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Figure 6.15  Elevation of designed frames with member sections 183

Figure 6.16  Pushover analyses of 3-story braced frames 184

Figure 6.17  Pushover analyses of 6-story braced frames 185

Figure 6.18  Smooth-median response of 3-story frames under DBE 
earthquakes 

 
186

Figure 6.19  Smooth-median response of 6-story frames under DBE 
earthquakes 

 
186

Figure 6.20  Smooth-median response of 3-story building under FE 
earthquakes 

 
187

Figure 6.21  Smooth-median response of 6-story building under FE  



 x

earthquakes 187

Figure 6.22  Smooth-median response of 3-story building under MCE 
earthquakes 

 
188

Figure 6.23  Smooth-median response of 6-story building under MCE 
earthquakes 

 
188

Figure 6.24 Smooth-median acceleration of 3-story frames under different 
seismic intensity levels 

 
189

Figure 6.25 Smooth-median acceleration of 6-story frames under different 
seismic intensity levels 

 
189

Figure 6.26  Dispersion of all roof drift ratios under different seismic 
intensity levels 

 
190

Figure 6.27  Dispersion of all maximum inter-story drift ratios under 
different seismic intensity levels  

 
191

Figure 6.28  Dispersion of residual inter-story drift ratios under different 
seismic intensity levels  

 
192

Figure A.1  Ground motion time histories (LA01 – LA10) 215

Figure A.2  Ground motion time histories (LA11 – LA20) 216

Figure A.3  Ground motion time histories (LA21 – LA40) 217

Figure A.4  Ground motion time histories (LA31 – LA40) 218

Figure A.5  Ground motion time histories (LA41 – LA50) 219

Figure A.6  Ground motion time histories (LA51 – LA60) 220

Figure B.1  The prototype steel frame structures: 3-story building 224

Figure B.2  The prototype steel frame structures: 6-story building 224
 

 

 

 



 1

ABSTRACT 

This dissertation presents a special type of bracing element termed self-centering 

friction damping brace (SFDB) for use in high performance concentrically braced 

frame (CBF) systems. The SFDB provides a passive form of energy dissipation with 

its core re-centering component made of stranded superelastic shape memory alloy 

(SMA) wires while enhanced energy dissipation mechanism of the SFDB is achieved 

through friction mechanism. The mechanical configuration of the SFDB is first 

described, and the experimental results of scaled SFDB specimens with different 

friction levels performed to validate its concept are also presented. 

In this study, superelastic Nitinol is selected as the SMA material because of its 

prominent superelastic behavior and long fatigue life. The material properties of 

superelastic Nitinol wires are experimentally investigated through a series of uniaxial 

cyclic tests. The fatigue life and the effect of loading rate as well as temperature are 

also studied as parts of these experimental tests. Two types of constitutive models to 

describe the stress-strain relationship of superelastic Nitinol wires are presented here: 

a rate-dependent thermomechanical model and a rate-independent phenomenological 

model. Based on the calibrated constitutive model for superelastic Nitinol wires, an 

analytical model for SFDB has been developed to simulate the unique hysteretic 

behavior of SFDB. 

The seismic performance of SFDB frames is evaluated based on nonlinear 

pushover and time history analyses of two prototype buildings—a 3-story and a 6-
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story concentrically braced frames—at different seismic intensity levels. A simplified 

displacement-based design procedure for SFDB frame is presented here, for which 

SFDBs are proportioned based on the target performance level under design basis 

earthquakes. The results demonstrate that SFDB frame has several desirable 

performance characteristics. For example it has minimal residual drift after frequent 

and design basis earthquakes due to its self-centering capability. It also has the 

potential to withstand several design level earthquakes without the need for repair or 

replacement if properly designed. 
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CHAPTER 1 INTRODUCTION 

1.1 BACKGROUND 

Structures with conventional seismic load resistance system often dissipate seismic 

energy through activating ductile inelastic deformation in selected structural elements. 

Such a seismic design strategy may not be appealing from a life-cycle cost perspective, 

especially for high seismic regions, where costly repairs are often required after 

moderate earthquakes. After the 1994 Northridge earthquakes, growing interests are 

given to a more logical seismic design strategy which involves energy dissipation 

through supplemental dampers or fuse-type energy dissipating devices. In such 

systems, the main structural system (i.e., gravity load bearing system) is intended to 

have little or no damage while dedicated energy dissipating devices are designated for 

energy dissipation and can be replaced if damaged during earthquakes. Examples of 

such energy dissipation devices are friction dampers (Filiatrault and Cherry 1987; 

Grigorian and Popov 1993), buckling-restrained brace (Fahnestock et al 2007; Sabelli 

2003), metallic yield damper (Tsai and Tsai 1995) and other types of passive or semi-

active dampers.  

Friction damping devices dissipate energy by utilizing the mechanism of solid 

friction developed at a sliding surface, which is a relatively inexpensive and effective 

way for stable energy dissipation. It is important to maintain a consistent, predictable 

frictional force throughout the life of these devices (Soong et al. 1997). Friction 
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damped braced (FDB) frames have been studied by Pall and Marsh (1982), Filiatrault 

and Cherry (1987), Aiken et al. (1988) and FitzGerald et al (1990). Their results show 

that properly designed FDB frame can outperform traditional moment resisting frames 

and braced frames. The addition of friction dampers results in a significant reduction 

in inter-story drifts and internal forces. Meanwhile slotted bolted connections intended 

for application in concentrically braced frames was also proposed by Grigorian and 

Popov (1993). The use of brass on steel frictional surface was recommended based on 

the experiment results of different types of slotted bolted connections. Nims et al. 

(1993) developed a passive friction-based energy dissipation device termed energy 

dissipating restraint (EDR), which consists of internal spring, compression wedges 

friction wedges, stops and cylinder and exhibits a self-centering hysteresis. The EDR 

would be installed in a building as a part of the bracing system which resists 

seismically induced lateral forces.  

Large residual deformations in conventional ductile structure after strong 

earthquake event can make the structure appear unsafe to occupants, impair the 

structural response to a subsequent aftershock earthquake and significantly increase 

the cost of post-earthquake repair or renewal (Ruiz-Garcia and Miranda 2006a, 2006b). 

Residual structural deformation thus starts to be recognized as a complementary 

parameter in the evaluation of structural (and non-structural) damage in performance-

based earthquake engineering (Pampanin et al. 2003; Christopoulos and Pampanin 

2004). Recognizing the importance of controlling the residual deformation, self-

centering seismic resisting system has recently been attracting considerable attention 

from the community (e.g., Kurama et al. 1999; Lu et al. 2000; Ricles et al. 2001; 
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Christopoulos et al. 2002b; Mahin et al 2006). A flag-shaped hysteresis loop is typical 

of such self-centering systems with certain energy dissipation capability, which is able 

to reduce (or even eliminate) residual structural deformation after strong earthquakes.  

Shape memory alloys (SMA) refer to a unique group of alloys with the ability to 

return to some pre-defined shape when subjected to a proper thermal-mechanical 

procedure (Duerig et al. 1990; Shaw and Kyriakides 1995; Birman 1997). The most 

common SMA material in industrial applications is the alloy of nickel and titanium 

called Nitinol, which exhibits outstanding fatigue properties and excellent corrosion 

resistance (Oshida and Miyazaki 1991; Kim and Miyazaki 1997).  

Due to its unique energy dissipation behavior and high fatigue life, SMA has been 

studied for use as damping device for hazard mitigation application (e.g., Graesser and 

Cozzarelli 1991; Aiken et al. 1992, 1993; Witting and Cozzarelli 1992; Clark et al. 

1995; Whittaker et al. 1995; Higashino 1996; Wilde et al. 2000; Dolce et al. 2000, 

2005; Castellano et al. 2001; Saadat et al. 2002; Ocel et al. 2004; DesRoches et al. 

2004). For example, Krumme et al. (1995) have developed a SMA damping device 

termed center-tapped device for passive control of the dynamic response of civil 

structures. The center-tapped device comprises a simple slider mechanism in which 

resistance to linear sliding is provided by two pairs of opposed SMA tension elements. 

Whittaker et al (1995) developed two conceptual designs for SMA dampers, the 

effectiveness of which to mitigate the seismic hazard was demonstrated by the 

nonlinear time history analysis of an existing reinforced concrete frame retrofitted 

using these SMA dampers under moderate earthquake ground motions. Dolce et al. 

(2000) tested Nitinol-based devices with full re-centering and good energy dissipation 
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capabilities. Their experimental results have shown that SMA braces can provide a 

performance level at least comparable to those of steel braces, while having an 

additional self-centering feature. In Italy, superelastic SMA damping devices have 

also been implemented in several masonry cultural heritage structures to enhance their 

seismic resistance capacities during recent restoration (Castellano et al. 2001; Indirli et 

al. 2001). DesRoches and Delemont (2002) have tested the efficacy of superelastic 

NiTi bars as bridge restrainers to reduce the risk of collapse from unseating of bridge 

superstructures at the hinges. Additionally, two full-scale partially restrained steel 

beam-column connections using SMA bars for providing additional energy dissipation 

were tested by Ocel et al. (2004). The connection consists of four large diameter 

Nitinol SMA bars connecting the beam flange to the column flange and serve as the 

primary moment transfer mechanism. The connections exhibited a high level of 

energy dissipation, large ductility capacity, and no strength degradation after being 

subjected to cycles up to 4% drift.  

 

1.2 OBJECTIVE AND SCOPE OF STUDY 

This research presents a special type of bracing element termed self-centering friction 

damping brace (SFDB) which exhibits a flag-shaped hysteresis loop and has a 

potential to establish a new type of concentrically braced frame systems with self-

centering capability. For SFDB, its self-centering ability is realized by using 

superelastic SMA wires while its enhanced energy dissipation capacity is achieved 

through friction mechanism. The overall objective of this research is to investigate the 
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system-level performance of SFDB frame under various seismic intensity levels. 

Specifically, the research work can be divided into the following five major tasks: 

 Experimentally characterize the mechanical properties of SMA materials. Among 

many SMA materials, Nitinol is selected in this study due to its superior material 

properties. The material properties of Nitinol wires critical to the seismic 

applications, including their fatigue life, hysteretic behavior, rate-induced effect, 

temperature-induced effect, etc., are investigated through a series of cyclic tensile 

tests of Nitinol wires. The one-dimensional stress-stain relationship of Nitinol 

wires as determined from characterization tests serves as the basis for subsequent 

analytical study in this research. 

 Develop and validate the mechanical configuration and principle of the SFDB 

device. A novel mechanical configuration of SMA-based energy dissipation 

device is proposed in this research. Validation test of scaled SFDB specimens 

were performed in order to verify the concept of SFDB. 

 Develop the analytical model for SMA-based device. Two constitutive models for 

superelastic SMA wires are proposed here in order to simulate its hysteretic 

behavior under dynamic loading. New SFDB elements have been developed by 

the author for the DRAIN-2DX program and were used in seismic response 

analyses of SFDB frame. 

 Perform nonlinear pushover and time history analyses of prototype buildings. 

The system-level performance of SFDB frame is evaluated for three intensity 

levels of seismic loading, namely, the frequent earthquake (FE), the design basis 

earthquake (DBE) and the maximum considered earthquake (MCE). 
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 Develop a displacement-based seismic design procedure for SFDB frame in order 

to facilitate the implementation of SFDBs in real buildings. The ductility and 

peak inter-story drift ratio of SFDB frames are selected as two target performance 

parameters. SFDB is proportioned accordingly to achieve the target performance. 

 

1.3 OUTLINE OF DISSERTATION 

This dissertation consists of six chapters, including an introduction in this chapter and 

the summary and conclusions in Chapter 6. The remaining chapters are organized as 

follows, 

 Chapter 2 presents the experimental characterization of mechanical properties of 

Nitinol wires. Its material properties essential to seismic resistant structure 

applications, such as fatigue life, material degradation with increasing number of 

cycles, effect of loading rate and temperature, are investigated through a series of 

uniaxial cyclic test of superelastic Nitinol wires. 

 Chapter 3 presents two constitutive models for the superelastic Nitinol wires: the 

first one is a rate-dependent thermo-mechanical model, while the other is a rate-

independent phenomenological model termed as modified Wilde model. The 

derivation process and mathematical expression for these two models are 

described in this chapter. The thermo-mechanical constitutive model is derived in 

a thermodynamic framework and is comprised of three key components – a 

mechanical law, an energy balance equation and a transformation kinetics rule. 

The good agreement with experimental results indicates that this thermo-
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mechanical model is capable of predicting the strain-rate dependent hysteretic 

behavior of superelastic Nitinol wires. The pros and cons of the rate-dependent 

and rate-independent constitutive models are also given in this chapter. Finally a 

feasibility study of using rate-independent constitutive models for Nitinol wires 

in seismic analyses of structures with SMA-based devices are investigated 

through the comparative study between rate-dependent and rate-independent 

models. 

 Chapter 4 describes the mechanical configuration and mechanics of SFDB device. 

Cyclic test of scaled SFDB specimens under dynamic loading rates was carried 

out in order to validate the concept of SFDB. To simulate the hysteretic behavior 

of SFDB, an analytical model for SFDB is described, which is used in the 

analytical study described in the following chapters. The typical hysteretic 

behavior as predicted by the analytical model of SFDB, as well as the 

characteristics of SFDB, is also discussed. 

 In Chapter 5, a comparative study between SFDB frame and buckling-restrained 

braced frame (BRBF) is conducted in order to better understand the seismic 

performance of SFDB frames. The comparative study is based on two prototype 

buildings: 3-story and 6-story concentrically braced frames. Nonlinear time 

history analyses of these two types of braced frames was carried out under 

different seismic intensity levels: frequent earthquakes, design basis earthquakes 

and maximum considered earthquakes. Analysis results of seismic response 

including displacement, acceleration, peak inter-story drift and residual inter-

story drift are discussed. 
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 In Chapter 6, a displacement-based seismic design procedure of SFDB frame is 

presented. The nonlinear response spectrum of SDOF system with hysteresis 

similar to that of SFDB is used in the design procedure. The target performance 

parameteris considered in the design procedure includes the inter-story drift ratios 

and the brace ductility levels under design basis earthquakes. Design examples of 

3-story and 6-story buildings are presented. The effectiveness of the proposed 

displacement-based design procedure was evaluated through both nonlinear 

pushover and time history analyses of the designed buildings under several 

selected suites of ground motions. 

 Chapter 7 presents the main conclusions of this research. The limitations of 

current work and proposed future work along this research direction are also 

discussed in this chapter. 
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CHAPTER 2 SMA WIRE TESTING 

2.1 INTRODUCTION OF SHAPE MEMORY ALLOY 

In the past decade, passive dampers which utilize shape memory alloys (SMA) for 

energy dissipation have attracted growing interest from civil engineering communities, 

especially for seismic hazard mitigation application. SMA refers to a unique group of 

alloys with the ability to return to some pre-defined shape when subjected to an 

appropriate thermal-mechanical procedure (Duerig et al. 1990; Shaw and Kyriakides 

1995; Birman 1997). This shape recovery or shape memory effect is due to 

micromechanical phase transformation. The hysteretic behaviors of SMA materials 

can be adjusted by altering the material composition and heat treatment procedure. 

The hysteretic behavior of SMA materials is dependent on their composition as well as 

thermal conditions.  

SMAs generally demonstrate two types of unique behavior at different 

temperatures. For example, at ambient temperatures T < Mf, where Mf refers to 

martensite finish temperature, the microstructure of SMA materials is fully martensitic 

and SMA exhibits a large hysteresis loop similar to other conventional metal alloys 

such as mild steel, but the residual deformation after unloading can be fully recovered 

by an increase in temperature (as shown in Figure 2.1-(a)). This shape recovery effect 

is called shape memory effect, which is due to a micromechanical phase 

transformation from the martensite phase to the parent austenite phase. In this study, 
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another important characteristic of SMA materials – superelasticity or pseudoelasticity, 

which involves rate-dependent hysteretic damping with zero residual strain upon 

unloading, is utilized to dissipate vibration energy in structures. SMA exhibits the 

superelastic behavior at ambient temperatures T > Af, where Af is termed austenite 

finish temperature, above which the microstructure of SMA is fully austenitic. The 

superelastic behavior of SMA is due to a stress-induced solid phase transformation 

from austenite to martensite. Since martensite is stable only at the presence of the 

externally applied load, a reverse transformation takes place upon unloading, and after 

fully unloading, the material will return to its original undeformed shape (as shown in 

Figure 2.1-(b)).  

Although there are many SMAs, such as Ti-Ni, Cu-Al-Ni, Cu-Zn-Al, Au-Cd, Mn-

Cu, Ni-Mn-Ga, and Fe-based alloys, most of the practical SMAs are Ti-Ni-based 

alloys, since other SMAs are usually not ductile (or not ductile enough) or are of low 

strength and exhibit grain-boundary fracture (Otsuka and Kakeshita 2002). Ni-Ti-

based alloys, usually called Nitinol, are superior to other SMA materials in many 

respects and are the most widely used SMA material at present. Their transformation 

temperatures such as the above-described Mf and Af can be adjusted in the range from 

less than -100°C to over 100°C. Nitinol alloys tend to be much more thermally stable, 

have high corrosion resistance compared to other SMA materials, and have much 

higher ductility and excellent fatigue performance (both low-cycle and high-cycle 

fatigue). For example, Nitinol alloys have greater shape memory strain than the 

copper-based SMA materials (8% versus 4.5%). Furthermore, Nitinol alloys are 

available in the form of wires with a diameter as small as 25 µm. The prominent 
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properties of Nitinol materials have made them a promising candidate for use in 

energy dissipation device. 

 

2.2 NITINOL WIRE TESTING 

In this study superelastic Nitinol wires have been chosen as the core re-centering 

component in the SFDB device in consideration of its superior material properties. 

This section presents the experimental results of cyclic test of superelastic Nitinol 

wires, and some aspects important to engineering applications are also investigated 

through the tests, such as fatigue, recoverable strain, training effect, loading rate effect, 

temperature effect, etc. 

 

2.2.1 Experimental Setup 

The Nitinol wires tested in this study are products from two different manufacturers: 

Memry Corporation and Johnson Matthey, Inc, and they are designated as Type A 

(from Memry Corporation) and Type B (from Johnson Matthey, Inc) respectively. 

Both types of wires have a chemical composition (about 56% nickel and 44% titanium) 

to exhibit superelastic behavior at room temperature. The wire diameter is 0.58 mm 

(0.23 in) and the gauge length of the wire under tensile test is 254 mm (10 in). The 

cyclic tensile tests of superelastic Nitinol wires were carried out at Lehigh University 

using an MTS universal testing machine. A pair of wire grip fixtures made of 

aluminum was used in the test. One K-type thermocouple with a diameter of 0.0254 

mm (0.001 in) was mounted on the test wire surface to measure its temperature during 
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the cyclic test. Figure 2.2 shows the setup for wire testing. The superelastic Nitinol 

wires were tested at various loading frequencies and maximum strain amplitudes in 

this study. All Nitinol wires were tested at a room temperature of 23ºC except for 

Section 2.2.6 in which the effect of ambient temperature were investigated. 

In order to test Nitinol wires at lower temperatures, a temperature-controlled test 

chamber was in-house made and utilized to maintain the specified cold temperature. 

As shown in Figure 2.3, the temperature chamber measures 343 mm×292 mm×394 

mm (13.5 in×11.5 in×15.5 in) and fits in the MTS universal testing machine being 

used. The schematic diagram of the temperature chamber is shown in Figure 2.4. 

Polystyrene foam with 1½ inch thickness was used to construct this temperature 

chamber, and the temperature process controller was configured to activate a solenoid 

valve for liquid nitrogen tank to maintain the cryogenic test condition. The 

temperature chamber is able to maintain a specified cold temperature down to -100ºC. 

with a temperature fluctuation of only about ±3ºC. The test temperature was 

monitored using a set of insulated thermocouples placed inside the temperature 

chamber. 

 

2.2.2 Preliminary Test 

The preliminary tests were conducted first to verify the data provided by manufacturer 

and provide testing parameters for formal tests of superelastic Nitinol wires. Figure 

2.5 shows the stress-strain curves of both types of superelastic Nitinol wires from 

cyclic tests conducted at slow loading rates. The test program was conducted with a 
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constant strain rate of 7.0×10-5 sec-1 at an Instron 5567 universal testing machine. The 

superelastic Nitinol wires were not trained by cyclic preloading. The displacement 

amplitude increased with cycles until Nitinol wires fractured. Both wires show a 

similar hysteretic behavior during these tests.  

It is seen in Figure 2.5 that the superelastic Nitinol wires under test can regain its 

initial length without permanent deformation when unloaded from strain amplitudes as 

high as 8%. This is because the yield-like plateau in Figure 2.5 for superelastic Nitinol 

wires is due to solid phase transformation instead of yielding. Thus below the 8% 

strain level, no damage can be observed in superelastic Nitinol wires. Beyond the 8% 

strain level, however, strain hardening occurs in superelastic Nitinol wires and 

noticeable residual strains after unloading can be observed due to plastic deformation 

of Nitinol wires. Thus, 8% strain is assumed to be the maximum recoverable strain 

level for the superelastic Nitinol wires used in this study. The ultimate strain of both 

superelastic Nitinol wires can reach up to 15%, which provides a reasonably large 

safety margin to Nitinol wires.  The ultimate stress of both wires is about 1400-1500 

MPa, which is almost three times the yield-like stress (i.e., the transformation stress 

from austenite to martensite). Such a significant strain hardening behavior of 

superelastic Nitinol wires may cause potential overloading to the adjoined members 

which needs special attention when designing SMA-based energy dissipation device. 
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2.2.3 Fatigue Life 

The tests by Funakubo (1987) indicated that the high-cycle fatigue life of Nitinol 

under cyclic strain εmax = 0.02 can reach as high as 1x105 cycles. However, the low-

cycle fatigue life is of more interest for seismic application. In this study the fatigue 

life of superelastic Nitinol wire samples was tested under 8% strain cycles, a typical 

strain amplitude of Nitinol wires for earthquake engineering applications. The loading 

frequency is 1 Hz for the fatigue tests. Table 2.1 lists the experimentally determined 

values of the fatigue life of superelastic Nitinol wires, as well as a copper-based SMA 

material. It is seen that the superelastic Nitinol wires can withstand over 2000 cycles 

under 8% strain cycles. In comparison with the copper-based SMA wires, the 

superelastic Nitinol wires have much higher fatigue life despite their larger strain level 

during the fatigue test. Such a high fatigue life, as well as their large recoverable strain, 

enables superelastic Nitinol wires to sustain several strong earthquakes without the 

need of repair or replacement of SMA-based energy dissipation device if carefully 

designed. This reusability can considerably reduce the repair cost after earthquakes 

and is very appealing from a life-cycle cost perspective. 

 

2.2.4 Training Effect 

Figure 2.6 shows the change in material properties of Nitinol wires with increasing 

number of cycles. The wires were tested under 8% strain cycles at the loading 

frequency of 1 Hz. Figure 2.7 shows the changes in the hysteretic behavior of Nitinol 

wires (Type B) under cyclic loading. Observable changes include strain shift at zero 



 17

stress (i.e., after unloading), decrease of ‘yield’ stress (i.e., transformation stress of the 

upper transformation plateau) and hysteresis area, and increase of ‘post-yield’ stiffness 

as seen from the first eighty loading cycles. For example, the strain at zero stress εr 

shifts to 1.1% and 0.6% respectively for two different types of wires – Type A and 

Type B, and the ‘yield’ stress due to phase transformation decreases from 590 MPa in 

the 1st load cycle to 310 and 420 MPa respectively in the 80th load cycle for two 

different types of wires. Generally the degradation of the superelastic Nitinol wires of 

Type A is more substantial than the wires of Type B.  

However, after the first 50-80 load cycles the hysteretic behavior of superelastic 

Nitinol wires stabilizes to its steady-state hysteresis loop. These observations are 

consistent with the findings by other researchers (e.g., Miyazaki 1990; McCormick et 

al. 2005). To overcome the potential problems in implementation that may arise from 

these observed degradation behaviors of superelastic SMA, training (i.e. cyclic 

preloading) of superelastic Nitinol wires should be performed before their use in 

energy dissipation device. Based on the above observations, superelastic Nitinol wires 

in this study were loaded for 80 loading cycles for training purpose before formal test 

or use to obtain a stable hysteretic behavior.  

Figure 2.8 shows the hysteretic behavior of superelastic Nitinol wires after 80 

cycles of training with peak strain equal to 8%. The loading frequency for this 

dynamic wire testing was equal to 2 Hz. The displacement-controlled test process is 

comprised of four separate load sequences with different strain amplitudes, and in 

each load sequence the wire was cyclically loaded at constant amplitudes for more 

than ten cycles. It is seen that stable hysteretic loops have been obtained after training 
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and no noticeable degradation effect such as residual deformation and change in 

transformation stresses, were observed in the formal test.   

Although the hysteretic behaviors of the two types of superelastic Nitinol wires 

were similar before the training process (as shown in Figure 2.5), observable 

difference between their hysteresis occurred after the training (as shown in Figure 2.8). 

Compared with the Nitinol wires of Type A, the Nitinol wires of Type B have larger 

yield stress, flat transformation plateau and larger strain magnitude at the initiation of 

strain hardening. 

 

2.2.5 Strain rate effect 

In order to investigate the load-induced thermal effect on Nitinol wires, the results of 

the superelastic Nitinol wires (Type A) tested at various predetermined loading rates 

are presented in this section. Before the formal test, the Nitinol wires were trained by 

80 cycles of preloading in order to minimize the accumulation of residual strain and 

stabilize its hysteretic behavior. Displacement control was used for the uniaxial 

tension test of Nitinol wires. The uniaxial tension test was carried out at six different 

loading frequencies - 0.001 Hz, 0.01 Hz, 0.1 Hz, 1 Hz, 2 Hz and 5 Hz for 7% strain 

cycles. In each test, Nitinol wire was cyclically loaded with constant strain rate at a 

strain amplitude of 7%. Accordingly, the strain rates are  1.4 x 10-4 sec-1,  0.0014 sec-1, 

0.014 sec-1, 0.14 sec-1, 0.28 sec-1 and 0.70 sec-1 for the  0.001 Hz, 0.01 Hz, 0.1 Hz, 1 

Hz, 2 Hz and 5 Hz loading frequencies, respectively. Figure 2.9 shows the typical 

stress-strain curve of superelastic Nitinol wires under six different loading frequencies 
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respectively. Figure 2.10 presents the experimental results of temperature variation in 

superelastic Nitinol wire specimens at three loading frequencies of 0.001 Hz, 0.01 Hz 

and 0.1 Hz respectively. Figure 2.10-(a), (b) and (c) show the temperature-strain 

profile for these three loading frequencies respectively, while Figure 2.10-(d) shows 

the corresponding time history of the wire specimen temperature. The temperature 

variation under higher loading frequencies was not measured due to the limitation of 

thermocouple measurement for this kind of use.  

 The test with a loading frequency of 0.001 Hz was a quasi-static test. During 

quasi-static test, the temperature change was negligible, and the slopes of both the 

upper and lower transformation plateau in the stress-strain curve are essentially 

horizontal. Compared with the quasi-static test results, the slope of the loading and 

unloading plateaus becomes increased and the amount of energy dissipation (i.e. the 

enclosed hysteresis area in each cycle) gets reduced for the dynamic test results. The 

increased slope of loading/unloading plateau (or post-‘yield’ stiffness) which is often 

considered a favorable effect for seismic applications is caused by the self-heating 

phenomena due to latent heat. The austenite to martensite phase transformation in the 

loading path is exothermic, while the martensite to austenite phase transformation in 

the unloading path is endothermic. Therefore, the loading path is accompanied with a 

rise in wire temperature while the unloading path is associated with a temperature drop 

(as shown in Figure 2.10). Such a temperature variation in each cycle results in the 

observed increase in the post-‘yield’ stiffness. For quasi-static tests, nonetheless, 

temperature fluctuation is negligible which leads to relatively flat transformation 

plateau. 
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It is also seen in Figure 2.9 that under certain loading frequencies the hysteresis 

loops of superelastic Nitinol wires are not stable in the first several load cycles. The 

shift direction of the hysteretic loops is indicated in Figure 2.9. This trend can also be 

observed in Figure 2.11 which shows the stress-strain curve for the 1st and 10th cycle 

corresponding to a variety of loading frequencies. For example, in terms of the stress-

strain curves corresponding to the first cycle of dynamic tests, only slight differences 

exist among the hysteretic loops with the loading frequencies varying from 1 Hz to 5 

Hz, but noticeable differences among the hysteretic loops corresponding to the tenth 

cycle for the same loading frequencies can be clearly observed in Figure 2.11-(b). 

Compared with the first cycle, the hysteresis loops of the tenth cycle shift downwards 

for the loading frequencies of 0.1 Hz and 1 Hz, while the hysteresis loop shifts 

upwards for the loading frequency of 5 Hz; for the loading frequency of 2 Hz and 

quasi-static loading, the hysteresis loops of the first and tenth cycles are almost 

identical. The energy dissipation capacity is slightly reduced with the increasing 

number of loading cycles for all loading frequencies considered. It is noted that the 

tenth cycle of hysteresis loop is quite stable and repeatable in the subsequent cycles 

except for the loading frequency of 5 Hz. At the loading frequency of 5 Hz the 

successive loading after the tenth loading cycle makes the hysteresis loop continue to 

shift upwards. 

The variation in the hysteretic shapes was attributed to the temperature change 

associated with the increasing number of loading cycles. According to energy 

equilibrium, the absorbed specific heat has to be equal to the latent heat generation and 

mechanical energy dissipation, subtracted by the heat loss to the surrounding 
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environment. After a superelastic Nitinol wire is fully unloaded, the latent heat 

generation is zero. If the heat generated by mechanical energy dissipation has different 

values than the heat loss in one cycle, the temperature at zero strain will be different at 

the start and end of this particular cycle. Such a variation of zero-strain temperature 

results in the shift of hysteresis loops with the increasing number of loading cycles 

until the mechanical energy dissipation is equal to the heat loss in one cycle, i.e., the 

temperature cycles get stabilized. For example, for the wire test results shown in 

Figure 2.9, the zero-strain temperature drops in the first several cycles for loading 

frequency of 0.1 Hz and 1 Hz, and rises for the loading frequency of 5 Hz. The zero-

strain temperature does not differ much for the loading frequency of 2 Hz, which leads 

to quite repeatable hysteretic loops at this loading rate. Under the slow loading 

frequencies (0.001 Hz and 0.01 Hz), temperature variation is very small and the 

hysteresis loop is quite repeatable. As a result, such temperature cycles cause the shift 

of hysteresis loops correspondingly in the first several load cycles since the 

transformation stress is also dependent on the wire temperature. The relationship 

between the temperature and hysteresis behavior of superelastic Nitinol wires will be 

discussed in the next section. 

In summary, the temperature change in superelastic wires under dynamic loading 

not only leads to the variation of hysteresis loops at different loading frequencies, but 

also leads to the variation of hysteresis loops with the increasing number of cycles 

under the same loading frequency. It is noted that the loading frequency from 0.1 Hz 

to 5 Hz is typically the range of interest for seismic application. In light of the above 

discussion, it is seen that the thermo-mechanical effect of superelastic Nitinol wires 
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needs to be carefully evaluated for nonlinear dynamic analyses since important 

material properties of Nitinol such as the ‘post-yield’ stiffness, ‘yield’ strength and 

energy dissipation all vary with loading rates, which may influence the accuracy in 

predicting the seismic response of structures equipped with SMA-based energy 

dissipating devices. 

 

2.2.6 Temperature Effect 

Figure 2.12 shows the hysteresis behavior of superelastic Nitinol wires (Type A) at 

different ambient temperatures: 24ºC (room temperature), 16ºC, 8ºC and 0ºC. The 

wires were tested at the loading frequency of 1 Hz using the experimental setup shown 

in Figure 2.4. Before formal tests, all Nitinol wire specimens were trained by 80 cycles 

of preloading in order to minimize the accumulation of residual strain and stabilize 

hysteretic behavior. It is seen that the hysteresis loop of superelastic Nitinol wires shift 

downwards with the decrease of the ambient test temperature. The stresses at 2% 

strain on both the upper transformation plateau and lower transformation plateau were 

recorded, denoted as σU and σL respectively, and their variation pattern with the 

change of ambient temperature is shown in Figure 2.12-(b). Almost linear relation is 

observed between the stress and ambient test temperature. 

Thus the transformation stress of superelastic Nitinol is strongly dependent on 

ambient temperature. The Nitinol wires tested in this study exhibits the superelastic 

behavior as long as the ambient temperature is above 0ºC. However below 0ºC they 

would be partially or completely martensite and lose their re-centering properties, 
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namely, permanent deformation would take place after unloading. Therefore, this type 

of Nitinol wires is not suitable for outdoor applications if its superelastic behavior is 

desired. Other superelastic SMA materials applicable for cold environment use need to 

be used for cold temperatures. However, in this study the Nitinol-based SFDB is 

intended to be installed inside buildings and thus is anticipated not to subject to low 

temperature. 

 

2.3 CONCLUSIONS 

This chapter presents the test results of superelastic Nitinol wires which form the core 

re-centering component of SFDB devices. This experimental study on superelastic 

Nitinol wires has led to the following findings: 

 Superelastic Nitinol wires can recover their initial length with certain amount of 

energy dissipation when unloaded from deformation as high as 8% strain. They 

can also sustain over 2000 cycles under 8% strain cycles. Such a high fatigue life 

and large recoverable strain enables superelastic Nitinol wires to withstand 

several strong earthquakes without the need of replacement if carefully designed 

and implemented for SMA-based energy dissipation devices. 

 The degradation of superelastic Nitinol wires occurs in the first several load 

cycles, including accumulation of residual strain and decrease of ‘yield’ stress 

(i.e., transformation stress). Therefore a training process that involves cyclic 

preloading for a specified number of load cycles, needs to be performed before 

their formal use in energy dissipation devices. The test results indicate that the 
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training process can effectively minimize accumulation of residual strain and 

stabilize the hysteretic behavior of superelastic Nitinol wires. 

 The transformation stress of superelastic Nitinol wires decreases with the drop of 

ambient temperature.  

 The temperature variation in superelastic Nitinol wires under dynamic tests not 

only leads to the variation in hysteretic behaviors at different loading frequencies, 

but also causes the shift of hysteretic loops with the increasing number of cycles 

under the same loading frequency. This rate-induced thermo-mechanical effect 

needs to be carefully considered for applications involving SMA-based energy 

dissipating devices. 

 The superelastic Nitinol wires considered in this study lose the re-centering 

behavior if loaded beyond 8% strain. Furthermore, their application in low 

temperature application is limited due to the transformation temperature values 

for this particular Nitinol alloy.  

 The maximum strength of superelastic Nitinol wires right before fracture is 

considerably higher than their transformation stress (i.e., ‘yield’ strength). The 

potential overloading to the adjoined members such as brace connections due to 

this strain hardening phenomenon should be carefully considered in the design of 

Nitinol-based energy dissipation device. 
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Table 2.1 Number of cycles to failure of SMA wires 

Specimen 
No. Material 

Strain 
amplitude 

# of cycles to 
fracture 

1 Nitinol wire (Type A) 8% 2610 

2 Nitinol wire (Type B) 8% 2515 

3 Nitinol wires (Type B) 8% 2335 

4 Cu-Al-Be wire 3% 90 

5 Cu-Al-Be wire 3% 43 
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(a) Shape memory effect 

 
(b) Superelastic effect 

Figure 2.1 Typical hysteresis of shape memory alloy materials 
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Figure 2.2 View of test setup for cyclic test of superelastic NiTi wire  

 
 
 
 

 

Figure 2.3 View of temperature-controlled test chamber 
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Legend of Figure 2.4 
a. Liquid nitrogen tank 
b. Cryogenic hose 
c. Cryogenic solenoid valve (normally closed) 
d. 1 ½” thick polystyrene foam temperature chamber 
e. Nitinol wire 
f. MTS testing machine 
g. Aluminum wire grips 
h. K-type thermocouple 
i. Temperature process controller 
j. Solid state relay 
 
1. Liquid nitrogen valve is opened, cold liquid nitrogen passes through cryogenic hose 

and is stopped by the normally closed solenoid valve 
2. Thermocouple reads temperature inside box; the temperature reading is sent to the 

temperature controller 
3. If temperature is above set point (0ºC) the temperature process controller send a signal 

to the solid state relay which activates 
4. Upon activation of the solid state relay the solenoid valve is then activated and opened 
5. Cold nitrogen which is now in the gas phase rushes into the temperature chamber 

 
Figure 2.4 Schematic diagram of test-setup with temperature chamber 
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Figure 2.5 Cyclic quasi-static test of Nitinol wires with increasing amplitude 
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Figure 2.6 Change of material properties of Nitinol wire with increasing number of 

cycles 
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Figure 2.7 Cyclic effect on the hysteretic behavior of superelastic Nitinol wire (Type 

B) 
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Figure 2.8 Cyclic behavior of Nitinol wires after training at loading frequency of 2 Hz 
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Figure 2.9 Stress-strain curve of superelastic Nitinol wires (Type A) at various loading 

frequency  
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Figure 2.10 Temperature variation of superelastic Nitinol wires (Type A) during the 

loading process 
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Figure 2.11 Stress-strain curve of Nitinol wires (Type A) for 1st and 10th cycles under 

different loading rates 
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Figure 2.12 Temperature effect on the hysteretic behavior of superelastic Nitinol wires 

(Type A): (a) stress-strain curves at various ambient temperatures; (b) stress-strain 

relationship (where σU = stress on upper plateau corresponding 2% strain,  σL = stress 

on lower plateau corresponding 2% strain) 
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CHAPTER 3 CONSTITUTIVE MODEL 

FOR SUPERELASTIC SMA WIRES 

3.1 INTRODUCTION 

Shape memory alloys (SMA) as a promising ‘smart’ material have found an increasing 

use in aerospace, civil, mechanical and biomedical applications. Due to the nature of 

stress-induced martensitic transformation, research and application of shape memory 

alloys have generally been one-dimensional in order to obtain maximal recoverable 

deformation. The applications of SMA materials and the need for a design tool have 

motivated a number of macroscopic constitutive models for these materials that 

accurately describe the mechanical behavior of SMAs. The macroscopic mechanical 

behavior of SMAs is usually modeled following either a phenomenological or a 

micromechanical approach (Brocca et al. 2002). Micromechanics based model are 

much more complicated than phenomenological models and usually are 

computationally demanding. Phenomenological models are often ad hoc descriptions 

aimed at fitting experimental data and are usually quite accurate in predicting the 

uniaxial response of SMAs.  

Two one-dimensional constitutive models for superelastic SMA wires are 

proposed in this chapter. One is a thermo-mechanical constitutive model which can 

fairly accurately predict the strain-rate dependent behavior of superelastic SMA wires 
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under various loading rates. This model is derived in a thermo-dynamics framework 

and overcomes the limitations of most previously proposed constitutive models for 

SMA wires in capturing the rate-dependent mechanical behaviors in this frequency 

range of interest for seismic applications. The other is a rate-independent 

phenomenological model which is called modified Wilde model. Compared with the 

thermo-mechanical model, the modified Wilde model has relatively simpler 

mathematical expression and is appealing for seismic application for the sake of its 

convenience. These two constitutive models provide the useful tool to the numerical 

simulation of hysteretic behavior of SMA-based devices.  

A comparative study of two nonlinear constitutive models for superelastic SMA 

wires is also conducted in this chapter in order to investigate the feasibility of using 

rate-independent constitutive model for superelastic SMA in seismic analyses of 

structures. Seismic analysis results of single-degree-of-freedom (SDOF) systems with 

superelastic SMA resistant element and one 6-story building with self-centering friction 

damping braces are presented in the comparative study. 

 

3.2 THERMOMECHANICAL MODEL 

3.2.1 Introduction 

The experimental evidences in previous chapter indicate that varying loading rates 

generally lead to variation in the hysteretic and thermal behaviors of SMA. Such a 

rate-induced thermo-mechanical effect has drawn attention in seismic applications 

where the dynamics of SMA-based energy dissipation devices and structures is of 
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interest. In order accurately capture this thermo-mechanical effect, rate-dependent 

constitutive models for SMA have been studied in the past decade by researchers (e.g. 

Prahlad and Chopra 2003; Boyd and Lagoudas 1998; Auricchio et al. 1999, 2006; 

Brocca et al. 2002). Among them, uniaxial thermo-mechanical models are most 

suitable for engineering practice, because they make use of measurable quantities as 

parameters and are often relatively simple.  

A uniaxial quasi-static constitutive model was proposed by Tanaka (1986) based 

on thermodynamics considerations. The Tanaka model was modified by Liang and 

Rogers (1990) and Brinson (1993) to overcome the limitation of the original model. 

Both Liang-Rogers model and Brinson model are applicable to quasi-static loading 

case. The Brinson model was further modified by Prahlad and Chopra (2003) to 

consider strain-rate dependent behavior of SMA. In the Prahlad-Chopra model, the 

original models are coupled with an additional energy balance Equation in order to 

reflect the thermal effect of strain rate.  

The typical frequency range of interest to seismic application is from 0.1 Hz to 5 

Hz. However, most previously proposed 1-D thermo-mechanical models for SMA 

materials have limitations in capturing all the rate-dependent mechanical behaviors in 

this frequency range, such as the variation of hysteretic shape, transformation plateau, 

energy dissipation and temperature at different loading rates. Therefore, an improved 

thermo-mechanical constitutive model is proposed in this section, which can fairly 

accurately predict the strain-rate dependent behavior of superelastic SMA wires in the 

loading rate range of interest to civil engineering application. This phenomenological 

constitutive model was derived within a thermo-mechanical framework and comprised 
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of three key components – a mechanical law governing the stress–strain behavior, an 

energy balance equation that reflect the rate-dependent thermal effect and a 

transformation kinetics rule that describes the evolution of the phase fraction as a 

function of stress. The mathematical expression of this thermo-mechanical model is 

described as follows. 

 

3.2.2 Thermodynamics Formulation 

The Tanaka’s approach (Tanaka 1986) to the derivation of the constitutive law of 

shape memory alloys have been used extensively in which the one-dimensional tensile 

behavior of SMAs was considered. From the first and second law of thermodynamics, 

the energy balance and the Clausius-Duhem inequality in the current configuration can 

be expressed as, 

 0  ˆ =−
∂
∂

+− q
x

q
Lu sur ρσρ  (3-1) 

 0)( ≥
∂
∂

+−
T

q
xT

q surρηρ  (3-2) 

where u and η represent the internal energy density and the entropy density, i.e. the 

internal energy and entropy per unit mass respectively, q and qsur represent the heat 

production and the heat flux, T, x and ρ represent the temperature, the material 

coordinate and the density in the current configuration, σ̂  and L represent the Cauchy 

stress and velocity gradient. It is assumed by Tanaka (1986) that the thermo-

mechanical process of SMA can be fully described by a set of state variables ),,( ξε T , 
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where ε  is the Green strain and ξ  is an internal variable which is often defined as the 

fraction of martensite.  

For one-dimensional small deformation case, the reference configuration and the 

current configuration is no longer distinguished in this paper. By introducing the 

Helmholtz free energy density ηTu −=ψ , Equations (3-1) and (3-2) can be rewritten 

as, 
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where the Helmholtz free energy density ψ is a function of state variables ),,( ξε T , ρ0 

and X represent the material density and coordinate in the reference configuration, σ is 

the second Piola-Kirchhoff stress which is energy conjugate to the Green strain. From 

the thermodynamics of continuous media, the coefficients of ε  and T should vanish in 

Equation (3-4). Thus the above inequality provides the constitutive equations as: 

 
ε

ρσ
∂
∂

=
ψ

0         (3-5a) 

 
T∂
∂

−=
ψη  (3-5b) 

Additionally, 
ξ

ρ
∂
∂

−≡
ψ

0A  is the driving force of transformation which is 

conjugate to the internal variable ξ. Here Equation (3-5a) describes the stress-strain 

relationship and is thus called mechanical law in this study. The rate form of the above 

constitutive equations can be obtained by differentiating Equation (3-5), 
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 ξεσ Ω+Θ+= TE ,  ξεηρ Γ++Θ−= Tc0  (3-6) 

where E, Θ, Ω , c, and Γ are material constants as defined by the following equations, 
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which are, in general, functions of the state variables ),,( ξε T . The rate form of the 

Helmholtz free energy density can be expressed as, 

 ξηρεσρ A−−= T00ψ  (3-7) 

By substituting Equation (3-7) into Equation (3-3), the energy balance Equation can be 

rewritten as 

 q
X

q
T sur

00 ρηρξ −
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+=A  (3-8) 

The term ξA  represents an internal power which in the case of an irreversible 

evolution is entirely dissipated inside the system instead of being developed against 

the exterior (Maugin 1999). It can be seen that both the mechanical law and energy 

balance equations, i.e., Equations (3-6) and (3-8), involve the term ξ , and thus the 

evolution of martensite fraction ξ  has to be established too. The transformation 

kinetics will be presented in the next section. The mechanical law, the energy balance 

equation and the transformation kinetics collectively give a complete model for 

describing the constitutive relations of superelastic SMAs. 
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3.2.3 Constitutive Model with Constant Elastic Modulus 

3.2.3.1  Helmholtz free energy 

Similar to Sadjadpour and Bhattacharya (2006), the Helmholtz free energy density of 

superelastic SMAs is assumed here to be of the form below, 

 )ln()(
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TTCTT
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cr

el −−+= ξε
ρ
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where ψ is the Helmholtz free energy per unit mass, εel is the elastic strain, Tcr and T0 

are thermodynamic transformation temperature and initial temperature respectively, E, 

L and Cp represent the elastic modulus, latent heat of phase transformation and 

specific heat of the material respectively, which are all assumed to be equal for both 

the austenite and the martensite here. The three terms in Equation (3-9) represent the 

effect of strain energy, latent heat of phase transformation and specific heat. The effect 

of pure-phase thermal expansion is neglected in this expression, because it is much 

smaller and negligible compared with the other three effects (Liang and Rogers 1990, 

Brinson 1993, Prahlad and Chopra 2003). 

In the case of small deformation the strain of SMA material can be decomposed 

into two parts: inel εεε += , where elε is the thermo-elastic strain and inε is the inelastic 

strain due to phase transformation. Following Brinson (1993) and Auricchio and 

Sacco (2001), the inelastic and elastic strain can be expressed as 

 ξεε lin = ,      ξεεε lel −=  (3-10) 
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where εl is the maximum residual strain which is generally considered as a time-

independent material constant of SMAs. By substituting Equation (3-10), the 

Helmholtz free energy for superelastic SMAs can be rewritten as 
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cr
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where E, L, Cp and εl are all constants. 

 

3.2.3.2 Constitutive equation 

On combining Equations (3-5) and (3-11), we obtain the following constitutive 

equations, 
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The mechanical law, i.e. Equation (3-12a), describes the stress-strain relationship 

which is consistent with previous quasi-static constitutive models such as those by 

Tanaka (1986), Liang and Rogers (1990), and Brinson (1993). Although this 

mechanical law was formulated from thermodynamic considerations, an alternative 

derivation can also be obtained based on the Voigt model in micromechanics (Brinson 

and Huang 1996). Figure 3.1 shows the Voigt model in which the austenite and 

martensite phases are in parallel while the transformed fraction is in series with these 
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two phases. The rate form of the constitutive equations can be obtained by 

differentiating Equation (3-12)  

 ξεσ Ω+= E  (3-13a) 

 T
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cr
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where material property Ω is expressed as Elε−=Ω . 

 

3.2.3.3 Energy balance equation 

During uniaxial tensile loading, the heat production q in superelastic SMAs is always 

zero. Additionally, a uniform temperature in the superelastic SMA wires can be 

assumed under uniaxial tensile loading (Vitiello et al 2005). Thus the heat flux is 

solely caused by heat transfer between SMA wire and surrounding environment due to 

temperature difference. The heat transfer equation can be described using the equation 

below, 

 )( 0TTkQ −⋅=  (3-14) 

where Q is the transient rate of heat flow; T and T0 are the transient temperature of the 

SMA wire specimen under loading and environment temperature, respectively; and k 

is the heat transfer coefficient which should include not only the effect of heat 

convection but also the heat contact conduction between the wire specimen and the 

gripping fixture at the end of wire specimen. Here the temperature of the  gripping 

fixture and environment is assumed to be a constant, T0. The divergence of heat flux 

can be estimated from heat transfer per unit volume, 
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By substituting Equations (3-12) and (3-15) into Equation (3-8), the energy balance 

equation can be rewritten as, 

 )()( 000 TT
V
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By considering Equations (3-10) and (3-12a), Equation (3-16) is rewritten as, 

 )( 000 TT
V
kLTC pin −+−= ξρρεσ  (3-17) 

Like the mechanical law, the Equation (3-17) can also be explained by Voigt 

model. As shown in Figure 3.1, under uniaxial loading the inelastic deformation 

occurs in the transformed fraction which is in series with the elastic part. Thus, for 

materials like superelastic Nitinol, only part of the mechanical input energy is stored 

in the form of elastic strain energy, the remaining part of the mechanical input energy 

is dissipated due to the inelastic deformation. Such energy dissipation usually 

contributes to the temperature variation in the SMA wire specimen under loading, and 

thus affects the material behaviors of SMA. The term inεσ  in Equation (3-17) 

represents the time rate of mechanical energy dissipation due to the inelastic 

deformation; the term  ξρ L0  represents the rate of latent heat and the negative sign 

means the austenite to martensite transformation is exothermic, while the martensite to 

austenite transformation is endothermic. Thus Equation (3-17) means at any instant 

the heat generation due to the inelastic dissipation and latent heat is equal to the 

specific heat absorbed by the specimen plus the heat loss to the environment. 
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3.2.3.4 Transformation kinetics 

Transformation kinetics of SMAs describes the evolution rule of martensite fraction ξ 

for both the transformation from austenite to martensite and the reverse transformation 

from martensite to austenite. Different transformation kinetics rules have been 

proposed by various researchers. The evolution of martensite fraction ξ is governed by 

the driving force A and temperature T, and thus the transformation kinetics can be 

expressed as a function of A and T (see, e.g. Auricchio and Sacco 2001; Sadjadpour 

and Bhattacharya 2005). It can be seen from Equation (3-12) that the driving force A 

can also be expressed by stress σ and temperature T. Because the stressed- and 

temperature-induced phase transformation of SMA was widely studied and the 

relationship of transformation stress and transformation temperature was well 

established, the empirical transformation kinetics which represent the martensite 

fraction as a function of stress and temperature are more frequently used, e.g., in the 

constitutive models derived by Tanaka (1986), Liang and Rogers (1990), Brinson 

(1993), and Wang et al (2006), Such empirical transformation kinetics offer good 

agreement with experimental data. In order to further improve the simulated behavior 

of superelastic SMAs, a modified version of Liang-Rogers transformation kinetics is 

used in this study of rate-dependent constitutive model. However, any transformation 

kinetics rule like those described above can be used in conjunction with the 

mechanical law and energy balance equation if so desired. 



 46

In the Tanaka model, an exponential function is used to describe the evolution of 

martensite fraction ξ. It is noted that if the reverse transformation occurred before the 

forward transformation is completely finished, i.e., 10 << ξ , the Tanaka’s 

transformation equations would yield discontinuous results; therefore, a 

transformation kinetics rule like this can not be used to describe the inner loop 

behavior of superelastic SMAs. In the Liang-Rogers model, the transformation 

equation was modified and the martensite fraction ξ is described using a cosine 

function of stress and temperature instead of an exponential function. The inability of 

the Tanaka model to describe the inner loop behavior is overcome by this 

transformation kinetics. The evolution of martensite fraction during the phase 

transformation is defined by the equations below. 
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where the material constants aM and aA are defined as, 
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ξ0 is the initial martensite fraction at the beginning of the current transformation, and 

the transformation temperatures Ms, Mf, As and Af are referred to the martensite start 

temperature, martensite finish temperature, austenite start temperature and austenite 
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finish temperature, respectively. The material constants cA and cM are the slopes of the 

critical stress-temperature curve (as shown in Figure 3.2-(a)). A typical hysteresis of 

superelastic SMAs is shown in Figure 3.2-(b). For quasi-static uniaxial loading of 

SMA wires, in which the material temperature remains the same as the environmental 

temperature T0, the four characteristic stress in Figure 3.2-(b) can be expressed using 

these material constants, 
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However, the Liang-Rogers transformation kinetics is unable to capture the behavior 

of shape memory effect at temperatures below Ms. In the Brinson model (Brinson 

1993), this transformation equation is further modified to overcome this defect by 

differentiating the stressed-induced and temperature-induced components in the 

martensite fraction, and as a result of this, the Brinson transformation kinetics rule 

takes a more complex form than the Liang-Rogers model. For superelastic 

applications, the martensite fraction is induced solely by stress, and it is unnecessary 

to distinguish between the twinned and detwinned variants of martensite. For 

simplicity, the Brinson transformation kinetics is not presented and studied in this 

paper. The transformation kinetics adopted in this study is modified from the Liang-

Rogers model, and it does not differentiate the stressed-induced and temperature-

induced components of the martensite fraction. 

Based on the writers’ research as well as those by Prahlad and Chopra (2001), it 

can be shown that the Liang-Rogers transformation kinetics results in relatively sharp 

transition at the points of critical stress, which is inconsistent with experimental data.  
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To achieve a smooth transition at critical stress, we propose to use a sigmoid function 

in the transformation kinetics equation. The sigmoid function is defined as, 
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The evolution of martensite fraction can be expressed as  

Austenite→ Martensite: 
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Martensite → Austenite: 
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where the critical temperatures TM and TA are defined as 
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The material constants cM and cA are as defined before, while the material constants aM 

and aA are defined here as 
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This results in a starting point and finishing point of transformation that corresponds 

to the martensite fraction of 0.01 and 0.99 respectively. The rate form of this 

transformation equation can be derived from Equation (3-21) as follows, 

Austenite → Martensite: 
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Martensite → Austenite:  
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where the function g(.) is defined as 

 2)1(
)(g x

x

e
ex

+
−

≡  

 

3.2.4 Constitutive model with non-constant elastic modulus 

3.2.4.1 Helmholtz free energy 

In previous derivation, all material functions are assumed constant. However, the 

Young’s modulus E of SMA is experimentally found to be strongly dependent on the 

martensite fraction, ξ. To address this, the following expression was assumed for the 

Young’s modulus by Liang and Rodgers (1990) as well as Sato and Tanaka (1988), 

 )()( ama EEEE −+= ξξ  (3-23) 

where constants Ea and Em are Young’s modulus for austenite and martensite 

respectively. Similar to Equation (3-11), the Helmholtz free energy can be accordingly 

expressed as 
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where the Young’s modulus E(ξ) is described by Equation (3-23), and all material 

properties such as L, Cp and εl are constants. However, the constitutive model for non-
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constant L, Cp and εl can also be derived with the same procedure as described in this 

section if so desired. 

 

3.2.4.2 Constitutive equation 

From Equations (3-5), (3-23) and (3-24), we obtain the following constitutive 

equations, 
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In the above equations, Equation (3-25a) has a similar form to Equation (3-12a), 

Equation (3-25b) is identical to Equation (3-12b), while Equation (3-26c) has a 

different form from Equation (3-12c) because of non-constant elastic modulus. It is 

noticed that the mechanical law, i.e., Equation (3-25a), is still consistent with the 

Brinson model with non-constant material properties and can be reconstructed by a 

special interpretation of the standard Voigt model (Brinson and Huang 1996). The 

ratio of the coefficients before ξ and ε in Equation (3-25a) has to be -εl if the 

maximum residual strain εl is considered as a temperature-independent constant (Liang 

and Rogers 1990, Brinson 1993). 

The rate form of constitutive equations are obtained by differentiating the two 

sides of Equation (3-25) simultaneously, 

 ξξεεξσ ),()( Ω+= E  (3-26a) 
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where material property Ω(ε, ξ) is defined by 

 ))(()(),( ξεεξεξε laml EEE −−+⋅−=Ω  

In comparison with the case for constant elastic modulus, the rate form of mechanical 

law with non-constant elastic modulus is more complicated, although these two 

expressions have very similar form. The material property Ω is a function of both 

variables ε and ξ. Consequently, the ratio of material properties Ω to E is not equal to  

-εl.  

 

3.2.4.3 Energy balance equation 

With the similar assumption and procedure of section 2.2.3, we can obtain the energy 

balance equation as 
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The term on the left side of Equation (3-28) represents the energy dissipation rate, 

which can also be derived based on the Voigt model in micromechanics. Figure 3.3 

shows the Voigt model and its parameters corresponding to time t and t+dt 

respectively. The energy dissipation is equal to the mechanical work minus the 

increase of elastic strain energy, i.e., 
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By ignoring second and higher order terms, the rate of energy dissipation reads 
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The first term, similar to the expression for constant elastic modulus, represents 

the mechanical work on the inelastic deformation. The second term represents the loss 

of elastic strain energy due to the increment dξ, because the elastic modulus of 

austenite and martensite is different. The total energy dissipation in one cycle, i.e. the 

integration of Equation (3-30) over the time duration of one cycle, should be equal to 

the enclosed area of the hysteresis loop. The terms on the right-hand side of Equation 

(3-28) are the same as those of Equation (3-17). Thus Equation (3-28) has a similar 

physical interpretation as Equation (3-17), while it involves a more complex form for 

expressing the energy dissipation term compared with the case with constant elastic 

modulus. 

 

3.2.4.4 Transformation kinetics 

The transformation kinetics needs no modification for model with non-constant elastic 

modulus. Therefore the transformation equations described in Section 2.2.4 are still 

applicable for the model with non-constant elastic modulus. 
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3.2.5 Integration algorithm 

Since the energy balance equation is in its rate form, it is convenient to use the rate 

form of the mechanical law and transformation kinetics too. The rate form of the 

constitutive model with non-constant elastic modulus comprised of Equations (3-26a), 

(3-27) and (3-22) is used for the numerical analyses in the next section. 

For numerical simulation purpose, it is assumed that deformation time history is 

known a priori, and thus strain rate ε  is also known at each time step. In order to 

solve for the three variants – σ, T and ξ, these three constitutive equations need to be 

integrated simultaneously. Each of these equations involves more than one term of σ , 

T or ξ  which are all unknowns for the current step. If these three equations is to be 

solved directly, the value of one of σ , T or ξ  from the previous step should be used 

first to solve the other two terms and then an iterative procedure has to be applied until 

specified precision is reached. This iterative method requests additional computing 

time and is not very efficient for dynamic analysis of large structural system with 

SMA based devices. However, it is noted that all three equations only involve the first 

power of σ , T or ξ . If we view these three equations as a set of simultaneous 

algebraic equations of σ , T or ξ , each rate form - σ , T and ξ  can be easily 

expressed in terms of variablesσ , T and ξ , i.e., the constitutive equations can be 

rewritten into the form,  
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These differential equations are simultaneously solved using the 4th order Runge-Kutta 

method in this study. This time integration method is still applicable even if other form 

of transformation kinetics equations (e.g., Tanaka 1986, Liang and Rogers 1990, 

Brinson 1993, Auricchio 2001) instead of Equation (3-22) is to be used. 

  

3.2.6 Numerical Examples 

In this section the simulation by the thermo-mechanical model is compared with the 

test results of superelastic Nitinol wires under different frequencies and different 

amplitude in order to verify the ability of this model to capture the rate-induced 

thermal effect under dynamic loading. The superelastic Nitinol wires tested in this 

study is a product of Memry Corporation with a diameter of 0.58 mm (0.025 in). 

Before the formal test, the Nitinol wires were trained by cyclic preloading in order to 

minimize accumulation of residual strain and stabilize its hysteretic behavior. More 

details of test program and corresponding results are presented in the Section 2.2.5. 

The parameters of the constitutive model used in this study to simulate the 

superelastic behavior of Nitinol wires are given in Table 3.1. Using knowledge of 

these thermo-mechanical parameters, these model parameters were indirectly derived 

from the stress-strain curves of superelastic Nitinol wires obtained in the experimental 

study. Parameter values suggested by other researchers were taken into account when 

identifying the values of these model parameters. Because in the wire test program, 

relatively large aluminum gripping fixtures were used at both ends of the wire 

specimen, heat contact conduction as well as heat convection dominated the heat 
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transfer in the experiments. The test results of Nitinol coupon by Schmidt (2006) also 

suggested that the end of Nitinol specimen would remain at room temperature due to a 

strong heat exchange with the gripping fixture. In light of this observation, a value 

greater than the theoretical value which only considers the heat convection is chosen 

to achieve good agreement with experimental stress-strain data. 

It is seen in Figure 3.4 that the presented thermo-mechanical constitutive model 

can predict the superelastic behavior of Nitinol wires quite well for a variety of 

loading rates. It is capable of capturing two major thermo-mechanical behaviors of 

superelastic Nitinol wires under varying loading rates – reduction of hysteresis area 

and thus energy dissipating capacity as well as increased slope of transformation 

plateau with increasing loading rates. It can also replicate the phenomenon of change 

in hysteresis loops with increasing number of load cycles, which is due to the 

temperature change in superelastic Nitinol wires. Notable discrepancy between the 

experimental results and simulation results can be observed in the hysteresis shape at 

large strains over 5%. This is due to the difference between the evolution of martensite 

fraction in the experiment data and that described by Equation (3-22) at large strains. 

More accurate but sophisticated transformation kinetics equations need to be used to 

minimize this discrepancy. 

Figure 3.5 presents the experimental and simulation results of temperature change 

in superelastic Nitinol wire specimens. Figure 3.5-(a), (b) and (c) show the 

temperature-strain profile for loading frequencies of 0.001 Hz, 0.01 Hz and 0.1 Hz, 

respectively. The temperature variation under higher loading frequencies was not 

measured due to the limitation of thermocouple measurement in the test. Figure 3.5-(d) 
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shows the time history of the wire specimen temperature from both the experimental 

and numerical results. It is seen that the proposed constitutive model can properly 

predict the trend of temperature change in superelastic Nitinol wires: negligible 

temperature fluctuation under quasi-static loading (0.001 Hz); slight cooling down at 

medium loading frequency (0.01 Hz, 0.1 Hz) and slight heating up at further increased 

loading frequency (5 Hz). This cooling or heating trend caused the hysteresis loops to 

shift downwards or upwards with increasing number of load cycles until the 

temperature cycles are stabilized (as shown in Figure 3.4). Although the simulated 

temperature agrees fairly well with the test results for the loading frequencies of 0.001 

Hz and 0.01 Hz, the simulation seems to over-predict the temperature variation at the 

loading frequency of 0.1 Hz. Such a discrepancy may arise from either inaccuracy of 

the identified model parameters or error in temperature measurement.  

The energy dissipation capacity of superelastic SMA is crucial to its effectiveness 

in damping out structural vibration. Recent research in SMA-based damping devices 

found that for such applications the slope of transformation plateau of superelastic 

SMA also affects the control effectiveness such as reduction of maximum and residual 

story drift in building structures under earthquake loading. Experimental results show 

that these two properties of superelastic Nitinol wires are loading-rate dependent. It is 

thus desirable for a constitutive model to capture the effect of loading rate on these 

two properties –equivalent damping ratio and the stiffness ratio of transformation 

plateau. The equivalent damping ratio is defined as the energy dissipated per cycle 

divided by the product of 4π and strain energy; the stiffness ratio of transformation 

plateau is defined as the ratio of the stiffness of loading plateau to the initial stiffness 
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of austenite. It is seen in Figure 3.6 that the proposed constitutive model can fairly 

accurately reproduce the trend and offer a good estimate of the damping property and 

stiffness ratio of transformation plateau of superelastic Nitinol wires. Since at certain 

loading frequencies noticeable difference exists in the hysteresis loops of the first 

several cycles and the subsequent cycles, these two quantities are calculated from the 

cycle after the stabilization of the stress-strain curve. For loading frequencies in the 

range between 0.1 Hz and 1 Hz which is often the frequency range of interest for 

vibration control application, the error of both the equivalent viscous damping ratio 

and the stiffness ratio of transformation plateau is observed to be less than 12%. 

Figure 3.7 shows the hysteresis of superleastic Nitinol wires corresponding to 

experimental data and numerical simulation respectively. The data in Figure 3.7 

corresponds to at a loading frequency of 0.1 Hz but with different strain amplitude. It 

is seen that the proposed constitutive model can generate a fairly good estimate of the 

hysteresis loops for different strain amplitudes. Slight discrepancy is also observed 

along the unloading path for small amplitude cases, which may result in an 

overestimate of the energy dissipation capacity in small amplitude vibration. This 

discrepancy is due to the difference between the real transformation kinetics and that 

given by Equation (3-22). 

 

3.2.7 Summary 

This section presents an improved thermo-mechanical constitutive model which can 

be used to predict the uniaxial superelastic behavior of SMA wires at varying strain-
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rate. The mechanical law governing the stress-strain behavior and the energy balance 

equation reflecting the rate-dependent thermal effect are derived within a 

thermodynamics framework. Alternatively, the Voigt model can be used to explain the 

physical meaning of the energy balance equation. A new form of transformation 

kinetics is also proposed to describe the evolution of martensite fraction for improved 

agreement with experimental stress-strain relation of superelastic Nitinol wires. These 

three principal components – mechanical law, energy balance equation and 

transformation kinetics comprise the proposed constitutive model for superelastic 

SMA wires. Expressions for both constant and non-constant elastic modulus are 

presented in this paper and non-constant elastic modulus has more complex expression 

for the derivative mechanical law and the energy balance equation. The integration 

scheme proposed in this paper facilitates the numerical simulation of the proposed 

constitutive model, especially for dynamic analyses of large scale structural systems 

with SMA based device. 

A series of unaxial tensile tests on 0.58-mm diameter superelastic Nitinol wires 

were compared with the simulation results by the thermo-mechanical constitutive 

model. Both the experimental and simulation results indicate that loading rate affects 

the thermo-mechanical behavior of superelastic Nitinol wires. The proposed 

constitutive model exhibits a good agreement with the experimental stress-strain 

relationship at the loading rates considered. It can predict reasonably well the 

reduction in hysteresis area, rise of the transformation plateau and the increased slope 

of the loading transformation plateau with increasing loading rates. It can also capture 

the tendency of temperature change in superelastic Nitinol wires under various loading 
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rates: under quasi-static loading rate the temperature fluctuation is ignorable, and 

under medium loading rate the wire cools down in the first a few cycles, while under 

fast loading rate the average of the wire temperature rises in the first few cycles due to 

self-heating effect. This temperature change leads to a change in hysteresis with 

increasing number of cycles, which is consistent with the experimental observations. 

The equivalent viscous damping ratio and stiffness ratio of transformation plateau 

were also evaluated in this study for different loading frequencies, for both the 

experimental data and the simulation data. The proposed constitutive model is able to 

reflect the trend of these properties with increasing loading rates and a reasonably 

good agreement between the experimental and simulation data can be achieved. 

 

3.3 MODIFIED WILDE MODEL 

3.3.1 Introduction 

This section employs a modified version of the constitutive model for SMA initially 

developed by Grasser and Cozzarelli (1992). The Graesser-Cozzarelli model for SMA 

is an extension of a rate-independent model for hysteretic behavior proposed by 

Ozdemir (1976). The Graesser-Cozzarelli model which simulates the one-dimensional 

stress-strain relationship of superelastic SMA wires is written as (Grasser and 

Cozzarelli 1992): 
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where σ, ε are the one-dimensional stress and strain, respectively; β is the one-

dimensional backstress; E is the initial modulus of elasticity of SMA; Y is the upper 

(loading) plateau stress (i.e., the ‘yielding’-like plateau in the loading stage); α = 

Ey/(E-Ey) is a constant that controls the slope of the stress-stain curve, where Ey is the 

slope after yielding; fT, a, and c are material constants controlling the recovery of the 

inelastic strain upon unloading; n is a constant controlling the sharpness of transition 

between different phases; dot implies ordinary time derivative; erf(⋅) and H(⋅)  are the 

error function and unit step function (i.e., Heaviside function), respectively. and they 

are mathematically defined as, 
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Additionally, εin is the inelastic strain, which is expressed as follows, 

 
Ein
σεε −=  (3-35) 

The Graesser-Cozzarelli model was extended by Wilde et al. (2000) to include the 

hardening behavior of SMA material after the transition from austenite to martensite is 

completed. The constitutive model for SMA developed by Wilde et al. (2000) can be 

expressed as follows, 
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{ })(H)(erf εεεεεαβ −⋅⋅⋅+= afE c
Tini  (3-36b) 

The functions uI(ε), uII(ε) and uIII(ε) are expressed respectively as, 
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In Equation (3-36), Em is the elastic modulus of martensite; the second term in 

Equation (3-36) describes the elastic behavior of martensite, which is activated when 

the strain value is greater than εm. Strain εm defines the point where the transition of 

SMA from austenite to martensite is completed. A smooth transition from a curve of 

slope Ey to a curve of slope Em is obtained by adding the last term in Equation (3-36a), 

which is evaluated only during loading and for the strain range ε1 < |ε| < εm. The 

constants a1, a2 and a3 in Equation. (3-36a) control the curvature of the transition from 

austenite to martensite. These constants are selected in such a way that the slopes of 

the function defined by the last term at points ε1 and εm are consistent with those of 

SMA “plastic” behavior and martensite elastic response. Three terms in Equation (3-

36a) control the different parts of stress-strain curve respectively, and at anytime only 

one of them is activated (as shown in Figure 3.8). 
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3.3.2 Model Description 

In this study, the above-described Wilde model for SMA is further modified to 

enhance the stability of numerical simulation, speed up the computation time and 

improve the simulation effect. Thus the constitutive model employed in this study for 

SMA wires is called modified Wilde model. The modified Wilde model which 

simulates the one-dimensional stress-strain relationship of superelastic SMA is 

expressed as follows, 
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where sgn(⋅) is the Signum function. Since the slope of each segment and sharpness of 

the transition to the plateaus are different for the loading and unloading stages, 

different parameters E and n need to be used for the loading and unloading stages. a 

and b are material constants controlling the transition from lower plateau to elastic 

range during the unloading process; function  g(⋅) is defined as 
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The segments on stress-strain curve corresponding to three terms in Equation (3-40a) 

are shown in Figure 3.9-(a), which are different from the original Wilde model. 

It is assumed that SMA wires can only undertake tension force, i.e., σ = 0 if ε < 0. 

Equation. (3-40) can be rewritten as follows when ε > 0, 

loading 0, if >ε  
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where α, E and n can take different values during the loading and unloading stages if 

different stiffness or sharpness of transition are demanded. The effects of loading rate 

and temperature were not considered in the Wilde model. Similarly, the modified 

Wilde model presented here for superelastic SMA does not include the loading rate 

and temperature effects as well, and thus it is a rate-independent phenomenological 

model. 

Figure 3.9 shows the stress-strain curves of superelastic Nitinol wires obtained 

from a simulation of the modified Wilde model and test data under two different 
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frequencies—0.001 Hz (quasi-static test) and 2 Hz. The superelastic Nitinol wires 

(Type A), have a diameter of 0.58 mm (0.025 in). The details of test program and 

corresponding results are described in the Section 2.2.5. The corresponding parameter 

values of the modified Wilde model are listed in Table 3.2. It can be seen that the 

modified Wilde model well agrees with two experimentally measured hysteretic loops 

respectively. Compared with the original Wilde model, the modified Wilde model 

leads to smoother transition of stress-strain curve which is closer to experimental 

results of superelastic Nitinol wires. However, it should be noted that the modified 

Wilde model, like the original Wilde model, is still a rate-independent 

phenomenological model, and two different sets of parameters have to be used for two 

different frequencies respectively (as shown in Table 3.2). Thus it is unable to 

simultaneously capture hysteretic behavior under various loading rates. The effect of 

using such a rate-independent constitutive model in seismic response analyses will be 

further discussed in Section 3.5. 

 

3.4 FLAG-SHAPED MODEL 

The piecewise-linear flag-shaped hysteretic model has been widely used in the study 

of various self-centering systems, such as rocking walls, post-tensioned concrete or 

steel frames, SMA devices, and etc, for the sake of simplicity (e.g. Christopoulos et al 

2002; Seo and Sause 2005; Mao and Li 2005; Andrawes and DesRoches 2005). A 

typical flag-shaped hysteretic model to describe the stress-strain relationship of 

superelastic Nitinol wires can be fully defined with five parameters - elastic modulus 
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of austenite Ea, elastic modulus of martensite Em, ‘yield’ stress σy, post-‘yield’ 

stiffness coefficient α and energy dissipation coefficient β, as shown in Figure 3.11.  

Figure 3.10 shows the stress-strain curves of superelastic Nitinol wires obtained 

from a simulation of the flag-shaped model and test data under two different 

frequencies—0.001 Hz (quasi-static test) and 2 Hz. The details of test program and 

corresponding results are described in the Section 2.2.5. Although the flag-shaped 

model can predict reasonably well the key features of superelastic Nitinol wires such 

as initial stiffness, post-‘yield’ stiffness, upper and lower plateau stress, apparent 

discrepancy can be observed between the test data and prediction from the flag-shaped 

model along the unloading path, which may lead to the overestimation of energy 

dissipation. Similar to the modified Wilde model, the flag-shaped model is rate-

independent and it is unable to simultaneously capture hysteretic behavior under two 

different loading rates. 

 

3.5 COMPARATIVE STUDY OF STRAIN RATE EFFECT  

3.5.1 Introduction 

The rate-dependent thermo-mechanical constitutive model described earlier can fairly 

well reproduce the hysteretic behavior of SMA materials under various loading rates. 

However, it is derived in a thermo-dynamics framework and the associated complexity 

often deters the use of this kind of model by engineers in seismic applications. 

Furthermore, the rate-dependent constitutive models for SMA cannot be directly used 

in nonlinear static analysis procedures such as push-over analyses, even if this model 



 66

can yield accurate and reliable results in nonlinear dynamic analyses. On the contrary, 

rate-independent phenomenological models for SMA cannot explicitly considered the 

temperature and loading rate effects, but they are very appealing to seismic 

applications because of their simpler mathematical expression and computationally 

less demanding than the thermo-mechanical constitutive models. 

In light of this observation, this section presents the results of a feasibility study on 

using rate-independent constitutive model for superelastic SMA in seismic response 

analyses of structures through a comparative study of three nonlinear constitutive 

models for superelastic SMA wires. Three constitutive models for superelastic SMA 

wires described previously in this chapter are considered in the comparative study: (i) 

the rate-dependent thermo-mechanical model (TM model); (ii) the modified Wilde 

model (MW model); (iii) a piecewise linear flag-shaped model (FS model). For the 

rate-dependent constitutive model (i.e. MW model and FS model), the parameters of 

the model are tuned with the dynamic test results with the loading frequency of 2 Hz 

(as shown in Figure 3.9-(b) and Figure 3.10-(b)). 

Parametric study of single-degree-of-freedom (SDOF) systems with superelastic 

SMA resistant element was carried out with varying initial elastic periods and strength 

reduction factors. Results of nonlinear dynamic analyses of a 6-story building with 

SMA-based damping devices are also presented here. The results of this study show 

that with properly tuned parameters, rate-independent constitutive models can fairly 

well predict the seismic response behavior of structures equipped with SMA-based 

seismic response modification devices. 
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3.5.2 Parametric Study: SDOF System 

In order to compare the effect of different constitutive models on structural seismic 

response behavior, a parametric study of the nonlinear dynamic response of SDOF 

systems with superelastic SMA element was carried out in this study. The resisting 

force of the SDOF system is assumed to be provided by a superelastic Nitinol element. 

 

3.5.2.1 Equation of motion 

The governing equation of motion of a nonlinear SDOF system under earthquake 

loading is 

 gxmxxFxcxm ⋅−=+⋅+⋅ ),(  (3-45) 

where m is the mass; c is the viscous damping coefficient; x , x  and x are the relative 

displacement, velocity and acceleration of the system; and gx is the ground 

acceleration; ),( xxF  is the nonlinear resisting force of the superelastic Nitinol 

element which is modeled using one of the afore-mentioned constitutive models. As 

noted before, the parameters of rate-independent models are corresponding to the 

dynamic test of superelastic Nitinol wires with the loading frequency of 2 Hz. The 

viscous damping ratio of the system is assumed to be 5% in this study. 

With the constitutive model’s parameters derived from experimental data, the 

values of the energy dissipation coefficient and the post-‘yield’ stiffness coefficient for 

the superelastic SMA element are thus specified. Two essential parameters of this 

SDOF system are its initial elastic period T0 and ‘yield’ strength Fy, expressed as 
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where k0 is the initial stiffness of the system, Fe is the elastic strength demand. Here 

the yield strength Fy is found by dividing Fe with the strength reduction factor R. With 

known stress-strain relationship for the superelastic SMA element, the initial elastic 

stiffness and yield strength can be adjusted by altering its cross section area and length. 

The range of initial elastic period considered in this study is 0.2 sec ≤ T0 ≤ 2.5 sec 

which is typical for one- to 20-story steel braced frames. The values of the strength 

reduction factor R considered in this study are 2, 4 and 6 respectively. 

The nonlinear time history analyses employ the suite of design basis earthquake 

(DBE) ground motions (i.e., with 10% probability of exceedance in 50 years) which 

was developed by Somerville et al. (1997). The details of ground motions are 

described in Appendix A. This earthquake suite contains 20 records designated as 

LA01 - LA20, and it is corresponding to site class D (firm soil) at downtown, Los 

Angeles.  

 

3.5.2.2 System response indices 

In this comparative study of the three afore-mentioned constitutive models for 

superelastic Nitinol wires, the following response indices of SDOF system were used 

in the evaluation: 

Peak displacement ductility: yxxmax=µ , where xy is the ‘yield’ displacement 

which corresponds to the ‘yield’ strain εy = 0.9% for the superelastic Nitinol wires, as 
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shown in Figure 3.10-(b). It should be noted that the ‘yield’-like plateau is not due to 

plastic deformation but phase transformation, thus no damage accumulation occurs in 

superelastic Nitinol element as long as its strain does not exceed 8%. Beyond the 8% 

strain, residual strain may occur after unloading due to plastic deformation and thus 

8% is assumed to be the maximum recoverable strain level for the superelastic Nitinol 

wires used in this study. If the damage-free and self-centering features of superelastic 

SMA element are desired under earthquake loading, the ductility ratio µ has to be 

limited to below 9. 

Peak acceleration: amax, acceleration response is an important indicator of the base 

shear caused by earthquake loading as well as the potential damage of acceleration-

sensitive elements. 

Normalized dissipated energy: 2
02

1
y

dis
dis xk

E
e = , where Edis is the total hysteretic 

energy dissipated by the superelastic SMA element. This index provides a measure of 

the energy dissipating capacity predicted by different constitutive models. 

 

3.5.2.3 Results and discussion 

Figure 3.12 shows the statistical results of the above three key response indices for 

SDOF system with the three constitutive models respectively under twenty DBE 

earthquakes. Nine curves are drawn in each sub-figure. The middle set of curves in 

each sub-figure represents the ensemble average for the corresponding response index, 

while the upper and lower sets of curves represent one standard deviation from the 

ensemble average respectively. Here the ensemble average and standard deviation are 
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calculated based on the system response under twenty earthquakes from the DBE suite. 

The three constitutive models give similar results in terms of the trend of the response 

indices with varying initial period values of the SDOF system. The maximum 

difference between the ensemble average curves of the peak displacement ductility 

and peak acceleration for the three constitutive models is observed to be less than 8%. 

Similarly, only very little difference is observed in the curves corresponding to a 

standard deviation away from the ensemble average curve. In terms of energy 

dissipation, however, notable difference exists between the response index curves 

corresponding to the three constitutive models. Compared with the TM model, the FS 

model tends to overestimate the energy dissipation capacity for all three values of the 

strength reduction factor, and the error of the ensemble average could reach up to 35% 

as for the case of R = 2. In comparison with TM model, the MW model offers a fairly 

good estimation of the energy dissipation capacity for the cases of R = 2 or 4, but 

significantly overestimates the energy dissipation capacity for the case of R = 6, 

especially for short periods in which the error between the ensemble average curves 

could reach up to 60%. The difference between the curves corresponding to a standard 

deviation away from the ensemble average is even larger. For strength reduction factor 

R=6, peak displacement ductility ratios tend to exceed the limit of 9 for systems with 

short periods for which none of the three constitutive models can accurately predict 

the energy dissipation capacity of the superelastic SMA element. 

Figure 3.13 presents the correlation between the response indices corresponding to 

the three constitutive models when the strength reduction factor is equal to 4. Each 

data point in the sub-figure of Figure 3.13 represents the respective response index 
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result corresponding to a different earthquake record and initial period of the SDOF 

system. It should be noted that in a few cases the values of the displacement ductility 

exceeded 9，which is the maximum allowable ductility ratio corresponding to the 

maximum recoverable strain of the superelastic Nitinol element. These cases with µ > 

9 are excluded from Figure 3.13 since none of the three constitutive models can 

reproduce the complex hardening behavior of superelastic Nitinol wires beyond 8% 

strain. The dashed lines in these figures delineate the boundary corresponding to a 

10% difference, i.e. any data point outside the boundaries implies the difference 

between the response indices from the corresponding two constitutive models are 

greater than 10%. It is seen from Figure 3.13 that the differences in the peak 

displacement ductility and peak acceleration between the concerned constitutive 

models are relatively small, and in most cases the difference is less than 10%. 

However, slightly larger difference can be observed for the energy dissipation between 

the three constitutive models. Compared with the TM model, the FS model tends to 

overestimate the energy dissipation in most cases, while the MW model tends to 

overestimate the energy dissipation only in the cases with large energy dissipation 

which usually corresponds to large peak ductility ratios. 

Figure 3.14 shows the typical stress-strain curve of superelastic SMA element 

from the TM model for the SDOF systems subjected to earthquake record LA09. The 

hysteretic loops in Figure 3.14-(a) and (b) were obtained from SDOF systems with an 

initial period of 0.3 sec and 3.0 sec respectively. It is seen that the TM model gives 

slightly different results in the unloading segment of the stress-strain curve as well as 

energy dissipation capacity of the superelastic Nitinol element. However, unlike in 
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Figure 3.4, no significant shift of the hysteretic loops is observed in this figure for both 

cases with different initial periods. As discussed earlier, the shift of the hysteretic 

loops or the change in zero-strain temperature is a gradual progress, and larger 

amplitude vibration always leads to larger temperature variation including change of 

zero-strain temperature; however, structural response of larger amplitude under strong 

earthquakes usually lasts for a limited time which is insufficient to induce the 

considerable change of zero-strain temperature as well as shift of hysteretic loops. The 

change in zero-strain temperature predicted by the TM model for both initial periods is 

less than 4ºC, which results in negligible shift of hysteretic loops. 

It is observed that only minor difference exists in the first cycle hysteresis between 

cases with different loading rates, and no significant shift of hysteretic loops occur 

under earthquake loading. Therefore, replacing rate-dependent constitutive model with 

rate-independent models such as the MW model or FS model appears to be acceptable 

for seismic analyses of structures with superelastic SMA element. The results given in 

Figure 3.12 and Figure 3.13 also suggest that the rate-dependent thermal effect of 

superelastic SMA elements has little effect on its dynamic behavior under earthquake 

loading and all three aforementioned constitutive models for superelastic Nitinol wires 

give close estimations of the peak displacement ductility and peak acceleration. 

 

3.5.3 Nonlinear Dynamic Analyses of MDOF System 

This section presents nonlinear seismic analyses of a 6-story steel braced frame 

equipped with SMA based bracing elements. The structural response behavior 
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simulated using the aforementioned three constitutive models for superelastic Nitinol 

wires is discussed here. 

3.5.3.1 Prototype building 

In this study, the 6-story frame structure with a special SMA based bracing element 

termed self-centering friction damping brace (SFDB) is selected as the prototype 

structures for nonlinear time history analyses. The details about this 6-story building 

are described in Appendix B. The mechanical configuration of SFDB will be 

discussed in next chapter. Like BRB, typically SFDB would also be part of the bracing 

system of concentrically braced frame. Thus the SFDBs would be installed at the same 

locations as shown in Figure B.2. The ‘yield’ capacities of SFDBs are equal to the 

average of tensile and compressive strength of corresponding BRBs, i.e. 105% of the 

yield strength shown in Table B.1. The lengths of superelastic Nitinol wire strands in 

the SFDBs is 0.85 m for the 1st story and 0.7 m for all other stories, which translates 

into 8% strain in the superelastic Nitinol wires at a 2% story drift ratio. As mentioned 

earlier, in this study, 8% strain is taken as the maximum recoverable strain (without 

residual deformation) for superelastic Nitinol wires, that is, if the strain of Nitinol 

wires was lower than 8% during an earthquake, residual strain of the Nitinol wires 

would be negligible and thus no repair or replacement of SFDBs would be necessary 

after the earthquake if other parts are designed to remain elastic during design basis 

earthquakes. The friction force between the two sliding parts in the SFDBs is set to be 

28% of brace ‘yield’ strength.  
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3.5.3.2 Nonlinear time history analyses 

Nonlinear time history analyses of this 6-story prototype building with SFDBs was 

carried out using the computer program DRAIN-2DX (Prakash et al. 1993), and the 20 

records from the DBE earthquake suite were also employed. In the nonlinear time 

history analyses, only one bay of the braced frame was modeled and analyzed. Thus 

the seismic mass of each floor was calculated by dividing the total seismic floor 

masses with the number of braced bays in each principal direction (i.e., 1/6 of the total 

dead load for the 6-story building). The detailed analytical model is described in 

Appendix B.  

In order to simulate the hysteretic behaviors of SFDBs predicted using the 

aforementioned three constitutive models, three new elements which correspond to the 

TM model, MW model and FS model respectively were developed in DRAIN-2DX 

for this study. In addition to the constitutive relationships described in this chapter for 

superelastic Nitinol wires, the friction effect in SFDBs was also included in these three 

elements.  

 

3.5.3.3 Results and discussion 

Figure 3.15 to Figure 3.17 show the results of nonlinear seismic analyses of the 6-

story SFDB frames using the three aforementioned constitutive models for 

superelastic Nitinol wires. Figure 3.15 shows the maximum inter-story drift ratios of 

the 6-story SFDB frames subjected to the earthquake ground motions in the 

aforementioned DBE suite. The mean values of the maximum inter-story drift ratios 
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for the case of the TM, MW and FS models are 0.63%, 0.63% and 0.59% respectively. 

Using the results of the TM model as datum, the difference in the maximum inter-

story drift ratios between the MW and FS models are less than 15% under all twenty 

earthquake records, and is less than 6% under 15 out of the 20 earthquake records. For 

all three constitutive models, the residual inter-story drifts of the 6-story SFDB frames 

were negligible under all twenty earthquake records due to the self-centering behavior 

of SFDB. It is noted that with the specified Nitinol wire length, the maximum 

recoverable strain - 8% for the Nitinol wires corresponds to 2% story drift ratio for the 

prototype building. Therefore, whenever transient story drift ratio exceeds 2%, the 

friction surface 2 of SFDBs begins to slip and residual deformation of SFDBs would 

occur. Thus the SFDBs would have to be repaired and replaced after earthquakes. 

However, since the peak inter-story drift ratios of the 6-story SFDB frames are always 

less than 2% under the twenty earthquake ground motions, the SFDBs need not be 

repaired and the three constitutive models are considered valid for this study.  

To better understand the effects of the three constitutive models on the seismic 

response behavior of the SFDB frame, Figure 3.16 shows typical time histories of its 

roof displacement and acceleration responses under the LA18 earthquake record. This 

LA18 record was derived from the ground motion recorded at the Sylmar station 

during the 1994 Northridge earthquake (Somerville et al 1997). It is seen that three 

constitutive models yield very similar seismic responses in the time history curves as 

well as peak values of the roof displacement and absolute acceleration. It is noted 

again that two of these three constitutive models considered in this study are rate-

independent models.  
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Figure 3.17 shows the statistical results of the nonlinear seismic response of the 6-

story SFDB frame under the DBE suite using the TM model, MW model or FS model. 

Figure 3.17-(a), (b) and (c) show the distribution of the ensemble average of the peak 

displacements, peak acceleration and peak story drift ratio along the height of the 6-

story SFDB frames, respectively. The ensemble average was calculated based on the 

twenty earthquake ground motions in the DBE suite. It is clearly seen that all three 

constitutive models give similar distribution patterns for the structural seismic 

response along the height of the building, and the structural response ensemble 

average of these three models are very close to each other. Using the results of the TM 

model as a datum, the error of the seismic response predicted by the MW model is less 

than 3.6% in peak displacements and peak story drift ratios, and less than 8.5% in 

peak floor accelerations, while the error of the FS model is less than 4.5% for the peak 

floor displacements and accelerations, and less than 7.8% for the peak story drift ratios.  

 

3.5.4 Summary 

Most SMA materials exhibit strain rate dependent mechanical behavior, and 

implementing strain rate-dependent constitutive model in structural analysis software 

is rather complicated and computationally demanding. This study looks into the 

feasibility of replacing rate-dependent models with rate-independent constitutive 

models for superelastic SMA elements in seismic time history analyses of structures.  

Three uniaxial constitutive models for superelastic SMA are considered in this 

study: (i) modified rate-dependent thermo-mechanical model; (ii) the modified Wilde 
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model; and (iii) the piecewise-linear flag-shaped model. Although the latter two are 

rate-independent phenomenological models, their parameters can be more 

conveniently tuned based on experimental data from a series of unaxial dynamic test 

on superelastic Nitinol wires. These three constitutive models give different features in 

the stress-strain curves of superelastic Nitinol wires, such as the transition smoothness, 

which might yield different estimation of Nitinol’s energy dissipation capacity.  

A parametric study based on time history analyses of SDOF systems with different 

initial periods and strength reduction factors was carried out to study the effect of 

constitutive models on system response behavior. The parameters of the two rate-

independent constitutive models were calibrated using experimental data with a 

loading frequency of 2 Hz. Twenty design basis earthquakes for Los Angeles region 

were used in this study to get statistics on performance difference. It is found from the 

statistical results that the two rate-independent constitutive models give peak 

displacement ductility ratios and accelerations very close to the rate-dependent 

thermo-mechanical model, while noticeable difference in energy dissipation can be 

observed between the three constitutive models. Additionally, the seismic behavior of 

a 6-story prototype building equipped with special SMA-based damping devices term 

self-centering friction damping brace (SFDB) was also analyzed using the three 

constitutive models. Slight difference was observed in the seismic responses of the 

prototype building as predicted by the three constitutive models.  

In view of the similar seismic responses predicted by the three constitutive models 

for superelastic SMA element, it seems acceptable to use rate-independent constitutive 

models for superelastic SMA in seismic analyses of structures, as along as the 
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parameters of this rate-independent model are tuned to dynamic test data. Substantial 

difference of hysteresis shapes due to temperature variation under earthquakes was not 

observed in most cases of seismic response analyses. However, the use of more 

sophisticated thermo-mechanical constitutive models for SMA is still required in 

certain situations such as where significant change in environmental temperature is 

expected. 

 

3.6 CONCLUSIONS 

Two improved nonlinear constitutive models for SMA wires are proposed in this 

chapter. One is rate-dependent thermo-mechanical constitutive model which is 

composed of three principal components—mechanical law, energy balance equation 

and transformation kinetics. The other is a rate-independent phenomenological model, 

termed as the modified Wilde model, which is an extension of the model developed by 

Grasser and Cozzarelli (1992). Then a comparative study of these two constitutive 

models, along with piecewise-linear flag-shaped model, was carried out in order to 

investigate the feasibility of using rate-independent constitutive models for 

superelastic SMA elements in seismic time history analyses of structures. The 

nonlinear time history analysis results of both SDOF systems and one 6-story 

prototype building are presented. The study of nonlinear constitutive models for SMA 

elements has led to the following conclusions: 

 In the proposed thermo-mechanical model for superelastic SMA wire, non-

constant elastic modulus has more complex expression for the derivative 
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mechanical law and the energy balance equation than constant elastic modulus. 

The integration scheme proposed in this study can facilitate the numerical 

simulation of the proposed thermo-mechanical model. Alternatively, the Voigt 

model can be used to explain the physical meaning of the energy balance 

equation. 

 The proposed thermo-mechanical model exhibits a good agreement with the 

experimental stress-strain relationship at the various loading rates. It can predict 

reasonably well the loading rate-induced thermo-mechanical effect on the 

superelastic behavior of Nitinol wires, such as the reduction in hysteresis area, 

rise of the transformation plateau and the increased slope of the loading 

transformation plateau with increasing loading rates. It can also capture 

temperature variation in superelastic Nitinol wires under various loading rates. It 

is able to reasonably well reflect the trend of change of equivalent viscous 

damping ratio and stiffness ratio of transformation plateau with increasing 

loading rates 

 The modified Wilde model is capable of simulating well the experimental 

hysteretic behavior of superelastic Nitinol wires at one single loading rate. 

However, as a rate-independent model, it cannot accurately simulate the 

hysteresis of Nitinol wire under different loading rates. 

 The comparative study indicates that two rate-independent constitutive models 

give the seismic response of SDOF systems and prototype buildings very close to 

that from the rate-dependent thermo-mechanical model. Only slight difference 

was observed in the seismic response such as displacement and acceleration, 
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while noticeable difference in energy dissipation can be observed between the 

three constitutive models. Thus it is acceptable to use rate-independent 

constitutive models for superelastic SMA in seismic analyses of structures if the 

statistical results of displacement and acceleration are of concern. 

 Considering the mathematical complexity, computational demanding and 

inconvenience in nonlinear static analyses of the rate-dependent constitutive 

models, the rate-independent constitutive models for superelastic SMA materials 

are very appealing to the engineer community for seismic applications of SMA-

based devices. 

 The use of more sophisticated thermo-mechanical constitutive models for SMA is 

still required in certain situations such as where significant change in 

environmental temperature is expected. 
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Table 3.1 Parameters of thermo-mechanical model for superelastic Nitinol wires 

Parameter Units Value 

Ms °C -53 

Mf °C -86 

As °C -29 

Af °C -5 

EA GPa 40 

EM GPa 22 

εl -- 0.035 

cA MPa/K 5.5 

cM MPa/K 4.0 

Cp J/(kg·K) 600 

L J/kg 10,000 

k W/K 0.042 
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Table 3.2 Parameters of the modified Wilde model for superelastic Nitinol wires 

Value 

Parameter Units 0.001 Hz 2 Hz 

E  MPa 40,000 40,000 

Em MPa 21,000 21,000 

εm -- 0.065 0.063 

ε1 -- 0.043 0.041 

Y MPa 360 340 

α -- 0.02 0.1 

fT -- 0.65 0.128 

a -- 150 150 

c -- 0.75 0.75 

n1 (loading) -- 3 3 

n2 (unloading) -- 0.9 1 
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Figure 3.1 Viogt model for superelastic SMA with constant elastic modulus  

 
 
 
 

 

(a) Critical stress-temperature diagram                         (b) Typical stress-strain curve  

Figure 3.2 The relationship between critical stress and temperature for superelastic 
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Figure 3.3 Viogt model for superelastic SMA with non-constant elastic modulus 
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Figure 3.4 Stress-strain curve of superelastic Nitinol wire at various loading rates 
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Figure 3.5 Experimental and simulated temperature variation of Nitinol wire specimen 
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Figure 3.6 Damping capacity and stiffness ratio of upper transformation plateau of 

superelastic Nitinol wires from experiment and simulation data 
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Figure 3.7 Stress-strain curve of superelastic Nitinol wires with various strain 

amplitudes (loading frequency = 0.1 Hz for all cases) 
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Figure 3.8 Stress-strain curve of superelastic Nitinol wires from test data (0.001 Hz) 

and the Wilde model  
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                           (a) 0.001 Hz                                                       (b) 2 Hz 

Figure 3.9 Stress-strain curve of superelastic Nitinol wires from test data  and the 
Modified Wilde model 
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                           (a) 0.001 Hz                                                       (b) 2 Hz 

Figure 3.10 Stress-strain curve of superelastic Nitinol wires from quasi-static test data 
and the multi-linear flag-shaped model 

 
 
 
 
 
 

 
Figure 3.11 Typical flag-shaped hysteretic loop for superelastic Nitinol wires 
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Figure 3.12 Statistical results of the response indices for SDOF system 
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Figure 3.13 Comparison of response indices for R=4: (a), (b) and (c) - FS model vs. 

TM model; (d), (e) and (f) - WD model vs. TM model 
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Figure 3.14 Typical stress-strain relationship of superelastic Nitinol elements under 

earthquake record LA09 

 

 
 

LA02 LA04 LA06 LA08 LA10 LA12 LA14 LA16 LA18 LA20
0

0.005

0.01

0.015

0.02

Earthquake Ground Motion

M
ax

im
u

m
 D

ri
ft

 R
at

io

TM
MW
FS

 

Figure 3.15 Maximum inter-story drift ratio for the 6-story SFDB frame 
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Figure 3.16 Time history response of the 6-story SFDB frame under earthquake 

ground motion LA-18: (a) roof displacement; (b) absolute roof acceleration 



 95

0 5 10 15
0

1

2

3

4

5

6

F
lo

o
r 

n
u

m
b

er

Displacement (cm)
0 5 10

0

1

2

3

4

5

6

F
lo

o
r 

n
u

m
b

er

Acceleration (m/s2)

0 0.5 1 1.5
0

1

2

3

4

5

6

S
to

ry
 n

u
m

b
er

Peak drift ratio (%)

 

 
TM
MW
FS
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Figure 3.17 Ensemble average of seismic response of the 6-story SFDB frame under 

design basis earthquakes 
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CHAPTER 4 DEVICE MECHANICS 

This chapter presents a special type of bracing element termed self-centering friction 

damping brace (SFDB). The SFDB, with its core component made of superelastic 

Nitinol wires, exhibits a flag-shaped hysteresis loop, and thus it has a potential to 

establish a new type of concentrically braced frame systems with self-centering 

capability. This chapter describes the mechanical configuration and experimental test 

results of SFDB. 

 

4.1 CONFIGURATION AND MECHANICS OF SFDB 

The SFDB is a passive energy dissipating device that would be typically installed in a 

concentrically braced frame building as part of the bracing system which resists lateral 

seismic loads.  The mechanical configuration of SFDB is schematically illustrated in 

Figure 4.1. The SFDB is comprised of three major steel parts, designated as block “A”, 

block “B” and block “C” respectivley. The slot on the block “B” enables these three 

parts to slide past each other at the contact surface. Stranded superelastic Nitinol wires 

are attached to block “A” and “B” using anchoring fixtures similar to that used in 

prestressed concrete. When the SFDB is subjected to either tension or compression 

force, the Nitinol wire strands in one direction will be always in tension. In order to 

enhance its energy dissipation capacity, a pre-determined amount of normal force is 

applied at the sliding surface 1 by tightening the bolts (as shown in Figure 4.1) and 
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thus produces a specified level of friction force at the sliding surface 1 of the SDB. 

Such a specified level of friction force is generally less than the ‘yield’ force of Nitinol 

wire strands in order to maintain the nearly self-centering effect of the brace. 

Meanwhile, much larger friction coefficient and normal force is applied at the sliding 

surface 2 to result in a friction force level that is larger than the ‘yield’ force of Nitinol 

wire strand by a pre-specified amount. Under low external force no sliding would 

occur along the surface 2 and two parts—blocks “B” and “C”—will move as one piece. 

Therefore without sliding of surface 2, the hysteretic behavior of the SDB is the 

superposition of the superelastic behavior of Nitinol wire strands and the friction 

effect at sliding surface 1, as illustrated in Figure 4.2. 

Figure 4.2-(a) shows the typical hysteretic behavior of superelastic Nitinol wire 

strands which enable the self-centering capability of SFDB. This unique hysteresis is a 

result of stress-induced phase transformation from austenite to martensite and reverse 

transformation upon unloading. This important superelastic behavior involves certain 

energy dissipation with zero residual strain upon unloading. Figure 4.2-(b) shows the 

friction-induced hysteresis. The rectangular hysteretic loop corresponding to the 

friction effect indicates effective energy dissipation. By properly adjusting the ratio 

between the ‘yield’ strength of Nitinol wire strands and the friction forces, the final 

combined hysteresis loop exhibits a nearly self-centering behavior with enhanced 

energy dissipation, as illustrated in Figure 4.2-(c). 

Energy dissipation by friction is a relatively inexpensive and reliable method 

which is insensitive to loading frequency and ambient temperature. Here friction 

damping is a critical part of energy dissipation in SFDB and it is also crucial to 
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achieve a predetermined level of friction force. Therefore special caution must be 

exercised on the design and fabrication of the frictional surfaces. Previous researches 

on friction dampers indicated that the cyclic response of frictional surface may be 

erratic due to stick-slip phenomenon and the degradation of slip load, and the friction 

coefficients of sliding interfaces especially those bimetallic interfaces may vary over 

time due to the corrosion, contaminants or other physiochemical process (Soong and 

Dargush 1997). However a repeatable and durable frictional performance can still be 

achieved through careful design of the friction surface and the device configuration.  

For example, using heavy duty brake lining pads at sliding surface can provide 

consistent and predictable frictional response which is quite similar to classic 

Coulomb behavior (Pall et al. 1980). Employing nonlinear disc springs or Belleville 

washers can also help maintain consistent bolts tension and therefore slip load 

(FitzGerald et al. 1989). A sealed outer casing can effectively preclude the 

environmental factors (e.g. corrosion of metal sliding interface). 

Nitinol alloys, as most practical SMA, have an inherent self-centering capability, 

high ductility and corrosion resistance, and very long fatigue life compared to other 

shape memory alloy (SMA) materials. As mentioned earlier, the maximum 

recoverable strain of superelastic Nitinol wires can reach up to 8%, and they can 

sustain over two thousands load cycles under 8% strains cycles. These superior 

properties of superelastic Nitinol wires form the physical basis on which properly 

designed SFDB can re-center itself and withstand several design basis earthquakes 

without performance deterioration.  Self-centering behavior is able to reduce (or even 

eliminate) residual structural deformation which is emphasized as a fundamental 
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complementary parameter in the evaluation of structural (and non-structural) damage 

in the performance-based seismic design and assessment approach. Additionally, as 

long as the strain of Nitinol wires does not exceed 8% during an earthquake, residual 

strain of the Nitinol wires would be negligible and thus no repair or replacement of 

SFDBs would be necessary after the earthquake if other parts of SFDBs are designed 

to remain elastic during earthquakes. The reusability of SFDB for several frequent and 

design level earthquakes is very appealing in the sense that it can enhance the 

robustness of structural system performance during strong aftershocks following a 

significant earthquake event, thus leading to minimized service interruption after 

strong earthquakes.  

However, the plastic deformation and strain hardening associated with Nitinol 

wires in excess of 8% strain (as shown in Figure 2.5) will cause certain undesirable 

effects in SFDB frame. For example, the strain hardening behavior results in large 

peak force of SFDB, which may overload the brace connections and adjacent members. 

The plastic deformation may lead to the residual deformation of Nitinol wires after 

unloading and thus Nitinol wires would have to be replaced after earthquakes. One 

potential solution is to place a fuse device in series with the SFDB device so its 

strength is capped by the fuse device strength. In this study, a slotted bolted 

connection (i.e. the sliding surface 2 in Figure 4.1) with specified friction force level 

can be added at the end of SFDB so that this additional friction device begins to slip 

when the superelastic Nitinol wires reach a relative large strain (e.g. 8% strain). In this 

way, the maximum force of SFDB can be limited. However, when this additional 
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friction device slips, SFDB loses its self-centering capacity and residual deformation 

will result. 

 

4.2 TESTING RESULTS 

To validate the hysteretic behavior of SFDB, cyclic testing of scaled SFDB specimens 

was conducted. Figure 4.3 shows one of such SFDB specimens under test, which has a 

length of 2.3 feet. Each wire strand was comprised of superelastic Nitinol wires 

acquired from Johnson Matthey, Inc. The Nitinol wire had a diameter of 0.58 mm and 

the length of the wire strands was 254 mm (10 inch). It should be noted that the fuse 

friction device in SFDB is not included in scaled specimens under test. The cyclic test 

was carried out at room temperature on an MTS servohydraulic test machine and the 

loading frequency was 2 Hz. The Nitinol wires were preloaded for 50 cycles before 

formal cyclic test in order to minimize the accumulation of residual strain and 

degradation of strength in Nitinol wires. Figure 4.4-(a), (b) and (c) show the measured 

hysteretic loops of the SFDB specimens with different levels of friction force. The 

friction force was measured with the same loading protocol for the MTS test machine 

after removing the Nitinol wires. Figure 4.4-(d), (e) and (f) show the hysteresis of 

friction forces corresponding to Figure 4.4-(a), (b) and (c) respectively. For the tests 

corresponding to Figure 4.4-(a) and (d), no bolts were used to apply the normal force 

and lubricant oil was added to the sliding surfaces in the SFDB in order to minimize 

the friction force. As shown in Figure 4.4-(a) and (d), the friction force is negligible 

and this SFDB specimen has very limited energy dissipation capacity. With increasing 
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level of friction force, the SFDB specimens exhibit a hysteresis loop with enhanced 

energy dissipation capacity, as shown in Figure 4.4-(b) and (c).  

It was observed that the load-displacement behaviors of both the friction force and 

the SFDB device were quite repeatable during the cyclic loading. No obvious residual 

strain and strength degradation in Nitinol wires were observed after the 50-cycle 

training, as shown in Figure 4.4-(a). The behavior of friction force is also repeatable 

with nearly rectangular hysteretic loops. It is seen in Figure 4.4-(a), (b) and (c) that the 

behavior of SFDB is almost symmetrical under tension and compression, which is 

another advantage of SFDB derived from its unique mechanical configuration in 

contrast to directly using SMA bars as bracing members in a concentrically braced 

frame structure. The unique configuration of SFDB enables the direct transfer of 

applied load to the Nitinol wire strands in tension. Although SMA bars can undertake 

both tension and compression forces, a significant difference in the behavior of SMA 

bars under compression and tension stresses has been observed by Cardone et al. 

(1999), which may cause problems in beam design due to the unbalanced forces in 

chevron-braced configurations of framed structures. 

 

4.3 ANALYTICAL MODELING OF SFDB 

This section discusses the analytical models for SFDB which are based on the 

nonlinear constitutive models for superelastic Nitinol wires along with the 

consideration of friction forces at two different sliding surfaces. Correspondingly, 

three new elements which utilize three different constitutive models described in last 
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chapter were developed in computer program DRAIN-2DX (Prakash et al. 1993) in 

order to simulate the behavior of SFDB. 

The comparative study of three constitutive models in last chapter, which includes 

the nonlinear time history analyses of both SDOF systems and one 6-story prototype 

frame building equipped with SFDBs, indicates that it is acceptable to use rate-

independent constitutive models for superelastic SMA in seismic analyses of 

structures, as along as the parameters of this rate-independent model are tuned to 

dynamic test data. Additionally, the SFDB is supposed to be installed inside buildings 

and thus not subject to significant thermal change. Considering its relative simple 

mathematical expression and good agreement with experimental results, the modified 

Wilde model is preferred in this study. Unless otherwise noted, the analytical model 

for SFDB base on the modified Wilde model for superelastic Nitinol wires will be 

used in the seismic analyses of SFDB frames in the following chapters.  

The dynamic test results of Nitinol wires, acquired from Johnson Matthey, Inc, are 

used in this study to tune the parameters of the modified Wilde model because of their 

desirable properties such as later occurrence of strain hardening and larger yield strain 

than those from Memry Corporation. Figure 4.5 shows the stress-strain relationship of 

superelastic Nitinol wires from the experimental data and the modified Wilde model 

respectively. The cyclic tensile test was conducted at the loading frequency of 2 Hz.  

The details of the testing program are described in Section 2.2.4. The corresponding 

parameters of the modified Wilde model are listed in Table 4.1. As seen in Figure 4.5, 

the modified Wilde model can predict the stress-strain relationship of superelastic 

Nitinol wires reasonably well. 
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Figure 4.6 and Figure 4.7 show the typical hysteretic behavior predicted by the 

analytical model of SFDB with identical “yield strength” but two different friction 

force levels at sliding surface 1. The wire length in SFDBs is equal to 0.7 m. Figure 

4.6 shows the hysteretic behavior of SFDB without contribution of friction damping at 

sliding surface 1, denoted as SFDB-NF, while Figure 4.7 shows the hysteretic 

behavior of SFDB with friction force at sliding surface 1 equal to 28% of total “yield” 

strength. Figure 4.6-(a) shows the completely self-centering behavior with relative 

small energy dissipation. But Figure 4.7-(a) indicates that the friction force can 

considerably enhance the energy dissipation of the device. Additionally, with the 

contribution of friction force, SFDB uses less volume of Nitinol wires, a relatively 

expensive material, to achieve the same “yield” strength. Meanwhile SFDB still 

retains a nearly self-centering behavior and only slight residual deformation after 

unloading can be observed in Figure 4.7-(a). Larger levels of friction force at sliding 

surface 1 are not recommended in order to keep the nearly self-centering properties. It 

is also seen in Figure 4.7-(a) that the stiffness value of SFDB changes before and after 

SFDB starts to slip over its friction surface. But the secant stiffness at the “yield” point 

of SFDB (as shown by dashed line in Figure 4.7-(a)) is almost equal to the initial 

stiffness of SFDB-NF. 

In both braces shown in Figure 4.6 and Figure 4.7, the friction fuse devices are 

designed to slip when the strain in Nitinol wires reaches 8% for the reasons mentioned 

before. Figure 4.6-(b) and Figure 4.7-(b) show the hysteretic behavior of two braces 

under large amplitude vibration. The maximum strength of SFDB or SFDB-NF is 

about two times as large as their ‘yield’ strength. Such overstrength has to be taken 
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into account in the design of the brace connections and adjoined members. The 

activation of fuse friction devices leads to considerable residual deformation after 

unloading, and SFDB or SFDB-NF will lose its self-centering properties. 

Unless otherwise noted, the setting of the SFDB or SFDB-NF, including the 

parameters of the modified Wilde model and the friction force levels at two sliding 

surfaces, will also be used in the nonlinear time history analyses of SFDB frames in 

the following chapters. 

 

4.4 SUMMARY 

This chapter presents a new special bracing element termed self-centering friction 

damping brace (SFDB) and the seismic behaviors of SFDB frame buildings. SFDB 

would be typically installed as part of the bracing system to resist lateral seismic load. 

In the SFDB, stranded superelastic Nitinol wires are used as its core self-centering 

component while enhanced energy dissipation is achieved through friction. By 

properly adjusting the ratio between the ‘yield’ strength of superelastic Nitinol wire 

strands and friction force in the SFDB, hysteresis loops with nearly self-centering 

behavior can be obtained for the SFDB. A validation-of-concept test on scaled SFDB 

specimens was carried out at a dynamic loading rate and the experimental result 

clearly demonstrates the nearly self-centering behavior of the SFDB with enhanced 

energy dissipation from friction.  

Compared with conventional braces for steel frame buildings, properly designed 

SFDB has several desirable performance characteristics such as minimized residual 
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drifts of CBF system and its ability to withstand several design level earthquakes 

without the need for replacement, due to the unique behavior of superelastic Nitinol 

wires such as re-centering effect, full strain recovery and long fatigue life. The SFDB 

thus has a potential to establish a new type of CBF systems with self-centering 

capability.  

The analytical models for SFDB are developed based on the nonlinear constitutive 

models for superelastic Nitinol wires (as described in Chapter 3) along with the 

consideration of friction forces at surfaces. Correspondingly, three new elements were 

developed in computer program DRAIN-2DX (Prakash et al. 1993) in order to 

simulate the behavior of SFDB. The analytical model for SFDB and the associated 

parameters which will be used in the following chapters are also presented. 

It should be noted that classic Coulomb behavior is assumed for frictional response 

in the analytical model for SFDB and predetermined levels of slip load are assigned to 

two frictional surfaces. But actual frictional response may be affected by selection of 

material, surface condition, mechanical configuration and other environmental factors. 

Future research still needs to be done on the design of the frictional surface to achieve 

the specified friction force levels with acceptable tolerance. 
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Table 4.1 The parameters of the modified Wilde model for superelastic Nitinol wires 

(Type B) 

Parameter Units Value 

E  MPa 38,800 

Em MPa 16,500 

εm -- 0.065 

ε1 -- 0.053 

Y MPa 395 

α -- 0.036 

fT -- 0.045 

a -- 110 

c -- 0.77 

n1 (loading) -- 7 

n2 (unloading) -- 0.9 
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Figure 4.1 Schematic of the mechanical configuration of SFDB 
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Figure 4.2 Illustration of the self-centering mechanism of SFDB 

 
   

 
   

 

 
 

 

 

 

 

 

 

 

Figure 4.3 View of scaled SFDB specimen under test 
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Figure 4.4 Test results of SFDB specimens 
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Figure 4.5 Stress-strain curve of superelastic Nitinol wire 
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Figure 4.6 Typical hysteresis of SFDB-NF under small and large amplitudes 
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Figure 4.7 Typical hysteresis of SFDB under small and large amplitudes 
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CHAPTER 5 COMPARATIVE STUDY OF 

SFDB AND BRB 

5.1 INTRODUCTION 

Buckling-restrained braces (BRB), which are capable of yielding in both tension and 

compression, have been developed to overcome the buckling problem of conventional 

braces in concentrically braced frame (CBF) systems (Fahenstock et al. 2003; Sabelli 

2003; Uang 2004). In buckling-restrained braced frames (BRBF), BRB is used to 

replace the bracing members of concentrically braced frames. BRBF has been used 

extensively for seismic applications in Japan after the 1995 Kobe earthquake and is 

also gaining popularity in the United States. BRBFs are desirable for seismic design 

and rehabilitation for their superior ductile performance in comparison with 

conventional CBFs. Clark et al. (1999) redesign of a 3-story steel special moment-

resisting frame into a BRBF resulted in about 50% reduction of the total weight of the 

steel. Nonlinear dynamic analyses by Sabelli et al. (2003) have shown that the 

behavior of BRBFs is comparable and often better than that associated with 

conventional concentrically braced frames and moment frames. However, several 

potential problems have also been identified for BRBF by a few researchers (Sabelli 

2003; Kiggins and Uang 2004): (1) large residual story drifts that could be as high as 

40% to 60% of the peak drifts; (2) tendency of BRBs to yield at frequent earthquakes 
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with a 50% probability of exceedence in 50 years. Costly repair after strong 

earthquakes might be necessary due to these problems.  

This chapter presents a comparative study of SFDB frames and BRBF, both of 

which are concentrically braced frame system. The configuration and mechanism of 

SFDBs are described in Chapter 4. The results of nonlinear time history analyses 

under different seismic intensity levels, as well as nonlinear pushover analyses, are 

presented for both types of frames. The comparative study shows that SFDB frames 

are capable of achieving a seismic response level comparable to that of BRBF while 

having significantly reduced residual drifts under frequent and design basis 

earthquakes. 

 

5.2 NONLINEAR SEISMIC ANALYSES  

This section presents the results of nonlinear time history analyses and pushover 

analyses of both SFDB frames and BRBFs.  

 

5.2.1 Prototype Steel Braced Frame Building 

In this study, a 3-story and a 6-story CBF with either SFDBs  or BRBs are selected as 

the prototype structures for the comparative study. These prototype structures have 

been used by Sabelli et al. (2003) and Kiggins and Uang (2006) in their study of 

BRBF previously. The details about these prototype structures are described in 

Appendix B. For 3-story building, the seismic mass is 5.86x105 kg for 1st and 2nd 

levels, 5.95x105 kg for 3rd levels; for 6-story building, it is 6.49x105 kg for the 1st 
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through 5th levels, and 5.66x105 kg for 6th level. Like BRB, typically SFDBs would 

also be part of the bracing system of concentrically braced frame. Thus the SFDBs 

would be installed at the same locations as shown in Figure B.1 and Figure B.2. The 

‘yield’ capacities of SFDBs are equal to the average of tensile and compressive 

strength of corresponding BRBs. The lengths of superelastic Nitinol wire strands in 

the SFDBs is 0.85 m for the 1st story and 0.7 m for all other stories, which translates 

into 8% strain in the superelastic Nitinol wires at a 2% story drift ratio. The friction 

force at sliding surface 1 in the SFDBs is set to be 28% of brace ‘yield’ strength.  

In order to examine the effectiveness of friction in energy dissipation, a self-

centering brace without friction, denoted as SFDB-NF, was also included as a 

reference case in this study. The ‘yield’ capacities of SFDB-NFs are assigned to be 

equal to the corresponding SFDBs’. It should be noted that without friction damping, 

the SFDB-NF requires the use of more Nitinol materials than regular SFDBs in order 

to achieve the same ‘yield’ strength.  

It is noted that the stiffness value of SFDB changes before and after SFDB starts to 

slip over its friction surface. Therefore, the effective initial stiffness of SFDB is 

defined as the secant stiffness corresponding to the ‘yield’ point on the load-

displacement curve, which is very close to that of the SFDB-NF. With the 

aforementioned ‘yield’ strength and Nitinol wire length, the effective initial stiffness 

of SFDB-NF in each story is about 75% that of corresponding BRBs. Modal analysis 

was conducted to determine the natural periods of the prototype buildings. For the 

BRBFs, the fundamental periods for the 3-story and 6-story buildings are 0.41 seconds 
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and 0.61 seconds, respectively; for the SFDB-NF frames, the first periods for the 3-

story and 6-story buildings are 0.45 seconds and 0.67 seconds, respectively. 

As mentioned earlier, in this study, 8% strain is specified as the maximum 

recoverable strain (without residual deformation) of superelastic Nitinol wires. The 

friction surface 2 is designed to slip only when the strain in Nitinol wires strands 

reaches 8% strain for both types of SFDB braces. If the strain in Nitinol wires was 

lower than 8% during an earthquake, residual strain of the Nitinol wires would be 

negligible and thus no repair or replacement of SFDBs would be necessary after the 

earthquake if other parts are designed to remain elastic during design basis 

earthquakes. Once the slip of friction surface 2 occurs, the SFDBs will lose their self-

centering capability, which could take place under maximum considered earthquakes. 

It should be noted that the friction force levels at different sliding surfaces in SFDBs 

are the same as described in Chapter 4. 

 

5.2.2 Nonlinear Analysis Method 

Nonlinear time history and pushover analyses were carried out using the computer 

program DRAIN-2DX (Prakash et al. 1993). Only one bay of the braced frame was 

modeled and analyzed in this study. Rigid floor diaphragm is assumed for both 

buildings and thus all nodes on the same floor are constrained together in the 

horizontal direction of the input ground motion. More description of analytical models 

can be found in Appendix B. 
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Element type 1 in DRAIN-2DX, i.e. inelastic truss bar element, was used to 

simulate the hysteretic behavior of BRB. In order to simulate the hysteretic behaviors 

of SFDBs, one new element in DRAIN-2DX was developed using the analytical 

model for SFDB. The details of the analytical model, including the parameters used in 

the model, can be found in Chapter 4. Figure 5.1-(a) to (c) shows the typical hysteresis 

(i.e., brace force vs. displacement) of a single brace in the top story of the 6-story 

building for the BRB, SFDB and SFDB-NF respectively.  

In this study, equivalent viscous damping ratio, defined as the energy dissipated in 

one cycle divided by the product of 4π and maximum strain energy, is selected as a 

quantitative index to measure the energy dissipation capacity of SFDB. The equivalent 

viscous damping ratios of SFDB-NF at three different displacement levels (in 

ascending order, as shown in Figure 5.1-(c)) are 4.2%, 6.3% and 5.5% respectively; 

while the equivalent viscous damping ratios of SFDB at corresponding displacement 

levels as shown in Figure 5.1-(b) are 19.0%, 20.4% and 17.7% respectively. The 

equivalent viscous damping ratios of BRB at corresponding displacement levels 

indicated in Figure 5.1-(a) are 42.0%, 51.9% and 54.3% respectively. It can be seen 

the friction effect in SFDB enhances the energy dissipation capacity of the brace at 

various displacements. BRB is seen to have the largest energy dissipation capacity, 

and the equivalent damping ratios of BRB are over twice that of corresponding SFDB. 

However, it is pointed out by Christopoulos et al (2002a), Christopoulos and 

Pampanin (2004) that self-centering systems with flag-shaped hysteresis can achieve a 

similar seismic deformation level to elastoplastic systems even the self-centering 

system dissipates much less hysteretic energy than the elastoplastic system. It is seen 
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in Figure 5.1-(b) that the SFDB has a nearly self-centering behavior due to relatively 

large friction force. The largest residual deformation of this SFDB after fully 

unloading corresponds to a 0.075% inter-story drift in this study, which is negligibly 

small. Furthermore, the nonlinear time history analyses revealed that the residual story 

drifts of the prototype framed buildings under the two suites of frequent and design 

basis earthquakes are much lower than 0.075%. 

 

5.2.3 Nonlinear Pushover Analyses 

Nonlinear static analyses or pushover analyses were conducted to evaluate the 

nonlinear lateral load response and failure mechanism of SFDB frames. NEHRP 

Recommended Provisions (FEMA 2003) was followed to determine the lateral load 

distribution. Figure 5.2 and Figure 5.3 show the pushover curve (base shear versus 

roof drift ratio) for the 3-story and 6-story SFDB frames and BRB frames respectively. 

Various characteristic points such as the slip at friction surfaces of SFDB, ‘yield’ of 

braces (BRBs or SFDBs), are also indicated in Figure 5.2 and Figure 5.3. 

Initial stiffness change in SFDB frame can be observed from its pushover curve 

shown in Figure 5.2 and Figure 5.3. The friction surfaces in SFDBs begin to slip at 

very small roof displacement. Before and after the slip, the stiffness of the SFDB 

frame changes. With the afore-mentioned definition of the effective initial stiffness for 

SFDBs, the effective initial stiffness of SFDB frame is slightly smaller than that of 

BRB frame. But the post-‘yield’ stiffness of the 6-story SFDB frame is slightly greater 
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than that of the BRB frame until the SFDB frame shows hardening behavior at roof 

drift ratio beyond 1.5%.  

As shown in Figure 5.2 and Figure 5.3, the ‘yield’ strength and displacement of 

both frames is very close to each other. Both frames yield at relatively small roof drift 

ratio (about 0.25%). This explains why BRBs tend to yield even under frequent 

earthquakes. However, the ‘yield’-like plateau of SFDB frame is induced by the phase 

transformation of superelastic Nitinol instead of plastic deformation. Before the 

occurrence of plastic deformation in beams and columns, there is essentially no 

damage in the SFDB frame. Therefore the SFDB frame can achieve the goal of 

damage-free structure for frequent earthquakes and design basis earthquakes, and thus 

leads to considerably reduced repair cost and service interruption after earthquakes.  

As described earlier, the 8% strain of Nitinol wire corresponds to approximately 

2% inter-story drift ratio for both the 3-story and 6-story SFDB frames. Figure 5.2 and 

Figure 5.3 shown that the friction surface 2 in SFDBs begins to slip at around 2% roof 

drift ratio. As a fuse device, the slotted bolted connection at the end of SFDB caps the 

maximum force of SFDB as well as the base shear force. Thus this fuse device can 

effectively prevent the occurrence of undesirable plastic deformation and potential 

overloading of brace connections and adjoined members that may be caused by 

apparent strain hardening associated with superelastic Nitinol wire in excess of 8% 

strain. However, when this additional friction device slips that may happen under 

MCE earthquakes, SFDB loses its self-centering capacity and residual deformation 

will result. The corresponding unloading path (in dashed line) of SFDB frames are 

also shown in Figure 5.2 and Figure 5.3. If SFDB is intended to be made self-
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centering even under MCE earthquakes, the length of Nitinol wire strands can be 

increased as compared to the design length for DBE earthquake. However, doing so 

will sacrifice the performance under DBE since increased wire length leads to reduced 

initial effective stiffness of SFDB. 

 

5.2.4 Nonlinear Time History Analyses 

The time history analyses employ the suites of earthquake ground motions developed 

previously by Somerville et al. (1997) for use in the FEMA project on steel moment-

resisting frames. Three earthquake suites corresponding to downtown Los Angeles, 

California, were selected in this study and they are designated as LA01 - LA20 (for 

DBE level), LA21 – LA40 (for MCE level) and LA41 - LA60 (for FE level), 

respectively. More details about these ground motion sets can be found in Appendix A. 

Figure 5.4 to Figure 5.7 show the results of a comparative study of the seismic 

response behaviors of the BRB and SFDB frames under DBE suite of earthquake 

ground motions, i.e. with 10% of probability of exceedance in 50 years. Figure 5.4-(a) 

and (b) respectively show the maximum drift ratios and residual drift ratios of the 3-

story BRB and SFDB frames subjected to the DBE suite of ground motions. SFDB-

NF represents the case in which SFDB braces with no friction were used; therefore, in 

the SFDB-NF case, energy is dissipated only through the superelastic Nitinol wires 

and SFDB-NF has reduced energy dissipation capacity compared with normal SFDB. 

Under the DBE suite, the mean values of the maximum drift ratios of the BRB, SFDB 

and SFDB-NF frames are 0.77%, 0.88% and 1.51% respectively, while the mean 
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residual drift ratios are 0.28% and 0.11% for the BRB frame and SFDB-NF frame 

respectively, and almost zero for the SFDB frames. 

Figure 5.5 shows the maximum drift ratios and residual drifts ratios for the 6-story 

building, from which similar observations can be made. The mean values of the 

maximum drift ratios of the BRB, SFDB and SFDB-NF frames are 0.84%, 0.77%and 

1.51% respectively, while the mean residual drift ratios are 0.32% and 0.04% for the 

BRB frame and SFDB-NF frame respectively, and almost zero for the SFDB frame. 

The large maximum story drift corresponding to the SFDB-NF frame can be explained 

by the fact that the stiffness and energy dissipation capacity of the SFDB-NF are 

smaller than those of the corresponding BRB in this study. However, with the increase 

of energy dissipation capacity by utilizing the friction effect, the SFDB frames can 

achieve a control performance comparable to the BRB frames in terms of peak inter-

story drifts under the DBE suite of ground motions, despite the fact that SFDB has less 

energy dissipated in each cycle than BRB. This is consistent with the observation 

made by other researchers (e.g., Christopoulos et al 2002a, Christopoulos and 

Pampanin 2004). The residual story drifts of SFDB frames were negligible under all 

twenty ground motions, while non-trivial residual story drifts were observed in the 

BRB frames under over 10 ground motions. Therefore the SFDB frame has the 

potential to achieve a control performance comparable to the BRB frame under DBE 

earthquakes in terms of peak story drift ratios, but has considerably reduced residual 

drifts. Even with much greater peak drift ratios, the SFDB-NF frames still have 

smaller mean residual drifts than the BRB frames. This reduction of residual drifts in 
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both the SFDB-NF and SFDB frames manifests the benefit of SFDB which is derived 

from its self-centering capability. 

In this study the largest recoverable strain of Nitinol wires and the slip of friction 

surface 1 in SFDB correspond to a transient inter-story drift ratio value of 2% for the 

prototype building structures. For SFDB-NF frames, the peak story drift ratios exceed 

2% under five ground motions for both 3-story and 6-story frames due to inadequate 

energy dissipation capacity of SFDB-NF, and consequently noticeable residual drifts 

can be observed in those cases. With the peak story drift below 2% in other cases, the 

residual drifts of SFDB frames are still negligible. But the peak story drift ratios of 

both 3-story and 6-story SFDB frames were always less than 2% under the twenty 

ground motions, and thus the SFDBs need not be repaired and the reusability of SFDB 

is validated in a statistical sense.  

Figure 5.6 and Figure 5.7 show the statistical results of the nonlinear seismic 

response, including the distribution of the peak displacements, peak acceleration, peak 

story drift ratio and residual story drift ratio along the building height, of the 3-story 

and 6-story prototype structures respectively under the DBE suite. The ensemble 

average was calculated based on the twenty earthquake ground motions in the DBE 

suite. It is clearly seen that the SFDBs are capable of achieving the same level of 

seismic response control as the BRBs in terms of structural displacement, acceleration 

and peak story drifts. Furthermore, the SFDB frames have almost zero residual story 

drifts in all six stories, while for the BRB frame non-trivial residual story drifts were 

observed in all stories of both prototype structures (as shown in Figure 5.6-(d) and 

Figure 5.7-(d)), and the maximum residual story drifts are about 0.25% for both 
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prototype structures. The ensemble average of the residual drift ratios of the BRB 

frames are about 30% of the peak story drift ratio under the design basis earthquakes. 

However, without the contribution of energy dissipation from friction force, the 

SFDB-NF frames have greater structural response than the BRB frames except for the 

residual story drift. It is worth noting that although the SFDB is capable of achieving 

much superior performance than the SFDB-NF in seismic response control and 

reusability, SFDB uses less volume of Nitinol wires which is a relatively expensive 

material. 

Figure 5.8 and Figure 5.9 show the statistical results of the seismic responses of 3-

story and 6-story frames respectively under FE suite (i.e. with 50% probability of 

exceedence in 50 years). Observations similar to what was made for the DBE suite can 

also be made here. The SFDB frame can achieve a similar seismic response control 

level to that of the BRB frame, but it has much smaller residual drifts. It was noted 

that even under the FE suite, some BRBs exceeded the yield strain under about fifteen 

ground motions out of a total of twenty records for both the 3-story and 6-story 

building. This observation confirms the findings by other researchers (e.g., Sabelli et 

al. 2003) that BRB tends to yield even under frequent earthquakes.  

Figure 5.10 and Figure 5.11 show the statistical results of the seismic responses of 

the 3-story and 6-story frames respectively under the MCE suite (i.e. with 2% 

probability of exceedence in 50 years). It is seen that under the MCE suite residual 

drifts with a varying degree of severity occur in all three types of frames. In general, 

under MCE earthquake, the SFDB frame has larger seismic response than the BRB 

frame in terms of structural displacement, acceleration and peak story drifts, while 
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they are still much smaller than those corresponding to the SFDB-NF frame. 

Compared with the BRB frame, the SFDB frame has much smaller residual drifts even 

if it is not completely self-centering after activating the friction surface 2 under MCE 

earthquake. It is also observed that the residual drifts of SFDB-NF frame are close or 

even larger than those of BRB frames.  

Caution should be exercised on the relatively high acceleration demands in SFDB 

frames under MCE earthquakes, compared with BRB frames. Especially for 6-story 

prototype buildings, the maximum acceleration for SFDB and SFDB-NF frames is 

about 2 g and 3 g respectively. Such a large acceleration may cause undesirable 

damage to building contents and acceleration sensitive components. These potential 

issues associated with MCE earthquakes need to be carefully considered in future 

study of SFDB frames. 

To better understand the seismic response behaviors of the SFDB frames, Figure 

5.12 and Figure 5.13 show the typical time histories of the inter-story drifts and 

acceleration responses of the 3-story BRB and SFDB frames subjected to the LA18 

earthquake ground motion. This LA18 record was derived from the ground motion 

recorded at Sylmar during the 1994 Northridge earthquake (Somerville et al 1997). It 

is seen in Figure 5.12 that the BRB frame has non-trivial residual story drifts in all 

stories after this earthquake, while the corresponding SFDB frame has almost zero 

residual story drifts in all stories. Figure 5.13 shows the acceleration response of the 3-

story SFDB frame has the same magnitude as that of the BRB frame at all floor levels. 

The observation similar to Figure 5.12 can also be made to Figure 5.14, which shows 
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the time history of inter-story drifts of 6-story BRB and SFDB frames under LA18 

ground motions. 

Figure 5.15 is a scatter plot of spectral displacement versus the maximum drift 

ratios for both the BRB and SFDB frames. The spectral displacement is defined as the 

peak displacement response of an equivalent single-degree-of-freedom (SDOF) 

system under an earthquake ground motion and is calculated based on the fundamental 

period of the respective frame buildings. It is believed that the spectral displacement 

reflects the earthquake intensity level to certain extent. Figure 5.15 involves the results 

corresponding to FE, DBE and MCE levels, totaling 60 ground motions. The 

dispersion of the data points increases with the spectral displacement. Other factors 

such as building height, different seismic regions and seismic levels, higher modes, P-

∆ effect and inelastic behavior of different hysteresis may also affect the relation 

between the spectral displacement and maximum story drift ratio (Gupta and 

Krawinkler 2000; Pampanin et al. 2003). For the 3-story and 6-story buildings under 

consideration, at small spectral displacements, the SFDB frame has smaller maximum 

drift ratios than the BRB frame, while with the increase of spectral displacement, the 

maximum story drift ratios of SFDB frame become larger than BRB frame. 

The damage in other structural members was also evaluated in this study. For the 

3-story BRB and SFDB frames, no plastic hinges except at column bases occurred 

under the DBE suite earthquakes. In the 3-story BRB frame, column base yielded 

under only two earthquake records - LA16 and LA18, and the corresponding column 

base plastic rotations are 0.0012 and 0.0056 respectively. In the 3-story SFDB frame, 

column bases yielded under three earthquake records - LA14, LA16 and LA18, and 
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the corresponding plastic rotations are 0.0021, 0.0033 and 0.0017 respectively. The 

larger roof displacement and maximum story drifts of the SFDB frame than those of 

the BRB frame under LA14 and LA16 is the cause for large plastic base rotations. 

Figure 5.16 shows the axial load-bending moment interaction at the column base for 

both the BRB and SFDB frames under LA16. It is noted that in all the ‘yielded’ cases, 

minor yielding at column base only occurred in one load cycle. For both 6-story BRB 

and SFDB frames, no column base yielding was observed for all 20 records in the 

DBE suite. 

 

5.3 CONCLUSIONS 

This chapter presents a comparative study between BRB frames and SFDB frames 

through nonlinear time history and pushover analyses of two prototype buildings – a 

3-story and a 6-story steel braced frame. The time history analyses involve three suites 

of earthquake ground motions which represent the frequent, design basis and 

maximum considered earthquake levels respectively in Los Angeles, California. The 

following conclusions are drawn based on the results of nonlinear time history and 

pushover analyses: 

 SFDB frames have almost negligible residual story drifts under the FE and DBE 

earthquakes, while noticeable residual drifts occur in SFDB frame under MCE 

earthquakes. In general, SFDB frames have significantly reduced residual story 

drifts in comparison with BRB frames which is a beneficial effect derived from 

the self-centering behavior of SFDBs. 
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 In terms of peak story drifts and absolute acceleration response, SFDB frames are 

capable of achieving a seismic response control level comparable to that of the 

BRB frames under FE and DBE earthquake levels. However, BRB frames are 

seen in this research to have better control performance under MCE earthquakes. 

 The pushover analyses result discloses the nonlinear lateral load response 

behavior and failure mechanism of SFDB frames. Characteristic performance 

points of SFDB frame such as the slip at friction surfaces and ‘yielding’ of braces 

are indicated in the pushover curve. 

 Due to the unique behavior of superelastic Nitinol wires such as full strain 

recovery and long fatigue life, SFDB, if properly designed, has the potential to 

withstand several frequent or even design basis earthquakes without the need for 

replacement. 

 Incorporating friction damping in SFDB can significantly improve its seismic 

performance.  

 The friction fuse mechanism in SFDBs can effectively cap the maximum strength 

of SFDBs, which prevents possible overloading of adjoined connections and 

members under MCE earthquakes. 

It is worth noting that the prototype buildings considered in this chapter were 

originally designed for BRB frames by other researchers. For a fair comparison, the 

‘yield’ strength of the SFDB is intentionally set to be equal to that of the 

corresponding BRBs. However, considering SFDB’s different energy dissipating and 

hardening behavior at large drift, the parameters of the SFDBs considered in this study 

do not represent an optimal design for the SFDB frame. For example, the overloading 
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to brace connections and very high acceleration demands may occur under MCE 

earthquakes. A design procedure developed for SFDB frames are presented in next 

chapter. 
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Figure 5.1 Typical hysteresis of single brace in the 6th story of the prototype building 
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Figure 5.2 Static pushover analyses of the 3-story BRB frame and SFDB frame 
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Figure 5.3 Static pushover analyses of the 6-story BRB frame and SFDB frame 
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(a) Maximum inter-story drift ratios 
 

LA02 LA04 LA06 LA08 LA10 LA12 LA14 LA16 LA18 LA20
0

0.005

0.01

0.015

Earthquake Ground Motion

R
es

id
u

al
 D

ri
ft

 R
at

io

BRB
SFDB
SFDB−NF

 
 

(b) Residual inter-story drift ratios 

Figure 5.4 Maximum and residual drift ratios for the 3-story frame building under 

DBE earthquake
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(a) Maximum inter-story drift ratios 
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(b) Residual inter-story drift ratios 

Figure 5.5 Maximum and residual drift ratios for the 6-story frame building under 

DBE earthquake 
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 (c) Peak story drift ratio                     (d) Residual story drift ratio 

Figure 5.6 Ensemble average of seismic response of the 3-story prototype building 

under design basis earthquakes 
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(c) Peak story drift ratio                     (d) Residual story drift ratio 

Figure 5.7 Ensemble average of seismic response of the 6-story prototype building 

under design basis earthquakes  
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 (c) Peak story drift ratio                     (d) Residual story drift ratio 

Figure 5.8 Ensemble average of seismic response of the 3-story prototype building 

under frequent earthquakes 
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(c) Peak story drift ratio                     (d) Residual story drift ratio 

Figure 5.9 Ensemble average of seismic response of the 6-story prototype building 

under frequent earthquakes 
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 (c) Peak story drift ratio                     (d) Residual story drift ratio 

Figure 5.10 Ensemble average of seismic response of the 3-story prototype building 

under maximum considered earthquakes 
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(c) Peak story drift ratio                     (d) Residual story drift ratio 

Figure 5.11 Ensemble average of seismic response of the 6-story prototype building 

under maximum considered earthquakes 
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Figure 5.12 Inter-story drift time histories of the 3-story building under earthquake 

ground motion LA18 
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Figure 5.13 Acceleration time histories of the 3-story building under earthquake 

ground motion LA18 
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Figure 5.14 Inter-story drift time histories of the 6-story building under earthquake 

ground motion LA18 
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Figure 5.15 Scatter plot of spectral displacement vs. maximum drift under FE, DBE 

and MCE for Los Angeles, California 
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Figure 5.16 Axial load vs. bending moment interaction at column base under 

earthquake record LA16 
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CHAPTER 6 DISPLACEMENT-BASED 

DESIGN PROCEDURE 

6.1 INTRODUCTION 

Performance-based earthquake engineering (PBEE) has been extensively researched in 

recent years (Fajar and Krawinkler 1997, 2004). In PBEE, performance objectives are 

expressed as a set of performance levels such as immediate occupancy, life safety or 

collapse prevention, associated with earthquake ground motions of specific intensities, 

as defined in Vision 2000 (SEAOC 1995), FEMA-356 (2000), FEMA-450 (2003) and 

ATC-58 (2002). Figure 6.1 shows the performance objectives defined in FEMA-450 

(2003).  

As noted by a number of researchers such as Priestley (2000), conventional force-

based seismic design method tends to result in non-uniform risk structures, e.g., two 

buildings designed to the same code and with the same strength reduction factor may 

experience distinctive levels of damage under a given earthquake. In some cases, the 

risk, expressed in terms of the annual probability of occurrence of a given level of 

damage, can vary by more than an order of magnitude from structure to structure 

(Priestley 2000). In order to incorporate performance-based criteria into force-based 

seismic design, significantly increased design effort, which involves the addition of 

displacement check afterwards and successive iteration of the initial elastic 



 143

characteristics, is required (Priestley 2000). Recognizing the deficiencies in the current 

force-based approaches, a more rational alternative design procedure, displacement-

based design (DBD) procedure, has been developed and advocated in the past decade 

(Priestley 1998, 2000; Calvi and Kingsley, 1995; Kowalsky et al. 1995; Priestley and 

Kowalsky, 2000; Sullivan et al. 2003; Priestley and Calvi 1997; Fajar 2000; Chopra 

2001; Chopra and Goel 2001; Christopoulos and Pampanin 2004). In a direct DBD 

procedure, the maximum target displacement is a predetermined goal to be achieved 

under the design-level earthquake, and this design approach would result in an 

inventory of uniform risk structures, philosophically compatible with the uniform-risk 

seismic intensity incorporated in most codes (Priestley 2000).  

In a self-centering friction braced (SFDB) frame building, its displacement/drift 

level is not only related to non-structural damage, but also governs the ductility level 

and response behavior of the SFDBs, the main lateral resisting element in frame 

structure. For example, at very large displacement the occurrence of slip at friction 

surface 2 would impair the self-centering capability of the SFDB. Consequently it is 

very likely to result in residual drift in the braced frame structure and significantly 

increase the repair cost after earthquakes. For this reason, the drift target in the design 

of SFDB frames is selected as the performance objective in this study. Considering the 

inefficiency of the conventional force-based design method in explicit displacement 

control, the DBD method is adopted here for the seismic design of SFDB frames. It is 

noted that similar direct DBD procedure has also been used for the design of various 

structures by other researchers (Kowalsky 2002; Calvi and Kingsley 1995; Kowalski 
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and Priestley 1996; Priestley 2000; Anderson and Mahin 1997), such as a 3-story 

CFT/BRB concentrically braced frame by Tsai el al. (2004).  

 

6.2 DESIGN PROCEDURE 

While Priestley and his co-workers (Priestley 1998; Priestley and Calvi 1997; Priestley 

and Kowalsky 2000) proposed a DBD procedure using elastic design spectra for 

equivalent linear systems, Chopra and Goel (2001) demonstrated that this equivalent 

linear system, based on the secant stiffness and equivalent damping ratio, may result in 

inaccurate estimation of seismic deformation and ductility of inelastic structures. 

Alternatively, inelastic design spectra was proposed for use in DBD procedure, which 

is shown to produce a structural design that satisfies the design criteria. The DBD 

approach by Chopra and Goel (2001) using inelastic design spectra is adopted as the 

basis of the proposed design procedure for SFDB frame in this study, and the flow 

chart of the DBD approach is shown in Figure 6.2. The details of this DBD procedure 

for SFDB frame is given as follows..  

 

STEP 1: Design Data 

The design parameters of the SFDB frame building under consideration such as 

the total number of stories n, number of braced bays, seismic mass at each floor level 

(i.e., mi), story height (i.e., hi), need to be specified first. Consequently, a planar 

MDOF model can be defined for the SFDB frame, as illustrated in Figure 6.3-(b). The 

design response spectrum should be determined based on the site conditions using the 
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national seismic hazard maps (NEHRP 2003). A typical pseudo acceleration spectrum 

(Sae) and displacement spectrum (Sde) for SDOF system with 5% damping is shown in 

Figure 6.4. Figure 6.4-(a) shows the conventional format of response spectrum with 

respect to period, while Figure 6.4-(b) shows the acceleration-displacement (AD) 

format as used by Fajar et al. (1997). An elastic SDOF system satisfies the following 

relationship, 

 aede STS 2

2

4π
=  (6-1) 

 

STEP 2: Set Target Performance Level 

The target performance indices that need to be defined for the SFDB frame in this 

step include the design ductility demand of SFDB (i.e., µ) and design maximum inter-

story drift ratio (i.e., θd) under the design basis earthquake (DBE). In order to 

minimize the residual deformation and provide a safety margin, the maximum brace 

ductility of SFDB has to be limited within a certain range so that the activation of 

friction surface will not occur. Since the maximum inter-story drift ratio offers an 

important measure of both the structural and non-structural damage, the limiting 

values for these two performance indices should be selected to meet the desired 

performance level. 

Once the design inter-story drift is determined, the displacement profile of the 

multistory frame structure needs to be approximately estimated. For the design 

examples in this study, only 3-story and 6-story buildings are considered and a linear 

displacement profiles are assumed to in the design of these two buildings: 
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 idi hθ=∆  (6-2) 

where hi is the height of story i and ∆i is the design displacement at floor i (as 

illustrated in Figure 6.3-(b)). Special caution has to be exercised on this displacement 

profile. Such a linear displacement profile is usually applicable to the low-rise 

buildings. Higher buildings generally have a nonlinear displacement profile over 

height. Therefore, a nonlinear displacement profile suitable to concentrically braced 

frames should be assumed in the design of medium-rise or high-rise SFDB frames.  

Given the design displacement profile and the ductility of SFDB, the length of 

SMA wires in SFDB can be determined by: 

 
y

ii
il εµ

α
⋅
⋅∆−∆

= − )cos()( 1  (6-3) 

where εy is the ‘yield’ strain (i.e., transformation stress) of SMA wires and α is the 

angle formed by the brace and beams of the braced frame (see Figure 6.3-(a)). 

 

STEP 3: Transform to Equivalent SDOF System 

Assuming the seismic response of the frame building is dominated by the 

fundamental mode, the effective displacement and mass of the equivalent SDOF 

system is given by 

 ∑∑ ∆∆=∆ )()( 2
iiiie mm  (6-4) 

 eiie mm ∆∆= ∑ )(  (6-5) 
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STEP 4: Calculate Design Base Shear 

For a nonlinear SODF system, the acceleration and displacement can be 

determined as: 

 
µR

S
S ae

a =  (6-6) 

 ded SCS µ=  (6-7) 

where Rµ is the strength reduction factor, Cµ is the nonlinear displacement coefficient 

and µ is the ductility level of SDOF system which is assumed to be equal to the 

ductility demand of SFDBs. Both factors are functions of ductility µ and initial period 

Ti, that is, 

 ),( 0TRR µµ =  (6-8) 
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µµµ ==  (6-9) 

The details of Rµ and Cµ will be discussed in the next section. To achieve the target 

displacement ∆e, the initial elastic period, the strength reduction factor Rµ and 

nonlinear displacement coefficient Cµ of the equivalent SDOF system can be 

determined using nonlinear response spectrum. Given a specified value of the ductility 

µ of SDOF system, the nonlinear spectrum of the equivalent SDOF system can be 

constructed for the frequency range of interest using Equations (6-6) to (6-9). With the 

target displacement ∆e, the required initial period Ti and the corresponding 

acceleration Sa are to be determined from the nonlinear response spectrum (as 

illustrated in Figure 6.5). Here Sa = Sde/Rµ is the acceleration corresponding to the 

‘yield’ strength of the SDOF system, which is used to determine the required design 
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strength in order to achieve the target performance. Therefore it does not stand for the 

peak acceleration response during earthquake which is usually larger than Sa due to 

strain hardening. An alternative approach is to use the elastic displacement spectrum 

and solve Ti by iteration as illustrated below, 

 ),( solve)( ,0,,0
1,

,0 kkuk
k

e
kde TCCT

C
TS µ

µ

=⇒⇒
∆

=
−

 

where k starts from zero until the results converge, and Cµ,0 is assumed to be unity. 

The design base shear of the equivalent SDOF system is given as, 

 aeb SmV =  (6-10) 

 

STEP 5: Design Strength of SFDB 

The base shear calculated in the last step can be distributed over the braced frame 

height in proportion to the seismic mass and displacement profile in accordance with 

the following relationship, 
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∆
=

)( ii

ii
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m
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Such a force distribution is based on the fundamental mode shape and does not 

account for the contribution of higher modes. The seismic design story shear in any 

story is then determined from the equation below, 

 ∑
=

=
n

ij
ji FV  (6-12) 
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In the SFDB frame, it is assumed that all design story shear Vi is to be resisted by 

the concentric braces – SFDBs. Thus the required ‘yield’ strength of the SFDB, and 

the cross sectional area of SMA wires in the SFDB can be determined as, 

 
y

i

y

brc
i

VP
A

σασ ⋅⋅
==

cos2
 (6-13) 

where σy is nominal ‘yield’ stress (i.e., transformation stress) of SMA wires or actual 

‘yield’ stress determined from material tests. 

 

STEP 6: Design for Other Members in SFDB frame 

Since the SFDBs are the primary lateral load resisting and energy dissipating 

elements of the braced frame building, bracing connections and adjoining members 

shall be designed to resist the maximum possible brace force. Similar to Provisions for 

Buckling-Restrained Braced Frames (AISC 2005), the adjusted brace strength, 

ωRyPbrc is used in the design of bracing connections and adjoining beams and columns. 

Here the expected yield strength coefficient Ry is the ratio of the expected ‘yield’ 

stress to the nominal ‘yield’ stress of SMA wires, and it needs not to be applied if σy is 

established using experimentally determined ‘yield’ stress values of SMA wires. The 

factor ω considers the strain hardening behavior after the ‘yielding’ of SFDBs, and it 

is the ratio of the maximum brace force to the yield strength of SFDBs. With the 

maximum brace force being capped by the slotted bolted connection at the end portion 

of the SFDB, a strain hardening adjustment factor ω of 2.0 is recommended here. 

 It should be noted that although no apparent discrepancy was observed in this 

study between the brace strength in tension and compression, a vertical unbalanced 
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concentrated force of 0.05ωRyPbrcsin(α) is still assumed in the design of floor beams. 

Thus the beam design considers the axial loads caused by adjusted brace strength and 

the flexural demand resulting from the vertical unbalanced concentrated force, as well 

as dead and live load. The possible contribution of the concrete slab to the beam 

stiffness and strength is neglected. Similar to the design of BRB frame (AISC 2005), 

both pinned beam-column connections and moment-resisting beam-column 

connections are allowed to be utilized although the braced frame is not explicitly 

designed to be moment resisting. 

 

STEP 7: Check Performance Level under MCE and FE 

The seismic performance levels of the SFDB frame under maximum considered 

earthquakes (MCE) and frequent earthquakes (FE) need to be checked through 

inelastic analysis procedures such as pushover analysis or nonlinear time-history 

analysis. If the performance levels under the MCE and FE are not acceptable, the 

revision of brace strength, i.e., the cross-sectional area of the SMA wires in SFDBs, 

would have to be made in order to achieve satisfactory performance level under the 

MCE and FE. Accordingly, the design of adjoining members and bracing connections 

also need to be modified. 
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6.3 SEISMIC RESPONSE OF SDOF SYSTEM 

The preceding section refers to a procedure of transforming a multistory braced frame 

to an equivalent SDOF system. In this procedure, the following assumptions have 

been made: 

(1) A multistory frame responds predominantly in its first vibration mode, and 

displacement profile during ground shaking can be approximated by the 

assumed first mode shape. 

(2) The seismic-induced story shear forces are mainly resisted by the bracing 

elements, i.e., the SFDBs in the braced frame, and the contribution to the 

lateral resistance from other elements is neglected. 

(3) As long as the braced frame retains its assumed displacement profile during 

ground shaking, the braces in different stories would yield simultaneously, and 

the ductility demands of these SFDBs are assumed to be the same as each 

other. 

Based on the above assumptions, the resulting equivalent SDOF system has a 

hysteretic shape similar to those of SFDBs but having different parameter values. The 

displacement response of the multistory frame can be predicted using this equivalent 

SDOF system and the ductility levels of the SFDBs in multistory frame is assumed to 

be equal to that of the equivalent SDOF system. 

Numerous case studies confirm that the global displacement response of multistory 

frames, such as roof drift, can be fairly well estimated using the equivalent SDOF 

system (Shimazaki and Sozen 1985; Qi and Moehle 1991). It is noted, however, that 
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the maximum inter-story drift ratios could be affected by concentration of inelastic 

deformation in some stories, higher mode effects and P-∆ effect (Gupta and 

Krawinkler 2000; Pampanin et al. 2003; Moehle 1992). The ratios of story drift to roof 

drift over the height of the building has been found to be dependent on structural 

height, level of inelastic deformation and ground motion characteristics, and they are 

likely to be larger than 1.0 for most or all stories (Gupta and Krawinkler 2000). In 

general, the larger the number of stories and/or the larger the maximum story 

displacement ductility ratio, the larger the ratios of peak story drifts to peak roof drift 

(Miranda and Reyes 2002). Thus for a relatively high structure,  the design procedure 

using equivalent SDOF system tends to underestimate the value of inter-story drift 

ratios and therefore the ductility levels of SFDBs.  

 

6.3.1 Nonlinear Response Spectra 

Nonlinear response spectra of SDOF system with various hysteretic behaviors have 

been extensively studied (Chopra 1996; Chopra and Chintanapakdee 2001, 2004; 

Nassar and Krawinkler 1991; Newmark and Hall 1982; Vidic et al. 1994; Borzi et al. 

2001; Miranda 2000, 2001; Miranda and Bertero 1994; Ruiz-Garcia and Miranda 2003; 

Christopoulos et al. 2002; Farrow and Kurama 2003; Seo and Sause 2005; Seo 2005).  

In this study the nonlinear response spectra of SDOF system with flag-shaped 

hysteresis (representing SFDBs’ self-centering hysteretic behavior) were studied. The 

hysteretic behavior of SFDBs was simulated using the analytical model described in 

Chapter 4. The analytical model of SFDB utilizes the modified Wilde model for 
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superelastic Nitinol wires with the consideration of friction forces. The parameters of 

the modified Wilde model which are tuned based on the dynamic test of Nitinol wires 

are listed in Table 4.1.  

Two different hysteretic behaviors were considered for SDOF system – high 

damping and low damping to simulate two cases corresponding to SFDB with or 

without friction effect. The hysteresis representing these two cases respectively is 

shown in Figure 6.6. The friction force levels at two sliding surface for SFDB and 

SFDB-NF are described in Chapter 4. 

For the above-described two types of hysteresis loops, their ‘post-yield’ stiffness 

ratio, the friction force level and the energy dissipation ratio are fixed values that 

correspond to the SFDB configurations. The viscous damping ratio of the equivalent 

SDOF system is assumed to be 5% in this study. Thus the dynamic properties of the 

equivalent SDOF system are defined by two essential parameters — its elastic period 

T0 and ‘yield’ strength Fy, which can be expressed as 

 00 /2 kmT ⋅= π  (6-14) 

 
R
FF e

y =  (6-15) 

where k0 is the initial stiffness of the SDOF system, R is the strength reduction facto, 

Fe is the elastic design strength. With known stress-strain relationship for the 

superelastic SMA element, the initial elastic stiffness and yield strength can be 

adjusted by altering its cross-sectional area and wire length. The range of the initial 

elastic period considered in this study is 0.2 sec ≤ T0 ≤ 3.0 sec, typical of one- to 20-

story steel braced frames. 
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It is noted that the stiffness value of SFDB changes before and after SFDB starts to 

slip over its friction surface. Therefore, the effective initial stiffness of SDOF system 

with SFDB is defined as the secant stiffness corresponding to the point of ‘yield’ 

strength on the load-displacement curve (as shown by the dashed line in Figure 6.6-

(b)). Thus with the same ‘yield’ strength and SMA wire length, the initial stiffness of 

SFDB and SFDB-NF is identical.  

Seo (2005) proposed to use smooth median response as the likely response value 

for a set of earthquake ground motions based on the assumption that nonlinear 

response follows a lognormal distribution. The median value is associated with 50% 

probability of exceedance, and for lognormal distribution the median value of the 

sampled data can be calculated as the geometric mean (Ang and Tang 1975): 
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where xj, j = 1,2, …, n represent the sampled data. It was defined by Seo (2005) as the 

smooth median, denoted by “~”, in order to differentiate it from the counted median 

(MED): 
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The findings by Seo (2005) indicate that: (1) the smooth median nonlinear 

response spectra for systems with their yield strength determined from the smooth 

median pseudo acceleration spectrum for a set of ground motions are similar to the 

smooth median response spectra for systems with the yield strength determined from 

the pseudo acceleration spectrum for the individual ground motions in the ground 
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motion set; (2) There exists a simple and direct relationship between the smooth 

median nonlinear spectral responses for a system with a constant µ and the smooth 

median nonlinear spectral responses for a system with a constant R.  

Therefore the smooth median nonlinear response spectra were used in this study to 

investigate the SDOF system with hysteretic behaviors shown in Figure 6.6. Constant 

R method was used and the values of the strength reduction factor R considered in this 

study were 2, 3, 4, 5, 6, 7 and 8 respectively.  

The ground motions developed by Somerville et al. (1997) were employed in the 

time history analyses. Only the suite corresponding to DBE level was selected in this 

section and it contains 20 records designated as LA01 - LA20 respectively. More 

details about these ground motion sets can be found in Appendix A. Figure 6.7 shows 

the 5%-damped elastic response spectra of considered ground motions, as well as the 

design spectrum corresponding to site class D (firm soil) in Los Angeles (zip code 

90019). The smooth median elastic acceleration spectrum, along with the Equation (6-

6), is used to determine the ‘yield’ strength of SDOF system in this study. It is seen 

that the smooth median acceleration response spectrum of 20 records is in reasonable 

agreement with the design response spectrum given by NEHRP code (2003). The 

profiles of the maximum and minimum response spectra are also shown in Figure 6.7. 

The nonlinear response of the SDOF systems with two types of hysteresis loops 

were studied for varying parameters R and T0 under a suite of twenty ground motions. 

Figure 6.8 and Figure 6.9 show the smooth median constant-R spectra of ductility 

level and nonlinear displacement coefficient, which are denoted as Rµ~  and RC~  

respectively. With the same strength reduction factor, R, i.e., the same yield strength, 
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Fy, the SDOF system with the SFDB-type hysteresis always leads to smaller Rµ~  and 

RC~  than that of SFDB-NF. This improved control effect on the displacement and less 

demand on brace ductility is due to the enhanced energy dissipation in SFDB through 

friction force which increases the damping ratio of the SDOF system, especially for 

small values of R. For example, when R = 2, RC~  of SFDB system is less than 1 for the 

period range considered in this study, i.e. 0.2 sec ≤ T0 ≤ 3.0 sec, implying that the peak 

nonlinear displacement is smaller than that of an elastic SDOF system with 5% critical 

damping ratio.  

 

6.3.2 Regression Analyses 

The regression analyses were carried out on the Rµ~  spectra to establish a 

mathematical function for use in the design procedure. The regression result, denoted 

as Rµ̂ , is usually a function of T0 and R. The following expression of the regression 

function was proposed by Seo (2005) for four different hysteresis models: 

 )/1exp( 2
0ˆ

cTc
R R=µ  (6-18) 

This function is also used in this study to estimate the Rµ~  spectra of the SDOF 

system with SFDB-NF-type hysteresis. For the SDOF system with SFDB-type 

hysteresis it is slightly modified as follows: 

 3
)/exp( 2

01ˆ cR
cTc

R −=µ  (6-19) 

For SFDB-NF-type SDOF system, Equation (6-18) can be rewritten as, 
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Therefore the coefficient c1 and c2 can be obtained through linear regression such as 

the least square method. Figure 6.10-(a) shows the data points ( 0ln,
ln
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and linear equation of regression results. Based on this data set, c1 and c2 can be 

calculated as 

c1 = exp(-1.8) = 0.1653,        c2 = 0.83 

The regression function Rµ̂ for the SFDB-NF-type SDOF system becomes 

 )/1653.0exp( 83.0
0ˆ T

R R=µ  (6-21) 

For SFDB-type SDOF system, Equation (6-19) satisfies the following relationship: 

30 ˆ      , cRT R −=∞→ µ  

Therefore the coefficient c3 in Equation (6-19) can be evaluated using the RR −µ~  

relationship at long period (T0 > 3 sec). A procedure similar to that for the SFDB-NF 

system was followed to determine the values of coefficient c1 and c2 (as shown in 

Figure 6.10-(b)). The regression values of the coefficients and regression function for 

the SFDB-type SDOF system are expressed as follows: 

c1 = exp(-2.0) = 0.1353,        c2 = 0.8,       c2 = 0.75 

 75.0ˆ )/1353.0exp( 8.0
0 −= T

R Rµ  (6-22) 

Seo (2005) indicated that the regression function Rµ̂  for the smooth-median 

constant-R response spectrum Rµ~  can be inverted without knowledge of the 

dispersion to estimate corresponding µR~  spectrum—smooth-median constant-µ 
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spectrum which expresses R as a function of T0 and µ. The resulting function is 

denoted as µR̂ . Functions Rµ̂  and µR̂  can also be used to develop functions to 

estimate the smooth-median spectrum of nonlinear displacement coefficients, RC~  and 

µC~  respectively. The resulting functions for the SFDB-NF system and SFDB system 

are listed as follows: 

For SFDB-NF-type SDOF system: 

 )/1653.0exp( 83.0
0ˆ TR −= µµ  (6-23) 

 )/1653.0exp(1 83.0
0ˆ/ˆ TRC −−== µµ µµ  (6-24) 

 1)/1653.0exp( 83.0
0/ˆˆ −== T

RR RRC µ  (6-25) 

For SFDB-type SDOF system: 

 )/1353.0exp( 8.0
0)75.0(ˆ TR −+= µµ  (6-26) 

 )/1353.0exp( 8.0
0)75.0/(ˆ/ˆ TRC −+== µµµ µµ  (6-27) 

 RRRC T
RR /)75.0(/ˆˆ )/1653.0exp( 83.0

0 −== µ  (6-28) 

Figure 6.11 show the comparison between the regression function Rµ̂  and smooth-

median response spectrum, Rµ~ . In general, the Rµ̂  function matches well with the Rµ~  

data over the period range for the strength reduction factor values considered and the 

two hysteresis models. Figure 6.12 shows the regression function RĈ  and smooth-

median response spectrum RC~  for both hysteresis models. It can be seen that function 

RĈ  can fairly well estimate the values of RC~ . 
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Figure 6.13 and Figure 6.14 show the values of functions µR̂  and µC~  respectively 

over the period range considered for the two hysteresis models. It is noted again that 

these functions µR̂  and µC~  are used in the STEP 4 of the proposed design procedure 

for SFDB frame in the preceding section. It can be seen from these figures that the 

SFDB system results in relatively larger strength reduction factors and smaller 

nonlinear displacement coefficient compared to the SFDB-NF system. 

 

6.4 DESIGN EXAMPLES 

Two design examples for SFDB frames are presented in this section. The nonlinear 

static analyses (i.e., pushover analyses) and nonlinear time history analyses of the 

designed SFDB frame are carried out to evaluate the effectiveness of the proposed 

design procedure. 

 

6.4.1 Design examples 

A 3-story and a 6-story office building are designed using the above-mentioned design 

procedure. The details about these two frame buildings are described in Appendix B. 

Figure B.1 and Figure B.2 show the plan and elevation view of these 3-story and 6-

story buildings, as well as the story height and location of the bracing elements in 

SFDB frames. These two steel braced frame buildings are designed for a location in 

downtown Los Angeles (zip code: 90019) with site class D (firm soil). Accordingly 

the design spectrum given in Figure 6.7 can be used in the design. For the 3-story 
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building, the seismic mass is 8.73x105 kg for the 1st and 2nd floor, 7.88x105 kg for the 

3rd floor; while for the 6-story building, the seismic mass is 9.06x105 kg for the 1st 

through 5th floor, and 8.19x105 kg for the 6th floor. The design drift ratio is specified 

as 1% under the DBE earthquake for both the 3-story and 6-story buildings, and the 

design ductility levels of SFDBs/SFDB-NFs are assumed to be equal to 4. In 

comparison with the ductility of SFDBs/SFDB-NFs corresponding to the slip of 

friction surface 2 (i.e. µ = 8.0), such a target ductility performance would lead to 

minimal residual displacements of frames after DBE earthquakes. The details of the 

design example of the 6-story SFDB frame are shown as follows.  
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Structural Data Location: Los Angeles, zip code: 90019 

Design acceleration parameters: SDS = 1.212, SD1 = 0.656 

Design spectrum: as shown in Figure 6.7 

6 stories, 6 bays of CBF 

Story height: hi = 4.88, 3.96, 3.96, 3.96, 3.96, 3.96 (m) 

Seismic floor mass (1st~6th): 906, 906, 906, 906, 906, 819 

(ton) 

Frame tributary mass: mi = 151, 151, 151, 151, 151, 136 (ton) 

 

Target 

Performance Level 

Under DBE level         Inter-story drift: θd = 1.0% 

                                     Ductility level: µ = 4.0 

Under FE                     No significant structural yielding or 

                                     residual strain 

Under MCE                 Roof drift < 3%,   inter-story drift < 4% 

 

Equivalent SDOF 

System 

Displacement profile: ∆i = 0.048, 0.088, 0.13, 0.17, 0.21, 0.25 

(m) 

SMA wire length: li =   0.83, 0.75, 0.75, 0.75, 0.75, 0.75 (m) 

Effective displacement: ∆e = 0.177 (m) 

Effective mass: me = 737 (ton) 
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Design Base Shear Iteration: 

Cµ = 1.000 →  Sde = ∆e/ Cµ = 0.177 m → T0 = 1.087 s 

Cµ = 1.013 →  Sde = ∆e/ Cµ = 0.175 m → T0 = 1.075 s 

Cµ = 1.015 →  Sde = ∆e/ Cµ = 0.174 m → T0 = 1.068 s 

Thus, T0 = 1.068 s, 

          µ = 4.0, R = 3.94, Cµ = 1.016, Sae = 0.614 g 

Vb = me·Sae/R = 1125 kN 

 

Strength of SFDBs Lateral force: Fi = 64, 115, 167, 218, 270, 291 (kN) 

Story shear force: Vi = 1125, 1061, 946, 779, 561, 291 (kN) 

cross sectional area: Ai = 15.1, 12.9, 11.5, 9.5, 6.8, 3.5 (cm2) 

 

Design of Beams 

and Columns 

Adjusted brace strength:  

          Pmax,i =   1645, 1404, 1251, 1031, 742, 385 (kN) 

1.4D + 0.5L + 2.0QE 

Beams: 

1st to 3rd floor:  W12x87  

4th to 6th floor:  W12x65 

 

Columns: 

1st to 3rd floor:  W14x211 

4th to 6th floor:  W14x132                                                       

Pmax,i Pmax,i

w
0.05Pmax,i sin(a)
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The design of other SFDB frame buildings follows a similar procedure. Table 6.1 

presents the properties of the SFDB braces, including the ‘yield’ strength, cross-

sectional area and length of the SMA wires (Nitinol is used here), in the four designed 

frame buildings. The friction forces at the two respective sliding surfaces are as 

specified before. Figure 6.15 shows the section sizes of the beams and columns in the 

four frames respectively. Steel A992 Grade 50 is assumed to be used for all beams and 

columns. All the beam-column connections in the braced bays are detailed with 

moment-resisting connection.  

As shown in Table 6.1, the design of SFDB frame tends to yield smaller yield 

strength of braces than SFDB-NF frame. For example, the brace strength of the SFDB 

frame is 80% that of the SFDB-NF frame in the 3-story building, and only 64% for the 

6-story building. This consequently results in smaller section sizes of beams and 

columns in the SFDB frames the design of which is governed by the adjust brace 

strength (as shown in Figure 6.15). The volume of Nitinol wires, which are relative 

expensive materials, used in SFDB frame is only 58% that in SFDB-frame for the 3-

story building, and only 46% for the 6-story building. In comparison with SFDB-NF 

frame, the design of SFDB frames can significantly save the building cost and leads to 

a relative economical design. This is due to the enhanced energy dissipation and 

contribution of brace strength offered by the friction force in SFDBs. 

Table 6.2 presents the fundamental periods of the four designed frame buildings. 

The estimate in the design procedure is seen to be in a good agreement with the actual 

fundamental elastic periods of the designed buildings. It can also be seen that the 

designed SFDB-NF frame building tends to have shorter periods, or larger stiffness, in 
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order to achieve the same level of target displacement, as compared to the SFDB 

frame building. 

 

6.4.2 Pushover Analyses 

Nonlinear pushover analyses were conducted to evaluate the lateral load response and 

failure mechanisms of the SFDB frames and SFDB-NF frames. NEHRP 

Recommended Provisions (FEMA 2003) was followed to determine the lateral load 

distribution. Figure 6.16 and Figure 6.17 show the pushover curves (base shear versus 

roof drift ratio) for the four designed frames—3-story SFDB frame, 3-story SFDB-NF 

frame, 6-story SFDB frame and 6-story SFDB-NF frame respectively. Various 

characteristic points such as the slip at friction surface of SFDB, ‘yielding’ of 

SFDB/SFDB-NF braces, yielding at beams and columns, are indicated in Figure 6.16 

and Figure 6.17. 

The base shear of SFDB-NF, for both 3- and 6- story buildings, is much larger 

than the corresponding value of the SFDB frame, as a result of larger design strength 

of the SFDB-NF braces. This larger base shear has to be taken into account in the 

design of building foundations. Initial stiffness change in the SFDB frame can be 

observed from its pushover curve shown in Figure 6.16-(a) and Figure 6.17-(a). The 

friction surfaces in the SFDBs begin to slip at very small roof displacement. Before 

and after the slip, the stiffness of the SFDB frame would change.  

Both the SFDB and SFDB-NF frames yield at relatively small roof drift ratios 

(about 0.25%). The yield strength of SFDB or SFDB-NF frames is very close to the 
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design base shear, which indicates that the lateral forces are mainly resisted by the 

SFDBs in the braced frames and the contribution to the lateral resistance from other 

structural members is relatively small. The ‘yield’-like plateau of SFDB or SFDB-NF 

frames is caused by the solid phase transformation in superelastic SMA wires instead 

of plastic deformation. Before the occurrence of plastic deformation in beams and 

columns, there is essentially no damage in the SFDB frame. Therefore the SFDB 

frame has the potential to achieve a damage-free structural system for frequent 

earthquakes and design basis earthquakes, which would lead to considerably reduced 

repair cost and service interruption after design-level earthquakes, particularly in 

seismic active regions. 

The slip of friction surface 2 in SFDBs or SFDB-NFs occurs at a roof drift ratio 

around 2%. The strain hardening and plastic deformation associated with the 

superelastic Nitinol wire in excess of 8% strain would cause certain undesirable 

effects in the SFDB frame if the sliding surface 2 is not activated at this point. Below 

this roof drift ratio value, the SFDBs or SFDB-NFs in the frames do not have 

appreciable residual deformation after earthquakes and thus need not be repaired. 

However, above this roof drift ratio value the SFDBs or SFDB-NFs lose their self-

centering capacity and residual deformation will occur. The corresponding pushover 

curves with unloading path (in dashed line) are also shown in Figure 6.16 and Figure 

6.17, and apparent residual roof drift ratio after unloading can be observed. The 

relatively small residual drift ratio of the SFDB-NF frame after unloading is mainly 

due to its larger brace strength. 
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6.4.3 Nonlinear Time History Analyses 

Three suites of earthquake ground motions developed by Somerville et al. (1997) are 

used in the nonlinear time history analyses in this study. In addition to the DBE level 

earthquakes considered in the previous nonlinear analyses of SDOF system, the 

earthquake suites with 50% and 2% probability of exceedance respectively in a 50-

year period are also selected here for evaluating the seismic performance of the 

designed frame buildings under FE and MCE level earthquakes. Each suite of ground 

motions contains 20 records designated as LA01 - LA20 (for DBE), LA21 – LA40 

(for MCE) and LA41 - LA60 (for FE), respectively. More details about these three 

ground motions can be found in Appendix A. 

Figure 6.18 and Figure 6.19 show the smooth-median response of the 3- and 6-

story building respectively under the DBE earthquakes. The smooth-median response 

is calculated based on the time history analysis results under 20 ground motions in the 

DBE suite. The peak floor displacement is normalized by the building height. It can be 

seen that the displacement profiles from the nonlinear time history analyses match 

well with the design displacement for all four braced frames. Clearly the SFDB or 

SFDB-NF frame buildings designed using the proposed DBD approach can achieve 

the target displacement pattern specified in the design procedure. In terms of the peak 

inter-story drift ratios and ductility levels of the SFDB braces, the 3-story building, 

including both the SFDB and SFDB-NF frames, can meet the design target 

performance reasonably well. For the 6-story buildings, the proposed DBD method 

tends to underestimate the peak inter-story drift ratios and brace ductility demands for 
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both the SFDB and SFDB-NF frames. Particularly, for the 6-story SFDB-NF frame, 

apparent non-uniform distribution of inter-story drift ratios and brace ductility 

demands can be observed along the building height, and smooth-median results from 

the time history analyses are seen to exceed the design estimation by up to 60%.  

In the DBD procedure, the seismic response of a multi-story frame is assumed to 

be dominated by its fundamental vibration mode. As mentioned earlier, although its 

displacement response can be estimated with satisfactory accuracy from the equivalent 

SDOF system, other response quantities including maximum inter-story drift ratios 

may be affected by higher mode effects, concentration of inelastic deformation and P-

∆ effect (Gupta and Krawinkler 2000; Pampanin et al. 2003, Moehle 1992). Therefore 

the proposed DBD procedure may underestimate the inter-story drift ratios for these 

cases and consequently the ductility levels of the SFDB braces. Compared to the 3-

story building, the concentration of inter-story drift due to inelastic behavior and the 

effect of higher mode participation is more prevalent in the 6-story building, and as 

such the discrepancy between the design value and analysis results is more obvious.  

Figure 6.20 and Figure 6.21 show the displacement response and inter-story drift 

ratios of the 3- and 6-story building under FE earthquakes respectively. The smooth 

median values of both peak and residual response are presented. The peak roof drift 

ratios are less than 0.5% for all four buildings. No significant structural damage occurs 

at such a small value of roof drift ratio (as shown in Figure 6.16 and Figure 6.17). The 

residual displacement and inter-story drift ratio is observed to be minimal for all four 

buildings. Therefore the design of all four frames satisfies the performance 

requirement under the FE earthquake. It is also seen that under the FE earthquakes the 
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peak displacement and inter-story drift ratio of the SFDB frame is less than those of 

the SFDB-NF frame, although their performance under the DBE earthquakes is very 

close to each other. This can be explained by the fact that under small amplitude 

vibration SFDB-NFs are mainly in elastic range and the energy dissipation is very 

small. However, the friction force in SFDBs can effectively dissipate the energy even 

under small amplitude vibration.  

Figure 6.22 and Figure 6.23 show the smooth-median response of displacement 

and inter-story drift ratio under the MCE earthquakes. For all four designed frames, 

the peak roof drift ratio is less than 3% and the maximum inter-story drift ratio is less 

than 4%. Therefore the designed frames also satisfy the target performance specified 

for the MCE level. The performance levels of the four buildings under the MCE 

earthquakes are close to each other. Once the peak roof drift ratios exceed 2%, the 

friction surface 2 in SFDBs or SFDB-NFs will slip. Consequently residual 

displacement or story drift can be observed in all four frames in these cases. The 

maximum residual drift ratios of the SFDB frames are slightly larger than those of the 

SFDB-NF frames. This is consistent with the observations from the pushover analyses. 

Figure 6.24 and Figure 6.25 show the smooth-median response of floor 

acceleration for both SFDB and SFDB-NF frames under three different seismic 

intensities—FE, DBE and MCE levels. For both 3-story and 6-story buildings, the 

SFDB frames have smaller acceleration demands than the SFDB-NF frames under all 

three seismic intensity levels due to the lower brace strength used in the design of 

SFDB frame. The peak smooth-median accelerations under MCE earthquakes are 1.1 

g and 1.6 g respectively for 3-story SFDB and SFDB-NF frames, and are 1.4 g and 2.1 
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g respectively for 6-story SFDB and SFDB-NF frames. Cautions need to be exercised 

on the high acceleration demands observed in SFDB-NF frames which may cause 

undesirable damage to acceleration sensitive building contents and components. 

Figure 6.26 to Figure 6.28 show the scatter plots of roof drift ratios, peak inter-

story drift ratios and residual inter-story drift ratios for these buildings with different 

hazard levels. The peak and residual inter-story drift ratios are the maximum values in 

all stories. Additionaly, the smooth median and smooth median plus standard 

deviation is plotted in these figures.  

 

6.5 CONCLUSIONS 

This chapter presents a displacement-based procedure for the seismic design of steel 

concentrically braced frame (CBF) buildings with a special bracing element termed 

self-centering friction damping brace (SFDB). Through an equivalent SDOF system, 

the displacement-based design (DBD) procedure proportions SFDB frame based on 

the target performance level under design basis earthquakes, such as target building 

displacement and target ductility level of braces.  

The proposed DBD method was applied to the design of a 3-story and 6-story 

building located in Los Angeles, California, respectively. The design examples of 

CBF buildings with self-centering braces without friction, denoted as SFDB-NF, are 

also included as reference cases in this chapter in order to evaluate the effect of 

friction force in SFDB. The design examples demonstrate that owing to the 
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contribution of friction force in SFDBs, SFDB frames are believed to yield more 

economical design than the SFDB-NF frames.  

Nonlinear pushover and dynamic analyses of the prototype concentrically braced 

frame (CBF) buildings were performed to evaluate the effectiveness of the proposed 

design method. The time history analyses involve three suites of earthquake ground 

motions each containing 20 earthquake records which represent the frequent, design 

basis and maximum considered earthquakes in Los Angeles, California respectively. 

The results indicate that SFDB frames designed using the DBD procedure can often 

achieve their target displacement parameters with a high degree of accuracy. However, 

caution should be exercised on design of medium-rise buildings since the proposed 

DBD method tends to give underestimated values of maximum story drift ratios and 

brace ductility demands which can be attributed to the exclusion of concentration of 

story drift due to inelastic behavior and higher mode contribution in this simplified 

design method. Their effects generally increase with the displacement ductility ratio 

and the number of stories. Future work is expected to refine this design method by 

including these effects in the total response of medium or high-rise buildings.  

The results of both the nonlinear time history and pushover analyses show that 

through proper selection of target performance levels, SFDBs has a potential to 

establish a new type of CBF systems with self-centering capability that can withstand 

several frequent or design basis earthquakes without the need for replacement. 

Although the DBD procedure presented in this chapter for SFDB frames shows 

promise, further works need to be done in the future to address its limitations as 

follows: the nonlinear response spectrum is based on the ground motion set for site 
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class D in downtown Los Angeles. Previous work by other researchers suggests that 

nonlinear response spectrum is dependent on the characteristics of ground motions, 

such as locations, site soil conditions, earthquake magnitudes and site distances. 

Therefore additional work is required to extend the regression results of µ-R given in 

this chapter to different design cases. It is also noted that the near-field effect of 

earthquakes were not considered in this study.  

Additionally, the probability of exceedence needs to be considered in the 

determination of target performance level. In current method the target performance 

levels are specified for the smooth median response under earthquakes. However, the 

failure probability or the probability of exceeding a threshold of response in the life 

time of structures rather than the median response is more interested in the structural 

design or the evaluation of structural performance. Thus probabilistic distributions of 

seismic responses of SFDB frames need to be studied in the future and the design 

criteria should be based on target performance levels with a certain reliability 

confidence. Furthermore, only two levels of friction forces were considered in this 

study. To make the design of SFDB frame more general, additional friction force 

levels should be considered in future design.   



 172

 

Table 6.1 Properties of the braces used in the designed frame 

  Yield strength 
Cross sectional 

area*  Wire length 
Building model Story # (kN) (cm2) (m) 

3 587 10.8 0.75 

2 1021 18.7 0.75 

3-story 

SFDB frame 

1 1237 22.7 0.75 
     

3 736 18.7 0.75 

2 1280 32.4 0.75 

3-story 

SFDB-NF frame 

1 1552 39.3 0.75 
     

6 193 3.5 0.75 

5 371 6.8 0.75 

4 515 9.5 0.75 

3 626 11.5 0.75 

2 702 12.9 0.75 

6-story 

SFDB frame 

1 823 15.1 0.83 
     

6 300 7.6 0.75 

5 578 14.6 0.75 

4 803 20.3 0.75 

3 975 24.7 0.75 

2 1094 27.7 0.75 

6-story 

SFDB-NF frame 

1 1282 32.5 0.83 

* The cross sectional area of Nitinol wires is only for one side. 
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Table 6.2 Elastic fundamental periods of designed frames 

 Elastic period (sec) 

 Design estimation Actual value 

3-story SFDB frame 0.51 0.56 

3-story SFDB-NF frame 0.46 0.48 

6-story SFDB frame 1.07 1.15 

6-story SFDB-NF frame 0.86 0.93 
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Figure 6.1 Performance objectives in FEMA-450 
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Figure 6.2 Flow chart for the proposed design procedure 
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Figure 6.3 Schematic diagram of displacement-based seismic design procedure 
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Figure 6.4 Typical elastic design response spectrum for 5% damping 
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Figure 6.5 Nonlinear response spectrum for SDOF system  
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Figure 6.6 Two typical hysteretic behaviors for SDOF system 
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Figure 6.7 Elastic response spectra of SDOF system with 5% damping for considered 

ground motions 



 179

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

T
0
  (sec)

µ̃
R

 From top to bottom: 
R = 8
R = 6
R = 4
R = 2

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

T
0
  (sec)

µ̃
R

 From top to bottom: 
R = 8
R = 6
R = 4
R = 2

 
         (a) SFDB-NF      (b) SFDB 

Figure 6.8 Smooth-median constant-R spectrum of ductility level, Rµ~  
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Figure 6.9 Smooth-median constant-R spectrum of nonlinear displacement coefficient, 

RC~  
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Figure 6.10 Linear regression of µR-R-T0 relationship 
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Figure 6.11 Comparison of smooth-median Rµ~  spectrum and regression function Rµ̂  
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Figure 6.12 Comparison of smooth-median RC~  spectrum and regression function RĈ  
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Figure 6.13 Mathematic function µR̂  
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Figure 6.14 Mathematic function µĈ  
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               (a) 3-story SFDB frame                            (b) 3-story SFDB-NF frame 
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              (c) 6-story SFDB frame                            (d) 6-story SFDB-NF frame 

Figure 6.15 Elevation of designed frames with member sections     
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(a) 3-story SFDB frame 
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(b) 3-story SFDB-NF frame 

Figure 6.16 Pushover analyses of 3-story braced frames 
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(a) 6-story SFDB frame 
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(b) 6-story SFDB-NF frame 

Figure 6.17 Pushover analyses of 6-story braced frames 
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Figure 6.18 Smooth-median response of 3-story frames under DBE earthquakes 
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Figure 6.19 Smooth-median response of 6-story frames under DBE earthquakes 
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Figure 6.20 Smooth-median response of 3-story building under FE earthquakes  
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Figure 6.21 Smooth-median response of 6-story building under FE earthquakes 
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Figure 6.22 Smooth-median response of 3-story building under MCE earthquakes  
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Figure 6.23 Smooth-median response of 6-story building under MCE earthquakes 
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Figure 6.24 Smooth median acceleration of 3-story frames under different seismic 

intensity levels 
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Figure 6.25 Smooth median acceleration of 6-story frames under different seismic 

intensity levels 
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(c) MCE earthquakes (2% in 50 years) 

Figure 6.26 Dispersion of all roof drift ratios under different seismic intensity levels 

(legend: circle = smooth median, triangle = smooth median + standard deviation) 
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(c) MCE earthquakes (2% in 50 years) 

Figure 6.27 Dispersion of all maximum inter-story drfit ratios under different seismic 

intensity levels (legend: circle = smooth median, triangle = smooth median + standard 

deviation) 
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(a) FE earthquakes (50% in 50 years) 
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(c) MCE earthquakes (2% in 50 years) 

Figure 6.28 Dispersion of residual inter-story drift ratios under different seismic 

intensity levels (legend: circle = smooth median, triangle = smooth median + standard 

deviation) 
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CHAPTER 7 CONCLUSIONS 

7.1 SUMMARY 

Recognizing the importance of reducing residual deformation in building structures 

after earthquake, the concept of self-centering seismic resisting system has recently 

attracted considerable interest. A flag-shaped hysteresis loop is typical of such self-

centering systems. Special metals like shape memory alloys (SMA) also exhibit flag-

shaped stress-strain curve. This research presents a special type of bracing element 

termed self-centering friction damping brace (SFDB) which utilizes superelastic SMA 

wire strands as its core re-centering component while enhanced energy dissipation is 

realized through friction effect. The current research focuses on the study of the 

system behavior of SFDB frames under earthquakes with varying earthquake intensity 

levels. Specifically, this research includes the accomplishment of the following major 

tasks: 

 Establishing a novel mechanical configuration for SFDB device. In SFDB, its re-

centering capability is realized using superelastic SMA wires while its enhanced 

energy dissipation capacity is achieved through friction mechanism. 

 Proof-of-concept test of scaled SFDB specimens with various friction force levels.  

 Experimental characterization of mechanical properties of superelastic Nitinol 

wires, including their fatigue life, hysteretic behavior, equivalent damping ratio, 

and effects of loading rate or temperature.  
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 Development of a rate-dependent thermo-mechanical constitutive model for 

superelastic SMA wires, which can be used to predict the loading rate effect on 

the hysteretic behavior of SMA wires. 

 Development of the modified Wilde model for superelastic SMA wires. This is a 

rate-independent phenomenological model which has relatively simple 

mathematical expression. 

 Feasibility study of using rate-independent constitutive models for superelastic 

SMA wires in seismic response analyses of structures with SMA-based energy 

dissipating device. 

 Development of analytical models for SFDB device in DRAIN-2DX program. In 

these analytical models, different constitutive models for SMA wires are used 

respectively along with the consideration of friction forces at two sliding surfaces 

in SFDB device. 

 Evaluation of seismic performance of SFDB frames through nonlinear pushover 

analyses and nonlinear time history analyses at specified seismic intensity levels. 

 Development of a simplified displacement-based seismic design procedure for 

SFDB frames. The inter-story drift ratio and brace ductility are selected as the 

target performance in this design procedure. 

This chapter summarizes the research findings and conclusions drawn from this 

research. Areas for further research in the future are also described. 
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7.2 CONCLUSIONS 

 A training process that involves cyclic preloading for a specified number of load 

cycles, needs to be performed before the formal use of superelastic Nitinol wires 

in energy dissipation devices. The training process can effectively minimize 

accumulation of residual strain and stabilize the hysteretic behavior of 

superelastic Nitinol wires. 

 The temperature variation in superelastic Nitinol wires under dynamic tests 

affects to some extent the hysteretic behaviors at different loading frequencies.  

 In the proposed thermo-mechanical constitutive model for superelastic SMA wire, 

non-constant elastic modulus lead to more complex expression for the derivative 

mechanical law and the energy balance equation than constant elastic modulus. 

The integration scheme proposed in this study can facilitate the numerical 

simulation of the proposed thermo-mechanical model.  

 The proposed thermo-mechanical constitutive model shows a good agreement 

with experimental stress-strain relationship of superelastic SMA wires at a 

variety of specified loading rates. The loading rate-induced thermo-mechanical 

effect, such as the reduction in hysteresis area, rise of the transformation plateau 

and the increased slope of the loading transformation plateau with increasing 

loading rates and temperature variation, can be predicted reasonably well by this 

thermo-mechanical constitutive model.  

 The modified Wilde model is capable of simulating the experimental hysteretic 

behavior of superelastic SMA wires at a specified loading rate through regression. 
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 This study shows that using rate-independent constitutive models for superelastic 

SMA wires for seismic response analyses of structures gives fairly accurate 

results. 

 Considering the mathematical complexity for numerical implementation, 

intensive computational demand and infeasibility for nonlinear static analyses 

associated with the rate-dependent constitutive models, the rate-independent 

constitutive models (e.g., the modified Wilde model) for superelastic SMA 

materials are very appealing to structural engineers for seismic simulation study 

of SMA-based energy dissipation devices. 

 The use of sophisticated thermo-mechanical constitutive models for SMA is 

required in certain situations such as applications in which considerable changes 

in environmental temperature are anticipated. 

 By properly adjusting the ratio between the ‘yield’ strength of superelastic 

Nitinol wire strands and friction force in SFDB, hysteresis loops with nearly self-

centering behavior and enhanced energy dissipation can be obtained. 

 The results of cyclic testing of scaled SFDB specimens under dynamic loading 

clearly verify the concept and mechanics of SFDB. 

 To overcome the potential overloading problems due to the strain hardening 

behavior of Nitinol wires at large strain (i.e., >8.0%), a fuse-like device such as 

slotted bolted connection can be add at the end of SFDB. 

 SFDB frames have almost negligible residual story drifts under the frequent 

earthquakes (FE) and design basis earthquakes (DBE) for Los Angeles, 

California, while noticeable residual drifts can be observed in SFDB frame after 
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maximum considered earthquakes (MCE). In general, SFDB frames have 

minimal residual story drifts in comparison with conventional braced frames (e.g., 

buckling-restrained braced (BRB) frame) owing to the self-centering behavior of 

SFDBs. 

 In terms of peak story drifts and acceleration response, SFDB frames are capable 

of achieving a seismic response level comparable to that of BRB frames under 

the FE and DBE earthquake levels, while BRB frames appear to have better 

peak-response control performance under the MCE earthquakes. 

 Due to the unique behavior of superelastic Nitinol wires such as full strain 

recovery and long fatigue life, SFDB has the potential to withstand several 

frequent or design basis earthquakes without the need for replacement. 

 Incorporating friction damping in SFDB can significantly improve its seismic 

performance, while giving a more economical design of SFDB frame buildings 

than SFDB without friction force. 

 SFDB frames designed using the proposed displacement-based design approach 

can achieve the target displacement profile. However, the current simplified 

design approach only considers the participation of the fundamental mode and 

assumes a constant displacement profile for the entire earthquake duration, and 

thus it tends to give underestimated values for the maximum story drift ratios and 

brace ductility demands for medium-rise braced frame buildings. Further work is 

needed to refine this design approach such as by considering the effect of 

inelastic deformation concentration on story drifts and brace ductility demand in 

some stories. 
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In summary, the SFDB frames, if properly designed, have minimal residual drifts 

under frequent and design basis earthquakes, and SFDBs are able to withstand several 

design level earthquakes without the need for repair or replacement. In light of these, 

SFDB appears to be a promising bracing element for seismic resistant structures and 

has the potential to establish a new type of concentrically braced frame systems with 

self-centering capability. 

 

7.3 CONTRIBUTIONS 

The main contributions of this research work are summarized as follows: 

 Development of a concentrically braced frame system with a new type of bracing 

element termed self-centering friction damping brace (SFDB), which 

(a) exhibits nearly self-centering behavior until relatively large deformation; 

(b) utilizes friction effect for inexpensive and stable energy dissipation during 

earthquakes; 

(c) can withstand several frequent and design basis earthquakes without the need 

for replacement because of the high low-cycle fatigue life of nickel-titanium 

based shape memory alloy (SMA); 

(d) limits the maximum brace force acted on brace connections and adjoined 

members. 

 Establishment of a new unidirectional thermo-mechanical constitutive model 

which can simulate the superelastic behavior of SMA material and fairly well 

capture the effect of loading rate and temperature on its mechanical behavior. 
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This rate-dependent thermo-mechanical constitutive model results in 

improvements in representing the superelastic behavior of SMA material in the 

frequency range of interest to seismic applications, and provides a rigorous basis 

to evaluate the applicability of rate-independent constitutive models in seismic 

response analyses. Additionally, modifications were made to a rate-independent 

phenomenological model which can be used to describe the stress-strain relation 

of superelastic SMA materials at specified values of loading rate and temperature. 

Extensive study was carried out to compare the performance of these two 

constitutive models for superelastic SMA materials in seismic analysis.  

 Development of a displacement-based design methodology for incorporating and 

proportioning the proposed new bracing elements (i.e., SFDB) in buildings. It is a 

relatively simple procedure with a degree of difficulty similar to that of existing 

design methods but that it can more directly address important response 

parameters such as lateral displacement demands, peak inter-story drift demands 

and brace ductility demands. 

 

7.4 FUTURE WORK 

The following future work is suggested along the line of current research, 

 Constitutive models for superelastic SMA wires that is capable of simulating the 

complex behavior at large strain including plastic deformation and residual strain, 

can be developed to facilitate a comprehensive study of SMA-based energy 

dissipating device. 
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 The SFDB in present study is intended for use in indoor environment without 

being subjected to wide range of temperature change. For applications in cold 

regions such as bridge restrainer, development of SMA materials suitable for cold 

temperature use is needed. 

 Real-time large-scale test of SFDB frame is required to validate its seismic 

behavior and performance at different earthquake levels. 

 In present research, only the ground motion sets for site class D in Los Angeles 

are used. Ground motion records from soft soil sites and near fault sites were not 

considered in this study. Nonlinear responses of SFDB frames under such ground 

motions may be different from those findings given in this study.. 

 Research work on the connections between SFDB and primary structure such as 

brace gusset plate and beam-column connections is desired to develop a set of 

structural details with favorable seismic performance. 

 Only two different levels of friction forces are considered in present study. In 

order to make the design of SFDB frame more flexible, friction force level need 

to be considered as an additional design parameter in future design procedure. 

 Further research is suggested to investigate the effect of inelastic deformation 

concentration on the inter-story drift ratios and brace ductility demands as well as 

higher mode participation. 

 Probabilistic distributions of seismic responses of SFDB frames under specified 

earthquake intensity levels need to be studied, and the probability of exceedence 

in the lifetime of the structure needs to be further considered in the target 

performance levels to establish a true performance based design procedure. The 
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information of the probability of exceedence is usually more valuable than 

median response in structural design or evaluation of structural performance. 

 Incremental dynamic analyses of SFDB frames which evaluate the seismic 

performance of SFDB frames at increasing earthquake intensity levels, is 

important in the performance-based earthquake engineering. 

 To control the damage of acceleration-sensitive contents in buildings under MCE 

earthquakes, acceleration demand, which is one of the important design criteria, 

may also be included in the target performance in future design methodology. 
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APPENDIX A GROUND MOTION SETS 

The time history analyses in this study employ the suites of earthquake ground 

motions developed previously by Somerville et al. (1997) for use in the FEMA/SAC 

Steel Project on steel moment-resisting frames. Suites of acceleration time histories 

were developed for three different sites—Los Angeles, Boston and Seattle, and for 

different seismic hazard levels which are corresponding to 50%, 10% and 2% 

probability of excedence in a 50 years respectively. Each suite which contains twenty 

ground motion records is corresponding to one specific site and seismic hazard level. 

These twenty records were derived from fault-parallel and fault-normal orientations of 

ten earthquake records with adjustment in amplitude and frequency domain in order to 

match the target response spectra defined in the 1994 NEHRP provisions. 

Three earthquake suites, totally 60 ground motions, corresponding to site class D 

(firm soil) at downtown Los Angeles, California, are selected in this study. These 

three suites, designated as LA01 – LA20, LA21 – LA40 and LA41 – LA60 

respectively, represent seismic hazard levels with a 10%, 2% and 50% probability of 

exceedance in a 50 year period, respectively. Table A.1 to Table A.3 show the details 

of 60 ground motions including earthquake names, magnitudes, site distance and scale 

factors. More detailed procedure for generating these ground motion time histories can 

be found in Somerville et al. (1997). 



 212
             SA

C
 

N
am

e 
R

ec
or

d 
Ea

rth
qu

ak
e 

M
ag

ni
tu

de
 

D
is

ta
nc

e 
(k

m
) 

Sc
al

e 
Fa

ct
or

 
N

um
be

r 
of

 P
oi

nt
s 

D
T 

(s
ec

) 
D

ur
at

io
n 

(s
ec

) 
PG

A
 

(c
m

/s
ec

2 ) 
LA

01
 

Im
pe

ria
l V

al
le

y,
 1

94
0,

 E
l C

en
tro

 
6.

9 
10

 
2.

01
 

26
74

 
0.

02
 

39
.3

8 
45

2.
03

 
LA

02
 

Im
pe

ria
l V

al
le

y,
 1

94
0,

 E
l C

en
tro

 
6.

9 
10

 
2.

01
 

26
74

 
0.

02
 

39
.3

8 
66

2.
88

 
LA

03
 

Im
pe

ria
l V

al
le

y,
 1

97
9,

 A
rr

ay
 #

05
 

6.
5 

4.
1 

1.
01

 
39

39
 

0.
01

 
39

.3
8 

38
6.

04
 

LA
04

 
Im

pe
ria

l V
al

le
y,

 1
97

9,
 A

rr
ay

 #
05

 
6.

5 
4.

1 
1.

01
 

39
39

 
0.

01
 

39
.3

8 
47

8.
65

 
LA

05
 

Im
pe

ria
l V

al
le

y,
 1

97
9,

 A
rr

ay
 #

06
 

6.
5 

1.
2 

0.
84

 
39

09
 

0.
01

 
39

.0
8 

29
5.

69
 

LA
06

 
Im

pe
ria

l V
al

le
y,

 1
97

9,
 A

rr
ay

 #
06

 
6.

5 
1.

2 
0.

84
 

39
09

 
0.

01
 

39
.0

8 
23

0.
08

 
LA

07
 

La
nd

er
s, 

19
92

, B
ar

st
ow

 
7.

3 
36

 
3.

2 
40

00
 

0.
02

 
79

.9
8 

41
2.

98
 

LA
08

 
La

nd
er

s, 
19

92
, B

ar
st

ow
 

7.
3 

36
 

3.
2 

40
00

 
0.

02
 

79
.9

8 
41

7.
49

 
LA

09
 

La
nd

er
s, 

19
92

, Y
er

m
o 

7.
3 

25
 

2.
17

 
40

00
 

0.
02

 
79

.9
8 

50
9.

70
 

LA
10

 
La

nd
er

s, 
19

92
, Y

er
m

o 
7.

3 
25

 
2.

17
 

40
00

 
0.

02
 

79
.9

8 
35

3.
35

 
LA

11
 

Lo
m

a 
Pr

ie
ta

, 1
98

9,
 G

ilr
oy

 
7 

12
 

1.
79

 
20

00
 

0.
02

 
39

.9
8 

65
2.

49
 

LA
12

 
Lo

m
a 

Pr
ie

ta
, 1

98
9,

 G
ilr

oy
 

7 
12

 
1.

79
 

20
00

 
0.

02
 

39
.9

8 
95

0.
93

 
LA

13
 

N
or

th
rid

ge
, 1

99
4,

 N
ew

ha
ll 

6.
7 

6.
7 

1.
03

 
30

00
 

0.
02

 
59

.9
8 

66
4.

93
 

LA
14

 
N

or
th

rid
ge

, 1
99

4,
 N

ew
ha

ll 
6.

7 
6.

7 
1.

03
 

30
00

 
0.

02
 

59
.9

8 
64

4.
49

 
LA

15
 

N
or

th
rid

ge
, 1

99
4,

 R
in

al
di

 R
S 

6.
7 

7.
5 

0.
79

 
29

90
 

0.
00

5 
14

.9
45

 
52

3.
30

 
LA

16
 

N
or

th
rid

ge
, 1

99
4,

 R
in

al
di

 R
S 

6.
7 

7.
5 

0.
79

 
29

90
 

0.
00

5 
14

.9
45

 
56

8.
58

 
LA

17
 

N
or

th
rid

ge
, 1

99
4,

 S
yl

m
ar

 
6.

7 
6.

4 
0.

99
 

30
00

 
0.

02
 

59
.9

8 
55

8.
43

 
LA

18
 

N
or

th
rid

ge
, 1

99
4,

 S
yl

m
ar

 
6.

7 
6.

4 
0.

99
 

30
00

 
0.

02
 

59
.9

8 
80

1.
44

 
LA

19
 

N
or

th
 P

al
m

 S
pr

in
gs

, 1
98

6 
6 

6.
7 

2.
97

 
30

00
 

0.
02

 
59

.9
8 

99
9.

43
 

LA
20

 
N

or
th

 P
al

m
 S

pr
in

gs
, 1

98
6 

6 
6.

7 
2.

97
 

30
00

 
0.

02
 

59
.9

8 
96

7.
61

 
 

Ta
bl

e 
A

.1
 L

os
 A

ng
el

es
 g

ro
un

d 
m

ot
io

ns
 (1

0%
 in

 5
0 

ye
ar

s)
 



 213
             SA

C
 

N
am

e 
R

ec
or

d 
Ea

rth
qu

ak
e 

M
ag

ni
tu

de
 

D
is

ta
nc

e 
(k

m
) 

Sc
al

e 
Fa

ct
or

 
N

um
be

r 
of

 P
oi

nt
s 

D
T 

(s
ec

) 
D

ur
at

io
n 

(s
ec

) 
PG

A
 

(c
m

/s
ec

2 ) 
LA

21
 

 
19

95
 K

ob
e 

6.
9 

3.
4 

1.
15

 
30

00
 

0.
02

 
59

.9
8 

12
58

.0
0 

LA
22

 
 

19
95

 K
ob

e 
6.

9 
3.

4 
1.

15
 

30
00

 
0.

02
 

59
.9

8 
90

2.
75

 
LA

23
 

 
19

89
 L

om
a 

Pr
ie

ta
 

7 
3.

5 
0.

82
 

25
00

 
0.

01
 

24
.9

9 
40

9.
95

 
LA

24
 

 
19

89
 L

om
a 

Pr
ie

ta
 

7 
3.

5 
0.

82
 

25
00

 
0.

01
 

24
.9

9 
46

3.
76

 
LA

25
 

 
19

94
 N

or
th

rid
ge

 
6.

7 
7.

5 
1.

29
 

29
90

 
0.

00
5 

14
.9

45
 

85
1.

62
 

LA
26

 
 

19
94

 N
or

th
rid

ge
 

6.
7 

7.
5 

1.
29

 
29

90
 

0.
00

5 
14

.9
45

 
92

5.
29

 
LA

27
 

 
19

94
 N

or
th

rid
ge

 
6.

7 
6.

4 
1.

61
 

30
00

 
0.

02
 

59
.9

8 
90

8.
70

 
LA

28
 

 
19

94
 N

or
th

rid
ge

 
6.

7 
6.

4 
1.

61
 

30
00

 
0.

02
 

59
.9

8 
13

04
.1

0 
LA

29
 

 
19

74
 T

ab
as

 
7.

4 
1.

2 
1.

08
 

25
00

 
0.

02
 

49
.9

8 
79

3.
45

 
LA

30
 

 
19

74
 T

ab
as

 
7.

4 
1.

2 
1.

08
 

25
00

 
0.

02
 

49
.9

8 
97

2.
58

 
LA

31
 

 
El

ys
ia

n 
Pa

rk
 (s

im
ul

at
ed

) 
7.

1 
17

.5
 

1.
43

 
30

00
 

0.
01

 
29

.9
9 

12
71

.2
0 

LA
32

 
 

El
ys

ia
n 

Pa
rk

 (s
im

ul
at

ed
) 

7.
1 

17
.5

 
1.

43
 

30
00

 
0.

01
 

29
.9

9 
11

63
.5

0 
LA

33
 

 
El

ys
ia

n 
Pa

rk
 (s

im
ul

at
ed

) 
7.

1 
10

.7
 

0.
97

 
30

00
 

0.
01

 
29

.9
9 

76
7.

26
 

LA
34

 
 

El
ys

ia
n 

Pa
rk

 (s
im

ul
at

ed
) 

7.
1 

10
.7

 
0.

97
 

30
00

 
0.

01
 

29
.9

9 
66

7.
59

 
LA

35
 

 
El

ys
ia

n 
Pa

rk
 (s

im
ul

at
ed

) 
7.

1 
11

.2
 

1.
1 

30
00

 
0.

01
 

29
.9

9 
97

3.
16

 
LA

36
 

 
El

ys
ia

n 
Pa

rk
 (s

im
ul

at
ed

) 
7.

1 
11

.2
 

1.
1 

30
00

 
0.

01
 

29
.9

9 
10

79
.3

0 
LA

37
 

 
Pa

lo
s V

er
de

s (
si

m
ul

at
ed

) 
7.

1 
1.

5 
0.

9 
30

00
 

0.
02

 
59

.9
8 

69
7.

84
 

LA
38

 
 

Pa
lo

s V
er

de
s (

si
m

ul
at

ed
) 

7.
1 

1.
5 

0.
9 

30
00

 
0.

02
 

59
.9

8 
76

1.
31

 
LA

39
 

 
Pa

lo
s V

er
de

s (
si

m
ul

at
ed

) 
7.

1 
1.

5 
0.

88
 

30
00

 
0.

02
 

59
.9

8 
49

0.
58

 
LA

40
 

 
Pa

lo
s V

er
de

s (
si

m
ul

at
ed

) 
7.

1 
1.

5 
0.

88
 

30
00

 
0.

02
 

59
.9

8 
61

3.
28

 
 

Ta
bl

e 
A

.2
 L

os
 A

ng
el

es
 g

ro
un

d 
m

ot
io

ns
 (2

%
 in

 5
0 

ye
ar

s)
 



 214
             SA

C
 

N
am

e 
R

ec
or

d 
Ea

rth
qu

ak
e 

M
ag

ni
tu

de
 

D
is

ta
nc

e 
(k

m
) 

Sc
al

e 
Fa

ct
or

 
N

um
be

r 
of

 P
oi

nt
s 

D
T 

(s
ec

) 
D

ur
at

io
n 

(s
ec

) 
PG

A
 

(c
m

/s
ec

2 ) 
LA

41
 

C
oy

ot
e 

La
ke

, 1
97

9 
5.

7 
8.

8 
2.

28
 

26
86

 
0.

01
 

39
.3

8 
57

8.
34

 
LA

42
 

C
oy

ot
e 

La
ke

, 1
97

9 
5.

7 
8.

8 
2.

28
 

26
86

 
0.

01
 

39
.3

8 
32

6.
81

 
LA

43
 

Im
pe

ria
l V

al
le

y,
 1

97
9 

6.
5 

1.
2 

0.
4 

39
09

 
0.

01
 

39
.0

8 
14

0.
67

 
LA

44
 

Im
pe

ria
l V

al
le

y,
 1

97
9 

6.
5 

1.
2 

0.
4 

39
09

 
0.

01
 

39
.0

8 
10

9.
45

 
LA

45
 

K
er

n,
 1

95
2 

7.
7 

10
7 

2.
92

 
39

31
 

0.
02

 
78

.6
 

14
1.

49
 

LA
46

 
K

er
n,

 1
95

2 
7.

7 
10

7 
2.

92
 

39
31

 
0.

02
 

78
.6

 
15

6.
02

 
LA

47
 

La
nd

er
s, 

19
92

 
7.

3 
64

 
2.

63
 

40
00

 
0.

02
 

79
.9

8 
33

1.
22

 
LA

48
 

La
nd

er
s, 

19
92

 
7.

3 
64

 
2.

63
 

40
00

 
0.

02
 

79
.9

8 
30

1.
74

 
LA

49
 

M
or

ga
n 

H
ill

, 1
98

4 
6.

2 
15

 
2.

35
 

30
00

 
0.

02
 

59
.9

8 
31

2.
41

 
LA

50
 

M
or

ga
n 

H
ill

, 1
98

4 
6.

2 
15

 
2.

35
 

30
00

 
0.

02
 

59
.9

8 
53

5.
88

 
LA

51
 

Pa
rk

fie
ld

, 1
96

6,
 C

ho
la

m
e 

5W
 

6.
1 

3.
7 

1.
81

 
21

97
 

0.
02

 
43

.9
2 

76
5.

65
 

LA
52

 
Pa

rk
fie

ld
, 1

96
6,

 C
ho

la
m

e 
5W

 
6.

1 
3.

7 
1.

81
 

21
97

 
0.

02
 

43
.9

2 
61

9.
36

 
LA

53
 

Pa
rk

fie
ld

, 1
96

6,
 C

ho
la

m
e 

8W
 

6.
1 

8 
2.

92
 

13
08

 
0.

02
 

26
.1

4 
68

0.
01

 
LA

54
 

Pa
rk

fie
ld

, 1
96

6,
 C

ho
la

m
e 

8W
 

6.
1 

8 
2.

92
 

13
08

 
0.

02
 

26
.1

4 
77

5.
05

 
LA

55
 

N
or

th
 P

al
m

 S
pr

in
gs

, 1
98

6 
6 

9.
6 

2.
75

 
30

00
 

0.
02

 
59

.9
8 

50
7.

58
 

LA
56

 
N

or
th

 P
al

m
 S

pr
in

gs
, 1

98
6 

6 
9.

6 
2.

75
 

30
00

 
0.

02
 

59
.9

8 
37

1.
66

 
LA

57
 

Sa
n 

Fe
rn

an
do

, 1
97

1 
6.

5 
1 

1.
3 

39
74

 
0.

02
 

79
.4

6 
24

8.
14

 
LA

58
 

Sa
n 

Fe
rn

an
do

, 1
97

1 
6.

5 
1 

1.
3 

39
74

 
0.

02
 

79
.4

6 
22

6.
54

 
LA

59
 

W
hi

tti
er

, 1
98

7 
6 

17
 

3.
62

 
20

00
 

0.
02

 
39

.9
8 

75
3.

70
 

LA
60

 
W

hi
tti

er
, 1

98
7 

6 
17

 
3.

62
 

20
00

 
0.

02
 

39
.9

8 
46

9.
07

 
 

Ta
bl

e 
A

.3
 L

os
 A

ng
el

es
 g

ro
un

d 
m

ot
io

ns
 (5

0%
 in

 5
0 

ye
ar

s)
 



 215

−1

−0.5

0

0.5

1
LA01

−1

−0.5

0

0.5

1
LA02

−1

−0.5

0

0.5

1
LA03

−1

−0.5

0

0.5

1
LA04

−1

−0.5

0

0.5

1
LA05

A
cc

el
er

at
io

n
 (

g
)

−1

−0.5

0

0.5

1
LA06

−1

−0.5

0

0.5

1
LA07

−1

−0.5

0

0.5

1
LA08

0 10 20 30 40 50
−1

−0.5

0

0.5

1
LA09

Time (sec)
0 10 20 30 40 50

−1

−0.5

0

0.5

1
LA10

Time (sec)  

Figure A.1 Ground motion time histories (LA01 – LA10) 
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Figure A.2 Ground motion time histories (LA11 – LA20) 
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Figure A.3 Ground motion time histories (LA21 – LA40) 



 218

−1.5

−1

−0.5

0

0.5

1

1.5
LA31

−1.5

−1

−0.5

0

0.5

1

1.5
LA32

−1.5

−1

−0.5

0

0.5

1

1.5
LA33

−1.5

−1

−0.5

0

0.5

1

1.5
LA34

−1.5

−1

−0.5

0

0.5

1

1.5
LA35

A
cc

el
er

at
io

n
 (

g
)

−1.5

−1

−0.5

0

0.5

1

1.5
LA36

−1.5

−1

−0.5

0

0.5

1

1.5
LA37

−1.5

−1

−0.5

0

0.5

1

1.5
LA38

0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

1.5
LA39

Time (sec)
0 10 20 30 40 50

−1.5

−1

−0.5

0

0.5

1

1.5
LA40

Time (sec)
 

Figure A.4 Ground motion time histories (LA31 – LA40) 
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Figure A.5 Ground motion time histories (LA41 – LA50) 
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Figure A.6 Ground motion time histories (LA51 – LA60) 
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APPENDIX B PROTOTYPE BUILDING 

The 3-story and 6-story concentrically braced frames (model 3vb2 and 6vb2) used by 

Sabelli (2001) and Kiggins and Uang (2006) in their study of buckling-restrained-

braced (BRB) frames are selected as the prototype structures in this study. These two 

BRB frame buildings are designed to be located in downtown Los Angeles with site 

class D (firm soil). Figure B.1 and Figure B.2 show the building plans and elevations 

of the 3- and 6-story frame buildings respectively. The locations of braces, as well as 

the section sizes of columns and beams, are also shown in Figure B.1 and Figure B.2. 

The typical story height is 3.96 m (13 ft), except for the first story of the 6-story 

building which has a story height of 4.88 m (16 ft). The typical bay width is equal to 

9.15 m (30 ft). 

The design of these buildings followed the FEMA building design criteria, in 

which a response of modification factor (R) of 8 was employed. Table B.1 shows the 

tensile yield strength and axial stiffness of BRBs for each story. The compression 

capacities of all the BRBs were assumed to be 1.1 times their tension capacities based 

on previous research observation. The yield capacities of the BRBs were selected to 

just satisfy the minimum strength requirements such that the capacity of each structure 

was not over-designed. A992 Gr.50 steel was used for all beams and columns. 

 In numerical analyses, only one bay of the braced frame was modeled and 

analyzed. Thus the seismic mass of each floor was calculated by dividing the total 

seismic floor masses with the number of braced bays in each principal direction (i.e., 
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1/4 of the total dead load for the 3-story building and 1/6 of the total dead load for the 

6-story building). All beam-to-column connections except for those at the roof were 

modeled as rigid connection by considering the effect of attached gusset plates while 

the ends of all braces were assumed as frictionless pins. The column bases are 

assumed fixed to the ground. In order to approximately account for the stiffness 

contribution from all other columns in the un-braced frame, a column running the full 

height was added to the model. Global P-∆ effect was also considered in the nonlinear 

time history analyses. More details about the prototype buildings can be found in 

Sabelli (2001). 
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Table B.1 Properties of the BRBs in the prototype buildings 

BRB 
Building 
Model 

Story # Tensile Strength 
(kN) 

Axial Stiffness  
(kN/m) 

3 520 1.030×105 

2 872 1.651×105 3-story 

1 1081 1.905×105 

6 391 0.798×105 

5 712 1.418×105 

4 961 1.881×105 

3 1160 2.238×105 

2 1299 2.481×105 

6-story 

1 1699 2.500×105 
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      (a) Building plan            (b) Frame elevation 

Figure B.1 The prototype steel frame structures: 3-story building 
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      (a) Building plan          (b) Frame elevation 

Figure B.2 The prototype steel frame structures: 6-story building 
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