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ABSTRACT

The first part of this study focuses on the technigues and mathematical models
available to gain analytical knowledge pertaining to the performance of single layer
aluminum latticed spherical domes.

After this State-of-the-Practice review, the second part of this study uses a
computer-based ANSYS nonlinear finite element analysis in order to determine the
snap-through instability of a particular spherical geodesic dome geometry.
Comparisons between a cladded and bare-frame dome, and full and half surface snow
load provided a better understanding of the critical response of these structures.

Through correlations with the finite element results, simplified continuum-based
expressions used to determine dome design parameters were reevaluated, resulting
in modified expressions which can be used for the determination of structural
parameters of certain single layer latticed aluminum geodesic domes.






1. INTRODUCTION

1.7 BACKGROUND

Domes have given the engineer the opportunity to enclose vast areas without
the use of intermediate supports which would detract from the overall usefulness of
the enclosed space [20]. Developed by Buckminster Fuller in the early 1950's, the
single layer geodesic dome is perhaps one of the most efficient structural
configurations of all the dome types. W.ith the advent of lightweight structural
materials such as aluminum, the advantages of grid construction are found to be quite
numerous. The geodesic configuration is based upon the principle of triangular shapes
superimposed upon a spherical surface of revolution. The inherent stiffness of the
triangle, coupled with the forementioned light-weight of aluminum alloys, resuits in
a structure which does not require any main beams or girders. In addition, the use of
a domic shape allows for a reduction in the overall depth of the structure, which
translates into a reduction of the amount of material required for completion of the
structure. The repetitious use of triangles in the geodesic dome concept is one of the
main advantages of the application. Since the surface is composed of "nearly
equilateral” triangles arranged in a cyclic fashion, fabrication of individual members is
greatly simplified due to the overall geometric similarity of each and every member in

the dome.

As mentioned previously, the use of a dome-like structure allows for a great
reduction in the overall structural depth of the system. This reduction in depth has
been the focus of many "questions" which have developed over the past few
decades. Research needs to be continued in order to conclusively determine how
shallow a dome can be designed without sacrificing the overall integrity of the
structure. When dealing with stability of domes and domelike structures, the
possibility of buckling on both a global and local level do exist. It is because of this
stability situation that the need for further clarification of critical issues should be
addressed. These and related issues form the foundation of the research on which

this report is based.

1.2 OBJECTIVES

The research which was performed can be organized into three distinct studies.
The first study incorporated a literature search in which the primary objective was to
summarize the current state-of-the-practice for the design, construction, and
performance of single layer aluminum latticed spherical domes. This investigation

addressed the following issues:

1. ldentification and critique of various continuous and discrete mathematical
models to assess the critical limits of the structure.

-1



2. Applicability of finite element analysis in order to investigate structural
instability and predict related collapse loads and modes of failure.

3. Evaluation of the suitability of nonlinear solution techniques in order to
determine critical response of the system which in itself may exhibit geometric
and/or material nonlinearity.

The second study was associated with the finite element analysis of a specific
single layer aluminum geodesic dome. The assumptions and other details
corresponding to the actual model are presented in Section 3 of the report. The finite
element analyses were performed using the ANSYS finite element package [4]. Due
to the complex nature of the problem, a tremendous amount of data was generated
corresponding to the.overall performance of the dome from its service load to.the
critical load corresponding to collapse of the structural system. It is through these
analyses that the understanding of the performance and limitations of the dome can
be brought to light. The objective of the finite element analyses performed for this
research project was to supplement the knowledge base which already exists on the
subject of latticed domes. The results obtained from the finite element runs are
definitely not meant to stand alone, nor should they be used as the "final say" when
it comes to making conclusive decisions about overall performance of the structure.

The final phase of this research was mathematically based in that it
incorporated many of the findings of the first two phases in order to "fine tune" the
expression used to determine the Wright / Buchert critical pressure expression for
elastic buckling of a spherical isotropic shell-like structure [6,8]
where

P, =1554E7 SCRY

LR2

P, = Critical buckling pressure normal to the surface, (ksi)
A = Strut cross-sectional area, (in?)

E = Modulus of elasticity of the material, (ksi}

r= Radius of gyration of the strut, (in}

L= Average length of strut, (in)

R =" Radius of curvature of the dome, {in}

This expression is also given in the Guide to Stability Design Criteria for Metal
Structures, 4th Edition {13]. Of the many researchers who have investigated the
theory behind the equation, the main area of concern falls in the interpretation of the
proper value of the buckling coefficient, C. From the expression above, it is seen that
a value of 1.55 is used for the buckling coefficient, as suggested by both Douglas
Wright and Kenneth Buchert [13). Through the use of a computer-based finite
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element formulation, the critical behavior of a lattice dome with a triangular pattern
can be observed and evaluated. From this, corresponding values for the critical
buckling coefficient can be interpolated, and a modification of the equivalent shell
theory expression can be considered.

1.3 SPECIFIC DETAILS
1.3.1 OVERVIEW OF THE DOME BEING STUDIED

Although the following research can be applied, in some way or another, to
many different dome types, the primary focus of the study was a single dome type.
The structure itself, as previously noted, is of a geodesic configuration which closely
resembles patterns which are formed in nature [17]. The mathematical principles on
which the geodesic dome is formed gives way to force distributions similar to those
found on the atomic level. This, in turn, means that the geodesic configuration would
give rise to structures which would be the strongest, have the highest strength-to-
weight ratio, and be the most cost effective structures of its type [15]. It is quite
obvious that the inherent advantages of the geodesic configuration tend toward the
use of lightweight materials which would further improve its overall effectiveness in
reality. Because of this, the use of aluminum is commonplace in the construction of

these domes.
1.3.2 GEOMETRIC PROPERTIES

In all areas of the research which necessitate reference to a particular dome for
analytical purposes, it has been decided through a cooperative agreement between
ATLSS and Conservatek Industries, Inc. that the Conservatek Alumadome would serve
as the benchmark structure for this study. The particular structure being scrutinized
{Fig 1.1) has an overall diameter of 226.35 feet and rise of 40.36 feet, which gives
it a rise-to-span ratio slightly under 20% (0.178 exactly). This dome is therefore
classified as a shallow dome which leads to the likeliness of structural instability when
subjected to extreme loading conditions [17]. The particular Alumadome has an
overall surface area of 45,000 ft? and spans an area of approximately 40,000 ft%.
The dome itself is composed of 1,372 struts, 896 cladding panels, and 477 connector
hubs, which together, give the structure a dead weight of 134,039 pounds, or 2.9
Ib/ft? distributed uniformly over the entire surface.

Three different strut sizes are incorporated into the structure. Each strutin the
dome has a web depth of 8 inches and the web thicknesses vary between 0.20,
0.25, and 2.25 inches, respectively. Differing flange widths and thicknesses are
paired with the forementioned web sizes to form the three strut groups (group #
designated by Conservatek) mentioned above:
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Strut Group  Depth  Web Thickness Flange Width  Flange Thickness

483 8" 0.20" 4.0" 0.25"
487 8" 0.25" 4.5" 0.30"
489 8" 2.25" 4.5" 0.30"

Group 483 forms the majority of the struts in the structure. These beams form the
entire dome, with the exception of the bottom layer of diagonal {compression)
members and the tension ring at the very bottom of the structure. The lower
compression members are composed of strut group 487, while the tension ring is
formed from struts of group 489. Altogether, the entire family of struts account for
58.4% of the overall weight of the dome {78,213 pounds).

- . The cladding-panels-which cloak the entire-outer surface of the.dome are 0.05
inch thick and account for 23.6% of the entire weight (31,645 pounds). Although
the cladding accounts for almost % of the weight of the dome, it does not contribute
much to the overall integrity of the structure, as proven by the comparison of finite
element resuits between cladded and unciadded models presented in Section 3 of the
report. The cladding thickness contributes little resistance to bending, which leaves
the cladding to act primarily through membrane action, which in itseif does little good
for the structure [28]. The cladding’s main function is aesthetic in that it protects
against vapor leakage and keeps out contaminants (industrial applications} from
whatever the dome is covering. The effect of the cladding will be discussed more
thoroughly in the section dealing with finite element analysis of the dome.

The 477 connector hubs used in this particular dome account for 3% of the
overall weight (3,911 pounds). The hubs attach to all interconnecting beams through
top and bottom flanges and are assumed, with much hesitancy, to exhibit full fixity
within all finite element models. The degree of hub fixity is an ongoing {and valid}
source of controversy within the realm of dome research, yet it falls outside the scope
of this report. Dome joint fixity is a complex issue in itself, and the foundation of a
completely independent research project can be formed upon its merit alone.

The batten bars {20,270 pounds) make up the remaining 15% of the overall
structural weight. The function of these bars is to provide a sealing and clamping
mechanism for the cladding onto the top flanges of the strut members. They are
considered to be non-structural elements.

The final area of the dome which needs to be given attention is the support
mechanism {Fig. 1.2}. The structure is supported on a pinned and slotted mounting
bracket through which movement is allowed in a horizontal (radial} direction. The
dome is connected to the mounting bracket via 56 8" X 4" X 1/2" aluminum box
beams (6 inches long} at each base support peoint. The option of a fixed support
system is available for this dome configuration, but more critical results will be
obtained by using the slotted support option. Thus, all finite element models will
employ a slotted support condition.
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1.3.3 MATERIAL PROPERTIES

All structural elements, excluding the cladding, are series 8061 aluminum alloy.
This alloy has a vyield stress of 40 ksi and a Young's modulus of 10,100 ksi. The
cladding is series 3003 aluminum alloy possessing a yield stress of 25 ksi and an
elastic moduius of 10,100 ksi. The strain hardening moduli of both series are
extremely low (43 ksi and 21 ksi, respectively}. As a result, after elements have
yvielded, they are considered failed due to the fact that they cannot carry any
significant additional load and because they effectively have zero stiffness. Due to
the performance characteristics of this material, a bilinear stress-strain curve is used
to define the material within the finite element models in order to account for the
possibility of noniinear behavior induced by material nonlinearity.

1.3.4 LOADING CHARACTERISTICS

. There are many types and/or combinations of loads which can be imposed upon
the domed structure. Snow and wind locads are perhaps the most common, but they
are not the only contributors. Seismic loading is an additional possibility which should
be considered if the structure is located in a seismically active area. For the purpose
of this research, dead load and snow load will be considered for the analyses. Wind
load was considered, but not included because the rise-to-span ratio of the dome is
tess than 0.20. For these shallow-type domes, the positive pressure zone on the
windward face disappears [17].

a) Dead Load

The dead load of the dome is based upon the accumulated weight of the
beams, cladding, connector hubs, and batten bars. Although the dead load accounts
for over 67 tons of downward force imparted upon the supports, it does not
significantly affect the performance of the dome. This was proven through running
several linear static analyses via the ANSYS finite element program. ANSYS results
showed that there are slight increases in stress levels throughout the structure, but
the slotted supports serve as stress relief mechanisms, therefore minimizing the effect

of the self-weight.
b) Snow Load

The amount of snow load is highly variable, depending upon the area of the
country under consideration. For this study, the location which will serve as the "trial
area” is the New York, New Jersey, Pennsylvania (tri-state) area. Following
recommendations given in ANSI A58.1-82 for minimum design loads, a snow load
equal to 25.2 Ib/ft? will serve as the design snow load for this study [2].



sonedorg swo(y :1°] amBig

Y6LL=H o8eeE
| Y 5€'922 r,
/ .H
A N AN AV AVAN NZAVAW AW
AN AV
RYAVAVAS NNZAVAVAY
. Nl AN NAVAV

1 ‘bs 0000y :uonvsioid [BIU0ZIOH
U 'bs 000‘Sy eosy 8oeuns

(1sd g~) 18d 120°0 :peOT PEEQ
sqj goovel Iublem swoQ ereuwixoiddy

SO} 1 16°E SQNH 20108UU0D,

1sd g6z ‘peo z_,ocw sqj 0/2°02 :sieg usheg

) sqj 679° 1€ :BuippelD
SGI 002'700°L Baly pajoslold (B0l JaAQ Wbiepy moug

SHI13INVvHVYd DNIAVYO

sqi €12'8L ‘SIS
‘SIHODIIM TYHNLONYLS

1-6



Connector Hub

Box Beam
Base Support

.h
)

‘g,?‘ e e LT
ARy AR g ‘:% 5
o X kvl ! s "?'m
Vi e G
Xy - I e gL S5 ok 20 . S gD S
R L e A\ AN iy
o Tl al O ;

Strut

Baseplate with
Slotted Hole

Figure 1.2: Support Detail

1-7






2. STATE-OF-THE-PRACTICE

2.1 FOCUS

Great strides have been made in the advancement of mathematical analysis
procedures and computer solution techniques applicable to latticed structures. The
focus of the problem which exists today is that the engineering advancements brought
about by the development of complex domelike structures have brought about the
need for equally complex design, analysis, and construction techniques. Numerous
publications exist which cover these topics to a great extent [27]. The problem is that
it is difficult for the design engineer to accumulate this knowledge on an overall basis
because the information is so widespread. Bibliographies have been developed which
serve to gather all pertinent information relative to the forementioned topics, yet the
exercise of gathering the information and tediously searching through it still exists.
In order to point the design engineer in the right direction, there must exist a
convenient method by which one can reference a manageable amount of information,
and at the same time, feel that a broad, yet accurate view of the procedure(s) has

been obtained.

Itis therefore the purpose of this section to summarize the current state-of-the-
practice for the analysis, design, and construction of single layer aluminum latticed
spherical domes. This particular phase of the study does not encompass detailed
approaches to every known method nor does it serve as a design guide for the
engineer to follow when designing these domes. Rather, it provides an overview of
the more popular methods available today, so that a proper evaluation of a dome
structure can be made.

As stated earlier, this particular state-of-the-practice report will address three
important issues:

1. Mathematical model assessments
2. Finite element analysis applicability
3. Suitability of nonlinear solution techniques

Within the mid to late 1960’s, structural engineers and researchers were trying
to develop a continuum shell analogy expression applicable to reticulated structures.
The Wright / Buchert critical pressure approximation presented in the last section was
perhaps the most noteworthy effort of the sort. The search for more exact analytical
expressions characterizing the behavior of reticulated structures was discontinued in
the late 1960’s and early 1970's due to the advent and availability of large digital
computers and finite element software. At this point, it became most practical to
model the components of the reticulated structures by finite elements. Thus, during
the past two decades, there has been very littie in the way of development, or
improvement of the continuum shell analogy.
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These issues (or shortcomings) are not unique to the dome problem, for they
are paralleled in the development of almost any structure with a degree of complexity
similar to that of a single layer geodesic dome. By focusing on these and related
issues, the design engineer should come away with a better overall feel of what
methods are available and best suited for the job at hand and also have an improved
understanding of the critical buckling performance of these domes.

2.2 MATHEMATICAL MODEL ASSESSMENTS
2.2.1 BACKGROUND

The single layer geodesic dome, rightly classified as a spherical latticed
structure, gives way to a special class of analytical solutions encompassing three-
dimensional solution technigues which can accommodate a large number of structural
elements and their corresponding stresses and displacements. Because the dome
under consideration is a highly indéterminate structure, with the geometric complexity
of the triangular configuration, a need for special analytical tools has arisen.

When analyzing large structures such as the single layer latticed spherical
dome, the main area of concern which takes precedent is the identification and
prediction of an accurate buckling load. Buckling of fatticed domes falls into two
categories: global buckling and buckling of a local nature [12, 28]. The difference
between the two is that global buckling occurs when a relatively large area of the
structure experiences an unstable condition, while the occurrence of local buckling
stems from the failure of only one node as it snaps or deflects through. Llocal
buckling takes precedent when only one node is affected, causing a localized reversal
in adjacent member curvature. Since the domes being studied are exposed to a
surface snow load, it was assumed the loading would lead to giobal buckling.
Therefore, the concept of local buckling was not expanded upon, and the study
concentrated on the global buckling phenomenon known as snap-through buckling [1].

2.2.2 CONTINUOUS MATHEMATICAL MODELS- GENERAL INSTABILITY
2.2.2A CONVENTIONAL SHELL THEORY

The concept of buckling of a latticed structure on a global level can be most
closely compared to results obtained through buckling analysis using conventional
shell theory. The overall quality of the solution is based on the absolute accuracy of
the mathernatical model which represents the true structure. When a latticed dome
experiences a relatively large amount of distortion induced by a load applied normal
to its surface, the structure experiences both membrane action and out-of-plane
bending. By applying conventional shell theory, stability criteria are easily expressed
through the use of shell buckling formulas. Most shell buckling formulas used in the
context of dome analysis are based upon pressure loading, but since the domes being
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studied are shallow in nature, the pressure load acting normal to the surface closely
represents the vertical orientation of the actual vertically oriented snow load. Thus
the use of pressure expressions is satisfactory for the time being. The true problem
with this application is that the use of a shell buckling formula is indicative of linear
prebuckling behavior. Based upon finite element runs as seen in later sections of this
study, load deflection observations of a geodesic dome prior to buckling shows that
this prebuckling behavior is actually nonlinear to some extent. Thus, the critical
buckling load as computed through conventional shell theory wili actuaily be
overestimated, resulting in a nonconservative design. '

An additional point of interest is that shell behavior is sensitive to the effects
of geometric imperfections and support conditions. Boundary conditions must be
represented accurately in the mathematical model, otherwise considerable error will
accumulate throughout the solution procedure. This is an important point, for many
domes exist with their own specific boundary conditions. Take, for example, the
dome which is being analyzed for this particular study. There are two different
support configurations which exist for this dome, slotted and fixed. The critical
response of the slotted structure will differ quite markedly from its fixed counterpart.

2.2.2B EQUIVALENT SHELL THEORY

In order to obtain a complete analysis of the latticed spherical dome, a more
thorough breakdown of a dome into its basic structural components must take place.
Thus, the next level of mathematical models pertain to the application of an
"equivalent continuum™ approach. Through this, the relationship between the latticed
structure and the continuous shell structure is upheld mainly through the use the split
rigidity method [28].

2.2.2C SPLIT RIGIDITY METHOD

The primary purpose of the split rigidity method is to provide a solution for
determining the buckling pressure of a spherical shell-like structure through
"discretization" of the shell into an equivalent set of effective membrane and bending

parameters.

By the use of this method, an expression for the critical buckling pressure of
an isotropic shell-like structure is obtained [7, 91:

t t
~CE(Imy2( By (2.1)
pcrE (R) (t )

m
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where

P, = cCritical pressure applied uniformly and normal to the shell

C = critical buckling coefficient

E = modulus of elasticity

R = spherical radius

t, = effective membrane thickness
t, = effective bending thickness

Numerous authors have derived this or similar expressions in order to study
shell-like structures such as reticulated, orthotropic, sandwich, and stiffened shells.
The main difference between expressions is found in a discrepancy of opinion in
regarding the-"correct value"-[13] for-the buckling-eoefficient,- €, and-arises through
variations of derivations amongst the authors. For example, Buchert (1965) found that
C = 0.366. Crawford and Schwartz (1965) used a differential-equation based
derivation and determined that C = 1.16. Wright (1965) expanded upon the
equation, and by applying additional continuous shell analogy, came upon the earlier
relation {1.1),

AEr

P,=1.5545L
LR?

(2.2)

The use of the split rigidity concept has one main drawback. It is based upon
the analysis of a "perfect” structure. An ideal geodesic dome is difficult to achieve,
because fabrication tolerances will undoubtedly result in some accumulation of
geometrical error upon construction of the surface. If this was to happen, the
buckling equation stated above would be compromised. For example, if a deviation
in the radius of curvature occurs at some area on the dome due to fabrication
tolerances or problems encountered during assembly, an obvious change in the critical
performance of the structure will materialize. Although equation 2.2 was developed
taking into account a "delta factor” [6] for global imperfections, further investigation
must be done in order to include a factor which addresses localized imperfections to
a greater degree.

There are additional factors that must be considered when using shell analogy
methods. Dome edge conditions must, once again, be considered. Poor edge
conditions will result in buckling loads lower than those obtained through analytical
means. Also, shell analogy is rooted in the fact that elastic action prevails during
buckling.

Wright’s expression of the critical buckling load serves as the basis for the

reestablishment of a new set of critical buckling coefficients that can be applied to
domes of a geodesic configuration similar to the one under consideration in this study.
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As mentioned earlier, this phase of the study will appear in a forthcoming
section.

2.2.3 DISCRETE MATHEMATICAL MODELS- GENERAL INSTABILITY

Discrete mathematical formulations for developing stability criteria of latticed
structures are few. Whatever is available to the design engineer is based upon the
formulation of a conventional stability analysis. Of these choices, two at the forefront
of analysis methods are: (1) finite difference formulations and {2) matrix formulations

[3].
2.2.3A FINITE DIFFERENCE ANALYSIS

When the use of partial differential equations with complicated boundary
conditions is not feasible, the use of finite difference formulations would serve as a
viable solution alternative. The basis of this method is the creation of a "grid" which
completely defines the surface of the structure through the use of surface functions.
The set of functions defines a set of finite difference equations which are used in
calculations of surface displacements, forces, and/or other variables which describe
the status of the structure under various loading conditions. The complexity of the
difference equations is highly dependent upon the geometrical configuration, the
coordinate system in which the system is defined, and the boundary conditions.
Obviously, the three dimensional nature of the geodesic dome and its slotted supports
only adds to the intricacy of the set of equations. Yet, the cyclic symmetry
possessed by the dome allows for a more manageable manipulation of the solution
technigue. Although a two-dimensional example is the most recognizable form of the
finite difference technique, three-dimensional grids which incorporate triangular and
hexagonal patterns are also available. Therefore, the method lends itself usefully to
the analysis of the triangulated latticed dome.

Due to the symmetric nature of the geodesic dome, the discrete method such
as the finite difference method is an efficient means of solution. Since a large number
of members and their affiliated difference equations are being dealt with
simultaneously, analysis is facilitated by the use of a computer. A more thorough
discussion of this method may be found in the text by Timoshenko and Goodier [29].

2.2.3B MATRIX FORMULATION

_ Matrix methods are perhaps the most fundamental methods of analyzing
structures. They typify the term "discrete" because the structure must be broken
down into an assemblage of individual members. Based upon this relatively simple
description, it is quite easy to see why matrix formulation methods are ideal for
latticed structures. Unlike a continuous shell structure, the latticed arrangement of
a geodesic dome gives way to a structure which is already discretized, thus typifying
the fundamental concept of a discrete mathematical method.
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The stiffness method, or displacement method, aliows for the analysis of
structures with a latticed configuration such as the geodesic dome. The stiffness
matrix is computed for each element and then constructed for the entire structure.
Once the structural stiffness matrix is assembled, the resulting set of simultaneous
equations can be solved for the unknown forces and displacements. For a dome of
the size similar to or exceeding the one being considered in this study, the structural
stiffness matrix has the potential to become unmanageable (>100 degrees-of-
freedom). However, the cyclic symmetry exhibited in the geodesic dome gives the
matrix certain repetitive characteristics. Since groups of data will be repeatable
throughout the matrix, computer usage allows for convenient storage and processing
of results in a manner which is both time efficient and accurate, depending upon the
overall accuracy of the original mathematical model. Once again, it can not be
stressed enough that the aceuracy of the initial mathematical model is crucial for the
carrect interpretation of all solution data.

2.3 FINITE ELEMENT ANALYSIS APPLICABILITY
2.3.1 BACKGROUND

The finite element method of analysis is an extension of both the continuous
shell theory and matrix approaches [b, 13]. The structure is represented as an
assemblage of simple geometrical elements. These simplistic "shapes” are the "finite
elements” which have their own established structural behaviors. The behavior of
each different type of element, whether it is a beam, truss, shell, or any other
structural form, is defined through a set of functions which describe a series of
displacements unique to each element type. The assemblage of elements form a
large-order system of linear algebraic equations. The solution to these equations
result in a series of stresses, strains, and displacements of the system in response to
the specified type and intensity of loading. The core of the finite element analysis
routine is the choice of solution techniques used to solve the system of algebraic
equations.

To solve for linear elastic stability, energy methods are used. The energy
methods which are highlighted within finite element analysis techniques are based
upon the principles of potential energy or virtual work.

A potential energy based formulation is developed in terms of strain energy.
The strain energy, in turn, is expressed in terms of equivalent displacements. The
resulting displacements expressions can be solved for and the results converted into
a corresponding set of stresses and strains. The problem with potential energy
methods is that only axial stresses are considered, which means that shear, torsion,
and large deformation effects are not considered. If a large displacement solution is
required of an energy method, then the concept of virtual work could be employed.
There has not been much development within the area of virtual work relative to large
displacement formulations, therefore this area will not be discussed any further.
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Small displacement theory is valid when the need for prebuckling response of
a system is desired. It will not suffice when systematic critical response is needed,
such as the solution for buckliing of a geodesic dome. When a loading state is needed
to match or exceed the expected critical load of a system, one must resort to a large

displacement analysis.

As far as small displacement theory is concerned, the most fundamental usage
relative to stability analysis would be to determine the load level directly preceding any
state of instability. The application of the bifurcation (eigenvalue) buckling approach
is perhaps the most ideal small deflection approach for the purpose of performing a
linear buckling analysis [5, 10].

2.3.2 BIFURCATION (EIGENVALUE) BUCKLING APPROACH

One of the ways a dome may lose its stability is via a sudden change of
geometry which places the structure into an immediate state of unstable equilibrium.
There is a point on the loading path where alternative states of equilibrium can exist.
The three different modes of equilibrium which are physically possible are (1) stable
equilibrium, (2} unstable equilibrium, and (3) neutral equilibrium. In order to
understand the different stages of equilibrium, it is best to make reference to the
example of the ball placed on a curved surface {Fig. 2.1). If a ball which is initially at
rest is placed on a concave surface and a slight disturbing force is applied, the ball will
eventually come to rest in its undisturbed location. This characteristic is indicative of
stable equilibrium. On the other hand, if the ball is placed on a convex surface and
disturbed slightly, the ball will eventually come to rest, but its resting place will never
coincide with its original location. In this case, the ball is assumed to be in a phase
of unstable equilibrium. Finally, if the ball is resting on a flat surface, the applied
disturbance will move the bail to a new position. Once the force is removed, the ball
will come to rest at that location. This action is representative of neutral equilibrium.
With this concept of equilibrium in mind, the point at which a structure makes the
transition from a state of either stable or neutral equilibrium to an unstable state of
equilibrium is considered to be the point when stability is compromised, resulting in
a loss of stiffness (structural failure). In terms of the method being considered, this
stage is known as the point of bifurcation of equilibrium and the corresponding load

is defined as the critical load.

Mathematically speaking, setting the determinant of the structural stiffness
matrix eqgual to zero will result in a set of eigenvalues representative of the critical
mode shapes of the system. The zero determinant indicates the loss of structural
stiffness explained previously. This description is analogous to the linear algebra
approach of determining the eigenvalues of a set of simultaneous equations. Hence,
the approach is also known as the eigenvalue approach.
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The main problem with this technique is that it is based on a classical elastic
buckling analysis of a "perfect” structural system. Obviously, real-world structures
are not ideal in that they exhibit varying degrees of geometric and or loading
imperfections. Since eigenvalue analysis is based on the undeformed orientation of
the structure, the results tend to be unconservative. Therefore, its use is not
recommended for the design of actual structures.

2.3.3 NEWTON-RAPHSON TECHNIQUE

The need for a more accurate approach to predict the critical load response of
a dome requires the implementation of a nonlinear solution technique. The nonlinear
buckling analysis allows for the large displacement characteristics which are indicative
of a large-scale structure experiencing-stability problems.- Since-the structure is not
maintaining its undeformed geometry throughout the loading phase, the mathematical
expressions which define it must be updated to reflect the status of the structure. As
for the dome, when it is being loaded in its nonlinear range, the overall structure is
becoming softer (reduced stiffness). It is important to understand that a basic linear
analysis would not predict the load displacement history of the curve because the
classical linear elastic stress-strain relationship does not hoid for nonlinear behavior.
By assuming that the dome would respond in a truly linear elastic manner throughout
its entire loading history would be a mistake.

Therefore, the use of a nonlinear analysis to predict the loading response of the
geodesic dome is the proper approach. Looking at the different structural mechanisms
within the dome gives reason why the structure is considered a nonlinear system.
First, the slotted supports exemplify the idea of geometric nonlinearity. A change in
configuration from a support that may or may not allow for radial movement
depending upon its position in the slot necessitates a nonlinear solution technique.
Material nonlinearity is found through the clothlike property of the cladding.
Depending upon the deformation characteristics of the dome, the cladding can be
either taut or slack. Since this cladding type does not maintain its original stiffness,
the nonlinear analysis is once again supported.

The Newton-Raphson method is a nonlinear technique by which an iterative
load displacement formulation is performed {4, b, 17]. For example, if a load P, is
applied to the structure, the corresponding displacement U, is subsequently found by
forcing the solution to an equilibrium convergence point. This incremental load
process is continued until the solution begins to diverge. At each load level, the
overall equilibrium, as well as an updated stiffness matrix is computed. The difference
between this technique and a standard linear analysis is mainly due to the idea that
calculations are done on the deformed structure, rather than on the "zero load"”
structure. In essence, the Newton-Raphson method is nothing more than a series of
small, incremental linear analyses pieced together to approximate a more realistic
nonlinear behavior pattern of a structure (Fig 2.2).
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As the structure’s critical load is approached, convergence of the mathematical
iterations slows. It is necessary to further discretize the load increments so that the
proper value of critical load is found. Upon obtaining a critical value of load, the
mathematical expressions will not allow for any further iterations. This is because the
determinant of the structure’s stiffness matrix equals zero, resulting in numerical
instability of the solution. To avoid this problem, a switch should be made from an
incremental load control approach to displacement control. Unfortunately, the
Newton-Raphson method does not support the option of displacement controi solution
technique, as does the Riks-Wempner method, which will be discussed in the next
section. When using the Newton-Raphson method, the critical load of the dome is
indicated by a sudden increase in the magnitude of selected nodal displacerments, with
respect to previous values. The changeover to displacement control allows for the
tracking of post-buckled behavior, such as the snap-through action of domes. This
change in loading control parameters is depicted in Figure 2.3.

There also exists a Modified Newton-Raphson approach where the only
difference from its former is that the stiffness matrix used in each iteration is not
updated at each load step. This results in a savings of time used to reformulate the
matrix, but an increased number of iterations are required to produce the same quality
as a full Newton-Raphson approach.

2.3.4 RIKS-WEMPNER TECHNIQUE

The Newton-Raphson technique is relatively efficient in the early stages of a
structural analysis. As the solution approaches the critical point, the method will have
much difficulty finding a point of convergence, which would represent buckling of the
dome. The impending singularity of the stiffness matrix requires an increased number
of load steps and equilibrium iterations in order to achieve convergence. Eventually,
the solution will diverge completely. At this point it is necessary to explore an
alternative route in order to track the loading history in the region of, and beyond the
critical region. The Riks-Wempner, or "constant arclength” method provides such an

alternative to this problem {14, 12].

Whereas the Newton-Raphson formulation is primarily a load-controlied solution
technique, the Riks-Wempner method allows for a displacement-controlied approach
to defining the overall structural performance throughout the entire loading history,
and not just within the critical region. The main difference between the Newton-
Raphson and Riks method is that the Riks formulation employs a solution technique
where the loading and displacement values for a particular step do not remain
constant. An arc-length to the tangent stiffness matrix at a prescribed point on the
load deflection curve is defined, and the iteration cycles follow a path designated by
a "sphere” (Fig. 2.4) with its origin located at the prior load step and radius, r, where
incremental load and displacement values have been previously determined.
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This iterative technigue has been proven very accurate, and has given good
results for structural problems which necessitate the use of a method to establish a
post-critical loading history. Finite element packages such as ABAQUS use this
method with much success, due to its computational efficiency and reduced data
storage requirements [14].

2.4 NONLINEAR SOLUTION FEASIBILITY

It is quite appropriate for large-scale structures to exhibit some form of
"imperfection”. Whether the imperfection is found to be material-based or
geometrically related, the structure is absolutely not an idealized form. In order to
properly address these shortcomings, nonlinear analysis is highly recommended.

Nonlinear selution-techniques are most efficient - when used in-tandem with-computer

packages. The three most prominent finite element packages which incorporate the
nonlinear solution option are ANSYS, ADINA, and ABAQUS. Each individual package
has its own pros and cons. ANSYS is probably the most user friendly program of the
three, and it makes use of Newton-Raphson solution algorithm to solve for prebuckling
behavior. ABAQUS takes over from where ANSYS ieaves off by incorporating a
displacement controlled algorithm, namely the Riks method, to interpret the
postbuckling behavior of the structure. Although ABAQUS does a more thorough job
of interpreting the load displacement history of a structure, the earlier version of the
package itself is not as "graphical™ as ANSYS, thus the user cannot get a visual
perspective of the analysis. ADINA is probably the most in-depth nonlinear
mathematically based package of all, yet the use of the program tends itseif toward
noninteractive (batch) usage. Preprocessing graphical options are relatively
nonexistent within ADINA,

Obviously, the biggest is not always the best. |If the design engineer is
analyzing a shallow single-layer dome, a modest nonlinear approach should be used.
A limit shouid be placed on the complexity of the package used, yet the software
should allow for a high level of maneuverability amongst linear and nonlinear solution
techniques. Since a shallow single-layer dome is prone to large displacement
response, linear analysis may be used to "get a feel" for the overall response of the
structure prior to its critical state, but not for an accurate prediction of the critical load
itself. If a linear solution technique such as a bifurcation algorithm is used to predict
critical response of a highly nonlinear system such as a shallow dome, the resuits will
be nonconservative (Fig. 2.5). A nonlinear analysis will provide the design engineer
with a more conservative and much safer design criteria.

2.5 LINEAR VS NONLINEAR FINITE ELEMENT ANALYSIS
Due to the computational demands imposed by the nonlinear analyses of muiti

‘degree-of-freedom structures, it is not feasible to use nonlinear finite element analysis
as a "preliminary design tool"”. Nonlinear analysis solution methods vary from package
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1o package. Therefore, the analysis of an identical structure by different nonlinear
computational approaches will probably result in solutions which can differ by rather
large percentages. However, linear elastic theory will yield exact results, regardless
of the solution technique used. As a result, linear elastic finite element analysis is
considered to be a good approach to check the structural design. In conjunction with
a postprocessor, the safety margins of each member can be checked. These design
checks are absurd if they are to be done manually. However, as the Load and
Resistance Factor Design (LRFD) method for design becomes predominant within the
aluminum industry, the efficient use of a postprocessor will enable critiques of
multiple load cases to become realistic for both linear and nonlinear analyses.
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1. STABLE EQUILIBRIUM

2. UNSTABLE EQUILIBRIUM

3. NEUTRAL EQUILIBRIUM

Figure 2.1: Three Modes of Equilibrium
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Figure 2.2: Newton-Raphson lterative Solution

2-13



..Ulcr

Uz U3 u4 U

U1

Figure 2.3: Transition From Load Control to Displacement Control

2-—14



Updated Normal Plane

/

Pm - SPHERE

Figure 2.4: Riks - Wempner Formuiation

2-15



BIFURCATION
POINT

'NONLINEAR
LIMIT LOAD

POST BUCKLING

/ CURVE

-
-
......

Figure 2.5: Linear vs Nonlinear Analysis

2-16



3. FINITE ELEMENT ANALYSIS CASE STUDY

3.1 BACKGROUND

There are many different facets of the design to consider in the analysis of an
aluminum geodesic dome. Consider two of the many factors which need to be
accounted for when creating an accurate dome model. Proper boundary conditions
will undoubtedly influence the outcome of the solution, just as will the decision about
what types of elements should be used to model the structure. For this particular
case study, the ANSYS (versions 4.4A and 5.0A) finite element analysis program was
~ used to perform the needed analyses. ANSYS, introduced by John Swanson and
Swanson Analysis Systems, Incorporated (1970), is a general-purpose finite element
program which can be used in all disciplines of engineering. Its superior graphical
capabilities, coupled with the ability to perform nonlinear buckling analyses made it
a prime candidate for the geodesic dome analysis. The only drawback to the program,
which was previously mentioned, is that the nonlinear solution technique being used
does not allow for any post-buckling analysis. Since the dome is assumed to be
considered failed at its peak load, this information is not necessary for this phase of
the research. The important information corresponds to the critical loading region for

which the solution is valid.

3.2 ORIENTATION

In order to properly interpret the forthcoming solution resulits, it is necessary to
"orient” the reader with the terminology and graphical displays:

a) Terminology

1) Spar- Beam element used within the framework of the dome.

2} Cladding- Thin sheeting which covers the dome.

3} Bare Frame- A dome without cladding in place.

4) Slotted Support- Mounting fixture at base of dome allowing radial expansion.
5} Hub- Joint used to join members at a common point.

6/ Time Step- increment of time which corresponds to a load substep.

7} Full Snow Load- Loading applied over the entire dome surface.
8] Half Snow Load- Loading applied to 1/2 of the dome surface.

b) Graphical Displays

In order to clarify the orientation of the visual displays associated with this case
study, the following orientation has been imposed. All plots of the dome, whether
they are plan, elevation, or isometric views, are placed in a landscape-type
configuration and will have the east face of the dome to the right of the page and
west face to the left. The south face of the dome will face the reader in elevation
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views, be at the bottom of the page in plan views, and face the reader for isometric
views {Fig. 3.0). For the two loading cases, the full snow load is applied over the
entire dome, and the half snow load is applied to the east face of the dome (Fig. 3.1).

There are a limited number of terms which are associated with the explanation
of results that should be explained. With reference to Figure 3.2, they are:

al Tension Ring- The lowest horizontal ring in the dome.
b) Seam / Meridian Members- The "spokes" which separate the dome into
segments.

cl Transition Segment / Layer- Members located directly below spokes (segment)
and continue around the circumference of the dome (layer).

d} .. Interslice Region- Members located between the meridian members.

e} North-South Meridian Line- The line which essentially divides the dome into
eastern and western segments.

3.3 MODELING INFORMATION
3.3.1 NODES

Preliminary information on nodal coordinates was obtained through
Conservatek. These coordinates represented a 1/14 segment of the dome which were
mirrored about an outer edge of nodes in order to produce a symmetric "pie slice" of
accurate nodal locations. The slice represented 1/7 of the hub locations. By rotating
the slice through seven increments of 51.43°, the full spherical pattern of the
geodesic dome was generated (Fig. 3.3).

3.3.2 SPARS

In order to "install” the spars, the original 1/14 segment of nodes was used,
and a user-interactive technique of picking nodes with a mouse aided in the generation
of the spars associated with the segment. Then, by using symmetry modelling
techniques, similar to those used to generate the nodes, the complete spar
assemblage was formulated (Fig. 3.3). The proper spatial orientation of the spars was
maintained through the use of a third node. The plane formed by the third node and
the nodes defining the end of the spar lies parallel to the web of the spar. Therefore,
if the center of the sphere which defines the spherical shape of the dome is
designated as the third node for every spar, the web of each spar will orient itself in
line with the center of the sphere.
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3.3.3 CLADDING

When it was necessary to place cladding on the dome, the technique used fo?
spar generation was applied to shell elements, rather than to beam elements (Fig.
3.4). Three predetermined nodal locations defined each section of triangular cladding

on the model.
3.3.4 BASE SUPPORT

The support mechanism was modeled using a combination of beam elements
and gap elements (Fig. 3.5). The base of the dome is connected to the support
mechanism through a box beam section which is rigidly connected to the dome and
pin-connected to the mounting bracket (Fig. 1.2). The mounting bracket has the
capability to move radially due to a slotted hole in the baseplate. The slot is simulated
through the use of a gap element attached to the end of the box beam. The gap
element is given an initial "open” status of 3 inches, which allows the dome to slide
radially outward at its supports for 3 inches. After 3 inches of axial movement, the
gap element exhibits an extremely high stiffness, which essentially means that the
dome is bearing upon the end of the slot. At this point, the support continues to
perform as a pinned mechanism,

3.3.5 SPAR LATERAL CONSTRAINT

Due to the moment restraint condition which exists between beam elements,
the connector hubs are assumed to exhibit full fixity. Additionally, the in-plane
rotation of the hubs are restrained, thus restricting lateral deformation (weak axis
bending) of all beam elements and inhibiting lateral local buckling via the restraint of
in-plane nodal rotation. Since the cladding cannot be modeled as being attached to
the spar flanges at intermediate locations, the prevention of in-plane nodal rotation is
a substitute method to simulate the effect that the cladding would have in limiting
minor axis bending of the spars.

3.3.6 MODEL OPTIMIZATION

Due to the symmetric nature of the structure and the repetitive manner in
which the dome model was created, there existed many coincident nodes and
elements at overlap regions between adjacent pie slices. In order to resolve this
problem, all coincident nodes and elements were merged into single entities. Once
merging was completed, all remaining nodes and elements were compressed and
reordered to save data storage space, and ultimately reduce the maximum wavefront
size {and computation time) at the start of a solution routine.
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3.3.7 GEOMETRIC/MATERIAL INFORMATION

in order to anticipate the need for elements which exhibit both geometric and
material nonlinearity, a decision was made to incorporate elements into the model
which allowed for this expected behavior.

The beam element which most closely meets this criterion is an elastic-plastic
three-dimensional beam element with tension-compression, bending, and torsional
capabilities. By having a user-defined cross section, the characteristic "I” shape of
the section was able to be modeled. This beam type has large-deflection capabilities,
suitable for nonlinear analyses.

-The-cladding is simulated through the use of a thin shell element. This element

type is well suited to model nonlinear and thin shell-like structures. Its large-deflection
capability is important when performing the necessary nonlinear buckling analysis.

As far as material properties are concerned, both beam and shell elements
exhibit material nonlinearity capabilities. Therefore, material behavior of both element
types was defined through the input of a particular stress-strain curve and other
specifications obtained from the Aluminum Construction Manual [26]. The beam
elements, which consist of series 6061 aluminum alloy, are modeled with a bilinear
stress-strain curve having a yield point of 40 ksi and a strain hardening modulus of 43
ksi. The cladding is composed of series 3003 aluminum alloy and modeled with a
bilinear stress-strain curve defined by a yield point of 25 ksi and a strain hardening
modulus of 21 ksi. For both element types, the model incorporated values of 0.098
Ib/in® far density, 13.1E-6 in/in/°F for a coefficient of thermal expansion, a shear
moduius of 3,800 ksi, and an elastic modulus of 10,100 ksi.

3.4 LOADING INFORMATION

As mentioned in section 1.3.2, the low rise-to-span ratio of the dome classifies
the structure as a shallow dome. For such a dome in the northeast, the region
representative of the snow load chosen for the analysis, there is not a typical positive
wind loading condition that significantly increases the cumulative effect of dead load
pius snow load. There can be a significant negative (or suction) wind loading
condition, but it decreases the cumulative effect. Therefore, wind loading was
omitted in the analyses.
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The snow load was simulated by applying a gravitational force upon the
structure. The equivalent service snow load magnitude was calculated by applying
a magnification factor, MF, to the acceleration constant to result in an equivalent
downward force of 25.2 Ib/ft?. The magnification factor is given by Eq. 3.1, with the
snow load on the surface of the dome equal to 1,004,200 Ibs:

_ DEAD LOAD +SNOW LOAD (3.1)

MF
DEAD LOAD

The magnification factor for this particular loading configuration is approximately 8.5,
which means that 8.5g is representative of the service snow load of 25.2 lb/ft?, This
relationship is acceptable only when a weight density (Ib/in®) is input into the model.

3.5 SOLUTION EVALUATION INFORMATION

For this case study, a Newton-Raphson nonlinear solution technique was used
—14]. Since the weight density/unity gravitational acceleration constant relationship
was used for this solution procedure, foading was simplified. A preliminary "guess”
of the buckling load is made, and that guess is used for the applied gravitational load.
If the buckling load is underestimated, the solution will continue to converge. Thus,
an iterative technigue is employed to "zero in” on a close estimate of the critical load.
Ultimately, a semi-exact guess will be made, and the solution will diverge. This
divergence represents the critical state of the dome. Once an accurate prediction is
made for the critical load, subsequent solution runs for additionai load cases will
proceed in an efficient manner. An automatic time stepping (load incrementation)
option is used to let the program determine how many time steps to use within each
load step. The number of time steps is automatically increased or decreased,
depending on the ease at which the solution is converging. |f the solution is
converging easily, the size of the time step will be automatically increased for the
following load step. On the other hand, if the solution is having difficulty converging,
as it does as buckling approaches, then the subsequent time steps will be reduced,
resulting in improved convergence parameters. f the equilibrium iterations fail to
converge, (i.e. the difference between the restoring forces and applied loads is not
within a specified tolerance limit), the current time step is divided and the analysis for
the reduced time step is performed until convergence is achieved. This procedure
continues until the full load has been applies and equilibrium has been satisfied. The
TIME option of ANSYS specifies time at the end of a load step. Since this a rate-
independent analysis, TIME is used merely as a tracking parameter. With this in mind,
a convenient one-to-one correspondence between time and gravitational acceleration
is made so that output results at a certain load level can be traced with respect to its
corresponding solution time. In other words, one time unit equals a unit increment of
additional load (Time History Postprocessing = Load History Postprocessing}.
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3.6 LOAD CASES
Four independent configurations were analyzed for this study:

Run Case 1: DSNLB
This configuration incorporates the nonlinear buckling analysis for a bare
frame dome subjected to full snow load.

Run Case 2: DSNLCB
This analysis is identical to case 1, but the dome is cladded.

Run Case 3: DHSNLE

——----This case run-is-a nonlinear buekling-analysis for-a bare frame dome subjected

to half snow load.

Run Case 4: DHSNLCB
This case is identical to case 3, but is for a cladded dome.

All four runs incorporate domes resting on the slotted supports. Fixed support
configurations were not analyzed.

3.7 FINITE ELEMENT MODEL (FEM) RESULTS
3.7.1 DSNLB RESULTS {fuii snow /[ bare frame)
a) Service Load

The first phase of the analysis was used to ascertain service load results for a
nonlinear static analysis. The load at which the dome was analyzed for this case was
1,055,800 Ibs {26.5 psf), evenly distributed amongst all supports. This was slightly
less than the snow load and dead load sum, due to the nodal distribution of load
resulting in the analysis.

Nodal deflections ranged from 1.41 to 2.83 inches. The crown of the dome
deflected downward 2.2 inches while the slot movement was found to be 1.41 inches
in the radial direction. As shown in Figures 3.6 and 3.7, the maximum nodal
deflections occurred on the meridian seams in the area directly above the transition
region. Large displacements also occurred in the upper quadrant of the domes.
Smaller nodal displacements in the 1 to 2 inch range were found in the lower interslice
region of the dome. The radial slot displacements were within 0.02 inch of each
other, indicative of symmetric loading of a cyclically symmetric structure.



Nodal rotations were examined in order to check the degree of in-plane bending.
Existence of in-plane bending of the dome would mean that lateral (weak axis)
bending of the struts was occurring. In reality, this lateral deflection is prevented by
the cladding. Computed in-plane rotational values were negligible, which means that
the crude method of simulating the cladding through restricting nodal surface rotation
is valid. As for out-of-plane rotations, the largest movement was observed at the

tension ring nodes (2.005°),

Axial stresses are important in that they indicate the path through which the
forces "flow" through the structure and into the supports. A maximum tensile axial
stress of 9,065 psi was encountered within the tension ring at the bottom of the
structure. Compressive axial stress distribution {Figs. 3.8 and 3.9) indicates that the
compressive stresses range from the maximum, found in the top rings of the dome
{~ 4,100 psi} to a minimum within the ring above the tension ring {~ 100 psi).
intermediate values of compressive axial stresses dominated at the meridian seams
and the lower diagonals { ~ 4,000 psi}, and gradually decreased through the transition
members and interslice members {2,500psi ~ 3,500 psi) and finally through the
diagonals emanating from the meridian seams (< 2,500 psi}. It appears that the
forces followed the meridian direction into the lower compressive diagonal members.

In order to foresee the shape into which the dome will eventually buckle, it was
important to examine the major axis bending moments and transverse shear loads of
all beam elements. The largest member bending moments (aithough relatively small)
were found in the lower region of the dome. The members framing into the tension
ring experienced the highest bending moments and shearing forces, while the lowest
moments and shears were located in the transition layer and regions toward the top.

The result of the forementioned nodal deflections, axial stresses and other
performance properties of the structure was the deflected shape of the dome due to
service load conditions. it appeared that the bottom layer of the structure exhibited
a compromised state of stability, and the consequence of such a weakness resulted
in a folding, or curling of the dome at its base (Fig. 3.10).

b} Critical Load

The uncladded dome was loaded past its service load level and a numerical
instability corresponding to global buckling was achieved. The load at which this
occurred was 49.1 psf, which equates 1o a total snow load of nearly 2,000,000 Ibs.

Noda! deflections ranged between 2.58 and 6.18 inches. The top of the
geodesic dome was found to have deflected down 4.62 inches, while the base of the
dome slid radially outward 2.98 inches. The 3 inch slotted support plate had no
effect upon the analysis, since the members framing into the support never beared
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upon the edge of the slot, even up to the point of collapse. As seen in Figures 3.11
& 3.12, maximum nodal deflections were observed on the meridian seams (56.7" ~
6.1"), while the smallest movement was located in the tension ring nodes. The slot
deflection values were within 0.03 inch of each other about the entire circumference
of the dome, indicating that the dome still maintained a symmetric geometry upon
buckling.

Nodal rotation indicated nearly 5° of out-of-plane rotation had taken place
within all tension ring nodes, and the remainder of the structure had experienced
virtually no rotation. The "softening” of the base of the dome, discussed briefly in the
last section, has apparently been the governing factor in the propagation of failure of
the structure. Before the discussion of the failure mode proceeds further, member
performance characteristics must be examined.-.. '

Axial stresses are important in determining the mode of failure of this geodesic
dome. Yielding of members was critical in the failure analysis, because if this was to
occur, the member essentially becomes ineffective, thus providing for a "weak link"™
in the lattice from which a more localized failure can propagate. The maximum axial
stress for the entire structure was tensile (19,100 psi}, and was found in the base
tension ring. Observing the difference in axial stresses amongst all tensile ring
members, a variation of 100 psi was found within those members. Essentially, the
stresses are the same, thus reinforcing the concept of symmetrical performance of the
dome, in terms of its loading and deformation. Compressive stresses {Figs. 3.13 &
3.14) were found to be greatest in the third horizontal ring from the bottom of the
dome (~ 8,700 psi}). The 8,000psi ~ 8,500psi compressive stress range was found
throughout the second set of lower diagonals and the upper third of the dome. The
meridian members and the immediate surrounding members experienced compressive
stresses approaching 7,500 psi. The base diagonal members, diagonal members
extending from below the seams, and transition segment members had compressive
stresses ranging from 5,000 to ~ 7,000 psi. Compressive stresses of 3,000 psi and
smatller were found in the horizontal ring immediately above the tension ring. Just as
in the service load case, the stresses seem to have followed a path through the
meridian members into the lower horizontal compression ring. The main difference
between the two cases is that there was a larger overall accumulation of stresses at
the seams in the critical ioad case, whereas in the service load condition, the dome
possessed larger relative compressive stresses within the interior of each pie slice.

Much greater values of beam bending moments and end shears with respect
to the remainder of the dome indicate that the source of instability emanated from the
base region of the dome. A tremendous amount of bending and shearing was
transmitted through the hubs connecting the tension members, mounting beam
elements, and lower diagonals. Much lower values were distributed throughout the
transition elements and members in the top half of the dome.
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The result of increasing the applied load to a level of 49.1 psf was impending
collapse of the upper % of the dome upon its base. The transition segment of the
dome acted as a restraint mechanism for the upper section of the dome, and allowed
for the forces to be transmitted into the lower region of the dome where the buckling

action commenced (Fig. 3.15).

3.7.2 DSNLCB RESULTS (full snow / ciadded)

a} Service Load

Nodal deflections for the cladded dome at the same service load {26.5 psf)
ranged from 1.15 to 2.10 inches when exposed to the same service loading
conditions as the DSNLB case. The crown of the dome deflected downward 2.01
inches, and all the slotted supports moved outward a distance between 1.31 - 1.32
inches, once again reinforcing the symmetric distortion displayed throughout the
dome. Just as in the bare frame case, Figures 3.16 and 3.17 show the maximum
relative nodal displacements occurred at the nodes directly below the transition layer
of the dome, and the top ' of the dome underwent similarly large displacements.

Nodal rotation distributions were similar to the bare frame dome, with the larger
out-of-plane rotations occurring at the tension ring nodes (1.8°), and with minimal
rotations in the transition region {0.001°}.

The largest axial tensile stresses, 8470 psi, in the cladded model occurred in
the tension ring. The members with the largest compressive stresses {Figs. 3.18 and
3.19) were the spars located in the ring two levels above the tension ring (1,678 psi),
while the smallest compressive stresses were in the ring directly above the tension
ring. Intermediate compression members were the seams and interslice regions (~
1,000 psi), seam diagonals and transition rings (500 psi ~ 1,000 psi}). Minimal
compression was found in the lower diagonals. Comparisons of the bare frame and
cladded models indicate quite similar distribution of stresses. A majority of the
stresses flow through the seams directly into the lower segments of the structure.
The interslice regions were seemingly moderately stressed at service load levels.

Once again, the point of instability stemmed from the lower sections of the
dome. The lower diagonals experienced the greatest bending moments and shearing
forces, and their corresponding connector hubs were subjected to large moments and
shearing forces. The lowest bending moments and shearing forces were centered at
the midheight of the dome.

It appears that the addition of the cladding did not change the overall
performance of the dome during loading within its service range. Nor did it markedly
change the stress distribution pattern from that of the bare frame case. The biggest
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difference between the bare frame and cladded models appears in the difference in
axial stresses. The cladding acts in a manner of in-plane restraint in that it relieved
both the spar tensile and compressive stresses by capturing in-plane stresses via
membrane action. The maximum skin stresses (~ 7,150 psi) displayed in Figure 3.20
appeared to be concentrated within the lowest two rings of the dome. These stresses
were quite localized and quickly attenuated in the higher areas of the dome.

The resulting displaced shape is similar to the bare frame model, resembling the
form of a "sombrero hat" (Fig. 3.21).

b} Critical Load

The cladded.-dome -was loaded .beyond. its. service level until the numerical.

instability indicative of buckling occurred. The critical load for this particular case was
17.23g, which equates to a snow load of 54.5 psf. The resulting nodal deflections
ranged from 2.62 to 5.06 inches. Crown deflection was 4.63 inches and the slot
movement was radially symmetric at 2.99 inches. The nodal displacement contour
plot of Figure 3.22 highlights the maximum displacements within the layer below the
transition region. The top % of the dome also experienced relatively large
displacements of approximately 4.5 to 4.7 inches. Aside from the slot measurements,
the region with the smallest displacement was apparently the transition layer (4.2
inches).

Nodal rotations indicated that the larger rotations (4.4.°) took place at the lower
connector hubs, while the smaller rotational values were reflected in the out-of-plane
movement of the nodes associated with the seams above the transition region
{0.004°).

Axial stresses in the spars (Figs 3.23 - 3.24} were maximum tension in the base
ring (19,230 psi} and maximum compression in the third ring from the base and the
diagonals directly below it. Compressive stresses were most prevalent in the seams
of the dome and the interslice regions (~ 3,000 psi). The compression in areas closer
tc base of the dome are gradually reduced, with stresses reaching negligible vaiues
in the lower diagonals and the transition region {~ 2,000 psi).

Beam bending moments and end shears are dominant within the layers below
the transition regions and minimal within the transition region and higher areas of the
dome.

Skin stresses (Fig. 3.25) were greatest in the lowest layer of the dome (16,230
psi}, yet they were quite below the vyield stress of the material. The associated
bending moments are worth taking note of, because they also show that the larger
values occurred in the lower layer of the cladding, indicating that this dome
configuration is susceptible to an instability near the base.
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The slot displacement of 2.99 inches mentioned earlier still does not reach the
outer limit of the hole, thus the edge conditions remain the same throughout both bare
frame and cladded cases. The full snow load of 54.5 psf precipitates failure in the
mode depicted in Fig. 3.26, wherein the critical deflected shape is symmetric in nature
and has buckied in upon itself,

3.7.3 DHSNLB RESULTS (half snow / bare frame)

This case and the following case are identical to the previous two cases with
exception to loading patterns. The half snow load cases, as mentioned earlier, were
analyzed with respect to snow load existing on the eastern half of the dome surface.
By altering the loading patterns, various interesting comparisons can be made among

all load cases.

a) Service Load

For the service load on the bare-frame aluminum geodesic dome subjected to
half snow load, a snow weight of 512,250 pounds (25.7 psf) was applied on half the
surface. This loading condition resulted in a deformation pattern representative of that
seen in Figure 3.27.

Nodal deflections ranged from a minimum of 0.111 inch at the base of the
dome to a maximum of 2.90 inches toward the crown of the dome. Out-of plane
deflections remained below 0.4 inch on the unloaded side of the dome, while larger
dispiacements were observed on the loaded portion of the dome surface. The
perimeter of the loaded surface exhibited deflections which fell within the 1.4 t0 1.8
inch range. The lower regions within the slices displaced approximately 2 inches, and
the seam regions leading into the upper areas of the loaded dome surface displaced
2 to 2.9 inches. Since the loading was not symmetric over the entire surface, the
corresponding slot displacements also varied. The maximum slot displacement of
1.28 inches occurred at the eastern slot. The north and south slotted supports each
experienced radial movements of 0.6 inch, while the western slotted support had a
minimal outward radial translation of 0.121 inch.

Nodal rotation values at the service load ranged from a minimum of 0.002° at
the transition layer nodes to 2° at the tensile ring nodes. It is also worth noting that
relatively large rotational values with respect to the remainder of the structure were
also found around the perimeter of the loaded surface. This observation is indicative
of the early formation of a "dimple” or snap-through area which encompassed the
loaded surface of the dome.

Axial stresses in the tension ring were maximum at the eastern edge of the ring
(8,122 psi) and attenuated to a minimum tension value of approximately 1,600 psi
at the western ring segment, shown clearly in Figure 3.28. In addition, Figure 3.29
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provides a reasonable interpretation of the axial stress distribution within the dome
spars. Highest compressive stresses were found in the transition diagonals near the
north and south ends and in the upper ring segments of the eastern face of the dome
(6,000 psi ~ 7,000 psi). Seams, interslice regions, and lower rings and diagonals
within the loaded portion of the dome experienced compressive axial stresses in the
2,000 psi to 5,000 psi range. Negligible stresses (< 1,000 psi} were observed
amongst the diagonals emanating from the loaded seams, the lower segment of the
unloaded face, and seam diagonals on the western face. The upper segment of the
unloaded surface experienced tensile stresses within the range of 1,000 to 3,000 psi,
and larger tensile stresses were found within the tension ring.

With reference to the edges defining the loaded surface, it was found that the

targest bending moments and shearing forces were located in this area, while minimal.

moments and shears were located within the edges defining the unloaded "patch” of
the dome.

This particular loading resulted in a nonuniform distribution of vertical support
reactions. The maximum vertical nodal load transmitted through the supports was
17,700 pounds at the eastern support, while the minimum load of 1,368 pounds was
placed upon the western support. The anticipated instability stemming from the
boundary of the loaded surface is shown quite clearly through the deformed shape
displayed in Figure 3.30. ‘

b} Critica! Load

The bare-frame dome subjected to half snow load experienced instability at a
load corresponding to 56.5 psf, which equated to a snow load of approximately 1.1
million pounds on the eastern face of the dome.

Nodal deflections ranged between 0.23 and 6.65 inches. The top of the dome
deflected downward 1.49 inches, and 0.43 inch in the westward direction. The
easternmost point of the base support slid outward 2.99 inches, and the minimum
radial movement, located at the west support point was 0.25 inch. The 3 inch slotted
support plate had no effect upon the outcome of the buckling analysis, since every
slot remained open up until collapse occurred. As seen in Figures 3.31 and 3.32,
nodal deflections greater than 0.8 inch were to be found on the loaded surface of the
dome. Maximum nodal deflections ranging from 5.8 to 6.6 inches occurred toward
the top of the dome and down the seams into the transition segments within the
loaded surface. Moderate displacements, those less than 5 inches, occurred within
the interslice regions and gradually diminished toward the loading boundary.

Nodal rotation indicated that out-of-plane rotations approaching 5° occurred in

‘the proximity of the tension ring nodes and the edge of the loading patch running up
the North-South meridian of the dome. As mentioned in the previous section, the
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dimpling effect was within the loaded segment of the dome. Although the entire
surface had not become unstable, snap-through of the loaded surface of the dome had
occurred. This is touched upon further toward the end of this section,

Maximum axial tensile stresses ranging from 10,000 psito 18,878 psioccurred
in the base tension ring, with the lower stresses on the unloaded segment and the
higher stresses on the loaded side of the dome (Fig. 3.33). Compressive stresses of
13,000 psi to 16,000 psi were located in the transition segments near the North and
South ends of the dome. A majority of the compressive axial stresses fell within the
2,000 to 13,000 psi range, in members on the loaded side of the dome, excluding the
base ring and the outer seam diagonals. Negligible compression was exhibited by the
iower and midheight diagonals and seams on the unloaded face, and by a limited
number of interslice diagonals found within the loaded patch. Small tensile axial
stresses of 1000 to 4000 psi were found in the rings located in the bottom half of the
unloaded surface and also in a limited number of diagonal elements emanating from
the seams in the midsection of the loaded surface of the dome. The largest tensile
stresses, excluding those found in the tension ring, were located within the North-
South oriented members of the unioaded face.

The larger spar bending moments, just as in the service load state, were
concentrated at the borders which define the loading patch, with gradually diminishing
values progressing into the unloaded section of the dome.

The result of increasing the applied load to a critical level of 56.5 psf was the
dimpling or snap-through of the loaded surface of the dome. The unloaded portion of
the dome acted as a support mechanism in that it provided structural support for the
remainder of the dome due to its added stiffness. Since the dome was essentially
supported upon itself, a higher critical load was able to be achieved. The inherent
weakness at the base of the dome which contributed to the "softening” discussed in
earlier sections was still an obvious factor in the buckled shape, as seen in Figure

3.34.
3.7.4 DHSNLCB RESULTS (full snow / cladded)

a) Service Load

The nodal deflections for this particular load case of a fully cladded dome
subjected to the same half snow load (25.7 psf} on its eastern face ranged from 0.08
t0 1.82 inches. The crown of the dome deflected down 0.68 inch and westward
0.07 inch. As seen in Figure 3.35, larger dome displacements in the 1.6 to 1.8 inch
range were concentrated in the transition layer of the loaded portion of the dome.
The 1.8 inch displacement values were centered about the easternmost point of the
transition layer {lower part), and gradusally diminished toward the unloaded locations
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which began at the North and South ends of the dome. The siotted supports moved
radially outward and decreased in magnitude from 1.14 to 0.08 inch progressing from
the east point to west point of the supports. The resulting deflected shape is seen
in Figure 3.36.

Large relative vaiues of nodal rotations {1.6°} were found on the lower eastern
segment of the dome, particularly below the transition layer. This observation was
consistent with previous nodal rotation observations in that the dimple mentioned in
the last section was in the process of forming, and will govern the mode of buckling
in the cladded case. The cladding did not prevent the dimple from forming, although
it did lessen the nodal rotations about the remainder of the loaded perimeter due to
increased in-plane stiffness.

Axial stress distribution in this cladded model gave way to large tensile stresses

between 5,000 and 7,284 psi in the loaded section of the tension ring. The unloaded
segment of the ring experienced stresses of 2,000 to 5,000 psi. The members
exposed to the largest compressive stresses (Figs. 3.37 and 3.38) were the lower
diagonals in the north and south regions of the dome which led into the loaded area
of the dome (2,500 psi ~ 3,260 psi}. Moderate values of compression were found in
the upper ring segments of the loaded portion of the dome (2,000 psi ~ 2,500 psi)
while minimal compressive stresses were located in the lower portion of the loaded
side of the dome and in the lower to midheight diagonals of the unloaded side of the
dome. By observing the "flow" of compressive stresses, it was quite clear that the
compressive distribution follows an east-waest orientation, in which compression was
minimal on the east face and gradually increased toward the eastern edge of the
surface. Tensile axial stresses increased from the North and South upper diagonals
{= 1,000 psi) leading into the rings on the unloaded side (1,000 psi ~ 2,000 psi).
Larger values of tension (2,000 psi ~ 5,000 psi) were located in the lower North and
South diagonals leading into the lower ring segments of the unloaded portion of the
dome.

As in the previous load case, the maximum bending moments and shearing
forces occurred near the boundary defining the loaded patch. The minimum bending
moments and shearing forces were within the unloaded segment of the dome.

The skin stresses for this case indicated a highly stressed lower loaded portion
of the dome (Fig. 3.39). Tensile stresses in this area ranged from 6,135 psi at the
east lower level to 2,000 to 5,000 psi at the North and South base portions of the
dome. Skin tension fell below 2,000 psi along the North-South meridian line and
virtually disappeared toward the west edge transition layer.

The load transfer into the supports produced a nonuniform distribution of
support reactions. The maximum vertical load transmitted through the supports was
17,064 pounds at the eastern support, with a minimum load of 1,112 pounds at the
western support.
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b} Critical Load

The dome was loaded beyond the service ioad until numerical divergence of the
solution occurred. The point at which this took place signified the critical state of the
structure, indicative of buckling. In this case, the buckled shape was similar to the
dimpled shape of the bare-frame subjected to its critical value of half snow load. The
critical load corresponding to this buckied shape was 63.0 psf, the highest load of all

load cases.

The loading at the critical level induced nodal deflections (Fig. 3.40) which
ranged from 0.17 inch on the unloaded side, to 5.07 inches at the center of the
transition segment on the ioaded side of the dome. The displacement of the loaded
segment of the transition layer gradualily reduced to 4.2 inches toward the North and
South edges of the layer. The remainder of the loaded patch experienced
displacements between 3 and 4.2 inches. Moving west along the surface of the
dome, a range of 1.6 to 1.8 inches was representative of the displacements from the
crown area 1o the lower locations of the unloaded half of the dome. Slot movement
was limited to 2.99 inches of cutward radial displacement at the east support to 0.19
inch at the west support. Thus, with a slot allowing a radial expansion of 3 inches,
slot bearing was not a factor in any of the studied load cases.

Noda! rotations that are relatively large (4.6°) define the path which
represented the border surrounding the loading patch. These large values of rotation
defined the edge of the dimple which characterized the snap-through failure mode
affecting the loaded portion of the dome.

In this load case maximum axial tensile stresses ranging from 4,000 to 19,036
psi occurred in the base tension ring, with the lower stress values favoring the
unloaded segment of the ring and the higher stresses on the loaded side of the dome
(Figs. 3.41 and 3.42). Compressive stresses from 6,000 to 8,839 psi occurred in the
transition segments near the North and South ends of the dome. The majority of
compressive axial stresses ranged from 2,000 to 5,000 psi and were within the
midheight rings of the loaded portion of the dome. Lower stresses were concentrated
within the upper diagonals near the North-South meridian line and also within the
lower diagonals on the loaded side of the dome. Negligible axial compressive stresses
less than 1,000 psi were within the lower diagonal members of the unloaded dome
segment, Tensile axial stresses of 1,000 to 4,000 psi were located in the lower
unloaded ring elements and in the North-South oriented members of the unloaded
face. Axial stresses greater than 4,000 psi were reserved for the tension ring

members,
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Beam bending moments and end shearing forces were largest within the layers
below the loaded segment of the transition layer and around the remainder of the
perimeter defining the boundary of the loaded surface, which tends to explain the
dimpled shape of the snap-through region of the dome.

The high critical loading of 63.0 psf before the forementioned snap-through
instability was benefitted by the cladding. it provided additional in-plane restraint,
coupled with the inherent support of the unloaded half of the dome, and allowed for
additional load to be applied to the structure. The higher applied ioad was reflected
through the higher skin stresses at the critical load. Skin tension (Fig. 3.43) exceeded
16,000 psi at the lower eastern layer of the dome and dissipated toward the north
and south layers of the dome. Minimal tension (1,000 psi ~ 2,000 psi) was observed
- along the North-South meridian line with negligible values toward.the western side.of.
the dome.

The deformed shape of the cladded dome (Fig. 3.44) was quite similar to the
critically deformed shape of the bare frame in the previous case.

3.8 COMPARISON OF RUNS

Of the four cases analyzed, the bare-frame dome subjected to full snow loading
{DSNLB} buckled under the smallest load, 49.1 psf. Figure 3.45 shows the increase
of critical load value for the four load cases. The cladded dome under full snow load
{DSNLCB) withstood a critical load 10.9% higher than its bare-frame counterpart,
while the bare-frame (DHSNLB) and cladded domes (DHSNLCB) subjected to half
snow loading withstood critical loads 15.1% and 28.3% higher, respectively, than
that of the bare-frame full-snow-load case.

Maximum deflection values of the different dome scenarios at the service load
are shown in Figure 3.46. Although each dome experienced virtually the same load
per square foot at the service load, the bare-frame dome under full snow load had a
maximum deflection 34.7% greater than the cladded run. With half snow load, the
bare-frame dome had a maximum nodal deflection 63.8% greater than the cladded
case.

At critical load {Figure 3.47), the maximum defiection of the bare-frame dome
under full snow load was 22.1% larger than the cladded dome. The bare-frame dome
subjected to half snow load bucklied at a load 11.5% smaller than its cladded
counterpart, yet its maximum defiection was 31.1% larger than the cladded dome.

Clearly, cladding provided for an additional measure of stability in the dome.
The skin acted as a "bracing system" which constrained the dome, and in turn,
lessened deflections. Therefore, the decreasing trend in service load deflections
seems reasonable. Since the cladded dome was increasingly restrained, higher critical
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ioads can be achieved. Even though the cladding restraint results in lesser values of
maximum nodal deflection at critical load, the percentage difference between service
load and critical load was also reduced.

Maximum tensile axial stresses underidealized service loading conditions (Figure
3.48) showed that the addition of cladding decreased the maximum stresses by 6.4%
and 10.3%, respectively, in the full and half snow load cases. At the critical load
{Figure 3.49), there was only a 1% difference in stress amongst all analyzed load
cases, showing the insensitivity to change in maximum tensile stress regardless of
loading configuration or structural configuration (cladded or uncladded).

Due to the increased overall in-plane stiffness of domes with cladding, the
cladded structure experienced a 58% decrease in the maximum compressive axial
stress under fully symmetric service snow load (Figure 3.50); with half snow load, a
54% decrease in maximum axial compressive stresses occurred. At the critical load,
there was a reduction in compressive axial stresses of 45% for both load cases
{Figure 3.51). The elevated values of compressive stresses in the half snow load
cases were due to the pinching effect at the north and south base regions of the
dome. Unlike the tensile axial stress characteristics, compressive stresses in the
dome were sensitive to changes in geometry (i.e. the addition of cladding).

In the two cases that incorporated cladding, the dome exhibited a 127%
increase in the maximum skin stress between service and critical loads under fully
symmetric loading (Figure 3.52), whereas the half snow load resulted in a 161%
increase in maximum skin stress from service load to critical load.

With all differences in deflection and stress levels taken into account, the most
noticeable observation from all four load cases is that the allowable stress levels (axial
stresses) of all structural elements in every case are not exceeded, even at the critical
limit load. This observation conclusively showed that the dome is conservatively
designed and that greater efficiency in the overall design is possible.
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Figure 3.3: Node and Strut Assem‘biage
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Figure 3.5: Geodesic Dome Pinned/Slotted Support Mechanism
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4. CRITICAL BUCKLING EQUATION MODIFICATION

4.1 BACKGROUND

The method of designing the aluminum geodesic dome, as performed by
Conservatek Industries, Inc., is to make use of the Wright / Buchert critical buckiing
equation presented in the first chapter, and through a series of trial-and-error
iterations, select a dome geometry with a given selection of members which will
satisfy the overall design equation.

Through the application of finite element analysis, it was found that the finite
element model buckled at a load higher than that predicted by the equation.
Therefore, the Wright / Buchert equation leads to a conservative dome design at
service load levels. The following phase of the study will serve to develop and
identify the trend between the "actual” finite element model and the theoretical critical
buckling equation. The correlation between the actual and theoretical values will form
the basis of a best curve fit. From this curve fit will result a modification factor which
will encompass the difference in values, and in turn provide a more reasonable and

efficient design.
4.2 ASSUMPTIONS

For the sake of clarity, the theoretical buckling equation is once again

AEr
2
LSRS

P, =155 (4.1)

where

P, = Critical buckling pressure

= Strut cross-sectional area

= Modulus of elasticity of the material
Radius of gyration of the strut

L, = Selected length of strut

R, = Selected radius of curvature of the dome

Hl

e S

it is important to understand the limitations of the equation with respect to its
usage in a lattice-type formufation. This equation is merely an approximation based
on equivalent shell theory, therefore there is no absolute relationship between
mathematical theory and actuality pertaining to this study. The expression is more
of an empirical formulation and, due to its empirical nature, there are many variables
which are unintentionally ignored. The most obvious omission from the expression
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is the rise-to-span ratio of the dome. The only reference made to the overall geometry
of the dome was the radius of curvature of the structure, which is independent of
either the rise or the span of the dome. Another important factor which was not
taken into consideration was the dome support condition, Support conditions play a
major role in the performance of the dome. A fixed dome responds much differently
than a slotted dome to arbitrary loading. The same can be said for a dome which has
a steep slope at the base, as compared to a dome with a minimal edge slope. A
blanket statement stating that the equation is valid only for shallow shell formuiation
was made to cover these and other shortcomings.

Weaknesses on a less global level are just as numerous. There is no reference
to the degree of joint fixity, and there is no factor representing the number of
members in the dome. It appears that the equation does not concern itself-with-the
transitioned pattern of the geodesic dome, which was most likely the reason behind
the conservative nature of the theoretical buckling load. The equation tends better
toward a shell surface which has a regular pattern such as the triangulated
arrangement within the upper 2/3 of the dome. The only member properties which
are inciuded in the equation are the cross-sectional area, radius of gyration, and
average length of the members.

For this study, a number of assumptions must be made. First, it is assumed
that this dome is a shallow structure {rise-to-span < 0.2}, making it “reasonable” to
use the above equation. The dome which serves as the benchmark structure for this
modification is that analyzed in section 3. The forthcoming modified equation is truly
valid for a strut length-to-spherical-radius {L/R} ratio of 0.06. In other words, any
dome which is scaled to similar dimensions as the modeled dome would be governed
by the modified equation. Also, the unmodified equation actually represents buckling
pressure, acting normal to the surface. Therefore, based on small angle theory, it is
assumed that the normal to the surface of the dome is close to vertical. Since the
dome is of a shallow nature, the vertical loading of the model closely represents the
pressure load indicated by the expression. Engineering judgement would indicate that
this equation could be used to design domes with varying strut-to-radius ratios, but
in order to validate such an assumption, additional finite element runs incorporating
variable geometries must be made. Only then can the modified expression be used
without hesitation for domes with different geometric properties.

4.3 MODIFICATION FORMULATION

As seenin Figures 4.1 and 4.2, the use of the unmodified equation tends itself
toward many permutations, when considering parameters such as member length and
dome radius. The scenario which most closely represents the "true” Conservatek
Alumadome is reflected in Figure 4.2. The pattern of the geodesic dome consists of
unchanged member lengths, regardless of the size of the dome. When a larger dome
is required, the additional surface area is compensated for by adding members, and
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vice versa for a smaller dome. When the model geometry was incorporated into the
unmodified equation (Figure 4.2(b}), the resulting curve fell below the curve for strut
group 483. Group 483 defines the strut size which defines the upper 4/5 of the

actual dome.

The next logical step in the modification was to run a series of analyses in order
to ascertain an analytical curve defining the critical buckling load which, in turn, could
be compared to the theoretical model curve. Since the nodal geometric pattern was
given for only one dome, the pattern could not be manipulated, yet it could be scaled
up or down in size. Therefore the analyses which were run represented the scaled
versions of the benchmark dome. Figure 4.3 shows the correspondence between the
model and theory. The data points representing the critical buckling load of the model
were transformed into a function by applying a curve fitting technique to the sample
space, resulting in the continuous function displayed in Figure 4.4.

RZ

P, (ps) - -17.6 - (122229 o

where the spherical radius R is in inches. Equation 4.2 can be used for a quick
approximation for determining buckling load for a dome with an L/R ratio of 0.06 and
a selected strut cross-sectional area of approximately 3.5 inches. This L/R ratio is
directly applicable to the Conservatek domes, for the ratio is indicative of domes with
varying profiles and diameters. The change in profile and diameter is achieved
through varying R. A larger value of R would represent a lower profile dome and a
smaller R would indicate a higher profile dome. By maintaining a constant dome
profile {rise-to-span ratio), a varying spherical radius would result in a dome with a
different edge diameter. This geometrical technique allows for the analysis of domes
with different diameters and common profiles, such as was done in this study.

In order to manipulate the unmodified expression into a more workable form for
the purposes of the modification, certain mathematical relationships needed to be
identified. Since the modified expression was to be formed upon the basis of a

constant L/R ratio, then

R. . L (4.3)

where R and L are the benchmark values of spherical radius and member length,
respectively, and R, and L, signify the values of radius and member length of the
scaled dome of interest. .
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By substitution of equation 4.3 into equation 4.1, the raw form of the workable
equation is

R

5

L, 4, AE
P,=(1.55(2) e (4.4)
R,
The final form of this expression, with L/R = 0.086, is
P, =(25.83)4E (4.5)

where P, and E have consistent units. By approximating the finite element buckling
load. values .with a_cubic hyperbolic. function, . similar in._form to equation. 4.5, an
expression which represents the modified form of the Wright/Buchert equation can be
- formulated. This equation is:

AEr
P,=20.98— (4.6)
R,
where P, and E again have consistent units. This formula represents an aiternative
mathematical relationship for the buckling load of the scaled profile geodesic dome

with a rise-to-span ratio of 0.20 and L/R ratio of 0.06, based on the finite element
buckling load values.

To obtain P, in psf whén using E in usual units of ksi, equation 4.6 has the
alternative form (Figure 4.5):

P,,(psf) =3.02E+6 ARES" (4.7)
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Figure 4.1: Wright / Buchert Critical Buckling Pressures vs. Strut Length
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5. SUMMARY

5.1 CONCLUSIONS

Advances made in the analysis of single layer lattice geodesic domes have been
quite limited within the past few decades. Since the early 1260’s, there has not been
any major advance corresponding to dome analysis, with the exception of finite
element modeling. As far as mathematica! models are concerned, there are mainly
two distinct areas of concentration, continuous and discrete models. Continuous
mathematical models are reflected through classical conventional shell theory,
equivalent shell theory, and the split rigidity method. Discrete mathematical models,
formulated through finite difference and matrix methods, are cumbersome, therefore
lending themseives quite conveniently to computer-based finite element analyses.

The use of finite element packages is most advantageous when attempting to
interpret the critical performance of geodesic domes, such as the dome analyzed in
section 3. The use of the ANSYS finite element program enabled the critical load of
a particuiar geodesic dome to be determined. The particular dome highlighted within
the study was modeled as both a bare-frame structure and a cladded structure, with
snow load appiied over both the full surface and a half surface. Results of the
modeling showed that the bare frame dome with full snow load buckied at the lowest
snow load, thus making it the most critical configuration of those studied. Although
this case was the most critical of the four cases, it still exhibited a factor of safety of
1.95 above the service load, which is quite reasonable for domelike structures.

Expanding the interpretation of the critical performance of the geodesic dome,
the finite element buckling loads can be used to modify the expressions used to
design these complicated structures. For example, the Wright / Buchert critical
buckling pressure expression is an empirically based formulation, which leaves it
susceptible to differing engineering opinions on values contained within the equation.
By developing a family of models, a reasonable modification of the buckling expression
can be achieved. Although the modification results in an equation which seems to fit
the data reasonably well, the expression is limited to a specific geometry.

The two curves which were fit to the data approximated the critical load of the
L/R=0.06 family of domes fairly well. As seen in Figure 5.1, the rational
approximation function fits the data better than the cubic hyperbolic function,
although it is nonconservative with respect to the Wright / Buchert curve for domes
with spherical radii greater than 800 inches. The cubic hyperbolic approximation is
a safer modification due to the fact that the function yields critical design loads
consistently lower than the Wright / Buchert curve for the entire size range of domes
of the particular profile. Nonetheless, by applying the approximation which best fits
the finite element model data, a structurally efficient dome design can be detailed,
contributing to a savings in materials.
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5.2 RECOMMENDATIONS

Due to the empirical nature of the Wright / Buchert critical buckling pressure
equation, there are certain factors that are not fairly addressed within its context.
This leaves much room for further study of the expression. The major areas open for
further research are:

1) Development of an entirely nonempirical expression for buckling load
incorporating a thorough set of geometric parameters, i.e. rise-to-span ratio,
number of members, joint conditions {degree of fixity}, and pattern of members.

2} Development of a compiete family of curves using a modified Wright / Buchert
expression encompassing numerous. combinations of dome profiles, dome sizes,
member sizes, and support conditions.

3) Full-scale experimental work to validate the finite element dome models.

4) experimental / finite element research focusing on the issues of joint fixity and
boundary conditions and their effect upon critical dome performance.

5.3 CLOSING COMMENTS

Although the finite element model used to interpret the structural performance
of the geodesic dome in this study was thoroughly checked for proper accuracy,
options do exist which would make the model even more accurate. Due to symmetry,
a portion, or "slice"” of the model could have been modeled. As a result, the
complexity of the model would be drastically reduced, allowing for the connector hubs
to be properly modeled. Although the joint fixity issue still remains unresolved, this
particular finite element study, coupled with new experimental work focusing on
testing the structural parameters of the connector hubs would allow for an increased
understanding of the fixity problem. Finite element resuits are always most
conclusive when experimental work is done to verify the model.

An additional area of study is to model this dome via ABAQUS or ADINA which
was mentioned previously in section 2.4. By analyzing "identical” models through
different finite element platforms, the emergence of different solutions would be a
definite possibility. As shown by Temcor’s finite element analyses of the South Pole
dome [21], finite element runs of the same structure using different analysis packages
or solution technigues lead to results which are not identical.

Finally, it can be stated that for domes of similar profile to the ones in this
study the original Wright / Buchert formulation is evidently conservatave for spherical
radii greater than 800 in. .
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