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FOREWORD

Dimensions and tolerances selected during the design stage of a con-
struction project greatly influence the material and fabrication costs, the
required performance of the construction equipment, and the quality of fabri-
cated and erected systems. An.objective of the Automated Construction Systems
project at the NSF Engineering Research Center for Advanced Technology for
Large Structural Systems, ATLSS, is to design, build and test cost-effective
sutomated construction systems.

This paper reports the development of a function, the Probability of
Successful Assembly (PSA), which relates the ability to erect or assemble
components to their dimensions and tolerances and the precision of the equip-
ment used. Non-dimensional tolerances and precisions are used to provide a
means to present graphically the underlining relationships in a useful yet
general form. In situations where the equipment precision is given a priori-
ty, Maximum Allowable Size Ratio (MASR) tables provide a method for determin-
ing the part dimensions and tolerances that will lead to various levels of
success. The PSA function can be used within a component design, fabrication
and erection cost model to determine the size and dimensions of the components
and the precision of the equipment required, (In this paper, the PSA function
and the MASR tables are restricted to rigid (non-deforming) components; subse-
quent work will remove this constraint.)

Of particular interest at the ATLSS Center is the adaptation of the PSA
function to automated connections in steel, concrete, and composite construc-
tion. This paper lays the fundamental theory appropriate to this application.

Cemal Doydum N. Duke Perreira
Research Assistant Assocliate Professor
Industrial Engineering Mechanical Engineering and Mechanics



INTRODUCTION

The events leading to successful material removal and assembly processes include
alignment and processing. Detailed characteristics of these events are governed by the actual
geometry and clearance between the mating parts, the initial position and angular alignment of .
the parts, and by the contact forces between the parts as they are mated. Misalignment may
occur prior to, during and after the process. We are concerned with the alignment prior to the

process for it is a primary influence on the fate of the remaining sequence.

In an ideal automated assembly of two loosely fitting parts it is desired that the parts are
fabricated to their ‘design dimensions with zero tolerance, the clearance between the parts
during the jnsertion process is distributed between the parts in such a way that no collisions or
.rubbing could occur and the size of the clearance is sufficient to provide the intended function
of the assembly. In real automated assembly systems this ideal condition is never met. The
precision of the manipulating equipment and fixturing and the fabrication tolerances of the
parts being assembled will always be less than perfect. This results in collision and rubbing of

the parts during the assembly, the need for intervention, productivity losses and generation of

material scrap.

To remedy this situation various techniques have been developed. In automated assembly,
the manipulator may be equipped with the ability to sense collisions. Upon the failure of the
insertion, error recovery strategies may include a second assembly attempt. Other optimal
number of assem.bly attempts may exist [1]. Such methods may increase the probability of
catastrophic failure and the cost of the system while reducing the productivity of the process.

In many cases to maximize productivity while minimizing the unit cost it is important that the

process be accomplished in the first attempt.



Other solution techniques applicable to assembly processes include the use of chamfers and
compliance [2,3]. This has led to the investigétion of various chamfer shapes in order to
determine the chamfer shape that would create minimum reaction to insértion forces [4,5]. In
order to increase the compliance of a manipulator holding a peg compliant devices are placed
between the peg and the manipulator [6,7). - A Remote Center Compliance (RCC) device was
developed as a simple and cheap solution to achieve the desired compliance [7]. An
Instrumented RCC with positional sensors is used to monitor the displacement of the remote
center compliances [8]. The monitored displacements could be used by the robot controlier to
actively correct the relative position of the peg to the hole. An alternative method to this
active correction scheme, as presented in this paper, is to design the peg and hole geometry

and tolerances and select part manipulation and fixturing devices so that the possibility of

poor insertion is reduced.

. In some assemblies chamfers cannot be used or they can not be made large enough to
guarantee successful insertion without degrading the required function of the assembly. For
example, precision machinery must be assembled in a clean environment without generating
dust. Burrs and particles generated by rubbing during insertion reduces the reliability of tfze
assembled device [9]. Chamfers can not be used in surface agsemblies [10] such as sticking a

stamp on an envelope or placement of surface mounted devices onto printed circuit boards.

Surface assemblies are one of a number of the more general cases where alignment errors
occur. The alignment problem oceurs in all material removal processes where a cutting edge or
beam is placed on or against a material. The cutting edge will have a position and size
tolerance.a,s it is moved along a desired countour which also has position and size tolerance. A
similar alignment error problem occurs in all material combining processes such as laser

sintering [L1]. A complete understanding of the interaction among the equipment precision




and beam dimensions and tolerances is indispensable for the performance improvement of these

and similar processes.

The alignment problem has been previously - considered by many researchers
[12,13,14,‘i5,16]. In these studies, the assembly process performance has been expressed as a
function of the nominal part tolerances, equipment precision and the clearance that exists
between the parts. This approach does not lend itself to the development of generic alignment
performance models which are functions of the non-dimensional tolerances, precision and size
ratio variables. The concept of size ratio together with the non-dimensional tolerance and

precision plays a central role in the development of the proposed theory.

In this development we present the method as if it were only to be used for the alignment

stage of assembly processes. The presentation does not limit the method’s use in other forms

of the alignment problem.



PROPOSED SOLUTION

We determine the alignment statistics of two objects by combining geometrical information
with position and orientation or pose descriptions. The spatial alignment of two mating
" objects, O and O', is depicted in Figure 1. Qur treatment of spatial alignment is restricted to
" cases where it can be represented by the placement of a planar projection of Object O into or

on a planar projection of Object O'. A Primed and an Unprimed Cutting Surface are used to
create cross-sections of the Objects O and O’ which are then projected onto an Alignment
- Surface using a Primed and an Unprimed Projection Rule. Both the cross-sections and their

relative pose are subject to variation.

The relative pose of the projections is determined with the use of various relative
coordinaté transformations. The Alignment Surface is defined by the world coordinate system
XWszw- The object fixed coordinate systems X’OYBZ{:’) and XoYoZe are used to
determine the pose of the objects relative to the world frame. The pose of the cross-sections
relative to the object frames is determined using the X'y! and XY coordinate systems, whereas
the pose of the Alignment Surface relative to the world coordinate system is determined using
Xw ¥y We restrict our analysis to the case where the cutting and alignment surfaces are

parallel planes.

The present work is concerned with objects that have common convex shaped geomeiries
such as lines and circles where closed form solutions are possible. The applicability of using
Monte Carlo methods is shown by cémparing analytic results to simulation results for the
circular case. Results when using complex shapes, where Monte Carlo methods are required,
will be given elsewhere. We first present the analysis of placing a line above a second line in
order to explain details of the method for a simple case. We then proceed to apply the method

to a more practical example of placing a circular geometry, such as that of a pin, on top of a



similiar geometry, such as a hole. In both cases a Probability of Successful Assembly function

which relates success to geometric and precision parameters is obtained.

ONE-DIMENSIONAL ALIGNMENT ERROR MODEL

The essence of the technique is best described in the one-dimensional case in which a line
segment A/B’ is placed on top of another line segment AB as shown in Figure 2. For each
trial or sample placement the actual lengths of each line will vary as will their location. In
each figure the center of each part is indicated by a tick marker. A satisfactory placement
occurs when the bounds of A'Bf are within those of AB as shown in Figure 2-a. An

_.unacceptable placement takes place when either or both sides of A'B’ are exposed as shown in

2-b,c,d.

-

The actual half lengths LA and LA! of the line segments, as in Fig. 3, are represented by
probability  distributions. We assume normal distributions N(x 5;ld,o o) and

N(XLA,;ld’ T, A")’ respectively. Assuming dimensional errors are additive, separation of LA
and LA’ into deterministic and stochastic parts results in LA = Id + DL, where
DL~N(xp ;0,0 4) and LA! = 1d/ + DL! where DL’NN(XDL,;O,ULA,). The position of the
center of each line segment relative to its desired position, F and M, is taken to be N(xp;0,0p)
and N(xp30,04) respectively, In practice, the probability distribution of part dimensions and

part placements will be determined by sampling and hypothesis testing and the results given in

this paper can be so modified. We assume that the distributions of DL, DL/, M and F are

statistically independent.

Maximum Allowable Size Ratio, MASR. The Maximum Allowable Size Ratio R, is the largest

ratio of 1d’ to Id in which A'B! will fit into AB under the given errors DL, DL/, F and M. The
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MASR R for the one-dimensional case is found by noting with the aid of Figure 3 that: the
absolute value of the difference between F and M negatively affects the maximum allowable
1d/; an increase in the size of the fixtured part AB will allow a larger 1d'; and the converse is

true for a decreasing manipulated part size A'B!. Thus, the distribution of the MASR. is found

as

_ld+4+DLL - [FTM| _1d+E E
R = P == =1ty (1)

where DLL' = DL - DL/ and FTM = F ~ M. DLL' and FTM are distributed

. . P , , 3
N(XDLL”O’JDLL') and N(Xgpi0,0pm= [arf_m+a'M), respectively, where GDLL,:.!JLA»}-JiA, and

= ldig‘+0§ﬁ [17]. E, the alignment error, is the difference between DLL' and FM where
FM = |[FTM].

The probability density function {pdf) of FM in the interval [0,+c0) is

Xem | 2
9FM

The pdf of E in the interval (-co,4-c0) under the assumption of statistical independence, is

[

— 2
femxEm) = a7

found by convolving the pdfs of DLL! and FM as

2
. -
2(172 :+0‘2 )
_ 1 DLL FM v
fE(xE) = = : e erfc(:%; :M - XE) . {(2)
V2w \oEMtop L "DLL'\j”mL'"“‘TFM

e e St L o e i i s My e e T LA



The MASR R is described by the pdf fz(xg). It is obtained by substifuting xg-1 for xg in

Equation 2 and rescaling the standard deviations by 1/1d. Figure 4 shows the plots of MASR

pdfs for various parameter values.

The area under the MASR pdf curve to the right of a given size ratio r provides us with
“-the Probability of Successful Assembly, PSA, of the mating parts if that ratio r of id to 1d is

selected. This probability is expressed as
oo
o

The PSA curves obtained using Gauss-Legendre gquadrature based on the pdfs shown in
Figure 4 are illustrated in Figure 5. For a given size ratio smaller tolerances and precisions
will result in steeper curves at higher probabilities. PSA values larger than zero occur for size
ratios above one because there will be some members of the AB and A'B’ populations that
satisfy our acceptance criteria. As tolerances increase the extension of the curves beyond a size

ratio of one increases further because there is a larger overlap between the distribution of sizes.

I3

The non-dimensional tolerance variables DL/1d and DL//ld and precision variables F/dl
and M/dl provide a natural way of expressing tolerances and precisions. Together with the
MASR R, they constitute the parameters of the generic alignment problem. Non-dimensional
tolerances and precisions recognize that there is a proportionality in achieving tolerances at a
particular size due to material, fabrication and temperature. .For example, the probability of
successfully placing a 9.994.02 mm line on a 10.00£.02 mm line with equipment precision of
+.05 mm is identical to that of placing a 99.9%.2 mm line on a 100.0+£.2 mm line with

equipment precision of £.5 mim.

g e e e P e e =



Distribution Assumptions. Distribution assumptions other than the normal distribution could

be made for the tolerance and/or precision errors. A uniform distribution assumption would
be safer in the case where we do not have any information about the distribution of the errors.
2 Ir; addition, some of the error factors in our model may prove to be insignificant and could
" thus be eliminated. - For example, when tolerance errors are normal, there are no fixturing

R

errors, and the manipulator precision is uriform in [m%,+—§], application of the above method

will yield:

TWO-DIMENSIONAL ALIGNMENT ERROR MODELS

Frror Vectors and Probability Density Functions. A vectoral representation of tolerances and

placement errors will allow the generalization of the above-illustrated theory for point
symmetrical two-dimensional geometries. For each of the two mating parts the points of
symmetry are mapped into point Oy, the origin of the precision coordinate system as shown in
Figure 6. The positioning errors of the manipulator and the fixture with respect to the origin
are represented by the random vectors F and M, respecfively. The positioning error of the
manipulator with respect to the fixture is thus FTM = F - M. The success of the assembly is
a function of the magnitude of FTM , FM. A one-dimensional tolerance coordinate system is
placed at the tip of FTM with positive direction in the direction of FTM. The tolerance
coordinate is aligned with FTM because in point symmetrical perfect form objects the contact
between the parts occurs only in the direction of FTM. When FTM = 0, the contours of the

- objects will come in full contact and the tolerance direction can be specified arbitrarily. The



total tolerance error of the manipulated and fixtured parts is given by DLL = DL - DL

Generalization of Equation 1 yields

_1d 4 s |[DLL!| - [FTM]
R= Id

where,
+1i# DLL/ has (+) direction

—~1if DLL' has (—) direction

In the one-dimensional case Equation (4) reduces to:

R = ld—[—DLmD]I;’-- iFme;

#

while in the two-dimensional case it becomes:

_1d 4 DL = DLY — J(XeXp)? + (Ye-Yy)'
= id

(4)

(5.a)

(5.b)

where _((Xf_;-}(,vl)z—I—(').’f;uY,\ﬂ)"2 has been substituted for |F-M|. The geometric interpretation

for these variables is given in Figure 7.

We derive the alignment error pdfs here for the correlated and uncorrelated cases in a

manner similar to that used in the one-dimensional case presented above.

The fwo-

dimensional precision errors are represented by bivariate distributions; in the one-dimensional

model they were half normal. In a bivariate precision error distribution, correlations among

the components of the random precision vectors F:(XF,YF)' and Mm(XM,YM)’ are taken

into account.

10



The distributions of the independent normal vectors (XF,YF)’ and (Xp, YM)' are!

1 AFTCE T

=5 [det(Cr)

- 1 N
(= o [det(Cyy)

where fj (M) and f=(F) are the manipulator and fixture precision error pdfs with covariance

matrices Cyy and Cg, respectively.

The covariance matrix of a random vector (X,Y)' is denoted by

Tex Czy
Czy ==
Tyz Tyy
where oz and oyy represent the variances measured along the x- and y-axes; ozy=cyc is the
covariance between X and Y. It is customary to write oz2 and oyy as o2 and o2, respectively

and replace ozy and oys with pozoy, where -1<p<1 is the correlation coefficient of the

random variables X and Y.

Correlated Precision Errors. We determine the pdf fp),(xgp) by first noting the random

variable FM is a function of the random variables U and V where U=Xg-X), and V=YY,

such  that FM#\IU2+V2. The Jjoint distribution of U and V is

2
N(xy v i0.0Joketokmoirtodm pus) where

Py = PEIXEIyvETPMT XM Y
2 2 3 2
J”xr—‘“‘““xm J“YF'WYM
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Using the transformations x =xg\cosé and Xy=Xpsind we write fFMé(xFM,6)=fUV(xU,xV)|J!
where J is the Jacobian of the transformation. Integrating f ,c(xgp 6) with respect to 6 from

0 to 2w, we obtain the pdf:

2 2

B LSV AV

: 3
FmEem) = = ¢ o
Ty Yy (1-puo) =0 (2n)*!

1 UU_'U\QI 2 1 Pu

where A = » & —gp—5—5— X and B 2 F¥Y o 2.

4 crf}o*f/(;-pﬁv FM 2 “Udv(l'Pﬁv) FM

The pdf for the alignment error E , fe(xg), where xg=xq, ,/—Xpy, is then obtained by

convolving the tolerance distribution of DLL' ~ N(X;O,UDLlM,m o{A-{-aiA,) with fep(xem)-

The pdf of the MASR, fr(xg), is obtained by substituting xg-1 for xg and rescaling the
standard deviations by 1/1d in fe(xg). The PSA'is obtained by integrating fiz(xg) from a given

size ratio r to oo.

Uncorrelated Precision Errors With Equal Variances. In this case U and V are independently

normally distributed variables with mean 0 and variance o\ =vie+oim=cietodpm The

random variable FM will thus have a Rayleigh distribution:

defined in the interval [0,++00). The pdf for the alignment error E becomes

12




Py 7
— TEM 2(opy 1 HoEM) ool L TEM
f (X )-—— e eric b4 s
E\¥E 2oLyto? )3/2 N2 2 y "EJ7E
FMT I ! "DLU\!"’DLLF"‘TFM

+ “pii!
2 2
1%27!" (UF:M'i”U'DLLp)

To obtain fz(xg), Xg is replaced by Xxg-1 and the standard deviations are scaled by 1/ld. The

PSA is obtained by integrating fr (xg) from a given size ratio r fo co.

VERIFICATION AND MONTE CARLO SIMULATION

The equations for the PSA developed in this paper, for the one dimensional case (Equation
5a) and the two dimensional cases {(Equation 5b) with and without correlation have been
verified using Monte Carlo simulations of the assembly process. The simulation procedure
consists of 1) generating 2 set of random deviates for the variables in the error model equation,
2) computing a MASR using the error maodel equation (Equation 5a or 5b), 3) repeating Steps
1 and 2 until a “sufficlently” large number n of MASR values Ry, ... , Ry is computed, 4)

sorting the computed MASRs from the smallest R(l) to the largest R("), and 5) plotting

n'};ll“l versus Rm. The PSA using this method will vary from 1/n to 1 [18].

Figure 8 compares the result of using a Monte-Carlo simulation, with n=1000, with that of
using the analytical method described above for the uncorrelated two dimensional assembly.
Despite the low number of observations, Monte GCarlo simulation result appears to be in close

agreement with the analytical solution and will be found to be a powerful technique for the

implementation of the proposed method when analyzing complex geometries, the subject of a

future paper.

13




APPLICATIONS

The equations developed above can be used directly to estimate the Probability of
~Successful Assembly for given size ratio, tolerance and precision values. They must be used
iteratively to select part dimensions and tolerances given the precision of the equipment and

the required assembly performance. As an ald to this iterative approach design surfaces and

tables can be used.

DESIGN SURFACES

The MASR that would provide a certain level of PSA can be plotted for various
combinations of equipment precision and part tolerances. For example, Figure 9 shows the
effect of assuming equal tolerances for the maripulated and fixtured parts and equal precisions
for the manipulator and fixture when the probability of successful assembly is .99 in the two-
dimensional uncorrelated model. We define a tolerance or precision level, which is used in
scaling the axes of the surface graph, as the negative common logarithm of their values. An
infinite combination of tolerances and precisions can be used to achieve the desired PSA %or
this and any other particular size ratio. The dashed line is*; a surface contour for the tolerances

and precision that would give a PSA of .09 for a size ratio of .0.

The surface in Figure 9 is not symmetrical with respect to tolerance and precision. Optimal
precision and tolerances can be chosen based on their costs and the costs associated with
failure of the assembly process. Let us a,sslume that the cost of failure of the assembly process
requires that a PSA of .99 be achieved. Let us also assume that the costs for achieving a
particular level of precision and tolerance are equal and the cost is proportional to its level

[19]. Under these special conditions the non-dimensional tolerances and precisions should be

14




selected so that the equipment precision is slightly better than the part tolerance because of
the asymmetry of the surface. We are currently developing a model for cost optimal selection

of the equipment precision, part tolerances and size ratios to cover other sets of conditions.

~Figure 9 represénts the design surface for a particular PSA value. We obtain an onion skin
like grouping of surfaces by varying the PSA value. A cut through the set of surfaces at PSAs
of .9, .99 and .999 along the equal tolerance/precision plane results in Figure 10. We see from
this figure the obvious conclusions that; to achieve a higher PSA, for any particular size ratio,
requires higher precision and tolerance levels and that; for any particular tolerance and
precision level the PSA can be increased by simply reducing the size ratio. The exact effect of

these changes can be determined by presentation of the surfaces in tabular form.

DESIGN TABLES

Tables of MASRs can be obtained using either Monte Carlo methods or the analytical
technique presented above. Table I-b corresponds to the surface given in Figure 9 whereas
Tables I-a and I-c are for surfaces at PSAs of .9 and .999, respectively. Figure 10 is provided
by thé diagonal terms of the three tables. The tables have been so constructed that linear

interpolation can be used to determine one of the size ratio, precision and tolerance levels given

the other two.

The ability to use a larger MASR to achieve a particular PSA in many cases aliows the
assembly to function at a higher capability. This is because the mechanicél function of many
assemblies degrades with the magnitude of the clearance. The rows of the tables show that
increasing the precision level increases the maximum size ratio allowed whern achieving the
desired PSA level. Similarly the columns show that increasing the tolerance level increases the

maximum size ratio allowed when achieving the desired PSA level.

15



Increasing the tolerance or precision levels into either the upper right or lower left hand
corners of the table does not significantly increase the size ratio allowed. Conversely, assuming
that the.cost of -tolerances and precisions is proportional to their level, combinations of
. tolerances. .and precisions wit}.ﬁn- these regions will significantly increase production costs
without measurable improvement in the function of the assembly. The size ratios do not differ

significantly indicating unnecessarily precise equipment or part tolerances.

If a designer chooses to insert a nominally 19.97 mm radius pin into a 20.00 mm radius
hole various assembly performances are achieved depending on the tolerance specifications of
the hole and pin. Let us assume that we are using equipment with a precision level of three.
This is represented by the fifth column of Tables [-a, b and c¢. When using a size ratio of
.9985=19.97/20.00 the tables indicate that to achieve a PSA of .9, a minimum nominai part
tolerance of +(20 mm)x10'2'9282 +.02 mm is required. To achieve a PSA of .99 a minimum
nominal part tolerance of (20 mm)x10'3'5:~: +.006 mm is required. And, to achieve a PSA
of .999 is impossible. Selecting equipment with precision level 3.5 would make a PSA of .999
possible. The exponents in the parentheses are obtained by linear interpolations. The
designer and the machine shop must then determine the cost benefits of each of these

possibilities in order to make the appropriate selection.

i6



CONCLUSION

The concerns of the design department and the fabrication shop are unified in an assembly
performance model which combines the effects of the part dimensions and tolerances and the
equipment precision in the Probability of Successful Assembly, PSA. The probability of
- achieving a successful alignment when using parts with a given size ratio, tolerance and
equipment precision is given by the PSA. Various probability distributions associated with the

manufacturing and assembly processes can be used.

The PSA also provides a way of determining the part dimensions and tolerances when
using equipment with a given precision when the maximum allowable assembly failure rates
are known. When used in this manner MASR Tables provide the MASR that can be used to

achieve the required level of success.

The methodology exposed in this paper for the alignment of line segments and circles can
be extended to more complex shapes including the alignment of single and multiple paired
polygons common to the electronic, civil and mechanical industries. Further enhancements
include methods for incorporating system compliances in the determination of the effective size
ratios and determining cost optimal solutions.  In the case of complex geometrical shapes and
probability distributions, Monte Carlo simulation appears to be a powerful technique for
implementation of the method.
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Table 1. MASR Tables for 2-D Alignment; Uncorrelated

a) PBA = .9

~Logyg{Bilat. Spec. Precision}

i 1.5 2 2.5 3 3.5 G ‘4,5 5
R XX IR IS K B RN MK B SN H R IO NN HN NS RN KKK HNMHKR AR RS IRH KA HHHHIH KK
* 0.87 0.92 0,93 0.94 % 0.94 0.9% 6. %% .94 0.9 *
* * *
% 0.50 0,957 0.973 0,980 * 0,980 0.9%80 0,980 0,980 0,980 *
NI HHFN KN . 6K HHHHHHIIH W NN KM *®
* 0.90 % 0,967 0.987 0.992 0.99% 0.99% % 0,99 0.9% 0.99% %
* FRHHAN KA FHN % o
* 0,90 0.967 * 0,990 0. 9957 0,997% 0.9980 % G,%980 0.9980 0.9980 *
® - IR KK R HH HEHEIH NN KA HK HHAN KN K *
% 0,90 0,967 ¢.990 * 0,9967 0,9987 0.%992 0.%993 0.9994 % 0,999% *
%* FHAKWH R HHKR * %
* 0,90 G.967 0,990 0.9967 ¥ 00,9990 0.99557 0.99373 0.99980 % 0,99980 ¥
* ) HEHHFHENKHK HRMRREH KRR RN
* 0,90 0.967 0.990 0.9%967 30,9990 x 0,99967 0,99987 0.99%992 0.,99993 =
* FHMHN K H R NN *
* 0,90 0.967 ¢.990 0,9967 0.9990 0.99%67 * 0,999%90 0.999957 0.959973 »
* KRN NURR KA *
»*» 0,90 0.967 0.990 0.9967 0.9990. 0.99%67 0,99990 * 0,999967 0.999987
3 HE 6 32 BETEHEIEIEN M I I X H T M M IR HIH IR HIENS N II NN A K I KN N NN R IIH KR RIIN U HHNAHR A HRNK

b) PSA = .99

~Logyp(Bilat. Spec. Precision)

1 1.5 2 2.5 z 2.8 4 .5 5

I HIK KM N IOHHH K WHH N Fo0L B 63 I K HH R HH MKW KN HH AN AR S HH MR MR S RN I KK KN
* 0.81 0.87 0.88 0.89 % 0.89% 0.89 0.89 0.89 0.89 *
% : K HHH KK NN N HHN M KN *®
® 0.85 0.%40 0.957 0.963 0.963 0,967 * 0,967 0.%967 0,967 *
* * *
* 0,86 0,953 0.981 .987 0,988 0.9a89 * 0,989 0.98% D.98% *®
FHHIHII M IR K IH N HHWKH HIHMMHIHHRIHH R KRR HHK © *
*® 0.86 0,953 % 0,985 0.9937 0,9957 0.9963 0,9963 0.9967 % D.9967 *
* * * *
¥ D.86 0.953 ® 0,986 0.9953 0.9981 0.%987 0.9588 0.9989 % 0.998% %
*® MHHHHHHHHHRHHHHIHRRH KK ) * ot
® 0.86 b.953% 0,986 0.9953 % 0.9985 0.99937 0.99957 0.99963 * 0,99963 %
* . *® FRHEFHEREXLN
* 0.86 0.953 0.986 0.9%53 % 0.9986 0,99953 0.99980¢ o, 99987 6.99988 X
= HHERHHHHKHINHHHHHK AN K *
* G.SG 0,953 a., 986 0.9953 0,9986 0.99953 »* 0.99985 9,999937 0,999960 %
* . * *
* 0,86 0,953 G. 986 00,9953 0.9986 0,99953 * 0.99986 0.999953  0.999980
RHFH KRR R IRHAK IR MR HI NI AIHR IR A I I RSN R NHNN

*****************N*********K******

c} PSA = ,999

-logyg{Bilat. Spec. Precision)

1 1.5 Z 2.5 3 2.5 4 4.5 5
S0 36 A I VI NI FEH N 3636 JEHEIE I 36 JE36 0T 3 I 6636 6 R DI K ]3I0 6 HI6 260 H 236 3 I HEPE 05 360 2 3 3 3 2 J 2 H K HHHHMH
* 0.79 0.85 * 0,85 ¢.85 .85 0.85 9,85 0,85 0.85 . %
* 636 HE3EK 63 06 6 20006 M I H I KM x
* 0,83 0.927 0,950 G.953 * 0,955, ¢, 953 0.953 0.953 0,983 %
FEI MK IR N K MW MWK N *
* 0,83 * 1,963 0.977 0,982 a,985 * 0,985 0.985 0,985 0.965 *
%* 2 HHHNHHHHHN . AR MINRUR %
¥ 0.83 0,943 * 0,982 0.9%923 0.9947 0.9953 * 0,9953 0,9953% 0.9953 *
* * HHHHH XN *
® 0.83 0.943 * 0.983 0. 9943 0.9976 0.9983% 0.9985 # 00,9988 0.9985 *
* .96 563 34 36 236 2 P 3 IEIEHH 2 MW X HRERAR KRR *
* 0.68% 0.943 0.983 0.9943 % 0,9982 0,99923 G.99947 0.99953 % D,99953 %
*® B WP NN HHRRINK KRR H R
® 0.83 0.943 0.9832 0.9943 0.9982 % 0.99943 0,99%76 0.9%9a3 0.39985 %
*® - FEHHIEHHIEH RN *
*® 0.83 0.943 0,983 0.9943 a.9982 0.99943 % 0.99982 0.999923 ©0.999947 *
* . - HHRIHH AW NN NN *
* §.83 ¢, 943 2,983 0.9943 0.9982 G.99943 0.99982 % 0,999943 0.99997%6 =

********K**************K******%N***K************!*****?***!*******%**************!%%********
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Figure 1. Planar Alignment of Two 3-D Objects
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Figure 3. 1-D Alignment Error Model
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Figure 5. Probability of Successful Assembly Curves for 1-D Alignment
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Figure 7. 2-D Alignment Error Model
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Figure 8. Monte Carlo Simulation and Analytical Solution for 2-D  Alignment; Uncorrelated



MASR




1.00

2 095

o

[ia

m

o

N

“

“ (.90

Q

4

L

©

=

(o]

A

< 0.85

g

F

“rd

"

[i5

= 0.80
0.75

Figure 10.

ptd s b g v vty et radar e rera vt

£ N S AR S S SN RO NN A A S TR A S S T SR TN N SN R S M A T R N R ]

2 ‘ 3 4
~LoglO(Bilat. Spec. Tol.)=
-Logl0(Bilat. Spec. Prec.)

-k

MASR vs Equal Tolerance and Precision for 2-D Alignment; Uncorrelated



	Lehigh University
	Lehigh Preserve
	9-11-1989

	Selection Theory for Part Dimensions, Tolerances, and Equipment Precision: A Prelude to Automated Construction Systems
	C. Doydum
	N. D. Perreira
	Recommended Citation


	tmp.1373596923.pdf.W1WMO

