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ABSTRACT 

 

An examination of the static strength of steel orthotropic deck panels with 

trapezoidal shaped longitudinal stiffeners (ribs) was conducted through experimental 

and analytical studies. A prototype deck was utilized for evaluating the local effects 

of wheel loads. Individual rib specimens were cut from the deck for beam, column 

and beam-column strength testing. Finite element analyses of the test specimens and 

of orthotropic deck panels were made. A procedure of summation of component 

strength for analytical prediction of static strength of ribs and deck panels was 

developed and verified by the finite element analysis. 
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Chapter 1  Introduction 

 

1.1 Steel Orthotropic Deck System 

The word “orthotropic” is derived from two words, “orthogonal” and 

“anisotropic”, meaning material or structural properties exhibiting differences in two 

directions at a right angle. The orthotropic theory of deck design and construction 

was developed primarily in Europe following World War II as an answer to the 

shortage of construction materials. The orthotropic bridge theory is the results of 

efforts to obtain optimum structural performance of steel materials. The concept 

evolved from the battledeck floor (Figure 1-1), the gridwork systems (Figure 1-2 

and 1-3), and the cellular systems (Figure 1-4), in the 1930s and early 1950s. 

Steel orthotropic plates as a load-carrying element have larger reserves of 

safety margin than one-dimensional beam members and are considered as an 

efficient utilization of steel material. The steel orthotropic deck has become an 

excellent choice for long span bridges for weight and strength. 

 The basic orthotropic deck system contains the deck plate, longitudinal ribs, 

floor beams, and main girders. The open rib (torsionally soft) and closed rib 
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(torsionally stiff) framing system for orthotropic deck bridges are shown in Figures 

1-5 and 1-6. Closed ribs provide considerable torsional rigidity and contribute to the 

transverse load distribution. Because the ribs participate in the primary action of the 

deck and the bridge system, the resulting stresses are high. Hence, the ribs are made 

continuous though the web of floor beams, either by welding or through slots in the 

web of the floor beams. 

In earlier years, the buckling of orthotropic deck components or the deck panel 

was considered as the load carrying capacity of the deck system. The design 

philosophy was to make the buckling stresses of the component plates and 

individual ribs higher than the yield stress of the material. With the change from the 

yield stress based Allowable Stress Design (ASD) to the load carrying capacity 

based Load and Resistance Factor Design (LRFD), the load carrying capacity of the 

deck panels needs to be evaluation. The static strength of orthotropic deck panels is 

the topic of this study. 

Another major concern regarding the deck system is the possible fatigue 

cracking of steel component details. As more orthotropic decks are used in new 

constructions and in replacement decks of older bridges and the number of vehicles 
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traveling over the decks increases drastically, fatigue cracks have developed. The 

most vulnerable detail is the rib to floor beam / diaphragm connection. At the 

present, most of the studies on orthotropic decks are on the fatigue strength of 

components at the connections. Fatigue damage of deck components is not the topic 

of this study. 

 

1.2 Literature Review 

Many studies have been carried out on steel orthotropic deck systems, 

including elastic analysis of stiffened plates, buckling analysis of deck plate 

components, and strength evaluation of orthotropic deck and components. 

 

1.2.1 Orthotropic Plate Theory 

 The analysis of an isotropic plate was first presented by Gehiring (1860) and 

Boussinesq (1879). The complete solution for isotropic plate was presented by 

Huber (1914). The differential equation giving the relationship between the lateral 

deflection and the loading of an orthotropic deck, Equation (1.1), is referred as 
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Huber’s equation. 

),(2 4

4

22

4

4

4

yxp
y
wD

yx
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x
wD yx =

∂
∂

+
∂∂

∂
+

∂
∂       (1.1) 

Where w  is the lateral deflection of the middle surface of the plate at point ),( yx  

as shown in Figure 1-7. The parameters xD , yD  and H  are rigidity coefficients, 

and ),( yxp  is the load density at any point expressed as a function of the 

coordinate x and y . 

The basic assumption proposed by Huber for estimating the overall bending 

deflections and bending stresses in a stiffened plate, is to replace it by an equivalent 

orthotropic plate of constant thickness having the same orthogonal stiffness 

characteristics. This is called the Method of Elastic Equivalence (MEE).  

Guyon (1946) used the method to analyze a deck without torsional stiffness of 

the rib. Massonnet (1950) extended the method to include the torsional stiffness. 

This work was further developed by Morice, Little and Rowe (1956).  Rowe (1962) 

summarized the design technique based on a series solution of the governing partial 

differential equation at a stage before the widespread availability of the electronic 

digital computer.  

 The governing differential equations for large deflection orthotropic plate 
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theory are the equilibrium equation and the compatibility equation. Considering the 

idealized initial imperfection, boundary conditions and load application, Paik and 

Thayamballi (2003) solved the governing differential equations. “Collapse” was 

assumed to occur when the Hencky-von Mises stress on the outer surface of the 

orthotropic plate reached the yield stress. However, it was found that “collapse” of 

the panel might not always be associated with the first yield on the outer surface of 

the orthotropic plate. As long as it was possible to redistribute the applied loads to 

the boundaries by membrane action, “collapse” would occur when the most stressed 

boundary location yielded.  

For the purpose of design, various methods have been developed: 

1. The Equivalent-orthotropic slab method in the AISC manual (Wolchuk, 1963) 

and James F. Lincoln Electric manual (Troitsky, 1967) simulates the deck by a 

continuous two-dimensional slab of uniform thickness with different stiffness in 

the longitudinal and transverse directions. Both manuals give design charts for 

approximation of stresses in the equivalent plate.   

2. The Equivalent grid method (Bouwkamp, 1967; Bouwkamp and Powell, 1967; 

Erzurumlu and Toprac, 1970; Heins and Looney, 1966, 1968) simulates the deck 
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by a grid of one-dimensional beams. The deck plate is assumed slit between the 

longitudinal ribs, which are treated as individual beams between panel points of 

the grid system, with the deck plate strips acting as upper flanges. The effect of 

the deck plate rigidity perpendicular to the ribs is disregarded. In both methods 

the stiffness properties of the equivalent structure must be chosen to approximate 

adequately the behavior of the actual deck. 

3. The Method of thin-walled-beam (Vlasov, 1967) accounts for the torsional 

distortional effects in an elastic analysis of box girders with an orthotropic deck.  

4. The Ordinary folded-plate theory (De Fries-Suene and Scordelis, 1964) makes 

the following assumptions in analyzing box girder with an orthotropic deck. 

(a) The membrane (in plane) stresses produced in each plate element by 

longitudinal bending can be calculated by elementary beam theory applied to 

each element. 

(b) Transverse plate bending stresses can be calculated assuming the plate 

elements act as one-way slabs spanning longitudinal joints.  The 

thin-walled-beam method accounts for the effects of torsional distortions of 

the cross-sectional shape.   
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More information for design of trapezoidal shaped stiffener can be found in the 

Handbook of Structural Stability (CRCJ, 1971) and in the book by Troitsky (1976). 

 

1.2.2 Experimental and Analytical Studies on Open Rib Deck 

In the evaluation of elastic behavior and strength of orthotropic deck, the lateral 

torsional buckling (tripping) of stiffeners must be considered. The ribs may buckle 

with the deck plate in a mode of overall buckling of the deck, or the ribs may buckle 

first and induce distorsion of deck plate and failure of the deck. Timoshenko has 

given solution for buckling of compression plates with various boundary conditions. 

Klitchieff (1951) provided a general solution for the critical compression force of a 

plate stiffened with open ribs.  

Tests of steel plate panels stiffened with open ribs have been conducted 

primarily on components or relatively small scale model panels. Horne (1976) 

carried out compression tests of thirty four model stiffened plates with open ribs for 

compression flange of box girders. 

The ultimate strength testing of model deck panels with open rib and under 

combined axial compression and lateral load was performed by Rutledge and 
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Ostapenko (1969). The analytical work was on the buckling strength of an isolated 

beam-column consisting of an open rib and an associated width of the deck plate. 

No post-buckling behavior was analyzed. 

Murray (1973) tested thirteen thin steel plates with flat stiffeners in axial 

compression, bending and the combination. A set of simple design rules was derived 

for the case of axial load only. 

 Ueda (1984) carried out a study on the buckling and ultimate strength of plates 

and stiffened panels under combined in-plane biaxial and shearing forces. Grondin 

et al (2003) investigated the stability of steel plates stiffened with T-stiffeners 

subjected to uniaxial compression using a single stiffener half bay finite element 

model. It was found that the panels suffered an abrupt drop in load carrying capacity 

in the post-buckling range and referred to this behavior as the interaction failure 

mode. 

 

1.2.3 Experimental and Analytical Studies on Closed Rib Deck 

There were only limited analytical studies on the strength of deck panels 

stiffened by closed ribs. Pelican-Esslinger (1957) simplified Huber’s equation for 



 10

approximate evaluation of global forces of an equivalent orthotropic deck. The 

Pelican-Esslinger method assumes that the deck system is a continuous orthotropic 

plate, rigidly supported by longitudinal main girders and elastically supported by the 

floor beams. This method is considered practical and relatively simple for design 

evaluation. However, the parameters expressing certain rigidities of the orthotropic 

deck are disregarded in the method, as the parameters are considered of little 

importance in design. The method does not provide information on the load carrying 

strength of the deck panel. 

Experimental tests of closed rib deck panels were performed by Dowling 

(1966). The specimen was 12 feet wide and 10 feet high with six closed ribs. Tests 

under lateral wheel loading or combination of in-plane and lateral loading were 

carried out in the elastic range of behavior. The ultimate strength test in tension was 

carried to the yield stress. No ultimate strength test in compression has performed. 

Furuta and Kitada (1988) conducted tests on one-third scale, longitudinally 

stiffened plates with closed or open ribs and subjected to biaxial in plane forces. A 

method was proposed for predicting the maximum stresses of un-stiffened plates and 

stiffened plates. There was no ultimate strength test for closed rib deck panel. 
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Uang and Chou (2002) performed testing of two one-third scale steel 

orthotropic bridge deck panels, one stiffened with three closed ribs and the other 

with four open ribs. The specimens reached yielding before local buckling occurred.  

Stub column tests on closed rib orthotropic deck stiffeners were done by Chen 

and Yang (2001). The study checked the buckling strength of components of 

trapezoidal shaped stiffeners against existing specifications. 

 From the above brief review of literature, it is concluded that there have been 

numerous studies and there are current design rules with respect to the local 

buckling of components of trapezoidal shaped stiffening ribs of orthotropic decks. 

There are also many studies on the equivalent orthotropic plate for deck panels. 

Forces in, and the buckling of the equivalent plate can be estimated. Based on this 

concept of orthotropic plate, provisions have been given in design specifications to 

prevent overall buckling. Yet, there is very little information on the post buckling 

behavior of the component plates of the ribs, or of the stiffened deck panel. The 

ultimate or load carrying strength and behavior of these decks are not known. 
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1.3 Objectives and Approach 

 The objectives of the study, herein reported, is to evaluated the load carrying 

behavior and ultimate strength of steel bridge orthotropic deck panels with 

trapezoidal shaped stiffening ribs. The study began with experimental work. The 

evaluation of local effects of wheel loads on local stresses in the ribs of deck panels 

was first made. The flexural behavior of ribs under wheel loads was then examined, 

followed by the evaluation of behavior and strength of ribs tested as column and 

beam-column. Analysis of the column and beam-columns were conducted by 

following the traditional theory of component plate buckling and by finite element 

analysis. From the results, a procedure for estimating the ultimate load carrying 

capacity of ribs acting as beam-columns was developed. This procedure was 

extended for the estimation of deck panel strength, with confirmation by a finite 

element analysis. 
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Figure 1-1 Battledeck Floor 

 

 
Figure 1-2 Gridworks Type Bridge 

 

 
Figure 1-3 A Continuous Gridworks System 
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Figure 1-4 Cellular Type Bridge 
 

 

 
Figure 1-5 Orthotropic Deck System with Open Ribs 
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Figure 1-6 Orthotropic Deck System with Closed Ribs 

 
 

 

Figure 1-7 Orthotropic plate as an anisotropic system 
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Chapter 2  LOCAL STRESSES IN DECK 

COMPONENTS DUE TO VEHICULAR LOADS 

 

2.1 Introduction 

Steel orthotropic bridge deck with longitudinal, closed rib stiffeners under the 

deck plate serve the dual function of being the upper flange of the box girder, real or 

equivalent, and being the member to transfer vehicular loads to other parts of the 

bridges. The global stresses in these decks are primarily governed by the deck 

geometry, deck location relative to other parts of the bridge and by the dead weight 

of the bridge. The local stresses in the components of such decks are essentially 

produced by the vehicular loads directly on the deck. The combinations of the global 

and local stresses determine the safety margin against the load carrying strength of 

the deck components of longitudinal stiffeners and the deck plate. Stresses induced 

by vehicular loads are the primary subjected of many resent analytical and 

experimental studies for the examination of fatigue cracking at the connection 

between longitudinal ribs and transverse diaphragms (Connor 2001, Tsakopoulos 

2002, Connor 2004, Ye 2004). The distribution of local stresses due to vehicular 
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loads and their effects on the static strength of the deck components have not been 

systematically studied. 

The evaluation of local stresses in deck components due to vehicular loads for 

examining the static strength of the deck is the topic of this chapter. Both 

experimental and analytical examinations have been conducted, and are presented 

below.  

 

2.2 Experimental Program 

 The primary focus of this experimental program was to produce and document 

stresses in the components of a full-scale deck under various vehicular loadings. The 

full scale model deck of the Bronx-Whitestone Bridge (BWB) in New York City was 

constructed in the laboratory for fatigue testing (Tsakopoulos 2005). After the fatigue 

tests, two stages of static tests were executed. The first stage consisted of applying 

simulated wheel loads on the deck. The second stage was conducted after a portion 

of the deck was cut off. 
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2.2.1 Test Specimen and Instrumentation 

The model deck of Bronx-Whitestone Bridge (BWB) was 48 ft. (14.63 m) long 

and 37 ft. (11.28 m) wide. It consisted of 2 panels of continuous deck supported by 

three diaphragm / floorbeams as shown in Figure 2-1 and Figure 2-2. The 

floorbeams were each supported by a wall column, and by a stiffening girder at the 

other end. Half way between the diaphragm / floorbeam, there were intermediate 

diaphragms (A1 and B1 in Figure 2-1). These diaphragms supported the deck but 

were not connected to a wall column or to the stiffening girder.  

There were fourteen closed, trapezoidal stiffeners (or ribs) and two open, plate 

stiffeners near the stiffening girder. The trapezoidal ribs were 13 in. (330 mm) wide 

at the top and 5 in. (127 mm) wide at the bottom. The depth was 13.5 in. (343 mm) 

with the inclined rib wall being 14.1 in. (257 mm) deep. The spacing between ribs 

was also 13 in. (330 mm) so the deck plate was supported at equal spacing, except 

near the stiffening girder. Figure 2-3 shows the geometry of a trapezoidal rib at a 

diaphragm connection. The cutout at these connections was the main feature of the 

fatigue study (Tsakopoulos 2005). The thickness of the deck plate was 5/8 in. (16 

mm), of the rib walls was 5/16 in. (8 mm) and of the diaphragm web was ½ in. (13 
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mm). All components were made from ASTM 709 Grade 50 structural steel. 

A large number of strain gages and displacement transducers (LVDTs) were 

placed between Diaphragm A1 and B1. The emphasis was on measuring strains in 

the deck components at Floorbeam / Diaphragm B. The instrumentation plan is 

shown schematically in Figure 2-4 and Figure 2-5, for the two stages of testing, 

respectively. Figure 2-6 shows schematically the strain gage locations around Rib 6 

at Diaphragm B. 

The strain and LVDT readings were expected to confirm the overall linear 

elastic behavior of the deck. The strains at the component details were to provide 

information for examination of load behavior at the details. The numbers of strain 

gages on various components are listed in Table 2-1. 

 

2.2.2 Loading Procedure 

Hydraulic actuators applied vertical loads on the deck. Each load was applied 

through a 21 in. by 11 in. (53.3 mm by 27.9 mm) rubber pad (footprint) to simulate 

the rear wheels of a HS 25 truck, as shown in Figure 2-7. When linear behavior was 

confirmed from strain readings, the applied load was increased from 20 kips (88.96 
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kN) to 110 kips (489.3 kN) to exaggerate the strains in the components for easy 

comparison. 

The loads were applied individually along six lines at four positions, as 

depicted in Figure 2-8. Loading line locations simulate the condition of truck wheels 

directly over the connection of rib walls to the deck plate, and in between. Figure 

2-6 shows the location of these lines. The load positions were: above Diaphragm A1, 

halfway between A1 and B, above Diaphragm B and halfway between B and B1. 

These positions are indicated in Figure 2-8, and Figure 2-9. 

 

2.3 Experimental Results 

2.3.1 Linear Elastic Behavior 

 The model deck behaved linear elastically under the applied loads as expected. 

This was true even up to a simulated wheel load of 110 kips (498.3 kN) which is 

five and half times that of a HS 25 truck. The load-deflection and load-strain 

diagrams from the strain and deflection gages show the linearity. 

 Figure 2-10 shows as an example the load versus deflection relationship at nine 

LVDTs throughout the test deck. The applied load was on Line 1 at Position 2. 
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Figure 2-11 shows the load versus strain relationship of four strain gages at 

Diaphragm B1. In all cases, the deflection and strain increase linearly with the 

applied load, and returned to the same original value when the loads were removed. 

 

2.3.2 Strains in the Deck Plate 

 The strain distributions on the bottom of deck plate along Diaphragm A1 when 

the simulated load was at different position on Line 6 are plotted in Figure 2-12. 

Line 6 was along the midwidth of Rib 8. With 80 kips (489.3 kN) applied at Position 

1 directly over Diaphragm A1, the maximum stress on the bottom of the deck at Rib 

8 was not the highest. The highest stress of about 7 ksi (48 MPa at 230 µin./in. strain) 

occurred when the load was at Position 2 between Diaphragm A1 and B. When the 

80 kips (489.3 kN) load was at Position 3 over Diaphragm B, the stresses at the 

strain gages were practically zero. When the load was at Position 4 between two 

Diaphragms, the bottom of the deck plate was in low tension at the junction with the 

rib wall at Ribs 8, 9 and 10. With all the actuators at fixed location, it was possible 

to applied loads simultaneously. This was done with actuators at Positions 3 and 4, 

and 2, 3, and 4. The strain distribution under these load combinations are also given 
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in Figure 2-12. The elastic behavior of the deck and the capability of strain (stress) 

superposition were confirmed. 

 Figure 2-13 shows the strain distribution on the bottom of the deck plate along 

diaphragm B under the same loading positions of Figure 2-12. All stresses were low 

under an 80 kips load over the adjacent diaphragm. The maximum of about 10 ksi 

(69 MPa; 320 µin/in strain) occurred when the applied load was between 

Diaphragms A1 and B. Under a wheel load of 20 kips (89 kN) for a HS 25 truck, the 

maximum live load stress under the deck would be less than 2.5 ksi (80 µin/in 

strain). Once more, the linear elastic behavior was confirmed by the superposition of 

response to loads at different position. 

 The strain distributions along Diaphragm B1 in Figure 2-14, and those in 

Figure 2-12 and Figure 2-13, indicate that the regional influence of a wheel load on 

deck plate stresses is confined to only the rib under load and at most partially to the 

adjacent one. 

 

2.3.3 Strains in Diaphragm at Cutout 

 The longitudinal stiffening ribs pass though a diaphragm web with a cutout, as 
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shown in Figures 2-2, and 2-3. The geometry of the cutout was determined by 

analysis and was one of the main features of fatigue testing of the model deck 

(Tsakopoulos and Fisher 2002; Ye and Fanjian, 2004). In the static testing of the 

deck model to examine the regional effects of loads, strains on diaphragm web at 

cutouts were measured when loads were applied at various loading positions. 

Example results are presented in Figures 2-15 to 2-16. 

In Figure 2-15, the strains on Diaphragm B at the top of the cutout for Ribs 6, 7, 

8, and 9 are presented. The loads were applied along Line 3 over the connection 

between the deck plate and a web of Rib 6. When the 80 kips (489.3 kN) load was at 

Position 2 between diaphragms, the highest strain of about 380 µin./in. was induced 

at the cutout for Rib 6. That is corresponding to less than 3 ksi (21 MPa; 100 µin./in.) 

under the 20 kips wheel load of a HS 25 truck. 

 Again, the influence of a wheel load on local stresses is mainly limited to one 

rib only, as depicted by the strains in Figure 2-15. 

The variation of stresses on Diaphragm B at cutouts of Rib 6 to 9 for loading 

Position 2 of Loading Line 1 to 5, are presented in Figure 2-16. Position 2 is 

between diaphragms. As the loading line moved away from Rib 6 (from 1, 2, 3 to 4 
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and 5), the strains at the cutout of Rib 6 decreased. The region of effect of basically 

only one rib is again obvious. When the applied load was on Line 5 over Rib 8, 

relatively high strains developed in that rib. There was a splice of the diaphragm 

between Rib 8 and Rib 9 (as shown in Figure 2-2), which slightly affected the 

behavior of Rib 8. 

 

2.3.4 Strains on Walls and Bottom of Ribs 

 The strain gages were mounted on the walls of Ribs 6, 7 and 8 near the 

Diaphragms B and B1 and at the midspan, as shown in Figure 2-4. At each cross 

section, there was one rosette on each rib wall and one rosette or two uniaxial gages 

on the bottom of the rib. The measured longitudinal strains in Ribs 6 and 7 are 

summarized in Tables 2-2 and 2-3. The maximum response is at the midspan of the 

ribs. Under a wheel load four times that of a HS 25 truck, the maximum 

compression strain was about 740 µin./in. (22 ksi, 152 MPa) on a rib wall and the 

tension strain was about 980 µin./in. (28.4 ksi, 196 MPa) on the bottom of the rib. 

When this very high magnitude load was moved in the longitudinal direction from 

Position 1 to Position 4, the maximum strain range on the bottom of the rib was 
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about 1250 µin./in. This corresponds to about 310 µin./in. or 9.5 ksi (65 MPa) for a 

wheel load of a HS 25 truck.  

Some examples of distribution of longitudinal strains in Ribs 6, 7 and 8 are 

presented in Figures 2-17 to 2-20. Figures 2-17 and 2-18 show the magnitude of 

strains on the surface of walls and bottom flange of these ribs at midspan when the 

80 kips load was directly over the cross section. From Figure 2-17, it is obvious that 

the longitudinal stresses of the rib walls close to the deck plate were very low even 

under the 80 kips of simulated wheel load. Directly under the load on Line 3, the 

effect of wheel contact was observed. The bottom of Rib 6 was subjected to 

relatively high stresses when the wheel load was directly above on Lines 1, 2 and 3, 

while the bottom of Rib 7 also sustained some stresses. This condition implies, again, 

that a wheel load is primarily carried by one rib with some participation of the 

immediately adjacent ribs. When a wheel is between two ribs (Line 4) both ribs 

carry the load.  

Figure 2-18 for strains in Ribs 6, 7 and 8 at midspan of A1-B shows the 

distribution of strains at the bottom of the ribs. The same conclusion may be drawn 

that a wheel load is primarily carried by the rib beneath the wheel. 
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The distribution of strains in rib walls when the wheel loads were in the next 

deck span is given in Figure 2-19 for the cross section between Diaphragms B and 

B1, and in Figure 2-20 for cross section at A1-B. Once again, the condition that a 

wheel load is primarily carried by one rib is revealed, 

 

2.3.5 Deflection of Deck Due to Simulated Wheel Load 

The vertical deflection of various points of the test deck obviously depended on 

the location of the wheel load with respect to the points. Directly under the wheel 

load, relatively high magnitude of deflection was expected. The “composite” 

deflection shape of the transverse cross section of the deck between Diaphragm B 

and B1 when the applied loads were directly over the cross section is shown in 

Figure 2-21. Plotted are the deflection of the bottom of the rib and the deck plate 

between ribs. The curves represent a “composite” shape of the deck under load. 

Little difference exists among the shapes for the different loading lines. Figure 2-22 

shows, in different scale, the shape of the same cross section when the loads were in 

the adjacent span. The deflection shapes are in the opposite direction to that of 

Figure 2-21. This indicates the stronger effect of loads in spans (in the longitudinal 
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direction) than in different lines (in the transverse direction). Whether the wheel load 

is directly over a rib or in between did not cause much difference in the deflection 

shape. 

Overall, the magnitude of vertical deflection of the deck plate between ribs and 

rib walls was small. The maximum value was less than 0.2 in. (5 mm) downward 

when the 80 kips load was in the span. It was 0.025 in. (0.6 mm) upward when the 

load was in the adjacent span. These were linear elastic deflections, as has been 

shown by Figure2-10. 

 

2.4 Influence Lines of Strains 

2.4.1 Influence Line of Strains from Experimental Data 

 The strain diagrams presented so far, Figure 2-12 to 2-20, provide information 

on the distribution of stresses in deck components near the point of loading. The 

subsequent diagrams show the magnitude of strain at specific points as a load was 

applied at different locations nearby. These diagrams are the “Influence Lines” of 

strains. 

 Figure 2-23 shows the horizontal and vertical strains on the web of Diaphragm 
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B at the connection of deck plate and Rib 6. The strain gage locations are given in 

Figure 2-6. Both the horizontal and vertical strains at gage 10(x) and 12(y) were 

highest when the 80K load was directly above. The magnitude of strains at these 

gages decreased as the load was placed away. Similarly, the horizontal and vertical 

strains at gage 20(x) and 22(y) were the highest when the load was directly above. 

When the load was at Line 5 over Rib 8, the strain at all four gages at Rib 6 were 

practically zero.   

On Diaphragm B at the cutout of Rib 6, strains on the South surface of the 

diaphragm web at the top of cutout (Figure 2-24) were slightly higher when the load 

was at Line 2 between the rib walls than when the load was directly over the walls. 

The difference in strains at the back to back strain gages (128/129,134/135) indicates 

that the diaphragm web was subjected to local bending. In this case, the local 

bending of web was about the same on the two sides of Rib 6. On the other hand, the 

diaphragm web plate local bending at the lower corners of the cutout was not 

prominently affected by the loading line, as the strains at the back to back strain 

gages (130/131 and 132/133 in Figure 2-25) increase or decrease similarly. All four 

gages had the highest strain when the applied load was directly above and had 
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almost no strain when the load was one rib away. 

 The rib walls were also subjected to local bending when the applied load was 

nearby. The “Influence Lines” for strain gage pairs on the walls of Rib 6 at 

Diaphragm B are given in Figure 2-26. The difference in strain between the gages of 

each pair (137/138, 139/140) signifies local plate bending. The maximum difference 

was about 350 µin/in (10.2 ksi) in the 5/16 in. (8 mm) thick rib wall, comparing to 

about 400 µin/in (11.6 ksi) in the 1/2 in. (12.7 mm) web plate of Diaphragm B in 

Figure 2-24. 

Figure 2-27 shows the “Influence Line” of strain on the wall of Rib 6 between 

Diaphragm B and B1. When the applied load was at Position 4 directly over the 

cross section of the rib, the bottom of the rib had the highest strain regardless 

whether the load was over the rib wall or in between. The shape of the “Influence 

Line” is typical for a continuous beam. The strains on the web of the rib about an 

inch from the deck and directly below the applied load, however, increased without 

changing sign when the load was moved from Position 1 to 4. There were practically 

no local strains at the point on the opposite web of the rib. 
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2.4.2 Influence Surface from the Measured Strains 

 The influence lines of strains can be summarized into influence surface of 

strains for specific points of deck components. Figure 2-28 shows the influence 

surface of strain on the web of Diaphragm B at the top of cutout for Rib 6. The 

highest compression stress happened when the load was at the midpoint between 

Diaphragm B and B1 and directly over Rib 6. In the transverse direction, the effect 

of wheel load was confined to the rib and one adjacent rib. At the bottom of this 

cutout on the web of Diaphragm B, as shown in Figure 2-29, the relatively high 

compressive strain occurred only when the load was on Rib 6. When the load was 

away from Rib 6, the strains was reduced to zero and then changed to low tension. 

The effect of the wheel load was primarily confined to only one rib. 

 The influence surfaces for strains on the wall of Rib 6 inside the cutout at 

Diaphragm B are presented in Figures 2-30 to 2-33. The highest stresses occur not 

when the wheel load was over the diaphragm but between diaphragms. The 

back-to-back strain gages on the rib walls, Gages 137 and 138 in Figures 2-30 and 

2-31 and Gages 139 and 140 in Figures 2-32 and 2-33, do not have an identical 

shape of influence surface. This condition indicates that the stresses on the surfaces 
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of the rib wall are the combination of membrane (in plane) and plate (out of plane) 

bending stresses. The important phenomenon is that the wheel load affects primarily 

only the rib directly under the wheel, and only slightly the adjacent rib. 

 

2.5 Results of Finite Element Analysis 

To confirm analytically the participation of ribs under wheel loads, a finite 

element analysis was conducted. Figure 2-34 shows the three-dimensional finite 

element model of the full-scale laboratory specimen with two continuous panels 

supported on three transverse floor beams. The model was developed and analyzed 

using the commercial software ABAQUS (2004). All steel plates were modeled 

using four-node S4R shell elements which consider both the membrane and plate 

bending behavior. The stress-strain relationship was from tensile coupon tests. 

The finite element analysis results of strains in Rib 6 at Diaphragm B when the 

simulated wheel load is directly above are shown in Figure 2-35. The corresponding 

load case in the experimental phase is Loading Line 2 and Position 3. The computed 

and measured strains in the webs and the bottom flange of the rib agree quite well 

respectively. Figure 2-36 shows the strains contour of the deck plate under the same 
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loading conditions. The 80 kips (489 kN) load only affect the deck plate locally around 

the footprint. Under the deck plate, the analytical results show that the load causes 

moderate strains on the top and bottom of cutout on the diaphragm web as shown in 

Figure 2-37. Figure 2-38 shows the strain contour in Rib 6 between Diaphragm A1 and 

B under the same loading condition. The stresses of moderate magnitude are 

concentrated within one rib. 

 

2.6 Discussion and Conclusions 

The measured and computed stresses in the model orthotropic deck of the BWB 

indicate that in the transverse direction of the deck, primarily only one rib carries the 

simulated wheel load of a truck. By considering that the transverse distance between 

wheels of the same axle of a AASHTO truck (72 in., 1829 mm) or parallel trucks is 

more than the width of two ribs of the BWB deck panel (2 × 26 = 52 in., 1321 mm), 

it can be concluded that only wheel loads need to be considered in the evaluation of 

stresses and strength of ribs. 

From the experimental results with an applied load of 80 kips (356 kN) which 

is four times the HS 25 wheel load, all response of stresses are in the linear elastic 
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range. This indicates the adequacy of superposition of multiple wheel loads in the 

longitudinal direction and the utilization of influence line for beams. In the 

subsequent chapters on the strength of ribs, it is conservative to assume that wheel 

loads are supported transversely by only one rib. In the longitudinal direction, 

multiple simulated wheel loads were applied during testing. Because of the 

difference in stiffness of the diaphragms with or without floorbeams, the effect of 

longitudinal load position was strong on the local stresses of the diaphragms and 

adjacent rib walls.  
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Table 2-1 Strain Gages on Component Details 

 Stage I Stage II 

Gages Rosette Uniaxial Rosette Uniaxial 

on diaphragm 21 29 12 50 

on ribs 20 20 62 33 

on deck plate 4 0 4 0 

on the rib splices 0 12 0 16 

     

Total 45 61 78 99 
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Table 2-2 Longitudinal Strains on Wall and Bottom of Rib 6 (µin/in) 

P=80 kips at Near B1 Mid-span Near B 

Position Line 
East  

Wall 
Bottom

West 

Wall 

East 

Wall 
Bottom

West 

Wall 

East  

Wall 
Bottom 

West 

Wall 

1 10.34 17.38 11.44 18.43 -107.84 12.33 47.80 39.19 16.36

2 13.88 17.82 12.34 25.24 -260.70 16.37 175.09 144.79 33.67

3 2.94 4.42 -1.70 2.74 3.18 0.18 48.33 -70.46 -269.30

4 -26.89 -4.17 -59.14 -97.02 905.31 -17.83 75.15 46.29 -27.90

5 -22.69 1.23 -59.26 -99.14 925.03 -20.08 96.67 5.05 -262.57

1 

6 -17.84 18.76 -43.11 -73.24 672.67 -5.08 219.91 145.76 -220.41

1 11.46 17.93 9.28 16.26 -89.26 14.92 37.20 56.05 27.33

2 19.42 19.82 16.85 20.92 -273.37 24.39 159.65 197.05 67.61

3 -2.07 6.08 -0.49 1.49 10.40 -4.53 -17.91 -46.05 -214.45

4 -52.93 -11.58 -42.32 -59.11 969.18 -48.10 77.17 72.35 -0.79

5 -55.59 -19.66 -45.08 -36.69 980.64 - -14.66 28.27 -255.60

2 

6 -43.77 -4.80 -31.62 -32.10 681.25 471.20 105.29 210.05 -188.35

1 7.35 8.31 4.07 16.39 -87.05 -23.06 29.60 48.11 28.03

2 13.57 16.24 6.13 18.95 -239.75 -387.40 112.07 170.78 69.39

3 -4.99 -3.92 -4.98 -4.40 24.95 -502.14 -42.53 -55.95 -294.53

4 -37.51 -24.11 -17.83 -50.40 803.67 -640.68 65.82 54.17 -2.02

5 -63.94 -24.32 -14.80 -50.58 835.14 -740.08 15.53 14.55 -285.34

3 

6 -54.86 -10.69 -7.65 -39.17 597.47 -624.52 95.84 156.25 -233.42

1 12.39 10.97 1.01 21.89 -100.96 17.16 24.78 62.45 22.94

2 18.71 11.36 2.85 32.25 -210.20 31.42 66.84 147.61 59.42

3 -2.55 -1.43 6.27 6.04 31.98 -19.86 -3.46 -32.83 -66.28

4 -53.99 -30.25 14.14 -56.52 493.71 -153.76 37.41 61.98 26.86

5 -57.53 -30.66 23.88 -55.64 516.40 -123.58 36.28 9.67 -112.42

4 

6 -47.86 -13.25 29.82 -26.90 -350.11 812.13 101.85 139.88 -70.29
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Table 2-3 Longitudinal Strains on Wall and Bottom of Rib 7 (µin/in) 

P=80 kips at Near B1 Mid-span Near B 

Position Line 
East  

Wall 
Bottom

West 

Wall 

East 

Wall 
Bottom

West 

Wall 

East  

Wall 
Bottom 

West  

Wall 

1 9.17 -56.19 16.10 15.34 -76.49 9.46 20.73 -26.61 29.91

2 0.28 -83.62 21.62 36.03 -104.63 26.39 23.89 14.24 19.53

3 4.93 10.35 0.00 -3.64 -20.57 0.40 -6.62 12.32 -6.94

4 40.00 194.30 -44.76 -67.30 50.34 -29.52 39.60 -68.76 12.73

5 41.85 206.90 -44.36 -72.64 62.90 -28.43 40.43 -60.49 -0.40

1 

6 43.45 127.14 -25.65 -33.61 -14.43 3.11 68.61 -47.74 20.68

1 5.16 -55.26 8.32 23.47 -60.09 14.42 25.43 -35.06 23.30

2 0.43 -80.81 12.32 43.98 -85.29 28.23 42.65 3.21 25.46

3 1.28 15.29 -1.19 1.77 13.99 -1.17 -0.37 13.34 -14.58

4 42.68 175.07 -42.42 -87.00 126.83 -36.68 52.44 -105.42 13.85

5 45.57 186.60 -46.38 226.78 58.66 -664.69 50.58 -91.91 1.63

2 

6 41.35 107.95 -31.16 -44.67 49.49 -15.51 82.15 -95.98 17.60

1 7.16 -48.54 3.69 21.16 -63.05 14.42 28.66 -36.72 25.00

2 0.81 -76.44 9.34 37.64 -102.71 23.46 48.02 -22.92 29.32

3 1.41 5.72 -4.64 -0.57 14.36 4.62 -1.45 19.30 -10.25

4 25.51 136.19 -49.37 -132.47 219.97 -47.61 52.69 -156.17 15.99

5 22.96 141.01 -53.74 -137.83 241.13 -51.72 49.37 -139.37 2.88

3 

6 24.43 69.77 -37.66 -103.40 131.76 -24.49 96.25 -166.92 33.44

1 12.09 -46.68 10.85 24.65 -71.07 11.21 24.82 -36.15 20.40

2 9.65 -59.44 18.25 38.67 -147.36 17.70 71.11 -81.61 43.08

3 3.01 4.97 -0.24 0.78 12.52 -1.37 -83.68 33.20 -36.69

4 -2.61 72.47 -59.69 -125.00 403.65 -53.37 46.22 -193.18 11.75

5 -0.60 79.14 -57.93 -113.13 422.13 -54.70 -52.38 -167.56 -4.88

4 

6 4.26 7.09 -40.50 -84.32 283.51 -26.57 16.21 -267.73 44.11
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Figure 2-1 Plane of Specimen 
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Figure 2-2 Elevation of Specimen 
 

 
Figure 2-3 Geometry of Trapezoidal Stiffener 
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Figure 2-4 Instrumentation Plan (Stage I) 
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Figure 2-5 Instrumentation Plan (Stage II) 
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Figure 2-6 Gage Location and Loading Lines, Rib 6 at Diaphragm B 

 
 

 
Figure 2-7 Footprint 
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Figure 2-9 Load Positions 
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Figure 2-10 Load vs. deflection at various locations of deck (Line 1, Position 2) 
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Figure 2-11 Load vs. strain at Diaphragm B1 (Line 1, Loading Position 2) 
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Figure 2-12 Strains on the bottom of deck plate along Diaphragm A1 

(loads on Line 6) 

Position 
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Figure 2-13 Strains on bottom of deck plate along Diaphragm B (loads on Line 6) 
 

P = 80 kips 

Position 
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Figure 2-14 Strains on the bottom of deck plate along Diaphragm B1  
(loads on Line 6) 

 

P = 80 kips 

Position 
1  2  3  4 
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Figure 2-15 Strains at cutout on South face of Diaphragm B  
(Loads on Line 3) 

 

P = 80 kips 

Position 
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Figure 2-16 Strains at cutout on the South face of Diaphragm B  
(Loading Position 2) 
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Figure 2-17 Strains on Rib Walls between Diaphragm B and B1, loads over Cross 

Section (Position 4) 
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Figure 2-18 Strains on Rib Walls between Diaphragm A1 and B, loads over Cross 

Section (Position 2) 
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Figure 2-19 Strains on Rib Walls between Diaphragm B and B1, loads in Next Span 

(Position 2) 
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Figure 2-20 Strains on Rib Walls between Diaphragm A1 and B, loads in Next Span 

(Position 4) 
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Figure 2-21 Deflection of Deck between Diaphragm B and B1, loads on Position 4 
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Figure 2-22 Deflection of Deck between Diaphragm B and B1, loads on Position 2 
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 Figure 2-23 Influence lines of Horizontal (x) and vertical (y) strains on Diaphragm 

B at connection of deck and Rib 6 
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Figure 2-24 Influence lines of strains on North and South faces of Diaphragm B at 

top of cutout, Rib 6 
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Figure 2-25 Influence lines of strains on Diaphragm B at lower corner of cutout,  
Rib 6 
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Figure 2-26 Influence lines of strains on web of Rib 6 at Diaphragm B 

 

P=80 kips 
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Figure 2-27 Influence Line of strain on Rib 6 between Diaphragm B and B1 
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Figure 2-28 Influence Surface of Strain at top of cutout on Diaphragm B 

 
 

 

Figure 2-29 Influence Surface of Strain at bottom of cutout on Diaphragm B 
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Figure 2-30 Influence Surface of Strain of Rib Wall Exterior Face at Diaphragm B 
 
 

 

Figure 2-31 Influence Surface of Strain on Rib Wall Interior Face at Diaphragm B 
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Figure 2-32 Influence Surface of Strain on Rib Wall Exterior Face at Diaphragm B 
 
 

 

Figure 2-33 Influence Surface of Strain on Rib Wall Interior Face at Diaphragm B 

Dia. A

Steel Orthotropic Bridge Deck

Dia. CDia. B1Dia. BDia. A1

1 32 4
Loading 
Position

Influence Surface for Gage 140

Longitudinal Direction (inch)

180 200 220 240 260 280 300 320 340

Tr
an

sv
er

sa
l D

ire
ct

io
n 

(in
ch

)

110

120

130

140

150

160
0 
50 
100 
150 
200 
250 
300 

Dia. A

Steel Orthotropic Bridge Deck

Dia. CDia. B1Dia. BDia. A1

1 32 4
Loading 
Position

Influence Surface for Gage 139

Longitudinal Direction (inch)

180 200 220 240 260 280 300 320 340

Tr
an

sv
er

sa
l D

ire
ct

io
n 

(in
ch

)

110

120

130

140

150

160
0 
100 
200 
300 
400 
500 

P=80 kips

P=80 kips



 64

 
Figure 2-34 Finite Element Model of Deck Specimen 

 
 

 
Figure 2-35 Strains in Rib 6, Load at Position 3 on Line 2 
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Figure 2-36 Contour of Strain in Deck Plate, Load above Rib 6 at Diaphragm B 
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Figure 2-37 Strains in Rib 6 and Diaphragm B, Load on Deck Directly above Rib 
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Figure 2-38 Strain Contour in Rib 6 between Diaphragm A1 and B 



 68

Chapter 3 Flexural Strength of Trapezoidal Shaped 

Stiffeners in Steel Orthotropic Deck 
 

3.1 Introduction 

The results of strain measurement, reported in the last chapter, indicate that a 

wheel load of a truck on an orthotropic deck with trapezoidal-shaped stiffening ribs 

is primarily carried by one rib. This condition could provide a basis for deck strength 

evaluation. Because a rib in an orthotropic deck resists both flexural loads from 

trucks and axial compression from global forces, it is necessary that the flexural, 

compression and “beam-column” strength of a stiffening rib is known. 

Much has been done in the evaluation of local buckling of component plates of 

trapezoidal-shaped ribs (Wolchuk 1963) and of the overall strength of such rib in 

compression (Chen and Yang 2001). The behavior and strength of ribs under flexural 

loading is the subject of the brief examination in this chapter. Longitudinal ribs of 

the model test deck of the BWB were used for the bending tests. 

Each bending specimen were 47.5 ft. (14.5 m) long, supported by floor beam 

diaphragms at mid length and at the ends, with intermediate diaphragm at the quarter 
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points. All structural elements were made of ASTM A709 Grade 50 steel (345 MPa). 

The deck plate was 5/8 in. (16 mm) and the rib walls were 5/16 in. (8 mm) thick. 

The deck portion of each rib section was 26 in. (660 mm) wide. The ribs contained a 

longitudinal connection by continuity plates of the web in one span. The plane and 

end view of the bending test specimens are shown in Fig. 3-1(a). 

 

3.2 Experimental Program 

The program had four phases, Phase I to IV. In Phase I, individual static loads 

were imposed along Rib 10 of the partial deck, as shown in Figure 3-1. The 

longitudinal stiffening ribs 1 to 7 had been removed (for examination of possible 

fatigue damages) after the measurement of local stresses, which are reported in 

Chapter 2. The partial deck had nine trapezoidal shaped stiffeners (Rib 8-16). The 

partial deck is shown in Figure 3-2. The purpose of Phase I with loads on Rib 10 

was to reconfirm the linear elastic behavior of the deck and to examine the local 

stress distribution among ribs of the partial deck without support on one edge. After 

Phase I testing, the partial deck was cut longitudinally to create two bending 

specimens. One consisted of Rib 8 alone. The other had triple ribs, Ribs 9, 10 and 11. 
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These two specimens can be seen in Figure 3-2. 

In Phase II, the triple rib beam with Ribs 9, 10 and 11 was subjected to the 

same loads as in Phase I. The goal of this phase was to examine further the 

distribution of stresses among the ribs. 

Phase III and Phase IV were the ultimate strength testing of the single rib and 

the triple-rib specimens, respectively. The test program is summarized in Table 3-1. 

The sketches of test setup are given in Figure 3-3. In Phase I and II, the load at 

midpoint between Diaphragms A1 and B (A1-B) was first applied and released, then 

the load at midspan of Diaphragms B and B1 (B-B1). And then both loads were 

applied simultaneously. In Phase IV, for the triple rib specimen, two actuators spaced 

one foot apart and centered to the midspan were needed for the ultimate load testing. 

The vertical loads simulating vehicular wheels were applied though a 21 in. by 

11 in. (533 mm by 279 mm) loading pad, shown in Fig. 2-7. The maximum load of 

Phase I and II was 300 kips (1335 kN) which is 15 times that of the wheel load of 

the HS 25 truck. 

Nine displacement transducers (LVDTs) were used to measure the vertical 

deflections of the bottom of the partial deck specimen and bending specimens. The 
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arrangement of the transducers is indicated in Figures 3-4 and 3-5. Also shown are 

the locations of the linear uniaxial and rosette strain gages. 

 

3.3 Test Observation and Results 

3.3.1 Observation 

 The test results are listed in Table 3-2. In Phase I and II, all response appeared 

linear elastic. There was no observed damage or permanent deformation of the 

partial deck of nine ribs or the triple rib beam. In Phase III and IV, failure of both the 

single rib and the triple rib beam was by buckling of the webs of the 

trapezoidal-shaped stiffener(s). Buckling of the continuity plates of rib walls 

occurred prior to the final failure, transforming the continuous beams into single 

span beams with an overhang and constraint at the failed continuity plates.  

 The buckled splice plates of the single rib beam and of the triple rib beam as 

viewed from below are shown in Figures 3-6 and 3-7. A buckled wall of a rib of the 

triple-rib beam at Diaphragm B is shown in Figures 3-8 and 3-9. The appearance of 

the beams after testing is revealed in Figure 3-10. The permanent deflection of the 

beam is revealed by the gap between the beam and the remaining part of the partial 
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deck. The permanent deflection can also be seen vaguely in the top view of the 

partial deck in Figure 3-2, which was a photograph taken after the strength testing of 

the triple-rib beam. 

 

3.3.2 Results of Phase I and II 

 The behavior of the partial deck in Phase I was linear when the 300 kips (1335 

kN) load was applied between Diaphragm A1 and B (Point A1-B). This is depicted 

by the straight lines of the load-displacement relationship in Figure 3-11(a) for all 

nine displacement transducers. The maximum deflection of the partial deck under 

load was 0.738 in. (19.3 mm) by LVDT8. At 80 kips, (489.3 kN), the deflection was 

0.2 in. (5 mm). This is comparable but slightly higher than the 0.18 in. (4.6 mm) of 

Rib 6 of the full deck when the load was directly above (see Figure 2-21). Obviously, 

the partial deck without support on one edge was less rigid than the full deck with 

support on all edges. 

 When the load was at midspan between Diaphragm B and B1 (Point B-B1), the 

vertical deflection at the measurement points are shown in Figure 3-11(b). The 

maximum deflection of the rib directly under load was 0.78 in. (19.8 mm), which is 
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slightly higher than the maximum value of 0.738 in. (19.3 mm) in Figure 3-11(a). 

This is attributed to the onset of nonlinear behavior of the rib connections in the 

span. The load-deflection lines in Figure 3-11(b) deviate from being straight lines at 

about 200 kips (890 kN). However, when the applied load was removed, there was 

little residual deflection at the measurement points.  

With both loads at the Points A1-B and B-B1 applied simultaneously up to 300 

kips (1335 kN) each, the magnitudes of vertical deflection were reduced because of 

the load in the neighboring span. The load-deflection behavior is shown in Figure 

3-11(c). The maximum deflection was 0.68 in. (17.3mm) and 0.66 in. (16.8mm) at 

Points B-B1 and A1-B respectively. The slight nonlinear behavior started at about 

160 kips (712 kN). 

In Phase II, testing of the triple-rib beam was made under the same loading 

condition as in Phase I for the partial deck. The load-deflection diagrams are 

presented in Figures 3-12 (a, b and c). Again, the behavior of the specimen was 

linear under the 300 kips (1335 kN) load at Point A1-B (Figure 3-12(a)) and slightly 

nonlinear when the load was at Point B-B1 (Figure 3-12(b)) and at both Points 

(Figure 3-12(c)). This phenomenon is consistent between Phase I and II. When both 
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loads were applied simultaneously in Phase II, LVDT4 under the load point of Rib 

10 at B-B1 revealed relatively higher nonlinear behavior in that region. However, no 

local damage or unusual occurrence was observed or detected from strain readings. 

 The magnitude of the maximum vertical deflection during Phase I and Phase II 

testing are listed in Table 3-3. In Phase II, there were only three ribs to resist the 

same magnitude of applied loads in comparison to nine ribs for Phase I. The 

magnitudes of vertical deflection were higher in Phase II.  

 

3.3.3 Results of Phase III, Single-rib Beam Test 

 Phase III was the flexural strength testing of Rib 8 to failure. The loading 

scheme is shown in Figure 3-3(b), with the simulated wheel load applied at the 

midpoint between Diaphragm A1 and B. The load-displacement relationships at this 

point (LVDT6) and at the middle of the next span (LVDT1) are plotted in Figure 

3-13. The relationship was linear up to the buckling (out-of-plane bending) of the 

splice plates of the rib walls between Diaphragm B and B1, at about 160 kips (712 

kN). The calculated yield load at first yielding of the rib bottom without considering 

residual stresses was about 100 kips (445 kN). 
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 At bending of the splice plate, the actuator load dropped. The load was reduced 

to zero and then reapplied. The single rib beam specimen was now a single span 

beam with an overhang from Diaphragm B to the rib splice, which provided 

constrain to the beam. This “new” beam of a single rib could sustain an ultimate 

load slightly less than 160 kips (712 kN). The failure mode was the buckling of the 

rib wall near Diaphragm B. 

The measured strains at some gage locations in Phase III are shown in Fig. 3-14 

to 3-18 for the rib bottom, the rib wall, the top and bottom of deck plate and the 

spliced connection. The strains increased proportionally with the applied load at 

almost all locations in compliance with the bending moment diagram of Figure 3-19. 

The stresses at the bottom of the rib at the loading point (Figure 3-14) started to 

deviate from being linear at about 80 kips (356 kN). This corresponded to the 

beginning of nonlinear behavior of a rib splice plate in the adjacent span, as depicted 

by the strains at Gages 33 and 34 in Figure 3-18. When the strain at Gage 35 on the 

bottom of the rib at the connection reached about 1500 µε (43.5 ksi, 300 MPa), the 

splice plate buckled outward. The strains on the outer surface of the splice plates 

became tensile. 
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Figure 3-20 presents the stresses in the beam cross section under the load 

(A1-B) and at Diaphragm B before failure of the single rib beam. The distribution 

was slightly unsymmetrical with respect to the vertical axis of the beam. The onset 

of rib connection failure in the adjacent span obviously had strong influence on the 

stress distribution at the cross section. The ability of the trapezoidal-shaped rib to 

endue torsion associated with the unsymmetrical stress distribution is evident from 

these results. 

 

3.3.4 Results of Triple-rib Beam Test, Phase IV 

 The loading scheme is shown in Figure 3-3(c). Two actuators spaced one foot 

apart applied loads on Rib 10 at the midpoint between Diaphragm A1 and B. Two 

actuators were needed for the high magnitude of expected failure load of the 

specimen. The load-displacement curves in Figure 3-21 are for the loading cross 

section (LVDT8) and the midspan cross section of the adjacent span (LVDT4). The 

vertical downward displacement under load was higher than the uplift of the 

adjacent span. The onset of nonlinear behavior began around 370 kips (1647 kN), 

above the computed yield load of 300 kips (1335 kN). The failure of the beam was 
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at 591 kips (2630 kN) due to buckling of the rib connection splice plates (Figure 

3-7). 

 The increases of strains at strain gages on the splice plates (SG 54, SG 55) and 

on the bottom of Rib 10 (SG 53, SG 56) are plotted in Figure 3-22. Also included 

are the increase of strain at gages (SG 220, SG 221) on the walls and at gages (SG 

219-SG 222) at the bottom of the rib between the loading point and Diaphragm B 

(see Figure 3-3 (b) for gage location). Around 370 kips (1647 kN), the strains 

deviated from linear, changed more pronouncedly with the increased load. Around 

500 kips (2225 kN) the strains on the splice plate surface changed from compression 

to tension. This signified the large out of plane deflection of these plates. The bottom 

of Rib 10 near the load point (SG 219) was subjected to very high strain before 

failure of the connection of all ribs (Figure 3-7). At the failure load, the walls of the 

ribs at Diaphragm B started to buckled (Figure 3-8 and 3-9). 

 Strains increased linearly with load at other points on the bottom and the webs 

of Rib 10, as shown in Figure 3-23 and 3-24. All exhibited changes around 370 kips 

(1647 kN) and at higher load magnitudes. Figure 3-25 shows the strains on the rib 

walls at two cross sections of the specimen at 370 kips (1647 kN) and 500 kips 
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(2225 kN) of load on Rib 10. The participation of all rib in carrying the applied load 

is evident.  

 By assuming that the three ribs took equal shares in carrying the applied load, 

the load-deflection curves of Figure 3-21 for the triple-rib beam are converted to 

average curves for each rib. These are shown in Figure 3-26 to compare with those 

of the single rib beam from Phase III. It reveals that the behavior of the specimens 

are quite similar. The average strength of the triple-rib beam is higher. This is 

expected because of the constraint provided by the adjacent ribs of the triple-rib 

beam. 

 

3.4 Finite Element Analysis 

 Finite element models (FEM) for the analysis of the single and triple-rib 

specimens were developed. As in modeling the deck in Chapter 2, the nonlinear 

finite element software ABAQUS (2004) was selected. The models are shown in Fig. 

3-27 and 3-28. ABAQUS S4R elements were selected to model the test specimen. 

Because the major concerned of this study was the strength of the orthotropic deck, 

not the connection of individual ribs, the splice plate connections was ignored. 
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 The failed shape of the finite element models are shown in Figure 3-29 and 

3-30, with a large scale for deflection. The shapes are in full agreement with the 

experimental results. The load deflection curves from the FEM for the single rib and 

triple-rib bending specimens are shown in Figures 3-31 and 3-32 for comparison 

with the experimental results. The analytical and experimental curves agree fairly 

well before failure of the beams at the rib connection. Without failure of the 

connections, the single rib beam would be able to resist a 300 kips (1335 kN) 

downward load. The triple-rib beam had a strength of more than 900 kips (4005 kN), 

or 300 kips for each rib. 

 

3.5 Discussions and Conclusions 

 The examination reported in this chapter on flexural loads on partial deck 

panels and on single rib and triple-rib beams lead to the following conclusions. 

 First, the partial deck panels which were supported on three sides and free on 

the fourth, behaved linearly under a simulated wheel load up to 300 kips (1335 kN) 

in the panel. The behavior was slightly nonlinear when the load was in the partial 

panel with the rib connections, and when two simultaneous loads were in the two 
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adjacent panels. Second, one or two 300 kips (1335 kN) loads applied on a triple-rib 

continuous beam, which was isolated from the partial deck, induced similar behavior 

as that of the partial deck panel. 

 A single rib continuous beam sustained a maximum vehicular wheel load of 

162 kips (720 kN) in one span with failure located at the rib connection in the other 

span. A similar triple-rib beam sustained 591 kips (2631 kN), being slightly higher 

than three times the single-rib beam strength. This condition indicates the 

participation of all ribs of the triple-rib beam in carrying loads placed on one rib. 

Analysis by finite element models indicates that the strength of each rib without a 

connection would be 300 kips (1335 kN) or higher. 

The magnitude of 300 kips (1335 kN), being the maximum applied load on the 

partial deck panels as well as the flexural load strength of each rib, is 15 times the 

HS 25 wheel load of 20 kips (89 kN). With the conclusion from Chapter 2 that 

wheel loads affect primarily only one rib (or at most also the adjacent rib), and that 

wheel loads of the same axle are two or more ribs apart, it can be concluded that 

axle loads of HS 25 trucks do not cause problem with respect to static flexural 

strength of the ribs of the model deck. 
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Table 3-1 Test Program 

Phase Specimen Loads on 

I Nine ribs, (8-16) Rib 10 

II Triple-rib, (9-11) Rib 10 

III Single-rib, (8) Rib 8 

IV Triple-rib, (9-11) Rib 10 

 
 
 
 

Table 3-2 Test Results 

Test Phase Specimen Load on 
Max. Load

(kips) 

Deflection 

(inch) 
Failure Mode 

I 
Nine-ribs 

(8-16) 
Rib 10 300.00 0.738 NA 

II 
Triple-rib, 

(9-11) 
Rib 10 300.00 0.931 NA 

III 
Single-rib, 

(8) 
Rib 8 162.12 1.143 

Buckling of rib 

connection plate 

IV 
Triple-rib 

(9-11) 
Rib 10 591.36 3.720 

Buckling of rib 

connection plate 
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Table 3-3 Maximum Vertical Deflection Phase I and II 

Load on 
Test Phase Specimen 

Rib Point 

Deflection 

(inch) 
At 

A1-B 0.738 A1-B 

B-B1 0.780 B-B1 
I 

Nine Ribs 

(8-16) 
10 

A1-B and 

B-B1 
0.680 A1-B 

A1-B 0.930 A1-B 

B-B1 0.900 B-B1 
II 

Triple-rib 

(9-11) 
10 

A1-B and 

B-B1 
0.720 A1-B  
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Figure 3-1 Plane and End View of Specimen 
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Figure 3-2 Partial Deck, Rib 1 to 7 Removed 

 

Triple Rib Specimen 

Single Rib Specimen 
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(a) Phase I and II tests 

 

 
(b) Phase III test 

 

 
(c) Phase IV test 

 
Figure 3-3 Sketches of Test Setup 
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(a) Top of Deck Plate (b) Bottom of Deck Plate and Rib Walls 

Figure 3-4 Arrangement of the displacement transducers and strain gages,  
Phases I and III 
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Linear Strain Gage

Rosette Gage

Diaphragm A1

Diaphragm B1

Diaphragm B

Loading line

Loading line

91011

Diaphragm B

Diaphragm B1

Diaphragm A1

261,262,263

255,256,257

 
Figure 3-5 (a) Top of Deck Plate 
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LVDT

Linear Strain Gage

Rosette Gage 
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Diaphragm B

Diaphragm B1

Diaphragm A1
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4849 345
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55 48

118
182 168
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108,109,110115,116,117123,124,125
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(183,184,185) (172,173,174)

122
(175)

111

Diaphragm B(South)
North

(b) Bottom of Deck Plate and Rib Walls 
Figure 3-5 Arrangement of the displacement transducers and strain gages,  

Phase I, II and IV 
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Figure 3-6 Buckled Splice Plates, Single-rib Beam 

 

 

Figure 3-7 Buckled Splice Plates, Triple-rib Beam 
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Figure 3-8 Buckled rib wall, Triple-rib Beam 

 

 
Figure 3-9 Closed Up View of Buckled Rib Wall of Triple-rib Beam 
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Figure 3-10 Appearance of Single and Triple-rib Beams after Testing Viewed from 

Below 
 

Triple Rib 
Specimen Single Rib 

Specimen 
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Figure 3-11 (a) 



 93

 
-350

-300

-250

-200

-150

-100

-50

0
-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

Vertical Deflection (inch)

A
pp

lie
d 

Lo
ad

 (k
ip

s)

LVDT_1

LVDT_2

LVDT_3

LVDT_4

LVDT_5

LVDT_6

LVDT_7

LVDT_8

LVDT_9

 
 

  

Figure 3-11 (b) 
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Figure 3-11 (c) Measured Vertical Displacement of Deck, Phase I 
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Figure 3-12 (a) 
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Figure 3-12 (b) 
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Figure 3-12 (c) Measured Vertical Displacement of Deck, Phase II 
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Figure 3-13 Measured Vertical Displacement of Rib, Phase III 
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Figure 3-14 Strains on Bottom of Rib, Single Rib Bending Test, Phase III 
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Figure 3-15 Longitudinal Strains on Rib Wall, Single Rib Bending Test, Phase III 
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Figure 3-16 Longitudinal Strains on Bottom of Deck Plate, Single Rib Bending Test, 

Phase III 
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Figure 3-17 Longitudinal Strains on Top of Deck Plate, Single Rib Bending Test, 

Phase III 
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Figure 3-18 Strains at Splice of Rib, Single Rib Bending Test, Phase III 
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Figure 3-19 Beam Moment Diagram for Phase III and Phase IV 
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Figure 3-20 (a) Point A1-B 
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(b) Diaphragm B 

 
Figure 3-20 Strains of Rib and Deck at Diaphragm B and Point A1-B, Single Rib 

Bending Test, Phase III 
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Figure 3-21 Measured Vertical Displacement of Rib 10, Phase IV 
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Figure 3-22 Strains on Splice Plate and Bottom of Rib 10, Triple Rib Bending Test, 

Phase IV 
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Figure 3-23 Responses of Strain on the Bottom of Rib, Triple Rib Bending Test,  

Phase IV 
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Figure 3-24 Responses of Strain on Rib Walls, Triple Rib Bending Test, Phase IV 
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Figure 3-25 (a) Point A1-B 
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(b) Diaphragm B 
 

Figure 3-25 Strains on Bottom of Deck plate and Rib, Triple Rib Bending Test,  
Phase IV 
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Figure 3-26 Comparison of Phase III and IV Measured Vertical Displacement, Triple 

and Single Rib Beams 
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Figure 3-27 FEM for Single Rib Specimen 

 

Figure 3-28 FEM for Triple Rib Specimen 
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Figure 3-29 Shape of Failed FEM for Single Rib Specimen 
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Figure 3-30 Shape of Failed FEM for Triple Rib Specimen 
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Figure 3-31 Comparison of FEM results with single rib experimental data 
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Figure 3-32 Comparison of FEM results with triple rib experimental data 
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Chapter 4  Compressive and Beam-Column 

Strength of Trapezoidal-Shaped Ribs 
 

4.1 Introduction 

Orthotropic steel plate panels with trapezoidal-shaped longitudinal stiffeners 

(ribs) are primarily compression members. Most often the stiffened panels serve as 

roadway decks thus are also subjected to vertical loads transverse to the deck. 

Therefore, when examining the load carrying behavior and strength of 

trapezoidal-shaped ribs, both compressive and transverse forces need to be 

considered. 

To evaluate the compressive strength of the stiffening ribs of the BWB model 

deck under load was the main task of this part of the study. Both experimental and 

analytical examinations were made. 

 The results from Chapter 2 indicate that wheel loads affect the local stresses of 

deck components primarily in the rib directly under the loads, and the results from 

Chapter 3 showed that the flexural strength of a single-rib beam and of each rib of a 

triple-rib beam are essentially the same. Consequently, the experimental and 
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analytical examination of rib column strength and rib beam-column strength can be 

conducted on specimens of a single rib or of multiple ribs. 

 

4.2 Experimental Programs 

4.2.1 Test Specimens and Properties 

 Four test specimens were cut from the BWB model deck for study. All were 18 

ft. (5.5 m) long with two diaphragms 10 ft. (3 m) apart, each being 4 ft. (1.2 m) from 

the end. The four specimens were a single rib column (SC), two single rib 

beam-columns (SBC1 and SBC2) and a triple rib beam-column (TBC).  

 The dimensions of the component plates of a single rib are listed in Table 4-1. 

The sectional properties are shown in Table 4-2. The yield strength of 50 ksi (345 

MPa) for the deck plate and 70 ksi (483 MPa) for the rib walls and bottom flanges 

were obtained by testing coupons (ASTM A370) with an 8-inch gage length. The 

stress-strain curves from the coupon tests are shown as Figure 4-1 and 4-2. The 

results are listed in Table 4-3.  

 The computed reference loads for the specimens, including the component 

buckling loads of the deck plate (Pcr,d) and of the rib wall (Pcr,r), are listed in Table 
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4-4. The condition of simply supported plates was adopted. The computation is 

given in the Appendix. For the study of compressive strength of structural members, 

the initial imperfection of components is important. The out of flatness of the deck 

plate and the rib walls and the out of straightness of each specimen were measured. 

Figure 4-3 shows a single rib specimen with a 2 in. by 6 in. (51 mm by 152 mm) 

marking for measurement of the deck plate surface. The results are shown in Figure 

4-4. The maximum relative deflections of all four specimens are listed in Table 4-5. 

The maximum absolute imperfection of the deck plate of the four specimens was 

0.525 in. (13 mm) and of the ribs, 0.017 in. (0.4 mm). 

 

4.2.2 Test Setup, Instrumentation and Test Procedure 

 The specimens were tested vertically in the 5 Million Pound Universal Test 

Machine in Fritz Engineering Laboratory. A single-rib beam-column specimen in the 

test machine is shown in Figure 4-5. The ends of each single-rib specimens had a 2 

in. (51 mm) thick end plate attached for a “flat-ended” condition. A 3 in. (76 mm) 

thick plate was used for each end of the triple-rib specimen. For beam-column 

specimens, the horizontal force simulating a wheel load on the deck was introduced 



 121

by a hydraulic jack at mid height. This is also shown in Figure 4-5. 

 Strain gages were placed on the deck plate and the rib wall. Some of these 

gages are visible in Figure 4-5. Most of the LVDTs for measuring displacement of 

the specimens in the direction of the simulated wheel load were placed against the 

rib bottom. The locations of strain gages and of LVDTs for the specimens are given 

in Figures 4-6 to 4-11. 

 Axial compressive force of the column specimen (SC) was applied 

monotonically to failure of the column. For the beam-column specimens (SBC1, 

SBC2 and TBC) an axial force of 300 kips (1335 kN) was first applied, then the 

simulated wheel load of 40 kips (178 kN) and then the additional axial compression 

to failure. 

 

4.3 Test Observations and Results 

4.3.1 Strength of Specimens and Failure Modes 

 The results of specimen ultimate loads and failure modes are summarized 

in Table 4-6. 

The single-rib column specimen, SC, sustained an ultimate axial compression 
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of 1385 kips (6162 kN), which was practically the computed deck plate buckling 

load. The final appearance of the column is shown in Figure 4-12. Failure was due to 

inelastic buckling of the rib wall near the ends. Closed up views of the buckled rib 

wall near the lower end of the deck plate are given in Figure 4-13. Local buckling of 

the deck plate at mid height occurred after the ultimate load. The buckle can be seen 

in Figure 4-12 and is shown in a closer view in Figure 4-14. 

The strength of the single-rib beam-columns, SBC1 and SBC2, was 1358 kips 

(6045 kN) and 1412 kips (6284 kN), respectively, being slightly different from the 

computed buckling load of the deck plate. The appearances of the failed specimens 

are shown in Figure 4-15 and 4-16. Yielding of the deck plate occurred before the 

ultimate load. The yield lines were observed near the mid height of the 

beam-column where the bending moment was the highest. The yield lines can be 

seen in Figure 4-17. At the maximum load, local buckling of the rib wall developed 

near the ends, Figure 4-18. The deck plate and rib wall near the simulated wheel 

load also buckled, as shown in Figures 4-19 and 4-20. 

The final appearance of the triple-rib beam-column specimen, TBC, is shown in 

Figure 4-21. Yielding of the deck plate was observed before local buckling of the 
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ribs near the ends. The ultimate load was 4422 kips (19680 kN), being about 30 

percent higher than the computed load of 3402 kips (15140 kN) at first yield. The 

yield lines along a diaphragm can be seen in the photograph, Figure 4-22, which was 

taken after the specimen was removed from the test machine. One of the buckled rib 

walls is shown in Figure 4-23. 

 

4.3.2 Load-Displacement Behavior 

 The four specimens had similar load-displacement behavior. The applied load 

versus axial shortening relationship of the specimens is plotted in Figure 4-24. The 

load for the triple-rib beam-column, TBC, was the average value of each rib. That is 

the applied load divided by three. The testing of this specimen was not carried 

through a large amount of displacement as did the other two beam-columns for 

reasons of safety at high loads. In Figure 4-24, all the curves for the beam-columns 

are quite close to each other, indicating similarity in behavior and strength. 

Nonlinear behavior was noticeable beyond about 1200 kips (5340 kN) per rib. It is 

to be noted that the column specimen SC under went more shortening than the 

beam-columns. That the column specimen was cut from Rib 8 which was along the 
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longitudinal welded joint of the deck plate, might have some effect in addition to 

those by residual stresses in the cross section. 

 The lateral displacements of the mid point of the specimens are presented in 

Figure 4-25. The single rib column SC began to displace laterally above 1300 kips 

(5785 kN) at the onset of failure by local buckling. The beam-columns were 

subjected to a 300 kips (1335 kN) axial compression before the application of the 40 

kips (178 kN) lateral force of simulated wheel load. Lateral displacement occurred 

accordingly. Upon the continuation of application of the axial load, the single rib 

specimens SBC1 and SBC2 deflected slightly more whereas the triple-rib specimen 

did not. This implies the constraint of the two outer rib to the lateral displacement of 

the middle rib under the lateral load. Beyond 1200 kips (5340 kN) local nonlinear 

behavior started and the lateral displacement increased at a higher rate. After the 

attainment of the maximum load, the lateral deflection increased with a decreasing 

ability of the specimens to carry axial load. As indicated earlier, the testing of 

specimen TBC was terminated shortly after reaching the maximum load, not 

allowing a large magnitude of lateral displacement. 

 Figures 4-26, 4-27, and 4-28 depict the laterally deflected longitudinal profile 
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of the rib bottom of the specimens. Measurements were made in the mid length 

region of the specimens. The displacement of the single-rib column changed from 

slightly towards the deck plate at low axial load to the opposite direction at failure of 

the column. The beam-columns, due to the lateral load at 108 in. (2.74 m) from the 

bottom, gradually increased the magnitude of lateral deflection with the load and 

increased much more at failure load. 

 In all cases, the lateral displacement was steady and stable without instability.  

 

4.3.3 Measured Strains 

 The load-strain relationship of specific points of the column and beam-column 

specimens provide more detailed information on the load behavior of the specimen 

components which contain those points. Figures 4-29 and 4-30 are load-strain plots 

of strains at a few points on the deck plate and on the rib wall of the single-rib 

column, SC. (The strain gage locations and numbers are given in Figures 4-6 and 

4-7.) Noticeably large deviation from linear behavior started around 900 kips (4000 

kN) in the deck plate and about 1000 kips (4450 kN) in the rib. This deviation from 

linearity at loads lower than that of the global behavior (Figure 4-24) indicates the 
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influence of local initial out of flatness of plates. 

 Similar results of better indication of local behavior by local strains can be 

drawn from the load-strain plots of the single-rib beam columns and the triple-rib 

beam-column. Representative load-strain plots are presented as Figures 4-31 to 4-39. 

The main observation from these plots is that all changes of strains with load were 

linear and gradual under load until near or at the maximum load of the members. 

 Of interest to this study of orthotropic deck panel strength is the distribution of 

strains in the triple-rib beam-column specimen, TBC. Figure 4-40 shows the 

distribution of strain on top of the deck plate, and Figure 4-41 shows that of the 

lower face of the deck and the outer surface of the rib walls on the respective 

projected points on the deck. The uniformity of the compressive strains on the top 

surface of the deck before and after the application of the simulated wheel load 

indicates that it had little effects on the deck strains in comparison to the effects of 

axial loads. The 40 kips (178 kN) transverse load was much less than the magnitude 

of 4000 kips (17800 kN) axial forces applied to the specimen. On the lower side of 

the deck, the 40 kips (178 kN) simulated wheel load induced flexural bending of the 

loaded rib and changed the compressive strains to tensile strains at the bottom of the 
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rib. This effect was local, as was discussed in Chapter 3. When the axial load was 

increased, the overall compressive strain increased accordingly. Only at high 

compressive loads near the ultimate strength of the triple-rib specimen did the strain 

distribution become irregular due to local behavior of the component plates. 

 

4.4 Analytical Evaluation 

4.4.1 Local Buckling of Component Plates 

To analyze the test specimens as a column or a beam-column, it is essential to 

evaluate the buckling strength of the compressive components. Following the 

provisions of AISC / AASHTO as listed in Appendix A, the elastic and inelastic 

buckling strength of the deck and wall plate of a rib are computed. The results are 

presented in Table 4-7 and 4-8. The lowest buckling strength of the component plate 

is for the rib wall, being 52.1 ksi (359 MPa) which is higher than the yield strength 

of the deck plate. This indicates that the column and beam-column specimens would 

fail in the inelastic range, as observed during the experiment. 

 



 128

4.4.2 Column / Beam-column Strength 

Without component buckling and overall member buckling, the onset of 

yielding of the deck plate with σy = 50 ksi (345 MPa) would be the reference 

strength of a specimen. For a single rib: 

Column Yielding   Py = Pp = 1368 kips (6088 kN) 

Beam-column Yielding  Py = 1134 kips (5046 kN) 

Corresponding Moment  My = 1174 kips-in. (133 kN-m) 

The reference strength for a single rib column as computed using the provision 

in Appendix A are the following: 

Column Elastic Buckling σcr = 339 ksi (2336 MPa) 

      Pcr =9272 kips (41260 kN) 

Column Inelastic Buckling with uniform yield stress of σy = 50 ksi (345 MPa) 

      σcr = 48.6 ksi (335 MPa) 

      Pcr =1329 kips (5914 kN) 

With a weighted yield stress of fy = 57.64 ksi (397 MPa) 

      σcr = 55.8 ksi (384 MPa) 

      Pcr =1526 kips (6791 kN) 
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Because the single rib column failed by the inelastic buckling of the rib walls, 

not by the overall buckling of the specimen, the provisions of Appendix A are not 

directly applicable. The procedure as developed by Usami and Fukumoto (1982) in 

conjunction with the AISC Q-factor method was adopted. The strength reduction 

factor, Q, accounts for the buckling of the rib wall in the evaluation. The strength of 

the column is assumed as the sum of the component strength. The relevant equations 

and the results of computation are presented in Appendix B. the results are 

summarized in Table 4-9. The computed column strength of specimen SC is 1372 

kips (6105 kN). 

The procedure for computation of beam-column strength at first yield is 

summarized in Appendix C. There is no simple, comprehensive equation for the 

evaluation of load carrying strength of beam-column in the inelastic range of 

behavior. Based on the observed condition that the single rib and triple rib 

beam-columns behaved practically the same as the single rib column, the procedure 

of Appendix B was utilized for the beam-columns. These results are discussed later 

with those from the finite element analysis. 
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4.5 Finite Element Analysis 

4.5.1 Structural Modeling 

 For the estimation of the load carrying capacity of the beam-column specimens, 

the finite element method was adopted. The nonlinear software ABAQUS was again 

selected. The finite element models of the single-rib and triple-rib specimens are 

shown in Figure 4-42 and 4-43. Shell elements (S4R) of about 3 × 3 in. (76 × 76 mm) 

were used.  

 The models had flat ends with one end being fixed and the other allowed to 

move with the shortening of the specimen, simulating the test setup. The edges of 

the models were free to displace in any direction. The global initial out of 

straightness of a specimen from measurement was idealized as a half sine curve and 

incorporated. 

 Residual stresses in the rib specimens were also incorporated in the analysis. 

The magnitude and distribution of residual stresses in the deck plate and rib walls 

were assessed based on previous studies (Chen and Yang 2002), and are shown in 

Figure 4-44. At the welds, the magnitude of the tensile residual stress was the 

respective yield stress of the plate. In the rib walls, the compressive residual stress 
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was assumed to be 0.1 of the material yield stress, or 7 ksi (48 MPa). The material 

properties of the deck plate and the rib wall were modeled as elastic-perfectly 

plastic. 

 In order to model the full range of behavior of the specimens, including the 

pre-buckling, post-buckling, yielding and post ultimate load stages, a solution 

strategy utilizing a modified Riks method was adopted. 

 

4.5.2 Results of Analysis 

 The results of computed ultimate loads by the finite element analysis are listed 

with the experimental results in Table 4-10. The finite element analysis (FEA) 

included two cases: a) incorporated only the overall initial out of straightness of the 

specimens with no consideration of residual stresses and b) included both. For all 

four specimens the inclusion of residual stresses resulted in only a slightly lower 

computed strength. The highest deviation is about 4%. This indicates that the 

presence of residual stress has only minor effect on the load carrying capacity of the 

column and beam-columns. In comparison with the experimental results, the 

computed strength with consideration of residual stresses are generally closer to the 
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recorded ultimate loads of testing, with an overestimate of the column strength and 

slight underestimate of the beam-column strength. 

 

Single Rib Column 

 The load deflection curves of the column specimen from the finite element 

analysis are compared with that from experimental results in Figure 4-45. The 

analytical curves with and without consideration of residual stresses are quite close 

to each other. The curve from test results, however, shows that the test specimen 

was less stiff and attained a lower ultimate load than computed. This could be due to 

the condition that the column specimen was Rib 8 along the deck plate welded 

connection of the model test deck of Chapter 2, and was a part of the two span 

continuous beam specimen of Stage III in Chapter 3 (Figure 3-2 and Table 3-2). 

 The appearance of the specimen with residual stresses and under 1385 kips 

(6163 kN) maximum load, and at computed axial shortening of 1.36 in. (35 mm), are 

shown in Figures 4-46 and 4-47 respectively. At the ultimate load, hardly any local 

deformation of the component plates is visible from Figure 4-46. This is in full 

agreement with the test results. Figure 4-47 shows the local buckling of the rib wall 
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near the ends, corresponding to the buckles of Figure 4-13. The local deflection of 

the deck plate in Figure 4-12 and 4-14, possibly due to local out of flatness, was not 

generated by the finite element analysis. 

 

Single Rib Beam-column 

 The computed curves of load versus axial shortening of the single-rib 

beam-columns are presented in Figure 4-48. Three cases were examined: with a 

rigid load pad at mid height (FEA-1), no loading pad (FEA-2) and with residual 

stresses. Also plotted are the recorded load-shortening curves from the two 

beam-column specimens SBC1 and SBC2. The effect of the load pad on the ultimate 

strength is relatively minor, whereas the effects of the residual stresses are 

noticeable. The difference is about 4%. The curves from the test specimens fall 

between the computed curves. Figure 4-49 and 4-50 are the computed appearance of 

the beam-columns with and without a load pad after the attainment of the ultimate 

load. The axial shortening is about 1in. (25 mm). It is obvious from these figures 

that the load pad which simulates the wheels of a truck presents the unrealistic 

“punching” of the deck plate after reaching the ultimate load. At the peak load, even 



 134

the relatively concentrated load without a load pad did not induce serious local 

deflection, as is shown by the computed deflection shaped in Figure 4-51. The 

computed local deflections at the ends and at mid height of the model in Figure 4-50 

are of the same shape as that of the actual ones of the specimens, as shown in Figure 

4-15, 4-18 and 4-19. 

 

Triple Rib Beam-column 

 The results of finite element analysis of the triple-rib beam-column are 

essentially the same as those of the single-rib beam-columns. Figure 4-52 contains 

the load-deflection curves of the specimen by the finite element analysis and from 

testing. Again, the inclusions of residual stresses resulted in a slightly lower ultimate 

strength. Overall, the computed and measured load-deflection relationships agree 

well all the way up to the computed ultimate load.  

 At the ultimate load, the appearance of the specimen from finite element 

analysis is shown in Figure 4-53. Little local damage is visible in this figure, as is 

the situation in the photograph of Figure 4-21. Figure 4-54 shows the computer 
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generated appearance of the specimen at an axial shortening of 1.8 in. (46 mm). 

Yielding and local buckling of the web wall near the ends was the cause of failure. 

 Figure 4-55 shows the strain distribution on the surface of the deck at the mid 

height of the triple-rib beam-column under increased axial loads. The strain 

distribution shapes are corresponding to those from the measured strains as shown in 

Figure 4-41, showing that the wheel load effect was confined to only one rib. This 

similarity of results between computed and experimental results confirms the 

validity of both. 

 

4.6 Discussion and Recommendation 

 The experimental and analytical results of the single rib column and 

beam-columns were very similar. So were the results from single-rib and triple-rib 

beam-columns. Failure of the specimens at ultimate load was by local buckling of 

the rib walls and yielding of the deck plate. There was no overall buckling of the 

ribs. 

 The primary reason that the beam-column and column specimens of the rib 

behaved very similar is the insignificant magnitude of the lateral load. The applied 
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lateral load of 40 kips (178 kN), even though it is twice that of the wheel load of a 

HS 25 truck, is very low in comparison to the maximum applied axial load of around 

1400 kips (6230 kN) to each of the ribs of the specimens. The 40 kips load generated 

bending moments in the beam-columns, but the magnitudes of the moment were not 

high enough to induce overall beam-column action. Rather, failures was due to local 

buckling of the rib walls.  

 There is no existing procedure for computing the strength of beam-columns 

which failed by local buckling of the rib wall. The method of summation applied to 

columns (Usami and Fukumoto, 1982) is recommended, assuming that the buckled 

rib walls can continue to carry loads till buckling or yielding of all other components 

of the cross section. Thus, by using the component characters of Table 4.9, the 

estimate compressive strength of the single rib column and beam-column specimens 

is: 

)6105(137252.17093.807.4745.85045.850 kNkips=×+×+×+×  

The triple rib beam-column is estimated to have strength of three times this values, 

or 4116 kips (18315 kN). These values are listed in Table 4-11. The estimated 

strengths from the recommended procedure of summation are fairly close to the 
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experimental results. The estimated strengths are higher than the reference values of 

the computed loads at global buckling of a rib column, and are on the conservative 

side when compared with the test results. 

 It is to be noted that local buckling of the ribs occurred near the ends of the 

specimens. These are locations with negative bending of the ribs in deck panels. 

There is a compress stress gradient in the ribs which was not considered in the 

recommended procedure. Refinement on the estimation of buckling strength of the 

rib wall should provide even better results then given in Table 4-11. 
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Table 4-1 Dimensions of Components of a Stiffening Rib (in.) 

Component t b h’ A y Ay Ay
2 I0 

Deck Plate 0.650 26.00 - 16.90 0.33 5.49 1.79 0.60

Rib Walls 0.325 0.68 14.07 8.93 7.32 65.37 478.42 129.20

Rib flange 0.325 4.66 - 1.51 13.99 21.19 296.38 0.01

Σ    27.35  92.05 776.58 129.81

 y_bar= 3.37 I = 466.73     

 y(top)= 3.37 S(top)= 138.66    

 y(bot)= 10.76 S(bot)= 43.38    

 

 

Table 4-2 Sectional Properties of a Rib 

A I r L L / r b/ td h’ / tr 

( in2 ) ( in4 ) ( in ) ( in )    

27.35 466.73 4.13 120 29.06 20.00 43.29 
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Table 4-3 Material Properties of Rib Components 

Yield 

Strength  

Tensile 

Strength  
Elongation Grade 

Steel plates 

σY (ksi) σu (ksi) (%)  

Deck plate 50 67 23.75 A709 

Rib plate 70 80 18.25 A709 

 

 

Table 4-4 Reference Load 

Sepcimen 
Py 

(kips) 

Pp 

(kips) 

Mp 

(kips-in.) 

Pcr,d 

(kips) 

Pcr,r 

(kips) 

SC - 1576 4409 1376 420 

SBC1 

SBC2 
1134 1576 4409 1376 420 

TBC 3402* 4729 13227 4131 1261 

* At first yield of deck plate with 40 kips simulated wheel load 
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Table 4-5 Maximum Relative Initial Deflection 

Specimens

Initial deflection 

Single Rib 

Column 

Single Rib 

B-C 1 

Single Rib 

B-C 2 

Triple Rib 

B-C 

δ1,max / b 1/130 1/35 1/117 1/684 

δ2,max / h’ 1/824 1/875 1/933 1/933 

δ3,max / L 1/320 1/563 1/1636 1/1674 

 

Initial deflection of deck plate and rib wall 

 

   Initial deflection of stiffener 
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Table 4-6 Test Results 

Specimen 

Ultimate 

Load 

(kips/kN) 

Max. 

Axial 

Deflection 

(inch/mm)

Max.  

Lateral 

Deflection 

(inch/mm)

Failure Mode 

SC 
1385 

(6162) 

1.048 

(27) 

1.980 

(50) 
local buckling of rib wall near ends

SBC1 
1358 

(6162) 

0.877 

(22) 

2.570 

(65) 

yielding of deck plate at mid 

height then  local buckling of rib 

wall near ends and at mid height 

SBC2 
1412 

(6283) 

0.904 

(23) 

2.549 

(65) 

yielding of deck plate at mid 

height then  local buckling of rib 

wall near ends and at mid height 

TBC 
4422* 

(19678) 

0.550 

(14) 

0.436 

(11) 

yielding of deck plate and local 

buckling of rib wall near ends 

* Average per rib, 4422 / 3 = 1474 kips 
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Table 4-7 Computed Elastic Buckling Strength of Single Rib Components, (AISC) 

Section 
b 

(inch) 

t 

(inch) 
b / t 

Boundary 

Conditions 

Buckling 

Strength 

(ksi) 

Deck Plate 26.00 0.650 40.00 S.S. – S.S. 242.33

Rib Walls 14.07 0.325 43.29 S.S. – S.S. 51.70

Rib Bottom 5.00 0.325 15.38 S.S. – S.S. 409.50

S.S.: Simply Supported 

 

Table 4-8 Computed Inelastic Buckling Strength of Single Rib Components, (AISC) 

Section 
b 

(inch) 

t 

(inch) 
b / t 

Boundary 

Conditions 

Buckling 

Strength 

(ksi) 

Deck Plate 26.00 0.650 40.00 S.S. – S.S. 49.60

Rib Walls 14.07 0.325 43.29 S.S. – S.S. 52.10

Rib Bottom 5.00 0.325 15.38 S.S. – S.S. 69.60
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Table 4-9 Buckling Strength of Rib Components, AISC / Fukumoto (1985) 

Section 
b 

(inch) 

t 

(inch) 
b / t No. 

Area 

(inch2)

σy 

(ksi) 

σcr 

(ksi) 

Pu 

(kips) 
Deck 

Plate 1 
13.00 0.650 20.00 1 8.45 50.0 81.5 422.5 

Deck 
Plate 2 

6.50 0.650 10.00 2 8.45 50.0 140.0 422.5 

Rib 
Walls 

14.07 0.325 43.29 2 8.93 70.0 47.1 420.4 

Rib 
Bottom 

5.00 0.325 15.38 1 1.51 70.0 94.2 106.0 

Σ = 1371.4

 

Table 4-10 Experimental and FEA Results 

Specimen Ultimate Load (kips) Max. Axial Deflection (inch) 

FEA FEA 
 Exp.  

(a) (b) 

Difference 

(b) (%) 
Exp.  

(a) (b) 

SC 1385 1578 1546 11.6 0.542 0.512 0.519 

SBC 1 1358 1441 1381 1.6 0.440 0.448 0.453 

SBC 2 1412 1441 1381 -2.2 0.463 0.448 0.453 

TBC 
4422 

(1474) 

4198 

(1399) 

4041 

(1374)
-8.6 0.503 0.481 0.464 

(a) without consideration of residual stresses. 

(b) with consideration of residual stresses. 
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Table 4-11 Strength of Specimens (kips) 

Reference 
Specimen Experiment FEA Pestimate 

Pcr,ribA Pp or Py 

SC 1385 1546 1372 1293 Pp = 1576 

SBC1 1358 

SBC2 1412 
1381 1372 1293 Py = 1134 

TBC 
4422 

(1474) 

4041 

(1347) 

4116 

(1372) 

3879 

(1293) 

Py = 3402 

(1134) 

Pestimate: from summation of parts 

σcr,rib Ai: from AISC column global elastic buckling stress calculation 
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Figure 4-1 Deck Plate Coupon Test Results 
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Figure 4-2 Rib Plate Coupon Test Results 
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Figure 4-3 Measurement of Initial Imperfection 
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Figure 4-4 The Geometric Imperfection of Specimen, SBC1 

(Note Different Scale) 
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Figure 4-5 The Setup of Test Specimens 
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Figure 4-6 Instrumentation Plan for Single Rib Column, SC 
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Figure 4-7 Instrumentation Plan for Single Rib Column, SC 
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Figure 4-8 Instrumentation Plan for Single Rib Beam-column, SBC 
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Figure 4-9 Instrumentation Plan for Single Rib Beam-column, SBC 
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Figure 4-10 Instrumentation Plan for Triple Rib Beam-column, TBC 
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Figure 4-11 Instrumentation Plan for Triple Rib Beam-column, TBC 
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Figure 4-12 Final Appearance of Single Rib Column, SC 
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Figure 4-13 Local Buckling of Rib Wall near the Bottom of Column, Specimen SC  
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Figure 4-14 Local Buckling of Deck Plate near Mid-height of Single-rib Column, 

SC 
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Figure 4-15 Final Appearance of Single Rib Beam-column Specimen SBC1 
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Figure 4-16 Final Appearance of Single Rib Beam-column Specimen SBC2 
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Figure 4-17 (a) SBC1 
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(b) SBC2 

Figure 4-17 Yielding Line of Deck Plate near Mid-height, Single-rib Beam-column 
Specimens 
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Figure 4-18 Local Buckling of Rib Wall near the Ends of Beam-column, SBC1 
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Figure 4-19 Deck Plate Local Buckling near the Simulated wheel Load 

 

 
Figure 4-20 Rib Wall Local Buckling near the Simulated wheel Load 
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Figure 4-21 Final Appearance of Triple-rib Beam-column, TBC 
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Figure 4-22 Yielding Lines on Deck Plate of Triple-rib Beam-column, TBC 
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Figure 4-23 Local Buckling of Rib Wall of Triple-rib Beam-column, TBC 
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Figure 4-24 Axial Shortening of Specimens 



 166

0

200

400

600

800

1000

1200

1400

1600

0 0.5 1 1.5 2 2.5 3

Lateral Deflection (inch)

A
pp

lie
d 

A
xi

al
 L

oa
d 

pe
r R

ib
 (k

ip
s)

SC

SBC1

SBC2

TBC

 
Figure 4-25 Lateral Displacement at Mid Point of Specimens 
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Figure 4-26 Lateral Deflection Profile of Rib, Single-rib Column, SC 



 167

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 24 48 72 96 120 144 168 192 216

Distance from bottom (inch)

La
te

ra
l D

ef
le

ct
io

n 
(in

ch
)

P = 300 k V=0 k

P = 300 k V=40 k

P = 600 k V=40 k

P = 900 k V=40 k

P = 1200 k V=40 k

P = 1358 k V=40 k

 
(a) Specimen SBC1 
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(b) Specimen SBC2 
Figure 4-27 Lateral Deflection Profile of Rib, Single-rib Beam-columns 
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Figure 4-28 Lateral Deflection Profiles of Middle Rib, Triple-rib Beam-column, 

TBC 
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Figure 4-29 Strains on Deck Plate of Column, SC 
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Figure 4-30 Strains on Rib at Mid-height of Single Rib Column, SC 
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Figure 4-31 Load vs. strain on Deck Plate of Single-rib Beam-column, SBC1 
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Figure 4-32 Load vs. strain on Deck Plate of Single-rib Beam-column, SBC2 
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Figure 4-33 Strains on Rib Wall of Single-rib Beam-column, SBC1 
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Figure 4-34 Strains on Bottom Flange of Rib, Single-rib Beam-column, SBC1 
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Figure 4-35 Strains on Rib Wall of Single-rib Beam-column, SBC2 
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Figure 4-36 Strains on Bottom Flange of Rib, Single-rib Beam-column, SBC2 
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Figure 4-37 Load vs. strain on Deck Plate of Triple-rib Beam-column, TBC 
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Figure 4-38 Strains on Rib Wall of Triple-rib Beam-column, TBC 
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Figure 4-39 Strains on Bottom Flange of Rib, Triple-rib Beam-column, TBC 
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Figure 4-40 Strains Distribution on the Top of Deck Plate at Mid-height of Triple-rib 

Beam-column, TBC 
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Figure 4-41 Strains Distribution on the Lower Surface of Deck Plate and on the Rib 

Wall at Mid-height of Triple-rib Beam-column, TBC 
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Figure 4-42 Finite Element Model of Single-rib Specimen 
 

 
Figure 4-43 Finite Element Model of Triple-rib Specimen 
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Figure 4-44 Magnitude and Distribution of Residual Stresses 
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Figure 4-45 Load-Deflection Curves of Single-rib Column, SC 
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Figure 4-46 Appearance of Single-rib Column (SC) at Peak Load (1385 kips) by 

FEA 
 

 
Figure 4-47 Final Appearance of Single-rib Column (SC) by FEA 
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Figure 4-48 Load-Deflection Curves of Single-rib Beam-column, SBC 

 

 
Figure 4-49 Appearance of Single-rib Beam-column with Rigid Loading Pad, by 

FEA 
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Figure 4-50 Final Appearance of Single-rib Beam-column (SBC) by FEA 

 

 
Figure 4-51 Final Appearance of Single-rib Beam-column (SBC) at peak load by 

FEA 
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Figure 4-52 The triple beam-column FEA and experimental results 

 

 
Figure 4-53 Appearance of Triple-rib Beam-column (TBC) at peak load by FEA 
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Figure 4-54 Final appearance of Triple-rib Beam-column (TBC) by FEA 
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Figure 4-55 Strain Distribution on Surface of Deck at Mid-height of Triple-rib 

Beam-column (TBC) by FEA 
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Chapter 5  Estimation of Deck Panel Strength 

 

5.1 Introduction – Method of Summation of Parts (SP) 

 The results of Chapter 4 on column and beam-column strength of trapezoidal 

shaped stiffening ribs of an orthotropic deck panel lead to the recommendation of 

the method of summation of parts (SP) for rib strength evaluation. The compression 

strength of an individual stiffening rib can be estimated by summing the strength of 

the component parts. The examination of extending the method of summation for 

estimating the compression strength of the entire deck panel was the goal of this part 

of study. 

 The procedure included computing the compression strength of a single rib as 

introduced earlier and the summing of individual rib strength as the estimate of the 

deck panel strength. Because the stiffening ribs were all identical, the strength of the 

deck panel was simply the multiple of the single rib strength. 

 The evaluation of this process was carried out using the finite element method. 

The prototype model deck of Bronx-Whitestone Bridge (BWB) was again used for 

analysis. 
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5.2 Finite Element Model for Single Rib 

 For the reason that deck panels usually contain a fairly large number of 

identical stiffening ribs, a new finite element model with a coarser mesh then that for 

the models of Chapter 4 was developed. The single-rib was 10 ft. (3 m) long, the 

length between diaphragms. The model is shown in Figure 5-1. The ends were 

assumed being flat. The lower end was fixed and the upper loading end was allowed 

to deflect along the rib. The longitudinal edges were free from constraint. 

 The computed relationship between the component forces and the axial 

deflection of the rib are shown in Figure 5-2. The rib walls failed at an axial 

shortening of about 0.5 in. (13 mm) while carrying a higher force than did the 

bottom of the rib, because of the difference in area of these components. The 

summation of the component forces at an axial deflection provided the force or load 

on the rib at that deflection. The resulting load-deflection relationship is shown in 

Figure 5-3, which is the superposition of the lines in Figure 5-2. The strength from 

the summation of parts (SP) is slightly higher than those from the finite element 

model in Chapter 4. This is partly due to the condition that no initial imperfection 

was incorporated in the present model. 
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 Table 5-1 summarized the results of strength estimate. There are 

differences on the computed values. Discussions will be made later in the chapter. 

 

5.3 Finite Element Model for Multiple Ribs 

 The models were developed and analyzed using the software ABAQUS (2005) 

on BWB ribs. Models of single, triple, five, seven and sixteen ribs were studies. The 

results of stress distribution are shown in Figure 5-1, 5-4, 5-5, 5-6 and 5-7, 

respectively, at an axial deflection of about 1 in. (25 mm). From the 16-rib model it 

is seen that there were slight variation of stresses among the ribs although the model 

was loaded uniformly at one end. 

 Table 5-2 summarized the computed strength of the models. As the number of 

ribs increase, the computed strength per rib increase slightly as the effect of free 

edges diminishes. The comparison of load deflection behavior is presented in Figure 

5-8. With the increase of number of ribs, besides the slight increase of ultimate 

strength, the ductility increases tremendously. Figure 5-9 compares some of the 

finite element results with the experimental results from specimens SBC1and SBC2. 

The 16-rib model having a higher strength is again shown. The elastic buckling 
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strength of the 16-rib deck is very high, beyond the range of the plot. 

 For further examination of the method of summation of parts, another Bridge, 

RN, was analyzed. The geometry of the trapezoidal shaped stiffening rib is shown in 

Figure 5-10. The thickness of the deck plate is 0.4 in. (10 mm), the rib plate is 0.24 

in. (6 mm) thick. The ribs are spaced uniformly at 12 in. (30 mm). The depth of the 

rib is 11 in. (27.5 cm). Models of one, three, five, seven and sixteen ribs were 

analyzed, and the results of stress distribution and deflection are shown in Figures 

5-11 to 5-15. The axial deflection of the single-rib in Figure 5-11 is 0.8 in. (20 mm), 

those in Figures 5-12 to 5-15 are 1 in. (25 mm). The computed ultimate strength 

values are listed in Table 5-3. The load deflection characteristics are shown in Figure 

5-16. For this bridge with rib component plates more slender than those of BWB, the 

average ultimate strength per rib remains about the same for the models of different 

number of ribs. 

 These two bridge models demonstrated the adequacy of the method of 

summation. 
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5.4 Discussion and Conclusion 

 From the finite element analysis of two bridge deck panels, it is conclude that 

the method of summation of parts can be employed for strength estimate of 

orthotropic deck panels with trapezoidal shaped stiffening ribs. 

 The procedure of summation of parts can be applied two ways. The first is 

through the component parts for individual ribs and then the summation of ribs for 

the deck panel. The second is by finite element analysis of an individual rib to 

estimate the strength of the rib and then summation for the strength of the deck. 

 For BWB Bridge, the first procedure provided a rib strength of 1602 kips 

(Table 5-1) in comparison to the average of 1603 kips by finite element analysis of 

the 16-rib deck (Table 5-2). The second procedure provided a single-rib strength of 

1357 kips (Table 5-2), which is an underestimate on the safe side.  

 Considering that deck panels are not subjected to uniform end forces, rather 

there are the effects of shear lag, of variations of boundary conditions, and of initial 

imperfection of plate components and rib stiffeners, it is difficult to assess the 

conservativeness of the two approaches of the procedure. It is, however, definite that 

the procedure of summation of parts can be applied for estimating the strength of 
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deck panels. 
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Table 5-1 Comparison of Strength, Single Rib 

Procedure 
Maximum Axial Load 

(kips) 

Axial Deflection  

at Max. Load (inch) 

Experiment 1385 0.542 

FEA (Ch.4) 1569 0.513 

FEA + RS* (Ch.4) 1546 0.519 

SP Method 1602 0.550 

* RS: Residual Stresses 

Table 5-2 Summary of Rib Strength, BWB 

Number of 

Ribs 

N 

Pu / N 

(kips) 

(Pu / N) / Pu1 

% 

Axial Deflection 

at Pu (inch) 
Aspect ratio 

1 1357 100.00 0.338 0.217 

3 1357 100.00 0.338 0.650 

5 1545 113.90 0.397 1.083 

7 1564 115.31 0.394 1.517 

16 1603 

1627 

118.18 

119.82 

0.274 

1.317 

3.467 

3.467 

(Pu for single rib by SP Method = 1602 kips) 
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Table 5-3 Summary of Rib Strength, RN 

Number of Ribs 

N 

Pu / N 

(kips) 

Pu1 / (Pu / N) 

% 

Axial Deflection 

at Pu (inch) 
Aspect ratio 

1 843.89 100.00 0.24 0.2 

3 838.95 99.41 0.23 0.6 

5 837.88 99.29 0.25 1.0 

7 838.57 99.37 0.25 1.4 

16 849.98 100.72 0.20 3.2  
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Figure 5-1 Finite Element Model Single Rib  
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Figure 5-2 Component Strength, BWB 

 

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Axial Deflection (inch)

A
xi

al
 L

oa
d 

(k
ip

s)

EXP

FEA

SP Method

FEA C with RS

 
Figure 5-3 Strength of Single Rib 
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Figure 5-4 Triple Rib Model  



 194

 

 

 
Figure 5-5 Five Rib Model 
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Figure 5-6 Seven Rib Model 
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Figure 5-7 Sixteen-Rib Model 
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Figure 5-8 Comparison of Different Number of Ribs, BWB 
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Figure 5-9 Comparison of Experimental and Finite Element Results  
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Figure 5-10 Stiffening Rib of Bridge RN 
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Figure 5-11 Single Rib Model, RN  
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Figure 5-12 Triple Rib Model, RN 

 



 201

 

 
Figure 5-13 Five-Rib Model, RN 
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Figure 5-14 Seven-Rib Model, RN 

 



 203

 

 
Figure 5-15 Sixteen-Rib Model, RN 
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Chapter 6  Summary and Recommendations 

 

6.1 Summary of Results 

 From the experimental and analytical examination of the behavior and stresses 

of the model deck panels and components of Bronx-Whitestone Bridge, the 

following results were obtained. 

(1) The wheel loads of trucks affected only one trapezoidal-shaped stiffening 

rib. This was derived from the results of testing deck panels, ribs in 

bending and ribs under simultaneous compression and simulated wheel 

load, as well as from the results of finite element analysis. 

(2) The behavior of single-rib and triple-rib specimens under the simulated 

wheel load and axial loads had similar behavior. 

(3) Failure of ribs under compression, and compression with a transverse 

wheel load, were similar. It was inelastic buckling of the rib walls near the 

ends of the ribs. 

(4) With this failure mode, the ultimate strength of a single-rib specimen and 
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of the average of triple-rib specimens were essentially the same. 

(5) The initial imperfection of component plates had only minor effect on the 

strength of the ribs. 

(6) The ultimate compression strength of ribs could be estimated by finite 

element analysis, or by the summation of component compressive strength. 

Component compressive strength could be computed using the classic 

buckling analysis or by finite element analysis. 

(7) Finite element analysis results indicated that the buckling load of the deck 

panel was very high, being beyond the yielding of the deck. Overall 

buckling of the deck panel would not be a concern. 

(8) The ultimate compressive strength of deck panels could be estimated by 

the summation of single-rib strength. 

 

6.2 Recommendations 

(1) In addition to the current procedure of proportioning orthotropic deck 

components, the evaluation of deck strength in compression needs to be 

included in the LRFD design provisions for safety, and for completeness 
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of the provisions. The method of summation of component part strength is 

recommended for ultimate strength evaluation. 

(2) Buckling of rib components be revisited for the examination of the effects 

of stress gradient, or non-uniform compressive stresses. 

(3) If possible, compression strength testing of adequately small scale 

orthotropic deck panels be conducted for further verification of the 

findings from this study. 

 

 



 208

REFERENCE 

1. ABAQUS Standard User’s Manual Version 6.51. (2005). Hibbit, Karlsson and 

Sorensen Inc. 

2. American Association of State Highway and Transportation Officials (AASHTO) 

(2004). AASHTO LRFD Bridge Design Specifications, Washington, D.C., USA. 

3. American Institute of Steel Construction (AISC) (1963). Design Manual for 

Orthotropic Steel Plate Deck Bridges, New York, USA. 

4. Bouwkamp, J.G. and Powell, G.H. (1967). “Structural Behavior of an 

Orthotropic Steel Deck Bridge,” Structures and Materials Research Report No. 

67-27, Univ. Calif., Berkeley, Aug. 

5. Chen, S.J. and Yang, K.C. (2002). “Inelastic behavior of orthotropic steel deck 

stiffened by U,” Thin-Walled Structures, 40, pp. 537-553. 

6. Chen, W.F. and Duan, L. (2000). “Bridge Engineering Handbook, ”CRC Press 

LLC. 

7. Connor, R.J. and Fisher, J.W. (2001), “Results of Field Measurements on the 

Williamsburg Bridge Orthotropic Deck," ATLSS Report 01-01. 

8. Connor, R.J. and Fisher, J.W. (2004), “Results of Field Measurements Made on the 

Prototype Orthotropic Deck on the Bronx-Whitestone Bridge New York City, NY, " 

ATLSS Report 04-03. 

9. De Fries-Suene, A. and Scordelis, A.C. (1964). “Direct Stiffness Solution for 

Folded Plates,” J. Strut. Div. ASCE, Vol. 90, No. ST4, August, pp. 15-47. 



 209

10. Dowing, P.J. (1971). “The behavior of orthotropic steel deck bridges,” 

Developments in bridge design and construction: [proceedings of the 

International Conference on Developments in Bridge Design and Construction 

held at the University College, Cardiff, 29 March to 2 April 1971]. Edited by K. 

C. Rockey, J. L. Bannister and H. R. Evans, International Conference on 

Developments in Bridge Design and Construction, pp. 557-576. 

11. Erzurzmlu, H. and Toprac, A.A. (1970). “The Deck Elements of Ammi System,” 

Technical Report P550-12, Structures Fatigue Research Lad, Univ. Texas, Austin, 

March. 

12. Faulkner, D. (1975). “A Review of Effective Plating for Use in the Analysis of 

Steel Plating in Bending and Compression,” Journal of Ship Research, 19(1), 

pp.1-17. 

13. Heins, C. P. and Loony, C.T.G. (1968). “Bridge Analysis Using Orthotropic Plate 

Theory,” J. Strut. Div. Am. Soc. Civ. Eng., Vol. 93, No. ST2, Feb. 

14. Hughes, O.F., Ghosh, B. and Chen, Y. (2004) “Improved prediction of 

simultaneous local and overall buckling of stiffened panels” Thin-Walled 

Structures, 42, pp. 827-856. 

15. Morice, P.B., Little, G. and Rowe, R.E. (1956). “Design Curves for the Effects of 

Concentrated Loads on Concrete Bridge Decks,” Publication DB11a, Cement 

and Concrete Association. 

16. Murry, N.W. (1973). “Buckling of Stiffened Panels Loaded Axially and in 

Bending,” The Structural Engineer, Vol. 51, No. 8, August, pp. 285-301. 

17. Ostapenko, A. (1969). “Longitudinal Stiffened Plate under Lateral and Axial 



 210

Loads (Ship Bottom Plating).” Fritz Engineering Laboratory Report No.248.28, 

Lehigh University, Bethlehem, PA, U.S.A. 

18. Ostapenko, A. (1969). “Longitudinally stiffened plate panels under lateral and 

axial loads (ship bottom plating).” Fritz Laboratory Report No. 248.28, Lehigh 

University, August. 

19. Paik, J.K., Thayamballi, A.K. (2003). “Ultimate limit state design of steel plated 

structures,” John Wiley & Sons. 

20. Rowe, R.E., (1962). “Concrete Bridge Design,” C. R. Books, London. 

21. Sheikh, I.A., Elwi, A.E., Grondin, G.Y. (2003). “Stiffened Steel Plates Under 

Combined Compression and Bending,” Journal of Constructional Steel Research 

Vol. 59, pp. 911-930. 

22. Troitsky, M.S. (1987). “Orthotropic Bridges - Theory and Design,” 2nd ed., 

James F. Lincoln Arc Welding Foundation, Cleveland, OH, September. 

23. Tsakopoulos, P.T., and Fisher, J.W. (1999). “Williamsburg Bridge, Replacement 

Orthotropic Deck, As-Built Full-Scale Fatigue Test," ATLSS Report 99-02. 

24. Tsakopoulos, P.T., and Fisher, J.W. (2002), “Fatigue Resistance Investigation for 

the Orthotropic Deck on the Bronx-Whitestone Bridge," ATLSS Report 02-05. 

25. Vlasov, V.Z. (1967). “Thin-Walled Elastic Beams, Israel Program for Scientific 

Translation,” for NSF, Jerusalem, (in English; original Russian edition, 1959). 

26. Xanthakos, P.P. (1994). “Theory and Design of Bridges,” John Wiley and Sons, 

Inc. 

27. Ye, Q., and Fanjiang, G.N. (2004). “Analysis and Design of Steel Orthotropic 

Decks,” IABSE, Shanghai, China, Sep. 2004. 222-223.



 211

 

 

 

APPENDICES 
 



 212

Appendix A:  AISC / AASHTO-LRFD Bridge 

Design Provisions and BWB Components 

 

An orthotropic deck is defined in AASHTO-LRFD Bridge Design Specification 

(2005) as a deck plate stiffened and supported by longitudinal ribs and transverse 

floor beams. The deck plate thickness, td, is specified in Section 9.8.3.7.1 to be not 

less than 0.5625 inch (14 mm) or 4% of the larger spacing of rib webs, that is 

4%×13 inch (330 mm) = 0.52 inch (13 mm) for the BWB orthotropic steel deck. The 

thickness, tr, of closed ribs shall not be less than 0.1875 inch (6 mm).  

Section 9.8.3.7.2 specifies that the dimension of a rib shall satisfy.  

400'3
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⋅
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at
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r            (A-1)  

where  

a  = larger of the spacing of the rib,  

h’ = length of the inclined portion of the rib, and  
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t
d,eff

  = effective thickness of the deck plate, considered to be the deck plate 

thickness.  

 

The dimensions and the 5/8 inch (16 mm) and 5/16 inch (8 mm) plates of the 

BWB satisfy the requirements of the specifications. In Section 9.8.3.6.2 it is started 

that effects of compressive instability of the orthotropic deck shall be investigated at 

strength limit states. However, there are no specific equations or guidelines for 

calculating the buckling strength of the stiffened panel. If stability does no control, 

the resistance of an orthotropic plate deck shall be based on the attainment of yield 

strength at any point in the cross section. Section 6.14.3.3.3 describes those 

longitudinal ribs, including the effective width of the deck plate as a part of the rib, 

shall be designed as individual columns simply supported at transverse beams. It 

also states that the elastic stability of ribs under combined loading may be evaluated 

by formulas in Appendix II of Design Manual for Orthotropic Steel Plate Deck 

Bridges (Wolchuk, AISC 1963).  

Appendix II states that the floor beams of orthotropic steel bridge decks of 

usual dimensions are usually sufficiently rigid to act as transverse stiffeners of the 
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deck. The deck panel will buckle as an edge-loaded plate with simply supported 

edges between the floor beams. There are approximate formulas in Section 3.3.2 

(AISC 1963) for determining the effective width of girder plate associated with one 

rib for the calculation of flexural rigidity. The effective width is tabulated to be the 

spacing of ribs due to dead loads in Section 4.6.2.6.4 of AASHTO LRFD Bridge 

Design Specification (2005). However, no rule can be found for determining the 

effective width of a strut under uniform compression in either of these two sets of 

specifications.  

 

Local buckling of rib plate 

Elastic buckling stress 

The elastic buckling stress, f
i
, for a plate with different loading and boundary 

conditions can be expressed as: 

2

2

2

)1(12
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tEkfi ν

π          (A-2) 

where  

ν = Poisson’s ratio (0.3),  

h = plate width,  
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t = plate thickness, and  

k = constant, depending on loading case and edge conditions. Values of k for 

long plates are listed in Table A-1. 

 

Inelastic buckling stress 

When the buckling stress exceeds the proportional limit of the material, the 

inelastic buckling stress, fcr, is given by introducing the tangent modulus (Bleich 

1952), 

τ
ν
τπ

icr f
h
tEkf =
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        (A-3) 

where  

E
ET=τ  

ET = tangent modulus, 

The value τ  may be approximated with sufficient accuracy by the flowing 

equation: 
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Introducing Equation (A-4) into Equation (A-3), the following relationship is 

obtained: 



 216

2))(1(1

1

i

y

y

p

y

pp

cr

f
f

f
f

f
ff

f

−+
=          (A-5) 

For a steel plate, an average values of 75.0=
y

p

f
f

 may be used, resulting in 
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Overall buckling of rib 

Elastic buckling stress  

The Euler’s buckling formula provides the buckling stress of a rib column, 

2

2

)(
r
s

Efi
π

=             (A-7) 

where  

f
i 
= elastic buckling stress,  

E = modulus of elasticity,  

s = span between floor beams, and  

r = radius of gyration about the axis of buckling. 

 

Inelastic buckling stress 

When the buckling stress exceeds the proportional limit of the material, the 
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inelastic buckling stress, fcr, is given by introducing the tangent modulus (Bleich 

1952), 

τicr ff =             (A-8) 

where  
E
ET=τ  

with Bleich’s approximation for τ as given before. 
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From these equations, 
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Using the value 75.0=
y

p

f
f

 as before, the inelastic buckling stress, fcr, can be 

obtained as 
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Figure A-1 Buckling curves for plates and columns 
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Figure A-2 Loading and Edge Conditions 
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Table A-1 Values of k in equation for loading and edge conditions  

Edge Conditions 
Loading 

(1) (2) (3) (4) (5) 

A 6.97 5.40 4.00 1.28 0.43 

B 13.56 12.16 7.81 6.26 1.71 

C 13.56 9.89 7.81 1.64 0.57 

 

The prototype model for Bronx-Whitestone Bridge and dimensions are 

shown in Figure 1-2, and the elevation view is shown in Figure 1-3. There are 

fourteen trapezoidal shaped stiffeners (ribs). For the convenience of analysis, it was 

assumed that the deck panel was under uniform compression. In the checking of 

local buckling strength of the closed ribs, the edges of the rib walls were assumed 

fixed at the deck plate and simply supported at the bottom (edge condition (2)). This 

determined that k = 5.4 for the uniform loading condition. The elastic local buckling 

stresses, fi, was calculated from Equation A-2 to be 69.8 ksi (482 MPa). If the rib 

walls were assumed simply supported on the both edges (edge condition (3)), k = 4.0 

for the uniform loading condition. The elastic local buckling stresses, fi, are 

calculated to be 51.7 ksi (357 MPa). The inelastic local buckling stresses, fcr, of the 
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rib walls were 58.9 ksi (406 MPa) and 52.1 ksi (359.5 MPa), respectively. 

The bottom of ribs was assumed simply supported on both edges (edge 

condition (3)), with k = 4.0 for the uniform loading condition. The elastic local 

buckling stress, fi, was calculated to be 409.5 ksi (2826 MPa). The corresponding 

inelastic local buckling stress was 69.6 ksi (480 MPa). 

The “overhanging” parts of deck plates were assumed fixed at both edges 

(edge condition (1)), with k = 6.97 for the uniform loading condition. The elastic 

local buckling stress, fi, was calculated to be 422.26 ksi (2916 MPa). If both edges of 

these segments of the deck plates were assumed simply supported (edge condition 

(3)), k = 4.0 for the uniform loading condition. The elastic local buckling stress, fi, 

was calculated to be 242.33 ksi (1672 MPa). The corresponding inelastic local 

buckling stress was 49.6 ksi (342 MPa). 

For overall buckling of the rib columns with a uniform yield stress of 50.0 

ksi (345 MPa), the calculated elastic buckling stress was 339 ksi (2339 MPa); the 

inelastic buckling stress was 48.6 ksi (335 MPa).  
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Buckling Strength Summary 

Component Plates 

Table A-2 Elastic Buckling Stress of Components 

 fy B.C. k fcr 

Fixed-Fixed 6.97 422.26 
Deck plate 50 

S.S.-S.S. 4.00 242.33 

Fixed-S.S. 5.40 69.80 
Rib wall 70 

S.S.-S.S. 4.00 51.70 

Rib bottom 70 S.S.-S.S. 4.00 409.50 

 

Table A-3 Inelastic Buckling Stress of Components 

 fy B.C. k fcr 

Fixed-Fixed 6.97 49.87 
Deck plate 50 

S.S.-S.S. 4.00 49.60 

Fixed-S.S. 5.40 58.9 
Rib wall 70 

S.S.-S.S. 4.00 52.1 

Rib bottom 70 S.S.-S.S. 4.00 69.6 
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Rib Column 

Elastic buckling stress 

 fcr = 339 ksi  Pcr = 9017 kips 

 

Inelastic buckling stress 

Table A-4 Inelastic Buckling Stress of Rib 

fy fcr 

50.00 (deck plate) 48.6 

57.64 (weighted) 55.8 
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Appendix B: BWB Column Specimen 

Component Buckling Stress 
 

Find critical load of deck plate, Pd,cr, and the critical load of the rib plate, Pr,cr, 

Usami and Fukumoto (1982) conducted experimental works and the results 

combined with AISC Q-factor method were used to evaluate the strength of box 

columns. In this method, the stress of a locally buckling column is substituting the 

corresponding stub-column yield stress, fmax = Qfy, Q is a strength reduction factor 

for the material yield stress. 
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Interaction buckling stress PC
maxσ  
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Table B-1 Buckling Stress of Components 

Components 
σy 

(ksi) 

σcr 

(ksi) 

A 

(in.2) 

Component strength 

(kips) 

Deck plate 

between walls 

50.00 81.49 8.45 422.50 

Deck plate 

“overhang” 

50.00 139.95 8.45 422.50 

Rib walls 70.00 47.07 8.93 420.42 

Rib bottom 70.00 94.15 1.51 106.04 

   27.35 Total     1371.46 
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Appendix C: BWB Beam-column strength 

calculation 

Find Py and My  

PP
Q

0 x

l
 

Figure C-1 Beam-Column 

Figure C-1 shows a clamped both ends beam-column that is simultaneously 

acted on by a concentrated load Q at the midspan and axial force P at the ends. Since 

the shear force Q/2 is constant along the member, the governing differential equation 

for the right half portion, 0 ≤ x ≤ l/2, is given by 

EI
Qwkw
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In which 
EI
Pk =             (C-2) 

and the general solution is 
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EIk
QkxkCkxkCw 221 2

)cos()sin( ++−=′       (C-4) 

)sin()cos( 2
2

1
2 kxCkkxCkw −−=′′         (C-5) 

The integration constants C1, C2 and C3 can be determined from the boundary 

conditions of the beam-column. 
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Determine the three integration constants 
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Substitution Eq. (1.11) into Eq. (1.8) 
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Substitution Eq. (1.11) and Eq. (1.12) into Eq. (1.7) 

    
















−+
−

−=
2

)
2

sin(
)

2
sin(

)
2

cos(1

2 33
klkl

kl

kl

EIk
QC    (C-13) 



 228

From which maximum bending moment occurs at the midspan, x=0, is 

calculated as 

 11
2)0()0( PCCEIkwEIM ==′′−=         (C-14) 

Since the lateral force Q is a constant value in this study, the elastic limit stress 

occurs generally on the cross section of the maximum bending moment. From the 

bending moment diagram, the maximum compression stress falls on the top of deck 

plate. Thus, the elastic limit state for a beam-column is given by 

 yA
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This can be written as 

 y
y

t

y

A
P

S
M

σ=+            (C-16) 

 y
y

t

y

A
P

S
CP

σ=+1            (C-17) 

Where σy, St, A are known, and C1 is a function of Py 

σy = 50 ksi 

St, = 138 in.3 

A = 27.35 in.2 

l = 216 in. 

Q = 40 kips 
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E = 29000 ksi 

I = 466.73 in.4 

 

Py = 1134 kips 

My = 1177.49 kips-in. 

 

  


	Lehigh University
	Lehigh Preserve
	9-1-2006

	Load Carrying Capacity of Steel Orthotropic Deck Panel with Trapezoidal Shaped Longitudinal Stiffeners
	WanChun Jen
	Ben T. Yen
	Recommended Citation


	Microsoft Word - PITA Report Cover.doc

