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OVERVIEW

This two part ATLSS report is an overview of dynamic system
modelling techniques directly applicable to linkage and robotic
mechanisms. The specific application motivating the study was the
simulation and control of a Stewart Platform.

The two primary goals of the effort have been to:

Create a single document that overviews all of the available
modelling techniques applicable to such systems including the
identification of major computer programs such as DADS,
ADAMS, and TREETOPS that utilize these techniques and the
primary reference sources that provide further technical
information. These are the contents of Part II.

Identify from within this list 2 method or methods that have the
potential for application in a new form of force control where
models of reaction forces as functions of state variables are
used, and identify briefly sample systems that would benefit
from such controllers. This information is contained in
summary form in Part I and in more detail in Part II.

An appropriate modelling scheme that meets the second goal has
been identified and has been applied, as well as a more classical
approach, to the simple example of a simple pendulum to show the
relative benefits.






PART I -- COMPARISON OF APPROACHES

ABSTRACT

In this Part 1, a brief overview of dynamic system modelling
procedures is presented through the use of the simple example of
a pendulum, It is shown that system equations of motion directly
relating state variables to internal constraint forces can be
generated through an automatic procedure. Such representations
are a requirement for robust force controllers, an as yet
not-achieved occurrence.






INTRODUCTION

Dynamic system modelling techniques are currently used to simulate open (serial) and closed
(parallel) kinematic chains as well as within model driven controllers. Both areas have been

found to be deficient.

Simulators that utilize computer-aided equation generation techniques tend to generate
large sets of coupled differential-algebraic equations whose reduction in order and
solution are prone to singularities and instabilities.

Robust model driven controllers require dynamic system models that incorporate state
variables or their estimates. Since all currently available dynamic system modelers can
easily predict position and velocity, these quantities can be easily and robustly controlled.
Predictions of internal forces, on the other hand, as functions of position and velocity,
the most typical state variables, are not available. Thus the stability and convergence of
current force controllers is questionable. The need for force control includes such tasks
as: part insertion using robots, metal cutting using machine tools, car suspensions and
passenger comfort, utilizing high speed cam-followers and controlling buildings prone
to earthquake loading.

Modelling techniques for both rigid and deformable systems are ill tuned to determining
constraint forces as explicit functions of the state variables. This is simply a result of earlier
research priorities toward minimizing the size of the dynamic system equations for ease of
simulation or automated equation generation. Although programs utilizing these approaches can
be designed to solve for internal reactions and bearing or constraint forces, they do so with great
complexity because they either require solving additional differential or additional algebraic or
pairs of coupled differential-algebraic equations that arise because of the additional kinematic
constraints required to define the reaction force or they need to apply a residual kineto-static
method. These programs and their underlying methods have not been designed to automatically
produce the type of equations required for use in controlling reaction forces within intelligent

machines.

Of initial concern to any modelling approach is the number of generalized coordinates desired
within the dynamic system model. The minimum number is controlled by the degrees of
freedom of the system. The maximum practical number is determined by multiplying the
number of bodies in the system less one (if a body is held fixed) by either 6 if spatial or 3 if
planar. Between these two extremes is a wide range. The specific selection should be made
depending upon both simulation and control issues. As such, the model should be reconfigurable
- by the robust controller. It would use the minimum number of equations to predict the states
as well as the internal reaction forces. This minimum number would change depending on the
task. Details on how this is to be accomplished both theoretically and in a practical sense is an
issue of the research,



COMMON APPROACHES TO DYNAMIC SYSTEM MODELLING

Dynamic system modelling equations can be classified within two major groupings, Vectorial
and Analytical Dynamics. Within the vectorial grouping are Newton-Euler Methods,
d’Alemberts Principle and, to a point, Virtual Work. Associated with analytical dynamics is
LaGrange’s form of d’Alemberts Principle, Kane’s Equations and utilization of Pseudo
Coordinates, LaGrange's Equations and Hamilton’s Canonical Equations. Both major groupings
may be applied to open and closed chain systems although their methods of approach differ.
Variations within the groupings are associated with the use or non-use-of LaGrange multipliers,
kinematic influence coefficients or Jacobians. Part II of this report uses a "cross-cultural”
viewpoint to present and discuss some of the key facets of commonality and differences between
these methods. For the example problem given here of a pendulum, the results are so similar

that details between the differences are not important. This example was chosen because it is
atypical. ' '

Pendulum-A Simple Open Chain

The position and orientation of this single link planar system, whose details are shown in Fig.
1., requires up to three generalized coordinates to describe. The connection between the moving

pendulum and the ground or fixed body constrains two of these motions and thus the pendulum
has only one degree of freedom.

Simple Pendulum

number of moving bodies = n =2-1=1
maximum number of generalized coordinates = 3x1 = 3
number of joint constraints = r =2x1=2
degrees of freedom = m = 3-2 = 1

)

Using standard modelling procedures, a dynamic model of this system may require three
differential equations coupled to two algebraic equations for a system of five equations. These
equations can be reduced automatically through various procedures discussed in Part II. In that

case only one equation would result. Typically the reduction methods must be done numerically
and are prone to singularities and convergence problems. _ n

Absolute and Relative Coordinates

The pendulum’s location relative to a fixed frame may be located using either absolute or
relative coordinates. In an absolute system the position R and grientation 4 of the pendulum is
located relative to the inertial fixed frame. For the pendulum the cartesian absolute coordinates,
X, y, are used whereas the angular orientation is defined by the absolute angular coordinates o.
The combination of position and orientation is the pose of the pendulum, ».
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Fig. 1. Pendulum Example
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When using relative coordinates, on the other hand, the position and orientation of a body is
related to the position and orientation of its interconnected bodies. Obviously six relative
coordinates would thus be required to interrelate the pose of two spatial bodies. When referring
to relative coordinates the symbol q is typically used. For the pendulum, a degenerative case, -
a single relative coordinate is required and the relative coordinate is of the same value as the
absolute orientation coordinate; the symbol 8 is used to represent both.

Joint and Loop Constraints

Typically the relative motion of two bodies is constrained by the type of interconnection.
Without loss of generality we assume that eachi connection between two spatial bodies has one
degree of joint freedom and constrains the relative motion of the bodies in five ways. In the
planar case two constraints would occur. Typically constraints between links in a kinematic
chain are defined in one of two ways, joint or loop type. Joint constraints are usually written
in absolute coordinates and relate how the motion of points in one body are restricted by the
motion of similar points in the second body due to the particular type of joint. Loop constraints
are of two forms, complete loops and partial loops. Partial loop constraints are used to relate
a link’s absolute coordinates to its relative coordinates. Complete loop equations are usually
written exclusively in terms of relative coordinates and relate the requirements on these
coordinates for loop closure. For the pendulum a requirement will be the use of a partial loop
constraint of the form,

¢ =9(x50)=0 ' 3

Most modelling procedures require that the system equations are written in Pfaffin form so that
linear algebraic procedures can be utilized. The forms are obtained through the use of first time-
derivatives of the constraints. Numerical solution methods used in the simulations also tend to
require second derivatives. From Eq. (3) we find

C(g,nq+A(q, D=0

Ci+(Cj+A)=0 e
C§+B=0

For the pendulum there are r=2 constraints and C is of dimension 2 x 3. Of the 3 absolute
coordinates, only m=3n-r=3-2=1 is independent.

4



Applied to the pendulum these become
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Newton-Euler, LaGrange Procedures

Through the use of LaGrange multipliers it can be shown that Newton-Euler and LaGrange
procedures can lead to essentially the same form of solution. LaGrange multipliers contain
trigonometric combinations of constraint forces which can be determined through the use of
LaGrange’s form of d’Alembert’s Principle. Constraint forces appear in the equations as a
direct consequence of the choice of generalized coordinates. If one chooses the absolute
coordinates as the generalized coordinates and there are numerous interconnections between the
links, then numerous constraint equations are required and numerous constraint forces will be
determined. The appropriate modelling equation becomes:

(6)

where M is a mass matrix and D is associated with centripetal and coriolis forces as well as
gyroscopic effects. The forcing functions, Q, are associated with the constraints, actuators, and
body forces. In the case of the constraint forces,

Qe =cTa =8 . gom ™
o4



For the pendulum, the generalized constraint forces in terms of LaGrange multipliers become:
] 1 0 A,
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The second part of Eq. (6) leads to
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Equating Eq. (8) and Eq. (9) yields a simple relationship between constraint forces and
LaGrange multipliers not characteristic of multibody systems.

fo= 4
p (10)
Sy =t
The equations of motion, Eq. (6), become:
m Q 0 -1 0
0 m 0 0 -1
0 0 %mz2 ! cosB I sing i)

-1 0 lcs O O
0 -1 Isin6 0 0

Although the constraint forces are available through simulation they are not explicit functions
of the state variables and their first derivatives.



If one were to use coordinate partitioning or some other scheme discussed in Part II the
equations of motion could be rewritten in other forms including the most common:

--g-mt2 § + Img sin® = < (12)

A kineto-static analysis supplies the required solutions for the constraint forces.

J, m3 +mgl | mi sinG - ml$® cosd + mg

{f,}:{ m & }”{ mlb cosb - mi6® sind } 13)

Again the constraint forces are not written as functions of the state variables alone.

As indicated in the above two analyses, the number of generalized coordinates utilized is up to
the problem analyst. In the first analysis three coordinates were used whereas in the second only
one was used. If information on the reaction force is not needed, the second approach is
preferred because it is of smaller dimension. But when information on the reaction force is
required the choice, in general, is somewhat blurred. The relationship between LaGrange
multipliers and constraint forces is not as clear as the example would otherwise indicate and the
means of obtaining the reduced set of equations is typically subject to instabilities associated with
singularities and stiff-system problems. For now it is simply stated that:

The explicit use of a geometric constraint equation as an algebraic augmentation to the system
equations will result in

@ a dynamic system model of high order and
@ a generalized force which incorporates a force normal to the constraint
(surface).

Conversely, the elimination of the geometric constraints through a reduction of generalized
coordinates within the system dynamical equations will result in

¢ a reduced dimension of the dynamical problem to be solved but
® a need to solve an auxiliary or kineto-static problem in the constraints.

What is desired and believed to be at hand is an analysis technique which both

@ reduces the dimension of the dynamical problem to be solved, yet

® includes a generalized force which incorporates and easily defines the
constraint forces, and

® is reconfigurable depending on the task requirements.
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The right pseudo-inverse is non-singular and fairly easy to obtain, that is

1+3sin8  -3sinOcosd
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Comparison of Methods

Comparisons of the resulting equations using standard approaches, Eq. (11) or Eq. (12) and
(13), and those using Gauss’s Constraint Minimization, Eq. (21), can now be made. Both
methods give similar angular motion equations yet yield quite different translation equations.
Gauss’s method describes both the x and y bearing forces as functions of the state variable and
its first derivative whereas the Newton-Euler or LaGrange method requires acceleration

information.



In more complex linkages a similar situation occurs; Gauss’s method determines the constraint
and reaction forces as functions of the state variables and their first derivative whereas the
Newton-Euler expressions for constraint and bearing forces come in two versions and their
combinations. In one version there are numerous equations and LaGrange multipliers required
in the simulation. The multipliers are related to the bearing forces through geometry. In the
second version the system equations are written in reduced dimension and the bearing forces are
made functions of the state variables as well as body accelerations by means of a kineto-static
analysis. The reduced set is somewhat compromised in that it typically must be obtained
numerically and is subject to stability and singularity problems,

One of the more exciting possibilities of Gauss’s method is the potential recasting of model

driven force control algorithms. This now provides a method to obtain explicit force models in

terms of the state variables. That is, if one wishes to maintain the vertical or x bearing force
on the pendulum to be a particular value or function and also knew the current angular position
and velocity, one would explicitly know the required torque to be applied. This approach could

be developed, using reference model control concepts, to be very robust even when applied to
highly nonlinear and coupled systems.

SUMMARY AND CONCLUSIONS

It has been shown elsewhere that many desired machine operations such as metal removal by
lathes, milis or grinders and assembly operations perform better when their (internal) constraint
forces are controlled. The more robust nonlinear controliers tend to apply varied forms of
model-driven controllers which essentially perform an adaptive exact linearization through
feedforward action. In such cases the pattern is clear: define the desired value of a variable to
be controlled, measure or determine through a model the current value and control the
difference. The robustness of the schemes depends on the accuracy and speed of predicting the
variable behavior by means of an empirical, analytical or neural network technique.

Dynamic system modelling most typically utilizes various forms of Analytical or Newtonian
dynamics to generate system-equations. Often the number of generalized coordinates utilized
is more than the actual number of independent degrees of freedom and thus requires a number
of constraint equations equal to this difference. The constraint equations are usually appended
to the dynamical equations through LaGrange multipliers to form system equations. The
multipliers are equal to generalized forces composed of various combinations of the physical
constraint forces. Upon proper selection of generalized coordinates, implicit solutions for the
constraint forces as functions of time can be determined at a cost of numerical complexity.

It is believed that control strategies utilizing Gauss's Principle of Least Constraint to obtain
constraint force representations in terms of state variables should and can now be developed.
Near term applications of this particular modelling and control structure to intelligent machinery
is anticipated not only for Stewart Platforms but also in active suspensions and automated

assembly. In the long term, benefits in active prosthetics and intelligent mechanical devices
should be anticipated.

10
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PART II — TECHNICAL DETAILS

ABSTRACT

A technical overview of the dynamic modelling procedures
applicable to simulation and control of a Stewart Platform is given.
The goal of the overview is to identify a scheme which will
directly associate state variables that describe platform motions
with internal constraint forces. Such constraint forces occur, for
example, during installation of an ATLSS connection, The
association of state variables to constraint forces is a requirement
for robust intelligent controllers; at present no such controllers
exist. The overview looks at the techniques associated with DADS
and ADAMS, the most well known simulators, as well as at other
software such as TREETOPS.

Modelling procedures studied include:

¢ Newton-Euler
® laGrange’s Equations with and
without LaGrange Multipliers
® LaGrange’s Form of d’Alembert’s Principle
¢ Kane’s Quasi Coordinates
® (Constraint Elimination through
Singular Value Decomposition
® Gauss’s Principle of Least Constraint.

Similarities and differences between the approaches are discussed
as is application for both open and closed kinematic chains.

The techniques are applied to a pendulum for comparison.






INTRODUCTION

Intelligent Machines and Structures are systems composed of rigid or deformable elements
interconnected by actuators under intelligent control. The robust controllers utilized have the
ability to incorporate information about the environment- and situation-dependent performance
goals to modify their own structure in an intelligent manner. Although the generic research and
application area of such techniques is very broad, this report addresses the more limited area of
dynamic system modelling techniques currently used to simulate open and closed kinematic
chains. The specific application of interest is the installation of ATLSS Connections by a
Stewart Platform crane.

There are three reasons for limiting the study.

1. Tt has been found that the more robust non-linear controllers require reference models
of the system about which to control the actual system motion. In such cases stability
and convergence can be proven.

2. Performance goals of machines and structures vary with their use and with time. For
example, a robot may at one time be used to move an item from one location in (free)
space to another, and position and velocity control of the robot endpoint is important.
Whereas, if the robot is performing an insertion task, force and possibly a hybrid force-
position control is called for. Similar examples occur in manufacturing operations such
as the use of machine tools, in car suspensions, in simple linkages such as cam-followers
and in buildings prone to earthquake loading. In the three latter areas techniques such
as active vibration control are currently a non-robust version of such systems.

3. It has been found that for most systems the appropriate model does not exist. If one
is controlling position, an explicit linkage position model is most beneficial and is
available, whereas if one is controlling force, a constraint force model with the explicit
motion dependencies enumerated would be best. Consider the case of an active car
suspension. One of its purposes is to provide a smooth ride to the passengers. Currently
the controllers, due to lack of the appropriate constraint-force models, do this in an
indirect way. When the car goes over a bump, what is measured and what is controlled
is the height (or acceleration) of the passenger above the average roadbed. What could
be measured and controlled is the vertical force the passenger feels or would feel given
various suspension linkage motions. At present there is no modelling scheme that
efficiently makes such predictions. However, it is the (internal constraint) forces felt by
the ATLSS Connection as it is installed that are important.

The goal, therefore, is to find dynamic system modelling procedures which produce families of
selectable models that can be used within a re-configurable non-linear control paradigm. The
explicit goal of the current effort is to evaluate, compare and improve upon the numerous
approaches for generating dynamic system models for both open and closed kinematic chains
with particular emphasis being placed upon methods for obtaining constraint-force models and
to facilitate their control. Details on the controllers and the associated sensor fusion,
instrumentation and implementation are not part of the report, however.



MECHANICAL LINKAGE SYSTEMS
Open and Closed Chain Linkages, Manipulators and Mechanisms

Mechanical linkage systems are composed of interconnected rigid or deformable bodies. The
connections may be “point/line" or higher pair connections or “surface" or lower pair
connections. The latter includes prismatic, revolute, spherical, flat, helical, or cylindrical
connections while the former includes connections commonly found on gears and belts where

deformation within the connection is of great extent. The limitation at this time is to lower

pairs. The bodies may be interconnected to form open or closed kinematic chains. A closed
chain or mechanism is one which can be traversed back to the starting point by moving through
the connections and elements without repeat. An open chain is a manipulator which at times is
allowed to have a closed chain arrangement. Linkages of both open and closed chain types, and
both planar and spatial versions of such chains will be considered here. A spatial Stewart
Platform is shown in Figure 1, whereas a planar version of the platform is shown in Figure 2,

A portion of the spatial platform, shown in Figure 3, is but an open chain as are portions of the
planar platform shown in Figure 4.

These linkages are examined during the remainder of this report. Of concern is the number of

generalized coordinates desired within the dynamic system model. The minimum number is
~ controlled by the degree of freedom of the system. The maximum practical number is
determined by multiplying the number of bodies in the system less one by either 6 if spatial or
3 if planar. Between these two extremes is a wide range. The selection of the number of
generalized coordinates should be made depending upon both simulation and control issues. As
such it could be reconfigurable by the robust controller of an intelligent machine. Details on

how this is to be accomplished both theoretically and in a practical sense is an issue of the
research,

The discussions here are arbitrarily limited to rigid body systems. This is so that some
additional terms in the dynamic system equations do not have to be shown. Generally speaking

the concepts reviewed apply equally well to deformable systems upon inclusion of the additional
terms. '

Example Linkages

The Stewart Platform [1], Figure 1, is the basic linkage that will be described in order to
clarify concepts about numbers of bodies, constraints and degrees of freedom. This platform is
composed of an upper and lower platform and six each of upper and lower "pods" for a total
of 14 bodies. If the linkage of bodies were not formed, then each body would have 6 Spatial

degrees of freedom, each definable by a generalized coordinate, for a total of 6*14 or 84 degrees
of freedom.

S T ——
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In actuality, a spatial Stewart Platform has 6 degrees of freedom; the difference being
constraints afforded by the joints and a loss of 6 degrees of freedom upon choosing one of the
bodies as a base or ground. The pods are connected to the platforms using either spherical or
Hookean (perpendicular revolute mutually perpendicular to the pod axis) joints. With spherical
joints, the three relative displacements between the platform and pod are lost and, with the
Hookean joint, there is an additional loss of angular rotation about the pod axis. Arbitrarily,
the upper platform/pod connections can be selected as spherical joints and the lower
platform/pod connections as Hookean joints. The lower to upper pod connections are prismatic
joints, each constraining the relative motion of the connected elements in 5 ways. Thus, the
resulting system has six degrees of freedom.

Spatial Stewart Platform

number of moving bodies = n =14-1=13 O
maximum number of generalized coordinates = 6*n = 78
number of joint constraints = r =3+x6+4*6+5x6=72
degrees of freedom = m = 78-72 = 6

The dynamic system model of the platform may thus vary from (a) one which contains 78
differential equations coupled (through LaGrange Multipliers) to 72 algebraic equations where
each of the constraint forces is easily determinable through a kineto-static analysis to (b) an
alternative model with 6 differential equations and a follow-on kineto-static analysis requiring
the solution of 72 coupled algebraic equations. The relative performance of methods at either
extreme or in-between is unknown. A goal here is to determine the relative performance.

With a planar Stewart Platform, Figure 2, each element requires three as opposed to six
generalized coordinates and each of the six revolute as well as the three prismatic pairs requires
two constraints. Thus:

Planar Stewart Platform

number of moving bodies = n =8-1=7 @
maximum number of generalized coordinates = 3*n = 21
number of joint constraints = r =2+6+2+3=18
degrees of freedom = m = 21-18 =

Thus one can choose from models with 21 differential equations coupled to 18 algebraic
equations to models with a system of but three differential equations.



c608-86

uioyield Hwemg renedg jo youesy ¢ amdig wiojie[d 1emal§ renedg [ aindig
uiop (jeousyds) |eqo|S - ©

JUIOP UBBNOOH - H
JUIOf djeWisld -~ d




<608-€6

winfnpuag o[dwig ¢ 2infig wiojie]d 1emag JeuRld JO youelg 4 2Indig uLiofIR[d 31BMag JruRld T JIndIy

jiof djewsid -- 4

=

pOY J8MmoT]

iE

poy teddn




For the open kinematic loop case shown in Figure 3, which is a branch of a spatial Stewart
Platform, a similar analysis is utilized. The spatial linkage consists of four bodies, a two
degree of freedom Hookean joint, a one degree of freedom prismatic joint and a three degree
of freedom spherical joint. It has the potential to control all six degrees of freedom of upper
platform motion if actuation of all joint axes is accomplished. Thus:

Branch of Spatial Stewart Platform

number of moving bodies = n =4-1=3

maximum number of generalized coordinates = 6*3 = 18 ®)
number of joint constraints = r =3+1+4x1+5%1=12
degrees of freedom = m = 18-12 = 6

The choice of solution method varies from models with 18 differential equations coupled to 12
algebraic equations to a system model with 6 differential equations. :

For the planar open chain case in Figure 4, which is a branch of a planar Stewart Platform,
there is the further simplification:

Branch of Planar Stewart Platform

number of moving bodies = n =4-1=3 @
maximum number of generalized coordinates = 3*3 = 9
number of joint constraints = r =2%2+2%1=6
degrees of freedom = m = 9-6 = 3

Thus, there may be dynamic system models with 3 to 9 differential equations and up to 6
constraints.

The somewhat trivial case consisting only of the upper Platform, one Hookean joint, and an
upper rod reduces to a simple pendulum, Figure 5.

Simple Pendulum

number of moving bodies = n =2-1=1 )
maximum number of generalized coordinates = 3*1 = 3
number of joint constraints = r =2%1=2
degrees of freedom =m = 3-2 = 1



DYNAMIC SYSTEM MODELLING TECHNIQUES

Computer Models

Current methods for dynamic system modelling of both open and closed mechanical linkage
systems are ill tuned to determining constraint forces as explicit functions of the state variables.
This is simply a result of earlier research priorities toward minimizing the size of the dynamic
system equations for ease of simulation or automated equation generation as found in programs
such as DADS [2] (Haug/Towa) and ADAMS [3] (Chace/Michigan) and the more dated IMP {4]
(Uicker/Wisconsin) and DRAM/DAMN [5,6] (Chace/Michigan), as well as MEDUSA,
VECNET, DYMAC [7] and others, which are programs that were originally designed for rigid
links in closed chains. This situation also extends to programs associated with flexible links in
open chain configurations such as TREETOPS [8].

Although these programs can be used to solve for internal reaction, bearing or constraint forces,

they do so with great complexity. They either reqmre solving an additional or an additional pair
of coupled differential-algebraic equations that arise because of the additional kinematic
constraint required to define the reaction force or solving for the constraint forces as an
aftereffect through a residual kineto-static method. These programs and their underlying
methods have not been designed to automatically produce the type of equations required for
controlling intelligent machines.

Classification

Dynamic system modelling equations can be classified within two major groupings, vectorial
dynamics and analytical dynamics. Within the vectorial grouping are Newton-Euler Methods
and d’Alemberts Principle. In the discussion below Virtual Work is also included. Associated
with analytical dynamics is LaGrange’s form of d’Alemberts Principle (also known as Kane’s
Equations--particularly when utilizing pseudo coordinates), LaGrange’s Equations and Hamilton’s
Canonical Equations. Both major groupings may be applied to open and closed chain systems
although their methods of approach differ. Variations within and between the groupings are
associated with the degree of use of LaGrange multipliers, kinematic influence coefficients or
Jacobians. In the following a "cross-cultural” viewpoint of some of the key facets of
commonality and difference are reviewed to show their limitations in constraint force
determination and control. More complete reviews for closed chains are given in the literature
by Paul [9] and open chains by Likins [10] and by Hemami [11]. The use of Hamilton’s
canonical equations is not discussed here except to point out that details of their use are given
in [10] and that the method was utilized in the program IMP [4].

Absolute and Relative Coordinates
The ith body within a kinematic chain of n bodies may be located using either an absolute or a

relative coordinate system. In an absolute system the position, R,, and orientation, 6, of the
body are located relative to a fixed inertial frame. The position may be defined by a set of

7



cartesian absolute coordinates, x;, y;, z, whereas the angular orientation is defined by a set of
absolute angular coordinates, «;, 8;, and v; The combination of position and orientation is the

pose of the body, ». Defining the pose of n bodies in a kinematic chain requires 6 n absolute
coordinates.

v = [R, 8|7 i-1-n
RﬁRi(x,-,)’;,z,)

6)
63*9;(3195,3:7:) ‘
T T 1T

v :[vl’...,vu]
When using relative coordinates, on the other hand, the position and orientation of a body are
related to the position and orientation of a second body. Six relative coordinates are required
to interrelate the pose of two spatial bodies. Typically the relative motion of two bodies is
constrained by the type of interconnection. Without loss of generality one can assume that each
connection between two bodies has one degree of joint freedom and constrains the relative
motion in five ways. Although a spherical joint, for example, constrains the three relative
translations between the two bodies and does not constrain any of the three relative orientations,
an alternative view is to decompose the joint into three co-located and revolute joints with one
relative coordinate that is allowed to vary and five which remain fixed. When referring to
relative coordinates, q;, it is the variable coordinate which is being referred. In a kinematic
chain composed of r connections each with one degree of freedom, there is therefore:

4G j=1
7))
q={qls'"9q,-]r

For a kinematic chain with r joints, r relative coordinates are required. In closed kinematic
chains, or when an open chain is in a closed configuration, the number of degrees of freedom
of the linkage will be less than the number of joints. In this case it is theoretically possible to
partition the relative or joint variables into two sets, independent and dependent.

q z[ql t I sqm sqm+1 s ,q,. }T'

g=[¢",q]

)



In what follows a notational condensation is used. When discussing absolute coordinates, » will
always be used, and when discussing relative coordinates, q will be used. In some cases, q will
also be used fo mean generalized coordinates which could be either relative or absolute, but the

usage will be clear in the discussion.

Joint and Loop Constraints

Constraints between links in a kinematic chain are defined as either joint or loop constraints.
Joint constraints typically are written in absolute coordinates and relate how the motion of points

in one body are restricted by the motion of similar points in the second body due to the
particular type of joint. Thus, if bodies i and j are interconnected, they are constrained by:

¢j=¢j(vg:vkst); J=1,-,r ™

Loop constraints are of two forms, complete loops and partial loops. Complete loop equations
are typically written exclusively in terms of relative coordinates,

¢, (g,t)=0 10
There may be up to 6 scalar equations for each complete kinematic loop, but there are only r
independent complete loop constraints.
Partial loop constraints are used to relate a parficuiar link’s absolute coordinates to the relative
coordinates of the linkage chain, q. These constraints can be written as,

¢i:¢i(vqust)30; i =1-n (11)

One finds in most cases that the solutions to system dynamic equations requires simultaneous
solution of the constraint equations, and most typically of first and second-time derivatives of
these equations. To obtain such expressions, first write Eqs. (9)-(11) in terms of generalized
coordinates and then take the first time derivative

(12)



If one assumes that the constraints are of Pfaffin form, that is they include all holonomic
constraints and all non-holonomic constraints that can be put in simple form, then Eq. (12) and
its time derivative can be easily written in matrix form.

C(q 04 +A(g, D=0

C§j+(Cj+A)=0 a3)
Cg+B=0

Because there are r constraints, C is of dimensionr x n withr < n. Of the n q’s only m=n-r
are independent.

One benefit of linear forms such as Eq. (13) is that they can be used to determine the dependent
variables in terms of the independent set. To find the dependent velocities or accelerations in

terms of the independent velocities or accelerations, partition the appropriate constraint equation,
Eq. (13) and solve for the independent set.

C§+A=0
|
q

[Cci:Cci]|-|+A=0 (14)
q'd’

¢’=[c’] (A -c4g)

The last of these equations is highly prone to singularities and is thus the root to the numerous
problems discussed later. To obtain solutions for the generalized coordinates consistent with the
nonlinear constraint equations, the derivative forms of the constraints given above are utilized

within iterative numerical procedures. Small errors in g are associated with small values of gt

but singularities in C* cause infinite values in its inverse and thus large errors in estimates of
q®. Thus, computer programs that utilize such expressions must overcome this situation.

Other explicit forms for body accelerations due to joint constraints, Eq. (9), or partial loop
constraints, Eq. (11), result in, respectively:

V=V (Vs v, Yy, Y, ) (15)
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and

v = Cg ¢ + Blgd) (16)

VECTORIAL DYNAMICS

From vectorial mechanics and the direct use of Newton’s Laws,

F=m.ﬁ an
N=H

Gibbsian vectors and dyadics are commonly referred to as Newton-Euler schemes. These
schemes tend to require reconstruction for each new mechanical system and thus are most useful
only in understanding the behavior of simple systems.

For comparison, E is defined as an augmented matrix of forces and moments and P as an
augmented matrix of linear and angular momentum. Thus,

p=[mR,H] a8)

Open Chains

Hooker and Margulies [12] studied the attitude dynamics of n rigid bodies interconnected by
revolute and spherical joints having a total of r rotational degrees of freedom. As an alternative
to solving 3 n differential equations incorporating 3 n-r constraint torques as well as 3 n-r
constraint equations, they were able to eliminate the constraint torques from the dynamical
equations by the solution of 6 n-r linear algebraic equations for 3 n angular velocity rates.
Hooker [13] was later able to show by means of sets of simple summations and the appropriate
projection that the constraint forces could be easily eliminated resulting in r scalar differential
equations whose right sides required the solution of only r linear algebraic equations in what was
to become known as the Hooker-Margulies-Hooker equations.

11



Later, these methods and ideas had moved over to non-space applications in a series of papers:
Stephanenko and Vukobratovic [14], later with improved notation in Orin et al [15], Walker and
Orin [16] who concentrated on computational efficiency, and finally an on-line application by

Luh et al [17). By then the technique was known as the recursive Newton-Euler formulation
of the inverse dynamics problem.

In this approach, [12-17], the accelerations of each link in the chain are sequentially determined
starting at the base or ground link of the chain resulting in recursive equations of the form:

.li

= . - . i 19
Via=Via s Vs b s G a9

where a free-body force analysis, starting at the end or n-th link, and incorporating both external
and internal forces and torques, is performed recursively on each prior link to form a set of
inverse dynamic system simulation equations.

T
e, =|f. n
i 1 +1
[ fya » Pypr ] 20
=€ (e, P)
The inertial forces and torques on each link within the chain are determined from:
+ - - T
P, =|mR,H,|
_ 5 oL T 21
w[miRi,Iimi+(a,.Iimi] 21)
= Pg ( 65 > ‘.’j )
where I; is the inertia matrix for body i and
| 0 -, oy |
o =|e, 0 -w,| - @
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Both constraint and actuator forces and torques are contained within these equations. The
actuation torque about a rotational joint or force along a sliding joint are determined by simply
taking the appropriate projection.

I L TR R zf ll:nk l lS rotationle 23)
U | figer " 2iq » i link @ s translational

The remaining forces and torques at the joint are constraint forces and torques.

When only the actuator forces and torques are desired, Eqgs. (18)-(23) are combined and
rewritten as .

T=M(g')§ +D(g',¢") 4

Details on how to efficiently cast the recursive Newton-Euler forms of these equations are given
by Walker and Orin [16]. The inertia matrix M and the cross coupled inertial forces D are both
functions of q and thus require continual re-evaluation. For solving the forward dynamics

problem Eq. (24) is recast as

G* =M(q*)" [ - D(q*, ¢")] 25)

These techniques for determining (1) joint force and torques, (2) actuator forces and torques,
and (3) a dynamic simulation can be further extended for use in closed-chain linkages, as shown
by Orin and McGhee [18]. This is accomplished by incorporating the constraints, afforded by
the kinematic loops, through augmenting the system dynamic equations. The constraints, via
virtual work, are of two forms--position and force. The constraints between a link’s absolute
position coordinates and defining joint coordinates is given by Eg. (11) and in terms of
acceleration constraints by Eq. (16). The latter is simply modified when only the otherwise
independent coordinates are used to define the link’s absolute position.

v = Clgh §' + B, ¢% (26)

The effect of a loop closure force, €™, is a superposition of additional constraint and actuation
forces onto all of the joints within the chain. The additional effect is determined through the
use of a family of kinematic influence coefficient matrices G,. Each relates the known external
closure force to the six additional constraint and actuation forces that occur at the appropriate

joint, i.

13



e = G(q) e @

In cases where the desired joint trajectory is known as is the additional external loop closure
force at one point within the chain, the resulting absolute motion and required joint torques can

be determined. In such a case, only subsets of the kinematic influence coefficient matrices are
used.

Through the use of virtual work, Whitney [19] and Shimano [20] have shown that the same
Jacobian which relates infinitesimal motions at a particular location to motions at the joints can
be used to relate actuator forces and torques at the joints to effective external forces and torques
at the particular location. That is, if one takes the first variation of Eq. (11) while utilizing
otherwise independent coordinates, one obtains

dv = C(g’) 84} (28)

The virtual work at the particular point due to the external load must equal the virtual work at
the joints due to the actuator torques and forces required to balance this load

SW = e gy = goonT dq’ (29)

Substituting Eq. (28) into Eq. (29) and eliminating the independent virtual displacements results
in '

o = C(q i)T e - (30)

The total actuator torques are the sum of the torques responding to inertial loads, Eq. (24), and
the torques due to the external load, Eq. (30). The motion is constrained as in Eq. (26) resulting

HE A [4R

The inversion of Eq. (31) is a solution of the forward dynamics problem of a simple closed-loop
system. Luh and Zheng [21] have further extended the use of recursive Newton-Euler inverse
dynamics algorithm to handle additional cases of closed loops.

14



A more direct way of accomplishing forward dynamics simulations for open chain linkages than
provided by Egs. (19)-(25), while still utilizing recursive forms of Newton-Euler equations,
became possible when Vereshchagin [22], using Gauss’s principle of least constraint [23], was
able to formulate recursive forms of recursive Newton-Euler forward dynamics algorithms,
Featherstone [24], using spatial algebra based on screw calculus, showed: that these forward
dynamics algorithms could in theory be used for closed chain linkages and Lathrop [25] showed
how this could be accomplished by means of a backward propagation. The method required,
for an otherwise single loop kinematic chain, that twelve end-point force and acceleration
environment interactions be fully characterized in terms of end-point constraints.

Closed Chains

Direct use of Newton’s Laws for closed looped chains tends to be application specific, as
exemplified in the planar analysis programs MEDUSA [26] and VECNET [27]. In this method,
the sums of forces and moments on each of the n links are separated into internal reaction forces
and torques between the link elements and external forces and torques including those due to
actuation. For generality, the spatial pose notation follows.

E =[F,N]
r 7
- w"'zf;i > By *Z" =€ z;eii (32)
o
where
n, =r; xJ;

Equations (18), (21) and (32) are then combined resulting in 6 differential equations, 3 in the
planar case, for each link.

p
it

In the above programs, joint constraints, similar to Eqs. (9) and (2) are used to supply the
remaining needed information. For each planar revolute pair two such joint equations occur.
A spatial revolute results in five such scalar equations. Altogether, r scalar joint equations
exist. Thus, for a spatial linkage there are 6 n scalar differential equations and r algebraic
equations in the accelerations, By using and manipulating these expressions, r pairs of reaction
force f; and moment n; components occurring in Eqgs. (33) are in principle eliminated using
algebra. The actual algebraic procedure tends to be case specific and difficult.
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The technique described above uses absolute coordinates but can be modified to use relative joint
coordinates. Similarly, loop or partial loop constraints as opposed to joint constraint equations
be used. See for example; Do [28] who analyzed the inverse dynamics of a spatial Stewart
Platform; Hunt [29] who showed that Plucker (relative) coordinates, screw calculus and motor
algebra are particularly useful in describing linkage motions; and, Fichter [30] who used the
methods to define the kinematic and dynamics of spatial Stewart Platforms. Although details

are quite different than those presented here, the end results are dynamic system equations with
great similarity.

Vintual Work and d’Alembert’s Principle

The use of virtual work and d’Alembert’s Principle within the context of Newton-Euler
formulations of closed chains was developed by Paul [7, 9, 31] who restricted his analysis to the
planar cases. In his procedure he recasts Eq. (18) in light of virtual work and d’Alembert’s
principle and then sums the equations over all of the links. Again, a spatial notation is used.

[ (B - B)-8v]=0 (34)

n
i=i

He then sets up loop constraint equations similar to Eq. (9) and partial loop constraint equations
which relate the pair variables or relative coordinates to each of the body absolute positions
similar to those of Eq. (11). By taking the variation of the partial loop constraints and
substitution into Eq. 6 the variations é»,can be written in terms of the joint variables 8q. Taking
the first and second time derivative of the loop constraint equations, recasting as in Eq. (14) and
substituting, leads to the system of equations;

§§'=R 33)

Even in the planar case presented here, the expressions used to resolve S and R are rather
complex and these resulting equations are highly coupled. R includes all squared-velocity terms
such as centripetal and Coriolis terms and, if the technique were further expanded to the spatial
case, would include gyroscopic effects. In addition, solving for the constraint forces requires
an additional set of coupled algebraic equations and knowledge of the joint accelerations. A
variation to the approach for determining bearing reactions of closed linkages while

simultaneously keeping the number of system equations small has been recently proposed by
Litvin [32].
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ANALYTICAL DYNAMICS\LaGRANGIAN MECHANICS

The methods of analytical dynamics either start from utilization of the principle of virtual work
including inertial forces leading first through LaGrange’s form of d’Alembert’s Principle or
Kane’s Method or directly from minimization concepts. The latter approach being more
correctly associated with the analytical dynamics approach and the first being more commonly
found in the applications literature. The minimization approach, through the Principle of Least
Action, can be used to obtain both LaGrange's and Hamilton’s Canonical Equations. The
analytical dynamics approach as envisioned by LaGrange [33] and properly embellished in Pars
[34] can be easily used for systems with integrable or holonomic constraints. It is problematic
with non-integrable constraints having to be individually tailored to the problem. The analytical
dynamics approach when applied to Gauss’s Integral [23], can be used to form an alternative set
of dynamic equations more attuned to the goal of constraint force determination and control.

LaGrange’s Equations, Closed Chains, and Relative Coordinates

Chace [35], through the use of LaGrange multipliers, relative coordinates and the following
principle of least action:

8[*|T-V-F-Y Adl=0 (36)
= ‘

L

was able to both describe the system motion and determine reaction/constraint forces to which
he was interested. This was done through the use of loop constraint functions, as given in Eq,
(10), where the relative coordinates one wishes to use to describe the motion are retained and
r constraint equations of the partial loop form, as given in Eq.-(9), are used. These constraints
restrict the motion of similar points on the interconnecting bodies, forcing the d’Alembert
multipliers to equal the constraint forces desired. This latter statement is made clear later in the
section entitled LaGrange’s form of d’Alembert’s Principle. The generalized coordinates g;
include r selected absolute coordinates »; and dependent relative coordinates as well as m
independent relative coordinates q;, Such application results in LaGrange’s Equations with
constraints [36] to which the appropriate constraint equations are appended. Solution requires
that the constraints be written in Pfaffin form and that the second time-derivative of the
constraint equation be similar in form to Eq. (13).
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Cg+A=0

Cij+B=0

Q, is a composite force taking into account both the strength of each external force or torque and
its relative advantage to the motion defined by q; - S

If it is assumed that no explicit knowledge of reaction forces and torques is desired then the
minimal number of dynamical system equations is governed by the minimum number of joint
pair variables that would have to be determined. For the spatial Stewart Platform each branch
would require (starting from the base platform) a minimum of 2 rotations and 1 translation or
a total of 18 coordinates associated with the six branches. With the addition of the six
coordinates required for the moving platform 24 dynamic system equations would result. The
18 constraint equations result from the six sets of vector loop equations in position. For the
planar Stewart Platform case there are three branches with two degrees of freedom each plus the
moving platform with three degrees of freedom giving 9 dynamic system equations. Three
vector loop equations for position supply the six required constraint equations.

Uicker [37], almost simultaneously to Chace, was able to formulate the dynamic system
equations without requiring LaGrange multipliers by representing the kinetic energy in terms of
a minimal set of relative coordinates through the use of homogeneous transformation matrices
[38]. This simplification occurred at the expense of creating fairly complex coefficients in the
dynamic system equations very similar to Eq. (33).

M) §+4) Di@H ¢' = Q -G8

The mass matrix, M, and coupling matrix D are determined by solving first for generalized
coordinates consistent with the constraints, Such equations are formed by equating the
multiplication of relative link homogeneous transformation matrices with the identity matrix, in
what may be called a pose equation, followed by numerical reduction of a fairly large
expression. The reduction is typically done through the use of an explicit time differentiation
of the pose equation to result in a set of velocity constraint equations that can be used in a
numerical algorithm. This must be done at each time step within the simulation. Finally the
constraint forces, if needed, are determined by utilizing an axial set of equations determined
from a kineto-static analysis typically derived using virtual work ideas presented earlier.
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LaGrange’s Equations, Closed Chains, and Absolute Coordinates

An alternative to the Uicker and Chace approaches of using relative coordinates within the
Lagrangian formulation is to use absolute coordinates as first proposed by Chace [39] and latter
by Haug [40] when evaluating machine dynamics of planar systems.

" . o T . 8
My +v,Dv=C" % +¢ ;i=1-~,n 39

C,v+B, =0 ; j=1,-,r

In Eq. (39) some modifications were made in light of the work of others and so as not to
introduce additional notation. For example the partial of the constraint equation with respect to
the absolute coordinates has been replaced by the transpose of the first column of the constraint
matrix, in accordance with utilizing Eq. (12) and (13). The j constraint equations are usually
written in Pfaffin form and their derivatives are utilized in obtaining the solution. The problem
with this method is the large number of generalized constraint and dynamic system equations.
The benefit is the fairly sparse and constant mass and coupling matrices. Eq. (39) has a
similarity with that derived using Newton’s Laws and absolute coordinates given by Eq. (33);
the difference being the means of including constraint forces and the solution method required.
Nikravesh has shown the applicability of Haug’s work to spatial mechanisms through the use of
Euler parameters [41]; his approach is contained within the above expression,

To solve the dimensionality problem Wehage [42] developed a coordinate partitioning method
which reduced the number of equations to the number of degrees of freedom and used the
technique in DADS-2D. Other methods, such as those typically utilized in the solution of
electrical system simulation to deal with sparsity, were used by Orlandea [43] in the development
of ADAMS. In coordinate partitioning as applied to dynamic systems, a generalization of the
coordinate reduction methods found in finite element programs is utilized. The absolute
coordinates are separated into a set of dependent and independent generalized coordinates and
then the technique described in Eq. (14) is used to define the dependent velocities and
accelerations in terms of the independent set.

q (40)

Next the dynamic system equations themselves, the first n+r Egs. (39), must be partitioned and
the dependent coordinates eliminated with the aid of Eq. (40).
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Typically, coordinate partitioning is done numerically and because of potential convergence
problems associated with solving the constraint equation it may be beneficial to change the
choice of independent and dependent coordinates continually. Nikravesh in [44] discusses a
particular scheme to accomplish this task and with Chang [45] through feedback control theory
methods, was able to reduce convergence problems without the need for partitioning.

Common to each of these methods is the realization that differential ‘equations coupled to
algebraic equations are stiff [46], containing widely separated natural frequencies, and require
special numerical methods such as those introduced by Gear [47). In addition, computer codes
such as ADAMS and DADS append the constraint equations to the dynamic system equations

and cast the results in first-order form. The references above describe the various methods of
accomplishing these tasks.

LaGrange’s Equations, Open Chains, and Relative Coordinates

A couple years after Uicker’s original work of using relative coordinates, homogeneous
transformations and LaGrange’s Equations were used by Kahn [48,49] to formulate the dynamics
of closed spatial linkages. The results were similar to Uicker and Eq. (38); constraint forces
were automatically eliminated toward the goal of computational efficiency. A recursive version

of this formulation was latter developed by Hollerbach [50] and found to be computationalily less
efficient than the recursive Newton-Euler approach.

Kinematic Influence Coefficients, Power and LaGrange’ Equations

Teasar uses an equivalent scheme to that of Uicker through the use of kinematic influence
coefficients. Modrey [51] showed that velocities of any link within a planar closed chain, could
be related to first-order influence coefficients, G, and input pair variable velocities whereas link
accelerations were related to a combination of first-order influence coefficients to input pair
variable accelerations and by second-order coefficients, H,,, to input pair variable velocities.
Recasting Modrey’s work for use in spatial systems we have the link’s absolute positional and
orientation, » related to the minimal set of relative coordinates of the linkage chain, q", and
through the use of derivatives we find.
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The means for determining‘ the kinematic influence coefficient matrices are discussed in detail
by Benedict [52]. An equivalent scheme for obtaining these matrices, as presented by Kane in

the utilization of quasi coordinates, is given in a later section.

Benedict points out that the minimal set of generalized coordinates, in the case of closed chains,
is defined through the use of Assur groups and their associated poles. Assur groups are sets of
interconnected elements that appear to be a structure if their extremities were temporarily held
fixed. The group at that instant moves as if it were a single rigid body. The influence
coefficients represent how a specific point in the group would move given an infinitesimal
motion of one of these extreme links. Benedict notes that the kinematic influence coefficients
can be used to recast the kinetic energy in terms of the associated minimal set of generalized

coordinates,

1 — ..
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In a similar fashion the power associated with the inertia motion can be evaluated.

dt =1
where
i m 1 m m ; P ; (43)
ne. y I* wl * u
QO “;Mﬂql+5;;Mﬂqkql
=1 =y

As an alternative to the use of LaGrange’s equations Benedict noted that a "power balance"
analysis could be used to derive dynamic system equations. Actuators are a source/sink of
power into the linkage and this power becomes distributed by changes in kinetic energy and
energy associated with body forces such as those associated with conservative potential energies
ar non-conservative/dissipation energies. In all cases the kinematic influence coefficients are
used to relate the power to changes in the generalized coordinates. Since these coordinates are
independent the power equation can be separated into m torque equations.

pacuator. Pbady = [ineria
m | + m ) Y
- Ppactuator :E:nc?:rﬁauor éi-; Igwdy - :E:-c?foﬁy‘q; (44)
k=1 k=1
A QT = ™ k=lm

In light of Eq. (43), the dynamic system equations have exactly the same form as that found by
Uicker, Eq. (38). As such they suffer from the same problem. Benedict’s work was later
extended by Thomas [53] for use in modelling open chain or serial linkages. Hudgens [54]
worked out a detailed example of the technique’s use for the case of a spatial Stewart Platform,
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LaGrange’s form of d’Alemberts Principle

LaGrange’s form of d’Alemberts Principle is essentially a shortcut to obtaining results similar
to that of LaGrange’s equations without the necessity of the manipulations required in first
obtaining kinetic energy and then performing the required partial derivatives. Generalizing the
approach, as is common [10], there is for the rigid body case;

Q + Q: = :""; k=1, - m+r
n aé n
= e 4 = . )
Q = L E 'gq“‘ZE} G s
J=1 k. J=l
* n » a‘j n > ~ (45)
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One attribute of the approach is that both E, and I'j,are covariant vectors whereas —-and thus
k

;} are contravariant vectors, the dot product between them being an invariant [55]. In essence

the inner product selects that portion of the effort which is in the direction of the motion causing
work. The kinematic coefficient matrix is similar to that discussed earlier in Eq. (41) and in fact
is equivalent when the generalized coordinates selected in both methods are the same. It is
expressed here as pairs of magnitudes along and about unit vectors in the translation and
rotations directions associated with the particular generalized coordinate as opposed to

components in the inertial §  j [ directions.

In this, like many of the other methods, one is free to choose the number and meaning of the
generalized coordinates and the particular details of the constraint equations as long as the
system is fully described; and the total number of degrees of freedom, m, plus the number of
constraints r is equal to the number of generalized coordinates. The larger the number of
generalized coordinates selected, the larger the number of constraints equations required.
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The constraint equations are typically combinations of joint or loop form. The generalized
coordinates selection predicates which constraint forces will be determined. Typically the desired
practice is to select coordinates so that constraints of no interest are (automatically) not involved
in the derivation of the dynamic system equations. To do so requires defining the absolute
motion of bodies constrained by such forces to be functions of generalized coordinates that do
not have the potential of causing motions in the direction of these forces. In such cases the dot
product above is zero. The difficulty comes in making such a selection and then determining
the actual “"partial loop" relationships used to define the absolute body motion in terms of the
generalized coordinates. Also note that no motion in the direction need take place. In fact, no
motion will occur in the direction if it is constrained.

Using the spatial Stewart Platform case as an example, it is rather easy to select six generalized
coordinates for each link resulting in 78 generalized coordinates and thus 78 differential
equations, Since there are only 6 actual degrees of freedom in such a linkage 72 constraint
equations are required. These equations can be formed easily as each of the 6 prismatic pairs
has 5 constraints, each of the 6 Hooke pairs has 4 constraints and each of the 6 globes has 3
constraints. Thus, 78 differential equations coupled to 72 algebraic equations associated with
the constraints are used within the simulation. If, on the other hand, loop constraints associated
with each of the 6 branches are utilized - indicating that the pose of the moving platform must
be equal to the pose determined through a branch - then only 42 generalized coordinates are
necessary to describe the system motion and 36 constraint forces will be determined. This
requires that the motion of each body within the platform be defined within partial loop
equations that utilize this more limited set of coordinates.

Quasi-coordinates and Kane’s Method

A quasi-coordinate method further developed by Kane [56, 57] is typically used when a minimal
set of coordinates is desired. In such a case LaGrange multipliers are no longer utilized and are
eliminated from Eq. (45). This approach is used in the TREETOPS program. The technique,
although commonly referred to as Kane’s method is very similar to a procedure originaily
perfected by Appell [58], first anticipated by Gibbs [59] and used also by Volterra and
Boltzmann. A variation on the scheme was also developed by Dirac [60]. Essentially the quasi-
coordinate method is a formal scheme that can be used to eliminate dependent coordinates and
is commonly used for systems with rotation primarily because finite rotations are not vectors,
because they are order dependent and thus non-communitive. Angular velocities on the other
hand are communitive and thus make ideal choices for derivatives of quasi-coordinates.

The approach is as follows. First find the opportune choice for quasi-coordinates u and relate
them to a subset of independent generalized coordinates, g® by;

i=Wghogt+wiqglt
(¢, 04q (g’ D 6

@' =Wl -w)
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where there are m=n-r independent . The matrix W is of m x m dimension and non-singular
whereas w is m x 1. W and w are chosen so that explicit and unique solutions for independent
generalized velocity can be found using the second of Eqs. (46). A common choice is to make
W and w identity and null matrices, respectively. To modify Eq. (45) so that the state variables
are a minimal set of quasi coordinates as opposed to the non-independent set of generalized
coordinates requires that absolute velocity be written in terms of the quasi coordinates. First,
relationships of the form

ﬁi:Vg(qist)a""'Va(qist) @7

are required so that ¥,can be replaced by g in Eq. (46). To obtain these relationships note that
the second of Eqgs. (41) when written as a function of all generalized coordinates, g, as opposed
to the minimal set is given by,

m
Tt “

To eliminate the dependent coordinates, q°, utilize the partitioning technique presented in Eq.
(14). To eliminate the dependent coordinates, q*, utilize the second of Egs. (46). Substituting
and rearranging, there is:

Y
%:((E..,viw_v_i[ci]“l cd)W“I]a

aq'i aq-d

q

+..?&[ i]“lA +@
o4 o
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Direct comparison of Eq. (49) with Eq. (47) yields the required values for V; and V;. Thus,
Kane's equations in matrix form become

Q+Q =0
n n
Q*?:;(Ei'vi); Q‘*“ﬁzl(f’i‘vi) (50)
Cg+A=0

=W it ewahy

where Q and Q¥ are of minimal dimension m and all non-working constraint forces have been
eliminated. To examine the power and generality of the approach, take the case where W is an
identity, w is null, and the independent relative coordinates and the absolute coordinates are not
explicit functions of time, then Eqs. (41), (47), and (50) lead to

u=¢'; C¢g=0; A=0

.: i ci. i - M é?_=
%=Vahnd's Vi(ghn=05 Z =0 51)
o, o, . .
65 melCT e

The latter of these is the expression used by Benedict [52] to determine the kinematic influence
coefficients in his special case planar example. For the spatial Stewart Platform the value in the
approach is that all unnecessary coordinates can be eliminated leaving the motion of the 6
platform absolute coordinates to be a function of the prismatic pair actuation forces. An earlier
utilization of such an approach on Spatial Stewart Platforms has not been found.

Using Kane’s method, Huston was able to show in a series of papers, including a summary work
[61], how the automatic elimination of nonworking internal constraint forces without the
introduction of tedious differentiation or other calculations could be applied in describing the

dynamics of complex multi-linked open chain systems.
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Constraint Elimination through Pseudo Inverses and Singular Value Decomposition

Although Kane’s approach does not utilize LaGrange multipliers, it requires that the generalized
velocities be partitioned and a subset of generalized coordinates selected for elimination.
Arbitrary selection may result in mathematical singularities due to the nature of Eq. (14). When
large motions occur, the constraint equations might reduce three-dimensional loop constraint
equations into two dimensional equations at particular locations resulting in singular solutions
on the third dimension. Both types of effects also occur when utilizing dynamic equations that
incorporate LaGrange multipliers such as Egs. (39) or (45).

These problems are generic to all of the above solution methods. For example, recall the
coordinate partitioning method developed by Wehage for use in DADS-2D [42]. It has been
pointed out by Haug [62] that generalized coordinate partitioning suffers from difficulties in stiff
systems and has defied implementation with an implicit algorithm. Nikravesh {44] has proposed
methods that continually select the coordinate to be eliminated based on a “stiffness metric" and
Haug [62] has proposed an alternative numerical integration approach which partitions in an
implicit manner to help overcome this problem. Nonetheless, 2n+2r first-order coupled
nonlinear differential and algebraic equations are required for the solution.

An alternative scheme utilizing singular value decomposition has been suggested by Singh [63].
The technique can be applied equally as well to system equations otherwise derived from the
methods mentioned above. The method employs a partitioning scheme which is very sensitive
to the stiffness of the system. Stiff coordinates cause singularities and are thus automatically

eliminated.

If a system is unconstrained and its motion is described by a minimal number of generalized
coordinates, it has an equations of motion,

Mg@hng =Q(q%¢Ld (52)

where M is n x n, positive definite and symmetric. In the presence of constraints onto an
otherwise non-constrained system the result is an imposition of as yet unknown generalized
constraint forces, Q, and a resulting constrained motion. The generalized coordinates contain

both independent and dependent types.
Mg 1§=-Q(44¢9+0Q, (441 (53)

Assume that the kinematic constraints expressed as in Eq. (12) can be written in Pfaffian form
as expressed in Eq. (13). If there are r constraints, the constraint matrix C is of dimension r
x n withr < n. Of the q’s, only m=n-r can be selected to be independent. As seen earlier,
coordinate partitioning as used by Haug/Wehage or by Kane allows a dependent set of
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coordinates to be written in terms of a dependent set and this in turn allows the dimension of
the dynamic equations to be reduced. The problem is that the coordinate partitioning scheme
requires that a particular set of coordinates or quasi-coordinates be chosen, and this selection

may lead to a singularity problem. An alternative approach could be used if the constraint
matrix were invertible.

Inversion of Generalized Matrices. Because the methods for inverting non-square matrices are
not well known, this topic is briefly discussed here.

Assume that one wishes to solve the first of Eq. (13) for the generalized velocity knowing that
C is of dimension r x n and that A is a column vector. An approach to solve for the velocity
is to modify the equation as follows.

C&+Bw0
CTC4+C"B =0 (54)
g{cTcl' c™B =0

It is seen that the inverse for pre-multiplication or left-side multiplication of C by
C* = [CT € ]! CT leads to an n by n identity matrix. In a similar fashion post or right side

multiplication of C by ¢+® - T [ € CT ]! leads to an r by r identity matrix. These are but
two parts of a more generalized inverse known as Moore [64}-Penrose [65] inverse,
C* = C* ¢ C¢**. Both the left- and right-side inverses require the inversion of a square

matrix. In many cases one of these is singular. However, many problems can be solved if
either the left or right inverse is available.

Singular Value Decomposition. In cases where neither is available or if one wishes to use an
algorithm which will work even if the matrices are singular, a technique known as singular value
decomposition, SVD, can be used to obtain the inverse. Because of the anticipated importance
of using various classes of pseudo inverses and SVD to solve mechanical linkage dynamics
problems some details are given here. Additional details and stable numerical schemes for
performing SVD and associated inverses are given in Golub [66,67] and Klema [68].

The SVD method is in reality an eigenvalue-eigenvector scheme. For example assume that one

had a square matrix D and wished to determine its eigenvalues X, and its eigenvectors V;. In the
eigenvalue-eigenvector problem:
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(55)
V:[Vl,...,V};'V;g H ;Azz

The solution for the eigenvalues is through use of a determinate and the solution for the
eigenvalues is by solving a set of coupled linear equations that incorporate an associated
eigenvalue.

Det (D - 2%) = 0; gives AT=A?=2%»0
(56)

(D-AM 1)V, =0; gives ¥V, ,~,V,

The eigenvalues by their nature are orthogonal. The arbitrary constant associated with the
eigenvalue solution is usuaily chosen to make the vectors orthonormal. Thus

v =y
VIDV=VvT2 V=2

57

If one makes no restrictions on the rank of D, zero value eigenvalues may occur. To show this,
partition the eigenvalue and eigenvector matrices each into two parts naming the partitions,
renaming the eigenvalue matrix and naming a partition.

DVv=3Vy
2
V:{VPEV']; » - 0 lio 2[0 0}
0 0 O

where the A* matrix is of dimension m by m, m being the rank of D.
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Now set D equal to C*C, thus D is of dimension n by n and
T pT _
vieTev=2,, (59)

V and X are also of dimension n by n and

[ Zg o vieT][cveg, ] -1 (60)

The bracketed terms are transposes of each other with a unit product making them matrices of

orthonormal vectors. The matnces are named U and its transpose, U and are of dimension r
by r. Thus,

U=CVzE]
cTe 61)
C=UZ.r VT
Noting that the following reduction is true,
[UZre VT ][ VB UT] =1 (62)

allows one to define the inverse of C given the decomp031tmn of Eq. (61) This is the left side
pseudo-inverse of C.

T
C* =V 3} ce U (63)

The eigenvectors V, are found using the non-zero eigenvalues of CTC, or A2, as in a standard
eigenvalue problem. Just as the elgenvector V is decomposed into two portions so is the
eigenvector U. From Eq. (61) it is found that

U, =CV, 2}, (64)
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The remaining portions of V and U are composed of orthonormal vectors that span the null
spaces of C and C” respectively. That is, those orthonormal vectors that satisfy the following

conditions.

CV,=0
(65

CTU, -0

If D had alternatively been set equal to CC and following along as above except switching the
meaning of U and V one would have

T Y
vrceTu =2,

I

i

[x;i,u"c][cfvx;‘c,]

(66)
-1
VT = chr UT C
C=UZXr VT

This is exactly as in Eq. (61) with the exception that the non-zero eigenvalues utilized are of a
different matrix and are associated with U,. Thus the right side pseudo-inverse becomes,

C*=V3E_ U ©7)

Although the Moore-Penrose inverse can be obtained from these if desired, the left and right
inverses is all that is required.

Applicarion of Technigue. The technique can now be applied to solving the dynamic system Eq.
(53) in light of the constraint Eq. (13). First the generalized velocity consistent with the

constraints, Eqgs. (13), is determined by

§=C*"A+V,Z (68)
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for any vector 7. This is easily checked by substituting Eq. (68) into the first of Eqs. (13) and

utilizing the first of Eq. (31). Similarly for the generalized accelerations to be consistent with
the constraints, the last of Egs. (13) it is found

§=C*'B+V ¢ (69)

z is a reduced set of m=n-r independent coordinates. It is preferable to look at these as a form

of quasi coordinates and the pseudo-inverse procedure discussed here as a means of removing

the arbitrary nature of quasi-coordinate selection presented in Eq. (46) so that both independent
and independent coordinates can be utilized. Through Eq. (69) it is found

§=C"A+V 3
¢ (70)
i=V,§-V,C'A

which is of the form given by Eq. (46) except that all the generalized coordinates are used.

Substitution of Eq. (69) into the system egs, Eq. (53), yields
ViMV,i=V,Q+V[Q -VIMC*'B )
Recalling from LaGrange’s Equations, as in Egs. (39) and (23), that

Q% = €™y | 7

and noting that

VDT,QC = VDT Crluum = [C V.]T lco»mdm =0 | (73)

the system equations reduce to a minimal set not containing the numerical problems found in
other methods. '

(74)
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Results with similar form occur when applying the method directly to Kane’s Eqgs. {69]. The
benefit of the modelling procedure being the automatic selection and grouping of generalized
coordinates into a minimal set of pseudo coordinates that can, in principle, be used in numerical
integrations in a highly stable manner. The mapping between pseudo-coordinates and generalized
coordinates continually changes and since the rank of the constraint matrix will vary with
location the number of pseudo-coordinates will similarly change.

Gauss’s Principle of Least Constraint

An alternative to methods based on LaGrange's solutions to analytic mechanics are approaches
based on Gauss’s Principle of Least Constraint [23]. If a system is unconstrained as in Eq. (52)
it has a solution

§=M"'Q=a(g, ¢ 75)

If on the other hand the otherwise same system becomes constrained its system equations look
like Eq. (53). In this derivation it is assumed that there are r consistent and not necessarily
independent constraints of a form very similar but more general than that of Eqgs. (13)

C(q,¢$04+8B(q,419=0 (76)

where, C is a known r x n constraint matrix and B is a known r-vector then. This general class
includes holonomic, non-holonomic, scleronomic, rheonomic, catastatic and acatastatic varieties
as well as others. Gauss’s principle states that the constrained motion accelerations are such that
the Gaussian function, I', is minimized over all solutions with satisfy these constraints.

= [é - a( q, d, t)]TM [q“ - a( q, q.’ t)] 7

Udwadia [70, 71], through the use of the Moore-Penrose generalized inverse, has been able to
provide an interesting solution to the allowable motions. Utilizing 2 matrix X, where

1 1|+
3 5 (78)
K(q,d,t)=M"(CMz)

and + indicates any of the above discussed generalized inverse, Udwadia determined that the
constraint force could be determined as

Q(¢4¢H=-KB+CM"'Q (79)
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The simplicity of these equations belies the fact that in some cases that the pseudo inverse may
be difficult to obtain, especially if a symbolic representation is desired. Refer to Golub and

Kahan for numerical computational aspects and to Wolfram [72] for a discussion on Mathematica
and symbolic processing aspects.

EXAMPLE APPLICATION

As examples, the utilization of the above techniques is demonstrated for a simple pendulum, an
open kinematic chain, and two groupings of methods. In actuality the relative power of the
methods would be better demonstrated in a combined analysis of the branch of the Planar
Stewart Platform looked upon as either an open or a closed kinematic chain. As such it could
be used to represent a cutting tool on a machine surface, an active force-controlled high speed
cam follower, a portion of a car suspension, a robotic insertion device or other systems and their
associated simulation and control. Inferences made from the simple pendulum problem onto these
more complex systems should hold true in practice. The first grouping is associated with
LaGrangian or Newton-Euler techniques with and without the use of LaGrange multipliers, The
second technique is associated with Gauss’s Integral of Constraint. The use of quasi-coordinates
and constraint elimination through singular value decomposition is not demonstrated here.

The pendulum consists of two bodies, one fixed and moving as shown in Figure 6. The absolute
pose of the moving body is described by three absolute coordinates, (x, y, 6 ), given that it is
planar. Because of the simple nature of this system, the coordinate, 6, can also be viewed as
a relative coordinate. A torque motor, a torsional spring and a dashpot at the pivot with the
ground are added for generality, as well as disturbance forces near the end of the linkage.

Newton-Euler, LaGrange Methods

The kinematic constraints for the pendulum, written first in vector form, then in scalar and then
in both scalar and matrix Pfaffin form become:

‘R')E:O:Rl:"lér

X - Ising = Q

y=1lcosh =0

£-108cos0 =0

y -16sin6 =0

_ (80)
10 -1cos8] F .
. =Cv=20

01 -1[sinB| |

10 -1cost] f 2 &
(R R LA PP
01 -1sind) B[ |16 costd
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Fig. 6 Pendulum Example
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The generalized constraint forces in terms of LaGrange multipliers become

1 0 A
Q" =C"a2=| 0 1 {:‘} = A, 81
- I cos® - I sin® 2 ~lcosO A, - Isinb A,
Also,
~8ﬁ1 amk-
& o __
? _ f
Q" = 9..& am‘lc . {u} = f; (82)
Yoot | £, 1 cosd - f, I sin®
OR,, 0w,
| 36 36 |

Direct comparison of Egs. (81) and (82) yields a simple relationship between constraint forces
and LaGrange multipliers not characteristic of multibody systems.

f.o= A
x 1 (83)
Sy =2
Noting that Q is the body force vector (which does work),
0
Q = \-mg (84)
T
The equations of motion become
(m 0 0 -1 0 ] (0
0 O 0 -1 - mg
0 0 %mlz lcost Ising| By -1 <, (85)
22 .
-1 0 leos6 0 o |f [ sin®
0 -1 7sm6 o o |6 |- 16 cost)

36




Although the constraint forces are available through simulation, they are not explicit functions
of the state variables.

If one were to use coordinate partitioning or some other scheme, the equations of motion could
be rewritten in other forms including the most obvious:

~;—m12 6 + bmg sind = 1 (86)

A Kineto-static analysis supplies the required solutions for the constraint forces. These forces are
not functions of the state variables.

Fel { m % } _ ] miB cos® - mi&® sing 87
g my +mg mid sin - ml6® cosb + mg
Gauss’s Principle of Least Constraint

Since most of the terms have been defined above all that is left is to show some of the
intermediate results. Noting that

1 .
. m 0 0 13 1 't -,\—i—cos6
mp:cu"iz[lo""“e}"”‘ 0| _|Vm (88)
01 -1sin8 1, | Py
00 oml o L |3 e
ym Nm

and that the left pseudo-inverse is singular, the right inverse is determined as:

1+3sin%  -~3sindcosd
TMP® = TMPT [TMP TMPT]" - .._? ~3sinfcos8 1 +3sin’ ®9)
-y3cosd  -y/3sind

Thus

r 1+3sin’0  -3sinBcosd
K- M1 [CM ’] = 7 |-3sin6cose  1+3sin% G0
~lcosD ~Isin®



and the constraint forces become

-mlb? + %cose - %mgcose sin6|
Q™ = -K(B+CM™Q) - ‘mlé%%sinmi"f(lﬁcoszﬁ)» On
3. mgle
4 4
Finally, the system equations become
(a2 3¢ 3 .
mao 0 -mio +-Zi~cose—-‘-‘-mgcosesm6
0m 0 jpl mze%%sine-%mgswa , 92)
1 A
0 0 —ml?
3 L ..'E&sine
4 4 J

Comparisons may be made between Eq. (92) and those of Eq. (86) and (87). They give the same
angular motion equations and quite different translational motion. Gauss’s method describes both
forces as functions of the state variable and its first derivative, whereas the Newton-Euler or
LaGrange method also requires acceleration information.

In more complex linkages a similar situation occurs; Gauss’s method determines the constraint
and reaction forces as functions of the state variables and their first derivative whereas the
Newton-Euler expressions for constraint and bearing forces include acceleration terms and are

obtained either from an increased size in the system equations or an additional kineto-static
analysis.

One strength of Gauss’s method is the potential recasting of model-driven force-control
algorithms. This provides a method to obtain explicit force models in terms of the state
variables. Take, for example, the pendulum problem. Assume one wishes to maintain the
vertical or x force on the pendulum to be less than some function. If one knows the current

angular position and velocity, one would know the allowable torque and would also know the
resulting angular acceleration.
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SUMMARY

1t has been shown elsewhere that many desired machine operations such as metal removal by
lathes, mills or grinders and assembly operations perform better when their (internal) constraint

forces are controlled.

The more robust nonlinear controllers tend to apply varied forms of model-driven controllers
which essentially perform an adaptive exact linearization through forms of feedforward action.
The generality of such schemes is made clearly evident by the direct analogy of the research
practice of incorporating neural networks within learning systems to predict the behavior of a
modelled system under various loadings. For control purposes, the resulting error between
modelled and actual system performance, as measured by weighted deviations of the predicted
variable from that actually obtained, is then controlled using spatial control strategies. In all
such cases the pattern is clear; predict the variable to be controlled, measure the actual variable
and control the difference. The robustness of the scheme comes down to the accuracy and speed
of predicting the variable behavior by means of an empirical, analytical or neural network

technique.

Dynamic system modelling most typically utilizes various forms of analytical or Newtonian
dynamics to generate system equations. Often the number of generalized coordinates utilized
is greater than the actual number of independent degrees of freedom and thus requires a number
of constraint equations equal to this difference. The constraint equations are usually appended
to the dynamical equations through utilization of LaGrange multipliers to form system equations.
The multipliers are themselves equal to generalized forces composed of various combinations
of the physical constraint forces. With proper selection of generalized coordinates, implicit
solutions for the constraint forces as functions of time can be determined at a cost of numerical
complexity. For example, if one wishes to determine all of the constraint forces in a system
composed of n rigid bodies in 6 space with m interconnections so formed as to generate 6 n-1
constraint equations then a solution of a system of equations in generalized coordinates and
LaGrange multipliers incorporating a 12 n-1 by 12 n-1 mass coupling matrix will be required.
The solution for the constraint forces will most likely be numerical and will require inversion
of the mass matrix at each time step within the integration in order to first find the multipliers
and the coordinates. To determine the physical constraint forces, solution of a set of 6 n-1
equations linear in the constraints and multipliers and non-linear in the coordipates is then
required. For many practical problems the system is stiff requiring Gear’s method, coordinate
partitioning, constraint violation stabilization, or combination of other procedure.

FURTHER WORK

Attention should be placed on using Gauss’s Principle of Least Constraint to obtain explicit
constraint force representations when these are needed. Explicit constraint force representation
will allow for alternative non-linear control schemes to those currently employed.
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Near term applications of this particular modelling and control structure to intelligent machinery
is anticipated in active suspensions and automated assemblies. In the long term, benefits in
active prosthetics, intelligent mechanical devices (in particular sensors/actuators), and in
improved manufacturing process control for quality are anticipated.

Major tasks suggested for a near term research effort include:

® generalizing the modelling schemes attributed to Vereshchagin and to Udwadia for
employing Gauss’s Principle for Least Constraint (for ease of symbolic manipulation);

® determining the relationship of dynamic-system equations, using coordinate partitioning
by means of SVD, to those determined from Gauss’s Principle for Least Constraint.

® properly selecting generalized coordinates to facilitate rapid/accurate prediction schemes;

® determining the appropriate make-up of generalized coordinates within the constraint
equations and the appropriate form of constraint equations for various types of lower-
order and higher-order mechanical connections;

® sclecting and developing the appropriate numerical integration techniques and strategies
for equation solutions;

® and, making comparisons for speed, accuracy and simplicity, with results attributed to
more classical approaches.

Major tasks suggested for long term research effort include:

® developing a force (impedance) responsive virtual reality system incorporating the
imaging and vision processing. :

Future research efforts could be centered on applying the technique to various linkage designs
including parallel linkages such as Stewart Platforms, cable driven systems, systems of chain

elements, intelligent active suspension systems, high speed cam-followers, precision linkages and
biomedical applications.
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