20, 43

PRINT USING "#.###"; DACStep.BSW% * .005859
' Write the text that prompts user input.

482 LOCATE 23,5
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PRINT 1 "
PRINT 1 "
LINE (10, 5)-(10, 340), 15

LOCATE 23,5

PRINT "Enter the number corresponding
LOCATE 23, 59

PRINT "10 - Exit"

LOCATE 24, 59

PRINT "11 - Change All "

LOCATE 24, 5

INPUT "o the desired action : ", mvint
LOCATE 23,5

PRINT L L
LOCATE 24,5

' The following if-then takes the user response to the prompt and takes the
*appropriate action (changes the desired DAC step size).

IF¥ mvmt < 1.5 AND mvmt > .5 THEN
INPUT "Change Step Size of Actuator TE? (Y or N): *, rsvp$
IF UCASE$(rsvp$) = "Y" THEN
LOCATE 24, 5
PRINT " "
LOCATE 24, 5
INPUT "Enter New Step Size for Actuator TE: ", DACStep. TE%
IF DACStep.TE% < I THEN
LOCATE 24, 5
INPUT "Invalid DAC Step entered. Press any key to continue: ", rsvp2$
DACStep. TE% = 1
END IF
GOTO 481
ELSE
GOTO 482
END IF

ELSEIF mvmt <2.5 AND mvmt > 1.5 THEN
INPUT "Change Step Size of Actuator TC? (Y or N): ", rsvp}
IF UCASE$(svp$) = "Y" THEN
LOCATE 24,5
PRINT n L1
LOCATE 24,5
INPUT "Enter New Step Size for Actuator TC: ", DACStep. TC%
IF DACStep.TC% < T THEN
LOCATE 24,5
INPUT "Invalid DAC Step entered. Press any key to continue: ", rsvp2$
DACStep. TC% =1
END IF
GOTO 481
FLSE
GOTO 482
ENDIF

ELSEIF mvmt < 3.5 AND mvmt > 2.5 THEN
INPUT "Change Step Size of Actuator TW? (Y or N): ", rsvp$
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IF UCASES$(rsvp$) = "Y" THEN
LOCATE 24, 5
PRINT L} L
LOCATE 24,5
INPUT "Enter New Step Size for Actuator TW: ", DACStep. TW%
IF DACStep. TW% < 1 THEN
LOCATE 24,5
INPUT "Invalid DAC Step entered. Press any key to continue: ", rsvp2$
DACStep. TW% =1
END IF
GOTO 481
ELSE
GOTO 482
END IF

ELSEIF mvmt < 4.5 AND mvint > 3.5 THEN
INPUT "Change Step Size of Actuator BSE? (Y or N): ", rsvp$
IF UCASES$(rsvp$) = "Y" THEN
LOCATE 24, 5
PRINT 1t 1
LOCATE 24, 5
INPUT "Enter New Step Size for Actuator BSE: ", DACStep.BSE%
IF DACStep.BSE% < I THEN
LOCATE 24,5
INPUT "Invalid DAC Step entered. Press any key to continue: ", rsvp2$
DACStep.BSE% = 1
END IF
GOTO 481
ELSE
GOTO 482
END IF

ELSEIF mvmt < 5.5 AND mymt > 4.5 THEN
INPUT "Change Step Size of Actuator BSW? (Y or N): ", rsvp$
IF UCASES$(rsvp$) = "Y" THEN
LOCATE 24, 5
PRmT " "
LOCATE 24, 5
INPUT "Enter New Step Size for Actuator BSW: ", DACStep.BSW%
IF DACStep.BSW9% < 1 THEN
LOCATE 24, 5
INPUT "Invalid DAC Step entered. Press any key to continue: ", rsvp2$
DACStep. BSW% = |
ENDIF
GOTO 481
ELSE
GOTO 482
END IF

ELSEIF mvmt < 10.5 AND mvmt > 9.5 THEN
INPUT "Exit Subprogram? (Y or N): ", rsvp$
IF UCASES$(rsvp$) = "Y" THEN

GOTO 490
ELSEIF UCASES(rsvp$) = "N" THEN
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GOTO 482
END IF

ELSEIF mvmt < 11.5 AND mvmt > 10.5 THEN
INPUT "Change Step Size of all Actuators? (Y or N): ", rsvp$
IF UCASES$(rsvp$) = "Y" THEN
LOCATE 24, 5
PRINT " "
LOCATE 24, 5
INPUT "Enter New Step Size for all Actuators: ", DACStep. TE%
IF DACStep. TE% < 1 THEN
LOCATE 24, 5
INPUT "Invalid DAC Step entered. Press any key to continue: ", rsvp2$
DACStep. TE% =1
END IF
DACStep. TW% = DACStep. TE%
DACStep. TC% = DACStep. TE%
DACStep BSE% = DACStep. TE%
DACStep. BSW% = DACStep. TE%
GOTO 481
ELSE
GOTO 482
END IF
ELSE
GOTO 482
490 END IF

END SUB
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SUB Save.Data.Step.Size
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SHARED Save.Data.Step
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* This subroutine allows the user to change the interval at which data is
' saved, or the Save.Data.Step.
COLOR 15
190 LOCATE 37,3
PRINT USING "PRESENT SAVE DATA STEP: ##"; Save.Data.Step
LOCATE 39,3
INPUT "NEW SAVE DATA STEP SIZE: ", Save.Data.Step2
CALL Clear.Window
LOCATE 37,3
PRINT USING "NEW SAVE DATA STEP SIZE IS ##"; Save Data.Step2
LOCATE 39,3
INPUT "IS THIS CORRECT (Y ORN): ", rsvp$
IF UCASE$(rsvp$) = "Y" THEN
Save.Data.Step = Save.Data.Step2
GOTO 195
ELSE
CALL Clear. Window
GOTO 190
ENDIF

195 END SUB
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SUB Tolerance.Size
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SHARED Tolerance
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' This subroutine allows the user to change the tolerance. The tolerance is
' a value used by subroutine Pause, which calculates two consecutive force
' vales in each actuator, Ifthe two forces are not equal within the
' specified tolerance, then two force values are calculated again until they
* are equal within the specified tolerance, meaning the system has reached equilibrium.
COLOR 15
180 LOCATE 37,3
PRINT USING "PRESENT TOLERANCE: ##.## K"; Tolerance
LOCATE 39,3
INPUT "ENTER NEW TOLERANCE SIZE: ", Tolerance2
CALL Clear. Window
LOCATE 37,3
PRINT USING "NEW TOLERANCE IS ##.## K"; Tolerance2
LOCATE 39,3
INPUT "IS THIS CORRECT (Y OR N): ", rsvp$
IF UCASE$(rsvp$) = "Y" THEN
Tolerance = Tolerance?
GOTO 185
ELSE
CALIL Clear. Window
GOTO 180
END IF

185 END SUB
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APPENDIX B
VARIABLE DEFINITIONS

DIM SHARED VARIABLES

DataBuf(32)

nDasErr

szCfgName

hDev
hAD
wStatus
dwCount
dwFactor

ACommand(16)

DERR

hDDAL6

hDA

ChData(0 to 20, 0 to 32)

ChVolt(0 to 32)

XducerCon(1 to 32)
M(1000)

GTheta(1000)

COMMON VARIABLES

An array of 32 numbers (for the 32 A/D channels) used in Sub
Sample.AD. It stores the values sampled by the board.

Error flag used in Sample.AD. If an error occurs (such as the
computer cannot get a handle to the device), it signals the program
to stop.

Stores the name of the configuration file for the A/D board. If the
setup of the board is changed or a different application is required
(different voltage range being used for example), this file must be
changed.

A/D device handle.

A/D frame handle (should not change).

Variable used for monitoring the status of A/D sampling.

Same as above.

This is the factor that determines how fast the sampling will occur.
the smaller the factor, the faster the sampling.

Array of values that range from 0 to 4096 that are sent to the D/A
board and converted to output voltages for the actuators. These are
the commands computed by the software.

Error flag used for D/A board.

D/A device handle.

D/A frame handle.

Two-dimensional array that stores the values read by the A/D
board. It stores 20 count values for each channel that are then
added together and averaged.

This is the array of averaged values from ChData that are
converted from count values fo voltages.

Array of calibration constants for the A/D channels.

Array that the moment about the Z axis gets written to in order

to be plotted.

Array that the rotation about the Z axis gets written to in order to
be plotted.

The first set of common variables are from the common block /navy2/, which are shared among
the main module subroutines and the secondary module subroutines.
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Loop.Steps

Tolerance

scale
Save.Data.Step

Correction

CommandError

Command. TE%

Command.16%

Command.Trigger

DACStep. TE%

Delia. TE%

The total number of steps the program will do in one loading loop.
This is changeable by the user through the step size menu.

Used by subroutine Pause, which ensures the system is in
equilibrium before moving to the next step. Each actuator force is
calculated twice, then the difference between the two is found. If
the difference is larger than the tolerance, which is user defined,
then the process is repeated until the difference is smaller than the
tolerance and the next loading step can then be performed.

Holds a number from 1 to 4 that signifies which graph scale is to
be plotted for the moment-curvature plot.

The step interval at which data is automatically saved. This
variable is changeable by the user through the step size menu

This variable is used in the Decision.Algorithm subroutine. It tells
subroutine whether the force imbalance in the top actuators should
be corrected or not. If correction has a value of -1, the imbalance
will not be corrected. If correction has a value of 1, the appropriate
branch of the decision algorithm is executed so that the imbalances
are corrected.

A flag that indicates that one of the command voltages is beyond
the allowable voltage range of -9.95 to 9.95 volts set by the
software. When this variable is flagged, an error message prints to
the screen.

Command count value (converted from a voltage) that is sent to the
D/A board for each actuator. The % sign indicates this variable is
an integer value. (Each actuator has one of these variables).
Command count value that is sent to the D/A board to trigger the
auxiliary data acquisition system. This value is sent to the 16"
channel on the D/A board.

The variable that contains the count value for triggering the data
acquisition system. When data is to be saved, this variable is given
the count value of 3072, or 5.00 volts. When is is not to be saved,
it is reset to the count value 1228, corresponding to a voltage of —
4.00 volts that does not trigger the system. In sub Move.Actuators,
Command.16% is simply set equal to the Command. Trigger.

Size of the DAC step (from 0 to 4096). A DAC step of 1 is the
smallest movement that an actuator can make in one step. This is
equivalent to 20 V /4096 = 0.004883 Volts. The DAC step can be
changed by the user.

Has a value of 1,0, or -1, If the decision algorithm decides that a
given actuator needs to be extended in that step, Delta is given a
value of 1. If it needs to be retracted, Delta is set equal to -1. If
the actuator is not to move, Delta is 0. These values are multiplied
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by the DAC step size and added to the previous command to find
the new command count (Command. TE%,etc.). '

The second set of common variables are from the common block /navy/, which are shared only
among the main module subroutines.

Ident$

OutFilel$

QutFile2$

F5Flag

F10Flag
F7Flag
F3Flag
F9Flag
F4Flag

nPass

nData
NChannel
nStep

Direction

Save.Data.Counter

String variable that stores the test name, which gets written to the
output file.

String variable that holds the name of the first output file, to which
the actuator and link force values get written. The name of this file
is input from the data file that is read at the beginning of the test.
String variable that holds the name of the second output file, to
which the grillage transducer values and the bottom link transducer
values get written.

When F5 is pressed, the value of this variable changes from -1 to 1.
When this flag value is checked in the second main program loop,
and the value is -1 then the Program Functions menu is displayed.
A flag that allows the user to exit from various subprograms and
from the main program. '

A flag that tells the system to save data when F7 is pressed. This
also triggers the auxiliary data acquisition system to save data.

A flag that causes the Program Parameters menu to be displayed.
A flag that allows the user to exit the main program loop.

A flag that allows the user to pause the execution of the main
Executing loop.

Counter that counts how many times a given subroutine has been
executed without being exited. When a subroutine is exited, nPass
is given the value of 0 so that the next time through the graphics
will be redisplayed. This helps cut down on screen flashing.
Counter that holds the total number of steps performed in the fest
Number of A/D channels being used. This number is read by the
input file.

Variable displayed on main screen that tells the user at which step
the program is in the loading loop (how many Loop.Steps have
been executed).

Tells the program whether the rotation is being increased or
decreased. This value is assigned when the user chooses to
increase or decrease rotation from the Program Functions menu.
When Direction = 1, rotation is increasing. When Direction = -1,
rotation is decreasing. These values are used in the
Decision.Algorithm to decide which actuators to move.

Counter used for determining when data needs to be saved. When
Save.Data.Counter equals a multiple of Save.Data.Step, data is
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CommandV.TE

FORCE.TE

FORCE.XN.TE, TC, TW
FORCE.XS.TE, TC, TW

FORCE.YN.TE, TC, TW
FORCE.YS.TE, TC, TW

FORCE.ZN.TE, TC, TW
FORCE.ZS.TE, TC, TW

FORCE.X. BNW, BNE
FORCE.Y.BNW, BNE
FORCE.ZBNW, BNE
FORCE.X.BSW, BSE
FORCE.Y.BSW, BSE
FORCE.Z.BSW, BSE
FLINK.NE, NW, SE, SW
FLINK.X.NE, NW, SE, SW
FLINK.Y.NE, NW, SE, SW
XDUCER.INX, 2NX, 3NX

XDUCER.INY, 3NY
XDUCER.18X, 28X, 38X
XDUCER.18Y, 38Y
DELTA.X.BSE, BSW

CNXTE, TW, TC

saved automatically. If F7 is used to save data at random,
Save.Data.Counter is reset to 0.

Command voltage specified by the user when the actuators are
being initialized. The suffix TE designates the actuator (T=Top,
B=Bottom, C=Center, N=North, S=South). Each actuator has its
own CommandV variable. The voltage value entered should be
equal to its initial feedback transducer voltage. These voltages are
then converted to count values that can be sent to the D/A board.
Total force in an actuator or horizontal link. Calculated by
multiplying the channel voltage by the load cell’s calibration
constant,

The X component of force in the top actuators at the north grillage.
The X component of force in the top actuators at the south grillage.
(equal in magnitude but opposite in sign to FORCE.XN. TE, etc.).
The Y component of force in top actuators at north grillage.

The Y component of force in top actuators at south grillage (equal
and opposite to FORCE.YN.TE, etc.).

The Z component of force in top actuators at north grillage.

The Z component of force in top actuators at south grillage (equal
and opposite to FORCE.ZN.TE, etc.).

The X component of force in the bottom horizontal links.

The Y component of force in the bottom horizontal links.

The Z component of force in the bottom horizontal links.

The X component of force in the bottom actuators.

The Y component of force in the bottom actuators.

The Z component of force in the bottom actuators.

The total force in each vertical link.

The X component of force in each vertical link.

The Y component of force in each vertical link.

Distances measured by the north grillage X-direction transducers
(temposonics). These (and the other TEMPO variables) are used
for the purpose of calculating the grillage vectors and
transformation matrices.

Distances measured by the north grillage Y-direction transducers.
Distances measured by the south grillage X-direction transducers.
Distances measured by the south grillage Y-direction transducers.
Distances measured by the bottom link transducers. These values
are used in the calculations in Actuator.Vectors to determine the
vectors for the bottom links and actuators.

X component of C vector for top actuators at north grillage. These
represent the distance in the global X direction from point r'y to the
top actuator end. This variable is common because these values
are used as moment arms for calculating moments in
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CN.Y.TE, TW, TC

CS.X.TE, TW, TC

CS.Y.TE, TW, TC

CN.X.BNE, BNW
CN.Y.BNE, BNW
CS.X.BSE, BSW
CS.Y.BSE, BSW

DXNE, NW, SE, SW

D.Y.NE, NW, SE, §W

CONSTANTS

CPN.XTW, TC, TE

CPN.Y.TW, TC, TE
CPN.Z.TW, TC, TE

CPS.X.TW, TC, TE

CPS.Y.TW, TC, TE
CPS.Z.TW, TC, TE
CPN.X.BNW,BNE

CPN.Y.BNW,BNE

Equilibrium.Equations.

Y component of C vector for top actuators at north grillage
(distance in global X direction from point 1’y to the top actuator
end).

X component of C vector for top actuators at south grillage. These
represent the distance in the global X direction from point r's to the
top actuator end.

Y component of C vector for top actuators at south grillage
(distance in global X direction from point 1’ to the top actuator
end).

X component of C vector for bottom links at north grillage.

Y component of C vector for bottom links at north grillage.

X component of C vector for bottom actuators at south grillage.
Y component of C vector for bottom actuators at south grillage.
X component of D vector for vertical links. These represent the
distance in the global X direction from point 1’y to the bottom end
of the link. This variable is common because the values are used
as moment arms for calculating moments in
Equilibrium.Equations.

Y component of D vector for vertical links. These represent the
distance in the global Y direction from point 1’y to the bottom end
of the link.

Distance in local X direction from 'y to the north end of the top
actuators. These are used for calculating the global C vectors. (X
component of the C'y, vector).

Distance in local Y direction from r 'y to the north end of the top
actuators. (Y component of the C'y vector).

Distance in local Z direction from r 'y to the north end of the top
actuators. (7 component of the C'y vector).

Distance in local X direction from r's to the south end of the top
actuators. These are used for calculating the global C vectors. (X
component of the C'g vector).

Distance in local Y direction from r ' to the south end of the top
actuators. (Y component of the C's vector).

Distance in local Z direction from r 'y to the north end of the top
actuators. (Z component of the C'g vector).

Distance in local X direction from r'y to the north end of the
bottom horizontal links.

Distance in local Y direction from r'y to the north end of the
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CPN.Z.BNW,BNE
CPS.X.BSW,BSE
CPS.Y.BSW,BSE
CPS.Z.BSW BSE
ENO.X.BSE, BSW
ENO.Y.BSE, BSW
ENO.Z.BSE, BSW
ESO.X.BNE, BNW
ESO.Y.BNE, BNW
ESO.Z.BNE, BNW

L2.X.NE,NW, SE, SW

L2 Y.NE,NW, SE, SW

[.2.Z.NE, NW, SE, SW

PIN.X.0, .Y.O, Z.O
P2N.X.0, .Y.O, Z.O
P3IN.X.0, .Y.O, Z.O
P1S.X.0, .Y.0, Z.O
P2S.X.0, .Y.0, Z.O
P3$.X.0, .Y.0, Z.O

bottom horizontal links.

Distance in local Z direction from r'y to the north end of the bottom
horizontal links.

Distance in local X direction from r'y to the south end of the
bottom actuators.

Distance in local Y direction from r'y to the south end of the
bottom actuators.

Distance in local Z direction from 1’y to the south end of the
bottom actuators. ‘

Original distance in global X direction from pont r'y to the north
end of the bottom actuators.

Original distance in global Y direction from pont r'y to the north
end of the bottom actuators.

Original distance in global Z direction from pont 1’y to the north
end of the bottom actuators.

Original distance in global X direction from pont r'y to the south
end of the bottom horizontal links.

Original distance in global Y direction from pont r'y to the south
end of the bottom horizontal links.

Original distance in global Z direction from pont 1’y to the south
end of the bottom horizontal links.

Distance in local X direction from point r' (for north grillage) or
t's (for south grillage) to bottom end of vertical links. These values
are used for calculating the same distance in global coordinates.
Distance in local Y direction from point t'y (for north grillage) or
1's (for south grillage) to bottom end of vertical links. These values
are used for calculating the same distance in global coordinates.
Distance in local Z direction from point 1’y (for north grillage) or r'y
(for south grillage) to bottom end of vertical links. These values
are used for calculating the same distance in global coordinates.
Coordinates that define the original locations of point PIN.
Coordinates that define the original locations of point P2N.
Coordinates that define the original locations of point P3N,
Coordinates that define the original locations of point P18,
Coordinates that define the original locations of point P2S.
Coordinates that define the original locations of point P38S.

NON-SHARED VARIABLES - The following are non-shared variables used only by subroutine

PIN.X, PIN.Y, PIN.Z

Actuator Vectors.

Global coordinates of point P1 on the north grillage - calculated
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PZN.X, P2N.Y, PZN.Z
P3N.X, P3N.Y, P3N.Z
PiS.X, PISY,PiS.Z

P2S.X, P28.Y, P2S.Z
P3S.X, P3S.Y, P3S.Z
VN.X, VN.Y, VN.Z
VS.X, VS8.Y, VS .Z
WN.X, WN.Y, WN.Z
WS.X, WS.Y, WS.Z
UNX,UN.Y, UN.Z
US.X,US.Y,US.Z
tN.11 - tN.33

tS.11 - t3.33

RN.X, RN.Y, RN.Z
RS.X,RS.Y,RS.Z
ENXTW, TC, TE
EN.Y.TW, TC, TE
EN.Z.TW, TC, TE
ES.X.TW, TC, TE
ESY. TW, TC, TE
ES.ZTW, TC, TE
EN.X.BNW BNE
EN.Y.BNW, BNE
EN.Z.BNW, BNE
ES.X.BNW BNE

ES.Y.BNW, BNE

from original coordinates plus TEMPO values (grillage
transducers).

Global coordinates of point P2 on north grillage.

Global coordinates of point P3 on north grillage.

Global coordinates of point P1 on the south grillage - calculated
from original coordinates plus TEMPO values (grillage
transducers).

Global coordinates of point P2 on south grillage.

Global coordinates of point P3 on south grillage.

X, Y, and Z components of the V vector on the north grillage.

X, Y, and Z components of the V vector on the south grillage.

X, Y, and Z components of the W vector on the north grillage.

X, Y, and Z components of the W vector on the south grillage.

X, Y, and Z components of the U vector on the north grillage. The
U vector is the unit normal to the plane of the grillage.

X, Y, and Z components of the U vector on the south grillage.
Values of transformation matrix for north grillage.

Values of transformation matrix for south grillage.

Components of RN vector, which goes from global reference point
r to local reference point r'y. :

Components of RS vector, which goes from global reference point
r to local reference point r's.

Distance in global X direction from point r to north end of top
actuator.

Distance in global Y direction from point r to north end of top
actuator.

Distance in global Z direction from point r to north end of top
actuator.

Distance in global X direction from point r to south end of top
actuator,

Distance in global Y direction from point r to south end of top
actuator.

Distance in global Z direction from point r to south end of top
actuator.

Distance in global X direction from point r to north end of bottom
horizontal link.

Distance in global Y direction from point r to north end of bottom
horizontal link.

Distance in global Z direction from point r'to north end of bottom
horizontal link.

Distance in global X direction from point r to south end of bottom

horizontal link.
Distance in global Y direction from point r to south end of bottom
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ES.ZBNW, BNE
EN.X.BSW BSE
EN.Y.BSW, BSE
EN.Z.BSW, BSE
ES.X.BSW BSE
ES.Y.BSW, BSE
ES.Z.BSW, BSE

AXTW, TC, TE

AYTW, TC, TE

AZTW, TC, TE
AXBSW, BSE
AY.BSW, BSE
A.Z.BSW, BSE
AX.BNW, BNE

AY BNW, BNE
A.Z.BNW, BNE

ATW, TC, TE, BSW, BSE

A.BNW, BNE
L1.X.NE, NW, SE, SW

L1.Y.NE, NW, SE, SW
L1.Z.NE,NW, SE, SW
L.X.NE,NW, SE, SW

L.Y NE, NW, SE, SW
L.Z.NE, NW, SE, SW
L.NE, NW, SE, SW

horizontal link.

Distance in global Z direction from point r to south end of bottom
horizontal link.

Distance in global X direction from point r to north end of bottom
actuator.

Distance in global Y direction from point r to north end of bottom
actuator.

Distance in global Z direction from point r to north end of bottom
actuator.

Distance in global X direction from point r to south end of bottom
actuator,

Distance in global Y direction from point r to south end of bottom
actuator.

Distance in global Z direction from point r to south end of bottom
actuator,

X component of the top actuator vectors.

Y component of the top actuator vectors.

Z component of the top actuator vectors.

X component of the bottom actuator vectors.

Y component of the botiom actuator vectors,

Z component of the bottom actuator vectors.

X component of the bottom horizontal link vectors.

Y component of the bottom horizontal link vectors.

Z component of the bottom horizontal link vectors.

Total actuator length - calculated by taking the square root of the
squares of A.X, A.Y,and A.Z.

Total horizontal link length.

X component of L1 vector for vertical links - L1 vector goes from
global reference point r to the bottom of the link.

Y component of L1 vector for vertical links.

Z component of L1 vector for vertical links.

X component of L vector for vertical links - L vector represents the
location of the link.

Y component of L vector for vertical links.

Z component of L vector for vertical links.

Total length of vertical links.
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