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ABSTRACT

This research establishes the theoretical basis for the core-drilling method for the nondestructive
evaluation of in-situ stresses in the concrete in an existing structure. In the core-drilling method,
a circular core-hole is drilled in to the concrete in a structure under stress, and the displacements
that occur on the surface of the concrete as the core hole is drilled are measured. These measured
displacements are then related to the in-situ stresses in the structure before drilling the hole.

Relieved displacement equations, equations for measured displacements from relieved
displacements, and equations for in-situ stresses from measured displacements were derived for
two stress states: (1) biaxial uniform normal and shear stress; (2) biaxial linear normal stress
gradient and uniform shear stress. These closed-form equations are first developed for infinite
plates in which these stresses were uniform through the plate thickness, and then applied to
bounded objects. The closed-form equations were verified by finite element analyses. The
evaluation of the applicability of the closed-form equations to objects with finite dimensions was
conducted by finite element analyses

Semi-analytical equations were developed for objects with finite dimensions and a core-hole for
in-situ stresses uniformly distributed through the object thickness. This development is done by
introducing empirical coefficients called calibration constants. Accurate analytical definitions of
calibration constants were defined with dimensionless coefficients that make calibration
constants material independent.

In addition to first two in-situ states of stress that are uniformly distributed through the depth, a
third in-situ stress state comprised of biaxial normal stress and shear stress that are non-uniform
through depth is also considered in this research. The incremental core-drilling method is
developed primarily for applications in which in-situ stresses are non-uniform through the
drilling depth. The incremental core-drilling method involves measuring displacements after
successive increments of core-hole depth. Then these measured displacements are related to the
in-situ stresses that vary through the depth. Finite element analyses were performed to verify the
incremental core-drilling method.



CHAPTER 1

INTRODUCTION

1.1. INTRODUCTION

A large percentage of the existing infrastructure in the United States and throughout the world is
constructed of concrete. The in-situ stresses in a concrete structure can change over time due to a
number of factors, including creep, shrinkage, deterioration, temperature variation, corrosion of
embedded reinforcing steel, abnormal loading, and differential settlement of supports. In-situ
stresses refers to the magnitude and direction of stresses in an existing structure.

Reliable information about the in-situ stresses in concrete in an existing structure is often needed
to evaluate the structure. The evaluation may be performed to determine the load rating of the
structure, or to decide whether to repair or replace the structure. As just one example,
information about the in-situ stress in a prestressed concrete bridge girder can be used to estimate
the effective prestress remaining in the girder. This information is useful in predicting the service
load behavior and strength of the girder.

Because of so many factors that can affect in-situ stresses in an existing concrete structure, the
in-situ state of stress is often difficult to predict analytically. In some cases, the in-situ stresses
must be determined through measurements on the actual structure, However, few methods exist
for the nondestructive evaluation of in-situ stresses in concrete structures. These existing
methods have some limitations and a need exists for additional improved methods.

This research establishes the theoretical basis for a new nondestructive test method to assess the
in-situ stresses in the concrete in an existing structure. The method is referred to as the core-
drilling method. Potential applications of the method include the determination of in-situ stresses
in a variety of reinforced concrete, prestressed concrete, and steel-concrete composite structures,
including bridges, buildings, retaining walls, tunnels, and containment vessels.

The core-drilling method is similar to Hole-Drilling Strain-Gage Method (ASTM E 837 1994).
The Hole-Drilling Strain-Gage Method is an American Society for Testing and Materials
(ASTM) Standard Test Method. The method consists of measuring the strains at the surface of a
specimen as a hole is drilled. The hole may be drilled completely through the structure. In this
case, the hole is called a through-hole. A hole that does not penetrate completely through the
thickness of the structure is called blind-hole. The Hole-Drilling Strain-Gage Method is often



used to determine residual stresses in isotropic linear elastic materials such as in steel structures.
However, the method is not applicable to concrete structures because the heterogeneous nature of
concrete prevents strain measurements over small gage lengths.

In the proposed core-drilling method, a circular core-hole is drilled in to the concrete in a
structure under stress, and the displacements that occur on the surface of the concrete as the core
hole is drilled are measured. The hole may be a through-hole, as shown in Figure 1.1. A core
hole that does not penetrate completely through the thickness of the structure is called core-hole.
In this hole, the material inside of the core-hole is not removed. Finally, the general term hole
will refer to general case that could be either through-hole or core-hole.

Figure 1.1 illustrates the proposed method. Three points, a, b, and ¢ are shown on the surface of
the test object. As the core hole is drilled, each point a, b, ¢ undergoes a relieved displacement
(1, vo) relative to the center of the hole. u, is the radial component of this relieved displacement,
and v, is the tangential component of the relieved displacement. Displacement measurements,
resulting from the relieved displacements, are taken between the points along L. The
displacement measured between two points dve to core-hole drilling is called measured
displacement and denoted with U. The measured displacements are obtained by measuring the
distance along L between two points before and after drilling the hole. These measured
displacements U are then related to the in-situ stresses in the structure before drilling the hole.
The core-drilling method is nondestructive if the ability of the structure to perform its intended
function is not impaired and the core hole can be repaired.

1.1.1. Objective and Scope

The objective of this research is to establish the theoretical basis for the core-drilling method for
the nondestructive evaluation of stresses in concrete structures.

Procedures are developed to calculate in-situ stresses from measured displacements for a variety
of test configurations (Figure 1.1 is one example), test object geometries, and in-situ stress states.
As explained in subsequent chapters, the equations are developed for 13 test configurations. The
equations are first developed for infinite plates and then adapted to bounded objects (i.e. real
structures). Both uniform and linearly varying stress states are treated. Some of the equations
developed in this research are closed-form which means that the exact solution is analytically
expressible. Other equations are called semi-analytical which are developed through a combined
analytical and numerical approach.

1.1.2. Approach

In order to achieve the objective of this research, the following approach is taken:

1.  Perform literature review of previous research and present techniques related to the
measurement of in-situ stresses.



2. Develop closed-form equations for the relieved displacements due to a through-hole drilled
in a thin plate in which the in-situ stresses are uniformly distributed through the plate

thickness.

3. Develop closed-form equations for measured displacements in terms of relieved
displacements.

4. Develop closed-form equations for in-situ stresses due to a through-hole drilled in a thin
plate in which the in-situ stresses are uniformly distributed through the plate thickness. The
equations express in-situ stresses in terms of measured displacements.

5. Verify the closed-form equations for relieved displacements and in-situ stresses through a
comparison between results obtained from finite element analysis and results obtained
from the closed-form equations.

6.  Evaluate the applicability of the closed-form equations for relieved displacements and in-
situ stresses to objects with finite dimensions, including bounded (finite) plates, three-
dimensional objects and core-hole case.

7. Develop semi-analytical equations for the relieved displacements and in-situ stresses due
to a core-hole drilled in three-dimensional objects in which in-situ stresses uniformly
distributed through the object thickness. This is accomplished through the use of
calibration constants, similar to what is done for the ASTM hole-drilling method.

8. Verify the equations for core-hole case by conducting finite element analyses.

9.  Develop semi-analytical equations for relieved displacements due to a hole drilled in a
three-dimensional object in which in-situ stresses are non-uniform through the thickness of

the object.

10. Develop semi-analytical equations for in-situ stresses due to a hole drilled in a three-
dimensional object in which in-situ stresses are non-uniform through the thickness of the

object.

11. Verify the semi-analytical equations for non-uniform stress through thickness case by
conducting finite element analyses.

1.2. ORGANIZATION OF THE REPORT

The remainder of this report is organized into seven chapters (Chapters 2-8) in accordance with
the research approach summarized above. Chapter 2 presents a literature review of previous
research (Task 1). This includes a review of techniques for the measurement of in-situ stresses in
concrete and rock, and for the measurement of residual stresses in steel structures.

Chapter 3 presents the development of closed-form equations for relieved displacements,
measured displacements and in-situ stresses (Task 2, 3 and 4). For the derivation of the
equations, the problem is simplified as drilling a through-hole in an isotropic linear elastic
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infinite plate in which in-situ stresses are uniformly distributed. This problem is treated as a two-
dimensional problem of linear elasticity and equations are derived for plane stress and plane
strain assumptions.

Chapter 4 presents the verification of the closed-form equations for relieved displacements and
in-situ stresses (Task 5). This verification is done by conducting finite element analyses. The
same problem considered for the derivation of the closed-form equations is modeled using finite
elements. Then results obtained from the closed-form equations are compared with results
obtained from finite element analyses.

Chapter 5 evaluates the applicability of the closed-form equations to objects with finite
dimensions (Task 6). A series of finite element models are created to evaluate the closed-form
equations for relieved displacements and in-situ stresses to bounded (finite) plates, three-
dimensional objects, and core-hole. The width of the plate (), thickness of the objects (7,) and
depth of the core-hole (h) are considered as parameters in the evaluation.

Chapter 6 presents semi-analytical equations for the core-hole case (Task 7). This development is
done by introducing empirical coefficients called calibration constants. Chapter 6 also presents
verification of the modified equations (Task 8).

Chapter 7 describes development of semi-analytical equations for relieved displacements and in-
situ stresses for non-uniform stress distribution through thickness (Task 9, 10). Chapter 7 also
presents verification of the semi-analytical equations (Task 11) for this case.

Finally, Chapter 8§ presents the conclusions of this research and outlines the work needed to
further the development of the core-drilling method.

1.3. NOTATION

The following is a summary of notation and acronyms used frequently in this report.

a = radius of the hole

a. be Co =  dimensionless calibration coefficients for the uniform stress state

ay, by, ¢y ~  dimensionless calibration coefficients for incremental core-drilling method
al, a2, ~  dimensionless calibration coefficients for the uniform stress state

al ), a2{i) = dimensionless calibration coefficients for the uniform stress state

bl b2, —  dimensionless calibration coefficients for the uniform stress state

b1, b2(i) = dimensionless calibration coefficients for the uniform stress state

cl,, c2; - dimensionless calibration coefficients for the uniform stress state

cl (i), c2) = dimensionless calibration coefficients for the uniform stress state

cpe = coefficients the functions that express in-situ stress variation through depth
h = depth of the hole

r = distance of any point to center of the hole

Fn = radius of the measurement circle

U = relieved displacement at point i

Uy = relieved displacement on radial direction
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normalized relieved displacement in radial direction = u,/F
normalized relieved displacement in tangential direction = u./r
distance of any point on z direction from the surface
calibration constants using the standard elastic laws
calibration constants for the geometry and loading
vector of the unknowns which are the coefficients of the assumed in-situ
stress function
diameter of the hole
diameter of the fictitious measurement circle
influence functions
2w
angle of the stress gradient, actmg in y-z plane on x direction, from y--ax1s
angle of stress gradient, acting in x-z plane on y direction, from the x-axis
distance between two points used to measure displacement Ui
mean pressure of the in-situ stresses
conceptually represent the shear stress
thickness of the plate
measured displacement measured between two points
relieved displacement readings vector
measured displacement between two points whose distance from each other
isLi
measured displacement between two points whose distance from each other
isLI
width of the plate
angle measured counter-clockwise from the direction of x to the direction of
Uy
angle measured counter-clockwise from the direction of Gy to the
direction of u,
angle measured counter-clockwise from direction of x to the direction of

Omax

polynomial of degree ¢
A/t

modules of rigidity
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Figure 1.1 Illustration of the core-drilling method.



CHAPTER 2

BACKGROUND

2.1. INTRODUCTION

This chapter presents the results of the literature survey performed as part of Task 1. A review of
techniques to measure in-situ stresses in concrete is given in Section 2.2. Section 2.3 describes
the Overcoring Method (ASTM E 837 1994), which is an ASTM Standard Test Method for
measuring in-situ stress in rock. A detailed description of Hole-Drilling Strain-Gage Method
(hereafter referred to as the hole-drilling method), which is used mostly to determine residual
stresses in linearly elastic, homogenous, materials such as steel, is given in Section 2.4 and
Section 2.5. In this work, residual stresses are recognized as specific type of in-situ stresses. As
discussed in Chapter 1, the hole drilling-method is an ASTM Standard Test Method which is
developed for the cases in which residual stresses are uniform through the thickness of an object.
The ASTM hole-drilling method is presented in Section 2.4. Section 2.5 discusses Incremental
Hole-Drilling Methods, which are developed for the cases in which residual stresses vary
through thickness. Three Incremental Hole-Drilling Methods are reviewed here. An overview of
the Power Series Method is given in Section 25 1. Detailed descriptions of the Integral and
Influence Function Methods are given in Sections 2.5.2 and Section 2.5.3, respectively.

In this chapter, information is presented in the original notation used in the literature to explain
each technique. This causes some notations and symbols for similar quantities to vary between
techniques in this chapter. In the rest of the chapters, the symbols and notations explained in
Chapter 1 are used.

2.2. TECHNIQUES FOR CONCRETE
Two methods which have been developed for the evaluation of in-situ stresses in concrete are the

fiat jack method and the Nebraska method. These two methods are briefly described below.

2.2.1. Flat-Jack Method

In the flat jack method (Abduner 1982), the distance between two points on the surface of the
structure is precisely measured. A slit is then cut into the structure between the two points
perpendicular to the direction in which the stress is to be determined. The local stresses in the
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structure are relieved as the slit is cut, and (for the case of compression) the relative distance
between the two known points on the structure decreases. Next, a hydraulic jack (i.e. a flat jack)
is inserted in to the slit, the jack is pressurized, and the pressure required to return the two points
to their original relative separation is used to indicate the internal stress in the structure. One
advantage of the flat jack method is that the elastic modulus of concrete is not needed to compute
the value of the in-situ stress. One limitation of the method, which can lead to an error in the
estimated value of in-situ stress, arises from the fact that the stress distribution applied by the flat
jack may differ from the in-situ stress distribution that existed in the concrete prior to cutting the
slit.

2.2.2. Nebraska Method

The Nebraska method (Keeler 1994) was originally developed for the evaluation of effective
prestress force in prestressed concrete bridge girders. In the Nebraska method, a 25.4 mm
diameter cylindrical hole is drilled in to the test structure, and a small crack is induced in the
hole. This crack extends parallel to the direction in which the stress is to be determined. Next
external stress is applied perpendicular to the crack, and the stress required to close the crack is
determined. This applied stress is then related to the in-situ stress. Special hardware has been
developed to clamp to the underside of the bridge girder and apply a transverse stress to cause
crack closure. The need to apply this transverse stress may limit the applicability of the method
in other applications, since it may be difficult to devise a method to apply the external stress
perpendicular to the crack

2.3. OVERCORING METHOD

The Overcoring Method (ASTM D 4623 1996) (hereafter refer to as overcoring method) is a
ASTM Standard Test Method for measuring in-situ stress in rock. In this method, a large
diameter access hole is drilled to the depth at which the deformations are to be measured. Then a
small diameter pilot borehole (38.1 mm) is drilled coaxial with the first access hole an additional
distance of approximately 1 m. A specially designed deformation gage developed by U.S,
Bureau of Mines is then inserted in the pilot borehole to measure change in dimension of the
pilot borehole across three diameters of hole, spaced 60° apart. Then a larger diameter borehole
(152.4 mm) with a thin walled core is drilled to over core the rock around the deformation gage
in the pilot borehole. The displacements or deformations are recorded before and after the
overcoring. At the end of the operation, the overcoring ring containing the measurement cell is
removed. The geomechanical properties of the rock (Young's modulus E and Poisson's ratio v)
are then determined by performing a biaxial test. With knowledge of the geomechanical
properties of the rock, the measured borehole deformation can be related to the change in stress
in plane perpendicular to borehole.



2.4. HOLE-DRILLING STRAIN GAGE METHOD

The hole-drilling method is a widely used method for measuring residual stresses near the
surface of isotropic linearly elastic materials. As noted earlier, the hole-drilling method has been
standardized as ASTM Standard Test Method E837 (ASTM E 837 1994).

The basic principle of the hole-drilling method is the measurement of the elastic strains that are
relieved while a small diameter hole is drilled in a stressed material. Then these measured strains
are related to residual stresses. The method permits the magnitudes and principal directions of
residual stresses at the hole location to be determined. A specially designed three-gage rosette
shown in Figure 2.1 is used to measure the relieved strains.

In principle, the experimental procedure is simple. The three-gage rosette shown in Figure 2.1 is
fixed to the surface of the specimen under consideration. A hole is drilled in the center of the
rosette, either completely through the specimen thickness, or to a depth exceeding approximately
40% of the mean diameter of the strain gage circle, as the surface strains are assumed to be fully
released at this depth (ASTM E 837 1994). Readings of strains are taken both before and after
the hole is drilled. Then these measured relieved strains are related to residual stresses at the hole
location. Using the terminology introduced in Chapter 1, a hole drilled through the plate
thickness is called a through-hole, and a hole which does not extend completely through the plate
thickness is called a blind-hole.

The hole-drilling method is reported to give good results for the conditions listed below (ASTM
E 837 1994):

Isotropic, linear elastic material

Residual stresses do not exceed 0.5 yield strength

Variations of stress within the boundaries of the hole are small
Stresses do not vary significantly with depth

Plane stress conditions hold

Large plate compared to hole size

* & & @& & @

As mentioned in Chapter 1, the hole-drilling method is not applicable to concrete structures
because the heterogeneous nature of concrete prevents strain measurements over small gage

lengths.

In most practical applications of the hole-drilling method, a blind-hole is drilled since drilling the
hole through thickness is not possible or not feasible. No closed-form solution is available from
theory of elasticity for the calculation of residual stresses for the blind-hole geometry. Instead, a
solution is obtained for an infinite plate with a through-hole. Then the solution is extended to the

blind-hole case.

2.4.1. Through-Hole Analysis

The theoretical solution of the strain relaxation is derived as follows. An elastic plane stress
solution for the case of a small hole in an infinite plate under uniform stress is considered to
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derive the equations. Figure 2.2 shows a schematic representation of residual stresses and a
typical surface strain relieved when a hole is drilled into a specimen. The theoretical solution for

the radial strain relaxation is

¢ =(4+ Beosa)o,,, +(4—Beosla)o,,, (2.1)

l-via ?
4 “‘EEH 22

2 4
BszX[m,jim(ﬁ] _3(9.] J 2.3)
2E | 1+vir r

where

Omax = maximum principal stress;
Omin = minimum principal stress;
a = hole radius;

r = general radius, r > a;

E = Young modulus;

v= Poisson ratio;

o = angular coordinate measured counter clockwise from the maximum principal stress
direction.

There are three unknowns (Guay, Omm @) in Equation (2.1). Three equations are obtained by
equilibrating the strain gage readings to Equation (2.1). Solving these equations for the
unknowns for the strain gage rosette, the result is

& +& \/(232 & "83)2 +(6 - &)
o = T 2.4)
= 44 4B
B =Lian (Mj (2.5)
2 £ — &

where

f = angle measured clockwise from the location of gage 1 to the direction of principal stress Opin;
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&), &, & = relieved strains measured by three correspondingly numbered, radially oriented, strain
gages as shown in Figure 2.1.

2.4.2. Blind-Hole Analysis

Equations (2.4) and (2.5) are derived for a through-hole in an infinite plate. However, the
equations can also be applied to the case of a blind-hole rather than a through-hole and for
measurement of strain over a finite gage area and not at a point. The constants 4 and B for a
blind-hole differ from the values given by Equations (2.2) and (2.3) (ASTM E 837 1994). The
constants for the blind-hole case, identified as Aand B, are termed calibration constants. They
cannot be calculated directly from theoretical formula. However, they can be obtained by a
calibration test or numerical procedures such as finite-element analysis.

Constants 4 and B in the through-hole case are a function of material properties (£, v) and the
non-dimensional distance of the measurement point from the center of the hole (/D). In addition

to these variables, constants 4 and B in blind-hole case are a function of the dimensionless hole
depth, Z/D. Thus, in a generalized functional form, the coefficients can be expressed as

= f(E, v, r,Z/D)
= f(E, v, v, Z 1 D)

4
_ 2.6
5 (2.6)

where D is diameter of the gage circle.

The constants 4 and B are material dependent. They have to be determined for each material to
be studied. Alternative formulas which contain material independent constants are proposed for
the given material properties, and for through-hole case and blind-hole situation (Schajer 1981).

= [1+vi_

A= [WZE Ja 2.7

Eﬂ—(w}—)? (2.8)
T \2E '

Z is material independent and b depends weakly only on Poisson's ratio. Schajer (1988a;

1988b) has determined from finite element analysis that for blind-holes, @ and b vary by less
than 2% for the range of Poisson's ratio from 025 to 0.35. These dimensionless coefficients are

tabulated in ASTM E 837.

2.5. INCREMENTAL HOLE-DRILLING METHOD

The basic hole-drilling method described in the ASTM Standard is intended primarily for
applications in which residual stresses are uniform through the drilling depth. In such cases, the
method and calibration data can be used to calculate the residual stresses from the measured
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strain relaxation. However, in practical application, significant variations of residual stresses are
often observed. In such cases, the procedure and calibration data provided in ASTM E837 are

not applicable.

There is no closed-form solution available for the case of non-uniform residual stress through
thickness. However, several approximate calculation procedures have been developed. In these
methods, the hole is drilled in successive increments and the strain gage responses are recorded
at each increment. In general, these methods are called Incremental Hole-Drilling Methods.
Using Incremental Hole-Drilling Methods, it is possible to obtain the residual stresses as a
function of depth measured from the specimen surface. Many different stress calculation
procedures for incremental hole drilling have been developed, including the Incremental Strain
Method (Kelsey 1936), Average Stress Method (Nickola 1986), Power Series Method (Schajer
1981), Integral Method (Schajer 1981; 1988a; 1988b), and Influence Functions {Beghini 1998;

2000).

In all of these calculation methods, plane stress conditions are assumed, and the residual stress
variation is therefore described by the variation of the in plane stresses through depth. The
calibration constants are obtained by numerical methods. The experimental procedure in the
incremental hole-drilling method is similar to the procedure for the basic hole-drilling method.

Schajer (1988a) compared the first four methods listed in his work and concluded that

“The Integral Method is the most general of the four stress calculation procedures, and is
suitable for calculations with irregular stress fields. The Power Series Method (Schajer
1981) is suitable for use with smoothly varying stress fields. It is relatively robust
numerically because the least-square procedure used tends to smooth out the effects of
random errors in the experimental strain data. It is shown that the Incremental Strain and
Average Stress Method are simple approximations of the Integral Method. For slightly
non-uniform stress fields, all stress calculation methods give satisfactory results. For more
steeply varying stress fields, the Incrementa! Strain and Average Stress Methods become
increasingly unreliable, particularly for the stress more remote from the specimen surface.”

Beghini (1998; 2000} reported that the Influence Function method is superior to the Integral and
Power Series Methods by overcoming the need of interpolation, which might be needed in
Integral and Power series methods.

For the reasons explained above, only the Power Series, Integral and Influence Function
Methods will be explained here. In this study, the Integral Method and Influence Function
Method are modified for non-uniform stress state through the object thickness.

7.5.1. The Power Series Method

The power series method was proposed by Schajer (1981). In this method, the residual stress
variation through thickness is represented by a polynomial function. An arbitrary stress field can
be decomposed into an equibiaxial and a shear stress component. (Equibiaxial stress state means
a stress field under equal biaxial normal stresses. Any stress field can be decomposed into
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equibiaxial and shear stress components where equibiaxial stress components are defined with
mean biaxial normal stresses). Consider the biaxial component given as

o, (W) =b, +bh+ bR +bR +... (2.9)

where /4 is the hole depth and b; are the unknown constants. The strain response at hole depth,
corresponding to ou(#) is given as follows

&,(h) = by () + B A (h) + by Ay () .. (2.10)

where A;(%) are the strain responses to unit power series stress fields A. The A;(h) constants are
calculated by application of finite elements. By use of the equal biaxial part of the incrementally
released strain and Equation (2.9), the &; constants can be obtained by least squares analysis.
Then, subsequently, the equibiaxial component of the residual stress variation can be calculated
by Equation (2.9). By a similar calculation of shear stress component, the arbitrary stress field
can be determined.

Unfortunately, only the first two terms of the polynomial give accurate results. Additional terms
give results which are very sensitive to error. For the same reason, the maximum depth is limited
to 0.5 r,, where r,, is radius of the strain gage rosette.

2.5.2. Integral Method

Initial developments of the Integral Method were done by Bijak-Zochawski (1978), and followed
by several others (e.g. Flaman 1985; Niku-Lari 1985; Schajer 1981). Schajer provided a valuable
contribution to development of a correct procedure for obtaining non-uniform residual stresses
through thickness. Here in this study, the Schajer (1981; 1988a; 1988b) approach is adopted to
explain the Integral Method.

Schajer (1988a) described transformed stress and strain variables that are convenient to work
with. The stress components acting at depth / in terms of transformed stress variables P, 0, and

T are

oy(H) +0,(H)

P(H)= 5 (2.11)
o) =2 > () 2.12)
T(H)=1(H) (2.13)

where

H=Z/r,, = non-dimensional depth from surface;
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Z = depth from surface;
#n = sirain gage mean radius.

oi(H), ox(H), and 7;3(H) represent normal and shear stress components in the reference system
aligned with the rosette in Figure 2.1. Similarly, the following terms of measured strain are
defined in terms of transformed strain variables p, g, and ¢

ply= W (2.14)
q(h) = W (2.15)
t(h) = SS(h)+81(:)~2€2(h) (216)

where
h=2z/r, = non-dimensional hole depth;
z = hole depth.

ei(h), &2(h), and &3(h) are strain gage measurements when the blind-hole depth is h. Terms P(H)
and p(h) are related to the equibiaxial residual stress-strain level, while Q(H), T(H) and g(h), t(h)
are related to the stress-strain shear level. ' :

In order to simplify the calculation, it is convenient to consider each transformed stress or strain
independently. For example, consider the transformed stresses P(H) alone distributed through the
depth of the structure within the range 0<H<h. In order to define a general model, an infinite
body made of a homogeneous isotropic linear elastic material is assumed. As shown in Figure
2.3, as a hole is drilled to a certain depth A, the stresses P(H) at every distance H from surface to
hole depth # contribute to relaxed strain measured at the surface. Thus measured transformed
strain relaxation p(#), because of drilling a hole of depth & can be obtained by integrating of the
infinitesimal strain relaxation component from the stress at all depth increment from surface to
the hole depth (in the range 0<HSh).

o(h) =%-‘i [ 4 myp(an @2.17)

where A(H k) is the strain relaxation per unit depth caused by a unit stress at depth H, when the
hole depth is 4.

We can also write the Equation (2.17) in a form that is suitable for practice where strain
relaxations are measured at each depth increment.
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p, 1sj<i<n (2.18)

where
pi= measured strain relaxation after the ith hole depth increment;
P;= equivalent uniform stress within the jth hole depth increment;

dy = strain relaxation due to a unit stress within increment j of a hole i increments deep (see
Figure 2.4 for the physical explanation of ).

The constant dy is defined as

_ H
a, = H; A(H h)dH (2.19)

In matrix notation, Equation (2.19) becomes

aP=—tp (2.20)
(1 +v)
where four incremernts
ay, A Py
a.ﬂ —a_}! (—1_:22 _ Pm "PZ p= pZ (2‘21)
ay dy gy A 2
Ay Gy g Ay B, 2y

where P; are the equivalent uniform transformed resulting stress within each hole depth
increment. Figure 2.4 shows a physical interpretation of the constants of d@; of matrix 4. Equation
(2.20) and similarly the other transformed stresses can be written in matrix notation as follows.

aP = % P (2.22)
bO = Eq (2.23)
BT = Et (2.24)
where b is
B, = j:: B(H,h)dH | (2.25)
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where B(H,h;) is the strain relaxation function for hole-drilling into a pure shear stress field.

The stress components can be obtained as follows

o,(H)=P(H)-Q(H) (2.26)
oy (H)=P(H)+Q(H) (2.27)
T}s(H) = T(H) (2.28)

And principal stresses are obtained as
O x> O = PUH)F QP (HNT*(H) (2.29)

1 [T
p(H) = tan {Q(H)] (2.30)

where the S(H) is the angle measured clockwise from direction 3 (Figure 2.1) to the maximum
principal stress direction at depth H.

2.5.2.1. Calculation Constants a;; and b;;

The constants dy and Z';U can be found by finite clement analysis. It was found that finite element

analysis gave reliable results for calculating residual stress (Schajer 1988a; Schajer 1988b). A
separate finite element analysis is performed for each combination of hole depth and stress
location to calculate each constant. The constant @ relates an equibiaxial stress acting in

increment j, in a hole / increments deep, to relieved displacement response. The constants Ej are,
similarly, the correlation constants between pure shear stress and relieved displacement response.
The constant dy is required to consider axisymmetrical part to which is applied axisymmetrical
load. However, the coefficient b, corresponding pure shear stress, is required to consider non-

axisymmetric loading.

2.5.3. Influence Functions Method

In the Power Series and Integral Methods, the structure analyzed is divided in to a finite number
of intervals. Residual stresses are found approximately by a discontinuous stepping function. The
constants of the stepping functions in these two methods are calculated by the finite element
method and tabulated for a finite number of regularly spaced hole depths and positions along the
hole surface. However, in application, the hole depths that are used could be different from the
hole depths for which the constants have been tabulated. In that case, two-dimensional
interpolation is required.
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The Influence Function Method overcomes this drawback by introducing a continuous function,
called influence function (Beghini (1998; 2000)). The influence function allows a general
residual stress distribution to be found directly by reading the relaxed strains from the strain gage
rosette. The influence function can be employed to evaluate the constants required for the
application of Integral Method without interpolation of tabular values.

2.5.3.1. Theory of Influence Function Method for the Hole-Drilling Method

The theoretical formulation of the Influence Function Method for the hole-drilling method is
similar to the Integral Method. The main difference between the Influence Function Method and
the Integral Method is the definition of calibration constants. The calibration constants (4, B) in
the Integral Method are replaced with continuous functions called influence functions (s, /p)-
Similar to the hole-drilling Method, the Influence Function Method is formulated for a
homogenous, isotropic, linear clastic material. The same standard strain gage rosetie as shown in
Figure 2.1 is used.

The Integral Method uses so called transformed stress variables

P(Z) = ‘_’W(_Z_Z..*zjf_y_@ 2.31)
Q(Z)=i‘i@——m;"J’(~Z—Z 2.32)
T(Z)=17,(2) (233)

where
Z = depth from surface.

ox(Z), 6(Z), and 7y(Z) represent normal and shear stress components in the reference system
aligned with the rosette in Figure 2.1. Similarly, the following terms of measured strain are
defined in terms of transformed strain variables.

p(z),:__,_ SS(Z)";EI(Z) (2.34)
g(2)= fﬁig—ﬁ@ (2.35)
H(z) = g{(z)+ gx(;') —2¢,(2) (2.36)

where
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z = hole depth.

&1(z), £2(z), and &3(z) are strain gage measurements at depth Z. The terms P(Z) and p(z) are related
to equibiaxial residual stress-strain level, while ((Z), T¢Z) and g(z), i(z) are related to the stress-

strain shear level.

In Figure 2.5, assume that the strain p(z) relieved on the surface after drilling the hole with depth
of z, is the integral of infinitesimal strains due to the residual stresses P(Z) acting in the entire
depth. The following equations are written on the basis of superposition principle

p@)= [ 1(Z,2P2)dZ 2.37)
Similarly, the following equations can be written for the residual stresses Q(Z) and T(Z)

q(2)= [ 1,(2,)2)dZ (2.38)

K2 = [ 1,(Z,97(2)dZ (2.39)

where I, and I are suitable influence functions, of geometry and material properties to be
determined, which are proportional to the strain relieved on the surface due to the stress acting at
depth z when the hole has a total depth of z. This formulation corresponds to Integral Method in
the hole-drilling method. The calibration constants (4, B) in Integral Method are replaced with

influence functions (I, Ip).

For the known influence functions and measured strains, we can find stress variations through
the hole depth by Equations (2.37), (2.38), (2.39). '

The following dimensionless influence functions are defined for the particular rosette shown in
Figure 2.1, dimensionless hole diameter ¢, and material properties (E, V).

AH By =¥, EI (Z,2) (2.40)
B(H . h)=r, EIl,(Z.z) (2.41)
where,
H=Z/vpm
=2/t m
¢=Do/rm;

ry = Strain gage mean radius.

A(H,}) and B(H,h) are defined by double-power expansions as follows
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n

Al =3 @ H (2.42)

k=t =i

B, =33 pH 2.43)

k=1 I=1

where the constants ¢4 and fq depend on ¢, gage geometry and v.

2.5.3.2. Calculation of Constants dia and fu

The constants aiq and fa are obtained from the finite element analyses. In the analyses, the
incremental hole-drilling process is simulated by removing subsequent layers of elements. For
any partial hole depth A= e i/N(i=1, ..., N), & series of Joading conditions is subjected as shown
in Figure 2.6 by applying a compressive unit pressure to the hole surface in the interval depths
(0, hy) with j=1,..., { in order to simulate a positive residual stress relaxation.

Equations (2.42) and (2.43) are integrated to get the strain produced by relaxing a unit pressure
from 0 to H in a hole having depth A.

AH =Y, Z%H"h"‘ (2.44)

foe=b Jel

BH, B =3 ‘Z%’- HHH (2.45)

k=1 f=t

Equations (2.44) and (2.45) are written in discrete form as follows.

Bp, =3y L HH (2.46)

k=t =%

Eqg, *ZZ%’" Hh (2.47)

f=l F=l

Beghini discussed that n=m=6 (i.e. 36 coefficients for each Influence Function) offers a
reasonable compromise between accuracy and numerical stability. Numerical stability refers to
pumerically stable algorithm for solving Ax = b is guaranteed to compute an approximate
solution y satisfying (A + dA)y = (b+db) for some small perturbations dA and db. The numbers
of unknowns are considerably smaller than the number of equations (about 820 for each
function) and a least-squares solution is used to find the unknowns.
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1 Typical standard rosette for hole-drilling residual stress calculation (ASTM E 837

1994).
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Figure 2.2 Stress state before hole is drilled (ASTM E 837 1994).
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Figure 2.3 Integral Method definition of hole depth & and stress depth H.
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Figure 2.4 Stress loading corresponding to the coefficients &y of matrix & in the Integral Method.
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Figure 2.5 Hlustration of hole depth z and stress depth Z in the Influence Function Method.
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CHAPTER 3

DERIVATION OF CLOSED-FORM IN-SITU STRESS EQUATIONS

3.1. INTRODUCTION

As explained before, in the core-drilling method, a core-hole is drilled in to a stressed area in a
structure. As the core-hole is drilled, in-situ stresses are relieved and the displacements
resulting from the core-hole drilling are measured. These measured displacements are related to
in-situ stresses that existed before drilling the core-hole in the structure.

This chapter derives closed-form equations that form the theoretical basis for the core-drilling
method. As defined in Chapter 1, closed-form equation means that the exact solution is
analytically expressibie. The main objective of this chapter is to derive closed-form equations
that express in-situ stresses as a function of measured displacements U. The following
paragraphs explain the scope of the derivations presented in this chapter.

Figure 3.1 shows a measurement location and in-situ stress before a core-hole is drilled in to a
structure. Now imagine that a core-hole is drilled and the hole surface is subjected to equal
stresses as previously existed, as shown in Figure 3.2(a). No stress and displacement change
occurs under this condition. The equilibrium remains unchanged. The equilibrium stresses are
radial (;) and shear stress (7). In Figure 3.2 (b), equal and opposite stresses to those in Figure
3.2 (a) are applied at the core-hole. It is assumed that the material is linear elastic. The loading
shown in Figure 3.2(b) can therefore be superposed with that in Figure 3.2(a), and the sum of
these two, shown in Figure 3.2(c), is the resulting stress state after the core-hole is drilled.
Thus, the loading in Figure 3.2(b}, and the associated displacements, corresponds to the in-situ
stress relaxation due to the drilling of the core-hole. The foregoing shows that the in-situ stress
relaxation due to core-hole drilling, and the corresponding displacement relaxation, can be
modeled as shown in Figure 3.2(b).

The illustration discussed in Figure 3.2 treats the core-hole case. Unfortunately, because of the
complexity of the core-hole geometry, there is no closed-form solution available from the
theory of elasticity. In order to solve this problem, it is simplified as an infinite thin plate with a
hole drilled completely through the plate thickness (i.c. a through-hole) and loaded at the hole
surface, as shown in Figure 3.3. N and T are the in-situ stresses that are relieved due to the
through-hole drilling. These stresses are a function of a. If we know the in-situ state of stress
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prior to hole drilling in the structure, we can calculate the stresses N and T that act on the
through-hole surface.

Three different in-situ states of stress are considered in this research. The first in-situ state of
stress is biaxial uniform normal and shear stress, shown in Figure 3.4. In this research, this in-
situ state of stress is called the uniform stress state. The second in-situ state of stress considered
in this research is biaxial linear normal stress gradient and uniform shear stress, shown in
Figure 3.5. In this research, this in-situ state of stress is called the linear gradient stress state.
Kx and Ky are the angles of linear stress gradients from the y and x-axes, respectively. All the
stresses and angles in Figure 3.4 and Figure 3.5 are shown in the accepted positive sign
convention. The linear gradient stress state case is the more general stress state. The uniform
stress state is a specific case of the linear gradient stress state where Kx = Ky =0. In the
derivations, since linear gradient stress state involves more parameters to describe it, more
measured displacements are needed to evaluate it. Third in-situ state of stress in this research is
biaxial uniform normal and shear stress that are non-uniformly distributed through depth. In
this research, this in-situ state of stress is called the non-uniform stress state through depth. The
first two in-situ states of stress are considered for the derivation of the closed-form equations in
this chapter. The non-uniform stress state through thickness is treated in Chapter 7.

The other assumptions made in the derivations presented in this chapter are that the material is
linear elastic, isotropic, homogenous, and that the load is uniformly distributed through the
plate thickness. Now this problem can be solved for the load calculated from in-situ state of
stress. This problem is treated as two-dimensional problem of linear elasticity and solved for
plane stress and plane strain assumptions.

In order to derive equations for in-situ stresses as function of measured displacements, the
following steps are followed. First, equations for relieved displacements (i, V) are derived for
both the uniform stress state and the linear gradient stress state. The relieved displacement
equations (i, Vo) are then used to determine measured displacements (U). Then, equations are
derived which express the in-situ stresses as a function of measured displacements. In this
research, the term in-situ stress equation refers to an equation that expresses in-situ stresses as
function of measured displacements. The equations that express uniform stress state as a
function of measured displacements are called uniform in-situ stress equations. The equations
that express the linear gradient in-situ stress state as a function of measured displacements are
called linear gradient in-situ stress equations.

The organization of the remainder of this chapter is as follows. Section 3.2 derives equations
for relieved displacements due to a through-hole in a thin plate for the uniform stress state.
Section 3.3 derives equations for relieved displacements due to a through-hole in a thin plate
for the linear gradient stress state. Section 3.4 explains how measured displacements are
obtained from relieved displacements. Section 3.5 provides an overview of how the in-situ
stress equations are detived from the measured displacements. Section 3.6 derives in-situ stress
equations for the uniform in-situ stress state. Section 3.7 derives in-situ stress equations for
linear gradient stress state.
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3.2. RELIEVED DISPLACEMENT EQUATIONS FOR UNIFORM STRESS STATE

In this section, relieved displacement equations are derived for the uniform stress state, shown
in Figure 3.4. As shown in Figure 3.4, this state is represented by either cartesian stress

components (G, Gy, Ty) OF principal stresses and principal stress direction (Gmax, Omins ). In
generalized functional form, the relieved displacement equations for the uniform stress state are
expressed as follows.

4, v, = f(04,0,,T,)h f(0u:0,,T,) (3.1)
ur’ va = f(amax’aminﬂg)’ f(gmm’anﬁn>g) (32)

where the u, is relieved displacement on radial direction due to a hole drilled and v, is relieved
displacement on tangential direction due to 2 hole drilled.

First, closed-form equations for relieved displacements are derived in terms of the cartesian
stress components (Ow, Oy, %y) in Section 3.2.1. Then the closed-form equations for the
relieved displacements are derived as a function of principal stresses and principal stress
direction (G, Tmms &) in Section 3.2.2.

3.2.1. Relieved Displacement Equations in Terms of Cartesian Stress Components

Figure 3.6 shows an infinite thin plate under the uniform stress state expressed in terms of
cartesian stress components. Shown as dashed lines are the Jocation where a through-hole will
be drilled. Consider an infinitesimal point A on the dashed circle. The stress state on the
infinitesimal point A is shown in Figure 3.6 (c). From the equilibrium of the stresses on the
radial and tangential directions, we get normal (o) and shear stress (%) components as shown
below.

G. 3
o, = + 5 2 cos 200 + T, sin 2¢ (3.3)

T, .
Ty = —~———~2-m-—sm 20+ 7, cos2a (3.4)

To obtain the relieved displacements, stresses of equal magnitude and opposite sign of these
stresses are applied to the edge of the through-hole as was shown earlier in Figure 3.3. The
normal (N) and the shear stresses (7) represent the relieved in-situ stresses after drilling the
through-hole. The applied stresses are

O, +0, Og—0, ,
N=-0,=~ ) cos 2q -~ T, 8in 2¢r (3.5)
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o, —0

T =%, = ——m?ﬂwsin 20— 17, cos 2 (3.6)

Now the problem we need to solve is an infinite plate with a circular through-hole subjected to
normal (N) and tangential (7) stresses at the edge of the through-hole as shown in Figure 3.3.
The problem is solved for displacement using the potential function of complex method {see,
for example Muskhelishvili (1953)).

The biharmonic equation as the governing equation for an isotropic material is given as

4 4 4
vy =2U 00,5 9V o 3.7
ox® oy ox"ady

This two-dimensional problem of the theory of clasticity can be solved by finding a biharmonic
function U (, y) that satisfies boundary conditions.

It is known that the biharmonic function U (x, y) can be expressed as
U(x,y) = Re[Zg(2) + x(2)] (3.8)
where @(z) and x(z) are analytic functions of complex variable z. Z is conjugate of z,
where
z=x+iy=re (3.9
F=x—iy=re (3.10)
where  and « define the cylindrical coordinate system. r is the radial distance of a point from

the center. The displacement and stress equation for a polar coordinate system is given as
(Muskhelishvili (1953))

2l +iv,) =& | 1p(2) - 20D -V )] (3.11)
X, +iY = (2) + 20'(D) + p(2) (3.12)
where
_3= for plane stress
« 1+v P
7 =3-4v for plane strain (3.13)
= ) modulus of rigidity

27



We now express ¢(z) and y(z) fora region bounded by a circle as

P(z) = iakz"‘ (3.14)
w(z) = iaéz‘* (3.15)

!

where the a;'s and a 's are constants to be determined.

Writing the normal and tangential stresses in terms of these new holomorphic functions gives
qo(z)+zm+‘(;(.;)-m i/i,,e’"“ =N il (3.16)
The solution of an infinite plate with a through-hole subjected to stresses N and T is given
below.
N-iT = iAke”‘“ (3.17)
Koo
Substituting Equations (3.5) and (3.6) in to Equation (3.17) we get

Oy 10y O~
2

o, .
S cos 2a — T, sin 2¢

- o - (3.18)
~i (m"‘—f’?w sin 2¢ — 7, €08 ZaJ =y A4.e™
kw0
Simplifying Equation (3.18) yields
+o, O, . © .
_ O'xx wo_ o O-yy eZ;a’ ’__I-Txyeflfa - Z Akerka (3.19)
2 2 JemntO
In extended form Equation (3.19) yields
o +o, O.,=0C, i i .
XX W W ie e + A R + A ~Xio + A ~idce
5 5 e —ir e ,€ € € (320)

+ A4, + A + A, + A+

From Equation (3.20) we get
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A, =0 k=1
__out0y,
2
40 (3.21)
= - xx; 2 yir,
A0 k23

To find the coefficients a, anda; we use the stresses at infinity. Since the stresses are zero at

infinity, we have for large 2!

The rest of the coefficients a; s and a; s can be obtained

=T"=0

3.22
a,=I'=0, a, =T"'=0 (322)

from Equations (3.16), (3.21) and the

single valuedness which is obtained from Equation (3.11) as ya; + g =0

Aa . Aa

a, = = , = = () 323
! 1+ % % 1+ % ( )
azzf‘a2+22a2=0~g"5——;m’~y—az—ir@az
(3.24)
G =0,
azﬂ-{ +zrxy)a
+
a, =20a* ~ 4,a* —0~(—O-xx 2GW az}
(3.25)
o.+0
a, =—— 2 ot
2
G =44 (3.26)
a =0 ne
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2
a,=(n-lHa'a,,~a'4,, , n23

!
a, =0

Thus, expressions for p(z) and w(z) can be found from Equation (3.14) as follows

- - 1
Ha)=D az " =a,~
=0 “

Substituting the value of @, into Equation (3.28) we get

T =0,

¢(z>=——[—"—”—2—-~+ffxy)azﬁ-

—k+1

z
—k+1

p(2)= | f)dz = a,

Tn,—0,

e . 1
p(z)= (———Z-——M + n‘xy] a —;

o
V()= a ' =a,'z7 +a,'z"
&0

4

o 40 1 30 -0

s ,_jE______gg.tzz “MM»._.__.__ff_.___lgLC14 — 3[1' e

2 2 2 =z gt

o +0 1 30,0 _a

\Il(z)x 2‘ W"az?—'é“mm’——"z4 Wa4~3zrxy~2—:-4—
o+ 1 30_~0 at
2= (P()dz =2 —+ =2 2 g 13—
v I() 2 z 2 ¥ 23

The displacement equation is given as follows
2uu, +iv,) =™ { 7p(2)- 20'@) -V (2)]

After substituting Equations (3.34) and (3.31) in to (3.11) we get
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(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)



. - Ou—0
2ulu, +iv,)y=e" {[fm’“——i(—yﬂﬂgylaz %— z(—(»»—"—‘-iw—”'——wirxy}az -;,_i—f]
z
(3.36)

o,,t+o 1 30,-0 4
a0 po g iiE 2 g i, —
2 z 2 z
Now, from Equation (3.36), the radial and tangential relieved displacement equations (4, Vo)

can be found as

o +o. & o.-0, 1(d & d
= gom Tp LT gy 008 20

¥ ¥ ¥

(3.37)
i aZ a2 4
T | e — = [SID 20X
Pou\r r r
— 2 2 4
vazow"" In 1 4 Ly~ lsin2e
2 2u\r r
(2 . (3.38)
Ty g 8 " lcos2e
2u\r r r
Defining three constants A, B and C as follows
2
=2 (3.39
2ur
2P+ -a
gl d ) (340)
2ur
A (ri-p-ad
C= ( 2 ) (3.41)

2 m’3

where p and y are defined earlier in to Equation (3.13).

The relieved displacement equation in the radial and tangential directions (v and v,) become

- (G’“ :O-”) A+ (d’“ ;dyy) Bcos2a + 7, Bsin2a (3.42)

o, -0
( = 5 ”)CsinZaﬂrxyCcos.’Za (3.43)
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For plane stress and plane strain conditions, the values of the constants A, B, and C are given in
Table 3.1.

3.2.2. Relieved Displacement Equations in Terms of Principal Stresses

The relieved displacement equations given by Equations (3.42) and (3.43) are derived as a
function of cartesian stress components, Ow, , Oy » Ty- WE EXpress now the relieved
displacements equations as a function of principal Stresses Owan Omin, 0. Figure 3.7 shows
cartesian stress components and principal stresses. The relieved displacement Equations (3.42)
and (3.43) are transformed to the x’-axis by taking 7 = 0, Oyx = Omax, Oyy™ Omin and ¢ = 0-0 in the
equations to get relieved displacement equations in terms of principal stresses. This leads to

y, = 4 {Cmae* in) , p Omx = Frin) (52, (3.44)
2 2
y, = c(f-f-"ﬂ—'z'-«-‘?i’ﬂ)—sin 2a1 (3.45)

3.3. RELIEVED DISPLACEMENT EQUATIONS FOR LINEAR GRADIENT STRESS
STATE

In this section, relieved displacement equations are derived for the linear gradient stress state.
As shown in Figure 3.8 the linear gradient stress state (Figure 3.8(a)) is broken in to two parts
(Figure 3.8(b) and (c)). The first part, the uniform stress state shown in Figure 3.8(b), has
already been treated in the previous section. In this section, the relieved displacements
equations are derived for the second part, shown in Figure 3.8(c). Then the superposition of the
two parts is taken to get the relieved displacement equations for the linear gradient stress state.

The stress state shown in Figure 3.8(c) is called the concentric linear gradient stress state. All
of the directions shown in this figure are assumed positive. Kx and Ky are the angles of the
linear stress gradients to the y- and x-axes, respectively.

Similar to the previous sections, this problem is solved by considering an infinite plate with a
through-hole loaded at the through-hole surface. The load applied at the through-hole surface is
found by considering the initial in-situ state of stresses prior to drilling the through-hole. First,
a uniaxial concentric linear gradient normal stress state is considered, as shown in Figure 3.9
(a). Then the solution will then be extended to a biaxial stress state case.

The dashed circle in Figure 3.9 (a) represents the location of the through-hole surface before

drilling the through-hole. Normal (o;) and shear stress (%) around the dashed circle are
calculated by taking the equilibrium of the stresses on an infinitesimal point A on the dashed

circle, as shown in Figure 3.9 (c).

o, = Kxacos’ (a)sin(a) (3.46)
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7. =-Kxasin®(@)cos() (3.47)

re

where g is the radius of the through-hole. Kx is the angle of stress gradient. Now consider the
case when the edge of the through-hole is subjected to normal (V) and tangential (7) stresses of
equal magnitude and opposite sign to those computed in the equations above. It is also assumed
that stresses vanish at infinity. The applied stresses are

N =—¢, = ~Kxacos’ (a)sin(a) (3.48)
T = -1,, = Kxasin’ (@) cos(&) (3.49)

Similar to Section 3.2, the problem we need to solve is an infinite plate with a circular through-
hole subjected to normal (N) and tangential (7) stresses at the edge of the through-hole as
shown in Figure 3.3. The problem is again solved for displacements using the function of
complex method [see, for example Muskhelishvili (1953)].

The solution of an infinite plate with a through-hole subjected to stresses N and T due uniaxial
uniform stresses is given below.

N-iT= ) Ae* (3.50)

ks

Substituting Equations (3.48) and (3.49) in to Equation (3.50) we obtain

Kxacos’(a)sin(a) —i Kxasin® (@) cos(@) = Y, 4" (3.51)
k=0
—K—}gi e ——%ﬁi e’ = Y A" (3.52)
k==t

From Equation (3.52) we get

\Kxa. Kxa.
A_} %“Tl s AS =T1

A,=0 k=2 (3.53)
Ay=A,=A,=0
A0 k=4

Since the stresses are zero at infinity, we have for the coefficients a; s and a; as

F=I"=0

(3.54)
a,=T=0, gy=T"'=0
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a,'=(n-Dd'a,,~a" 4., 13

a3'xKa4i

4
a,'=0
a,'=-iKa’
a,'=0 nz6

Thus, expressions for ¢(2z) and w(z) can then be found from Equation (3.14) as follows

& _ 1
#(z) = Zakz = a7
k=0 z

Substituting value of a3 into Equation (3.60) we obtain

sy =

Z

—k+1

o) = | $)E = Vo=

Ka“WI_
g z*

p(z)=

Ka* 1
2 2

o
Y()=2.a'z =a a2t =iy
k=0

Ka' 1. Kda 1
4

w(z)= [W(2)dz =i g
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(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)



— Kda*'l Kd]
_; i 1 3.66
w(z) =i 2 7 A (3.66)

The displacement equation is given as follows
dut, +iv,) = {20() - 29D ~v (D)} (3.67)
After substituting Equations (3.63) and (3.66) in to Equation (3.67) we get

4 4
Zﬂ(uﬁfva)me"”“{ﬂm;a ”’f%z“—”em(me 1 ]

rie 4 r3e-3ia
(3.68)
Kxa® 1 Kxd® 1
—i g et —! 4 e
4 4
2 pu, +iv,)= —%Ex—%(icoﬁa +sin3a) P—I—(—x—-%(icos 3¢ —sin3a)
8 r 4 r (3.69)
—~~—Kéc~—?-i(icosacwsina)+—-I§x~—£‘-(z‘cos3aﬂsin3a)
8 4 r

Now, from Equation (3.69), the radial and tangential relieved displacement equations (i, Va)
can be found as

4 & (rre+y-24°
u, = Kx az sing + ( X)q )sinBa (3.70)
16r°u 16 ur
4 & (re-p-24
, = Kxd— az cosa+ ( ( X),‘ )00330: (3.71)
167" 1 16 ur

Defining four constants F, H, I and .J as follows

4

a
F= 3.72
16 ur’ 3.72)

a{2a* -2+
H= ( ( Z)) (3.73)
16pur

4

a
e 3.74
16 pv’ @.74)
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a (rr2-p-24°
e 3’)4 ) (3.75)
16 ur

The relieved displacement equations in the radial and tangential directions (u, and v,) are as
follows.

u, = Kx(F'sina + H sin3ax) (3.76)
v, = Kx(Jcosa +.J cos3a) 3.77)

For plane stress and plane strain conditions, the values of F, H, I, and Jare given in the Table
3.2,

Equations (3.76) and (3.77) for the uniaxial concentric linear gradient stress state are extended
to the biaxial concentric linear gradient stress state as shown in Figure 3.10. Relieved
displacement equations for the linear stress gradient in the y direction are obtained by replacing
Kx with Ky and taking o= a-7/2 in Equations (3.76) and (3.77), namely

u, =Ky(—Fcosa+ H cos3a) (3.78)
v, = Ky(Icosoa — J cos3cx) (3.79)

As shown in Figure 3.10, the superposition of Equations (3.76) and (3.78) give the equation for
relieved radial displacement for the biaxial concentric linear gradient stress state. Similarly, the
superposition of Equations (3.77) and (3.79) gives the equation for the relieved tangential
displacement for the biaxial concentric linear gradient stress state.

u = Kx(Fsina + Hsin3a) + Ky(—~F cosa + H cos3a) (3.80)
v, = Kx(Icosa +Jcos3e) + Ky(Isina ~ Jsin3a) (3.81)

Now we can obtain relieved displacement equations for the linear gradient stress state by
superposing the relieved displacement Equations (3.42) and (3.43) for the uniform stress state
and the relieved displacement Equations (3.80) and (3.81), as shown in Figure 3.8. The relieved
displacement equations for the linear gradient stress state, shown in Figure 3.5, are as follows

_ (o,+0,) (0,-0,) .
u, =4 +B 3 cos2a +Br,,sin2a (.82)
+ Kx (Fsina + Hsin3a)+ Ky(~F cosa + H cos3a)
v —MCsin2a—r Ccos2aKx(fcosa+Jcos3a)
@ 2 o (3.83)

+ Ky(Isina —Jsin3a)
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3.4. MEASURED DISPLACEMENT

In the previous sections, the equations for the relieved displacements (u, va) were derived.
Relieved displacement equations give the displacement of a point relative to the center of the
through-hole. However, in practice, a displacement measurement might be taken between two
points, neither of which are the center of the hole. As explained eatlier, in this study, a
displacement between two points is called measured displacement and shown with U.
According to this definition, a relieved displacement can also be a measured displacement if
one of the points is the center of the hole.

We can express measured displacements in terms of relieved displacements. Figure 3.11 is a
representation of a displacement measurement between two measurement points due to hole
drilling. The two measurement points are identified as i and j in the figure. Measurement points
are to the points between which the displacement measurements are made. From the relieved
displacement equation, we can find the relieved displacement (4, Va) of each of these points.
Relieved displacements of these points in the radial and tangential directions are noted in the
figure. To find the measured displacement between these points, we need to take the projection
of the relieved displacements on the line drawn between the two points. Thus, the measured
displacement between the two measurement points is defined in terms of relieved
displacements as follows

U = (, cos(8,)—v,sin(@, ) - (u,cos(6,)—v, sin(@,,)) (3.84)

where
6, =c,+f (3.85)
g,=0,+p (3.86)

(e, +a,)

; (3.87)

In this research, the length between the two measurement points is identified as L. Measured
displacements are obtained by measuring the distance between the two measurement points
before (Lpefore) and after (Laner) the hole is drilled. Then, taking the difference of these
displacement values, we obtain the measured displacement ()

U=Lype—L (3.89)

after

3.5. OVERVIEW OF DERIVATION OF IN-SITU STRESS EQUATIONS

Relieved displacement Equations (3.42), (3.43), (3.82), (3.83) have been derived for two
different in-situ states of stress: (1) uniform stress; and, (2) linear gradient stress. These two
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states of stress were defined in Section 3.1 and shown in Figure 3.4 and 3.5. Measured
displacements are obtained from relieved displacements using Equation (3.84).

The objective of this section and the remaining sections in this chapter is to derive equations for
in-situ stress as a function of measured displacements (U).

In the generalized functional form, measured displacements for the uniform stress state can be
expressed in terms of cartesian stress components and principal stresses as follows

U= f(0,:0,:7,) (3.89)
U = f(o'max’dmin ’9) (3'90)

Similarly, in the generalized functional form, measured displacements for the linear gradient
stress state can be expressed as follows

U= f(0,4:0,,,7,,. KX, Ky) (3.9

Now we want to express in-situ stress components, which are variables in Equations (3.89),
(3.90) and (3.91), as a function of measured displacements. In order to achieve this goal, we
first assume that the in-situ stresses in Equations (3.89), (3.90) and (3.91) as unknowns. There
are three unknown in-situ stresses for the uniform stress state, and five unknown in-situ stresses
for linear gradient stress state. To solve Equations (3.89) and (3.90) for in-situ stresses of the
uniform stress state, three equations are needed. These three equations are obtained by making
three displacement measurements (U, UZ, U3). Similarly, to solve Equation (3.91) for the
linear gradient stresses, five equations are needed. We get these five equations by making five
displacement measurements (U1, Uz, U3, U4, US5).

In this research, equations that express in-situ stresses for the uniform stress state as a function
of measured displacements are called uniform in-situ stress equations. Similarly, equations that
express in-situ stresses for the linear gradient stress state as a function of measured

displacements are called linear gradient in-situ stress equations.

In generalized functional form, uniform in-situ stresses equations in terms of cartesian stress
components (G, Oy, Ty) and principal stresses ( Oomaxs Owmins ©) are expressed as a function of
measured displacements as follows

0,.0,,%, = fULU2,U3), fULULU3), fULU2U3) (3.92)
G Gan0= FULU2,U3), fULU2,U3), fULU2,U3) (3.93)

The uniform in-situ stress equations are derived in Section 3.6.

In generalized functional form, linear gradient in-situ stress equations are expressed as
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0r0,.7, K6, Ky = fULU2,U3,U4US), f(ULU2.U3,UAUS),
FULU2,U3,U4US), f(ULU2,U3,U4,US), (3.94)
FWULU2,U3U4US)

The linear gradient in-situ stress equations are derived in Section 3.7

A total of 13 different Test Configurations are treated in this research. A test Configuration
refers to a specific set of measured displacements. Eight of these Test Configurations are for
the uniform stress state, and the remaining five Test Configurations are for the linear gradient

stress state.

The 13 different Test Configurations are classified in to one of four different Types as shown in
Figure 3.12. In each drawing, the core-hole is shown as a solid line circle, and the hole
diameter is Dy. All the measurement points in the Test Configurations are placed on the same
fictitious circle if the measurement point is not the center of the hole. This fictitious circle,
whose radius and diameter are identified r,, and D, is termed measurement circle. In Figure
3.12, the measurement circle is shown with a dashed line. The radius and diameter of the
measurement circle are termed measurement circle vadius (r) and measurement circle

diameter (Dy,), respectively.

In Type I configurations (Figure 3.12(a)), for each measurement to be made, one measurement
point is positioned at the center of the hole, and the second measurement point is outside of the
diameter Dy In Type Il configurations (Figure 3.12(b)), for each measurement to be made, both
measurement points are outside of the diameter Dy, and the measurement is made across the
center of the hole. In Type III configurations (Figure 3.12 (c)), for each measurement to be
made, both measurement points lie outside of the diameter Dy, and the measurement is made
between the two points along a line which does not intersect the hole. Type IV configurations
are comprised of any combinations of Type I, I and Il measuremenis. An example of this is

shown in Figure 3.12 (d).

The in-situ stress equations are derived as follows. First, for a particular Test Configuration, the
measured displacements are written in terms of the relieved displacements. The resulting sets of
linear equations are then solved for the in-situ stress components in terms of the measured
displacements. For some of the Test Configurations, the derivations become quite cumbersome
(if not impossible) to solve with hand calculations. In these instances, the linear equations are
solved using MATHEMATICA (Wolfram 2000). MATHEMATICA is a general computer
software system and language that uses numerical and symbolic calculations

3.6. DERIVATION OF UNIFORM IN-SITU STRESS EQUATIONS

As explained before, the uniform stress state is represented by either cartesian stress
COMPONENts Txs, T3y, Ty OF principal stresses Omar, Omin and the principal stress direction 6. The
objective of the formulation presented here is to express the uniform in-situ stress state in terms
of the measured displacements. As shown in Equations (3.92) and (3.93), the displacements

39



may be used to compute the principal stresses directly, or to compute the rectangular
components of these stresses.

Uniform in-situ stress equations are derived for the 8 different Test Configurations shown in
Figure 3.12. Two sets of equations are derived for each Test Configuration. One set of
equations calculates cartesian stress components Oxx, Oy Tay The other set of equations
calculates principal stresses Oiax, Omin and direction &. Columns 2 and 3 in Figure 3.12 shows
the equation numbers of the equation for cartesian stress components and principal stresses for
each Test Configuration. This is done to help reader locate equations that are of particular
interest. The derivations presented in the following are grouped by Type of Test Configuration.

3.6.1. Typel

There are two Type 1 Test Configurations, A and B, as shown in Figure 3.13. The measurement
points a, b, ¢ are 45 degrees apart in Test Configuration A. In Test Configuration B, the
measurement points are 60 degrees apart. For each configuration, we need to have measured
displacement at points a, b and ¢ relative the center of the hole at O. Since all displacement
measurements are taken relative to the center of the hole, all measured displacement (U) values
are equal to relieved displacements (u,) values. Thus, the relieved displacement equation ()
directly gives the measured displacement values.

We can also calculate measured displacement using Equation (3.84). In measurement Type I, 4
and v; are equal to zero since displacement at the center of the hole is zero. From Equation
(3.87) we get

_ 7 —(ai+(oi+ 7)) - —ai
2

B

and when we substitute 8 into Equations (3.85) and (3.84), we get
G=ai—ai=0

U =u,cos(0)—v, sin(0) =y, (3.95)

As seen from Equation (3.95), measured displacements in measurement Type 1 are equal to
relieved displacements in the radial direction.

Relieved displacement equations were derived before as a function of cartesian stress
components and principal stresses in Equations (3.42) and (3.44). The measured displacements
for both Type 1 Test Configurations are expressed in terms of cartesian stress components and
principal stresses as follows

Ueu =A(d”+a”')+B(0”_GW)

I3

cos2¢a + Br,, sin2a (3.96)
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U=u =A(_%w,s_"ﬁn..liﬂ.).+ BMﬂQcos_’Za (3.97)
¥ 2 2 1

where ais the angle measured counter-clockwise from direction of point a to #y. o= -6, @ is
the angle measured counter-clockwise from direction of point a to direction of principal stress

O'max.
3.6.1.1. Test Configuration A

Uniform In-situ Stress Equations in Terms of Cartesian Stress Components

The measured displacements Test Configuration A are expressed as a function of cartesian
stress components by Equation (3.96). In this equation, there are three unknowns Oxx, Gy and
7y To get these cartesian stress components, three displacement measurements are made. As
shown in Figure 3.13, the three displacement measurements are Ul, U2, U3 at points a, b, ¢ are
required for Test Configuration A. Equation (3.96) is applied at three different locations a, b,
and ¢ shown in Figure 3.12 to obtain three measured displacements UI, U2 and U3.

U=y, = 4=t 4+ %% (3.98)
2 2
+
2mu = a8t e (3.99)
+ .
U3=uc—_—A(o-’°‘ 2%’)—3(6’“ 2%) (3.100)

Equations (3.98), (3.99) and (3.100) express the three measured displacements Ul, U2 and U3
in terms of the three desired stresses Gix, Oy and 7%, Solving these three equations leads to
three equations for stresses

-, =A(~~»U1+U3)~*~B(UI+_U3) (3.101)
248
o - AUI-UN)+BULI+U3) (3.102)
»” 24B '
U1-202+U3
_ 3.103
, = (3.103)
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Uniform In-situ Stress Equations in Terms of Principal Stresses and Direction

Here uniform in-situ stress equations in terms of principal stresses are derived as a function of
measured displacements. The measured displacements for Test Configuration A are expressed
as a function of principal stresses by Equation (3.97). In this equation, there are three unknowns
Omax Omin, and 6 To get these principal stresses, three displacement measurements are made.
Equation (3.97) is applied to the Test Configuration A as shown in Figure 3.12 to obtain three
measured displacements U1, U2 and U3

Ul=u, =A£‘-’mi’2ﬁ@;al+3wcosz(~9) (3.104)
UzmubzA(ﬁmgmﬁM+B(—”m§£‘im—)cosz(mem/4) (3.105)
Ul=u, mAE'&*Lz—‘fwﬁ+chosz(—a+m/2) (3.106)

These equations are simplified as follows

Ul=u, MW@ Biﬁ'ﬁa&—gﬁlmsz@ (3.107)
U2=u, = AW+BWSin 20 (3.108)
Ul=u, =A-(—‘Zﬂﬂ-l£-ﬂ“iﬂ—)—3£9m%§mwcosza (3.109)

Equations (3.107), (3.108) and (3.109) express the three measured displacements Ul, U2 and
U3 in terms of the principal stresses Oiu, Omm» and the direction @. Solving these three
equations leads to three equations for principal stresses and direction

Ul+U3  JUI-U3) +(U1+U3-2U2)
o = + (3.110)
24 2B
- 2 - 2
o = Ul+U3 _ JU1=U3) +(U1+U3-2U2) 1)
24 2B
0= I/ZaFCIGH[W} (3.112)
U1-U3
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Direct calculation of the angle @ using the common one argument arctan function can give an
error of + 90. The correct angle can be found by using the two-argument arcian function, where
the signs of the numerator and denominator are taken into account.

Table 3.3 can be used to find the correct angle. A positive value of 6, say 6=n/3, indicates that
O 11€8 60° anti-clockwise of the direction of measurement location a. A negative value of a,
say §=-n/3, indicates that that Gpax lies 60° clockwise of the direction of measurement location
a. The case where both Ul+U3-2U2=0 and Ul+ U/2=0 corresponds to an equal biaxial stress
field, for which the angle & has no meaning.

3.6.1.2. Test Configuration B

Uniform In-situ Stress Equations in Terms of Cartesian Stress Components

As shown in Figure 3.13, three displacement measurements Ul, U2, U3 at points a, b, ¢ are
required for Test Configuration B. Equation (3.96) is applied to Test Configuration B as shown
Figure 3.13 to obtain three measured displacements Ui, u2

Ul=u, ";\/EBTW—(A“—I%)O'I +(4 +-J—§—)a'y (3.113)
B B

U2 =u, =~3Br,, +(4 WE)O} +(d+2)o, (3.114)
B B

U3 =u_=—[3Br1, A=), + A+, (3.115)

Equations (3.113), (3.1 14) and (3.115) express the three measured displacements Ul, U2 and
U3 in terms of the three desired stresses Oxx, Gy and 7. Solving these three equations leads to
three equations for stresses

- = AQUL-U2-U3)+BU1+U2+U3) (3.116)
34B
. | AQUI-U2-U3)+BUL+U2+U3) 3.117)
w 3AB '
U2-U3
- 3.118
» " 238 1D
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Uniform In-situ Stress Equations in Terms of Principal Stresses and Direction

Equation (3.97) is applied to the points a, b, and c, to obtain three measured displacements Ul,
U2 and U3

Ul=u, =(Ad+ Bcos(20))0  + (4~ Bcos(20))0 . (3.119)

U2=u,=(4~ B os20)+3 B snoyo,.,
2 2 (3.120)

+(A+ —g—cos(%?) - Jgig-sin(ZQ NG sin

Ul=u, =§cos(ﬂ£-29) (O ~ Tonin)
3 (3.121)

+ %COS(%JE" - 29) (O—max = d.min) + A(O'max - O_min)

Equations (3.119), (3.120) and (3.121) expres the three measured displacements U1, U2 and U3
in terms of the princial stresses and the direction. Solving the above equations, the in-situ state
of stresses in terms of principal stresses Omax Omin, and the direction @ are as follows

_UL+U2+U3 2(UT +U2 —U2 U3+U3* ~U1U2+U3))

3.122
O 34 3B (3122)
Ul+U2+U3 24(UF +U2 ~U2 U3+U3 -UlU2+U3) .
o = - (3.123)
34 3B
i i
2
@ = —arcsec| — (3.124)
s 2W1-U2-U3
i JUP +U22 -U2 U3+U3 Ul (U2+U3) |
3.6.2. Type Il

There are three Type Il Test Configurations, C, D and E, as shown in Figure 3.13. As shown in
the figure, measured displacements Ul, U2, U3 are taken between two poinis across the center
of the core hole. Using Equation (3.84), measured displacements are found as explained below.

Since displacement measurements are taken between two points 180 degrees apart from each
other
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&; =, +7

_n~(e,ta, v )

B 5 ;
0,=0,=c,+f=0,~0;=0 (3.125)
8,=0,=a,+f=(a,+n)~, =7 (3.126)

Substituting the values of 8 and 6, into Equation (3.84) leads to

U = (u; cos(8if) — v, sin(@if)) - (u,; cos(0 ji) — v, sin(@ ji))
= (u, cos(0) ~v,sin(0)) - (u, cos(z) — v, sin(x)) (3.127)

;u,.+uj

The relieved displacement equations were derived earlier as a function of cartesian stress
components and principal stresses (Equations (3.42) to (3.44)). Thus, substituting Equations
(3.42) and (3.44) into the Equation (3.127), the measured displacements for all Type II Test
Configurations are expressed in terms of cartesian stress components and in terms of principal
stresses, respectively, as follows:

U=u,+u,= Ao, +0,)+B (0, —0,)c0s2a,+28B7, sin 2, (3.128)

Y+ B (0, = O }€0S 24, (3.129)

min

U=u+u, =A(0,, +0,

3.6.2.1. Test Configuration C

Uniform In-situ Stress Equations in Terms of Cartesian Stress Components

As shown in Figure 3.13, three displacement measurements Ul, U2, U3 are required for Test
Configuration B. Equation (3.128) is applied to Test Configuration B to obtain three measured
displacements UJ, U2 and U3.

Ul=u, +u, =(A(o, +0c,)+B(o,~0,)) (3.130)
U2=u,+u,=24(c,, +0,)+Br, (3.131)
Ul=u,+u,= Ao, +0,)-Blo,-0,) (3.132)
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Equations (3.130), (3.131) and (3.132) express the three measured displacements Ul U2 and
{3 in terms of the three desired stresses Gi Ty, and 7. Solving these three equations leads to
three equations for stresses

o= A(—U1+U3)+B(U1+U3) (3.133)
4AB
- =A(U1—-U3)+B(U1+U3) (3.134)
» 4AB '
Ut-202+U3

Uniform In-situ Stress Equations in Terms of Principal Stresses and Direction

Equation (3.129) is applied to Test Configuration C to get measured displacements UI, U2, U3.

Ul=u, +11, = (A+ BOS(20)0 y, + (A~ BOS(20)05s) (3.136)
U2=u, +u, =2((4+B c08(28)0 e + (4~ Bcos(20)0 1) (3.137)
Ul=u, +u, =2((4— Bcos(20)o,, +(A+B cos(20)0 ) (3.138)

Equations (3.136), (3.137) and (3.138) express the three measured displacements Ul, U2 and
/3 in terms of the three desired stresses Omax, Owmins and 6. Solving these three equations leads to
three equations for stresses

_UL+U3 JUIZU3 + U1+ U3-202)"

3.139
5 U3 _Jwi-u3y +@1+U3-202) (3.140)
44 4B
9 =~ ArcCos| - ui-us (3.141)
2 JUI-U3) +(U1-2U2+U3)
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3.6.2.2. Test Configuration D

Uniform In-situ Stress Equations in Terms of Cartesian Stress Components

As shown in Figure 3.13, three displacement measurements Ul, U2, U3 are required for Test
Configuration D. Equation (3.128) is applied to the Test Configuration B to obtain three
measured displacements U, U2 and U3.

Ul=u, +u, = A0, +0,)+B (0,.-0,) (3.142)
U2=u, +u, =23Br,, + (24~ B)o,, +(24+ B)o,, (3.143)
U3 =u, +u, =238z, +(24-B)o, +(24+ B)o,, (3.144)

Equations (3.142), (3.143) and (3.144) express the three measured displacements U1, U2 and
173 in terms of the three desired stresses Oz Gy, and %, Solving these three equations Jeads to
three equations for stresses

_AQUI-U2-U3)+BU1+U2+U3)

3.145
T 6B (3.145)
AQUI=-U2-U3)+BUI+U2+U3
o, = ( G)AB ( ) (3.146)
uz2-uUs
T = 3.147

Uniform In-situ Stress Equations in Terms of Principal Stresses and Direction

Equation (3.129) is applied to Test Configuration C to get measured displacements U1, U2, U3.

Ul=u, +u, =(A+ Bcos(20))0,,, +(4—B cos(28))o (3.148)
U2 =u, +u, =(24~ Bcos(20) + V3Bsin(20))6 e (3.149)
+(24+ Beos(20) ~3Bsin(20))o ;. '
4z
U3 =u, +u, = Beos(———20) (C e ™ nin)
3 (3.150)

+B cos(-I%iT- —20) (0 — Crmin )+ 2A(C s = Tin)
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Equations (3.148), (3.149) and (3.150) express the three measured displacements U, U2 and
U3 in terms of the three desired stresses Omax, Omins and direction 6 Solving these three
equations leads to three equations for stresses

_U1+U2+4U3 2 JUP +U2* ~U2 U3+U3 ~ULU2+U3)) G.151)

o,
s 64 65
Ul+U2+U3 2JUP +U22-U2 U3+U3* -UWU2+U3))
o, = - (3.152)
64 6B
2
8 = —ArcSec! ~ (3.153)
., 2W1-U2-U3
i JUP +U22 ~U2 U3+U3 -UL (U2+U3) |

3.6.2.3. Test Configuration E

Uniform In-situ Stress Equations in Terms of Cartesian Stress Components

As shown in Figure 3.13, three displacement measurements U1, U2, U3 are required for Test
Configuration E. Equation (3.128) is applied to Test Configuration B to obtain three measured
displacements Ul, U2 and I73.

Ul=u, +u, =(4d+B)o, +(4-B)o,, (3.154)
U2 =u, +u, = 23Br, + (24~ B)o,, +(24+ B)o,, (3.155)
U3=u, +u,=(A-B)o, +(4d+B)o,, (3.156)

Equations (3.154), (3.155) and (3.156) express the three measured displacements UI, UZ and
[73 in terms of the three desired stresses Ox, Oy and 7. Solving these three equations leads to
three equations for stresses

_ AU1-U3)+BUL+U3)

3.157
T 448 (3.157)
A~U1+U3) + BU1+U3
v, = ( 4?43( ) (3.158)
Ul—4U2+3U3
. 3.159
> 438 (3-159)
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Uniform In-situ Stress Equations in Terms of Principal Stresses and Direction

Equation (3.129) is applied to Test Configuration C to get measured displacements Ul, U2, U3.

Ul =u, +u, =(A+Bcos(20))0  + (4~ Bcos(20))0 (3.160)

U2 =, +u, = (24— Bcos(20)+\BBsin(20))0,, 16D
+(24 + Boos(20) —3Bsin(26))0,,;, '

U3=u, +1, = 2(4~ Boos(20))0 p + (A + Beos(20))00s ) (3.162)

Equations (3.160), (3.161) and (3.162) express the three measured displacements U7, U2 and
U3 in terms of the three desired stresses Omax, Omins and direction & Solving these three
equations leads to three equations for stresses

2
oL [_ 2 BUT-U2) +3(U2-U3)’ +3(U1+U3)] .
12 B y
2
o - 1_15 {2\/§\[(U1—U22;+3(U2—U3) +3(U1;U3)J G160

(3.165)

JO1-U2y +3U2-U3) }

1
# =——arcsec] —
2 [ JBU1-U3)

3.6.3. Type I

There is only one Type I Test Configuration, Test Configuration F, as shown in Figure 3.12.
As shown in the figure, measured displacements Ul, U2, and U3 are taken between two points
that do not intersect the hole. The measured displacements are calculated by Equation (3.84).

3.6.3.1. Test Configuration F

Uniform In-situ Stress Equations in Terms of Cartesian Stress Components

As shown in Figure 3.13, three displacement measurements U1, U2, U3 are required for Test
Configuration F. Equation (3.84) is applied to Test Configuration F to obtain three measured
displacements U1, U2 and U3.
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Ul = %(6(—3 +C)r,, +3(44-B+C)o,,

(3.166)
+3(44+B-C)o,)

U2=%(6(B«~C)rxy~+~J§(4A——B+C)dxx+«/§(4,4+B—C)O"yy) (3.167)

U3=—;-J§((2A+B—C)o*ﬂ +(24-B+C)o,) (3.168)

Equations (3.166), (3.167) and (3.168) express the three measured displacements U1, U2 and
U3 in terms of the three desired stresses Gy, O3y, and 5y. Solving these three equations leads to
three equations for stresses

_ 2AUL+U2-2U3)+(B-C) U1+U2+U3)

. 3.169
x 3J34(B-C) G189
o, - 2AU1+U2-2U3)+(B~-C) U1+U2+U3) (3.170)
334(B~C)
- __ui-uz) (3.171)
» " 3B+3C

Uniform In-situ Stress Equations in Terms of Principal Stresses and Direction

Equation (3.84) is applied to Test Configuration F to obtain measured displacements Ul, U2,
U3.

Ul= -12~—(C sin(2O)C, . — Omin) +C sin(% (77 4 60X O s — o)
+B3((A— Bcos(20))0,, +(A+ Bcos(20)0,,;,) (3.172)

+ \/5 (B cos(é- (70 + 60X, =~ O i) + A Oz = Crin ),

U= —;—(C sin(]gﬂ ~20)(0, . = T i) + 2C €0S(8) SIN(ON (=0 o O in)
+ B ((A~ Beos(26))0,,. +(A+ Bcos(20))o,,;,) (3.173)

VB (B0 E = 20)( e~ ) + A =)
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U3= »;:JE (24 + (B=C)C0S(20))0 ) + (2 A+ (=B + C)c0S(20))in) (3.174)

Equations (3.172), (3.173) and (3.174) express the three measured displacements Ul, U2 and
[/3 in terms of the three desired stresses GCmaxn Omins and directionf. Solving these three
equations leads to three equations for stresses

1
o = (B-C)YU1+U2+U3)
3J§A(B—C)( (3.175)
—44JUPUZ ~U2U3+U3 ~UIU2+ U3))
1
o = ((B=CYU1+U2+U3)
MAJURUZ —U2U3+U3 -UIU2+ U3))
- "1
0 = —arcsec 2 (3.177)

- - 2U1-U2-U3
JUT +U22 —U2 U3+UF ~U1 U2+U3) |

3.6.4. Type IV

There are two Type IV Test Configurations G and H, as shown in Figure 3.13. This
configuration Type is a combination Type 1T and Type IIL The measured displacements are
calculated by Equation (3.84).

3.6.4.1. Test Configuration G

Uniform In-situ Stress Equations in Terms of Cartesian Stress Components

As shown in Figure 3.13, three displacement measurements UI, U2, U3 are required for Test

Configuration G. Equation (3.84) is applied to Test Configuration G to obtain three measured
displacements UJ, U2 and U3.

Ul=(4+B)o, +(4-B)o,, (3.178)

U2=+2(2Cz + 4o, + Bo,, (3.179)
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U3=2((4~B)o,+(4+B)s,) (3.180)

Equations (3.178), (3.179) and (3.180) express the three measured displacements U1, U2 and
/3 in terms of the three desired stresses oy, Gy, and 7. Solving these three equations leads to
three equations for stresses

, _AUI-U3)+B U1+U3)

3.181
- 1B (3.181)

o = AUL-U3)+ B (U1+U3)

3.182
o 44B G152

__Ul-2V2U2+U3 (3.183)

F 4C

Uniform In-situ Stress Equations in Terms of Principal Stresses and Direction

Equation (3.84) is applied to the Test Configuration G to obtain measured displacements U],
Uz, U3.

Ul=(A4+ Bcos(20)0,,, + (A~ Bcos(20)o,,, (3.184)
U2=+2 ((4+Csin28)o, +(A-Csin(20)c, ) (3.185)
U3=2((4—-Bcos(28)o,,,, +(4A+ Beos(20)o .. ) (3.186)

Equations (3.184), (3.185) and (3.186) express the three measured displacements Ul, U2 and
U3 in terms of the three desired stresses Opac, Omin» and direction & Solving these three
equations leads to three equations for stresses

(U1+U3
+
A
a'mmi- N (3.187)
el g U 42 UlU2+
8U2 + 22U 3~ 42 U2U3+U3?
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U1+U3_
A
%ﬁ% | C'UI-U3)’+ (3.188)
=l dl 5 U1? —42 UlU2+
SU/2% + U3~ 42 U2U3+U3
C(U1-U3
6’:}2*arccos ( v U\[)‘) (3.189)
UL - 420102+ 80U 27
CHU1-U3Y + B ¥
U342 U2U3+UF
L. =

3.6.4.2. Test Configuration H

Uniform In-situ Stress Equations in Terms of Cartesian Stress Components

As shown in Figure 3.13, three displacement measurements Ul, U2, U3 are required for Test
Configuration H. Equation (3.84) is applied to Test Configuration H to obtain three measured
displacements Ul, U2 and U3.

Ul=(4+C)o, +(4-C)o,, (3.190)
172 =2((A-C)o,, +(4+C)o ) (3.191)
U3=~2(2Cr,, + Ao, + A0, (3.192)

Equations (3.190), (3.191) and (3.192) express the three measured displacements UJ, U2 and
/3 in terms of the three desired stresses G, Oy and Ty Solving these three equations leads to
three equations for stresses

AU1-U2)+CU1+U2) |
o= 3.193
= 2J24C (3.193)

A(—U1+U2)+C(U1+U2)
o= 3.194
» 2 oAC (3.194)

U1+U2~2U3

r m TR 3.195
» 22C (3.199)
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Uniform In-situ Stress Equations in Terms of Principal Stresses and Direction

Equation (3.84) is applied to Test Configuration H to obtain measured displacements (UI, UZ,
Us3).

Ul = (A- Bsin(20)0,,, +(A+ Bsin(20))o ., (3.196)
U2 = A2 (A + CSin20)0 g, + (A~ C5IN26))0 i) (3.197)
U3 = 2 (A = Cc08(20)0 s + (A +C 005(20))T i) (3.198)

Equations (3.196), (3.197) and (3.198) express the three measured displacements Ul, U2 and
U/3 in terms of the three desired stresses Omaxr, Omins and direction 6. Solving these three
equations leads to three equations for stresses

B (U2-U3) +C?
BBCU2-UU2+U3) [(201 - 2201U2+U3)
HU2+U3Y

~4CUNU2+U3)+ }
/

\"‘A\/m[ﬁ(Bz(UZWU?))Z +(2Ul2 +(U2+U3)2 ))

- B (U2-U3) +C
4A4BC| U2~ i )
(ZUi 2 2UNU2+ U3+ (U2+U3) )

(3.199)

B U2-U3) +C )
BBCU2-U3)U2+U3) | 201 ~22U1U2+U3)
(+(U2 +U3) J
ACPUIU2+U3)+

\+Am [ﬁ (B w2-U3y + (207 +(U2+U3)2)))
Oin =

- B U2-U3Y +C
44BC| U2~ . X
(zm 2 RUNU2+U3) +(U2+U3) )

(3.200)
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0 = —~arcsec| - 2 (3.201)

- WI1-U2-U3
] JUP +U2* ~U2 U3+U3* ~ UL (U2+U3) |

3.7. DERIVATION OF LINEAR GRADIENT IN-SITU STRESS EQUATIONS

The linear gradient in-situ stress equations, applicable to the linear gradient stress state shown
in Figure 3.5, are calculated here as a function measured displacements (U). The derivation
procedure is similar to the derivation procedure for the uniform in-situ stress equations. The
same Types of test configurations, except Type I and Type II are available for the linear
gradient in-situ stress state. The main difference here is the definition of the relieved
displacements. In the derivation of the linear gradient in-situ stress equations, the relieved
displacement Equations (3.82) and (3.83) are substituted in to Equation (3.84) to get measured
displacement.

The linear gradient in-situ stress equations are derived for the 5 Test Configurations shown in
Figure 3.14. The equations calculate linear gradient stress state components Gxx, Oy, Ty, Kx, Ky.
Figure 3.14 shows the equation numbers of in-situ stress equations for each Test Configuration.
This is done to help reader locate equations that are of particular interest. The derivations
presented in the following are grouped by Type of Test Configuuration.

3.7.1. Type HI

There are two Type III Test Configurations, L and M, as shown in Figure 3.14. Measured
displacements are taken between the points as shown in Figure 3.14. Measured displacements
in Type I shown with Ul, U2, U3, U3 and U5 are taken between two points that does not
intersect the hole. The measured displacements are calculated by Equation (3.84).

3.7.1.1. Test Configuration L

As shown in Figure 3.14, five displacement measurements Ul, U2, U3, U4, and U5 are
required for Test Configuration L. Equation (3.84) is applied to Test Configuration L to obtain
five measured displacements U, U2 U3, U4 and US.

Ul=—=(—F(Kx+ Ky) +(H + I+ J)(Kx + Ky) - 4Cz +24(0,, + c,)) (3.202)

Sl
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U2= ——I——(F(Kx _Ky)— (H + T+ J)(Kx— Ky) +4CT+ 2400, + ,)) (3.203)

2
U3= a-lz—(wF(Kx + Ky)+ (H + 1+ J)(Kx+ Ky)+4C7 - 24(05 + o)) (3.204)
U4 = —}_zm((—F + H+1+J)YKx—Ky)+4Ct+24(0,, +0,)) (3.205)
Us = ((F +H -1+ DEKx+42((4-0))o,, +(4+ C)o-”,)) (3.206)

Equations (3.98), (3.99), (3.100), (3.205) and (3.206) express the five measured displacements
Ul, U2, U3, U4 and U5 in terms of the five desired stresses Ouy Oy, Ty Kx and Ky. Solving
these five equations leads to five equations for stresses

(Jﬁ((A+C)(U1+U2+U3+U4)—4AU5)(F-~H-~I—-J)J

DAUL-U2 - AYF +H~1
L \2aU U2-U3+UAXF + H~1+J) G

= (8AC(—F+H+I+J))

{Ji(—(A+C)(U1+U2+ U3+Ud)+44US)(F - H——I—J)J

2 AU -~-U2-U3+UBHF -
o = +2 AU +U4F+H-1+J) (3.208)

. (8AC(-F + H+1+.J))

~U1+U2-U3+U4

;. = 3.209
i 420 (3-209)
__-U1+U2+U3-U4 (3210)
IWN2(-F+H+I+J) )
_U1-U2+U3+U4 3210)

TR (F+H+1+J)

3.7.1.2. Test Configuration M

As shown in Figure 3.14, five displacement measurements UJ, U2, U3, U4, and U5 are
required for Test Configuration M. Equation (3.84) is applied to obtain five measured
displacements U, U2 U3, U4 and U3.

Ul= (—(F+H—1+J)Ky+d§ ((4+C))o +(A--C)0'W)) (3212)
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1

U2 :—\—E(F(Kx—Ky)—(H 1+ YK~ Ky) +4Cr + 240, +6.,)) (3.213)
U3= ~\—}—5(~—F(K’x 4 Ky)+ (H +1 + JYKx+ Ky)+4C7 —24(0,, +0,) (3.214)
Ua=((F+ H-I1+DKy+2((4+0)o,, +(4=C)o,)) (3.215)
Us=(-(F+ H 1+ DK +JZ((4-O))o,, +(4+C)a,)) (3.216)

Equations (3.212), (3.213), (3.214), (3.215) and (3.216) express the five measured
displacements Ul, U2, U3, U4 and U5 in terms of the five desired stresses Ox, Gy, Tays Kx and
Ky. Solving these five equations leads to five equations for stresses
2(F+H—I—:—J)(C(U2+U3)+A(U1-—U2——U3+U4))
B +\/§(F— H u-—I~J)(A(U1+U4—2U5)+C(U1 +U4+2U5))

- 3217
= (4AC((2+~/§)F+J§(Hw—I+J)——2(H+I+J)) @217
2(F+ H—=1+J)(CU2+U3)+ AU -U2-U3+U4)
WI(F - H 1= JN(A-C)UL+U4) =24+ CYW5)
o, =~ (3.218)
(4AC((2+J§)F+J§(H-1+J}-2(H+1+J))
I+ DU =NZIU2 +2JU2 +421U3 - J2JU3 + HU
+2U2-U3)-Us)y - IU4—JU4+ F(-U1+ N(U2-U3)+U4
£, = (3.219)
AC(F + H=1+J)
pm o ULT W2 -2U3+U4+2US (3.220)
NF+H-D)+N2(F-H-1-J)+J]
__ us-ul 3.221)
2AF +H—-I1+J)
3.7.2. Type IV

There are three Type IV Test Configurations, P, Q and R, as shown in Figure 3.14. Measured
displacements shown with U1, U2 U3, U4 and U5 are taken between the points as shown in
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Figure 3.14. This configuration type is combination of Type II and Type I11. The measured
displacements are calculated by Equation (3.84).

3.7.2.1. Test Configuration P

As shown in Figure 3.14, five displacement measurements Ul, U2, U3, U4, and U5 are
required for Test Configuration P. Equation (3.84) is applied to Test Configuration P to obtain
five measured displacements Ul, U2 U3, U4 and US.

Ul= '\/%(ﬂF(Kx + Ky)+ (H +I+J)Kx+ Ky) - 4Ce+24(0, +0,)) (3.222)
U2= -\}E(F(Kx — Ky)—(H + 1 + J)(Kx - Ky) +4C7 + 24(0 + c,)) (3.223)
U3= —J%(ﬂF(Kx + Ky)+ (H + I+ YKz + Kp) +4C7—24(0 + ,)) (3.224)
Ud= :/%((J + H+1+J)(Kx~Ky)+4Cr+24(0, + c,)) (3.225)
Us=2((4+ B)o,. +(4-B)5,)) (3.226)

Equations (3.222), (3.223), (3.224), (3.225) and (3.226) express the five measured
displacements U1, U2, U3, 174 and U5 in terms of the five desired stresses O Oy %o Kx and
Ky. Solving these five equations leads to five equations for stresses

o - J3(A-BYUL+U2+U3+U4) +44U5

3227
a S4B ( )
J3(4+ BYU1+U2+U3+U4—44U5

o, = T (3.228)
—U1+U2-U3+U4

; = 3.229

¥ 4f2C (3.229)

_ ~U1+U2+U3-U4 (3.230)
W2U~F + H+1+J)

~U1-U2+U3+U4 (3.231)

Ky =
Y 2\/§(~—F+H+I+~J)
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3.7.2.2. Test Configuration Q

As shown in Figure 3.14, five displacement measurements Ul, U2, U3, U4, and U5 are
required for Test Configuration Q. Equation (3.84) is applied to Test Configuration Q to obtain
five measured displacements U1, U2 U3, U4 and US.

Ul=2((4+B)o,, +(4-B)o,, ) (3.232)

U2= Ke(F + H-I+J)+J2((4-C)o,, +(4+C)o,,) (3.233)
U3 = ~Ka(F + H 1+ )+ 2 ((4=C)o, +(4+ )0, ) (3.234)
U4=2(d(o, +0,)+ 2Br) (3.235)

US = —Kp(F + H—I+J)+42((4+C)o,, +(4- C)o,,) (3.236)

Equations (3.232), (3.233), (3.234), (3.235) and (3.236) express the five measured
displacements Ul, U2, U3, U4 and U5 in terms of the five desired stresses Cuw, Opy, Ty, KX and
Ky. Solving these five equations leads to five equations for stresses

- J2(4+CYUL-(A—B)U2+U3)

3.237
= 2424(B+C) (3-237)
-, - 24~ CY1+(4+ BYU2+U3) (3.238)
22 AB+C)

-B(\2W2+U3)~ 2U4)+2C(-UL+U4)
Ty = 1BB0) (3.239)
. U2-U3 (3.240)

WF+ H—I+.J)

c(zﬁUl —UZ—U3~—2U5)+ B(U2+U3~2U5)
Ky = (3.241)
AB+CYF+H ~1+J)
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3.7.2.3. Test Configuration R

As shown in Figure 3.14, five displacement measurements Ul, U2, U3, U4, and U5 are
required for Test Configuration R. Equation (3.84) is applied Test Configuration R to obtain
five measured displacements U1, U2 U3, U4 and US.

Ul=2((4- B)o,, +(4+B)o, )) (3.242)

U2 = Ki(F + H—I+J1)+V2((4-O)o +(A+C)o,) (3.243)
U3 = —Kn(F 4+ H1+ )+ 2 ((4-C)o, +(4+C)) (3.244)
| Us=2(A(0, +0,)+ 2Br) (3.245)

US = —Kp(F + H—I1+)+V2((4+C)o +(4-C)o,,) (3.246)

Equations (3.242), (3.243), (3.244), (3.245) and (3.246) express the five measured
displacements U1, U2, U3, U4 and U3 in terms of the five desired stresses O, Oy, fy Kx and
Ky. Solving these five equations leads to five equations for stresses

~J2(4+ O+ (4 +BYU2+U3)

- 3247
7= 224(B-C) (3-247)
_2(4-OUL-(4-BU2+ U3) (3.248)
» 22A4(B-C) '
—»B(\E(UZ +U3) - 2U4) +2C(U1-U4)
7, = (3.249)
| 4B(B~C)
yz-Us (3.250)

Kx =
WAF+H-I+J)

c(—2J§U1 +U2+U3+ 2U5) + B(U2 +U3=2U5)
Ky = (3.251)
2B-CYF+H-I+J)
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Figure 3.1 Existing in-situ stresses before core-hole is drilled in a structure. Cross-section of
measurement area.
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Figure 3.2 Superposition of loading to find relieved displacement caused by drilling a core-
hole: (a) original stress; (b) stress change (relieved in-situ stresses); (¢) final stress.
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Figure 3.3 Schematic representation of the in-situ stress relaxation due to a through-hole
drilling: (a) plan view; (b) cross-section.
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Figure 3.4 Schematic representation of the uniform stress state.
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Figure 3.5 Schematic representation of the linear gradient stress state.
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Figure 3.6 Calculation of relieved in-situ stresses due to hole drilling: (a) plan view; (b) cross-
section; (c) stress distribution on infinitesimal element.
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Figure 3.7 Schematic representation of uniform in-situ stress state in terms of both cartesian
stress components and principal stresses.

67



-$S31)S [RULIOU JUSIPRIS JESUL| OLJUS0UOD (0) ‘o1e3s ssoms LUIOJIUN (Q) 133EIS SSALS juarpeId
seaur] (B) :SOYE)S SSAUS MIS-U JUMISIIP OM] JO uomisodiadns se 9je1s $s1S jueipesd Tesul] JO uonEIuasaIdal ONEWIAYOS §'¢ am31g

O] (@ ®

b S i 1 h d h 4 f—3 m\
wf] b e 1 Lo, 1 I 1
- i “.. ,.. 1 + " i n.. ._. 1 - ! m. ._. T
¥ SR S L] A S IR
i e i g A T ! T
,_,.,|.|.T..¢I.¢...,.q L. ._.TT«...T,,T..H flly ,_Aleg!.A.......nel.ﬁ

j/ —— —— L
) o syl

I £ £

68



A
ot
t' ‘.
’ Y
., O A *
B M
u‘ ',
@
(b
4
s—p o
—
— y=a ginot

(©

69

v

Figure 3.9 Calculation of relieved in-situ stresses due to hole drilling for uniaxial
concentric linear gradient normal stress state: (a) plan view; (b) cross-
section; (¢) stress distribution on infinitesimal element.
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Figure 3.11 Representation of displacement measurement between two measurement

points (measured displacement is U).
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(b)

(d)

Figure 3.12 Four Types of Test Configurations: (a) Type I; (b) Type IL; () Type IIL; ()
example of a Type IV.
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A (3.101) (3.110)
(3.102) (3.111)
(3.103) (3.112)
I
B (3.116) (3.122)
@.un (3.123)
(3.118) (3.124)
C (3.133) (3.139)
(3.134) (3.140)
(3.134) (3.141)
D (3.145) (3.151)
II (3.146) (3.152)
(3.147 (3.153)
B (3.157) (3.163)
(3.158) (3.164)
(3.159) (3.165)
F (3.169) (3.175)
m (3.170) (3.176)
3.171) (3.177)
G (3.181) (3.187)
(3.182) (3.188)
(3.183) (3.189)
v
H (3.193) (3.199)
(3.194) (3.200)
(3.195) (3.201)

Figure 3.13 Test Configurations for the uniform stress state.
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Measument
Type

Test Configuration

Equation Numbers

fEH

(3.207)
(3.208)
(3.209)
(3.210)
@211

(3217
(3218)
(3.219)
(3.220)
(3.221)

v

(3227
(3.228)
(3.229)
(3.230)

(3.231)

(3.237)
(3.238)
(3.239)
(3.240)

(3.241)

(3.247)
(3.248)
(3.249)
(3.250)
(3251

Figure 3.14 Test Configurations for the linear gradient stress state.
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Plane strain

Constants Plane stress
4 a* (1+v) a*(1+v)
2Er 2Er
B 4 —a* (1 +v) a2(4r2(v—1)ma2)(1+v)
2Er’ 2Er
c 27 (v-D)-a* 1) | @ (2r2(2v—1)wa2)(l~i~»v)
2Er 2Er

Table 3.1 Definition of constants 4, B and C for plane stress and plane strain.

Plane Strain

Constants Plane Stress

P a*(1+v) a* (1+v)

SEr 8E ¥

a*[ 2 1+V) +r' 5+) a* (V)| 28 1+)+7* (4v—5)

H SE+ SEr
/ _d'(1+y) _d'(1+v)

8Er* 8E¥’
S 4 [rz(i—Bv)Jr-Za’(Mv)] at [(r2(1~4v)+2a3)(1+v)]

8EM 8 E»

Table 3.2 Definition of constants F,H, and J for plane stress and plane strain.
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Ul+U3-2U02>0

Ur+U3-2U02=90

Ul+U3-2U02<0

Ul-U3>0 0<9<Z i Zco<0
4 4
e
1-U3 = z
Ul-U3=0 0 5
w b T w
1- -——<@<0 — ——<f<—
Ul-U3<0 7 ; 7

Table 3.3 Angle of principal stress.
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CHAPTER 4

VERIFICATION OF THEORETICAL FORMULATION

4.1. INTRODUCTION

In this chapter, the closed-form equations for relieved displacements and in-situ stresses that
were derived in Chapter 3 are verified. The closed-form equations for relieved displacements are
verified using finite element analyses. Once these equations are verified, they are then used to
verify the closed-form equations for in-situ stresses.

The outline of this chapter is as follows. Section 4.2 presents general information about the finite
element analyses that are performed to verify the closed-form equations for relieved
displacements. Section 43 verifies the closed-form relieved displacement equations for the
uniform stress state, and Section 4.4 verifies the closed-form relieved displacement equations for
the linear gradient stress state. Section 4.5 verifies the uniform in-situ stress equations, and
Section 4.6 verifies the linear gradient in-situ stress equations.

4.2. FINITE ELEMENT MODEL

This section describes general features of the finite element analyses that were performed to
verify the closed-form equations for the relieved displacement that were derived in Chapter 3.
Included in this section are descriptions how hole drilling was simulated, model geometry,
element types and boundary conditions, material properties, a COnVvergence study, information
about the specific analysis software that was used, and a discussion of issues related to plane
stress versus plane strain analysis.

4.2.1. Simulation of Hole Drilling

A finite element model was created to simulate stress relief and corresponding displacement
relief resulting from drilling a through-hole in a linear elastic, isotropic infinite thin plate in
which defined in-situ stresses are uniformly distributed through the plate thickness. The
correlation between stress relief and displacement relief due to hole drilling was explained in
Section 3.1 (Figure 3.2). It was shown that the stress redistribution and displacement relief
created by hole drilling can be calculated by loading the surface of the hole by the in-situ stresses
which are relaxed when the hole is drilled (Figure 3.3).
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Linear elastic finite element analyses were carried out using ABAQUS, a commercial finite
element analysis software package.

4.2.2. Modeling and Model Geometry

Based on the information above, the finite element model is created as follows. An infinite thin
plate with a through-hole is modeled. The entire plate is modeled as shown in Figure 4.1 instead
of using symmetric, asymmetric, or axisymmetric models, which require superposition to
calculate the relieved displacements due to through-hole drilling. The full plate model gives
flexibility to apply any kind of loading in one analysis without changing boundary conditions.
Figure 4.1 shows the general geometry of the finite element model. The diameter of the through-
hole is 150 mm. L, which is length and width of part of the model that is modeled with finite
elements, is defined as 3000 mm, based on a convergence study.

4.2.3. Material Properties

The material properties of the model are as follows. Young's modulus E and Poisson's ratio are
30000 MPa (4340 ksi) and 0.2 respectively. This Young's modulus cotresponds to a normal
weight concrete with a a compressive strength of 40 MPa (5800 psi). The analyses assume that
the material is linear elastic.

4.2.4. Load Condition

As explained earlier, loads are applied to the inner surface of the through-hole. These loads,
which represent relieved stresses due to through-hole drilling, are calculated as a function of o
for both the uniform stress state (Equations (3.5) and (3.6)) and the linear gradient stress state
(Equations (3.48) and (3.49)) in Chapter 3. The loads found by these equations are applied to the
nodes at the surface of the hole as concentrated forces in radial and in tangential directions.

4.2.5. Elements Types and Boundary Conditions

The area surrounding the hole is modeled by 8-node biquadratic plane stress elements {element
type CPS8). Far-field conditions are modeled by infinite elements (element type CINPS5). Stress
concentration effects require the region near the through-hole to be meshed with a finer mesh,
while the far field region is more coarsely meshed.

No other boundary conditions are used other than infinite elements. Infinite elements work like
boundary conditions, which provide required boundary conditions for an infinite medium.

Infinite clements are used in boundary value problems defined in unbounded domains or
problems in which the region of interest is small in size compared to surrounding medium. The
basis of the formulation of these elements for static analysis is that the far-field solution along
each element edge that stretches to infinity is centered about an origin, called "pole”. For
example, the finite element model has its pole at the center of the hole. It is important to choose
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the position of the nodes in the infinite direction appropriately with respect to the pole. The
second node along each edge pointing in the infinite direction must be positioned so that it is
twice as far from the pole as the node on the same edge at the boundary between the finite and
the infinite elements. A more detailed description of the infinite element (CINPSS5) can be found

in the ABAQUS User's Manual.

4.2.6. Convergence Study

A preliminary convergence study was conducted to establish where the boundary conditions
(infinite elements) should be placed with respect to the hole, and to assess the accuracy of
results. Figure 4.1 shows the general geometry of the model. In this figure, L. represents location
of the boundary (infinite element) conditions. A mesh refinement convergence study was then
conducted. Convergence was evaluated by examining relieved displacements at the surface of

the through-hole.

Table 4.1 summarizes key values from the preliminary convergence study. The table shows the
relieved displacement results for different length (L), number of elements, number of nodes and
total number of variables. The relieved displacement #, shown in the table is r,, =a and a= 0.

As shown in the first three rows of Table 4.1, L is varied as the number of elements and the
diameter of the through-hole were held constant. L was defined as 3000 mm since the results
were not improved any further when taking L greater. In the following rows of the table, results
for increased number of elements are reported as L is kept constant. As shown in Table 4.1, the
relieved displacements converge quickly. It is observed that mesh refinements do not improve
the results any further beyond the model with 1312 elements. Thus, the finite element model
shown in fourth row was chosen for the verification analyses.

The mesh of the finite element model in different views is shown in Figures 4.2 to 4.4, Figure 4.2
shows general view of the finite element mesh. Figures 4.3 and 4.4 show closer look of the mesh

at the vicinity of the hole.

4.2.7. Piane Stress versus Plane Strain

The closed-form equations for relieved displacements and in-situ stresses are derived in a form
that can be converted to plane stress as well as plane strain conditions. The verifications
presented here treat only the plane stress condition. This is done because the relieved
displacements measured at the surface are thought to be closer to the plane stress solution. This
decision was made at the beginning of the verification analysis. After an evaluation of the
applicability of the closed-form equations to three-dimensional objects (Chapter 5), it is seen that
the results are in fact closer to the plane stress condition. Thus, verification for plane strain

solutions is not done.
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4.3. VERIFICATION OF THE CLOSED-FORM RELIEVED DISPLACEMENT
EQUATIONS FOR THE UNIFORM STRESS STATE

In this section, the closed-form relieved displacement equations for the uniform stress state,
derived in Chapter 3, are verified. The finite element model described in Section 4.2 is used to
perform this verification.

The verification of the closed-form relieved displacement equations for the uniform stress state is
done as follows. First, in-situ stress states prior to through-hole drilling are defined. Then the
finite element model is used to calculate relieved displacements for these stress states. The
relieved displacements obtained from the finite element analyses are compared with the relieved
displacements obtained from the closed-form relieved displacement equations.

Three different Load Cases are treated as shown in Table 4.2. Load Case 1 applies uniaxial
normal stress. Load Case 2 applies pure shear stress. Load Case 3 is the most general, and
includes both biaxial normal stress and shear stress.

The comparisons of the relieved displacement results are shown from Figures 4.5 to 4.10 in
terms of the relieved displacement (t, v,) versus o/z for different Load Cases. is the angle of a
measurement point from the x-axis in the anti clock-wise direction. All relieved displacements
are taken at the measurement circles which have dimensionless radii &=rn/a of 1, 2, and 3, where
r,, is the radius of the measurement circle and a is the radius of the through-hole.

Figures 4.5 to 4.7 show relieved displacements in the radial direction (u,) versus ¢/ for the
measurement circles of radii k=1, 2, and 3. Figures 4.8 to 4.10 show relieved displacements in
the tangential direction (v,) versus a/z for the dimensionless measurement circles of radii k = 1,
2, and 3. In these figures, the relieved displacements obtained at discrete points from the finite
element analyses are shown with markers, and the relieved displacements obtained from the
closed-form equations are shown with solid lines.

As seen from the figures, excellent agreement was obtained between the relieved displacement
results obtained from the closed-form equations and the finite element analyses. These results
confirm that the closed-form relieved displacement equations for the uniform stress state are
correct under the assumptions made in the derivation.

4.4. VERIFICATION OF THE CLOSED-FORM RELIEVED DISPLACEMENT
EQUATIONS FOR THE LINEAR GRADIENT STRESS STATE

Similar to the verification of the relieved displacement equations for the uniform stress state, the
finite element model described in Section 4.2 is used to verify the relieved displacement
equations for the linear gradient stress state.

Two different Load Cases are treated as shown in Table 4.3. Load Case 1 applies a uniaxial
concentric linear gradient stress. Load Case 2 applies a biaxial concentric linear gradient stress.
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The comparison of the relieved displacement results are shown from Figures 4.11 to 4.14 in
terms of relieved displacement (uy, Vg) YeISUS o/rfor different Load Cases. All relieved
displacements are taken at the measurement circles which have dimensionless radii k=rn/a of 1,
2, and 3.

Figures 4.11 to 4.12 show relieved displacements in the radial direction () versus /7 for the
measurement circles of radiik =1, 2, and 3. Figures 4.13 to 4.14 show relieved displacements in
the tangential direction (vo) versus o/ for the measurement circles of radiik=1,2,and 3. In
these figures, the relieved displacements obtained at discrete points from the finite element
analyses are shown with markers, and the relieved displacements obtained from the closed-form
equations are shown with solid lines.

As seen from the figures, excellent agreement was obtained between the relieved displacement
results obtained from the closed-form equations and the finite element analyses. These results
confirm that the closed-form relieved displacement equations for the linear gradient stress state
are correct under the assumptions made in the derivation.

4.5. VERIFICATION OF THE CLOSED-FORM UNIFORM IN-SITU STRESS
EQUATIONS

In this section, the closed-form uniform in-situ stress equations that were derived in Chapter 3
are verified. The closed-form uniform in-situ stress equations are derived for 8 different test
configurations shown in Figure 3.13 (Test Configurations A through H). The in-situ stress
equations are a function of measured displacements.

In order to verify the in-situ stress equations, the following steps are done. First, an infinite thin
plate under a known in-situ stress state is considered. The relieved displacements at the
measurement points are calculated for each of the test configurations. Then these relieved
displacements are used to calculate the measured displacements for each of the test
configurations. These measured displacements are then substituted in to the in-situ stress
equations to calculate in-situ stresses. Finally, these calculated in-situ stresses are then compared
with the in-situ stress states, which exist in the plate prior to the through-hole drilling.

The relieved displacements can also be calculated from the finite element model explained in
Section 4.2. However, since the closed-form equations for relieved displacements have been
proved correct in previous sections, the closed-form relieved displacement equations are used to
generate the relieved displacements instead of the finite element analyses.

Three different Load Cases shown in Table 4.4 are used to calculate relieved displacements for
the test configurations shown in Figure 3.13. Load Case 1 applies a uniaxial normal stress. Load
Case 2 applies pure shear stress. Load Case 3 is the most general, and includes both biaxial
normal stress and shear stress.

The results of the verification analyses for the closed-form uniform in-situ stress equations are
tabulated in Tables 4.5 to 4.12 for each test configuration shown in Figure 3.13. These tables
show calculated in-situ stresses for the three different in-situ stress states (Load Cases) used to
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calculate the relieved displacements. For the uniform stress state, there are two sets of uniform
in-situ stress equations for each test configuration. One set of equations calculates cartesian
stress COMpONents (G, Gy, 7). The other set calculates principal stresses (Omaz, Omin, 6) directly.
The results for each set of equations for each test configuration are tabulated in the same table.
As stated before Load Cases represent the in-situ stresses that exist before drilling the through-
hole. Since Load Cases gives Cartesian stress components, it is easy to compare the calculated
Cartesian components of in-situ stresses with the Load Cases. To compare the calculated
principal in-situ stresses with the Load Cases, we need to calculate the exact principal stresses
from the Cartesian stress components given in Load Cases. The exact principal stresses are given
for the Load Cases as follows. Load Case 1: Gy = 10 MPa, Oy =0, 6= 0; Load Case 2: Gy =
10 MPa, O = -10 MPa, 8= 45° Load Case 3: O = 10.96291 MPa, Gun = -15.96291 MPa,

#=10.9007 degrees.

In these tables, the first column shows the Load Case, which indicates which in-situ stress state
(Table 4.4) is used to calculate the relieved displacements (and thus measured displacements
from the relieved displacements). The second column shows the radii of the measurement
circles. The dimensionless radii (k= r./@) of the measurement circles considered are k= 1.5, 2,
2.5, and 3. The columns labeled with lower case u with subscripted letters show the relieved
displacements in the radial direction. The columns labeled with lower case v with subscripted
letters show the relieved displacements in the tangential direction. The subscripted letters
indicate the locations of the measurement points shown in the test configurations in Figure 3.13.
The columns labeled with upper case U with numbers show measured displacements between
two measurement points of the test configurations shown in Figure 3.13.

As seen from the results tabulated in Tables 4.5 to 4.12, the closed-form uniform in-situ stress
equations give exact results. However, it is also observed that for Load Case 2, the uniform in-
situ stress equation in terms of principal stresses for Test Configuration H cannot calculate
principal stresses directly. When ;= 0y and %, is not equal to zero, {/2 and U3 became zero and
that causes a zero value in denominator of the principal stress formulas. The zero value results in
indeterminate results for principal stress equations. However, this problem can be overcome by
defining the following additional equations.

When U2=U3=0& Ul #0

1
e =75 @.1)
Ui
Tinin = _Zg (42)
b4
O =i 4.3
2 4.3)

When U2=U3#0& Ul £0
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Ul

vl (4.4)

Omax = Pmin =

To evaluate to these additional equations, reconsider Load Case 2 for test configuration H. Since
U2 = U3 = 0 and Ul # 0 as shown in Table 4.12, we need to use Equations (4.1), (4.2), and
(4.3). Substituting Ul in to Equations (4.1), (4.2), and (4.3) we get

o, =—0u, =10 MPa

AN

8 = 45°

4.6. VERIFICATION OF THE CLOSED-FORM LINEAR GRADIENT IN-SITU STRESS
EQUATIONS

In this section, the closed-form linear gradient in-situ stress equations derived for the 5 test
configurations shown in Figure 3.14 in Chapter 3 are verified. Similar to the verification of the
closed-form uniform in-situ stress equations, the closed-form relieved displacement equations for
the linear gradient stress state are used to calculate relieved displacements. Then these relieved
displacements are used to calculate measured displacements required for the test configurations
shown in Figure 3.14. By substituting the measured displacements in to the closed-form linear
gradient in-situ stress equations, in-situ stress states are calculated.

Three different Load Cases shown in Table 4.13 are used to calculate relieved displacements for
the test configurations shown in Figure 3.14. Load Case 1 applies a uniaxial concentric linear
gradient stress. Load Case 2 applies a biaxial concentric linear gradient stress. Load Case 3 is the
most general stress state, having biaxial stress with linear gradient and pure shear stress.

The in-situ stresses calculated using the closed-form linear gradient in-situ stress equations
derived in Chapter 3 are tabulated in Tables 4.14 to 4.18 for each test configuration shown in
Figure 3.14. In these tables, the first column shows the Load Cases that are used to calculate the
relieved displacements (and thus the measured displacements from the relieved displacements).
The second column shows the radii of the measurement circles. The dimensionless radii (k =
rn/a) of the measurement circles considered are k= 1.5, 2.2.5, and 3. The columns labeled with
Jower case u with subscripted letters show the relieved displacements in the radial direction. The
columns labeled with lower case v with subscripted letters show the relieved displacements in the
tangential direction. The subscripted letters indicate the locations of the measurement points
shown in the test configurations in Figure 3.14. The columns labeled with upper case U with
numbers show measured displacements between two measurement points as shown in Figure
3.14.

As seen from the results tabulated from Tables 4.14 to 4.18, the in-situ stress equations give
exact results. It is concluded that the closed-form linear gradient in-situ stress equations give
exact resuits under the assumptions made in the derivation of the equations.
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Figure 4.1 Geometry of the finite element model
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Figure 4.2 Finite element mesh used for the verification of the closed-form relieved displacement
equations.

Figure 4.3 A general view of finite element mesh.
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Figure 4.4 A general view of finite element mesh, zoomed in on the hole.
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Figure 4.5 Verification of the closed-form relieved displacement equation in the radial direction

(u,) for the uniform stress state for Load Case 1 (0= -20, y=Ty=0)-
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Figure 4.6 Verification of the closed-form relieved displacement equation in the radial direction
(u,) for the uniform stress state for Load Case 2 (0=0, 0yy=0, %= 10).
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Figure 4.7 Verification of the closed-form relieved displacement equation in the radial direction
(u,) for the uniform stress state for Load Case 3 (0,=10, Oyy=-3, Ty= 15).
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Figure 4.8 Verification of the closed-form relieved displacement equation in the tangential
direction (v,;) for the uniform stress state for the Load Case 1 (03=-20, 03=0, 5,=0).
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Figure 4.9 Verification of the closed-form relieved displacement equation in the tangential
direction (v,) for the uniform stress state for Load Case 2 (0=0, 6,,=0, 5,=-10).
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Figure 4.10 Verification of the closed-form retieved displacement equation in the tangential
direction (v) for the uniform stress state for Load Case 3 (0x=10, 0573, ™ 15).
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Figure 4.11 Verification of the closed-form relieved displacement equation in the radial direction
(u,) for the linear gradient stress state for Load Case 1 (Kx=1, Ky=0).
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Figure 4.12 Verification of the closed-form relieved displacement equation in the radial direction
(u,) for the linear gradient stress state for Load Case 2 (Kx=1, Ky=1).
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Figure 4.13 Verification of the closed-form relieved displacement equation in the tangential
direction (v;) for the linear gradient stress state for Load Case 1 (Kx=1, Ky=0).
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Figure 4.14 Verification of the closed-form relieved displacement equation in the tangential
direction (vg) for the linear gradient stress state for Load Case 2 (Kx=1, Ky=1).
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L Number of Number of | Total n_umber of]| u, ]
glements nodes variables
1000 672 2100 4200 0.0285
2000 672 2100 4200 0.0284
3000 672 2100 4200 0.0284
3000 1312 4100 8200 . 0.0283
3000 2952 9020 18040 0.0283

Table 4.1 Convergence of the finite element models for verification analyses.

In-situ Stresses (MPa}
Load Case
Dex oj’y q’)’
1 =20 0 0
2 0 0 10
3 10 -5 15

Table 4.2 In-situ stress states used to verify the closed-form relieved displacement equations for
the uniform stress state.
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Ip-siin Stresses {MPa/mm)
Load Case
Kx Ky
1 1 0
2 1 1

Table 4.3 In-situ stress states used to verify the closed-form relieved displacement equations for
the linear gradient stress state.

In-sitn Stresses (MPa)
Load Case
(.4 G, Ty
i 10 0 0
2 0 0 10
3 10 -15 5

Table 4.4 In-situ stress states used to verify the uniform in-situ stress equations.
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CHAPTER 5

APPLICATION OF THE THEORETICAL FORMULATIONS TO OBJECTS WITH
FINITE DIMENSIONS

5.1. INTRODUCTION

Equations for relieved displacements and in-situ stresses were derived in Chapter 3 for an infinite
plate with a through-hole. These equations were verified in Chapter 4. This chapter evaluates the
applicability of the closed-form equations for relieved displacements and in-situ stresses to
objects with finite dimensions. This is Task 6 in the research plan described in Chapter 1. The
objective of this chapter is to determine the effect of the thickness of the object (7},), depth of the
core-hole (4), and width of the object (,) on the applicability of the equations as they are
applied to bounded objects. A series of finite element analyses are performed in which the
dimensions of an object are systematically varied to evaluate how the closed-form equations for
relieved displacements and in-situ stresses are influenced by the object thickness, core-hole
depth, and object width.

This chapter is organized as follows. Sections 5.2, 5.3, and 5.4 evaluate the influence of object
thickness 7, core-hole depth A, and object width ), respectively, on the applicability of the
closed-form relieved displacement equations. Sections 5.5, 5.6, and 5.7 evaluate the influence of
object thickness, core-hole depth, and object width, respectively, on the applicability of the
closed-form in-situ stress equations.

52. INFLUENCE OF OBJECT THICKNESS ON APPLICABILITY OF CLOSED-FORM
RELIEVED DISPLACEMENT EQUATIONS

In this section, the closed-form relieved displacement equations derived in Chapter 3 are studied
to evaluate their applicability to objects of finite thickness. The evaluation analyses are
performed by calculating relieved displacements as a function of the object thickness Tp. The
finite element model explained in Section 5.2.1 is used to calculate the relieved displacements.
The relieved displacements are taken at three measurement points a, b, and ¢ that are on the same
measurement circle and at angles of 0% 45°, and 90° from the x-axis as shown in Figure 5.1. The
measurement circle radius is made non-dimensional by the through-hole radius a as k=rn/a. The
dimensionless measurement circle radius & is taken as 1.5 for these analyses. The relieved
displacements are compared with the relieved displacements calculated by the closed-form
relieved displacement equations.
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Both the uniform stress state and the linear gradient stress state are treated here in separate
sections.

5.2.1. Finite Element Model

This section describes general features of the finite clement analyses that were performed to
evaluate the closed-form relieved displacement and the in-situ stresses equations to the object
thickness T,. Included in this section are a description of how drilling a through-hole is
simulated, model geometry, element types, material properties, load conditions, and a mesh
refinement convergence study.

5.2.1.1. Simulation of Hole Drilling

A series of finite element models were created to simulate drilling a through-hole in a three-
dimensional object. These finite element models were used to calculate the relieved
displacements of the measurement points for each of the Test Configurations shown in Figures
3.13 and 3.14. As explained in Section 3.1 and Section 4.2, the relieved displacements and stress
redistribution due to drilling a hole can be calculated by applying the relieved in-situ stresses (N,
T) to the hole surface.

5.2.1.2. Model Geometry, Element Type, and Load Condition

Two-dimensional linear elastic axisymmetric models were employed in these analyses. The use
of axisymmetric model greatly reduced the modeling and analysis time compared to that of an
equivalent three-dimensional model.

The basic geometry of the axisymmetric finite element model is shown in Figure 5.2. The
through-hole diameter is 150 mm. The thickness of the model was varied from 10 mm fo 3000

mim.

Since we assume that objects are infinite or large enough compared to the through-hole size, we
can consider this problem as axisymmetric. However, the loads subjected to the through-hole
surface are non-axisymmetric. The axisymmetric models with non-axisymmetric loadings were
solved as follows.

The finite element analyses were carried out in the linear elastic range using ANSYS,
commercial finite element analysis software. Axisymetric-harmonic 8-node elements (plane83)
were employed. The elements are used for two-dimensional modeling of axisymmetric structures
with non-axisymmetric loading. The element has three degrees of freedom per node: translations
in the nodal %, y, and z directions (ANSYS 2000).

As explained earlier, the relieved displacements are calculated by applying the relieved in-situ
stresses as loads. The relieved in-situ stresses (N, 1), which are relaxed due to through-hole
drilling, were found earlier in Equations (3.5) and (3.6), and Equations (3.48) and (3 49) for the
uniform stress state and for the linear gradient stress states, respectively.
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It is assumed that the in-situ stresses are acting in a plane parallel to the x-y surface of the object.
In general, any arbitrary load can be represented by a Fourier series. For this problem, the
loadings are given as a Fourier series as (Cook 1989).

N(r,z,o0) = i N, (r,z)cos(na )+ i N, (r,2)sin(nx) (5.1)
ne=h n=0
T(r,z,a) = i T (r,z)sin(ne) + i’fm (v, z) cos(na) (5.2)
=0 n=0

where Ny, Ny, Ten, and T, are amplitudes that depend on # (but not on ). Here » represents the
harmonic number.

Like loads, the displacement fields can also be expanded in Fourier series (Cook 1989).

u,(r,z,00)= i u, (r,z)cos(no)+ i u,,(r, z)sin(na) (5.3)
prud} n=0
v(r,z,a)= i v, (r.z)sin{na) + i v, (r, z}cos(ne) 5.4)
a=0 nw={}
wir,z,a)= i u,,(r,z)cos(no)+ 5: u,,(r, z)sin(na) (5.5)
=0} n=l

where, u, v, w are the radial, circumferential, and axial displacement distributions, respectively.
Uons Usns Vens Vons Wen, and wy, are displacement field amplitudes that depend on r, z, and n but not

o,

For the uniform stress state given in Equations (3.3) and (3.4), there are two Fourier components
to consider, n = 0 and »n = 2. For the linear gradient stress state given in Equations (3.47) and
(3.48), there are two Fourier components to consider, » = I and n = 3. Due to the orthogonality
of the harmonic functions, displacements can be calculated individually for each load
component. The resulting displacements are the calculated by superposition.

5.2.1.3. Convergence Study

Since the closed-form relieved displacement equations were proved correct in Chapter 4, a finite
element model that produce less than 0.3 error by comparison with the closed-form relieved
displacement equation solutions is created. The same element distribution around the hole area of
the finite element model was used for the other finite element models with different thickness.

The finite element mesh for the axisymmetric model is shown in Figure 5.2. It was designed with
finer mesh in the immediate vicinity of the hole.
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5.2.1.4. Material Properties

The Young’s modulus E and Poisson's ratio v of the model are 30000 MPa and 0.2 respectively.
The analyses assume that the material is linear elastic. This Young's modulus corresponds to a
normal weight concrete compressive strength of 40 MPa (5800 psi).

5.2.2. Influence of Object Thickness on Applicability of the Closed-Form Relieved
Displacement Equations for the Uniform Stress State

In this section, the closed-form relieved displacement equations for the uniform stress state are
applied to objects of finite thickness. The finite element models explained in Section 5.2.1 are
used to perform the analyses described in this section. The models are run under same load
conditions for varying thicknesses. The loading is a uniform uniaxial stress state of 0;,=10 MPa,
03,=0, ,;=0. This loading is the in-situ stress state that existed prior to drilling the hole.

Figure 5.3 to Figure 5.5 show the relieved displacements in the radial direction at measurement
points a, b, and c, respectively, versus object thickness. The object thickness is shown in
dimensionless form as T,/Dy,, where, Dy, is the diameter of the through-hole. Figure 5.6 shows the
relieved displacements in the tangential direction at measurement point b versus object thickness
(T/Dy). These figures show the finite element solution as well as the closed-form solution for
both plane stress and plane strain assumptions. The tangential displacements at measurement
points a and b are zero.

As seen from the figures, the relieved displacements in the radial direction are not significantly
affected by the object thickness variations. However, the effect of the object thickness on
relieved displacement in the tangential direction is more significant. These figures also show that
the relieved displacements in the radial direction as the object thickness varies are reasonably
close to the plane stress solution. A maximum error in displacement of 3 % is observed when the
ratio of the object thickness to through-hole diameter is equal to 1. Although the figure indicates
that the relieved displacements in the tangential direction are closer to the plane strain solution as
the object thickness increases, the plane strain solution produced more than 10 % an etror as the
object thickness increases.

The other observation from the figure is that the relieved displacement at measurement point bis
not affected by the object thickness variations and is almost equal to both the plane stress and
plane strain solutions. To explain why the relieved displacements at measurement point b behave
differently than the relieved displacements at other measurement points, the closed-form relieved
displacement Equation (3.41) is broken in to two parts. The first part of the equation corresponds
to equibiaxial stresses (O +03)/2 and it does not depend on . It is seen that the first part of the
equation does not depend on plane stress or plane stress assumptions. For both the plane stress
and plane strain assumptions, the first part of the equation is same. The second part of the
equation cotresponds to shear stress components (Ox -Gy)/2 cos(20) and is dependent on «. The
second part of the relieved displacement equation will be zero when « is equal to 45°. This
shows that the relieved displacement at measurement point b is caused by the equibiaxial stress
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state. That means equibiaxial stresses produce relieved displacement that are equal to closed-
form equation solution and are not affected by the object thickness.

5.2.3. Influence of Object Thickness on Applicability of the Closed-Form Relieved
Displacement Equations for the Linear Gradient Stress State

In this section, the closed-form relieved displacement equations for the linear gradient stress state
are applied to objects of finite thickness. The finite element models described in Section 5.2.1 are
used to perform the analyses described in this section. The models are run under same load
conditions for varying object thicknesses. The loading is a uniform uniaxial concentric linear
gradient stress state of Kx=0.2 MPa/mm, Ky=0, 6,,=0 MPa, 6;=0, 7=0. This loading is in-situ
stress state that existed prior to drilling the hole.

The relieved displacements in the radial and in the tangential direction at measurement point b
are plotted against the object thickness (7,/Dy) in Figure 5.7, and Figure 5.8, respectively. The
object thickness is shown in dimensioniess form as T,/Ds. These figures show the finite element
solution as well as the closed-form solution for both plane stress and plane strain assumption.

As seen from the figures, the relieved displacements in the radial direction are not significantly
affected by the object thickness variations. However, the effect of the thickness on relieved
displacement in the tangential direction is more significant.

Figure 5.7 also shows that the relieved displacements in the radial direction as thickness varies
are reasonably close to the plane stress solution. A maximum error in displacement of 3 % is
observed when the ratio of the object thickness to through-hole diameter is equal to 1. Although
Figure 5.8 indicates that the relieved displacements in the tangential direction are closer to the
plane strain solution as the object thickness increases, more than 15% error is observed relative
to the plane strain solution as the object thickness increases.

5.3. INFLUENCE OF CORE-HOLE DEPTH ON APPLICABILITY OF CLOSED-FORM
RELIEVED DISPLACEMENT EQUATIONS

In this section, the closed-form relieved displacement equations derived in Chapter 3 are studied
to evaluate their applicability to core-hole depth. The evaluation analyses are performed by
calculating relieved displacements as a function of the core-hole-depth 4. The finite element
models explained in Section 5.3.1 are used to calculate the relieved displacements. The relieved
displacements are taken at two measurement points, a and b, that are on the same measurement
circle and at angles of 0°, and 45° from the x-axis. The measurement circle radii are made non-
dimensional by the through-hole radius a as k=r,/a. The relieved displacements are compared
with the relieved displacements calculated by the closed-form relieved displacement equations.

Both the uniform stress state and the linear gradient stress state are treated in separate sections
below. '
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5.3.1. Finite Element Model

This section describes the general features of the finite element analyses that were performed to
evaluate the closed-form equations for the relieved displacements and the in-situ stresses to the
core-hole depth A.

The finite element model created here are very similar to the finite element models created in
Section 5.2.1. The main difference between the finite element models is the geometry of the
models. Thus, only the specimen geometry is explained below.

5.3.1.1. Models Geometry and Convergence Study

The length of the model (L) and the element distribution around the hole were defined based on
the finite element models with a through-hole that produce less than 0.35% error by comparison
with the relieved displacement solutions.

The basic geometry of axisymmetric finite element model is shown in Figure 5.9. The length of
the model and diameter of the model are set equal to 3000 mm. The outer core-hole diameter and
inner core-hole diameter are 150 mm and 144 mm, respectively.

It was designed with finer mesh in the immediate vicinity of the hole. A similar mesh to that
used with through-hole case explained in Section 5.2.1 is used in the vicinity of the core-hole.

5.3.2. Influence of Core-Hole Depth on Applicability of the Closed-Form Relieved
Displacement Equations for the Uniform Stress State

The finite element models with a core-hole described in Section 5.3.1 are used to perform the
analyses described in this section. The models are run under same load conditions for the varying
core-hole depths. The loading is a uniform uniaxial stress state of 03,=10 MPa, 6;,,=0, %y,~0. This
loading is in-situ stress state that existed prior to drilling the hole.

Figure 5.10 shows the relieved displacement at the measurement point a versus the core-hole
depth 7. This figure also shows the plane stress and the plane strain solutions obtained from the
closed-form equations for relieved displacement. As seen from the figure, relieved displacements
increase quickly as core-hole depth increases, and reach the maximum value. Relieved
displacements obtained from finite clement analysis are far beyond from the closed-form
solutions at shallow core-hole depth, but get closer to closed-form solutions quickly as core-hole
depth increases further and reach their maximum value between plane stress and plane strain
solution. Although the relieved displacements get close to closed-form solutions at deep core-
hole depth, it might not be practical to drill a core-hole that deep in to a structure.

The relieved displacements in the tangential direction are plotted against dimensionless core-hole
depth in Figure 5.11. The closed-form solutions for plane stress and plane strain are also plotted
in the figures. It is seen from the figures that the relieved displacements increase quickly, reach a
maximum and then remain constant. These figures show that relieved displacements in the
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tangential direction due to core-hole drilling are not the same as those obtained from closed-form
solutions. Even at the core-hole depth at which the relieved displacement is reached maximum,
the closed-form solution gives considerable error.

5.3.3. Influence of Core-Hole Depth on Applicability of the Closed-Form Relieved
Displacement Equations for the Linear Gradient Stress State

The analysis is performed by calculating the relieved displacements as a function of core-hole
depth by axisymmetric finite element models described in Section 5.3.1. The loading is a
uniaxial concentric linear gradient stress state of Kx=0.2 MPa/mm, Ky=0, G=0, 03,70, 7~0.
This loading is in-situ stress state that existed prior to drilling the hole.

The relieved displacements in the radial and the tangential direction are plotted against core-hole
depths in Figure 5.12 and Figure 5.13, respectively. The closed-form solutions for the plane
stress and the plane strain are also plotted in these figures. These figures show that the relieved
displacements obtained from the finite element analysis are far beyond from the closed-form
solutions at shallow core-hole depth. These relieved displacements increase towards to closed-
form solutions, reach a maximum and remain constant as core-hole depth increases. The relieved
displacements in the radial direction are close to the closed-form solutions with small error at the
core-hole depth where maximum relieved displacement is reached. However, the relieved
displacements in the tangential direction have still considerably large error at the core-hole depth
where relieved displacement is reached maximum. Although the relieved displacements in the
radial direction are close to the closed-form solutions at deep core-hole depths, it might not be
practical to drill a core-hole that deep in to a structure.

5.4. INFLUENCE OF OBJECT WIDTH ON APPLICABILITY OF CLOSED-FORM
RELIEVED DISPLACEMENT EQUATIONS

In this section, the closed-form relieved displacement equations derived in Chapter 3 are studied
to evaluate their applicability to objects of finite width. The evaluation analyses are performed
by calculating relieved displacements as a function of the object width W),. The finite element
model explained in Section 5.4.1 is used to calculate the relieved displacements. The relieved
displacements are taken at three measurement points a, b, and ¢ that are on the same
measurement circle and at angles of 0°, 45°, and 90° from the x-axis. The measurement circle
radii are made non-dimensional by the through-hole radius a as k=r,/a. The dimensionless
measurement circle radius k is taken as 1.5 for these analyses. The relieved displacements are
compared with the relieved displacements calculated by the closed-form relieved displacement
equations.

The width of the object is made non-dimensional by measurement circle diameter Dy, as W,/ D,

Both the uniform stress state and the linear gradient stress state are treated here in separate
sections below.
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5.4.1. Finite Element Model

This section describes the general features of the finite element analyses that were performed to
evaluate the closed-form equations for the relieved displacements and the in-situ stresses to
object width #,,. Included in this section are a description of how drilling a through-hole is
simulated, model geometry, element types and, material properties, and a mesh refinement
convergence study.

5.4.1.1. Simulation of Hole Drilling

The finite element models were created to simulate drilling a through-hole in a thin large object.
As explained in Section 3.1 and Section 4.2, the relieved displacements and stress redistribution
are calculated by applying the relieved in-situ stresses to the hole surface. The finite element
analyses were carried out in linear elastic range using the ABAQUS, a commercial trademark
finite element package.

5.4.1.2. Modeling, Model Geometry

Figure 5.14 shows general geometry of the finite element model. Based on the information
above, the finite element models are created as follow. A number of objects with varying widths
are modeled. The length L, through-hole diameter and thickness of the model are 2000 mm, 150
mm and 15 mm, respectively. In this instance, 2 full three-dimensional finite element model is
preferred instead of symmetric or asymmetric models that require superposition. The full model
provide the flexibility to apply any kind of loading in one analyses without changing boundary
conditions.

A thin finite element model with a through-hole that produces less than 0.4 percent error by
comparison with the relieved displacement equation solution was created. The same element
distributions are used for the other finite element models. The ratio of the width (W}) and length
(L) of the model is unity at the beginning to produce ease of the modeling. The length, thickness,
and the diameter of the model were set equal to 2000 mm, 15 mm, and 150 mm, respectively.
Then the other models were created by changing the width of the model.

5.4.1.3. Material Properties
The modulus E and Poisson's ratio v of the model are 30000 MPa and 0.2 respectively and the

analysis assumes that the material is linear elastic.

5.4.1.4. Loads

As explained earlier, loads are applied to the inner surface of the hole. These loads, which
represent relieved in-situ stresses due to through-hole drilling, are calculated as a function of in-
situ state of stresses and o in Equations in Chapter 3. These loads, found in Equations (3.5) and
(3.6), are applied to the nodes at the hole surface.
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5.4.2. Influence of Object Width on Applicability of the Closed-Form Relieved
Displacement Equations for the Uniform Stress State

The finite element models described in Section 5.4.1 are used to perform the analyses described
in this section. The models are run under same load conditions for varying object widths (W)).
The loading is a uniform uniaxial stress of =10 MPa, 65,0, 7,=0. This loading is the in-situ
stress state that existed prior to drilling the hole.

Figure 5.15, Figure 5.16, and Figure 5.17show the relieved displacements in the radial direction
at the measurement points a, b, and ¢ versus object width, respectively. Figure 5.18 shows
relieved displacements in the tangential direction v, at the measurement point b versus object
width. The relieved displacements are shown in dimensionless form as #,/ty, and v / Ve, Where
Uro, and V4, are the relieved displacement obtained where the ratio of the width and length of the
specimen is unity. The widths of the models are also shown in dimensionless form as Wy/Dy. It is
seen from the figures that errors on relieved displacements increase as object width to through-
hole diameter ratio decreases. The error is very small in the region where the object width to the
through-hole diameter ratio (W,/D;) is greater than 4, and become larger where ratio of the plate
thickness to through-hole diameter is less than 4. The maximum percentage error occurred at the
measurement point c.

5.4.3. Influence of Object Width on Applicability of the Closed-Form Relieved
Displacement Equations for the Linear Gradient Stress State

The finite element model in Section 5.4.1 is used to perform the analyses described in this
section. The models are run under same load conditions for varying object widths #,. The
loading is a uniform uniaxial concentric linear gradient stress state of Kx=0.2 MPa/mm, Ky=0,
=0 MPa, 0;,=0, 7,=0. This loading is the in-situ stress state that existed prior to drilling the
hole.

Figure 5.19 shows relieved displacement in the radial direction /1, at the measurement point b
versus dimensionless object width thickness #,/Dy. It is seen from the figure that the errors on
relieved displacements increase as object width to through-hole diameter ratio decreases. These
error is very small in the region where the object width to the through-hole diameter ratio
(W,/Dy) is greater than 2, and become larger where ratio of the object width to through-hole
diameter less than 3. Figure 5.20 shows relieved displacement in tangential direction v#/Vy, at the
measurement point b versus dimensionless object width thickness W,/Dy. This figure shows that
the relieved displacements in the tangential direction at measurement point b are not affected

much by the object width.
5.5. INFLUENCE OF OBJECT THICKNESS ON APPLICABILITY OF CLOSED-FORM
IN-SITU STRESS EQUATIONS

In this section, the closed-form in-situ stress equations that were derived in Chapter 3 are studied
to evaluate their applicability objects of finite thickness. The analyses are performed by
calculating in-situ stresses as a function of the object thickness 7. The finite element model
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explained in Section 5.2.1 is used to calculate the relieved displacements at the measurement
points for each of the Test Configurations. Then these relieved displacements are used to
calculate the measured displacements for each of the Test Configurations. In-situ stresses are
then calculated using these measured displacements by the closed-form in-situ stress equations
derived in Chapter 3. Finally, The calculated in-situ stresses are compared with the in-situ
stresses that existed in the object prior to drilling the through-hole.

Both the uniform in-situ stress equations and the linear gradient in-situ stress equations are
treated in separate sections.

5.5.1. Influence of Object Thickness on Applicability of the Closed-Form Uniform In-situ
Stress Equations

Figure 5.21 to Figure 528 show the in-situ stress Oy VErsus object thickness for each of the Test
Configurations shown in Figure 3.13. The object thickness is shown in dimensionless form as
T,/Dj. These figures show the calculated in-situ stress o for both the plane stress and the plane
strainn conditions. The calculated in-situ stresses (G Gpye Ty} BIE tabulated in from Table 5.1 to
Table 5.8. These tables include the calculated in-situ stresses for both the plane stress and the
plane strain conditions, and percentage €rrors obtained between the calculated in-situ stresses
and the in-situ stresses that existed prior to drilling the hole. As seen from the figures and tables,
the effect of the thickness of the object on the closed-form in-situ stress equations for each of the
Test Configurations are different. For mojt of the Test Configurations (except Test
Configurations F and H,) the closed-form equations for the plane stress assumptions give
reasonably good results and they are not affected much by the object thickness. A maximum
error in displacement of about 1.5 % is observed when the ratio of the object thickness to
through-hole diameter is equal to 1. However, the closed form uniform in-situ stress equations
for Test Configurations F and H are affected by the object thickness and the equations cause
some errors. Maximum errors in displacement of about 3.2 % and 6 % for the Test
Configurations F and H, respectively, are observed from the plane strain assumptions. The
reason why the closed form equations for Test Configurations F and H are affected more by the
object thickness variation is that the closed-form in-situ stress equations for Test Configurations
F and H consist of measurement displacements that are obtained from the tangential and radial
relieved displacements. As investigated in Section 5.2.2, the relieved displacements in radial
direction are affected by the object thickness.

5.5.2. Influence of Object Thickness on Applicability of the Closed-Form Linear Gradient
In-situ Stress Equations

Figure 5.29 to Figure 5.33 show in-situ stress Kx versus the object thickness T,/Dy for each of the
test configurations shown in Figure 3.14. These figures show the calculated in-situ stresses Kx
for both the plane stress and the plane strain assumptions. The all calculated in-situ stresses (Cxx,
Gy Tyr Kx, Ky) are tabulated Table 5.9 to Table 5.13. These tables include the calculated in-situ
stresses for both the plane stress and the plane strain assumptions, and percentage errors between
the calculated in-situ stresses and the exact in-situ stresses that existed before the drilling the
hole. As seen from the figures and tables, the effect of the thickness of the object on the closed-
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form in-situ stress equations for each of the configurations are different. All test configurations
are affected by the object thickness variations. When the object thickness is very small, the
closed-form in-situ stress equations for plane stress equations produce very good results.
However, as the object thickness increases, the in-situ stress (Kx) calculated by the closed-form
linear gradient in-situ stress equations for both the plane stress and the plane strain assumptions
increase or decrease quickly, reach a maximum, and then remain constant.

5.6. INFLUENCE OF CORE-HOLE DEPTH ON APPLICABILITY OF CLOSED-FORM
IN-SITU STRESS EQUATIONS

In this section, the closed-form in-situ stress equations that were derived in Chapter 3 are studied
to evaluate their applicability to core-hole depth. The analyses are performed by calculating the
in-situ stresses as a function of the core-hole depth h. The finite element model described in
Section 5.3.1 is used to calculate the relieved displacements at the measurement points for each
of the Test Configurations. The relieved displacements are used to calculate the measured
displacements for each of the test configurations. In-situ stresses are then calculated by the
closed-form in-situ stress equations. Finally, the calculated in-situ stresses are compared with the
in-situ stresses that existed in the object prior to drilling the through-hole.

Both the uniform in-situ stress equations and the linear gradient in-situ stress equations are
treated in following sections, respectively.

5.6.1. Influence of Core-Hole Depth on Applicability of the Closed-form Uniform In-situ
Stress Equations

Figure 5.34 to Figure 5.41 show the in-situ stress o versus the object depth / for each of the test
configurations shown in Figure 3.13. These figures show the calculated in-situ stress oy, for the
both plane stress and the plane strain conditions. The calculated in-situ stresses are tabulated in
Table 5.14 to Table 5.21. These tables include the calculated in-situ stresses for the both plane
stress and the plane strain conditions, and percentage errors obtained between the calculated in-
situ stresses and the in-situ stresses that existed prior to drilling the hole.

These figures show that the calculated in-situ stress increases quickly as core-hole depth
increases, and reach the maximum value. At the shallow core-hole depth, the closed-form
uniform in-situ stress equations produce large etrors. These errors decrease quickly as the core-
hole depth increases. As seen from the results, neither the plane stress assumptions nor the plane
strain assumptions give good results until the core-hole depth reaches a considerably high depth.
Although the closed-form in-situ stress equations produce very small errors at deep core-hole
depths, it might not be practical to drill a core-hole that deep in to a structure.
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5.6.2. Influence of Core-Hole Depth on Applicability of the Closed-Form Linear Gradient
In-situ Stress Equations

Figure 5.42 to Figure 5.46 show the calculated in-situ stress Kx versus core-hole depth 4 for
each of the Test Configurations. These figures show the calculated in-situ stress Kx for both the
plane stress and the plane strain assumptions. The calculated in-situ stresses are tabulated in
Table 5.22 to Table 5.26. These tables include the calculated in-situ stresses for both the plane
stress and the plane strain conditions, and percentage errors obtained between the calculated in-
situ stress and the in-situ stress that existed before drilling the core-hole.

These figures show that the calculated in-situ stress increases quickly as core-hole depth
increases, and reach the maximum value. At the shallow core-hole depth, the closed-form linear
gradient in-situ stress equations produce large errors. These errors decrease quickly as the core-
hole depth increases. As seen from the results, neither the plane stress assumptions nor the plane
strain assumptions give good results until the core-hole depth reaches a considerably high depth.
The closed-form equations for plane strain assumptions give better results than the closed-form
equations for plane stress assumptions. Although the closed-form linear gradient in-situ stress
equations for the plane strain assumptions produce small error at deep core-hole depths, it might
not be practical to drill a core-hole that deep in to a structure.

5.7. INFLUENCE OF OBJECT WIDTH ON APPLICABILITY OF CLOSED-FORM IN-
SITU STRESS EQUATIONS

In this section, the closed-form in-situ stress equations that were derived in Chapter 3 are studied
to evaluate their applicability to objects of finite widths. The analyses are performed by
calculating the in-situ stresses as a function of the object width #,. The finite element model
explained in Section 5.4.1 is used to calculate the relieved displacements at the measurement
points for each of the Test Configurations. The relieved displacements are used to calculate the
measured displacements for each of the Test Configurations. In-situ stresses are then calculated
by the closed-form in-situ stress equations derived in Chapter 3. Finally, The calculated in-situ
stresses are compared with the in-situ stresses that existed in the object prior to through-hole

drilling.

Both the uniform in-situ stress equations and the linear gradient in-situ stress equations are
treated in following sections.

5.7.1. Influence of Object Width on Applicability of the Closed-form Uniform In-situ Stress
Equations

Figure 5.47 to Figure 5.54 show the calculated in-situ stress oy versus the object width W,/D;,
for each of the Test Configurations shown in Figure 3.13. These figures show the calculated in-
situ stress o3, for both the plane stress and the plane strain assumptions. The all calculated in-situ
stresses are tabulated in Table 5.27 to Table 5.34. These tables include the calculated in-situ
stresses for both the plane stress and the plane strain conditions, and percentage errors obtained
between the calculated in-situ stress and the in-situ stress existed prior to drilling the hole. As
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seen from the figures, plane stress assumptions give better results. This is because of modeling a
thin finite element model described in Section 5.4.1. The closed-form uniform in-situ stress
equations for both the plane siress and the plane strain assumptions show same characteristic
behavior against the width to through-diameter ratio variations. The last columns of the tables
show percentage change of the in-situ stress ow. In this tables c3(10) is the in-situ stress
calculated where the specimen width to through-hole diameter ratio is equal to 10.

The figures and tables introduced above show that the uniform in-situ stress equations are not
affected significantly by the object width variations. The uniform in-situ stress equations for both
the plane stress and the plane strain assumptions show the same characteristic behavior for the
width to through-hole diameter variations. It is seen that the object width has little effect on the
closed-from uniform in-situ stress equations up to the width to through-hole diameter ratio equal
to 3. Around a 3 % change of in-situ stress is observed for the all test configurations when the
width to through-hole diameter ratio is equal to 3. This percentage change of the in-situ stress Oxx
for each of the Test Configurations are between 6 % and 10 % when the width to through-hole
diameter ratio is equal to 2.

5.7.2. Influence of Object Width on Applicability of the Closed-Form Linear Gradient In-
situ Stress Equations

Figure 5.55 to Figure 5.59 show the calculated in-situ stress oix versus the object width for each
of the test configurations. These figures show the calculated in-situ stress oy for both the plane
stress and the plane strain assumptions. The calculated in-situ stresses are tabulated in Table 5.35
to Table 5.39. These tables include the calculated in-situ stresses for both the plane stress and the
plane strain assumptions, and percentage errors obtained between the calculated in-situ stresses
and the in-situ stresses that existed before drilling the hole.

The figures and tables show that the linear gradient in-situ stress equations are not affected
significantly by the object width variation. As seen from the figures, the plane stress assumptions
give better results. This is because of modeling a thin finite element mode! described in Section
5.4.1. The linear gradient in-situ stress equations for both plane stress and plane strain
assumptions show the same characteristic behavior to the width to through-diameter variations.
The last columns of the tables show relative change of the in-situ stress Kx to in-situ stress
Kx(10), where Kx(10) is the in-situ stress Kx when the specimen width to through-hole diameter
ratio is equal to 10. It is seen that the object width has almost no effect on the closed-from linear
gradient in-situ stress equations up to the width to through-hole diameter ratio equal to 3. When
the width to through-hole diameter ratio reaches 2, a sudden dropt is observed on the relative
change of the in-situ stress calculated. Even at the width to through-hole diameter ratio equal to
2, there are not significant change on the in-situ stress Kx calculated. Around a 4 % change is
observed for all Test Configurations.

120



Figure 5.1 Measurement point locations used for the evaluation analyses.
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Figure 5.2 Basic geometry of axisymmetric finite element model with through-hole.
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Figure 5.3 Relieved displacement in radial direction at measurement point a versus object
thickness for the in-situ stress state of 0,=10 MPa, 0= 7,=0.
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Figure 5.4 Relieved displacement in radial direction at measurement point b versus object
thickness for the in-situ stress state of 0=10 MPa, 0y=17,=0.
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Figure 5.5 Relieved displacement in radial direction at measurement point ¢ versus object
thickness for the in-situ stress state of =10 MPa, 0y, 5y=0.
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Figure 5.7 Relieved displacement in radial direction at measurement point b versus object
thickness for the in-situ stress state of Kx=0.2 MPa/mm, Ky=0, 0,,=0, &,y= 5,=0.
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Figure 5.8 Relieved displacement in tangential direction at measurement point b versus the
object thickness for the in-situ stress state of Kx=0.2 MPa/mm, Ky=0, ¢,,=0,
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Figure 5.12 Relieved displacement in radial direction at measurement point b versus the core-
hole depth for the in-situ stress state of Kx=0.2 MPa/mm, Ky=0, 0,=0, 0yy=7,=0.
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Figure 5.14 Finite element model used to evaluate object width.
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Figure 5.15 Relieved displacement in radial direction at measurement point a versus the object
width for the in-situ stress state of 0x=10 MPa, 65~ Ty=0.
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Figure 5.16 Relieved displacement in radial direction at measurement point b versus the object
width for the in-situ stress state of 0=10 MPa, 6,,= 7= 0.
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Figure 5.17 Relieved displacement in radial direction at measurement point ¢ versus the object
width for the in-situ stress state of 0=10 MPa, gy~ Ty=0.
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Figure 5.18 Relieved displacement in tangential direction at measurement point b versus the
object width for the in-situ stress state of =10 MPa, o3= 7= 0.
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Figure 5.19 Relieved displacement in radial direction at measurement point b versus the object
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Figure 5.20 Relieved displacement in tangential direction at measurement point b versus the
object width for the in-situ stress state of Kx=0.2 MPa/mm, Ky=0.1 MPa/mm, c,,=0,
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Figure 5.21 Calculated in-situ stress Oy, Versus the object thickness for Test Configuration A.
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Figure 5.22 Calculated in-situ stress Ox. Versus the object thickness for Test Configuration B.
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Figure 5.23 Calculated in-situ stress O VErsus the object thickness for Test Configuration C.
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Figure 5.24 Calculated in-situ stress O Versus the object thickness for Test Configuration D.
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Figure 5.25 Calculated in-situ stress o3 versus the object thickness for Test Configuration E.
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Figure 5.26 Calculated in-situ stress o, versus the object thickness for Test Configuration F.
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Figure 5.27 Calculated in-situ stress Ok Versus the object thickness for Test Configuration G.
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Figure 5.28 Calculated in-situ stress Oxx Versus the object thickness for Test Configuration H.
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Figure 5.29 Calculated in-situ stress Kx versus the object thickness for Test Configuration L.
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Figure 5.30 Calculated in-situ stress Kx versus the object thickness for Test Configuration M.
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Figure 5.31 Calculated in-situ stress Kx versus the object thickness for Test Configuration P.
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Figure 5.32 Calculated in-situ stress Kx versus the object thickness for Test Configuration Q.
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Figure 5.33 Calculated in-situ stress Kx versus the object thickness for Test Configuration R.
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Figure 5.34 Calculated in-situ stress i VEISus the core-hole depth for Test Configuration A.
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Figure 5.35 Calculated in-situ stress O, Versus the core-hole depth for Test Configuration B
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Figure 5.36 Calculated in-situ stress O VEISUS the core-hole depth for Test Configuration C.
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Figure 5.37 Calculated in-situ stress oy, versus the core-hole depth for Test Configuration D.
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Figure 5.38 Calculated in-situ stress Oy, versus the core-hole depth for Test Configuration E.
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Figure 5.39 Calculated in-situ stress Gy Versus the core-hole depth for Test Configuration F.
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Figure 5.40 Calculated in-situ stress Oz Versus the core-hole depth for Test Configuration G.
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Figure 5.41 Calculated in-situ stress Gi VEISus the core-hole depth for Test Configuration H.
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Figure 5.42 Calculated in-situ stress Kx versus the core-hole depth for Test Configuration L.
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Figure 5.43 Calculated in-situ stress Kx versus the core-hole depth for Test Configuration M.
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Figure 5.44 Calculated in-situ stress Kx versus the core-hole depth for Test Configuration P.
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Figure 5.47 Calculated in-situ stress Oy versus the object width for Test Configuration A.
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Figure 5.48 Calculated in-situ stress Oy Versus the object width for Test Configuration B.
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Figure 5.49 Calculated in-situ stress ox versus the object width for Test Configuration C.
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Figure 5.50 Calculated in-situ stress oy, versus the object width for Test Configuration D.
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Figure 5.51 Calculated in-situ stress Oy Versus the object width for Test Configuration E.
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Figure 5.52 Calculated in-situ stress oy, versus the object width for Test Configuration F.
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Figure 5.53 Calculated in-situ stress Ox; VErsus the object width for Test Configuration G.
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Figure 5.54 Calculated in-situ Stress Oy VEIsus the object width for Test Configuration H.
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Figure 5.55 Calculated in-situ stress Kx versus the object width for Test Configuration L.
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Figure 5.56 Calculated in-situ stress Kx versus the object width for Test Configuration M.
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Figure 5.57 Calculated in-situ stress Kx versus the object width for Test Configuration Q.
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Figure 5.58 Calculated in-situ stress Kx versus the object width for Test Configuration P.
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Configuration A ||
T /D Plane Stress (MPa) Plane Strain (MPa)
Pk P

Cax Ty Ty 260 s - Ty Tay %0

0 10.0335 | -0.0175 | 0.0000 -0.33 |l 10.2766 | -0.2606 | 0.6000 -2.77

1 10,1425 | -0.1265 | 0.0000 -1.43 || 16.3909 | -0.3749  0.0000 -3.91

2 10.0747 | -6.0587 1 0.0000 -0.75 |f 10.3198 | -0.3038 | 0.0000 -3.20

3 10.0141 | 0.0019 | 0.0000 -0.14 | 102563 | -0.2403 | 0.0000 -2.56

4 ©.9810 | 0.0350 § 0.0000 0.19 10.2216 | -0.2056 § 0.0000 -2.22

5 99628 | 0.0532 | 0.0000 0.37 10.2026 | -0.1866 | 0.0000 -2.03

6 9.9521 | 0.0639 | 0.0000 0.48 10.1913 | -0.1753 | 0.0000 -1.91

7 9.9455 | 0.0705 | 0.0000 0.54 10,1845 | -0.1685 | 0.0000 -1.84

8 9.9410 | 0.0750 | 0.0000 0.59 10,1797 | -0.1637 | 0.0000 -1.80

9 9.9381 | 0.0779 | 0.0000 0.62 10.1766 | -0.1606 | 0.0000 -1.77
10 9.9358 | 0.0802 | 0.0000 0.64 10.1743 | -0.1583 | 0.0000 -1.74
15 9.9308 { 0.0852 | 0.0000 0.69 10,1690 | -0.1530 | 0.0000 -1.69
20 9,294 | 0.0866 | 0.0000 0.71 10.1676 | -0.1516 | 0.0000 -1.68

Table 5.1 Evaluation of uniform in-situ stress equations for Test Configuration A to the object

thickness.
lConfiguration B “
T /D Plane Stress (MPa) Plane Strain (MPa)

s Ty [ Ty %o, O Oy Ty 260 4y
0 10.0335 | -0.0175 | 0.0000 -0.33 10.2766 | -0.2606 | 0.0000 -2.77

1 10.1425 | -0.1265 | 0.0000 -1.43 103909 | -0.3749 | 0.0060 -3.91

2 10.0747 | -0.0587 | 0.0000 -0.75 10.3198 | -0.3038 | 0.0060 -3.20

3 10.0141 | 00019 0.0000 -0.14 16.2563 | -0.2403 | 0.0000 -2.56

4 9.9810 0.0350 0.0000 0.19 10.2216 | -0.2056 | 0.00G0 2.22

5 99628 | 0.0532 | 0,0000 0.37 10.2026 | -0.1866 | 0.0000 -2.03

6 99521 | 0.0639 | 0,0000 0.48 10.1913 | «0.1753 | 0,0000 -1.91

7 99455 | 0.0705 | 0.0000 0.54 10,1845 | -0.1685 | 0.0000 -1.84

8 9.9410 0.0750 0.0000 0.59 10.1797 | -0.1637 | 0.0000 -1.80

9 99381 | 0.6779 | 0.0000 0.62 10.1766 | -0.1606 | 0.0000 -1.77

10 99358 | 0.0802 | 00000 0.64 10,1743 | -0.1583 | 0.0000 -1.74
15 9.9308 | 0.0852 | 0.0000 0.69 10,1690 | -¢.1530 | 0.0000 -1.69
20 99294 | 0.0866 | 0.0000 0.71 10,1676 | -0.1516 | 0.0000 -1.68

Table 5.2 Evaluation of uniform in-situ stress equations for Test Configuration B to the object
thickness.
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l[Cunﬁguration c i

T /D Plane Stress (MFPa) Plane Strain (MPa)
PR Oy Ty %0 e O Oy Ty %0 o
0 10.0335 | -0.0175 | 06.0000 -0.33 10.2766 | 0.2606 | 0.0000 2,77
1 10.1425 | -0.1265 | 0.0000 -1.43 103909 | -0.3749 | 0.0000 -3.91
2 10.0747 | -0.0587 | 0.0000 -0.75 103198 | -0.3038 | 0.0000 -3.20
3 10.0141 { 00018 | 0.0000 -0.14 10.2563 | -0.2403 | 0.0000 -2.56
4 9.0810 | 0.0350 | 0.0000 0.19 102216 1 -0.2056 | 0.0000 -2.22
5 09628 | 0.0532 | 0.0000 0.37 10.2026 | -0.1866 | 0.0000 -2.03
6 99521 | 0,0639 | 0.0000 0.48 10.1913 | -0.1753 | 0.0000 -1.91
7 99455 | 0.0705 | 0.0000 0.54 10.1845 | -0.1685 | 0.0000 ~1.84
8 9.9410 | 0.0750 | 0.0000 0.59 10.1797 | -0.1637 | 0.0000 ~1.80
9 9.6381 | 0.0779 { 0.0000 0.62 10.1766 | -0.1606 | 0.0000 -1,77
10 0.9358 | 0.0802 | 0.0000 0.64 10.1743 | -0.1583 | 0.0000 -1.74
15 00308 | 00852 | 0.0000 0.69 10.1690 | -0.1530 | 0.0000 -1.6%
20 99294 | 0.0866 § 0.0000 0.71 10.1676 | -0.1516 | 0.0000 -1.68

Table 5.3 Evaluation of uniform in-situ stress equations for Test Configuration C to the object

thickness.
[Configuration D i
T /D Plane Stress (MPa) Plane Strain (MPa)
Pk Ty Oy Ty %0 . Oy Ty %0
0 10.0335 { -0.0175 § 0.0000 -0.33 10.2766 | -0.2606 | 0.0000 -2.77
i 10.1425 | -0.1265 | 0.0000 -1.43 103909 | -0.3749 { 0.0000 -391
2 10.0747 | -0.0587 | 0.0000 -0.75 103198 | -0.3038 | 0.0000 -3.20
3 10.0141 | 0.0019 | 0.0000 -0.14 10.2563 | -0.2403 | 0.0000 -2.56
4 99810 0.0350 (.0000 0.19 102216 | -0.2056 | 0.0000 -2.22
5 9.9628 0.0532 § 0.0600 0.37 10.2026 | -0,1866 | 0.0000 -2.03
6 9,9521 0.0639 | 0.0000 0.48 10,1913 | -0.1753 | 0.0000 -1.91
7 9.9455 0.07035 0.0000 0.54 10.1845 | -0.1685 | 0.0000 -1.84
§ 9.0410 0.0750 | 0.0000 0.59 10.1797 | -0.1637 | 0.0000 -1.80
9 9.9381 ¢.0779 | 0.0000 0.62 10.1766 | -0.1606 | 0.0600 -1.77
10 99358 | 0.0802 | 0.0000 0.64 10.1743 | -0.1583 | 0.0000 -1.74
15 9.9308 0.0852 0.0000 0.69 10,1690 | -0.1530 | 0.0000 -1.69
20 9.9294 | 0.0866 0.0000 0.71 10.1676 | -0.1516 | 0.0000 -1.68

Table 5.4 Evaluation of uniform in-situ stress equations for Test Configuration D to the object
thickness.
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!Efionfiguration E |

T /D Plane Stress (MPa) Plane Strain (MPa)
PR gy Oy Ty 260 1 O Ty Typ %0 o
0 10.0335 | -0.0175 | 0.0000 033 § 10.2766 | -0.2606 | 0.0000 277
1 10.1425 | -0.1265 } 0.0000 2143 | 10.3909 | -0.3749 | 0.0000 -3.91
2 10.0747 | -0.0587 | 0.0600 -0.75 10,3198 | -0.3038 | 0.0000 -3.20
3 10,0141 | 00019 | 0.0000 2014 || 102563 | -0.2403 | 0.0000 -2.56
4 99810 | 0.0350 | 0.0000 0.19 10.2216 | -0.2056 | 0.0000 -2.22
5 99628 | 0.0532 | 0.0000 0.37 102026 t -0.1866 | 0.0000 -2.03
6 9.9521 | 0.0639 | 0.0000 0.48 10.1913 | -0.1753 | 0.0600 ~-1.91
7 99455 t 00705 | 0.0060 0.54 10.1845 | -0.1685 | 0.0000 -1.84
8 9.9410 | 0.0750 | 0.0000 0.59 10.1797 | -0.1637 | 0.0000 -1.80
9 9.9381 | 0.0779 { 0.0000 0.62 10.1766 t -0.1606 | 0.0000 -1.77
10 9.6358 | 0.0802 | 0.0000 0.64 10.1743 | -0.1583 | 0.0000 -1.74
15 9.9308 | 0.0852 | 0.0000 0.69 10.1690 | -0.1530 { 0.8000 -1.69
20 | 9.9294 | 0.0866 0.0000 0.71 10.1676 | -6.1516 | 0.0000 -1.68

Table 5.5 Evaluation of uniform in-situ stress equations for Test Configuration E to the object

thickness.
P‘ !Configuration ¥ “
T /D Plane Stress (MPa) Plane Strain (MPa)
P h [ oy, Ty %0 o o~ o, Ty %0

0 160326 | -0.0166 | 0.0000 | -0.33 |1 10.3371 | -0.3211 | 0.0000 -3.37
1 50508 | 0.0652 | 0.0000 | 0.49 |l 10.2504 | -0.2344 | 0.0000 -2.50
2 57919 | 0.2241 | 0.0000 | 2.08 | 10.0819 | -0.0659 | 0.0000 -0.82
3 97101 | 0.3059 | 0.0000 2.90 9.9950 | 0.0210 | 0.000¢ | 0.05
56704 | 03456 | 0.0000 | 330 || 9.9530 | 0.0630 | 0.0000 | 047
5 {1 9.6496 | 0.3664 | 0.0000 3.50 99310 | 00830 | 0.0000 0.69
6
7
3

[ 2.6376 | 03784 | 0.0000 3.62 9.9182 | 0.0978 | 0.0000 0.82

[ 96302 | 03857 | 0.0000 3.70 9.9104 | 0.1056 | 0.0000 | 0.90

Il 9.6253 | 03907 | 0.0000 3.75 9.9052 | 0.1108 | 0.0000 0.95
9 W 9.6221 | 03939 | 0.0000 3.78 99017 | 0.1142 } 0.0000 0.93
10 l 96196 | 03964 | 0.0000 | 3.80 |l 9.8991 | 0.1169 | 0.0000 1.01
15

96143 | 0.4017 | 0.0000 3.80 9.8935 | 0.1225 | 0.0000 1.07
20 “ 9,6138 | 0.4022 | 0.0000 3.86 98929 | 0.1231 | 0.0000 1.07

Table 5.6 Evaluation of uniform in-situ stress equations for Test Configuration F to the object
thickness.
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[Configuration G__|

T /D Plane Stress (MPa) Plane Strain (ViPa)
Pk O o o T %0 O Oy Ty %0, |
0 10,0335 | -0.0175 | 0.0000 | -0.33 |l 10.2766 | -0.2606 | 0.0000 | -2.77
o1 10.1425 | -0.1265 | 0.0000 | -1.43 | 10.3909 | -0.3749 | 0.0000 | -3.91
2 J10.0747 | -0.0587 | 0.0000 | -0.75 }i 10.3198 | -0.3038 0.0000 | -3.20
[ {1o.c1a1 | 0.0019 { 0.0000 | -0.14 Ji 10.2563 } -0.2403 | 0.0000 2,56
4 || 9.9810 | 0.0350 { 0.0000 0.19 I 10.2216 | ~0.2056 | 0.0000 | -2.22
5 If 99628 | 0.0532 | 0.0000 0.37 I 102026 | -0.1866 | 0.0000 | -2.03
6 || 99521 | 0.0639 | 0.0000 | 0.48 | 10.1913} -0.1753 j 0.0000 -1.91
7 || 9.9455 | 0.0705 | 0.0000 | 0.54 J 10.1845 | -0.1685 0.0000 | -1.84
8 | 99410 | 0.0750 | 0.0000 | 0.59 N} 10.1797 | -0.1637 | 0.0000 -1.80
9 | 9.9381 | 0.0779 | 0.0000 0.62 H§ 10.1766 | -0.1606 | 0.6000 | -1.77
10 || 9.9358 | 0.0802 | 0.0000 | 064 | 10,1743} -0.1583 | 0.0000 -1.74
15 || 9.9308 | 0.0852 | 0.0000 | 0.69 | 10.1690 | -0.1530 | 0.0000 -1.69
20| 9.9204 | 0.0866 | 0.0000 } 071 § 10.1676 20.1516 | 0.0000 | -1.68

Table 5.7 Evaluation of uniform in-situ stress equations for Test Configuration G to the object

thickness.
Configuration H i .
T /D i Plane Siress (MPa) Plane Strain (MPa) |
PR oy T, Ty %60 v, O Oy Ty %0
0 H 100311 | -0.0151 | 0.0000 | -0.31 |} 104384 | -0.4229 0.0000 | -4.38
1 | 96393 | 03767 | 0.0000 361 1§ 10.0149 | 0.0011 | 0.0000 | -0.15
2 1193325 | 0.6835 | 0.0000 668 | 9.6831 | 0.3329 | 0.0000 3.17
3 52161 | 0.7999 | 0.0000 | 7.84 | 9.5573 | 0.4587 | 0.0000 4.43
4 9.1657 | 0.8503 | 0.0000 834 If 9.5028 | 0.5132 | 0.0000 | 497
5 9.1407 | 0.8753 | 0.0000 2859 || 9.4758 | 0.5402 | 0.0000 5.24
6 9.1266 | 0.8894 | 0.0000 8.73 9.4606 | 0.5554 | 0.0000 5.39
7 9.1179 | 0.8981 | 0.0000 3.82 9.4511 | 0.5649 | 0.0000 | 5.49
3 9.1123 | 0.9037 | 0.0000 3.88 0.4451 | 0.5709 | 0.0000 5.55
9 9.1086 | 0.9074 | 0.0000 8.91 94411 | 0.5749 | 0.0000 5.59
10 51058 | 0.0102 | 0.0000 | 8.94 | 9.4381 | 0.5779 | 0.0000 5.62
15 || 5.0999 | 0.0161 | 0.0000 | 9.00 |l 94317 | 0.5843 | 0.0000 | 5.68
200 || 2.1008 | 0.9152 | 0.0000 $.99 9.4326 | 0.5834 | 0.0000 5.67

Table 5.8 Evaluation of uniform in-situ stress equations for Test Configuration H to the object
thickness.
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!!Conﬁgaration L i

Plane Stress

T
P {Mpffmm) (Mpfjl’mm) O e (MPa)I o,y (MPa)| 7., (MPa)|  %Kx
0.1 0.2000 0.0000 | 0.0003 | -0.0003 | 0.0000 | -0.0035
1 0.1855 0.0000 0.1441 | -0.1441 | 0.0000 | 7.2640
2 0.1754 0.0000 0.2449 | -0.2449 1 0.0000 | 12.3175
3 0.1737 0.0000 02617 | 02617 | 0.0000 | 13.1590
4 0.1733 0.0000 02652 | -0.2652 | 0.0000 | 13.3345
5 0.1732 0.0000 0.2662 | -0.2662 | 0.0000 | 13.3870
6 0.1732 0.6000 0.2667 | -0.2667 | 0.0000 } 13.4080
7 0.1732 0.0000 02669 | -0.2669 | 0.0000 | 13.4155
] 0.1732 0.0000 02670 | -02670 | 0.0000 | 13.4200
9 0.1732 0.0000 02670 | -0.2670 | 0.0000 | 13.4200
10 0.1732 0.0000 02670 | -02670 | 0.0000 } 13.4200
15 0.1732 0.0000 0.2670 | -0.2670 | 0.0000 | 13.4200

it 20 01733 0.0000 0.2665 1 -0.2665 | ©0.0000 | 13.3405

Plane Strain

T,/D Kx
i Pamml( Mpffmm) & (MPa)| &), (MPa)| 7, (MPa)|  %Kx

i o1 0.2222 0.0000 | -0.2385 | 0.2385 0.0000 | -11.1150

E 0.2061 0.0000 1 -0.0657 | 0.0657 | 0.0000 | -3.0400
2 0.1949 0.0000 0.0553 | -0.0553 | 0.0000 |} 2.5750
3 0.1930 0.0000 0.0755 | -0.0755 | 0.0000 | 3.5100
4 0.1926 0.0600 0.0797 1 -0.0797 | 0.0000 | 3.7050
5 0.1925 0.0000 0.0809 | -0.0809 | 0.0000 | 3.7635
6 0.1924 0.0000 0.0815 | -0.0815 | 0.0000 | 3.7865
7 0.1924 0.0000 0.0817 | -0.0817 | 0.0000 | 3.7950
8 0.1924 0.0000 0.0818 | -0.0818 | 00000 | 3.8000
9 0.1924 0.0000 0.0818 | -0.0818 | 0.0000 | 3.8000
10 0.1924 0.0000 0.0818 | -0.0818 | 0.0000 | 3.8000
15 0.1924 0.0000 0.0818 | -0.0818 | 0.0000 | 3.8000
20 0.1926 0.0000 00811 | -0.0811 | 0.0000 | 3.7215

Table 5.9 Evaluation of uniform in-situ stress equations for Test Configuration L to the object
thickness.
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Fﬁonﬁguration M |

Plane Stress
oD (MP’:fmm) (Mpﬁnm) o (MPa)| &,y (MPa)| 7., (MPa)|  %Kx
o7 T 02001 | 00000 | 0.0006 | 00002 | 0.0000 | -0.0265
1 05055 1 00000 | 02608 | 00730 | 0.0000 i -2.7490
7 02004 1 00000 | 0.4431 | 0.1241 | 0.0000 | -4.6960
3 02100 | 00000 | 04735 | 01326 | 0.0000 | -5.0230
4 65102 1 00000 | 04797 | 01343 | 0.0000 | -5.0870
5 05102 1 0.0000 | 04816 | 0.1349 | 0.0000 { -5.1070
8 55102 1 00000 | 0.4825 | 0.1351 | 0.0000 | -5.1205
7 0o102 1 0.0000 | 04828 | 0.1352 | 0.0000 | -5.1235
8 55103 | 0.0000 | 04829 | 0.1352 | 0.0000 | -5.1250
9 52103 1 00000 | 0.48290 | 0.1352 | 0.0000 | -5.1250
70 1702105 | 00000 | 04829 | 01352 | 0.0000 | -5.1250
5 T 02105 | 00000 | 04829 | 01352 | 0.0000 |} -5.1250
50 | 02103 | 00000 | 04821 | 0.1350 | 0.0000 ] -5.1645
Plane Strain
o/ (leffmm) (MP’:fmm) .. (MP2)| 0, (MP2)| 7,,, (MPa)| %KX
o7 1 01527 | 00000 | -0.3561 | -0.0868 | 0.0000 | 3.6495
1 51979 | 00000 | -0,0981 | -0.0239 | 0.0000 | 10265
2 55017 | 00000 | 0.0826 | 00201 | 0.0000 | -0.8490
3 52053 | 00000 | 01127 | 00275 | 00000 | -1.1635
4 52055 1 00000 | 0.1189 | 0.0290 | 0.0000 | -1.2255
5 52005 | 0.0000 | 0.208 | 00294 | 0.0000 | -1.2445
6 00025 | 00000 | 0.217 | 00297 | 0.0000 | -1.2575
7 02055 | 0.0000 | 0.1219 | 00297 | 0.0000 | -1.2605
8 55005 | 00000 | 0.1221 | 00298 | 0.0000 | -1.2620
g 02025 1 00000 | 0.1221 | 00298 | 0.0000 | -1.2620
76 102025 | 00000 | 0.1221 | 00298 | 0.0000 | -1.2620
5T 02055 1 00000 | 01221 | 0.0298 | 0.0000 | -1.2620
20 | 02026 | 00000 | 01211 | 00295 0.0000 | -1.3000

Table 5.10 Evaluation of uniform in-situ stress equations for Test Configuration M to the object

thickness.
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Configuration P__ ||

Plane Stress

0. (MPa)| oy, (MPa)| r, (MPa)| %Kx

TP/D B Kx Ky
(MPa/mm)}}| (MPa/mm)

0.1 0.2000 0.0000 0.0000 0.0000 0.0000 -0.0035
i 0.1855 0.0000 0.0000 0.0000 0.0000 7.2640
2 0.1754 0.0000 0.0000 0.0000 0.0000 12.3175
3 0.1737 0.0000 0.0000 0.0000 0.0000 13.1590
4 0.1733 0.0000 0.0000 0.0000 0.0000 13.3345
5 0.1732 0.0000 0.0000 0.0000 0.0000 13.3870
6 0.1732 0.0000 0.0000 0.0000 0.0000 13.4080
7 0.1732 0.0000 0.0000 0.0000 0.0000 13.4155
8 0.1732 0.0000 0.0000 0.0000 0.6000 13.4200
9 0.1732 0.0000 0.0000 0.0000 0.6000 13.4200

10 0.1732 0.0000 0.0000 0.0000 0.0000 13.4200
15 0.1732 (.0000 0.0000 0.0000 0.0000 13.4200
g 20 0.1733 £.0000 0.0000 0.0000 6.0000 13.3495

Plane Strain
T,/ Kx K
P (MPa/mm) (M?afmm) o0 (MPa)lcr”. (MPa)| 7, (MPa)|  %Kx
0.2222 | 0.0000 ] 0.0000 | 0.0000 | 0.0000 | -11.1150
0.2061 | 00000 | 0.0000 | 0.0000 | 0.0000 | -3.0400
0.1949 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 2.5750
0.1930 1 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3.5160
0.1926 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3.7050
0.1925 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3.7635
0.1924 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3.7865
0.1924 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3.7950
0.1924 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3.8000
0.1924 | 00000 | 0.0000 | 0.0000 | 0.0000 | 3.8000
0.1924 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3.8000
15 1 0.1924 | 00000 | 0.0000 | 0.000 | 0.0000 | 3.8000
20| 0.1926 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3.7215 |

g 16 73 BRY 18 17 [N ERY RN N Sy
=

Table 5.11 Evaluation of uniform in-situ stress equations for Test Configuration P to the object
thickness.
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FEConfigﬂration Q |

Plane Stress
Tp/Da (MPﬁ’Cmm) m;:fmm) Ox (Mi’a)l o, (MPa)| 7., (MPa)|  %Kx
6T T 02000 | 0.0000 | 00000 | 00000 | 0.0000 | -0.0135
1 01942 | 0.0000 | 0.0000 | 0.0000 | 00000 | 2.9150
2 93901 100000 | 0.0000 | 0.0000 | 00000 | 4.9280
3 51395 | 00000 | 0.0000 | 0.0000 | 0.0000 | 5.2623
7 51893 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 53340
5 518935 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 5.3550
6 51895 | 0.0000 | 0.0000 | 00000 | 0.0000 | 5.3610
7 01893 | 0.0000 | 00000 | 0.0000 | 0.0000 | 5.3640
B 51893 1 0.0000 | 00000 | 0.0000 | 0.0000 | 5.3655
9 51803 1 0.0000 | 0.0000 | 0.0000 | 00000 } 5.3655
70T 01893 | 0,0000 | 0.0000 | 00000 | 0.0000 j 5.3655
5T 01893 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 5.3655
20| 01894 | 0.0000 | 00000 | 00000 | 0.0000 | 5.3085
Plane Strain
T,/D
2D (MPI;‘mm) ( MP’gmm) oo (MPa)| 0,y (MP3)| 7., (MPa)|  %Kx
511 02084 | 00000 | 00000 | 0.0000 | 0.0000 | -4.1805
1 02023 1 0.0000 | 0.0000 | 0.0000 | 0.0000 | -1.1300
Z 01981 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9670
3 51974 | 0.0000 | 0.0000 | 00000 | 0.0000 } 13150
7 51972 | 00000 | 0.0000 | 00000 | 0.0000 ; 1.3895
5 01972 | 0.0000 | 00000 | 00000 | 00000 | 14110
6 0157 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.4175
7 51972 | 0.0000 | 0.0000 | 0.0000 | 0.0000 } 14205
8 01972 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.4225
9 01972 | 0.0000 | 00000 | 0.0000 | 0.0000 | 14225
5101572 | 00000 | 0.0000 | 0.0000 | 0.0000 | 14225
75101972 | 0.0000 | 0.0000 | 00000 | 0.0000 | 1.4225
501 01973 1 0.0000 | 0.0000 | 0.0000 | 0.0000 } 13630

Table 5.12 Evaluation of uniform in-situ stress equations for Test Configuration Q to the obj

thickness.
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[[Configuration R It

Plane Stress

T,/Di (MPI:mm) (MP}:}”mm) .. (MP3)| o, (VMP)| 7 (MPa)|  %Kx
57T 02000 | 00000 | 00000 | 00000 | 00000 | -0.0135
1 01942 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 2.9150
2 51601 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 4.9280
3 5.1895 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 5.2625
4 51893 | 00000 | 0.0000 | 0.0000 | 0.0000 | 33340
5 01853 | 0.0000 | 0.0000 | 00000 | 00000 )| 5.3550
6 0.1893 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 5.3610
7 01503 | 00000 | 0.0000 | 0.0060 | 0.0000 | 5.3640
8 051895 | 0.0000 | 0.0000 | 0.0000 | 0.0000 ; 53655
9 0.1893 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 5.3655
5T 01893 | 00000 | 00000 | 0.0000 | 00000 } 5.3635
75101893 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 5.3655
551 01894 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 353085

Plane Strain

oD mp’:fmm) ( MPlg’mm) O e (MPa)I o, (MPa)| 7, (MPR)| %K

5T T 02084 | 00000 | 0.0000 | 00000 j 0.0000 | -4.1805
1 02003 | 0.0000 | 0.0000 | 00000 | 0.0000 | -1.1300
2 51081 1 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9670
31 51974 | 0.0000 | 0.0000 | 0.0000 | 0.0000 } 1.3150
4 01975 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.3895
5 0.1972 | 0.0000 | 0.0000 | 0.0000 | 00000 | 14110
6 51970 | 0.0000 | 0.0000 | 0.0000 | 00000 | 14175
7 51972 | 0.0000 | 0.0000 | 0.0000 | 00000 | 14205

E 01072 | 00000 | 00000 | 0.0000 | 00000 ; 14235
9 01072 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 14225
o T 01972 | 00000 | 00000 | 0.0000 | 00000 | 1.4225
51 01972 | 0.0000 | 0.0000 | 00000 | 0.0000 | 14225
20 1 0.1973 | 00000 | 0.0000 | 00000 [ 00000 | 13630 §

Table 5.13 Evaluation of uniform in-situ stress equations for Test Configuration R to the object
thickness.
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%onﬁguration A

Plane Stress (MPa) Plane Strain (MPa)
h (mm) Y Y
O,y Oy Ty (Lo Oxe Oy Tyy B0
13 1.1217 } 0.4383% | 0.0000 §8.8 1.1382f 0.4218] 0.0000) 38.6
30 3.0578 1.0622 | 0.0000 69.4 3.1061 1.0139] 0.0000] 68.9
45 4.7052 1.4548 | 0.0000 52.9 47838 1.3762] 0.0000f 522
90 74739 1.6761 0.0000 25.3 7.6141 1.5359] 0.0000f 23.9
120 8.3470 1.5230 § 0.0000 16.5 8.5121 1.3579; 0.0000] 14.9

180 9.2085 1.1515 | 0.0000 7.9 9.4035] 0.9565} 0.0000] 6.0
225 9.5077 | 0.9223 | 0.0000 4.9 9.7154] 0.7146f 0.0000; 2.8
293 9.7521 06579 | 0.0000 | - 2.5 9.9721 0.4379] 0.0000] 03

360 9.8413 { 05187 | 0.0000 1.6 10,0669]  0.2931F  0.0000] -0.7
450 9.9046 | 03854 { 0.0000 1.0 10.1349f  0.1551 0.0000] -1.3
540 9.9334 | 03066 | 0.0000 0.7 10.1664]  0.0736} 0.0000] -1.7
600 99413 | 02687 | 0.0000 0.6 10,1753  0.03471  0.0000] -1.8
750 9.9502 { 02098 | 0.0000 0.5 10.1859] -0.0259] 0.0000; -1.9

Table 5.14 Evaluation of uniform in-situ stress equations for Test Configuration A to the core-

hole depth.
hConﬁguration B il
Plane Stress (MPa) Plane Strain (MPa)
h (mm) - -
Sy Oy Txy A'Uxx Oy Tyy Txy A’Uxx

13 11217 | 04383 | 0.0000 88.8 1.1382} 0.4218] 0.0000f 388.6
30 3.0578 1.0622 | 0.0000 | 694 3.1061 1.0139] 0.0000] 68.9
45 4.7052 1.4548 | 0.0000 52.9 4. 7838 1.3762] 0.0000] 52.2
50 7.4739 1.6761 | 0.0000 25.3 7.6141 1.5359] 0.0000} 31.3
120 8.3470 1.5230 | 0.0000 16.5 8.5121 1.35791  0.0000; 14.9

180 9.2085 1.1515 | 0.0000 7.9 9.4035] 0.9365| 0.0000f 6.0
225 9.5077 | 0.9223 § 0.0000 4.9 9.7154] 0.7146/ 0.0000; 2.8
293 9.7521 0.6579 1 0.0000 2.5 9.9721 0.4379] 0.0000f 0.3

360 9.8413 0.3187 | 0.0000 1.6 10.0669] 0.2931] 0.0000] -0.7
450 99046 | 0.3854 | 0.0000 1.0 10.1349] 0.1551f  0.0000} -1.3
540 9.9334 | 0.3066 | 0.0000 0.7 10.1664|  0.0736) 00000 -1.7
600 9.9413 0.2687 | 00000 0.6 101753  0.0347] 0.0000] -1.8
750 99502 | 0.2098 | 0.0000 0.5 10.1859 -0.0259] 0.0000 -1.9

Table 5.15 Evaluation of uniform in-situ stress equations for Test Configuration B to the core-
hole depth.

161



ﬁConﬁguration C Il
Plane Stress (MPa) ( Plane Strain (MPa)

k (mm) Ty Gy Ty Yoy x || Oe Cyy Tyy Yooy,
15 1.1217 | 0.4383 | 0.0000 | 888 || 1.1382] 0.4218] 0.0000] 88.6
30 3.0578 | 1.0622 | 00000 | 694 §| 3.1061] 1.0139] 0.0000] 68.9
45 47052 | 1.4548 | 0.0000 | 529 47838} 1.3762] 0.0000] 52.2
90 7.4739 | 1.6761 | 0.0000 | 253 7.6141]  1.5359{ 0.0000f 23.9
120 || 83470 | 1.5230 | 0.0000 | 165 3.5121] 1.35791 0.0000] 14.9

180 9.2085 1.1515 | 0.0000 7.9 9.4035F 0.9565] 0.0006] 6.0
225 95077 | 09223 | 0.0000 4.9 9.7154f 0.7146) 0.0000} 2.8
293 9.7521 0.6579 | 0.0000 2.5 9.9721 0.4379]  0.0000f 0.3

360 | 9.8413 | 0.5187 | 0.0000 | 1.6 10.0669]  0.2931] o0.0000] -0.7
450 | 9.9046 | 0.3854 | 0.0000 | 1.0 10.1349]  0.1551]  0.0000] -1.3
540 | 99334 | 03066 | 0.0000 | 0.7 }i 10.1664] 0.0736] 0.0000] -1.7
600 || 9.9413 | 0.2687 | 0.0000 | 0.6 | 10.1753] 0.0347] 0.0000] -1.3
756 || 9.9502 | 0.2098 | 0.0000 | 0.5 | 10.1859] -0.0259] 0.0000] -1.9

Table 5.16 Evaluation of uniform in-situ stress equations for Test Configuration C to the core-

hole depth.
I[Conﬁguratian b Il
Plane Stress (MPa) Plane Strain (MPa)
k (mm) - P
Oy Sy Tyy Yo0,, Oy Cyy Tyy %0 1

15 11217 | 0.4383 | 0.0000 88.8 1.1382] 0.4218 | 0.0000 88.6
30 3.0578 1.0622 | 0.0000 69.4 3.1061} 1.0139 | 0.0000 68.9
45 4.7052 1.4548 | 0.0000 329 4.7838] 1.3762 | 0.0000 52.2
90 7.4739 | 1.6761 | 0.0000 25.3 7.6141] 1.5359 | 0.0000 23.9
120 8.3470 1.5230 { 0.0000 16.5 851211 1.3579 | 0.0000 14.9

180 9.2085 1.1515 { 0.0000 7.9 9.4035] 0.9565 | 0.0000 6.0
225 9.5077 | 0.9223 | 0.0000 4.9 9.7154] 0.7146 | 0.0000 2.8
293 9.7521 0.6579 | 0.0000 2.5 9.97211 0.4379 | 0.0000 0.3

360 9.8413 | 0.5187 | 0.0000 1.6 10.0669] 0.2931 | 0.0000 -0.7
450 9.9046 | 0.3854 | 0.0000 1.0 10.1349] 0.1551 | 0.0000 -1.3
540 9.9334 | 0.3066 | ©0.0000 8.7 10.1664] 0.0736 | 0.0000 -1.7
600 99413 | 0.2687 | 0.0000 0.6 10,1753} 0.0347 { 0.0000 -1.8
750 9.9502 | 0.2098 | 0.0000 0.5 10.1859] -0.025% { ©.0000 -1.9

Table 5.17 Evaluation of uniform in-situ stress equations for Test Configuration D to the core-
hole depth.
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!fCOnﬁguration E ||

Plane Stress (MPa) Plane Strain (MFPa)
h (mm) o o T %o, (o] o T %0,
XX had XY XX XC YY XY, XX
15 1.1217 0.4383 0.0000 88.8 1.1382 0.4218 0.0000F 88.6
30 3.0578 1.0622 0.0000 69.4 3.1061 1.0139 0.0000] 639
45 4,7052 1.4548 0.0000 52.9 47838 1.3762 0.00001 522
90 7.4739 1.6761 0.0000 25.3 7.6141 1.5359 0.0000f 23.9
120 $.3470 1.5230 0.0000 16.5 8.5121 1.3579 0.60001 149
180 9,2085 1.1515 0.0000 79 9.4035 0.9565 0.0000f 6.0
225 9.5077 0.9223 0.0000 4.9 9.7154 0.7146 0.0000] 2.8
293 9,7521 0.6579 0.0000 2.5 9.9721 0.4379 0.00001 0.3
360 9.8413 0.5187 0.0000 1.6 10.0669 (.2931 0.0000} -0.7
450 9.9046 0.3854 0.0000 1.0 10.1349 0.1551 0.0000{ -1.3
540 9.9334 0.3066 0.0000 0.7 10.1664 0.0736 0.0000] -1.7
600 9.9413 0.2687 0.0000 0.6 10,1753 0.0347 0.0000} -1.8
750 9.9592 0.2098 0.0000 0.5 10.1859) -0.0259 0.0000] -1.9
Table 5.18 Evaluation of uniform in-situ stress equations for Test Configuration E to the co
hole depth.
Wrationl?——“
Plane Stress (MPa) Plane Strain (MPa)
h (mm) (v} o T %0 (o] (4] T %0
iX Ll iy XX _X_C__ YY. XY XX
15 1.0742 0.4858 0.0000 89.3 1.0920 0.4680 0.0000} 89.1
30 2.9194 1.2006 0.0000 70.8 2.97135 1.1485 0.0000; 70.3
45 4.4999 1.6601 0.0000 550 45859 1.5741 0.0000F 54.1
90 7.1926 1.9574 0.0000 28.1 7.3513 1.7988 0.0000] 26.5
120 8.0510 1.8190 0.0000 19.5 8.2399 1.6301 0.0000] 17.6
180 $.9021 1.4579 0.0000 11.0 91277 1.2323 0.0000} 8.7
225 9.1978 12322 0.0060 3.0 9.4392 0,9908 0.0000f 5.6
2093 9.4386 0.9714 £.0000 5.6 9.6952 0.7148 0.0000; 3.0
360 9,5261 0.8339 0.0000 4.7 9.7895 0.5705 0.0000f 2.1
450 9.5878 0.7022 0.0000 4.1 9.3570 0.4330 0.0000 14
340 9.6159 0.6241 0.0000 3.8 9.8884 0.3516 0.0000} 1.1
600 9.6235 0.5865 0.0000 3.8 9.8974 0.3126 0.0000 1.0
750 9,6324 0.5276 0.0000 3.7 9.9083 0.2517 0.0000] 0.9

L

Table 5.19 Evaluation of uniform in-situ stress equations for Test Configuration F to the core-
hole depth.
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Configuration G “
Plane Stress (MPa) Plane Strain (MPa)

ke (mm) Ox Ty Try Y00,y Tye Oy Tyy Yo 0,
15 1,1217 | 0.4383 | 0.0000 88.8 1.1382] 0.4218] 0.0000] 88.6
30 3.0578 1.0622 | 0.0000 69.4 3.1061 1.0139] 0.0000] 68.9
45 47052 | 1.4548 | 0.0000 52.9 4.7838] 1.3762] 0.0000f 522
90 7.4739% | 1.6761 | 0.0000 253 7.6141 1.5359] 0.0000] 23.9
120 83470 | 1.5230 | 0.0000 16.5 8.5121 1.3579] 0.0000f 14.9
180 9.2085 1.1515 | 0.0000 7.9 0.4035] 0.9565] 0.0000f 6.0
225 9,5077 {1 09223 | 0.0000 4.9 9.7154] 0.7146] 0.0000f 2.8
293 97521 | 0.6579 | 0.0000 25 . 997211 04379] 0.0000f 0.3
360 9.8413 { 0.5187 | 0.0000 1.6 10.0669] 0.2931] 0.0000] -0.7
430 9.9046 | 0.3854 | 0.0000 1.0 10.1349] 0.1551] 0.0000f -1.3
540 99334 | 0.3066 | 0.0000 0.7 10.1664] 0.0736] 0.0000} -1.7
600 99413 | 0.2687 | 0.0000 0.6 10.1753] 0.0347] 0.0000f -1.8
750 99502 | 0.2098 | 0.0000 0.5 10.1859{ -0.0259] 0.0000f -1.9

Table 5.20 Evaluation of uniform in-situ stress equations for Test Configuration G to the core-

hole depth.
1|Cnnﬁguration H ||
' Plane Stress (MPa) Plane Strain (MPa)
e Gmm) . o, T % 9
X% ¥¥. Xy 00« Oxe Cyy - Ty YOy

15 0.9971 | 0.5629 | 0.0000 90.0 1.0147] 0.5453] 0.0000] B899
30 2.6945 | 1.4255 | 6.0000 73.1 2.7459] 1.3741] 0.0000] 72.5
45 41662 | 1.9938 i 0.0000 58.3 4.2543 19057}  0.00006] 57.5
90 6.7356 | 2.4144 | 0.0000 326 6.9107] 2.2393] 0.000G6] 30.9
120 7.5700 | 2.3000 | 0.0000 24.3 7.7837] 2.0863f 0.0000] 222
180 8.4043 1.9558 { 0.0000 16.0 8.6657) 1.6943} 0.0000] 13.3
225 8.6943 1.7357 1 0.0000 13.1 8.9765 1.4535] 0.0000] 10.2
293 8.9293 1.4807 | 0.0000 10.7 9.2313 117871 0.0000] 7.7
360 90140 | 1.3460 | 0.0000 9.9 9.3249] 1.0351 0.0000}] 6.8
450 9.0729 | 12171 | 0.6000 9.3 9.3914f 0.8986] 0.0000f 6.1
540 9.1000 | 1.1400 | 0.0000 9.0 9.4227] 0.8173] 0.0000] 5.8
600 9.1072 | 1.1028 | 0.0000 8.9 94317 0.7783] 0.0060] 3.7
I 750 91159 | 1.0441 | 0.0000 8.8 944321 0.7168] 0.0000] 5.6

Table 5.21 Evaluation of uniform in-situ stress equations for Test Configuration H to the core-
hole depth.
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{[Configuration L ||

Plane Stress
h (mm) Kx Ky T x Ty Txp % Kx
(MPa/mmi{MPa/mm| (MPa) | (MPa) | (MPa)
15 0.0131 0.0000 | 03312 | -0.3312 | 0.0000 | 93.4540
30 0.0244 | 00000 | 08716 § -0.8716 | 0.0000 | 87.7810
45 0.0659 | 0.0000 | 09121 | -0.9121 | 0.0000 | 67.0495
60 0.0901 0.0000 | 09280 | -0.9280 | 0.0000 | 54.9610
90 0,1252 | 0.0000 | ©.7785 | -D.7785 | 0.0000 | 37.38553
120 0.1456 0.0000 | 06177 | -0.6177 | 0.0000 | 27.1885
180 0.1633 0.0000 | 04297 | -0.4297 | 0.0000 | 18.3460
225 0.1681 0.0000 | 03649 | -0.3649 | 0.0000 | 159580
270 0.1703 0.0000 | 03302 | -0.3302 | 0.0000 | 14.86%0
360 0.1719 | 00000 | 02979 | -0.2979 1 0.0000 | 14.0395
420 0.1724 | 0.0000 | 02877 | -0.2877 { 0.0000 } 13.8220
450 0.1725 0.0000 | 0.2840 | -0.2840 | 0.0000 | 13.7485
540 0.1728 | 0.0000 | 02772 | -0.2772 { 0.0000 1 13.6180
600 0.1729 | 0,0000 § 0.2743 | -0.2743 { 0.0000 | 13.5640
750 0.1730 | 0.0000 | 027006 | -0.2706 | 0.0000 | 13.4950
Piane Strain
h {mm) Kx Ky (o Ty Ty %K
{MPa/mm|(MPa/mm| (MPa) | (MPa) | (MPa)
15 0.0145 0.0000 | 03424 | -0.3424 | 0.0000 | 92.7267
30 0.0272 | 0.0000 | 09131 { -0.2131 | 0.0000 | 86.4234
45 0.0732 | 0.0000 0.9073 | -0.9073 | 0.0000 | 63.3884
60 0.1001 0.0000 0.8957 | -0.8957 | 0.0000 | 49.9565
90 0.1391 0.0000 0.6921 | -0.6921 | 0.0000 | 304285
120 0.1618 | 0.0000 { 04938 | -0.4938 | 0.0000 | 19.0985
180 0.1815 0.0000 { 0.2695 | -0.2695 | 0.0000 | 9.2735
225 0.1868 0.0000 | 0.1938 | -0.1938 | 0.0000 | 6.6200
270 0.1892 | 0.0000 { 0.1536 | -0.1536 | 0.0000 | 5.41G0
360 0.1910 { 0.0000 | 0.1167 | -0.1167 | 0.0000 | 4.4885
420 0.1915 0.0000 | 0.1051 | -0.1051 | 0.0000 | 4.2465
450 0.1917 { 00000 | 0.1010 | -0.1010 § 0.0000 | 4.1650
540 0.1920 | 0.0000 | 0.0933 { -0.0933 | 00000 | 4.0200
600 0.1921 00000 | 00901 | -0.0901 | 0.0000 | 39600
750 0.1922 | 0.0000 | 00859 ] -0.0859 | 0.0000 | 3.8835

Table 5.22 Evaluation of linear gradient in-situ stress equations for Test Configuration L to the
core-hole depth.
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!‘gmijguration M |

Plane Stress
h (mm) Kx Ky Fx Oy Tsp 04K
(MPa/mm{(MPa/mm| (MP3) (MPa)_ | (MPaj
15 0.0591 0.0000 0.5991 0.1677 0.0000 § 70.4495
30 0.1455 0.0000 1.5767 0.4415 0.0000 | 27.2345
45 0.1926 0.0000 1.6500 0.4620 0.0000 3.68953
60 0.2190 | 0.0000 1.6788 0.4701 0.0000 | -9.5033
90 0.2334 | 0.0000 1.4084 0.3943 0.0000 | -16.6963
120 02314 { 0.0000 1.1174 03129 | 0.0000 {-15.7185
180 02230 | 0.0000 0.7773 0.2176 0.0000 | -11.5025
225 0.2188 0.0000 0.6602 0.1848 0.0000 | -9.3925
270 0.2161 0.0000 0.5972 0.1672 0.0000 | -8.0650
360 0.2133 0.0000 0.5388 0.1509 0.0000 | -6.6515
420 0.2123 0.0000 0.5204 0.1457 0.6000 | -6.1600
450 0.2120 0.0000 0.5138 0.1439 0.0000 | -5.9800
540 0.2113 0.0000 0.5014 0.1404 0.0000 | -5.6345
800 02110 | 06.0000 0.4963 0.1390 0.0000 | -5.4920
750 0.2106 0.0000 0.4893 0.1371 0.0000 | -3.3030
Plane Strain
h (mm) Kx Ky Oxx Ty Ty % Kx
(MPa/mm|(MPa/mm| (MPa) {MP3a) | (MPa)
15 0.0569 | 0.0000 0.5112 0.1246 0.0000 | 71.5354
30 0.1402 0.0000 1.3632 0.3322 0.0000 | 29.9085
45 0.1855 0.0000 1.3547 0.3301 (.6000 7.2290
60 0.2110 0.0000 1.3372 0.3259 0.0000 | -5.4795
90 0.2248 0.0000 1.0333 0.2518 0,0000 | -12.4080
120 0.2229 | 0.06000 0.7373 0.1797 0.0000 | -11.4660
180 0.2148 0.0000 0.4023 0.0980 0.0000 | -7.4050
225 0.2107 0.0000 0.2893 0.0705 0.0000 | -5.3725
270 0.2082 { 0.0000 0.2293 0.0559 0.0000 | -4.0940
360 0,2055 0.0000 0.1742 0.0424 0.0000 | -2.7325
420 0.2045 0.0000 0.1569 0.0382 0.0000 { -2.2390
450 02042 | 0.0000 | 0.1508 0.0367 0.0000 | -2.0853
540 0.2035 0.0000 0.1392 0.0339 | 0.0000 ]| -1.7525
600 0.2032 | 0.0000 0.1345 0.0328 0.0000 | -1.6155
750 0.2029 0.0000 0.1282 0.0313 0.0000 | -1.4333

Table 5.23 Evaluation of linear gradient in-situ stress equations for Test Confi guration M to the
core-hole depth.
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{{Configuration P |

Piane Stress
h (mm) Kx Ky O Ty Tay % Kx
(MPa/mm{(MPa/mm| (MPa) | (MPa) | (MPa)
15 0.0131 | 0.0000 | 0.0000 | 0.0000 | 00000 | 93.4540
30 0.0244 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 87.7810
45 0.0659 | 0.0000 | 0.0000 | 00000 | 0.0000 } 67.0495
60 0.0901 0.0000 | 0.0000 | 0.0006 | 0.0000 | 54.96i0
90 0.1252 | 0.0000 | 0.0000 | 0.0000 | 0.0000 { 37.3855
120 0.1456 | 0.6000 | 0.0000 | 0.0000 | 0.0000 | 27.1885
180 0.1633 | 0.0000 | 00000 | 0.0000 | 0.0000 | 18.3460
225 0.1681 0.0000 ¢ 0.0000 { 00000 | 0.0000 { 15.9580
270 0.1703 0.0000 0.0000 0.0000 0.0000 | 14.8690
360 0.1719 | 0.0000 | 0.0000 | 0.0000 ]| 0.0000 | 14.0395
420 0.1724 | 0,0000 | 0.0000 | 0.0000 | 0.0000 | 13.8220
450 0.1725 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 13.7485
540 0.1728 | 0.0000 | 0.0000 | 0.0000 | 0.0000 ] 13.6180
600 0.1729 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 13.5640
750 0.1730 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 13.4950
Plane Strain
h (mm)} Kx Ky s Fyy Ty o4Kx
(MPa/mm|(MPa/mm| (MPa) | (MPa) | (MPa)
15 0.0145 | 0.0000 | 0.0000 | 0.0000 | 00000 | 92.7267
30 6.0272 | 0.0000 | 0.0000 { 0.0000 i 0.0000 | 86.4234
45 0.0732 | 0.0000 | 0.0000 { 0.0000 | 0.0000 | 63.3884
50 0.1001 0.0000 | 0.0000 | 0.0000 } 0.0000 | 49.9565
90 0.1391 0.0000 | 0.0000 | 0.0000 | 0.0000 | 30.4285
120 0.1618 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 19.0985
180 0.1815 | 0.0000 | 0.0000 | 0.0000 | 0.0000 i 9.2735
225 0.1868 1 0.0000 | 0.0000 | 0.0000 | 0.0000 | 6.6200
270 0.1892 | 0.0000 | 0.0000 | 0.0000 | 0.0000 { 5.4100
360 0.1910 | 0.0000 | 0.0000 | 0.0006 | 0.0000 | 44885
420 0.1915 (.0000 0.0000 0,0000 0.0000 4.2465
450 0.1917 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 4.1650
540 0.1920 | 0.0000 | 0.0000 | 0.0000 | 0.0006 | 4.0200
600 0.1921 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3.9600
750 0.1922 0,0000 ] 0.0000 | 0.0000 | 00000 ] 3.8835

Table 5.24 Evaluation of linear gradient in-situ stress equations for Test Configuration P to the
core-hole depth.
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iConfiguration Q i

Plane Stress
R (mmm) Kx Ky Cx Ty Ty %Kx
(MPa/mmi(MPa/mm| (MPa) | (MPa) | (MPa)
15 0.0331 0.0000 | 0.0000 | 0.0000 | 0.6000 | 83.4628
30 0.0770 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 614848
45 0.1209 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 39.5315
60 0.1461 0.0600 | 0.0600 | 0.0000 ]| 06.0000 1 26.9630
90 0.1722 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 13.8970
120 0.1820 | 0.0000 { 0.0000 { 0.0000 | 0.0000 8.5535
130 0.1852 | 0.0000 { 0.0000 | 0.0000 | 0.0000 5.3825
225 0.1901 0.0000 | 0.0000 | 6.0000 | 0.0000 ] 49480
270 0.1902 | 0.0000 | 0.0000 | 0.0000 { 0.0000 | 4.9085
360 0.1899 | ©.0000 | 0.0000 | 0.0000 { 0.0000 | 5.0530
420 0.1897 | 0.0000 | 0.0000 | 0,0000 | 0.0000 | 5.1435
450 0.1896 | 0.0000 | 0.0000 | 0.0000 | 0.6000 5.1800
540 0.1895 | 0.0000 | 00006 | 0.0000 | 0.0000 525653
600 0.1894 | 0.0000 | 00000 | 0.0000 } 0.0600 5.2875
750 0.1893 | 0.0000 | 0.0000 | $.0000 | 00000 § 5.3310
Plane Strain
h {mm) Kx Ky O Oy Ty 94Kk
(MPa/mm|(MPa/mmi (MPa) | (MP2) | (MPa)
15 0.0345 0.0000 | 0.0000 | 0.00060 | 00000 | 82.7738
30 0.0802 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 59.8800
45 0.1260 | 0.6000 | 0.0000 | 0.0000 { 0.0000 { 37.0120
60 0.1522 | 0.0000 } 00000 | 0.0000 { 0.0000 | 23.9200
90 0.1794 | 0.0000 | 0.0000 | 0.0000 | ©0.0000 | 10.3095
120 0.1905 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 47430
180 0.1971 0.0000 | 0.0000 | 0.0000 | 0.06000 1.4400
225 0.1980 1 0.0000 | 0.0000 | 0.0000 | 0.0000 0.9875
270 0.1981 0.0000 | 0.0000 | 0.0000 | 0.0000 0.9465
360 0.1978 | 0.0000 | 00000 | 00000 § 0.0000 1.0970
420 0.1976 0.0000 0.0000 0.0000 0.0000 1.1915
450 0.1975 0.0000 | 0.0000 | 0.0000 | 0.0000 1.2295
540 0.1974 | 000006 | 0.0000 { 00000 ] 00000 1.3085
600 0.1973 0.0000 | 0.0000 | 0.0000 | 0.0000 1.3410
750 0.1972 | 0.0000 | 0.0000 | 0.0000 | 0.0000 1,3860

Table 5.25 Evaluation of linear gradient in-situ stress equations for Test Configuration Q to the
core-hole depth.
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lIConﬁguration R |

Plane Stress
h (mm) Kx Ky O x Oy Ty o4Kx
(MPa/mm|(MPa/mm| (MPa) (MPa) {MPa)
15 0.0331 0.0000 0.0000 0.0000 0.0000 | 83.4628
30 0.0770 0.0000 0.6000 0.0000 0.0000 | 61.4843
45 0.1209 0.0000 0.0000 0.0000 0.0000 | 39.5315
60 0.1461 0.0000 0.0000 0.0000 0.0000 | 26.9630
90 0.1722 0.6000 0.0000 0.0000 0.0000 { 13.8970
120 0,1829 0.0000 0.0000 0.0000 0.0000 8.5535
180 0.1892 0.0000 0.0000 0.0000 0.0000 5.3825
225 0.1901 0.0000 0.0000 0.0000 0.6000 4.9480
270 0.1902 0.0000 0.0000 0.0000 0.0000 4.9085
360 0.1899 0.0000 0.0000 0.0000 0.0000 5.0530
420 0.1897 0.0000 0.0000 0.0000 0.0000 5.1435
450 0.1896 0.0000 0.0000 0.0000 0.0000 5.1800
540 0.1895 0.6000 0.0000 0.0000 0.0000 53,2565
600 0.1894 0.0000 0.0000 0.0000 0.0000 5.2873
750 0.1893 (.0000 0.0000 0.0000 0.0000 5.3310
Plane Strain
h {mm) Kx Ky Cax Oy Txy o K
(MPa/mmi(MPa/mm! {MPa {MPa) | (MPg}
15 0.0345 0.0000 0.0000 0.0000 0.0000 | 82.7738
30 0.0802 0.0000 0.0000 0.0000 0.0000 | 59.8800
45 0,1260 0.0000 0.0000 0.0000 0.0000 | 37.0120
60 0.1522 0.0000 0.0000 0.0000 0.0000 | 23.9200
90 0.1794 0.0000 0.0000 0.0000 0.00060 | 10.3095
120 0.1905 0,0000 0.0000 0.0000 0.0000 4.7430
180 0.1971 0.0600 0.6000 0.0000 0.0000 1.4400
225 0.1980 | 0.0000 0.0000 0.0000 0.0000 0.9875
270 0.1981 0.0000 0.00060 0.0000 0.0000 0.9465
360 0.1978 0.0000 0.0000 0.0000 0.0000 1.0970
420 0.1976 0.0000 0.0000 0.0000 0.0000 1.1913
450 0.1975 0.0000 0.0000 0.0000 0.0000 1.2295
540 0.1974 | 0.0000 0.0000 0.0000 0.0000 1.3085
600 0.1973 0.0000 0.0000 0.0000 0.0000 1.3410
750 0.1972 0.0000 0.0000 0.0000 0.0000 1.3860

Table 5.26 Evaluation of linear gradient in-situ stress equations for Test Configuration R to the
© core-hole depth.
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[[Configuration A |

Plane Stress (MPa)
WD Gixx Oy Ty %0y | 0u/Cu(10)
10 9.9900 -0.0200 0.0000 0.10 1.00
8 9.9997 -0.0352 0.0001 0.00 1.00
6 10.0375 -0.0765 0.0006 Q.37 1.00
5 10.0734 -0.1204 0.0014 -0.73 1.01
4 10.1313 -0.1993 (0.0043 -1.31 1.01
3 10.2691 ~.3761 0.0146 -2.69 1.03
2 10.6321 -0.9483_ 00751 | -6.32 1.06
Plape Strain (MPa)
el > o o Y K )
10 10.2322 00,2622 0.0000 -2.32 1.00
8 10.2424 -0.2779 0.0001 -2.42 1.00
6 10.2822 -0.3212 0.0006 -2.82 1.00
5 10,3201 -0.3671 0.0015 -3.20 1.01
4 10.3812 -(0.4492 0.0045 -3.81 1.01
3 10.5267 -0.6337 0.0153 -5.27 1.03
2 10,9123 -1.2283 0.0787 -9,12 1.07
Table 5.27 Evaluation of uniform in-situ stress equations for Test Configuration A to the object
width.
[Configuration B | | - .
Plane Stress (MPa)
Wp/Dy T Oy Ty Yo O/ Tk 10)
10 9.9901 ~0.0200 0.6000 0.10 1.00
8 9.9998 -0.0350 0.0000 0.00 1.00
6 10,0382 -(,0750 0.0600 -0.38 1.00
5 10.0750 -0.1173 0.0000 (.75 1.01
4 10.1355 -{).1907 0.0000 -1.36 1.01
3 10.2833 -0.3469 0.0000 -2.83 1.03
2 10,7063 «(.7953 0.0001 -7.06 .07
Plane Strain (MPa)
WD O Oy Txy %Oy | 0u/0ul(10)
10 10.2322 -(.2622 (.0000 -2.32 1.00
8 10.2425 «0.2777 0.0000 -2.43 1.00
6 10.2829 -0.3197 0.6000 -2.83 1.00
5 10.3216 -0.3639 0.0000 -3,22 1.01
4 10,3853 +0,4405 0.0000 -3.85 1.01
3 10.5405 -(},6041 0.0000 -5.41 1.03
2 10,9846 ~1.0736 0.0001 -9.85 1.07

Table 5.28 Evaluation of uniform in-situ stress equations for Test Configuration B to the object
width.
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[Configuration C il

Plane Stress (MPa)
Wl O Oy | Ty %oy | 0l (10)
10 9.9900 -0.0200 0.0000 0.10 1.00
8 9.9997 -0.0352 0.0001 0.00 1.00
6 10.0376 -0.0761 0.0007 -0.38 1.00
5 10.0739 -0.1194 0.0015 -0.74 1.01
4 10.1315 -0.1990 0.0043 -1.31 1.01
3 10.2689 -(.3766 0.0146 -2.69 1.03
2 10.6332 -(.9457 0.0753 -6.33 1.06
Plane Strain (MPa)
WolDr 5 o » R )
10 10.2322 -0.2622 0.0000 -2.32 1.00
g 10.2424 -0.2779 0.0001 -2.42 1.00
6 10.2823 -0.3208 0.0007 -2.82 1.00
3 10.3203 -0.3660 0.0016 -3.21 1.01
4 10.3814 -0.4489 0.0045 -3.81 1.01
3 10.5264 -0.6342 0.0153 -5.26 1.03
2 10.9133 -1.2258 0.0789 -9.13 1.07
Table 5.29 Evaluation of uniform in-situ stress equations for Test Configuration C to the object
width.
{|Configuration D i
Plane Stress (MPa)
Wolr s, on - Yeom ] Oudon10)
10 9.9901 -0.0199 0.0000 0.10 1.00
8 9.9998 -0.0349 0.0000 0.60 1.00
6 10.0384 -0.0745 0.0000 -0.38 1.00
5 10.0753 -0.116}1 0.0000 -0.76 1.01
4 10.1357 -0.1903 0.0000 -1.36 1.01
3 10,2831 -(.3474 0.0000 -2.83 1.03
2 10.7676 -0.7925 0.0000 -7.08 1.07
Plane Strain (MPa)
WD O oy Ty %0y | OulCu(10)
10 10,2323 -(1.2621 -5.1837 -2.32 1.00
8 10.2425 -0.2777 -0.1192 -2.43 1.00
6 10.2831 -0.3192 20.1135 -2.83 1.00
5 10.3221 -0.3627 39.5655 -3.22 1.01
4 10.3855 -(1.4401 71.0713 -3.86 1.01
3 10.5403 -{.6046 148.2895 -5.40 1.03
2 10.9858 -1.0707 370.6291 -9.86 1.07
Table 5.30 Evaluation of uniform in-situ stress equations for Test Configuration D to the object
width.
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iConfiguration E i

Plane Stress (MPa)
WP/L) ’ Cixx Ty Txy %cxx cxx/ 0'“(19)
10 9,9900 -0.0200 0.0001 0.10 1.00
8 9.9997 -0.0352 0.0001 0.00 1.00
6 10.0376 -0.0761 0.0007 -0.38 1.00
5 10.0739 -(,1194 0.0015 -0.74 1.01
4 10.1315 -(,1990 0.0639 -1.31 1.01
3 10.2689 -0.3766 0.0130 -2.69 1.03
2 10.6332 -0.9457 0.0682 -6.33 1.06
Plane Strain (MPa)
Vol on » R )
10 10.2322 -0.2622 0.0001 -2.32 1.00
8 10.2424 -0.2779 0.0001 -2.42 1.00
6 10,2823 -0.3208 0.0007 -2.82 1.00
5 10.3205 -0.3660 0.0015 -3.21 1.01
4 10.3814 -(.4489 0.0640 -3.81 1.01
3 10.5264 -0.6342 0.0137 -5.26 1.03
2 10,9133 -1.2258 0.0715 -9.13 1.07
Table 5.31 Evaluation of uniform in-situ stress equations for Test Configuration E to the object
width.
Configuration F i
Plane Stress (MPa)
WD Oy Oyy Ty Y005y O,/ 0,x(10)
10 9,9844 -(.0144 0.0600 0.16 1.00
8 9.9954 -0.0304 0.0600 0.05 1.00
6 10.0374 -0.0744 0.0000 -0.37 1.01
5 10.0789 -0.1203 0.0000 -0.79 1.01
4 10.1469 -0.2022 0.00060 -1.47 1.02
3 10.3126 -0.3792 0.0001 -3.13 1.03
2 10.7944 -0.8984 -3.0001 -7.94 1.08
Plane Strain (MPa}
WP/D i Oxx Oy Ty %o'n Gxxl Gxx(l{))
10 10.2874 -0.3174 0.0000 -2.87 1.00
8 10.2992 -0.3342 0.0000 -2.99 1.00
6 10.3438 -(.3808 0.0000 -3.44 1.01
5 10.3880 -0.4293 0.0000 -3.88 1.01
4 10.46035 -0.5139 0.0000 -4.61 1.02
3 10.6365 -0.7032 0.0001 -6.37 1.03
2 11.1487 -1.2527 -0.0001 -11.49 1.08
Table 5.32 Evaluation of uniform in-situ stress equations for Test Configuration F to the object
width.
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Configuration G i
Plane Stress (MPa)
WP/D " Oyx Tyy Txy %Uxx Gxx/ 0'“(10)
10 9.9900 -0.0200 0.0000 0.10 1.00
8 9.9997 -0.0352 0.0001 0.00 1.00
6 10.0376 -0.0761 0.0007 -0.38 1.00
5 10,0739 -0.1194 0.0015 -0.74 1.01
4 10,1315 -(,1990 0.0043 -1.31 1.01
3 10,2689 -0.3766 0.0146 -2.69 1.03
2 10.6332 -0.9457 0.0753 -6.33 1.06
Plane Strain (MPa)
Wiy o on T Yoom | eoed10)
10 10.2322 ~-0.2622, 0.0000 -2.32 1.00
8 10.2424 -0.2779 0.0001 -2.42 1.00
6 10.2823 -0.3208 0.0007 -2.82 1.00
5 10.3205 -0.3660 0.0016 -3.21 1.01
4 10.3814 -0.4489 0.0045 -3.81 1.01
3 10.5264 -(.6342 0.0153 -5.26 1.03
2 10.9133 -1.2258 0.0789 -9.13 1.07
Table 5.33 Evaluation of uniform in-situ stress equations for Test Configuration G to the object
width.
Configuration H 'I
Plane Stress (MPa)
Wpd) b GXX G}'}' TX)' %UXX Gxxloxx(lﬂ)
10 9.9752 -0.0052 0.0000 0.25 1.00
8 9.9879 -0.0229 0.0000 0.12 1.00
6 10.0371 -0.0717 0.0000 -0.37 1.01
5 10.0858 -0.1224 0.0000 -0.86 1.01
4 10.1678 -(.2105 0.0000 -1.68 1.02
3 10.3689 -0.3925 0.0000 -3.69 1.04
2 10.9828 -0.8603 0.0000 -9.83 1.10
Plane Strain (MPa)
oD Oy Oy Ty %On | Oux/Tn(10)
10 10.3798 -0.4098 0.0000 -3.80 1.00
8 10.3938 -0.4288 0.0000 -3.94 1.00
6 10.4469 -0.48135 0.0000 -4.47 1.01
3 10.4996 -0.5363 0.0000 -5.00 1.01
4 10.5886 -0.6313 0.6000 -5.89 1.02
3 10.8052 -0.8287 0.6000 -8.05 1.04
2 11.4630 -1.3405 0.0000 -14.63 1.10
Table 5.34 Evaluation of uniform in-situ stress equations for Test Configuration H to the object
width.
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Configuration L i
Plane Stress i
WF/D" Kx Ky o “
(MPa/mm)| (MPa/mm) 0w (MPa) o, (MPa)| 7., (MPa) %Kx | Kx/K(10)
10 01963 | 00000 | 00338 | -0.0338 | 0.0000 | 1.8549 [ 1.0000 I
8 51964 | 00000 | 0.0331 | -0.0331 | 00000 | 1.8045 | 1.0005 i
6 5.1666 1 00000 | 0.0320 | -0.0320 | 00000 | 1.7002 } 10016 i
5 0.7667 1 0.0000 | 0.0319 | -0.0319 | 00000 | 16203 | 1.0023 |
4 0.7670 T 0.0000 | 00325 | -0.0325 { 0.0000 | 1.4842 | 10038 I
3 01982 | 0.0000 | 0.0339 | -0.0339 | 0.0000 | 0.9072 | 1.0097 i
2 0204100000 | 00503 ] _0.0503 0.0000_1 20510 | 10398
Plane Strain
W ,/D
»"Ph (Mpfgmm K |y MPa)o,, (MPa) 7, (MP2)| %Kx | KeK(10)
10 02181 | 0.0000 | -0.1979 | 0.1979 | 00000 | -9.05 1.00
8 0.2182 | 0.0000 | -0.1988 | 0.1988 | 0.0000 | -9.11 1.00
6 03184 | 0.0000 | -0.2002 | 0.2002 | 00000 } -9.22 1.00_|i
5 02186 | 0.0000 | -0.2005 | 0.2005 | 00000 | -9.30 1.00_ |
4 05189 | 0.0000 | -0.2003 | 02003 | 00000 | -9.46 L.oo_ ||
3 05202 | 0.0000 | -0.2000 | 0.2000 | 0.0000 | -10.10 1.01__|
2 0.2268 1 00000 | -0.1894 | 01804 | 00000 | -13.39 104 ||
Table 5.35 Evaluation of linear gradient in-situ stress equations for Test Configuration L to the
object width.
[Contiguration M__]| _
Plane Stress
Wp/Do (MPK’C 5 o, (Paya,, (MNP0 oy (MPR) 5K | KeK(0)
10 02010 | 00000 | 0.0611 | 00171 | 0.0000 | -0.4912 | 1.0000
8 05610 | 0.0000 | 0.0599 | 0.0168 | 0.0000 | -0.4940 | 1.0000
6 52010 100000 | ©0.0579 | 0.0162 | 0.0000 | -0.5223 } 1.0003
5 03012 | 0.0000 | 00577 | 00161 | 0.0000 | -0.5852 | 1.0009
4 53015 | 0.0000 | 0.0587 | 0.0164 | 00000 | -0.7704 | 1.0028
3 02056 1 0.0000 | 0.0614 | 00172 | 0.0000 | -1.4509 | 10095
2 02111 | 00000 | 00011 ] 00255 1_0,0000 55477 11,0503
Plane Strain |
Wo/D (MP’;‘ P’:J’ |0 @1pafor, apa)y oaP0)| sikx | K010 “
10 0.1936 | 00000 | -0.2955 | -0.0720 | 0.0000 3.20 1.00_||
8 0.1936 T 00000 | -0.2968 | -0.0723 | 0.0000 3.20 1.00 |
6 0.1937 | 0.0000 | -0.2990 | -0.0729 | 0.0000 3.17 1.oo |
5 0.1938 | 0.0000 | -0.2994 | -0.0730 | 0.0000 3.11 100 |
4 0.1941 | 0.0000 | -0.2990 | -0.0729 | 0.0000 2.93 1.00 “
3 01954 1 0.0000 | -0.2986 | -0.0728 | 0.0000 2.28 1.01
2 02033 | 00000 | 02827 | -0.0689 | 0.0000 | 167 1.05 1}

Table 5.36 Evaluation of linear gradient in-situ stress equations for Test Configuration M to the

object width.
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[Conhguragon P ~
Plane Stress
w_/D
- MP’:" PK}’m o= 0P (MPa)’ 7y (MP2)|  %Kx | KvK(10)
10 0.1963 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.8549 | 1.0000
8 0.1964 0.0000 | 0.0000 | 0.0000 | 0.0000 | 18045 | 1.0005
6 0.1966 00000 | 0.0000 | 0.0000 | 0.0000 | 17002 | 10016
5 0.1967 0.0000 | 0.0000 | 0.0000 | 0.0000 | 16293 | 1.0023
4 0.1970 0.0000 | 0.0000 | 0.0000 | 00000 | 14842 j 10038
3 57985 1 0.0000 | 0.0000 | 00000 | 00000 | 0.9072 | 1.0097
2 0.204] 0.0000 | 0.0000 | 00000 | 0.0000 -2.0510 | 1.0308
Piane Strain
l WoD ?’:"m l Ky Iax,, (MPa) o, (MPa)| 7, (MP)|  %Kx | KxK(10)
10 0.2181 0.0000 | 0.0000 | 0.0000 | 0.0000 9,05 1.00
| I 0.2182 0.0000 0.0006 1| 0.0000 | 0.0000 -9.11 1.00
6 02184 0.0000 | 0.0000 | 0.0000 | 0.0000 .22 1.00
IE 0.2186 0.0000 | 0.0000 | 0.0000 | 00000 9,30 1.00
4 0.2189 0.0000 | 0.0000 | 0.0000 | 0.0000 -9.46 1.00
[ E 0.2202 0.0000 0.0000 | 0.0000 | 0.0000 | -10.10 1.01
2 0.2268 0.0000 | 0.0000 ] 0.0000 | 0.0000 | -13.39 1.04

Table 5.37 Evaluation of linear gradient in-situ stress equations for Test Configuration P to the

object width.
[Configiiration O] ___
T Plane Stress
Wp/Dh Kx K}’ )
(MPa o ) O (MPaYa,, (MPa)| 7 (MPa)l %Kx | Kx/K(10)
10 0.1983 00000 | 0.0000 | 0.0000 | 0.0000 | 0.8359 | 1.0000
8 0.1984 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 08062 | 1.0003
6 0.1985 06000 | 0.0000 | 0.0000 | 0.0000 | 07349 ; 10010
5 0.1987 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6675 1.0017
4 0.1990 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5050 | 1.0033 §
3 62002 1 00000 | 0.0000_| 0.0000 | 0.0000 | -0.1170 | 1.0096 f
Z 0.2071 50000 | 00000 | 0:0000 | 0.0000 | -3.5696 1 1.0444 it
Plane Strain H
W.P/Dh Kx Ky ) ﬂ
MPai Pl O (MPa)a,, (MPa)| 7, (MPa)] %Kx | K/K(10)
0.2066 0.0000 | 0.0000 | 0.0000 ;} 0.0009 -3.30 1.00 |
0.2067 0.0000 | 0.0000 | 0.0000 | 0.0000 -3.33 1.00 |t
0.2068 0.0000 | 00000 | 0.0000 | 0.0000 -3.40 1.00 H

02069 1 00000 | 0.0000 | 0.0000 | 0.0000 | -3.47 1.00 “
0.2073 | 0.0000 | _0.0000 | 0.0000 | 0.0000 | -3.64 1.00

0.2086 | 0.0000 | 0.0000 | 0.0000 1 0.0000 | -4.29 101 |
02158 | 0:0000 | 0.0000 [ 0.0000 I 00000 ) 7.8 104 1

Table 5.38 Evaluation of linear gradient in-situ stress equations for Test Configuration Q to the
object width.

—
pf b un] oo =
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{[Configuration R __}|

Plane Stress

W,/
P (MP*‘S“ - PKJ’ o (MPaYa,, (P £y (MPR) 5x | KOK(10)
0T 0.1983 | 00000 | 0.6000 | 0.0000 | 0.0000 | 0.84 1.00
21 0.1982 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 081 1.00
& T 01985 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.73 1.00
5 51987 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.67 1.00
2101990 | 0.0000 | 00000 | 0.0000 | 0.0000 | 0.50 1.00
3 02002 100000 | 0.0000 | 0.0000 | 0.0000 | -0.12 1.01
T 02071 | 00000 | 0.0000 | 00000 | 0.0000 ] -3.57 1.04

Plane Strain

W,/
2D (MPI:;mwl Mrffmm)-”’“ (MPa)|o,, (MPa)|z,, (MPg)| %Kx | Kx/K(10)
0T 02066 | 0.0000 | 00000 | 0.0000 | 0.0000 | -3.30 T.00
) 03067 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | -3.33 1.00
& [ 02068 | 00000 | 0.0000 | 0.0000 | 0.0000 | -3.40 1.00
3 05060 10,0000 | 0.0000 | 0.0000 | 0.0000 | -3.47 1.00
+ 1702073 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | -3.64 1.00
3 05086 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | -4.29 1.01
2| 02158 | 00000 | 00600 | 00000 | 00000 1 -7.89 1.04

Table 5.39 Evaluation of linear gradient in-situ stress equations for Test Configuration Q to the
object width. ‘
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CHAPTER 6

DEFINITION OF CALIBRATION CONSTANTS

6.1. INTRODUCTION

The theoretical background for the core-drilling method was developed in Chapter 3 for a
through-hole in an infinite thin plate subjected to uniform plane stress through thickness. The
closed-form equations were applied to objects with finite dimensions and to a core-hole in
Chapter 5. It was observed that the closed-form in-situ stress equations might apply to an object
of finite dimensions with a small through-hole compared with the length and width of the object.
However, it was also observed that the closed-form equations will give some etrors for a
through-hole in a thick object. It was also seen that the closed-form equations might give
considerable error for the core-hole case. In real applications, the structure requiring in-situ stress
analysis might not be thin. Because of this, a core-hole might be required.

There are no closed-form solutions available from theory of elasticity for a through-hole or a
core-hole in a thick object because of the complexity of the problems. However, because of the
axisymmetric nature of the problems and the assumption of linear elastic behavior, these cases
closely parallel the through-hole condition in the general nature of the stress distribution. Thus,
the relieved displacements due to drilling the core-hole still vary sinusoidally along a circle
concentric with the core-hole, in the manner described by the closed-form relieved displacement
equations (4, Vo) derived in Chapter 3. These closed-form equations are formed with constants
A B, C, F, H, Iand J which are defined algebraically in Tables 3.1 and 3.2 in Chapter 3. These
constants apply only for the conditions assumed in the derivation: a through-hole, thin object,
uniform stress throughout the object thickness, and object boundaries remote from the through-
hole. It is assumed that the relieved displacement equation (u#, v,) also applies in the cases of a
core-hole and through-hole in a thick object rather than a through-hole in thin object. However,
the constants 4, B, C, F, H, I'and J for a core-hole and a thick object with a through-hole differ
from the analytical definitions given in Tables (3.1) and (3.2). Since there is no closed-form
solution available for core-hole or through-hole in a thick object, these constants are obtained
through measurements with known stress fields by empirical means. This empirical analysis can
be conducted by numerical analysis such as finite element analysis or by experimental test. This
approach explained above to solve the problems is termed semi-analytical. These constants
determined by empirical means are called calibration constants and are shown with 4, Be, Ce, Fo.
H,, I. and J,. In this research, only calibration constants A, B., C. for the uniform stress state are
defined and calculated. The calibration constants F,, H, I. and J, for the linear gradient stress
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state are not calculated in this work. The concepts of the definition and method of calculation of
the calibration constants F,, H,, I, and J, are same as that for calibration constants 4, Be, C..

For the known stress state, the material and geometrical properties of these calibration constants
can be calculated. This means that once the calibration constants are determined for a particular
material and geometrical properties, these calibration constants will only be used for the same
material and geometrical properties. One of the purposes here is to minimize the number of the
variables of the calibration constants so that the calibration constants can be applied to broader
applications. As seen from Table 3.1, constants 4, B, and C are functions of through-hole radius
(@), measurement circle radius (), and material properties (E, v). Some simplification can also
be achieved with the through-hole radius and measurement circle radius 7y dependencies. It is
desirable to normalize the relieved displacement equations (given by Equations (3.37) and
(3.38)) with respect to measurement circle radius, r as follows

g (%+cr,,y)(1+v)(_1_)2

R =—+=
v, 2 E \k
— 2 ’ ¢
9 o'w)(1+V)( _1_) +(_1_) 3_"'“(—1—) Jcosza 6.1)
2 E k k) 1+v \k
2 2 4
iz, (l“‘V)[(}_J +(}_) 3"V~(-}~_J }sin&x
? B k k) 1+v \k
R _ 2 2 4
R m'&z(ﬁm T,) (1”“’)[[_}“) __(mle 3mv-(l) }sinZa
- ) E k k) 1+v k
(6.2)
(}+v)[(1]2 (1)23mv (1)“]
+7, il I e —t— | lcos2e
E k k) 1+v \k
where
ol 63)
a

4R and vR are normalized relieved displacements in radial and tangential directions, respectively.
As seen from Equations (6.1) and (6.2), when normalized in this way, the relieved displacement
equations are functions of the dimensionless measurement circle radius, .

To use same equations for relieved displacement and in-situ stress that were derived in Chapter
3, the constants are defined as follows

A=A, X1,
B=B, xr, (6.4)
C=C,xr,
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Substituting Equation (6.4) into the relieved displacement equation given by (3.38) and (3.39),
the normalized relieved displacement equations are written for the general case as follows

uR=2r = (o ;G””) A+ (- ;G” ) B, cos2a + 7, B, sin2a (6.5)
¥

Cu—0
yR="e = Sigwﬂzcc sin2a —7,,C, cos 2 (6.6)

The normalized relieved displacements given by Equations (6.5) and (6.6) above are called
general relieved displacement equations because it is assumed that for known calibration
constants these equations can be used for any type of problem such as a through-hole or core-
hole. Definition and calculation of these calibration constants are different for different problem
types. For a thin structure with through-hole, these calibration constants can be calculated
analytically from Equations (6.4) for plane stress assumption as follows

_@+n(1Y
L=0e(1) -

2 2 4
Y (E2% ( _1_) +(1J 3mv_[i)) 68)
&) T\&) 1wy \k
(1 (1Y 3-v (1Y
Cc'([? “[E) 1+v“[?€)} 69)

As seen from Equations (6.7) and (6.8), the calibration constants are a function of material
properties and the measurement circle radius k for the structure with a through-hole. As
explained earlier, the calibration constants for core-hole and through-hole in a thick object need
to be calculated numerically. The calibration constants could have some additional variables for
a core-hole and through-hole in a thick object.

In this chapter, the definition and calculation of the calibration constants are done for a core-hole
and a through-hole in a thick object. Once the calibration constants are calculated numerically,
the in-situ stress equations derived in Chapter 3 can be used directly.

The outline of this chapter is as follows. Section 6.2 defines calibration constant 4., Section 6.3
defines calibration constant B,, and Section 6.4 defines calibration constant C..

6.2. DEFINITION OF CALIBRATION CONSTANT 4.

As seen from the normalized relieved displacement given by Equation (6.5), the calibration

constant 4, is associated with an equibiaxial stress state which is represented by a mean biaxial
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stress P=(0x +05,)/2. Therefore, in order to define the calibration constant 4., we consider a
known equibiaxial stress state of o= G5y = Oo. The relieved displacement Equation (6.5) takes
the following form.

+
P (6.10)

4 (S

The relieved displacement on the left side of Equation (6.10) is calculated for the known stress
state by finite element analysis. Then the calibration constant 4. can be found as follows.

4= (6.11)

G.O
The calibration constant A, is found for the through-hole and core-hole cases in the following
subsections.

6.2.1. Through-Hole

To understand the effect of object thickness on the calibration constant 4., the relieved
displacements are plotted against the object thickness (7,/Ds) in Figure 6.1. u, is the relieved
displacement calculated by finite element analysis, and #, is the theoretical solution of the
relieved displacement for a thin object with a through-hole. Dy is the diameter of the hole.

The finite element model explained in Section 521 is used to calculate the relieved
displacements. As seen from Figure 6.1, the relieved displacement under the assumed stress state
is the same as the theoretical solution and is not affected by thickness variations. Thus, this
shows us for the through-hole case, the calibration constant A, is equal to the theoretical
definition and can be calculated from the theoretical definition defined in Equation (6.1).

A = (1”)(}-) (6.12)
2E \k

6.2.2. Core-Hole Case

To understand the effect of the core-hole depth / on the calibration constant A, the general
variation of relieved displacement with core-hole depth 7 is illustrated in Figure 6.2. In this
figure, the relieved displacements are normalized with respect to the theoretical solution of the
relieved displacement, u, and the core-hole depth is normalized with respect to measurement
circle radius, 7. The normalized relieved displacement plots for different measurement circle
radii have similar shape and reach their maximum values at the same non-dimensional core-hole
depth. This figure shows that relieved displacement increases quickly as the core-hole depth
increases. The theoretical value of relieved displacement is approached at a large core-hole
depth. It is obvious from Figure 6.2 that the analytical definition of the constant 4 cannot be used
for the core-hole case.
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Figure 6.3 shows the variation with core-hole depth of the non-dimensional relieved
displacement for different core-hole radii, @. The ratio of the measurement circle radius to core-
hole depth, k=r,/a in this plot is kept constant. This figure shows that when the relieved
displacement is normalized with respect to the measurement circle radius (7), the dimensionless
relieved displacement (u./#,,) Will not change due to core-hole diameter change for constant k
value. Figures 6.2 and 6.3 show that the radius of the core-hole influences the magnitude of the
relieved displacement, whereas the measurement circle radius rn, influences the percentage of the
displacement that is relieved. The percentage of the relieved displacement can be determined in
terms of core-hole depth that is normalized with measurement circle radius 7. As seen from the
figure, when the core-hole depth reaches 0.6 times A/r», 80% of the relieved displacement is
relieved. Compared to the analytical through-hole procedure, the calibration constant A, for core-
hole analysis involves one additional independent variable, namely, the dimensionless core-hole
depth & =h/r,. Thus, in a generalized functional form, the calibration constant 4. can be

expressed as

A = f(Ev, k&) (6.13)

As seen from the generalized functional form above, for any given material properties E and v,
the calibration constant 4. is simply geometric functions. This means that once the calibration
constant has been determined for a particular dimensionless geometric property, the same
calibration constant will apply when the core-hole diameter and depth are similarly scaled. In
otder to remove the material dependency from 4. leaving only the geometric dependency, the
following function is introduced.

A =M 6.14)
¢ E
Where, the constants al. and a2, are dimensionless coefficients. Substituting Equation (6.14)

into Equation {6.10) we get

U _ (al, +a2, v) o, (6.15)
¥ E

.

uR =

For any core-hole depth & =k, the loading condition was imposed by applying a uniform
pressure applied through the core-hole surfaces (from £ =0 to £ =2). In this analysis, there are 20
partial core-hole depths up to the maximum core-hole depth Gpax = 2 considered. This analysis
was repeated for six Poisson’s ratios at each core-hole depth: v= 0.1, 0.15, 0.2, 0.25, 0.30, and
0.35. The corresponding values of the relieved displacements were calculated. The finite element
model explained in Section 5.3.1 is used to calculate the relieved displacements on the left side
of the Equation (6.15). The dimensionless coefficients al; and a2, are the determined by least

squares method.

Figure 6.4 and Figute 6.5 show the variation with core-hole depth of the dimensionless
coefficients al. and a2..

181



Now for the known geometric information, the dimensionless coefficients al. and a2, can be
found from Figure 6.4 and 6.5, and then calibration constant A, can be calculated with material
properties information. To estimate the accuracy of the coefficients, we will find the relative
residual from the equation given below.

E uR(z)—(al, +a2, v}

*100 _ (6.16)
E uR(z)

err(z) =

The relative residual is the relative difference between finite element and calculated relieved
displacements.

Figure 6.6 shows relative residual versus Poisson’s ratio for different core-hole depths. It can be
observed that the maximum error is about 0.8 % at very shallow core-hole depth. These errors
reduce quickly as the core-hole depth increases. It is also observed that errors are less than 0.04
% at large core-hole depths. These results confirm the validity of the definition of the calibration

constant A4,.

In order to remove the core-hole depth dependency as well as material dependency, the
following function is introduced.

4 - g(aic () +§2“ D V) gy 6.17)

By substituting Equation (6.17) in to Equation (6.10), we get a linear algebraic equation having
al(i) and a2.(i) as unknowns.

uR=2L=do, =Y (@.¢) +§2” ®© ) (¢) 7o, (6.18)
m =t

The number of equations is limited by the number of the relieved displacements calculated by

the finite element analysis. The relieved displacements are calculated at 30 core-hole depths

through the core-hole depth interval of § from 0 through 2 for six different Poisson’s ratios. The

number of unknowns (al.(i)’s and a2.(i)’s) were considerably smaller than the number of

equations (180). The least squares method s adopted for solving the linear system.

To estimate the accuracy of the coefficients, we will find the relative residual from the equation
given below.

E uR(®)- Y (@, () +a2,() v)(£)"

err(£) = = 5 *100 (6.19)

Figure 6.7 and 6.8 show the relative residual versus the core-hole depth (§ = A/ry,) for n=4 and
n=8. These figures also show the errors for the different Poisson’s ratios at each core-hole depth.

182



It was observed that the number of terms » = 8 (16 coefficients) offered reasonable accuracy. It
was also observed that the function 4. is well approximated (error less that 0.5 %) by means of
an eight-order algebraic polynomial obtained by the least-squares method.

The dimensionless coefficients values a.(i) ‘s of calibration constant 4, for core-hole are given in
Table 6.1.

6.3. DEFINITION OF CALIBRATION CONSTANT B,

As seen from the normalized relieved displacement given by Equation (6.5), the calibration
constant B. is associated with the shear stress state which is represented by O = (0 ~G3)/2.
Thus, in order define the calibration constant B, we consider a known stress state of o= -0py=
o,. The relieved displacement defined by Equation (6.5) take the form as follows

o, ~O
d Mcos 20.= B0, cos2a (6.20)

The relieved displacement at &= 0 under a known stress state is calculated by finite element
analysis. Then the calibration constant B can be found as follows

p =& (6.21)
O-D

The calibration constant B, is found for the through-hole and core-hole cases in the following
subsections.

6.3.1. Through-Hole

To understand the effect of the object thickness (7,/Dp) on the calibration constant B, the
relieved displacements are plotted against the object thickness in Figure 6.9. In this figure, u is
the relieved displacement calculated by finite element analysis. The finite element model
explained in Chapter 5.2.1 is used to calculate the relieved displacements. u, is the theoretical
solution of the relieved displacement for a thin object with a through-hole. As seen from the
figure, the relieved displacements vary little as the object thickness changes. Although the
constant B is not affected significantly by the thickness variation, a new function is introduced to
get better approximation.

B = (b1, +b2,v)

, - (6.22)

where the constants b1, and 52, are dimensionless coefficients. Substituting Equation (6.22) into
Equation (6.20) we get
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(b1, +62, v) -

6.23
Z o (6.23)

u
uR=—=
rfh‘

For any object thickness T, the loading condition was imposed by applying a uniform pressure
applied to the through-hole surfaces (from z=0 to z=T}). In this analysis, there are 20 partial
thicknesses of the object up to the maximum thickness of the object T,/Dy = 2 considered. This
analysis was repeated for eleven Poisson’s ratios at each object thickness: 0.1, 0.125, 0.15, 0.175,
0.2, 0.225, 0.25, 0.275, 0.30, 0.325, and 0.35. The corresponding values of the relieved
displacements were calculated. The dimensionless coefficients b1, and b2, are determined by the
least squares method. The finite element model explained in Section 5.2.1 is used to calculate the
relieved displacements on the left side of Equation (6.23).

Figure 6.10 and 6.11 show the variation with core-hole depth of the dimensionless coefficients
b1, and b2..

Now, for the known geometric information, the dimensionless coefficients b1, and b2, can be
found from Figure 6.10 and 6.11, and then the calibration constant B; can be calculated with
material properties information. To estimate the accuracy of the coefficients, we will find the
relative residuals from the equation given below.

E uR(€) = (b1, +b2, V)&, ;100

o E) 6.24)

err(g) =

Figure 6.12 shows the relative residuals versus Poisson’s ratio for different core-hole depths. It is
observed that the maximum error is about 0.015 o,. These results confirm the validity of the
definition of the calibration constant B.. As seen from these figures, the new defined calibration
constant B, approximates well the relieved displacements due to core-hole drilling for different
material properties.

As seen from Figure 6.10, the dimensionless coefficient b1, varies very little from 1.583 to 1.585
as the core-hole depth changes. For the sake of the further simplification, we set b/, equal to
1.584 and the calibration constant B. is defined with only one dimensionless coefficient b as
shown below.

o (L5840 )
E

(6.25)
The dimensionless coefficient & is calculated as explained above. Figure 6.13 shows the variation
with core-hole depth of the dimensionless coefficients be.

In order to remove the core-hole depth dependency as well as material dependency, the
following approximation is introduced.

B =§(l.584a+;c(i) v)[%,_)_ 626)
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By substituting Equation (6.26) in to Equation (6.20), we obtain a linear algebraic equation
having b.(i)’s as unknowns.

i1
u . (1.584+b,() v)[ 1,
R=—=Bo, = ¢ — 6.27
U " O, Z = p; o, ( )

m im]

The number of equations is limited by the number of the relieved displacements calculated by
finite element analysis. The relieved displacements are calculated for different object thicknesses
and for eleven different Poisson’s ratios. The number of unknowns (b.(i)’s) are considerably
smaller than the number of equations (220). The coefficients bo(i)’s are calculated by least
squares method.

Now for the known geometric information, the calibration constant B, can be calculated by
Equation (6.26) with these calculated dimensionless coefficients b.. To estimate the accuracy of
the coefficients, we will find the relative residual from the equation given below.

i1
E uR(T,/a)- ) (0.792+b,(}) v)(%’—] o,

T /a)= =
errly 1) E uR(T, / a)

(6.28)

Figure 6.14 and 6.15 show the relative residuals versus the object thickness (T,/a) for n=1 and
n=5. These figures also show the errors for the eleven different Poisson’s ratio in the range
between 1=0.1 to ¥=0.35 at each core-hole depth. It is observed that the number of terms n=5 (5
coefficients) provided reasonable accuracy. It was observed that the function B, is well
approximated (error less that 0.2 %) by means of a five-order algebraic polynomial obtained by
the least squares method.

The dimensionless coefficients values b.(i) s of calibration constant B, for core-hole are given in
Table 6.2.

6.3.2. Core-Hole Case

To understand the effect of the core-hole depth (&=h/ry) on the calibration constant B, the
general variation of relieved displacement with core-hole depth is illustrated in Figure 6.16. In
this figure, relieved displacements are normalized with respect to the theoretical solution of the
relieved displacement u,, and core-hole depth is normalized with respect to the measurement
circle radius 7, The normalized relieved displacement plots for different displacement
measurement radii have similar shapes and reach their maximum values at the same non-
dimensional core-hole depth. This figure shows that relieved displacements increase quickly as
the core-hole depth increases and reach maximum value. The theoretical value of relieved
displacement is approached at large core-hole depths. Figure 6.17 shows the variation with core-
hole depth of the non-dimensional relieved displacement for different core-hole radii, a. The
ratio of the dimensionless measurement circle radius k is kept constant in this plot. This figure
shows that when the relieved displacement is normalized with respect to the measurement circle
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radius, the dimensionless relieved displacement (/7 will not change due to core-hole diameter
change for constant k value. Figure 6.16 and Figure 6.17 show that the radius of the core-hole, a
influences the magnitude of the relieved displacement, whereas the measurement circle radius rp
influences the percentage of the relieved displacement. Compared to the analytical through-hole
procedure, the calibration constant Be for core-hole analysis involves one additional independent
variable, namely, the dimensionless core-hole depth &= h/ry. Thus, in a generalized functional
form, the calibration constant B, can be expressed as

B, = f(E,v.k,h) (6.29)

As seen from the generalized functional form above, for any given material properties £ and v,
the calibration constant B, is simply geometric functions. This means that once the calibration
constant has been determined for a particular dimensionless measurement circle radius (k=r,/a)
and material, the same calibration constant will apply when the core-hole diameter and depth are
similarly scaled. In order to remove the material dependency from B. leaving only the geometric
dependency, the following function is introduced.

B = (b1, + 225 v) (6.30)

The coefficients b/, and b2, are dimensionless coefficients. Substituting Equation (6.30) into
Equation (6.20) we get

(O +b2, V)

6.31
E fe] ( )

21
uR ==
rm

For any core-hole depth 4, the loading condition was imposed by applying a uniform pressure to
core-hole surfaces (from &= 0 to &= 2). In this analysis, there are 20 partial core-hole depths up
to the maximum core-hole depth &mex = 2 considered. This analysis was repeated for six
Poisson’s ratios at each core-hole depth: 0.1, 0.15, 0.2, 0.25, 0.30, and 0.35. The corresponding
values of the relieved displacements were calculated. The dimensionless coefficients b, and b2
are determined by least squares method. The finite element model explained in Section 5.3.1 is
used to calculate the relieved displacements.

Figure 6.18 and 6.19 show the variation with core-hole depth of the dimensioniess coefficients
bl and b2.. '

Now for known geometric information, the dimensionless coefficients b1, and b2, can be found
from Figure 6.18 and Figure 6.19 and then calibration constant B; can be calculated with material
properties information. To estimate the accuracy of the coefficients, we will find the relative

residual from the equation given below.

E uR(&) = (31, +b2, V)0, 4100 (6.32)
F uR(®) |

err(g) =
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Figure 6.20 shows the relative residuals versus Poisson’s ratio for different core-hole depths. It is
observed that the maximum error is about 0.5 % at very shallow core-hole depths. These errors
reduce quickly as core-hole depth increases. Tt is also observed that errors are less than 0.04 % at
large core-hole depths. These results confirm the validity of the definition of the calibration
constant B.. As seen from these figures, the new defined calibration constant B, approximates
well the relieved displacement due to core-hole drilling for different material properties.

In order to remove the core-hole depth dependency as well as material dependency, the
following approximation is introduced.

B = g (b1,())+ Eb2c @ v) ( f)f—i (6.33)

By substituting Equation (6.33) in to Equation (6.20), we obtain a linear algebraic equation
having b1.(i) and b2.(i) as unknowns.

uR=2-=Bo, = > (GL (B +52,() V) (f)'"]o*o cos2a (6.34)
r, m E

The number of equations is limited by the number of the relieved displacement at a=0 calculated

by finite element analysis. The relieved displacements are calculated at thirty partial core-hole

depths through the core-hole depth & interval of 0 to 2 for six different Poisson’s ratios. The

number of unknowns (b1.(i)’s and b2.(i)’s) were considerably smaller than the number of

equations (180). The least squares method is adopted for solving the linear system.

Now for known geometric information, the calibration constant B, can be calculated by Equation
(6.33) with these calculated dimensionless coefficients b1, and b2.. To estimate the accuracy of
this function, the relieved displacements were recalculated with these dimensionless coefficients.
To estimate the accuracy of the coefficients ay, we find the relative residual from the equation

given below.

E uR(©) -3 61,0 +82,() V(£) o,

err(&) = 2 T *100 (6.35)

Figure 6.22 shows the relative residuals versus the core-hole depth (§ = h/rm) for n=5 and n=10.
These figures also show the errors for the different Poisson’s ratio at each core-hole depth. It is
observed that number of terms 7 = 10 (20 coefficients) offered a reasonable compromise between
accuracy and numerical stability. It was observed that the function B; is well approximated.

6.4. DEFINITION OF CALIBRATION CONSTANT C.

As seen from Equation (6.6), the calibration constant C, relates to shear stress. Thus, in order
define calibration constant C,, we consider the known stress state of G = -0y, = Cp. The relieved
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displacement equations in the tangential direction defined by Equation (6.6) have the following
form.

pe )
VR:yﬂ-m-——wmm—w—(o-xx »
P

C,sin2a {(6.36)

The relieved displacement in radial direction at o=45° under a known stress state is calculated by
finite element analysis. Then the calibration constant C, can be found as follows

c =YR (6.37)

o

O.O
The calibration constant C. is found for the through-hole and core-hole cases in the following
subsections.

6.4.1. Through-Hole

To understand the effect of the object thickness on the calibration constant C., the relieved
displacements are plotted against the object thickness in Figure 6.23. v, is the relieved
displacement in radial direction calculated by finite element analysis. The finite element model
explained in Section 5.2.1 is used to calculate the relieved displacements. v, is the theoretical
solution of the relieved displacement in tangential direction for a thin object with a through-hole.
As seen from the figure, the relieved displacements vary as the object thickness changes. This
means the calibration constant C, is a function of object thickness T,. A new function is
introduced for the calibration constant C, as follows

C = (cl, + ;26 v) (638)

where the constants ¢/, and ¢2, are dimensionless coefficients. Substituting Equation (6.38) into
Equation (6.36) we get :

yR=t et 2 V) (6.39)
r, E

For any object thickness 7}, the loading condition was imposed by applying a uniform pressure
applied on the through-hole surfaces (from z = 0 to z = Tp). In this analysis, twenty partial object
thicknesses up to the maximum object thickness 7,/Dj = 20 are considered. This analysis was
repeated for eleven Poisson’s ratios at each object thickness: 0.1, 0.125, 0.15, 0.175, 0.2, 0.225,
0.25, 0.275, 0.30, 0.325, and 0.35. The corresponding values of the relieved displacements were
calculated. The finite element model explained in Section 5.2.1 is used to calculate the relieved
displacements on the left side of Equation (6.39). The dimensionless coefficients ¢/, and ¢2, are
determined by the least squares method.
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Figure 6.24 and 6.25 show the variation with core-hole depth of the dimensionless coefficients
cl;and c2..

Now for known geometric information, the dimensionless coefficients ¢/, and ¢2, can be found
from Figure 6.24 and Figure 6.25 and then calibration constant C. can be calculated with
material properties information. To estimate the accuracy this function, the relieved
displacements were recalculated with these dimensionless coefficients. To estimate the accuracy
of the coefficients, we find the relative residuals from the equation given below.

E vR() = (cl, +¢2, V)T, 4100 (6.40)
E vR(S) |

err(&) =

Figure 6.26 shows the relative residuals versus Poisson’s ratio for different object thicknesses. It
can be observed that the maximum error is less than 0.1 %. These results confirm the validity of
the definition of the calibration constant C.. As seen from these figures, the newly defined
calibration constant C, is well approximates the through-hole in a thick object.

As seen from Figure 6.24, the dimensionless coefficient ¢l. varies very little, from -1.088 to
-1.096 as the core-hole depth changes. For the sake of the further simplification, ¢/, is set to ~
1.09 and the calibration constant C. is defined with only one dimensionless coefficient ¢ as

shown below.

c. w(m1.09E+c V) 6.41)

The dimensionless coefficient ¢ is calculated as explained above. Figure 6.27 shows the variation
with core-hole depth of the dimensionless coefficients c.. The accuracy of the function defined
by Equation (6.41) is estimated by Equation (6.40). Figure 6.28 shows the percentage error
versus Poisson’s ratio for different core-hole depths. It is observed that the maximum error is less
than 0.3 %. These results confirm the validity of the definition of the calibration constant C..

In order to remove the core-hole depth dependency as well as material dependency, the
following approximation is introduced.

& (-109+¢,() V(L)
C, = ; - ( . ] (6.42)

By substituting Equation (6.42) in to Equation (6.36), we obtain a linear algebraic equation
having c(i)’s as unknowns.

i-1
u n (-1.09+¢,() v T,
R=we=( = £ £ 6.43
VR=—=Cg, Z = [a o, (6.43)

"t

The number of equations is limited by the number of the relieved displacements calculated by
finite element analysis. The relieved displacements are calculated for different object thicknesses
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and for eleven different Poisson’s ratios. The number of unknowns (c.(i)’s) are considerably
smaller than the number of equations (220). The coefficients c.(f)are calculated by least squares
method.

Now for the known geometric information, the calibration constant C, can be calculated by
Equation (6.42) with these calculated dimensionless coefficients ¢.. To estimate the accuracy this
function, the relieved displacement were recalculated with these dimensionless coefficients. To
estimate the accuracy of the coefficients, we find the relative residual from the equation given

below.

EVR(T, /a)= Y (~1.09+¢,(0) v)(%)_ s,

err(T,/a)= =

EvR(T,!a) 644)

Figure 6.29 and 6.30 show the relative residuals versus the object thickness (7,/a) for n=1 and
n=>5. These figures also show the errors for the eleven different Poisson’s ratio in the range
between 1=0.1 to ¥=0.35 at each core-hole depth. It is observed that number of terms #=5 (5
coefficients) provided a reasonable accuracy. It was also observed that the function C. is well
approximated (error less that 0.5 %) by means of a five-order algebraic polynomial obtained by
the least squares method.

6.4.2. Core-Hole Case

To understand the effect of the core-hole depth (& = A/r,) on the calibration constant C., the
general variation of relieved displacement with core-hole depth is illustrated in Figure 6.31. In
this figure, relieved displacements are normalized with respect to theoretical solution of the
relieved displacement, v, and core-hole depth is normalized with respect to measurement circle
radius, 7m The npormalized the relieved displacement plots for different displacement
measurement radii have similar shapes. The theoretical value of relieved displacement is
approached at large core-hole depth. It is obvious that the analytical definition of the constant C
cannot be used for a core-hole.

Figure 6.32 shows the variation with core-hole depth of the non-dimensional relieved
displacements for different core-hole radii, a. The dimensionless measurement circle radius & in
this plot is kept constant. This figure shows that when the relieved displacement is normalized
with respect to the measured circle radius, dimensionless relieved displacement (vo/ry) will not
change due to core-hole diameter change for constant k value. Figure 6.31 and Figure 6.32 show
that the radius of the core-hole, a influences the magnitude of the relieved displacement, whereas
the measurement circle radius 7,, shows percentage relief of the relieved displacement. Compared
to the analytical through-hole procedure, the calibration constant C, for core-hole analysis
involves one additional independent variable, namely, the dimensionless core-hole depth & =
h/vm. Thus, in a generalized functional form, the coefficients can be expressed as

C, = f(E,v,k$) (6.45)
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As seen from the generalized functional form above, for any given material properties E and v,
the calibration constant C. is simply geometric functions. This means that once the calibration
constant has been determined for a particular dimensionless measurement circle radius (A=r/a)
and material, same calibration constant will apply when the core-hole diameter and depth are
similarly scaled. In order to remove the material dependency from C, leaving only the geometric
dependency, the following function is introduced.

C = (cl, + ;20 V) (6.46)

The constants ¢/, and ¢2, are dimensionless coefficients. Substituting Equation (6.46) into
Equation (6.36) we get

== et V) o (6.47)
¥ E

For any core-hole depth &, the loading condition was imposed by applying a uniform pressure
applied to the core-hole surfaces (from z = 0 to z = k). In this analysis, twenty partial core-hole
depths up to the maximum core-hole depth & =2 were considered. This analysis was repeated for
six Poisson’s ratios at each core-hole depth: 0.1, 0.15, 0.2, 0.25, 0.30, and 0.35. The
corresponding values of the relieved displacements were calculated. The finite element model
explained in Section 5.3.1 is used to calculate the relieved displacements. The dimensionless
coefficients b1, and b2, are determined by the least squares method.

Figure 6.33 and 6.34 show the variation with core-hole depth of the dimensionless coefficients
cl.and cZ..

Now for the known geometric information, the dimensionless coefficients ¢l. and cZ. can be
found from Figure 6.33 and Figure 6.34 and then calibration constant C. can be calculated with
material properties information. In order to estimate the error, relative residuals are calculated
from the equation given below.

E vR(W)—(cl, +c2, v)o, , 100 (6.48)

err(h) = % vROR)

Figure 6.35 shows the relative residuals versus Poisson’s ratio for different core-hole depths. It is
observed that the maximum error is about 0.5 % at very shallow core-hole depths. These errors
reduce quickly as the core-hole depth increases. These results confirm the validity of the
definition of the calibration constant C. As seen from these figures, the new defined calibration
constant C, approximates well the relieved displacement due to core-hole drilling for different
material properties.

In order to remove the core-hole depth dependency as well as material dependency, the
following approximation is introduced.
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Cc - gﬁ (CIc (1) +;2c (l) v) (é)i*i (6.49)

By substituting Equation (6.49) in to Equation (6.36), we obtain a linear algebraic equation
having cl.(i) and ¢2.(i) as unknowns.

VR=—=Ca, = (€l ()+c2,0) v) (&) o, sin2a (6.50)
7, oy E

The number of equations is limited by the number of the relieved displacements calculated by
finite element analysis at =45°. The relieved displacements are calculated at thirty partial core-
hole depths through the core-hole depth interval of 0 to 2 times ry, for six different Poisson’s
ratios. The number of unknowns (cl.(i)’'s and c2.(i)’s) were considerably smaller than the
number of equations (180). The least squares method is adopted for solving the linear system.

Now for the known geometric information, the calibration constant C. can be calculated by
Equation (6.49) with these calculated dimensionless coefficients ¢l. and ¢2.. To estimate the
accuracy of this function, the relieved displacements were recalculated with these dimensionless
coefficients. To estimate the accuracy of the coefficients, we find the relative residual from the

equation given below.

EvRE) - () +c2,() (€)7o,

_ = #
err(£) = R 100 6.51)

Figure 6.36 shows the relative residuals versus the core-hole depth (f/ry) for n=4 and n=10.
These figures also show the errors for the different Poisson’s ratio at each core-hole depth. It is
observed that the number of terms » = 10 (20 coefficients) offers a reasonable compromise
between accuracy and numerical stability. Tt is also observed that the function C, is well

approximated (error less that 0.5 %).

6.5. EXAMPLE

In order to verify the core-drilling method for a core-hole, an example is solved below. A
structure under a known in-situ state of stress before the core-hole is drilled is considered. The
finite element model created in Chapter 5 is used to simulate the core-hole drilling. The
measured displacements obtained from the finite element analysis are used in the procedure to
calculate in-situ stresses which are assumed unknown prior to hote drilling.

In this example it is assumed that a core-hole is drilled to depth /= 40 mm in a structure that has
uniaxial stress state of oy = 30 MPa, gy, = 0. It is also assumed these stresses are uniformly
distributed through the depth in the structure.

The material properties of the structure and geometric properties of the core-hole are given
below as follows:
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E = 30000 MPa, a= 50 mm, &=1.5, 7= 50 * k=75 mm, k=40 mm.

The measured displacements are calculated for Test Configuration C by finite element analysis
as follows.

U71=0.07992 mm
U2=0.03024 mm
U3 =-0.01944 mm

Solution :

£= h/r, =40/75=0.533 From Figures (6.4), N al, =0.36,a2,=0.176
k=15 (6.5),(6.18) & (6.19) b1, =0.62,52, =024

Substituting the coefficients above into Equations (6.14) and (6.30) we get the calibration
constants A, an B, for this particular core-hole geometry

A = al,+a2, v 036+0.176x0.2 ~131733x10°°

¢ E 30000
p Bty 0624028502 ) 5667 2107
E 30000

From Equation (6.4), we get the constants 4 and B

A=A, xr, =0.000988

B =B, xr, =0.00167

The in-situ stress equations for Test Configuration C are given in Chapter 3 by Equations
(3.132), (3.133) and (3.134). We get the in-situ stresses by substituting the measured
displacements and 4 and B values in these equations as follows

, _WisU3) UI-U3)

w 44 4B
_ (0.07992+(-0.01944)) | ((0.07992-(-0.01944) _ 1 12 pa
4 0.000988 40.00167
, W +U3) (UI-U3)
» 44 4B
_ (0.07992+(-0.01944)) _ ((0.07992-(-001944)) _ o 1oonipa
4 0.000988 4 0.00167
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_ _U1-2U2+U3 _007992-2x 003024+ (-0.01944) _
” 4B 4 x0.00167

If we use Equations (6.17) and (6.33) to calculate the calibration constants instead of using the
figures, we get the results as follows

A4, =0.000013378

B, = 0.0000220404

A= 4, xr, =0.00100335
B =B, xr,, =0.00165303

_U1+U3) U1-U3)

= 44 4B
(0.07992+(-0.01944)) + ((0.07992-(-0.01944)) _ 30.096 MPa
4 x0.00100335 4 x0.00165303
o, = 0.042
7, =0

194



1.2

O 1 1 1 1
0 0.5 1 1.5 2 2.5

T,/Dy
Figure 6.1 Variation with object thickness of the relieved displacement for the biaxial uniform
stress state of Cy=03y=10 MPa.
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Figure 6.2 Variation with core-hole depth of the relieved displacement for the biaxial uniform
stress state of 0y,=0,,=10 MPa.
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Figure 6.3 Variation with core-hole depth of the relieved displacement for different core-hole
radii.
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Figure 6.4 Dimensionless coefficients al, for k=1.5.

196



05 =
045 = =

0.4
035 BEC

a;

0.25 7
0.2 -
0.15 7

0.05 .

0 0.2 0.4 0.6 03 1 12 14 16 1.8 2

B,
Figure 6.5 Dimensionless coefficients a2, for k=1.5.
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Figure 6.6 Relative residual versus Poisson’s ratio at different core-hole depths.
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Figure 6.8 Relative residual versus core-hole depth for n=8.
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Figure 6.9 Variation with object thickness of the relieved displacement for the stress state of
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Figure 6.10 Dimensionless coefficient bl for k=1.5.
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Figure 6.12 Dimensionless coefficient b, for &=1.5.
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Figure 6.14 Relative residual versus object thickness for n=1.
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Figure 6.17 Variation with core-hole depth of the relieved displacement for different core-hole
radii for stress state of 0=-c5,=10 MPa.
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Figure 6.20 Relative residual versus Poisson's ratio for different core-hole depths.
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Figure 6.22 Relative residual versus core-hole depth for n=10.
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Figure 6.30 Relative residual versus core-hole depth for n=>5.
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al () | a2.0)
20.072834] 0.044251
123465 1-0.746918
20.225292] 4.28656
2.40789 | -6.97061
3.66435 | 5.98131
2.43128 | 2.92677
0.785519 | 0.771277
-0.100549 | -0,084988

Gi~JfhiLhi it ™

Table 6.1 Coefficients al (i) and a2(i)’s of calibration constant 4. for core-hole.

bo(1) | b,2) | 5.3 | b.(4) | b:05)
-0.228525] 0.243375 | 0.185763 | -0.315128] 0.086965

Table 6.2 Coefficients b.(i) of calibration constant B, for through-hole.

bi (i) b2 (i)
-0.030346-0.002529
0.487421 |-0.081817

1.26614 | 2.23475
-3.22026 | -5.43454
3.46104 | 591912
-1.99166 | -3.42679

0.596501 | 1.02583
-0.0729161-0.124951

gof~l onjun e | fto e §

Table 6.3 Coefficients b7.(i) and b2, (i)’s of calibration constant B, for core-hole.
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[ce) [ ec@ | @ | cctd) | c.05) |
| 0.689908 | -0.063583] 0.908608 |-0.580321] 0.113251

Table 6.4 Coefficients c.(i) of calibration constant C, for through-hole.

cl () c2.(i)

0.010131 {-0.014132
-0.2073511 0.132517
-2.65581 | 3.32105

520287 1 -6,14804
-4.99857 | 5.87338

2.69098 | -3.19519
-0.770175] 0,927924
0.091102 {-0.111366

celdjonitnimiwitoi—f~

Table 6.5 Coefficients ¢/.(i) and e2.(i)’s of calibration constant C. for core-hole.
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CHAPTER 7

INCREMENTAL CORE-DRILLING METHOD

7.1. INTRODUCTION

The incremental core-drilling method is developed primarily for applications in which in-situ
stresses are non-uniform through the drilling depth. In such cases, the procedure, analytical
definition of the calibration constants, and the calibration constant values given in previous
chapters are not applicable. However using the incremental core-drilling method, it is possible to
obtain the in-situ stresses as a function of depth z measured from the specimen surface.

The experimental procedure in the incremental core-drilling method is similar to the procedure
for the core-drilling method for uniform in-situ stress through the thickness. The incremental
core-drilling method involves measuring displacements after successive increments of core-hole
depth. Then these measured displacements are related to the in-situ stresses that vary through the
depth.

The organization of the remainder of this chapter is as follows. Section 7.2 presents the theory of
the formulation of the incremental core-drilling method. Section 7.3 explains the definition of the
calibration constants for non-uniform stresses through the depth. Finally, Section 7.4 presents
examples to illustrate the method.

7.2. THEORY

The incremental core-drilling method is similar to Integral Method (e.g. Flaman 1985; Niku-Lari
1985; Schajer 1981; 1988a; 1988b) and Influence Function Method (Beghini 1998; 2000}
developed for measuring non-uniform residual stress in steel. Even though the main concept of
the core-drilling method is similar to Integral Method, the calibration constants are defined with
continuous influence functions, which do not need any interpolation.

In this method, the material is assumed linear elastic, isotropic and homogenous. Plane stress
conditions are assumed. It is assumed that in-situ stresses perpendicular to the surface (in z
direction) are zero or negligible. The in-situ stresses are described as a function of depth z from

the surface.
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There is no solution available in closed-form for non-uniform stress through depth. However, a
similar approach as followed in Chapter 6, i.e. a so-called semi-analytical solution, is followed in
this chapter to develop a solution procedure for non-uniform stress through depth. As mentioned
earlier, in the semi-analytical solution procedure, the closed-form equations for relieved
displacement and in-situ stresses that were derived in Chapter 3 are treated as the main form of
the equations for the solution. However, the constants 4, B, and C in these equations are treated
as calibration constants and are calculated in numerical analysis.

Consider a structure having non-uniform in-situ stresses through its thickness as shown in Figure
7.1. If a core-hole is drilled to the core-hole depth /4 in three increments and then the stresses
equivalent to the relieved in-situ stresses (stresses relieved due to core-hole drilling) are applied
to the core-hole surface, the state of equilibrium remains unchanged as shown in Figure 7.2 (this
figure shows half symmetry of the structure). As explained before, if the relieved in-situ stresses
which are equivalent and opposite sign of the equilibrium stresses are applied to the hole surface,
we get the relieved displacements due to the core-hole drilling to the depth 4. This can be shown
by superposition of the relieved in-situ stresses at each core-hole increment as shown in Figure
73. This shows that if a core-hole is drilled to the core-hole depth 4 in an incremental fashion,
the relieved displacement measured at a core-hole depth / is partly due to the in-situ stresses
released in the last increment, and partly due to the in-situ stresses relieved in previous core-hole
increments.

As explained before, the relieved in-situ stresses due to drilling a hole in a structure under a
uniform stress state are given by Equations (3.3) and (3.4). For the non-uniform stress state
through the thickness, the in-situ stresses are a function of the depth I and are expressed as

follows
o (H)+o, (H) . o (H)~0o,(H)
2

N(H)= cos 2c¢ + 7, (H)sin 2 (7.1)
o (H)-0o,(H)

T(H) =~ .

sin2a +7,,(H)cos2a (7.2)

For convenience, all the geometric dimensions are normalized by the measurement circle radius
¥m as follows

H=2z/ry, = non-dimensional depth from surface;

z = depth from surface;

& = h/r,, = non-dimensional core-hole depth;

7, = measurement circle radius;

h = core-hole depth.
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As seen from the relieved in-situ stress equations, an arbitrary stress distribution can be
decomposed into an equibiaxial and pure shear stress components. We can rearrange Equations
(7.1}, (7.2) as follows

N(H)= P(H)+ Q(H)cos2a+17, (H)sin2a (7.3)
T(H)=-0(H)sin2a + 1, (H)cos2x (7.4)

where
P =2 25 7.5)

o, (H)-0,(H)

> (7.6)

Q(H) =

To ease calculation, the relieved in-situ stresses components P(H), O(H), and oH) are
considered separately. We first consider a core-hole under an equibiaxial loading distribution
P(H). To derive the equations for the relieved displacements, a unit load is applied to the core-
hole surface at arbitrary point H when the core-hole depth is £ as shown in Figure 7.4. If a unit
concentrated load is applied in plane at an arbitrary point H when the core-hole depth is & (Figure
7.4), assume that the relieved displacement at the surface is

uR(E, H) =——G,(&. 1) )

m

The function G4(E,H), represents the relieved displacement due to a unit equibiaxial stress P
applied at H when the core-hole depth is & This function is known as the influence function. The
influence functions depend on the geometric properties of the core-hole &, k and material

property v.

As a core-hole is drilled to a certain depth &, the in-situ stresses released at every intermediate
depth H, between the surface and the depth ¢, contribute to the relieved displacements. As
explained above (see Figure 7.3), the relieved displacements when the core-hole is drilled to
depth % are the superposition of the relieved displacements due to the relieved in-situ stresses at
each core-hole increment. By superposition, the relieved displacement #R() due to a loading
distribution P(H) is given by

uR(@) = [ G, (& HOP(HdH (79)

Similarly, if we consider pure shear stress case, we can write the relieved displacement equations
caused by O(H) and ©(H) separately as follows
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WR(E) = 'é:" [ 6, o) cos(2a)d (7.9)

VR(E) = __115 [ Go(&. DQ(H)sinQayaH (7.10)
UR(E) w-;: [ G, (& By sina)dH (7.11)
VR(E) = % f -G (&, Hyr(H)cos(2a)dH (7.12)

By superposition, the relieved displacement equations can be written as follows

uR(G) = 2@ 1 j: G (&, H)P(H)dH + L fGB (&, HYQ(H)dH cos 2
v, E E (7.13)

1 .
— [ G, (& Hyz, (H)dH sin2a

VR(Z) = % f G.(&, Q) sin(2a)dH +—é- f G (&, HYe(H)cos(2a)dH (7.14)

where, Ga(&,H) and G(&,H) are the influence functions that represent the relieved displacements
in radial and tangential directions, respectively, due to unit pure shear stress () applied at a
depth H when core-hole depth is &.

Now we deal with integral equation of first type (Tricomi 1985) because the stress profile is
unknown inside the integral. Since Equations (7.13) and (7.14) cannot be solved in closed-form,
these equations are solved numerically by expanding influence functions in double-power series.
For the known influence functions and measured displacements, we can find stress variations
through the core-hole depth by Equations (7.13), (7.14).

To solve Equations (7.13), (7.14), first the influence functions G4(&,H), Gs(E.H) and Gc(&,H)
need to be calculated. These influence functions are represented by double-power expansion as
follows

G,(&H) miiays”"“h’ & (7.15)
=t i=

Gy H) =3 S b e (7.16)
=1 =l

Go(& H) =Y. S e, 8 717

=t b=l
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If we substitute Equations (7.15), (7.16), and (7.17) in to Equation (7.13), we get

uR(&) = é; EZ Z":aygf“’ﬂf—‘P(H)dH

j=1 =l

J% {303 8,67 a7 Q(H)dH cos 22 (7.18)

J=l =]

+% (33 b, e, (H)dH sin2a

J=I i=l

where the coefficients ay, byand ¢z depend on the geometric properties of the core-hole, &, and v.
These coefficients are calculated by finite element analysis.

7.2.1. Calculation of Coefficients ay, b; and ¢

The coefficients ay, by and ¢y are calculated by finite element analysis. In these analyses, the
incremental core-hole drilling process is simulated by removing subsequent layers of elements in
the fine element model as explained in Chapter 5. A separate finite element analysis is performed
for each coefficient. The coefficient ay is related equibiaxial stress acting through thickness. The
coefficients by and c; are related to pure shear stress. The coefficient ay is required to consider
axisymmetrical part to which is applied ax symmetrical load. However, the coefficients by and
¢;5, corresponding pure shear stress, are required to consider non-axisymmetric loading.

The coefficient ay is associated with mean biaxial stress P. Therefore, in order define coefficient
ay, we consider a known equibjaxial stress state of Gk = &5, = b If we integrate Equation (7.18)
from 0 to H in a core-hole having depth & we get

uR(E, H) = -;- (>3 0, a7 ¢ Py (7.19)

i=l j=]
Considering P(F) to be a constant, this yields
LW s S .
uR(E, H) *}%Z S & egp (7.20)
il =l S

Equation (7.20) is the relieved displacement due to a loading of uniform stress from the surface
to the depth H, when the core hole depth is &.

Equation {7.20) can be written as follows

52

&
=y

eI P = uR, (7.21)

220



A series of loading conditions are applied as shown in Figure 7.5 by applying a unit pressure to
the core-hole surface in the interval depths H for any partial core-hole depth & The relieved
displacements under the described loading conditions are found by finite element calculations.

Similarly, the coefficients b; and ¢y are calculated by considering a pure shear stress state. To
calculate the coefficient by, the relieved displacement equations in the radial direction due to a
uniform pressure from a surface to a depth H when a core-hole is & is considered as follows

1 & b,-- L
=¥ LEEHO=uR, (7.22)
EST T

In order to calculate the coefficients ¢y, we consider the relieved displacement equation in the
radial direction

FUD L 0=k, (129

Jel =t

In this analysis, there are N=50 partial core-hole depths up to a maximum core-hole depth &ma =
2 considered. For any partial core-hole depth & = &nax x KN (k= 1,2,...,N), a series of loading is
subjected by applying a uniform pressure from 0 to & = & x Vk (I = 1,..,k). From this series of
loading, 1275 relieved displacements are obtained for different loading depths H and core-hole
depths & from the finite element analyses. The least squares method is employed to calculate the
coefficients ay, by, and cy. It is observed that » = 10 in Equation (7.20) give a reasonable
compromise between accuracy and numerical stability.

Now for the known geometric information and the dimensionless coefficients ay, the relieved
displacement under the known equibiaxial stress can be calculated by Equation (7.19). To
estimate the accuracy of the coefficients, we find the relative residual from the equation given

below.

WRE) -5 2> £ HP
err(E) = i1 =1 J

uR(Z)

(7.24)

Relative residual means the relative difference between finite element and calculated relieved
displacements.

Figure 7.6 to Figure 7.8 show the relative residual for coefficients ay, by, and ¢y, respectively
versus core-hole depths. It is observed that the maximum error is about 0.5 % at a very shallow
core-hole depth. The errors reduce quickly as the core-hole depth increases. It is also observed
that errors are less than 0.1 % when & > 0.25. These results confirm the validity of the

coefficients.

The values of the coefficients ay, by, and ¢y are tabulated in  Table 7.1 to Table.
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7.3. DEFINITION OF CONSTANTS 4, B AND € FOR NON-UNIFORM STRESS
THROUGH DEPTH

Compared to the procedure for the case of a uniform stress through depth procedure, the
calibration constants 4, B, and C, for core-hole analysis for non-uniform stress through the
depth involves one additional independent variable, namely, the dimensionless depth H and core-
hole depth &=h/ry,. Thus, in a generalized functional form, the calibration constant 4. can be

expressed as

Ac?Bc’Cc = f;z(EaVak,h,H),
S (Ev, kb H), (7.25)
fC(Evvak!th)
The calibration constant definitions for non-uniform stress through depth are different from those
for uniform stress through depth. As will shown below, the calibration constants for non-uniform
stress through thickness require some matrix calculations. There is very simple relationship
between the constants 4, B and C and the calibration constants 4., B. and C, as given in Equation

(6.4). In order to increase magnitude of the numbers in the matrix calculations and reduce the
number of calculations, the calculations of the constants A, B and C are directly given below.

7.3.1. Constant A

Recall that in the relieved displacement equation given in Equation (3.42), the constant 4 is
associated with equibiaxial stress P. Therefore, in order to define the calibration constant 4. for

non-uniform stress through depth, we consider a known equibiaxial stress state of g = 03, = 0o
The relieved displacement Equation (7.13) takes the following form

1 .
uRE)=— [ G(& H)P(H)AH (7.26)
After substituting Equation (7.15) in to Equation (7.26) we get

uR(E) m_éf S 0, HAEP(H)IH (727)

==l el

Assume that the equibiaxial stress P(H) is expressed as follows

C
P(H) =) cp.4.(H) (7.28)

o=1

where ¢(H) are polynomials of degree c, and cp. are coefficients to be found. If we substitute
Equation (7.28) in to Equation (7.27) we get
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(@) =+ [ 33 a,H7EY cp . (HYH

i=l =l el
Assume that ¢(H) is given by the following power law
g =H"

If we substitute Equation (7.30) in to Equation (7.29), we get

R =L [, £y op, B dH

=l j=l c=i

uR(§) = ZcchZ

o=l =l g J“"C 1

u (&) == Z%ZZ Mty

i jre-1

We can write the above Equation (7.32) in matrix form as follows

M1 {Cp}={UR}

where

_1_ 5r‘+j+c-2r
re ijl j=ij+c"'1 r m

ur2

e

-

v

Nt

]
MMWMM\
S =
3 X,
L_________V____J \_______.___V______J
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(7.38)



In Equation (7.34), UR is the relieved displacement readings vector, and Cp is the vector of the
unknowns that are the coefficients of the assumed in-situ stress function in Equation (7.28). This
is an over determined linear system (m>C) (number of unknowns less than number of
equations). Thus the linear system is solved by the normal equation method to get least-squares

solution as follows
(€.} =(, T M, ) M. T {UR}) (7:39)

From the similarity of the relieved displacement equations under equibiaxial stress state, we can
conclude that calibration constant 4 is

~ = (T ) LT (7.40)

7.3.2. Constant B

In order to define constant B, we consider the known shear stress state of 03=-0;,=05. Similar to
constant 4, the relieved displacement equations due to drilling a core-hole to depth & are given

below

uR(§)=—é~f G4 (&, HYQ(H ) cos(2e)dH (7.41)
uR() ="§,§ f > ,, b, H QU cos(2ar)dH (7.42)

=l J=l

Let the in-situ stress state be expressed as a function of H as follows
o)
Q(H) =2 cq, ¢.(H) (7.43)
o=}
where #.(H) are polynomials of degree ¢, and cq. are coefficients to be found.

n N C
uR(ﬁ):JE fZZbny‘lfi"lécqc ¢, (H)cos(2a)dH (7.44)

i=l j=l
Assume that ¢(H) is given by the following power law

¢, =H" (7.45)

From (7.42) it follows that
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uR(&) = J: Z Z b H/ET icqu 1 cos(2a)dH (7.46)

= = por
uR(EY = --Zcqc ZZ 42 cos(2ar) (7.47)
c*-l i=1 j-—!
u (&)= Zcqﬂzz EH cos(2a) (7.48)
c-—l f=l =l J +C i

We can write the above equation in matrix form as follows

IMg] {Cy}={UR} (7.49)
where
mB,; ... mBg
(M= : KR : (7.50)
mB,| mB,
mB, = -— EMT 2y cos(2ar) (7.51)
ZI,Z; Jre- .
cq,
cq
CABL 052
cq,
ur[
urZ
{UR}=1" (7.53)
u

rm

In Equation (7.50), UR represents the relieved displacement readings vector, and Cq represents
the vector of the unknowns that are the coefficients of the assumed in-situ stress function in
Equation (7.28). This is again an over determined linear system (m>C). Thus, the linear system
is solved by the normal equation method to get least squares solution.

(o) =(IM, ] M5 )" [M, ] {UR} (7.5%)
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From the similarity of the relieved displacement equations under shear stress state, we can
conclude that the calibration constant B is

L (T ) 059

7.3.3. Constant C

In order to define constant C, we consider the known shear stress state of 0u™=-G;y™00. Similar to
constant B, the tangential relieved displacement equations due to drilling a core-hole to depth & is
given below

VR(E) = -;7 f G, (&, HYQ(H)sinQ2a)dH (7.56)

VR(E) = — f 'S 6, HE Q(H)sin(2a)dH (7.57)

i=l j=l

Let the in-situ stress state be expressed as a function of H as follows
Q(H) = Zcqc . (H) (7.58)

where ¢,(H) are polynomials of degree ¢, and cqg. are coefficients to be found.

C
VR(E) = — f S 6 HAEY eq, ¢, (H)sinQa)dH (7.59)
=} j=1 o=t
Assume that ¢.(H) is given by the following power law
¢ =H (7.60)
From (7.42) it follows that
noi C
WR(E) = fzzc HEY g, H sin(2a)dH (7.61)
=] j=1 ¢=1
VR(E) = ._Z qczz £ 5in(2ex) (7.62)
i=] j=t .] +e- 1
v (&)= Z qczz £y sin(2a) (7.63)
c—-! =1 j—l +C 1
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We can write the above equation in matrix form as follows

[M]{Co}={V} (7.64)
where
mCy; ... mCy
M= 2 (7.65)
mC,, - mC,
S &y -2,
mc:ézuzlj;:é—_—;g ety sin(2ar) (7.66)
cq,
{Co} =1 (7.67)
qc
Va
(V=1 (7.68)
v.

am
In Equation (7.50), V represents the relieved displacement readings vector, and Cq represents the
vectors of the unknowns, which are the coefficient of the assumed in-situ stress function in

Equation (7.28). This is again an over determined linear system (m>n). Thus, the linear system is
solved by the normal equation method to get least squares solution.

(Co} = (McT M) MeT (V) (7.69)

From the similarity of the tangential relieved displacement equations under shear stress state, we
can conclude that the constant C is

M. ] (7.70)

7.4. EXAMPLES
In order to verify the incremental core-drilling procedure, two examples are solved below. In

each example, a structure under with in-situ stresses before the core-hole is drilled is considered.
It is assumed that a core-hole is drilled in this structure in increments. The finite element model
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created in Chapter 5 is used to simulate the core-hole drilling. The measured displacements
(obtained from the finite element analysis) are recorded at each core-hole increment. Then these
measured displacements are used in the procedure to calculate in-situ stresses that are assumed
unknown prior to hole drilling as explained above. The in-situ stresses are presented as follows
2
O'xx(z) =0y (z) + ﬂxlz + /BxZZ
2
o2y =0, (2)+ Baz+ Bz

Txy (Z) = z'Jc_y(;»('ﬂ":) + ﬁxyiz + ﬁxyZzz

7.4.1. Example 1

In this example it is assumed that a core-hole is drilled in a structure that has a uniaxial stress
state of 0y, = 30 MPa, o3, = 0. It is also assumed that these in-situ stresses do not vary through

the depth, Tayo = ﬂxl = ,Byj“—“ ﬂxﬂ: 0.
The material properties of the structure and geometric properties of the core-hole are given as
E = 30000 MPa; o= 50 mm; k=1.5; 7 = 50 * k=75 mm.

The measured displacements are calculated at four partial core-hole depths up to the maximum
core-hole depth 2 = 40 mm for Test Configuration C by finite element analysis as follows.

{J1={0.01456 mm, 0.03992 mm, 0.06242 mm, 0.07992 mm}
U2={0.0064 mm, 0.01658 mm, 0.02464 mm, 0.03024 mm}
U3 = {-0.00176 mm, -0.00676 mm, -0.01314 mm, -0.01944 mm}

Since we don't know how the in-situ stresses vary through depth, we need to estimate how the
stresses vary through the depth. Let us assume that the in-situ stresses are linearly varying (C =
2) through the thickness. The matrices M, Mg are calculated by Equations (7.40) and (7.55) as

follows

[2.1377x107%  1.19161x107 |
5.52578x107* 5.81755x107°
8.21692x107% 1.21717x107*
| 1.00783x107  1.85896x107* |
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213774107 1.55871x107° |
| 7.78147x107*  8.53626x107
1.2597x107  1.98861x107*
1.65613x107°  3.35164x107

The constants A and B are calculated by Equations (7.40) and (7.55) as follows

1 T -1 T
—=(IMaT M) [Ma]
_ 1739.83 244415 993.602 -1526.98
-10367.2 -13780.8 -3748.33 128108
1 -t
= =(IMe " M) [Ma]'

968.098 1603.61 86482 -966.563
-5223.68 -8279.26 -3506.27 7415.54

The in-situ stress equations for Test Configuration C are given in Chapter 3 by Equations
(3.132), (3.133) and (3.134). We obtain the in-situ stresses by substituting the measured
displacements and 4 and B values in these equations as follows

o (2)= %%(UI+U3)+—}I——IB—(U1~U3) =

0.0128 ]
1[1739.83 2444.15 993.602 ~1526.98] |0.03316
Z[«-10367.2 ~13780.8 ~3748.33 12810.8 } 0.04928 |
0.06048
0.01632)

o b
41-5223.68 -8279.26 -3506.27 7415.54 || 0.07556
0.09936

1[968.098 1603.61  864.82 —966.563:! 0.04668

[ 29.974 MPa
0.0018 MPa/mm
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11 11
0,(2) =7~ UI+UY—2—(U1-U3) =

0.0128
1] 1739.83  2444.15  993.602 -1526.98] 0.03316
Z[-losm.z ~13780.8 -3748.33 zzsxo.s}’ 0.04928

0.06048
0.01632
1] 968.098 1603.61 864.82 —966.563] | 0.04668
'Z[—szzass ~8279.26 —3506.27 7415.54}' 007556
0.09936
[ -0.0083 MPa
“{0.0009 MPa/mm}
_ _U1-2v2+U3
» 4B

0
968.098  1603.61 864.82 -966.563 |0
—5223.68 -8279.26 -3506.27 741554 ||0

0
[ O0MPa
0 MPa/mm

Let us approximate the in-situ stresses constant (C=1, uniform stress case). The matrices Ma, Mg
are calculated by Equations (7.40) and (7.55) as follows

(2137751074 ) (2.72177x107% ]
5.52578x10~ 7.78147x107*
M, =1 L Mg =4 S
8.21692x107% 1.2597x1072
1.00783%107 |1.65613x107°

The calibration constants are calculated as follows

-1
=(MA ] [Ma]) [Ma]" =[10469 270614 402407 493.565]

1
4

-1
%:([MB]T[MB]) [Mp]" =[54.3351 155343 251477 330617
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If we substitute the constants 4 and B and the measured displacements into the in-situ stress
equations given by Equations (3.132), (3.133) and (3.134), we get in-situ stresses as follows

o_(z)= —i——i}(m +U3)+-E-i§(m ~U3)=

0.0128
0.03316

—1—[}04.69 270.614 402.407 493.565].
4 0.04928

0.06048
0.01632
0.04668

"0.07556
0.09936

+.i.[54.3351 155343 251477 330.617]

=29.9962 MPa

11 11
=——(Ul+U3)-~—(U1-U3)=
o (@) =7~ )-75¢ )

0.0128

003316
1110469 270.614 402407 493.565).
7 0.04928

0.06048

0.01632

1 0.04668
-—[54.3351 155.343 251.477 330.617)<.
4 0.07556

0.09936
=(0.0013 MPa

The last part of this example, assuming that the stresses are distributed uniformly through the
depth, is same as the example given in Chapter 6. This result shows that incremental core-
drilling formulations can be considered as the most general formulations for the calculations of
the in-situ stresses.

7.4.2. Example 2

In this example it is assumed that a core-hole is drilled in a structure that has a uniaxial stress
state of oy, = 30 MPa, =2, Go = Ty = B = Py1=0

The material properties of the structure and geometric properties of the core-hole are given as

E = 30000 Mpa; a= 50 mm; &=1.5, ry = 50 * &= 75 mm.
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The measured displacements are calculated at five equal partial core-hole depth up to the
maximum core-hole depth £ = 150 mm for Test Configuration C by finite element analysis as
follows.

U1={0.01438 mm, -0.03446 mm, -0.09238 mm, -0.1484 mm, -0.1839 mm}
U2={0.0064 mm, -0.00706 mm, -0.001718 mm, -0.02184 mm, -0.023 mm}
U3 = {-0.00158 mm, 0.02034 mm, 0.05802 mm, 0.09916 mm, 0.1379 mm}

Since we don't know how the in-situ stresses vary through depth, we need estimate how the
stress vary through the depth. Let us assume that the in-situ stresses are uniformly distributed
through depth (C = 1). The matrices M, Mg are calculated by Equations (7.40) and (7.55) as
follows

(8.21692x10°* | [ 1.2597x107 |
1.21866x107* 2.223872x1073

MA =4 ”s MB == 4 >
1.3422x1073 2.78255x107°

1.39031x107 | | 3.30908x107 |

The constants 4 and B are calculated as

-1
= ([MaT Ma]) [MA]" =[105337 156226 172,062 176975 178232]

A

-1
%m([MB]T[MB]) [Mg]" =[36.0538 64.074 79.6389 88.901 94.7087]

Substituting the constants 4 and B and the measured displacements into the in-situ stress
equations for Test Configuration C, Equations (3.132), (3.133) and (3.134), we get in-situ
stresses as follows

i1 11
o (2)=——({U1+U3)+——(U1-U3)=22.4 MPa
w(2) 1 A( ) 3 B( )
11 11
= —(U1+U3) ———(U1-U3)=11.05 MP
o,(2) =7 A( =g 7 ) a
As seen from the results above, the uniform stress assumption of uniform stress through the

depth produce large etror in the estimate of in-situ stresses since the stresses vary significantly
with depth.

Now lets approximate the in-situ stress with a third order polynomial (C = 3). The matrices Ma,
Mg are calculated by Equations (7.40) and (7.55) as follows
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The constants 4 and B are calculated as

-

1
B

8.21692x107
1.21866x107°
1.3422x107
1.38051x107
 1.39031x107°
[ 1.2597x107
2.23872x1073

=12.78255x107>

3.10616x107>

3.30908x107

1.21717x107*
2.9078x107*
3.82997x107*
4.21796x107*
4.31717x107
1.98861x107*
6.303x107
1.05783x107
1.42792x107
1.7347x107

; 4341.48
= (M M) [Ma]" =] 258931
209033
L 1476.44
=([Ma]' [M]) [Ms]" =| -6377.64
3491.36

2.66233x107° |
1.11393x107*
1.8975x107*
2.35583x107

2.4889x107" |

4.51918x107 |
2.685x107*
6.41465x107
1.10089x1073
1.59735x107 |

224321
—26439.6

348.07
~-392.087
-370.229

-

—2356.54 —1957.76
15639.7
—-15713.1
—603.083

3980.43
-3137.66 —1796.94 307523

562.955 1550.01
-5695.5 —13802.5
8527.24 17532.3
-521.57 501.372
2798.41 -3280.78

If we substitute the constants 4 and B and the measured displacements into the in-situ stress
equations given by Equations (3.132), (3.133) and (3.134), we get the following in-situ stresses

o (2) =%i(U1+U3)+£TI§(U1—U3)=<

11 11
=2 (U1 +U3)——=(U1-U3) =
o,,(2) 4A( ) 43( )=

T

_U1-2U2+U3 _

4B

0.0000 MPa

.

0.0000 MPa/mm
0.0000 MPa/mm®
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30.073 MPa
2.007 MPa/mm
0.00011 MPa/mm?” |

0.037 MPa
~0.0048 MPa/mm
0.00008 MPa/mm” |

v




! a=D/2

A4

N

! Increment 1

Increment 2

Figure 7.2 Core-hole with relieved in-situ stresses applied as loads to maintain equilibrium (half
symmetry of structure is shown).
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Figure 7.4 Definition of core-hole depth and stress depth.
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Figure 7.5 Representation of Joading in finite element models.
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Figure 7.6 Relative residual of coefficient a; versus core-hole depth & for n=10.
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CHAPTER 8

SUMMARY AND CONCLUSIONS

8.1. INTRODUCTION

The objective of this research is to establish the theoretical basis for the core-drilling method for
the nondestructive evaluation of stresses in concrete structures. Procedures are developed to
calculate in-situ stresses from measured displacements for a variety of test configurations, test
object geometries, and in-situ stress states. The equations are first developed for infinite plates
and then adapted to bounded objects. The following sections summarize the results and
conclusions of this research. The summaries are organized by chapter.

8.2. RESULTS AND CONCLUSIONS FROM CHAPTER 3- DERIVATION OF IN-SITU

STRESS EQUATIONS

8.2.1. Uniform Stress State

1.

Closed-form relieved displacement equations were derived for a through-hole in an infinite
thin plate subjected to a uniform stress state which is uniformly distributed through
thickness. These equations calculate the relieved displacements of measurement points in
the radial and the tangential directions for a known uniform stress state.

Closed-form measured displacement equations were derived for a through-hole in an
infinite thin plate subjected to a uniform stress state which is uniformly distributed through
thickness. These equations calculate the measured displacements between the two
measurement points for a known uniform stress state.

Closed-form uniform in-situ stress equations in terms of cartesian stress components were
derived for eight Test Configurations for a through-hole in an infinite thin plate. These
equations calculate the in-situ stresses Oix, Oy, %y at the hole location for the known
measured displacements.

Closed-form uniform in-situ stress equations in terms of principal stresses and direction
were derived for eight Test Configurations for a through-hole in an infinite thin plate.
These equations calculate the in-situ stresses Omax, Gmin and @ at the hole location for the
known measured displacements.
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8.2.2. Linear Gradient Stress State

1.

Closed-form relieved displacement equations were derived for a through-hole in an infinite
thin plate subjected to a linear gradient stress state which is uniformly distributed through
thickness. These equations calculate the relieved displacements of measurement points in
the radial and the tangential directions for a known linear gradient stress state.

Closed-form measured displacement equations were derived for a through-hole in an
infinite thin plate subjected to a linear gradient stress states which is uniformly distributed
through thickness. These equations calculate the measured displacements between the two
measurement points for a known linear gradient stress state.

Closed-form linear gradient in-situ stress equations were derived for five Test
Configurations for a through-hole in an infinite thin plate. These equations calculate the in-
situ stresses Ow, Oy, %y, Kx, Ky at the hole location for the known measured
displacements.

8.3. RESULTS AND CONCLUSIONS FROM CHAPTER 4 — VERIFICATION OF

THEORETICAL FORMULATIONS

The closed-form equations for relieved displacements and in-situ stresses derived in
Chapter 3 were verified to be correct. The closed-form equations for relieved
displacements were verified using finite element analyses. Once these equations were
verified, they were then used to verify the closed-form equations for in-situ stresses.

For Test Configuration H, the closed-form in-situ stress equations in terms of principal
stresses need to be modified when measured displacements /2 = U3. The additional
equations for U2 = U3 are given in Chapter 4.

8.4. RESULTS AND CONCLUSIONS FROM CHAPTER 5 - APPLICATION TO

OBJECTS WITH FINITE DIMENSIONS

8.4.1. Relieved Displacements

1.

The relieved displacements due to drilling a through-hole are influenced by finite plate
thickness. The relieved displacement in the radial direction due to drilling a through-hole
in an object with finite thickness is closer to the plane stress solution than the plane strain
solution. A maximum error of 3 % is observed when T,/Dj = 1. The relieved displacement
in the tangential direction due to drilling a through-hole in an object with finite thickness is
influenced significantly by the object thickness 7. More than a 10 % error is observed as
the object thickness varies.

The relieved displacements are influenced significantly by core-hole depth when a core-
hole is drilled in an object. The errors might be more than 100% at a shallow core-hole
depth (/r,<0.4), and reduce as core-hole depth increases. The relieved displacements in
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the radial direction are closer to the closed-form solution when the core-hole depth A/t >

- 2.5. However, the relieved displacement in the tangential direction is not close to the

closed-form solution even when the core-hole depth A/r,, > 6.

The relieved displacements are not influenced significantly by object width variation. Less
than 2% error is observed when W,/Dy=35.

8.4.2. Closed-form Uniform In-situ Stress Equations

1.

1.

For Test Configurations A, B, C, D, E, and G, the closed-form uniform in-situ stress
equations for plane stress assumptions are almost not affected by the object thickness
variations when a through-hole is drilled in an object. For Test Configuration F, the closed-
form uniform in-situ stress equations for plane stress assumptions can apply to an object
when T,/Dy< 2. For Test Configuration H, the closed-form uniform in-situ stress equations
for plane stress assumptions can apply to an object when 7,/Dy< 1. For Test Confi gurations
A, B, C, D, E, and G, the closed-form uniform in-situ stress .equations for plane stress
assumptions can apply to an object with a core-hole for Afr, > 3. It is observed that the
deeper core-hole depth, the better results are obtained.

The closed-form uniform in-situ stress equations can apply to objects with finite width. In
particular, the closed-form uniform in-situ stress equations can give less than 1 % error for
W,/Dy < 4. This error increases to 3 % when Wy/D; = 3.

8.4.3. Closed-form Linear Gradient In-situ Stress Equations

The closed-form linear gradient in-situ stress equations are affected significantly by
thickness variation when a through-hole is drilled in an object. The closed-form linear
gradient in-situ stress equations can apply to an object for 7,/Ds< 0.5. The closed-form
linear gradient in-situ stress equations solutions are affected significantly by core-hole
depth h. These equations might give more than 90% error at a shallow core-hole depth
(W/r»<0.3). Errors between 5% and 15% were observed for different Test Configurations at

v =2.

The closed-form linear gradient in-situ stress equations can apply to objects with finite
width. In particular, the closed linear gradient in-situ stress equations can give less than 1
% error for W,/Dy <3. This error increases to 4-5 % when W,/Dy, = 2.

8.5. RESULTS AND CONCLUSIONS FROM CHAPTER 6 - CALIBRATION

CONSTANTS

8.5.1.1. Uniform In-situ Stress Equations

Relieved displacements due to through-hole drilling in an object subjected equibiaxial
stress state are not influenced by thickness variations.
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The radius of the hole influences the magnitude of the relieved displacements.

The maximum displacement release core-hole depth is determined by the radius of the
measurement circle. The maximum displacement release core-hole depth is the core-hole
depth at which the maximum relieved displacement is reached.

There are no closed-form solutions available from theory of elasticity for a through-hole or
a core-hole in a thick object because of the complexity of the problem. Semi-analytical
equations for relieved displacement and in-situ stresses were developed for objects with
finite dimensions and core-hole for in-situ stresses uniformly distributed through the object
thickness. This development is done by introducing empirical coefficients called
calibration constants 4., B, and C.,.

In general, calibration constants A, B, and C. are functions of geometric properties and
material properties. Accurate analytical definitions for the calibration constants were
defined with dimensionless coefficients that make calibration constants material

independent.

Geometric parameters were reduced by adopting dimensionless quantities. Consequently,
the calibration constants for through-hole in thick objects are function of dimensionless
geometric properties of T,/Dy, and k = r,/a, and calibration constants for core-hole case are
functions of dimensionless geometric properties of k= rn/a, & = h/ry. This means that once
the calibration constants has been determined for particular dimensionless geometric
property, the same calibration constants will apply when the geometric dimensions of the
Test Configuration are similarly scaled.

Since the calibration constants were made material independent, once the coefficients are
determined for particular material properties, the same coefficients will apply when
material properties are different.

The calibration constants 4., B., and C. are related with constants 4, B, and C. Once the
constanis 4, B, and C are calculated, the in-situ stress equations derived in Chapter 3 can

be used.

8.5.2. Linear Gradient In-situ Stress Equations

The calibration constants F,, H,, I. and J. for the linear gradient stress state are not
calculated in this work. The concepts of the definition and method of calculation of the
calibration constants F,, H,, I, and J, are same as that for calibration constants 4., B., C..

8.6. RESULTS AND CONCLUSIONS FROM CHAPTER 7 — INCREMENTAL CORE-

DRILLING METHOD

The incremental core-drilling method is developed primarily for applications in which in-
situ stresses are non-uniform through the drilling depth. In such cases, the procedure,
analytical definition of the calibration constants, and the calibration constant values given
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in previous chapters are not applicable. However, using the incremental core-drilling
method, it is possible to obtain the in-situ stresses as a function of depth z measured from
the specimen surface. The experimental procedure in the incremental core-drilling method
is similar to the procedure for the core-drilling method for uniform in-situ stress through
the thickness. The incremental core-drilling method involves measuring displacements
after successive increments of core-hole depth. Then these measured displacements are
related to the in-situ stresses that vary through the depth.

Although this method is developed for non-uniform stress state through thickness, it was
shown that this method also gives accurate results for a uniform stress state through

thickness.

Since there is no solution available in closed-form for non-uniform stress through depth,
semi-analytical equations for relieved displacement and in-situ stresses were derived for
non-uniform in-situ stresses through depth.

The constants 4, B and C are calculated by numerical analyses. These constants are defined
with Influence Functions. Accurate analytical expressions for the Influence Functions for
incremental core-drilling method were proposed. These Influence Functions contain
coefficients which are calculated by finite element analysis for the dimensionless
geometric properties (for example k& = rna, & = h/rm). With the pre-calculated
dimensionless coefficients for the particular dimensionless geometric properties, the
incremental core-drilling method can be used to calculate the non-uniform stress state
through depth. Once these coefficients are calculated for a particular geometric property,
these coefficients can apply when geometric properties are similarly scaled.

Once the constants 4, B, and C are calculated, the in-situ stress equations derived in
Chapter 3 can be used.

In-situ stresses can be expressed by polynomials of degree c. This allows the calculation of
high gradient stress variations of the in-situ stresses through depth.

8.7. FUTURE RESEARCH

This section summarizes future research which follows from the work described in this report.

1.

The theoretical basis for the core-drilling method was established based on the
assumptions of linear elastic homogenous, isotropic materials. Further research is needed
to explore the impact of these assumptions. This may be done experimentally and
analytically.

Physical tests need to be performed using the core-drilling method. In order to perform
these tests, measurement techniques need to be identified that are capable of making the
small displacement measurements that are required to successfully apply the core-drilling
method. In addition to having sufficient resolution, viable measurement techniques will
have to be practical for field applications if they are to be used on actual structures.
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Calibration constants were calculated for only uniform stress state. The calibration
constants for linear gradient stress state need to be calculated.

Experimental and analytical investigations need to be performed to evaluate the influence
of the presence of steel reinforcement in the concrete and the effects of creep and
shrinkage of the concrete.
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